
(I) Background
Even though exogenou𝑠2 uncertainty imposes considerably commercial, operational and
technical vulnerabilities (risk) to ocean engineering system (ES), it might as well lead to
unforeseen opportunities. Unfortunately, it seems like decision-makers in the maritime industry
primarily focuses on preventing the negative aspects of uncertainty. This thesis seeks to develop
methods that support life cycle management of ocean engineering systems with the means to
both mitigate the vulnerabilities and exploit the opportunities.

(II) Method
Based on a comprehensive review of literature related to systems engineering, product
development, strategy, management, finance, operations research and reinforcement
learning/artificial intelligence, we developed the Value-Aptitude-Design-Strategy (VADS)
framewor𝑘3 and Design-Strategy Planning (DSP) to support life-cycle management of ES. Further,
we present Markov decision processes (MDP) as a quantitative method for supporting DSP, and
Q-learning (i.e. Approximate Dynamic Programming) for solving MDPs. The Q-learning algorithm
is coded in MATLAB. To illustrate its use, VADS, DSP and MDP are applied on a offshore case
extending from Rehn et al. (2017).

(III) Design-Strategy Planning (DSP)
Design-Strategy Planning (DSP) is a structured approach for managing uncertainty. Building on
the VADS framework, DSP focuses on identifying, implementing and monitoring Strategic
syste𝑚𝑠4 with the means to handle exogenous uncertainty. We recognize real option𝑠4 as
such means. Thus, stakeholders should strive to identify, evaluate and incorporate real
options as a part of their contingency plan to face the exogenous uncertainty. In the
commercial level, such real options can be to expand the fleet in the case of an expected
market upturn. In the operational level, such real options can be to lay-up the vessel when
the markets are low. In the functional levels, such real options can be to incorporate
changeability enabling the ES to change its form to alterations in operating contexts and
stakeholders’ needs. Figure 1 presents the iterative four-step procedure of DSP.

(IV) Markov Decision Processes (MDP)
Unfamiliar to (most) students and professors at NTNU, this thesis seeks to motivate further
studies on Markov decision processes and methods for solve it. Generally, MDP (Bellman,
1954) is a state-based method for modelling sequential decision making problems (SDMPs)
under uncertainty. We present MDP as a quantitative tool for supporting the development
phase in DSP (ref. fig. 1), as it can identify strategic systems and triggers.

Figure 2 presents the symbolic representation of DSP, supported by the notation described in
table 1. For each point in time, t ∈ T, an decision-maker (agent) finds himself in a decision
epoch, 𝑠 ∈ 𝑆𝑡 , where he, based on the state of the system, chooses an decision,𝑥𝑡 , from a set
of available decisions, 𝑋𝑡. When making the decision, it is assumed that the current system is
fully known to the decision-maker. The consequence of the decision is two folded: first, the
decision-maker transits on to a new state, 𝑆𝑡+1, in the next time step. Which state the process
enters is determined by the transition function, 𝑆𝑀(𝑆𝑡, 𝑥𝑡 ,𝑊𝑡+1), which depends on the
current state, the decision made and the exogenous information, 𝑊𝑡+1, revealed first after the
decision is made. Thus, the decision-maker is not in full control of the transition. Secondly,
the decision-maker receives an contribution, 𝐶𝑡+1 𝑆𝑡, 𝑋𝑡 , 𝑆𝑡+1 , which can be both positive,
negative or zero. Afterwards, the procedure is repeated. The action made by the decision
maker is bases on a decision rule. A sequence of decision rules is called a decision policy, 𝜋.
The goal of SDMPs is to find the optimal policy which maximizes (or minimizes) the
contribution of the system over its lifetime. For the optimal policy, the benefit of the decisions
might not be immediate clear, but it is the one that ensures the highest expected contribution
over the system’s entire lifetime.

This quite simple framework is applicable on a broad range of various decision problems. In
this thesis, it is used in the illustrative case to model the lifecycle of an offshore construction
vessel and the decisions its stakeholders makes to influences it (on both the commercial,
tactical and operational level). By analysing the optimal policy the strategic system and
triggers in DSP can be found (ref. fig. 1).

(VI) Conclusion
The thesis highlights the importance of expanding the traditional system boundary in engineering,
recognising stakeholder's role in managing the system over its life time. The authors states that paring DSP
with MDP is an advanced approach for life cycle management, which is essential to identifying value robust
strategic systems. We believe that the knowledge from this thesis can be important in life-cycle
management of high-value, complex, engineering systems, with long-lifetime, facing high degree of
exogenous uncertainty
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Figure 1:  Framework for Design-Strategy Planning

(V) Q-learning (Approximate Dynamic Programming)
A well-known method for solving MDPs is backward dynamic programming (BDP), however,
BDO suffers under the course of dimensionality and the course of modelling when
modelling the life cycle of ES. This motivated the authors to find new, untraditional
methods which are able to cope with these challenges.

We ended up choosing Q-learning (Watkins, 1989), a model-free reinforcement learning
algorithm. As illustrated in figure 3, the Q-learning strategy created post decision states
(S,x) and an associate value function Q(S,x). The Q-values presents the expected discounted
(𝛾) contribution for taking decision 𝑥𝑡 in state 𝑆𝑡, at time t:

Based on Powell (2008) and Gosavi (2014), the following generic Q-learning algorithm is
presented:

Algorithm 1: Generic Q-learning Algorithm (based on Powell (2008) and Gosavi (2014))

As see, the optimal policy is found in step. 4. Equation 2 (referred to in step 2c.) is presented below, where
𝛼𝑛 is the learning rat𝑒6:
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Figure 2:  Sequential decision making and 
Markov Decision Processes
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(IX) Footnotes
1) Working title.
2) A class of uncertainty that is independent of system designs and development plans (de Weck et al.,

2007)
3) Due to space limitation the VADS framework is not presented in this poster.
4) We propose the term Strategic system as a set of distinct devises used to handle uncertainty. A strategic

system comprises a selected design configuration and life cycle strategies. This expands the traditional
system boundary in engineering to also include the managerial dimension.

5) Quite similar to financial options, real options is the right, but not the obligation, to exercise actions or
to make specific project decisions at a future time.

6) Representing how fast the algorithm learns the approximated Q-value 
7) Norwegian University of Science and Technology
8) Delft University of Technology

Figure 3: Illustration of Q-states (Post-decision
states)
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