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Abstract

Autonomous navigation for unmanned surface vessels is a modern and rapidly grow-
ing field of research. In recent years, many concepts and solutions have been pro-
posed in order to achieve autonomous control of marine vessels. This thesis reviews
the development of an autonomous path-planning and -following system with obsta-
cle avoidance to avoid collisions, for a model-scale surface vessel. The system was
developed to be able to navigate in a global or locally known map of static obsta-
cles, where there were uncertainties regrading unknown static and dynamic obstacle
present in the area of operation.

A LIDAR was used as a proximity sensor, in order for the system to sense the
environment and to map the dynamic obstacles in the vicinity of the vessel, and in
addition perform simultaneously localization and mapping. This information was
used by the collision avoidance system in order to avoid obstacles.

The autonomous path planner used in this thesis is a slightly modified version of the
A* algorithm, that generates a path towards a set goal. In order to follow the path,
a Line of Sight steering law has been implemented, that has been modified for use on
an omnidirectional vessel. A modified version of the Dynamic Window algorithm has
been developed and implemented, to enable the vessel to avoid dynamic obstacles
that is met along the path. The system was designed for use on the omnidirectional
vessel named the CS Saucer, which was used as the platform to test the resulting
system in the NTNU Marine Cybernetics Laboratory.

The experiments and computer simulations showed that the collision avoidance sys-
tem could handle static obstacles very well. The collision avoidance system was also
shown to handle dynamic obstacles, but there were some limitations to the system in
this regards. This was mainly due to the dynamic obstacles’ velocity not being esti-
mated and compensated for. This should be the main focus of further work, as well
as using the obstacle velocity information to make the collision avoidance system
abide the International Regulations for Avoiding Collision at Sea (COLREGS).



Sammendrag

Autonom navigering for ubemannede overflate fartøy er ett moderne forskningsfelt
i rask utvikling. I senere år har det stadig kommet nye forslag til løsninger og
konsepter for å oppn̊a autonom kontroll av marine fartøy. Denne avhandlingen
tar for seg utviklingen av et autonomt navigeringsystem som kombinerer autonom
baneplanelegging og autonom banefølging, med ett system for å unng̊a kollisjoner.
Dette systemet skulle implementeres og testes for ett modell-skala fartøy. Systemet
ble utviklet for å navigere i et globalt eller lokalt kjent kart av statiske objekter, hvor
det var knyttet stor usikkerhet anng̊aende ukjente statiske og dynamiske objekter
innenfor operasjons omr̊adet.

For at fartøyet skal klare å oppdage statiske hindringer og dynamiske objekter brukes
en LIDAR som en nærhetssensor for å lage ett kart av dynamiske objekter og for
å utføre ”samtidig lokalisering og kartlegging” (SLAM). Denne informasjonen ble
brukt for å unng̊a kollisjoner.

Den autonome baneplaneleggeren som er brukt i denne avhandlingen er en A* al-
goritme, som generer en bane mot ett satt m̊al. For å følge banen, er det blitt
implementert en siktlinje (LOS) styringslov som er blitt designet for bruk p̊a et
rundt fartøy. En modifisert version av algoritmen ”Dynamic Window” er blitt im-
plementert. Dette ble gjort for å gjøre fartøyet i stand til å unng̊a kollisjoner med
dynamiske objekter den møter langs den generete banen. Systemet ble designet for
bruk p̊a det runde modell-skala fartøyet CS Saucer, som ble brukt til å teste det
utviklede navigasjons systemet i NTNUs Marin Kybernetiske Laboratorium.

Modellforsøk og datasimuleringer viste at kollisjon unnvikelses systemet fungerte
godt for statiske objekter. Systemet viste ogs̊a at det var i stand til å takle dynamiske
objekter, men at det ogs̊a hadde noen begrensninger i disse tilfellene. Dette var
hovedsakelig p̊a grunn av at farten p̊a de dynamiske hindringene ikke blir estimert
og tatt høyde for. Dette bør være hovedfokuset for videre arbeid, samt å bruke denne
informasjonen til å gjøre at kollisjonsunng̊aelsen følger sjøveisreglene (COLREGS).
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Chapter 1

Introduction

1.1 Motivation

The world is becoming increasingly reliant on automated systems to preform complex
tasks. As these tasks grow more complex, the systems’ ability to make intelligent
decisions must also increase. The increase in the ability to perform intelligent de-
cisions shifts a system from an automated system to an autonomous system. An
automated system is a system that is specialized to perform a well defined task,
where the process to reach the goal is clearly defined. In comparison an autonomous
system is a self governing system capable of performing tasks with loosely based
goals, by using intelligent reasoning. The study of autonomous vehicles is a research
field that is rapidly growing. The environment an autonomous vehicle operates in is
strongly dependent on the vehicle type, ranging from the depths of the ocean to the
vastness of space. One common problem for autonomous vehicle operation is that
the area of operation often has a high degree of uncertainty regarding the dynamic
and static obstacle present in the environment.

This is also the case for the environment an Unmanned Surface Vehicles USV is
expected to operate in. A USV must be able to operate in such a way that it avoids
collision, while it simultaneously works towards reaching the set goal. In order to
ensure the safety of the USV, and of the environment surrounding it, the USV must
be able avoid the obstacles present in the environment. The robot must be able to
have an understanding of its situation, and use this situational awareness to deduce
feasible and safe decisions regarding the mission objective. The USV considered in
this thesis is the CS Saucer, which is an omnidirectional model-scale vessel actuated
by three rotating azimuth thrusters.

Previous work done on the CS Saucer can be found in, (Sharoni, 2016), (Ueland,
2016) and (Spange, 2016). In the work of (Ueland, 2016) and (Spange, 2016) the
focus of the work is shifted towards autonomy. In (Ueland, 2016) a LIDAR was
installed on the CS Saucer, and a system for autonomous exploration of a static
small-scale marine environment was developed. The resulting system was tested
and verified by experiments preformed in a controlled basin facility. (Spange, 2016)
reviewed the development of an autonomous docking feature for the CS Saucer in a
sheltered lab environment. The next step in the sense of the autonomy of the vessel
would be to make the system able to handle dynamic changes in the environment by
applying local collision avoidance maneuvers. Collision avoidance is an integral part
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of making a vehicle autonomous, and a local scheme for this will help the vehicle
when encountering dynamic changes in the environment.

1.2 Background

1.2.1 Path planning in global and regional maps

Path planning in global and regional maps, where one plans the path around a map
of presumed known static obstacles, is a problem with many solutions. The global
approach can define a path, from start to goal using the information granted by
the regional and global maps that defines static obstacles in the area of operation.
One could also utilize a map that is continuously built based on the current sensor
measurements. The downside of the global approach is that the global methods
often must process much information, which affects the time it takes to generate a
path. The time this requires might vary between less than a second, or even up to
several minutes. From this one can say that the ”reaction time” of a global method
might potentially be slow, and may not be suited for a rapidly changing environment.
However if one introduces dynamic obstacle avoidance as a local correction to the
path, algorithms with much faster ”reaction time” can be utilized to handle a local
world model where the inaccuracies and dynamics which are not represented in the
global map are detected and included in the local planning.

1.2.2 Reactive obstacle avoidance

In (Tan et al., 2004a) it is shown that the architecture of collision avoidance systems
can be divided into three major categories, namely as listed below.

• The Deliberative Architecture

• The Reactive Architecture

• The Hybrid Architecture

The deliberative architecture is the same as a global method described in chapter
1.2.1, and the reactive architecture is what was mentioned as a local path planning
method method in chapter 1.2.1. The reactive architecture is also referred to as
a sense-act method. In this architecture the sensor measurements might be used
directly, instead of needing a map of the environment. This leads to a lower compu-
tational cost, which leads to a better response time. The downside of the reactive
architecture, is that it might lead to non-optimal paths, and even trap the vessel
in a local minima if used alone (Borenstein and Koren, 1999). To create a more
optimal architecture, the deliberative and reactive parts are combined to a hybrid
architecture. By doing this one can get the best of both worlds, where the deliber-
ative layer guides the vessel towards the goal while the reactive layer compensates
for most of the unforeseen and dynamic changes to the local environment.

1.2.3 Proximity sensors

A proximity sensor is a sensor that is capable of detecting the presence of objects
in its vicinity without the need of any physical contact with the objects. There is a
wide variety of different types of sensors capable of accomplishing this. In this thesis
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the Light Detection And Ranging device (LIDAR) that was implemented in (Ueland,
2016) was used as a proximity sensor. A LIDAR is a remote sensing device that
measures distance to nearby objects by illuminating its environment with a laser
and analyzing the reflected light. The reflected laser signal is sampled by vision
acquisition, and the time it took for the signal to return reveals the distance to the
target. Figure 1.1 illustrates how the 2 Dimensional (2D) LIDAR installed on the
CS saucer emits a laser pulse that is reflected by a wall and then sampled by vision
acquisition. The LIDAR in figure 1.1 rotates around its own axis, and will in that
way sense the environment in a 2D plane.

Figure 1.1: 2D LIDAR, illustrated with the RPLIDAR, courtesy Roboshop

1.2.4 SLAM for terrain mapping and relative position

The Simultaneous Localization and Mapping (SLAM) problem is a process where
a mobile robot generates a map using measured distance data while simultaneously
localizing itself in it, without the need of any a previous knowledge of the location.
This is an immensely powerful tool, SLAM makes it possible for a robot to use
terrain aided navigation in an unknown environment. From this one can also add
that robots that utilizes SLAM could also be used for terrain mapping, for example
for seabed mapping, underground mine exploration, mapping of dangerous areas
and even space exploration.

The robot needs sensors in order to sense the environment, and in that way be able
to gather data that could be used for mapping the terrain, and determining its own
position. Different environments require different sensors that are suitable for the
environment of the area of operation. Here the most significant sensors currently in
use for performing SLAM will be presented. From (Chong et al., 2015) it said that
the most common sensors for preforming SLAM are of the type:

• Laser Range Finders

• Acoustic Sensors

• Stereo Vision Sensors

• RGB-D Sensors

SLAM based on LIDAR A LIDAR enables fast data acquisition with a high
level of accuracy. The data cloud representing the distances to objects in the vicinity
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of the vehicle is used to both map the surrounding area, and simultaneously estimate
the position of the vehicle. An example of a 2D LIDAR being used in a multi-SLAM
framework can be found in (Koch et al., 2016). In (Koch et al., 2016), two robots
were equipped with a 2D LIDAR, and a map is built in parallel by data gathered
from both of the robots. The system was deployed in the Robocup Rescue 2015
environment, and shows that it has an advantage over open source algorithms such
as Hector-SLAM when building maps of a larger scale.
In (Amzajerdian et al., 2011) the possibility of using a 3D LIDAR for mapping the
elevation on planetary bodies during the landing phase of a space craft is presented.
This information would then be used for navigation and to detect the most suitable
and safe landing site, which would make the landing less hazardous.

Acoustic sensors For underwater vehicles sonars are most often used since laser
and visual sensors struggle under water. The sonar emits sound waves, in order to
then analyze the reflected sound waves, and in that way determine the distances
to surrounding obstacles. For mobile robots, ultrasonic sensors are generally the
cheapest available source of spatial sensing. However ultrasonic sensors have low
spatial resolution and sensing range and in addition they are easily disturbed by the
environment, and is dependent on the acoustic reflectivity of the measuered surface.
In (Fallon et al., 2013) a system for reacquiring features of interest in a shallow water
ocean environment for AUVs is described. Using a sonar that generates forward
looking sonar images, a SLAM algorithm that detects and tracks features in the
images was implemented, so that one could re-navigate to a previously mapped
target. In (Jung et al., 2009) a wheel based autonomous vehicle was used for SLAM
mapping an indoor environment utilizing a ultrasonic sensor.

SLAM based Stereo Vision Sensors Stereo vision sensors can be used for 3D
mapping and finding the robot pose in the environment by utilizing stereo cameras
and monocular cameras as can be seen in (Lemaire et al., 2007). Information such
as features or distances can be obtained by analyzing multiple images captured by
cameras (Chong et al., 2015). Stereo vision systems use two or more 2D images,
taken from different positions, to construct 3D information (Mustafah et al., 2012).
A stereo camera gains information about the distance from the disparity in textured
areas of the image. Monocular cameras are used to gain depth information, by
repeatedly observing features to get the feature’s parallax. In (Gil et al., 2010) a
system that utilized feature based SLAM, as the robot was required to observe visual
landmarks as hold-points in the map was presented. If the landmark could not not
be detected from some viewpoints, it would lead to failure, as an area that was
already explored with such a landmark could end up not being verified as explored.

RGB-D sensors A RGB-D depth sensor projects a structured infrared spectrum
light, which is then perceived by an infrared camera, and analyzed to gain depth
information about the environment(Chong et al., 2015). This gives an RGB image
with per pixel depth information (Henry et al., 2014). In general, structured light
sensors are not usable under direct sunlight, because they are sensitive to external
illumination. In (Endres et al., 2014) a 3-D slam system for RGB-D sensors, such as
the Microsoft Kinect is presented. The presented approach utilizes visual key-points
from the color images, and uses the depth images to localize them in 3D. A method
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for utilizing the RGB-D method for full 3D mapping is also presented in (Henry
et al., 2014) .

1.2.5 Autonomy and Unmanned Surface Vessels

Autonomy in engineering can be defined as an engineering system’s ability to make
decisions in order to complete loosely defined tasks of varying complexity, without
the need of a human in the loop. The level of autonomy achieved by a robot is based
on the amount of human interaction needed in order for the robot to be functional
to be operational, and how much human intervention or guidance is required in the
robot’s decision making. Taxonomies and layers of an autonomous system will be
reviewed in chapter 2.3.

A concept of an autonomous USV named ReVolt is presented in (Adams, 2014).
The vessel is envisioned to be electrically powered with a cruising speed of 6 knots.
Due to ReVolt not needing a crew, the vessel will be very cost effective as well as
increasing the load capacity since there is no need for crew facilities. As of now, a
1:20 scale model concept ship is being tested, and is intended serve as inspiration
for equipment makers and ship yards. The concept ship can be seen in figure 1.2a.

(a) A 1:20 scale model of the envisioned
ReVolt, cortesy DNV GL

(b) A figure illustrating the prototype
ASV the Sea Hunter, courtesy of DARPA

Figure 1.2: Pictures of the 1:20 scale model ReVlot, and the Sea Hunter

In the article (Vincent, 2016) a prototype of an autonomous warship is presented.
The ship is called ”Sea Hunter” and is intended to robustly track quiet diesel elec-
tric submarines (Littlefield). The vessel is intended to be unmanned, and capable
of avoiding collision on its own accord. To do this a radar in combination with
Automatic Identification System (AIS) is used to build up the situational awareness
of the vessel. In addition in (Vincent, 2016) it is said that the collision avoidance
maneuvers must be executed in a way that is recognized as human like. This im-
plies that the collision avoidance scheme will be COLREGS compliant. In (Prigg,
December 2016) it is stated that the Sea Hunter has completed some initial trials,
and testing of the Sea Hunter’s autonomy system is scheduled to continue through
fall 2017 as a two-year test program jointly funded by DARPA and the Office of
Naval Research (ONR). The Sea Hunter can be seen in figure 1.2b.
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1.3 Previous Work Preformed on the CS Saucer

1.3.1 Marine Cybernetics Vessel CS Saucer: Design, construction
and control

In (Idland, 2015) the CS Saucer was designed and constructed, and a dynamic
positioning and a tentative path following system was developed for the CS Saucer
and tested in the NTNU Marine Cybernetic Laboratory (MC-lab). The embedded
controller myRIO from National Instruments is used to control the vessel.

1.3.2 Marine Inverted Pendulum

In (Sharoni, 2016) the CS Saucer was used to investigate if the CS Saucer was able
to balance an inverted pendulum. The dynamic coupled equations for the marine
inverted pendulum. Using this mathematical model, a simplified linearized version
was used to design a Linear Quadratic Regulator (LQR) feedback controller. A
Lundenberg state estimator was designed, and in combination with the LQR solves
the linear quadratic Gaussian (LQG) problem. The resulting observer was able to
reconstruct the unmeasured states that were necessary for feedback control. The
resulting system was tested in the NTNU Marine Cybernetics Laboratory (MC-
lab). The experiments preformed in the MC-lab showed that the objective was not
completely achieved, but it is believed that it is possible to achieve it given some
more work. One of the main concerns in this regard was the thruster mapping.
The thrusters were unreliable, especially in the zero thrust region, and when thrust
direction was changed.

1.3.3 Marine Autonomous Exploration using a LIDAR

In (Ueland, 2016), a complete design of a control system for a model-scale marine
surface vessel capable of autonomous exploration in small-scale marine environments
is created. The system implemented is an autonomous system that merges explo-
ration strategies, path planner, Simultaneous Localization and Mapping (SLAM)
algorithms, motion controller and a strategy for generating controller set points.
The CS saucer was extensively upgraded with new hardware and the existing soft-
ware control system was replaced with a Robot Operating System (ROS) platform.
The vessel was equipped with a 2D Laser Range Scanner (LIDAR). The SLAM
problem was solved by implementing an existing open source package applies the
data gathered from the LIDAR to preform SLAM. In (Ueland, 2015) the CS Saucer
was modeled to find an adequate equation of motion. The model was used to create
the vessel simulator, developed in (Ueland, 2016) as well as the observer that was
implemented in the control system. The resulting system was demonstrated through
both simulations and experiments preformed in the MC-lab.

1.3.4 Autonomous Docking for Marine Vessels Using a LIDAR and
Proximity Sensors.

In (Spange, 2016) a system for autonomous docking for a marine vessel was devel-
oped. The CS saucer was modified with physical modules that increased the yaw
resistance of the CS Saucer, which altered the behaviour of the vessel in sway and
yaw. The thrust allocation was also given new configurations and orientations. All
this was done so that the CS saucer would emulate a leisure boat. Proximity sensors
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were also added, to aid the autonomous exploration, by detecting obstacles outside
the LIDAR scan plane. Simulations and experiments preformed in the MC-Lab
were done in order to verify the system. Through the experimental results it was
concluded that the trials that went without any incidents could be viewed as a proof
of concept.

1.4 Objectives

The overall objective of this thesis was to develop a system capable of autonomous
path-planning and following in a dynamic environment, for the omnidirectional ma-
rine surface robot CS Saucer. To successfully achieve this main objective, several
partial goals has been set. These are defined as follows:

• Background literature review on Path-generation in regional and local maps,
methods for reactive obstacle avoidance, autonomy layers for an autonomous
system, SLAM based on range-based sensors and proximity sensors for local
obstacle detection.

• Create a system for an unmanned surface vessel that combines a global and a
local path planning method.

• Make use of the open source Hector-SLAM algorithm implemented for the sys-
tem in (Ueland, 2016), and use this in combination with information gathered
by relevant proximity sensors to map and better perceive the local terrain.

• Include the MC-lab Qualisys system to the experiments, such that the position
measurement provided by the Qualisys system can be fused by the localization
estimate from the SLAM algorithm.

• Use the CS Saucer to test the developed system in the MC-Lab

• Modify the simulator developed in (Ueland, 2016) so that it fits the problem
in this thesis, and so that it can be used for verification of the algorithms and
methods used in this thesis.

The objective and sub-objectives have been formulated in cooperation with my su-
pervisor, and can also be seen in the thesis description sheet included at the very
start of the thesis.

1.5 Thesis Contributions

The main contributions of this thesis are:

• Replacing the set-point generated control law developed in (Ueland, 2016) with
a LOS-steering law. The implemented steering law steers the course of the CS
Saucer by controlling the velocity of the vessel, rather than using the heading
which is the traditional approach.

• Updating the map processing to include the raw laser scans from the 2D LI-
DAR that was implemented in (Ueland, 2016), in order map dynamic obstacles
in the vicinity of the CS Saucer.
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• Developing a scheme to convert the Qualisys coordinate system, so that it can
be used in a pre-generated map.

• Creating a scheme that lets the Hector-SLAM be redeployed, and continue
building on a previously built map. This also allows the position estimate
from the redeployed Hector-SLAM algorithm to be used in the already known
map.

• Developing a method to include simple simulated obstacle into the map, that
simulates the obstacles used in this thesis. The simulated obstacles can be
used both in simulations, and in experiments done in the MC-lab

• Developing a sensor fusion scheme to combine the position measured by the
MC-lab Qualisys system with the position estimated by the Hector-SLAM
algorithm.

• Developing a collision avoidance system that is able to handle static obstacles,
and dynamic obstacles up to a certain degree.

1.6 Scope and Delimitations

1.6.1 Thesis Structure

The outline of the thesis is organized as follows:

Chapter 2: Presents a literature review that provides relevant references on path
generation in regional and local maps, methods for reactive obstacle avoidance and
autonomy layers of an autonomous system.

Chapter 3: Presents the theory behind the A* algorithm that was utilized in this
thesis as a global path planner, as well as the theory behind the dynamic window
algorithm. The theory behind the Hector-SLAM algorithm is also presented in this
chapter.

Chapter 4: Presents the CS Saucer along with the experimental setup regarding
the Software Architecture and Hardware Architecture.

Chapter 5: Covers the mathematical model, as well as the various transforma-
tions and conversions among the different reference systems, in order to convert
information from one reference system to another.

Chapter 6: Covers the guidance, navigation and control of the vessel in detail. The
modified Dynamic Window algorithm is presented, as well as the implemented LOS
steering law. The chapter also covers the modifications done to the map processing,
and the sensor fusion scheme.

Chapter 7: Presents the results from the experiments done in the MC-lab and the
simulations done in this thesis.

Chapter 8: The results and the performance of the resulting is discussed in this
chapter. Measures that can be taken in order to increase the performance of the
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developed guidance system is also discussed.

Chapter 9: The final chapter covers the concluding remarks regarding the perfor-
mance of the developed system, and suggestions for improvements in the developed
system. Ideas for further work is also presented.

1.6.2 Limitations

The following addresses some of the limitations of the system developed in this
thesis:

• The experiments are preformed in a controlled environment with the following
properties:

1. There are no environmental forces present during the MC-lab experi-
ments.

2. The obstacles used for the experiments need to be vertical, and not trans-
parent in order to be detected by the LIDAR.

• An external computer connected through the MC-lab wifi network is needed
in order to run the ”Exploration pathplanner” node. This is due to the limited
computational power of the single-board computer installed on the CS-Saucer.

• If the velocity of the dynamic obstacles is to high, the collision avoidance
system will have very little time to react to the obstacle due to the time lag
present in the system.
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Chapter 2

Literature Review

2.1 Path Generation in global and regional maps

There are many different algorithms one can find that could preform well as a global
path finder. In this text it is mainly A*, RRT and D* that will be discussed. They
are algorithms that are widely used to solve the path planning problem. Since it is
the A* algorithm that is used as a global path planner in this thesis, the focus will
be on comparing the A* algorithm with RRT and D*.

2.1.1 A*

The A* algorithm as presented in (Hart et al., 1968), is a best search algorithm
that uses a heuristic approach to find the cheapest path from a defined start to a
goal in a graph. A definition of graphs can be seen in (Hart et al., 1968). The A*
algorithm is an algorithm that is easy to implement, and is widely used in path
planning. The algorithm is recognized as very efficient, and is a complete algorithm,
meaning that it will find a solution if there exists one. The theory behind the
A* algorithm will be presented more thoroughly in chapter 3.1.2. Examples where
the A* algorithms is being used as a path planner for marine environments can be
found in (Shah and Gupta, 2016) and (Larson et al., 2006). In (Shah and Gupta,
2016) a modified version of the A* was developed, and was intended to be used for
computing paths on large marine domains. A real world scenario was also presented,
and it was concluded that the paths generated by their modified A* algorithm finds
the path much faster than the original A* or the Theta* algorithm in very large
maps. In (Larson et al., 2006), an autonomous navigation system was developed
for a SEADOO challenger 2000 sport boat. In this system, the A* algorithm was
used to generate the path around stationary objects, in combination with a dynamic
obstacle avoidance scheme.

2.1.2 D*

The D* algorithm behaves very similar to the A* algorithm, except that it is dynamic
in the sense that the arc cost parameters can change during the problem solving
process(Stentz, 1994). In comparison to the A* algorithm, D* keeps the already
calculated information when the path is determined, and modifies it so that it can
reuse the information if the path must be re-planned. This allows the D* algorithm
to be more dynamic compared to the A* algorithm, in the way that it can use new
information which becomes available and re-plan the path much faster than A*. One
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of the downsides of the original D* is that it is quite complex and hard to understand.
There are several algorithms that are denoted as D*, such as Field D*, and D*lite.
D*lite is an algorithm that is built based on the Lifelong Planning A* (Koenig and
Likhachev, 2005). In (Koenig and Likhachev, 2005), D*lite is compared to the D*,
and the conclusion is that D*lite determines the same paths as Focused D*, and
thus moves the robot in the same way. However, D*lite is algorithmically different
from D*, and is a algorithm that in comparison with D* is simpler to understand
and implement.

2.1.3 Rapidly-Exploring Random Trees algorithm

Rapidly-Exploring Random Trees is a randomized path planning technique that
was introduced in (LaValle, 1998). The RRT algorithm is relatively simple, and it
can take the dynamics of the vessel into account (LaValle, 1998). Since RRT is a
randomized method, it is not a complete method. The RRT starts by generating
a tree structure that rapidly grows from the initial state. With each iteration, a
connection is attempted between the drawn sample and the tree if the connection
is feasible with regards to constraints and obstacles. This way the tree structure
will explore larger and larger portions of the configuration space of the vehicle. In
(LaValle, 1998) it is said that the RRT is biased towards places not yet visited,
and one can also bias the RRT growing towards specific areas by increasing the
probability of sampling states from that specific area (Wikipedia, g). This could be
used to make the RRT focus the path more towards the goal.

In (Øivind Aleksander G. Loe, 2008) a version of the RRT algorithm was imple-
mented as a global planner for the marine vessel ”Viknes 830”. The RRT algorithm
was modified to be assisted by the A* algorithm, in a way such that the A* algo-
rithm guides the RRT algorithm towards the shortest path. The performance of
the RRT algorithm was deemed to give good performance for both the full scale
experiments, and in simulations. Another example where the RRT algorithm has
been used as a global path planner can be found in (Arab et al., 2016). Here a mod-
ified version of the RRT (a combination of sparse-RRT and RRT*) implemented for
a 1/7 scale racing vehicle. The scale-model racing vehicle is expected to preform
autonomous aggressive maneuvers. The experimental results demonstrated the high
agility maneuvering performance under the autonomous driving control with the
motion planner.

2.1.4 A Short Comparison of the Presented Algorithms

In (Loe, 2007) the RRT was compared to other popular path finding algorithms,
as well as dynamic obstacle avoidance in combination with these global methods
were also compared and discussed. Summing up his conclusion on A* vs RRT: A*
generates the shortest possible path, while RRT will always generate sub optimal
paths. However RRT includes the dynamics of the vehicle, which guarantees that
the path is possible to follow for the vehicle (given that one uses an accurate model).
RRT generally doesn’t plan the route as risky as the A* algorithm. The A* has an
edge over RRT in regards to the computational time it takes to find the path. In
other words, they both have their own strengths and weaknesses. When comparing
A* and D* the differences lies in re-planning and the computational power needed
to generate the path, as well as the complexity of the algorithms. The D* algorithm
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or one of the algorithms denoted as D* would suit the objective in this thesis quite
well. However, as a part of this thesis a local path planner is implemented to
compensate for the dynamic changes in the environment. This will reduce the need
for re-planning the global path. The A* has the edge over D* in simplicity and is
already shown to work well for the CS Saucer, as can be seen in (Spange, 2016) and
(Ueland, 2016).

2.2 Reactive obstacle avoidance

2.2.1 Obstacle Detection

Reliably detecting and recognizing obstacles, in particular dynamic obstacles, is in
general difficult. Common sensors or installations used to identify dynamic obstacles
for a full scale ship includes:

• Radar

• Sonar

• AIS

• Stereo-camera(s)

• LIDAR

A short and comprehensive description of LIDARs and Stereo-cameras is given in
chapter 1.2.4.

Radar

A radar system has a transmitter that emits radio waves in predetermined directions.
The radio waves that are reflected back towards the transmitter are then processed
and used to estimate the distance to the obstacle as well as its bearing and velocity.
By measuring the time it takes for the signal to return and with the knowledge
that the radio waves travels at the speed of light, one can deduce the distance to the
target obstacle. A moving obstacle causes a Doppler shift in the signal, meaning that
the frequency of the reflected signal is dependent on the relative speed between the
obstacle and the observer (Wikipedia, c). Only the relative speed can be estimated
from this information. However, by tracking the azimuth movement of the object
over time one can deduce a speed estimate perpendicular to the relative speed,
thereby getting the full scope of the velocity of the object (Wikipedia, e).

Sonar

A short description of how a sonar/acoustic sensor works is given in chapter 1.2.4.
Sonars are widely used for ships in order to evaluate the elevation of the seabed,
and to detect obstacles that may be present beneath the ocean surface.
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AIS

AIS is short for Automatic Identification System. AIS is a system which enables a
vessel to publish information about itself, and receive information about other vessels
in the area. The information that is shared over the AIS is in general identification
and ship characteristics, dynamic information about the vessel and voyage related
information. The dynamic information consists of:

• Ship position

• Course over the ground

• Speed over the ground

• Heading

• Navigational status

• Rate of turn (where available)

• Angle of heel (optional)

• Pitch and roll (optional)

The voyage related information consists of the ship’s draught and the destination of
the vessel, as well as hazardous cargo. Optionally the route plan (way-points) can
be shared. The information is transmitted over dedicated VHF frequencies. The
update rate of this information over the AIS is dependant on the classification of
the vessel as well as its speed and navigational status. For example a class A ship
which is moving at a speed of above 23 knots is required to update the dynamic
data at an interval of 2 seconds. A class A ship that is anchored or moored has a
required update rate of 3 minutes. A class B vessel that has a speed above 2 knots
is required to have a update rate of 30 seconds (Bole et al., 2014).

IMO requires that AIS must be installed on board voyaging ships with a gross
tonnage of 300 or more, as well as all passenger ships regardless of size. Another
point to note is that the quality of the dynamic information published by vessels are
dependant on the precision and status of their sensors. The fact that not all vessels
can be expected to be equipped with AIS, and that the update rate on the dynamic
information from other vessels leads to the conclusion that AIS alone will not grant
sufficient situational awareness in many real world scenarios.

Digital Nautical Charts

Nautical charts are valuable tools in marine navigation. A nautical chart contains
information about static objects in an environment, such as coastlines, piers, buoys,
the elevation of the seabed and so on. It may also contain information about en-
vironmental forces such as currents and tides (Wikipedia, a). In digital form, such
charts can be used as an a priori source of information for an autonomous navigation
system.
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2.2.2 Avoidance Maneuvers

COLREGS – Following the Rules of the Road

The International Regulations for Preventing Collisions at Sea (COLREGS) are a
set of rules defining measures to be taken in order to reduce the risk of collision
(Wikipedia, b). Among many other regulations, the rules define which course of
action a vessel should take when encountering other vessels at sea. For example in a
head on situation, a vessel should pass the other vessel on the port side. In figure 2.1
the head on situation and crossing situation is illustrated. For a crossing situation
the give-way vessel should pass behind the other vessel. The give away vessel is
defined as the vessel that has the other vessel at the starboard side, as stated by
(IMO).

(a) A head on situation (b) A crossing situation

(c) A figure illustrating the port, starboard and stern

Figure 2.1: A figure illustrating a head-on and a crossing situation for two vessels,
courtesy of Transport Cannada

Projected Obstacle Areas

In (Larson et al., 2006) Projected Obstacle Areas (POA) is used to aid the collision
avoidance, in conjunction with the Velocity Obstacle (VO) method as a local planner
and the A* algorithm as the global path planner. A projected obstacle area is an
estimate of the area that a moving obstacle could potentially occupy in the future.
Since the possible areas a moving obstacle could occupy is rapidly increasing with
time, it is necessary to identify a particular moment in time where the obstacle
would pose a threat to the operating vessel. Otherwise the map could potentially be
filled with obstacles, and hinder movement. To identify this moment, one must find
the closest point of approach, which is the minimum distance between the vessel and
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the object in time, along their paths. This can then be done for multiple segments
of the path, to create a representation of the areas the vessel should avoid. Since
the POA method handles probability and uncertainty values to project the area,
one even has the opportunity to modify these so that that the POAs mimic some
simple COLREGSs maneuvers.

2.2.3 Dynamic Window

The dynamic window algorithm is a reactive collision avoidance algorithm that was
introduced in (Fox et al., 1997), and there are many modifications that has been sug-
gested to this algorithm. In the DW approach the search for commands controlling
the vehicle is carried out directly in the space of velocities. The vehicle dynamics
is incorporated into the method by taking the acceleration limits into considera-
tion. The only velocities in the velocity space that are considered are those that
are reachable within the dynamic constraints. This way the DW prohibits infeasible
speed commands, and in that way does not ask for an impossible control action. In
addition to this restriction, only velocities that are safe with respect to obstacles
are considered. It is a modified version of the dynamic window that is used for
collision avoidance in this thesis. The theory behind the original Dynamic Window
Algorithm will be presented in a more complete manner in chapter 3.2.

As mentioned earlier, in (Øivind Aleksander G. Loe, 2008) an autonomous naviga-
tion system was implemented for the full-scale marine vessel ”Viknes 830”. In this
navigation system, the collision avoidance scheme was a modified version of the DW
algorithm. In this case the DW algorithm was modified to be COLREGS compliant,
as well including lateral velocities and vehicle accelerations in the predictions. To
detect obstacles, the AIS system installed on the vessel was used. The performance
of the collision avoidance system behaved well in the full-scale tests. It is concluded
that the limiting factors of the collision avoidance are the sensors, as well as the
processing power and maneuverability of the vessel. In (Eriksen, 2015) horizontal
collision avoidance for autonomous underwater vehicles was studied. The Dynamic
Window algorithm that was applied to a HUGIN 1000 AUV was assessed, and a
simulator for the AUV with sonar sensor and an integral line of sight guidance sys-
tem were developed. Since the DW algorithm is not intended for use on vehicles
with second order non-holonomic constraints, modifications were made to make the
algorithm suited for the HUGIN 1000 AUV. Simulations showed that the modified
DW algorithm succeeded in avoiding collision when it was not trapped in a local
minimum, even when influenced by ocean currents.

2.2.4 Velocity Obstacle

The Velocity Obstacle method (VO) is a method for avoiding obstacle introduced
in (Fiorini and Shiller, 1993). The velocity obstacle is the set of all relative ve-
locities between the vessel and the obstacles that will lead to a collision. The VO
approach transforms each moving object into a fixed obstacle, by looking at the
relative velocity of the vessel and the obstacles. Then mapping the the obstacle into
the vessel’s configuration space and using the relative velocity to add feasible sets
of velocities and build the VO for the vessel. From this one can see that the tip of
the vessel’s velocity vector must be outside of the VO in order to avoid collision.
Vector operations will then be able to determine the set of one-step maneuvers that
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will avoid the obstacle collide with the vessel before a specified time (as seen from
the current position of the vessel). In this way a trajectory correction is computed
that avoids predicted collisions. One thing to also note, is that in the computation
of the avoidance maneuvers the dynamic constraints of the vessel are replaced by
constant bounds on the velocity and the turning angle. This way the dynamics of
the vessel is not directly considered, but still taken some what into account.

An example of VO being used for in a full-scale experiment can be seen in (Kuwata
et al., 2011). Here the VO was modified to be COLREGS compliant. The collision
avoidance scheme was implemented for a USV named ”PowerVent”. Their system
utilized two pairs of stereo cameras to estimate the position and velocity of the
dynamic obstacles. The dynamic obstacle was a 11m RHIB, used as a traffic vessel.
The results showed that the modified VO method behaved well in the full-scale
experiments, and satisfied the COLREGS constraints. The system was also verified
through simulations. In (Stenersen, 2015) the Velocity obstacle is used to avoid
obstacles, in compliance with COLREGS in a simulated environment. Through
simulations in diverse scenarios in combination with discussions of situations proving
extra challenging, a thorough analysis of the VO method as a basis for a collision
avoidance system was given.

2.2.5 Potential Field Method

The Potential field method is a method that was introduced in (Khatib, 1986). Here
the general idea is that obstacles exert a repulsive forces on the vehicle, while the
target or the goal asserts an attractive force. The resultant force acting on the vessel,
determines the direction and the speed of the resulting travel (Koren and Borenstein,
1991). The potential field method depends on knowledge about obstacles in the area
to be able to navigate.

A slightly different version of the method is the Virtual Force Field (VFF method.
The VFF is able to generate a map represented by a two-dimensional Cartesian his-
togram grid by using sensor readings. The histogram grid contains the probabilities
of obstacles being located different places in the area. The repulsive forces are then
also modified by the probability values that tells the chance of there being a obstacle
located there. In (Borenstein and Koren, 1991) some of the limitations of the VFF
method are mentioned. One limitation is that it may not grant passage between
closely spaced object. Another problem that may occur, is that when the vessel is
traveling in narrow corridors, oscillations may start to develop if it does not travel
along the center-line of the corridor.

2.2.6 Vector Field Histogram

The Vector Field Histogram (VFH) method was first presented in (Borenstein and
Koren, 1991). The goal of VFH is to eliminate the shortcomings of VFF while
retaining the advantages of its predecessors. While the VFF generates control com-
mands directly from the two-dimensional histogram grid, the VFH introduces a:
intermediate-level one-dimensional polar histogram. This polar histogram is con-
structed around the vessels momentary location, and use this map to help making
good control choices. In (Borenstein and Koren, 1991) the VFH method is imple-
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mented for a mobile robot named CARMEL. The proximity sensors used for the
robot was 24 ultrasonic sensors that were ringed around CARMEL. The obstacles
in the presented results were unknown static obstacles. In the conducted experi-
ments the VFH method was concluded to behave well. In (Loe, 2007) DW and VFH
was used and compared in a simulation environment with dynamic obstacles. The
resulting discussion deemed DW superior to VFH for obstacle avoidance.

2.3 Autonomous Systems, Layers and Taxonomy

2.3.1 Layers Of Autonomy

An illustration of proposed layers for an autonomous marine system can be seen in
figure 2.2, which presents a “bottom-up” approach towards autonomy .
From this figure, one can see the proposed control architecture for an autonomous
system, which consists three layers defined as:

• Mission planner layer: Here the mission objective is defined and the mission
is planned. Subject to contingency handling, any input from payload sensor
data analysis and any other input from the autonomy layer, the mission may
be re-planned.

• Guidance and optimization layer: This layer handles way-points and references
commands to the controller.

• Control execution layer: Consists of actuator control and plant control. On
board data processing is also handled at this level.

Figure 2.2: Proposed layers of an autonomous marine system. Courtesy: Asgeir J.
Sørensen, 2015.

This architecture is taken from (Sørensen and Ludvigsen, 2015), and was inspired
by teh work done in (Hagen et al., 2009).
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2.3.2 Autonomous System Taxonomy

A autonomous system has different levels of autonomy, and can range from low-
level assistance in decision making for a human operator to high-level autonomous
decision making without human intervention (Fjellheim et al.). (Fjellheim et al.)
presented a table for the different levels of autonomy, which is shown in the list
below.

• level 1, Human Operated: The activity is a result of human initiated con-
trol inputs. The system has no autonomous control, although it may have
information only responses to sensed data

• level 2, Human Assisted: The system can preform activity in parallel with
human input, to make it easier for the human to preform the desired activity.

• level 3, Human Delegated: The system can preform a limited control activity,
if it has been delegated the task.

• level 4, Human Supervised: The system can preform a variety of activities
if given permission or direction by a human. The system provides sufficient
information about the the process and the internal operation and behaviors,
so that the supervising human can use this to redirect the system.

• level 5, Mixed Initiative: Both the human and the system can initiate behaviors
on sensed data, where there is a variety of means provided to regulate the
authority of the system, with regards to human operations.

• level 6, Fully Autonomous: The system requires no human operations to pre-
form any of its designated activities across all planned ranges of environmental
conditions. The system is able to make critical decisions on its own, and act
based on its situational awareness.

This list was presented to illustrate that even though the list is not wrong in itself,
there are many ways to present the levels of autonomy of a system. The literature are
littered with different definitions and numbers with regards to the levels of autonomy.
In (Vagia et al., 2015) a literature review on the definitions of the levels of autonomy
over the years has been done. They reviewed and compared the different taxonomies
different authors has used to classify the level of autonomy of a system. The authors
used all this information and proposed a taxonomy of their own. An overview of
this can be seen in figure 1 in (Vagia et al., 2015).The levels of autonomy as that
was proposed by the authors in (Vagia et al., 2015) is as listed below. It is this
taxonomy that will be used for this thesis.

• Level 1, Manual control: Computer offers no assistance

• Level 2, Decision proposal stage: The computer offers some decisions to the
operator. The operator is responsible to decide and execute.

• Level 3, Human decision select stage: The human selects one decision and the
computer executes

• Level 4, Computer decision select stage: The computer selects one decision
and executes with human approval
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• Level 5, Computer execution and human information stage: The computer
executes the selected decision and informs the human

• Level 6, Computer execution and on call human information stage: The com-
puter executes the selected decision and informs the human only if asked

• Level 7, Computer execution and voluntarily information stage: The computer
executes the selected decision and informs the human only if it decides to

• Level 8, Autonomous control stage: The computer does everything without
human notification, except if an error that is not into the specifications arrives.
In that case the computer needs to inform the operator
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Chapter 3

Theory

3.1 The Path Planning Problem

3.1.1 Search Graph

A search graph can be represented in many ways, and popular examples of metric or
grid-based techniques include Meadow Maps, Voroni Diagrams, Regular Occupancy
Grid and Quadtree Mapping (Campbell et al., 2012). The most common of these
is the occupancy grid, which is the method that was utilized in (Ueland, 2016) and
still used in this thesis. An occupancy grid represents the map as discretized into
a grid where each cell in the grid denotes a possibility of being occupied. In a
regular occupancy grid the entire cell is deemed as occupied if any point in the cell
is occupied by an object.

To be able to solve the path planning problem with graph theory, one needs to
generate nodes and place them in the map. There are several ways to do this, which
can be seen in (Geraerts and Overmars, 2004). A simple way to do this for an
occupancy grid, is to let each cell in the grid be a node. This can lead to a large
amount of nodes, and increases the computer processing demands on the system.
The nodes will represent a discrete position in the map, and paths to neighboring
nodes will be easy to asses.

3.1.2 The A* Algorithm

To find an optimal path, the A* uses a heuristic approach, as stated above. The eval-
uation function f(n) often referred to the f-score, is the function that is minimized
and is determined by the equation:

f(n) = g(n) + h(n) (3.1)

Where g(n) is the cost that is accumulated from the start node by traversing other
nodes in the graph, in order to reach n. h(n) is the heuristic estimate of the cheapest
path from n to the goal, ignoring the obstacles. For this case, the equation for the
heuristic cost becomes:

h(n) =
√

(goalx − nx)2 + (goaly − ny)2 (3.2)

The algorithm operates with two lists to keep track of the progress, the open list and
the closed list. The open list is a list of all the ”discovered” nodes that has yet to be
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evaluated, where the one with the lowest f-score is chosen to be evaluated for each
iteration. This means that the algorithm solves the problem by always evaluating
the most promising nodes, which classifies it as a best-first algorithm. After a node
has been evaluated it is then put in the closed list, so that one can keep track of
which nodes that has been evaluated, and use this to avoid having to re-evaluate
nodes. To be able to recreate the path after the search is finished, one must also
make sure that each node remembers its predecessor/parent with the lowest f-score,
so that one may determine where it stemmed from when the search is finished.By
using this information, it can be determined which set of nodes that generates the
opitmal path. If the Heuristics does not over predict the minimum cost to reach the
goal, the A* algorithm will find the shortest to the goal (Hart et al., 1968).

3.2 The Dynamic Window Algorithm

The dynamic window algorithm was first introduced in (Fox et al., 1997). The
method assumes that the velocity and rate of turn for the vessel can be set as a
constant within a given time interval. In addition, by neglecting the sway velocity
of the vehicle, a trajectory of the vessel during the time interval may be estimated
by using the velocity vector [ui, ri]

T . This allows the trajectories to be calculated
as circular trajectories described by:

aix = x− ui
ri
sin(θ) (3.3)

aiy = x+
ui
ri
cos(θ) (3.4)

Where (x,y) describes the position of the vessel, ui is the vessel’s surge speed during
interval i, ri is the rate of turn during interval i and θ is the vehicle heading. The
radius of the arc is defined by:

air =
∣∣∣ui
ri

∣∣∣ (3.5)

In order to find the optimal trajectory for a given time interval, a whole set of
trajectories generated by different velocity vectors needs to be evaluated. In order
to reduce the search space, dynamic and safety constraints are set, and must be
satisfied in order to deem a given velocity vector feasible.

Admissible Velocities

One of the constraints that are set is that a velocity vector, [ui, ri]
T must be ad-

missible, which means that it must lead the vessel along a safe trajectory. The pair
(ui, ri) is only considered admissible if the robot is able to stop before it reaches the
closest obstacle on the corresponding trajectory. The admissible velocities can be
defined as the velocities that satisfies the following equation:

Va = {(u, r)| |u| ≤
√

2 · dist(u, r) · u̇b , ∧ |r| ≤
√

2 · dist(u, r) · ṙb} (3.6)

Where dist(u, r) is the distance the vessel can travel along the arc without hitting a
obstacle. u̇b and ṙb is the acceleration for breakage. Thus Va is the set of velocities
which allows the vessel robot to stop without colliding with a obstacle.
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The Dynamic Window

The second constraint is that the velocity search space must be reduced to the
velocities that are reachable within the given interval. This restriction takes the
limited accelerations obtainable by the vessel in a given interval. These velocities
are denoted as the Dynamic Window and denoted as Vd. The velocities must satisfy
the equation below:

Vd = {(u, r) | u ∈ [ua − u̇ ·∆t, ua + u̇ ·∆t] ∧ r ∈ [ra − ṙ ·∆t, ra + ṙ ·∆t]} (3.7)

Where [ua, ra]
T is an admissible velocity vector.

The Resulting Search Space

The resulting constraints on the velocities leaves the set Vr within the dynamic
window. Vs can be seen as the search space, containing all the candidate velocities,
which enables Vr to be defined as follows:

Vr = Vs ∩ Va ∩ Vd (3.8)

Selecting Optimal Velocities

After the search space has been determined, a velocity needs to be selected from the
set Vr. By maximizing a objective function that gives a score to each velocity vector
based on the criteria heading, distance and speed. The objective function has the
form:

G(u, r) = σ(α · heading(u, r) + β · dist(u, r) + γ · speed(u, r)) (3.9)

Where heading(u, r) represents the alignment of the vehicle with the target head-
ing/direction, and is denoted as 180−θ. θ is the angle of the target point relative to
the vehicle predicted heading direction at the tip of a trajectory. dist(u, r) represents
the distance to the closest obstacle along that intersects with a given trajectory. If
no obstacle is present on a given trajectory it is set to a large constant. speed(u, r)
is used to evaluate the speed the vehicle will achieve along a given trajectory. The
constants α, β and γ are weighing constants, which needs to be tuned in order to
set the importance of each criteria. The σ function is meant to be a smoothing
function, such as a low-pass filter, in order to reduce fluctuations.

All three components of the objective function G(u, r) are necessary in order to
avoid obstacles in a satisfying manner. For example, if one solely maximizes the
speed(u, r) and dist(u, r) functions there would be nothing to keep the vehicle on
track towards the goal. By solely maximizing the heading(u, r) function, the vehicle
will be stopped by the first obstacle it encounters on the trajectory towards the
goal, since there will be taken no action to try and circumvent it. By including all
the three parameters, and tuning their weight constants the vehicle will circumvent
collisions as fast as it can under the dynamic constraints, while still making progress
towards reaching its goal.
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3.3 Simultaneous Localization and Mapping

3.3.1 The Hector Slam algorithm

The Hector SLAM algorithm is an open source 2D SLAM algorithm, and the theory
presented in this chapter can be seen in (Kohlbrecher et al., 2011). To be able to
represent the arbitrary environment, an occupancy grid map is used. The LIDAR
platform might exhibit 6 DOF motion, the estimated platform orientation is used to
convert the scan into a point cloud of scan endpoints. In the hector SLAM approach,
filtering based on the endpoint z coordinate is used, so that only endpoints within
a threshold of the intended 2D plane is processed.

Because of the discrete nature of an occupancy grid, an interpolation scheme allowing
sub-grid cell accuracy through bi-linear filtering is employed. This scheme is used
for estimating both the occupancy probabilities and derivatives. Intuitively, grid
map cell values can be viewed as as samples of an underlying continuous probability
distribution.
From a continuous map coordinate Pm one can estimate the occupancy value M(Pm)
and the gradient ∇M(Pm) = ( δMδx (Pm), δMδy (Pm)) using the four closest integer co-
ordinates P00, P01, P10, P11 as is depicted in figure 3.1.

(a) (b)

Figure 3.1: (a) bilinear filtering of the occupancy grid map, where point Pm is
the point whose value shall be interpolated (b) Occupancy grid map and spatial
derivatives, courtesy of Kohlbrecher et al. (2011)

If the sample points /grid cells of the map are situated on a regular grid with distance
1 from each other, the linear interpolation along the x- and y- axis will yield:

M(Pm) ≈ y − y0

y1 − y0
(
x− x0

x1 − x0
M(P11) +

x1 − x
x1 − x0

M(P01))

+
y1 − y
y1 − y0

(
x− x0

x1 − x0
M(P10) +

x1 − x
x1 − x0

M(P00))
(3.10)

The derivatives can be approximated as:

δM

δx
(Pm) ≈ y − y0

y1 − y0
(M(P11)−M(P01)) +

y1 − y
y1 − y0

(M(P10)−M(P00)) (3.11)

δM

δy
(Pm) ≈ x− x0

x1 − x0
(M(P11)−M(P10)) +

x1 − x
x1 − x0

(M(P01)−M(P00)) (3.12)
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Scan Matching

Scan matching is the process of aligning laser scans with each other, or with an
already existing map. Modern laser scanner has very low distance measurement
noise and high scan rates, and the precision of a laser scanner might be much higher
than the odometry data for many robot systems. By optimizing the alignment of
the scan beam endpoints with the map built so far, one gets an estimate of the pose
of the vehicle. As scans get aligned with the existing map, the matching is implicitly
preformed with preceding scans. This was inspired by computer vision (Lucas and
Kanade, 1981), and uses a Gauss-Newton approach. By using this approach there
is no need for a data association search between beam endpoints or an exhaustive
pose search.

The goal of the scan matching is to find the rigid transformation ξ = (px, py, ψ)T

that minimizes the equation:

ξ∗ = arg minξ

n∑
i=1

[1−M(Si(ξ))]
2 (3.13)

In other words, the goal is to find the transformation that gives the best alignment
of the laser scan with the map. Here the Si(ξ) is the world coordinates of the scan
endpoints si = (si,x, si,y)

T . These coordinates are a function of the vehicle pose ξ in
world coordinates given as:

Si(ξ) =

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

] [
si,x
si,y

]
+

[
px
py

]
(3.14)

The function M(Si(ξ)) gives the map value at position Si(ξ). Given an estimate of
the initial position, one can estimate ∆ξ which is used to optimize the error measure:

n∑
i=1

[1−M(Si(ξ + ∆ξ))]2 → 0 (3.15)

By first order Taylor expansion of M(Si(ξ + ∆ξ)) one gets:

n∑
i=1

[
1−M(Si(ξ))−∇M(Si(ξ))

δSi(ξ)

δξ
∆ξ
]2 → 0 (3.16)

This equation is then minimized by setting the partial derivative with respect to ∆ξ
to zero.

2
n∑
i=1

[
∇M(Si(ξ))

δSi(ξ)

δξ

]T [
1−M(Si(ξ))−∇M(Si(ξ))

δSi(ξ)

δξ
∆ξ
]

= 0 (3.17)

Further, solving the minimized equation for ∆ξ will yield the Gauss- Newton equa-
tion for the minimization problem:

∆ξ = H−1
n∑
i=1

[
∇M(Si(ξ))

δSi(ξ)

δξ

]T
[1−M(Si(ξ))] (3.18)

Where:
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H =
[
∇M(Si(ξ))

δSi(ξ)

δξ

]T [
∇M(Si(ξ))

δSi(ξ)

δξ

]
(3.19)

Using this relation, and combining it with equation 3.14, one gets:

δSi(ξ)

δξ
=

[
1 0 −sin(ψ)si,x −cos(ψ)si,y
0 1 cos(ψ)si,x −sin(ψ)ssi,y

]
(3.20)

The Gauss-Newton equation 3.18 can now be evaluated using ∇M(Si(ξ)) and δSi(ξ)
δξ ,

yielding a step ∆ξ towards the minimum. It is important to note that the algorithm
works on non-smooth linear approximations of the map gradient ∇M(Si(ξ)), mean-
ing the local quadratic convergence towards a minimum cannot be guaranteed. Still,
in (Kohlbrecher et al., 2011) it was concluded that the algorithm works with suffi-
cient accuracy in practice.
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Chapter 4

Experimental Setup

4.1 The CS Saucer

As stated before, the vessel used in this thesis is the model-scale surface vessel CS
Saucer. The CS Saucer is a fully actuated vessel and was designed to be omnidirec-
tional with a spherical shaped hull. Its top and bottom diameter are 548mm and
398mm, respectively. The mass of the vessel is approximately 3.4 kg. The vessel is
fitted with three azimuth thrusters, which are driven by three Torpedo 800 motors.

Figure 4.1: A picture of the CS Saucer

4.1.1 Software Architecture

For the CS Saucer, a Raspberry Pi 2 (RPi2) serves as the onboard computer running
Linux as operating system. The programming platform utilized on the vessel is
the Robot Operating System (ROS). The vessel utilizes a Audrino Mega which is
connected to the RP2 through a USB. The Audrino is installed with a flash memory,
and is responsible for relaying inputs to the actuators.
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4.1. The CS Saucer

Robot Operating System

ROS is a software framework for developing robot applications. Similar to a con-
ventional operating system, ROS provides services such as message parsing between
processes, package management, hardware abstraction, device control and imple-
mentation of commonly used functionality (Wikipedia, f). A ROS system consists
of one or several independent processes called nodes, that shares information through
message passing. An example of a subscriber/publisher system can be seen in figure
4.2.

Figure 4.2: ROS publisher/subscribe architecture, courtesy of Ueland (2016)

Figure 4.2 shows Node-A publishing a message to a topic, while Node-B subscribes
to the same topic. This way, the two nodes are connected through the topic, but in a
way not dependent on each other as long as the topic is there. A node may subscribe
and publish to several topics simultaneously. A topic may also receive information
from-, and give information to several nodes at the same time. A overview of the
node network during simulations can be seen in figure E.1. A suggested software
architecture can be seen in figure 4.3, which is taken from (Ueland, 2016).

Figure 4.3: Signal flow between the components of a system with the suggested
architecture, courtesy of Ueland (2016)
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4.1. The CS Saucer

4.1.2 Hardware Architecture

Raspberry Pi 2

A Raspberry Pi 2 installed with Ubuntu serves as the onboard computer. The RPi2
is a single-board computer, and is responsible for running a number of ROS nodes.
The RPi2 is connected with the LIDAR and Arduino via USB, and is also equipped
with a USB wireless adapter that is able to connect to wireless networks.

Arduino Mega

The Arduino Mega is a low-cost embedded circuit board, equipped with 54 digital
pins, where 14 may be used as Pulse Width modulation (PWM) outputs. The
Arduino is used for low-level control of the servos and motors. The Audrino is
powered directly from the USB connection to the RPi2. An overview of the pi
connections is given in table 4.1

Pin Number Description Type

3 Angle Servo-1 PWM (Output)
5 Angle Servo-2 PWM (Output)
6 Angle Servo-3 PWM (Output)
9 Revolution Speed Motor 1 PWM (Output)
10 Revolution Speed Motor 1 PWM (Output)
11 Revolution Speed Motor 1 PWM (Output)

DGND Ground Servos and motors Ground
GND Ground Battery Ground
V-In Power Power

Table 4.1: Pin overview

Motors And Servos

Three azimuth thrusters driven by Torpedo 800 motors actuates the vessels. The
thrusters can be rotated in 360◦ by servos of the type Graupner Schottel drive unit
II assigned to each thruster.

RPlidar

The Lidar installed on the vessel is a RPlidar. The RPlidar scans the 2D plane by
the use of a rotating head that turns 360◦. The rate of turn is customizable and can
be set between 2-10 Hz, while the sampling frequency is 2000 Hz. The RPlidar has
a range of approximately 6 meters. The RPlidar is placed on the lid of the vessel,
causing the 2D scan plane to be approximately 10 cm above the water surface during
operations. The RPlidar is connected to the RPi2 over USB, and is interfaced to
the ROS framework through a separate node.

Battery

Two 640mAh, 11.1V Lithium Polymer (LiPo) were utilized as a the power source
for the CS Saucer. The LiPo Batteries was three celled, but had the balance wires
integrated with the connector. Monitoring of the voltage as it was done in (Ueland,
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2016) was not done because of this. This means that the voltage level of the batteries
needed to be checked manually. Fully charged the voltage of the battery is 12.5V,
and will supply the CS saucer for about 4 hours when the thrusters and RPlidar is
operational. It takes approximately 1 hour to charge one of the batteries, and they
should be charge when the voltage is near 11.1V.

Laptop Computer

A laptop computer running ROS and connected to the system through WiFi was
also used. The purpose of the laptop was to establish a Human Interface for the
operator, where the human in the loop set the desired point the vessel should reach
and monitor the process. Due to the limited power of the RPi2, the computer was
also used to run the most computational heavy ROS nodes.

During the experiments, an additional computer was used to run the motion con-
troller node. This was recommended in (Ueland, 2016) and (Spange, 2016) and was
done to reduce the workload of the RPi2, and to act as an extra safety in order to
turn off the motors should any unexpected behavior occur.

4.2 The NTNU Marine Cybernetics Laboratory

The environment the experiments were preformed in is the Marine Cybernetics Labo-
ratory (MC-lab) basin. The MC-lab is a small basin equipped with a wave generator,
a towing cart and a positioning system. The basin has a depth of 1.5m, a length of
40m and a width of 6.45m. The wave generator is not used in this thesis. In figure
4.4 a picture of the MC-lab can be seen.

Figure 4.4: A photograph of the MC-Lab

4.3 Qualisys Motion Capture System

The positioning system that is available in the MC-lab is a Qualisys motion capture
system. The Qualisys motion capture system has the ability to give the 6 DOF
pose of a vessel. The system has millimeter precision, works in real time and and is
configured to have a refresh rate of 50Hz.
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4.3. Qualisys Motion Capture System

The positioning system consists of three Oqus high speed infrared cameras. The
vessel must be equipped with infrared reflectors, which will enable the cameras to
register the position of the reflectors. The data collected from the cameras are trans-
mitted to a dedicated computer over a peer-to-peer (P2P) network. The dedicated
computer runs the Qualisys Track Manager (QTM) software, which processes the
acquired data. QTM preforms triangulation in order to the deduce the 6 DOF po-
sition of the vehicle, and broadcasts the position over the wireless network. The
Qualisys system’s infrared Oqus cameras can be seen in figure 4.5.

Figure 4.5: The infrared cameras utilized by the Qualisys system

By using a ROS qualisys driver, and editing it to contain the IP-address for the
dedicated computer, one can import the Qualisys data into ROS. The Qualisys data
will then be published as a ROS topic, and the published data can be used by other
ROS nodes. A manual on how to accomplish this is referred to in the appendix B.2.
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Chapter 5

Mathematical Model

5.1 Reference Frames

5.1.1 Hector-SLAM Reference Frame and Basin-Relative Refer-
ence Frame

The Basin relative frame is the frame that is applied for local control of the vessel,
as it was discussed in (Ueland, 2016) and (Spange, 2016). The Basin relative frame
has its positive x-axis in the direction the LIDAR is pointing when the Hector-
SLAM nodes are initialized. The origin of the reference frame is located at the
position of the vessel at the initialization of the Hector-SLAM node. This means
that each time the Hector-SLAM is initialized and makes a ”new map”, the resulting
relative basin frame is dependent on the position of the vessel in the basin, as
well as the orientation of the LIDAR. One thing to note however, is that in the
coordinate system generate by the Hector-SLAM package, the z-axis is pointing
upwards. In the Basin-relative frame the z-axis points downwards. This means
that the positive y-axes and positive yaw in the Hector-SLAM frame points in the
opposite direction of the Basin-relative reference frame. In (Ueland, 2016) a ROS
node (hector2V esselPos − node) is responsible for converting the Hector-SLAM
generated reference frame to the basin relative reference frame. Since the orientation
of the vessel is given in quaternions, the node also converts the orientation into Euler
angles.

For the Basin-relative frame the heading of the vessel is defined as zero when thruster
1 is pointing along the x-axis relative to the center of origin of the vessel. The z-
axis is pointing downwards, and the heading is defined as positive in the clockwise
direction. The vessel position and heading in the Basin-relative frame in vectorial
frame is given as follows:

η = [x y ψ]T (5.1)

Figure 5.1a illustrates the vessel in the Basin-relative reference frame. ∆ψref repre-
sents the angular rotation between the Basin-relative frame and the basin.
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5.1. Reference Frames

(a) Basin relative reference frame (b) Body-fixed reference frame

Figure 5.1: Illustration of the Basin-Relative frame and body frame, courtesy of
Ueland (2016)

5.1.2 Body-Fixed Reference Frame

The Body-fixed reference frame, is a reference frame used describe the local be-
haviour of the vessel, and is a coordinate system that is ”fixed” on the body of the
vessel. The Body-fixed reference frame can be seen in figure 5.1b. The axes in the
body fixed reference frame is denoted as x′, y′ and z′. The velocity in this reference
system is described as u along the x′-axis, v along the y′-axis and r is the angular
velocity about the z′-axis, and is positive in the clockwise direction. The velocity
vector becomes:

v = [u v r]T (5.2)

5.1.3 Transformation Between Reference Frames

To establish a relationship between two reference systems one needs to transform
a given position from one reference frame, into the corresponding position in the
other reference frame. To align a value in one system with another, one could use
a rotation matrix to rotate one reference systems axes to become parallel with the
other. A 3 DOF rotation matrix commonly used to transform body fixed motion
into a global reference frame is presented below:

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (5.3)

And rotates a vector, for example the Body-fixed velocities into Basin-relative ve-
locities by doing the transformation:

η̇ = R(ψ)v (5.4)

Where η̇ is the velocity in the Basin-relative frame, and ψ is the heading of the vessel
in the Basin-relative frame. This rotation does not account for the cases where the
two reference systems have different origins or scaling. However, for the special case
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5.1. Reference Frames

of rotating velocities, a difference in the origin between the systems does not matter.
In this thesis it is assumed that the scaling is the same in the reference systems,
since all measurements are given in meters. When transferring the position in one
reference frame to another one must also take the relative origin offset into account.
If given a set of measurements, the conversion can be done by using the relation:

η = R(∆ψ)η′ + ∆ηo (5.5)

Where ∆ψ is the mean heading difference between the two reference frames and η′

is the position that is being rotated from one reference frame to the other. ∆ηo is
the resulting mean offset after the rotation, and the value shows how the origins of
the two reference systems is placed relative to each other.

5.1.4 Qualisys Reference Frame- and the Redeployed Hector-SLAM
Reference frame- Transformation

Qualisys Reference Frame to Basin-relative Frame

As stated before, the system developed in this thesis uses a map that is generated
beforehand. This is done by running the complete system developed in (Ueland,
2016), and using the resulting explored map. The map generation will be further
discussed in chapter 6.6. This means that the rootation/conversion of the Qualisys
reference frame to Basin-relative frame can be done offline. By creating a ROS
node that logs the Qualisys position and the Hector-SLAM position while the map
is generated, one can use the resulting information to fully convert the Qualisys
reference system.

Since the conversion can be done offline, one can take some small shortcuts in order to
find some of the conversion parameters. In order to convert the one reference frame
into the other one needs to calculate the parameters ∆ψ and ∆ηo, by using the
logged data sets. As mentioned in chapter 5.1.3 ∆ηo is calculated after the rotation.
This makes it possible to use a for-loop that attempts to align the Qualisys data
into the Basin-relative frame. This is done for every angle in the set [0; 0.005; 2π]
where 0.005[rad] is the step size. After the rotation of each angle, the mean offset
in x- and y- position is compensated for. To find the angle corresponding to the
optimal alignment between the data sets, the accumulated absolute error in the x-
and y-position is minimized. The optimal rotation angle corresponds to the lowest
accumulated error in the alignment, and the offset in x- and y-axis for this angle
has already been estimated in the for-loop. The parameters needed to convert
the Qualisys measurements into Basin-relative frame has now been estimated, and
equation 5.5 can be used to convert the Qualisys measurements.

Calculating the rotation angle in this fashion will introduce inaccuracies in the ro-
tated position. Since the resulting rotation angle and the offset in x- and y-position
is not updated as the while the system is operative, these inaccuracies will persist.
However, one can almost assume that the maximum error the rotation angle will
have in comparison with the ”true rotation angle” is a function of the step size used
to estimate the rotation angle. This step size was set to be 0.005[rad]. So the error
in the rotation angle can be said to be approximately ±0.005[rad]. Such an error
is acceptable, and comparable to using the mean heading difference as the rotation
angle. Figure 5.2 illustrates the Qualisys Reference frame. To avoid confusion, the
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5.1. Reference Frames

converted Qualisys reference frame will be called Qualisys Basin-relative frame, or
simply Basin-relative frame.

Figure 5.2: A picture describing the different components of the qualisys system.
The Qualisys reference frame is drawn into the picture. Courtesy of MC-Lab hand-
book

Redeployed Basin-relative Frame to Qualisys Basin-relative Frame

As stated before, the Hector-SLAM ROS node is redeployed for the experiments.
This means that the Basin-relative Frame for the MAP generated by the redeployed
Hector-SLAM differs from the map that was generated beforehand. The position
estimated by the redeployed Hector-SLAM node must be rotated to the Basin-
relative frame corresponding to the known map before it can be used to navigate
within the map. Since the Qualisys position is converted off-line, it will be able to
navigate in the known map from the start of the experiment. By using the converted
Qualisys measurements, the redeployed Hector-SLAM position can be converted to
the Qualisys Basin-relative frame online.

By using a set of measurements for the Qualisys position and the redeployed Hector-
SLAM position the conversion parameters can be determined. For the online case,
using the mean heading difference will require much less computational power than
the for loop utilized when converting the Qualisys position. By determining ∆ηo
and ∆ψ for the set of measurements, one could use equation 5.5 to convert the
redeployed Hector-SLAM position to the Qualisys Basin relative-frame. The set of
measurements being evaluated are constantly being updated, where old measure-
ments are replaced with new measurements, and bad measurements are filtered out.
This will lead to the rotation parameters changing during the experiments.

By doing this conversion, the redeployed Hector-SLAM position can be used to
navigate in the known map in much the same way as the converted Qualisys position.
Since a whole set of measurements is used to determine the conversion parameters,
the converted Hector-SLAM position regains some of its independence relative to
the converted Qualisys measurement. A clear drawback of doing it this way is
that the errors already present in the Qualisys conversion will be accumulated in
the converted measurements of the redeployed Hector-SLAM. This will be further
discussed in chapter 6.5. By comparing figure 7.12a with figure 7.18a one can clearly
see that the maps have different orientation, which is caused by that they had a
different initial pose relative to each other when the maps were generated.
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5.2 Kinetics

In (Ueland, 2015) a model for the CS Saucer was developed. The model was used
in the simulation model developed in (Ueland, 2016). The model was also used to
develop the observer that was implemented into the control system. In (Fossen,
2011, Eq. 6.1), a 3DOF maneuvering equation for a surface vessel is given as:

MRB v̇ + CRB(v)v +MAv̇r + CA(vr)vr +D(vr)vr +Dvr + g(η) = τexternal (5.6)

Where:

• v is the Body-fixed velocity vector, describing the speed in surge, sway and
the rate of turn in yaw

• vr is the Body-fixed velocities relative to local current in surge, sway and yaw

• MRB and MA is the vessel inertia matrix for the mass of the vessel and added
mass respectively

• CRB(v) and CA is the vessel Coriolis centripetal matrix for the rigid body and
added mass respectively

• D(vr) is the nonlinear damping matrix

• D is the linear damping matrix

• g(η) is the vector containing the gravitational/buoyancy forces and moments

• τexternal is the external forces acting in surge sway and yaw, excluding those
already mentioned

There are no hydrostatic restoring forces present in surge sway or yaw, which means
that g(η) = 0. Because of the assumption of no environmental forces present in the
lab, the value for tauexternal will only depend on the thrust force generated by the
propellers. In (Ueland, 2015), the resulting system matrices was found to be:

M = MRB +MA =

m−Xu̇ 0 0
0 m− Yv̇ 0
0 0 Iz −Nṙ

 (5.7)

C(v) = CRB + CA =

 0 −1.5mr 0
1.5mr 0 0

0 0 0

 (5.8)

D =

Xu 0 0
0 Yv 0
0 0 Nr

 (5.9)

D(v) =

Xu|u||u| 0 0

0 Yv|v||v| 0

0 0 Nr|r||r|

 (5.10)

Note that in the general case, the added mass and the damping matrix will depend
on frequency. However in this thesis, it is assumed constant for all frequencies. The
numerical values used for the CS Saucer in the equation above are the same values
that were used in (Ueland, 2016).
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Chapter 6

Guidance Navigation and
Control

6.1 The Path Planner

To generate a path, the system utilizes the A* algorithm. This A* algorithm is an
improved version of the one which was developed and tested in (Follestad, 2016).
One of the modification lets the node connections span more than one cell. This
was done by increasing the number of neighboring nodes that are investigated when
evaluating a node in the open-list. For the standard A* algorithm, the neighboring
nodes are the 8 nodes. In this thesis the A* is modified to consider 32 neighboring
nodes, which all connects to the parent node with a different angle. This results in
a smoother path, since the path may be planned using a broader spectre of possible
angles between nodes. This allows an angle incrimination of 360◦

32 = 11.25◦ instead

of 360◦

8 = 45◦. For the A* algorithm implemented in (Ueland, 2016), the operator
could chose to increase the number of neighboring nodes to 54. This means that A*
algorithm used in this thesis can be considered a downgrade in comparison with the
path planner developed in (Ueland, 2016).

The A* path planner is combined with a scheme for inflating the map. This will
make the path keep a safety distance from the walls. A scheme for inflating the map
locally has also been implemented, which is used for the re-planning of the path.
The inflation of the map will be further discussed in chapter 6.6. The scheme for
re-planning the path will be presented in chapter 6.7.

When the vessel reaches the desired position, the the only control action that is
taken is to hold the desired heading. It is assumed that position keeping would not
be needed, since a new goal would be chosen not long after the goal is reached. The
goal is defined as a circle with a radius of X, and is considered reached when the
lookahead point is equal to the goal node.

6.2 LOS Steering law

In order to follow the path, a Line-of-Sight (LOS) Lookahead-Based steering law as
presented in (Fossen, 2011, Ch. 10.3.2) has been implemented. This steering law
uses a point on the path in front of the vessel to calculate a desired heading that
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aims the vessel towards the path. Figure 6.1 illustrates the LOS guidance concept.

Figure 6.1: An illustration of the LOS-guidance and the parameters used in the
calculations, courtesy of (Fossen, 2011)

For the lookahead-based steering the desired course angle is separated into two parts,
as can be seen in equation 6.1:

χd(e) = χp + χr(e) (6.1)

Here, χd(e) is the desired course angle, χp is the angle of the path in the Basin-
relative reference frame and is determined by:

χp = αk = atan2(yk+1 − yk, xk+1 − xk) (6.2)

Where Pk = [xk, yk]
T is a point on the path and Pk+1 = [xk+1, yk+1]T is a point

further ahead on the path. αk is the tangential angle of the path. pk, pk+1 and αk
can be seen in figure 6.1. χr(e) is the velocity-path relative angle, which ensures
that the velocity is directed directed towards a point on the path that is located a
lookahead distance ∆ > 0 in front of the vessel. χr(e) is determined by:

χr(e) = arctan
(−e(t)

∆

)
(6.3)

Where e(t) is the cross track error of the vessel relative to the path. As it can be
seen in figure 6.1, is defined as the error between the vessel and the path, that is
normal to the path. The cross track error is found by rotating the vessel position
from basin-relative frame into path-relative frame, as demonstrated in the following
equations:
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ε = Rp(αk)
T ([x(t), y(t)]T − [xk, yk]

T ) (6.4)

Where

Rp =

[
cos(αk) −sin(αk)
sin(αk) cos(αk)

]
(6.5)

Which gives:

ε =

[
s(t)
e(t)

]
=

[
[x(t)− xk]cos(αk) + [y(t)− yk]sin(αk)
[x(t)− xk]sin(αk) + [y(t)− yk]cos(αk)

]
(6.6)

Equation 6.3 can also be interpreted as a saturating control law:

χr(e) = arctan(−Kpe(t)) (6.7)

Which makes the lookahead-based steering law equivalent to a saturated propor-
tional control law, where Kp is the proportional gain. One could also introduce
integral action into this control law. Integral action would be particularly useful for
under actuated vessels under the influence of an ocean current and nonzero side-slip
angles. Currents are not present in the environment of this thesis, and (Fossen,
2011, Ch. 10.3.2) states that an integral term should only be used when a steady-
state off-track condition is detected. Because of these reasons integral action was
not included in the steering law. The resulting steering law can be written as:

χd(e) = atan2(yk+1 − yk, xk+1 − xk) + arctan(−Kpe(t)) (6.8)

The CS Saucer lacks a clear bow because of its round shape. The vessel is also fully
actuated. Because of this the course of the vessel does not need to be determined
by the heading of the vessel. In this thesis the course is controlled by regulating the
velocity directly. This is done by using the course angle, and a set desired speed
to determine the velocity needed in the basin-relative frame such that vessel follows
the path. The velocity is given as follows:

Vxyd =

[
vxd
vyd

]
=

[
vd · cos(χd)
vd · sin(χd)

]
(6.9)

6.2.1 Waypoint Switching Mechanism

In order to progress along the path, a simple waypoint switching mechanism has been
implemented. The switching mechanism defines a circle radius around the vessel. If
the lookahead-point Pk+1 is inside this circle, then the new lookahead-point will be
Pk+2. From this one can see that the lookahead-point in this thesis is discrete. Pk+1

and Pk+2 are neighboring nodes on the path, and becomes the new vector pair that
determines αk, as seen from equation 6.2.

6.3 The Collision Avoidance Scheme

6.3.1 The Modified Dynamic Window Algorithm

The Dynamic Window algorithm implemented in the navigation system, is a mod-
ified version of the original Dynamic Window that was presented in chapter 3.2.
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In the original DW algorithm, the trajectories were described by circular arcs, de-
scribed by constant values for the vessel speed and rate of turn. In this thesis, the
trajectories are estimated using the x- and y- velocity of the vessel. This is done by
looking at the reachable accelerations in x- and y-direction, and holding the accel-
eration constant for a given time interval. By using several smaller time intervals,
the curvature for a given trajectory can be described by the equations:

Vtraj(t) = V̂xy + acan

∆t∑
t=k

t (6.10)

Where Vtraj(t) is the velocity along the trajectory, V̂xy is the estimated velocity, acan
is the constant candidate acceleration, and t describes a small time step. Where a
point along the trajectory can be described as:

Ptrajectory(t) = Pxy +
∆t∑
t=k

Vtraj(t)t (6.11)

Where Ptrajectory(t) is a point on the trajectory, and Pxy is the initial vessel position.
∆t defines the time interval with constant acceleration.

The trajectories are calculated using a set of candidate velocities, estimated from a
set of candidate accelerations which will be further described in chapter 6.3.3. The
trajectories are estimated for every velocity in the set of candidates. The number
of generated trajectories is dependent on the number of candidate accelerations.
From figure 6.2 and 6.3 it can be seen that the number of orientations the generated
trajectories can achieve is dependent on the number of candidate acceleration steps,
the initial velocity and the given time interval. All the generated trajectories are
evaluated in order to determine which of them are dynamically feasible and which
trajectory will be the optimal.
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(a) The trajectories generated while using
the same parameters as were used in the
experiments

(b) The trajectories generated when the
number of candidate acceleration steps is
increased

Figure 6.2: The trajectories generated for the vessel when the initial is set to be
[0.2, 0.2, 0]T [m/s]
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(a) The trajectories generated while using
the same parameters as were used in the
experiments

(b) The trajectories generated when the
number of candidate acceleration steps is
increased

Figure 6.3: The trajectories generated for the vessel when the initial is set to be
[0, 0, 0]T [m/s]

After the acceleration time interval is finished, the trajectory is extended by holding
the velocities constant for a set time interval. This can also be seen in the figures
above. This is done to force the trajectories a little further apart, and ahead. This
will help diversifying the trajectories from one another when they are evaluated to
determine the optimal path. Note that in figure 6.3, there is no initial speed, so
there will be no curvature generated in the acceleration phase.

Calculating the Minimum Distance Corresponding to Each Trajectory

The biggest change made compared to the original DW algorithm lies in the distance
function. In the original dynamic window algorithm, the distance function deter-
mines the distance to the nearest obstacle that lies on the trajectory curvature. The
modification done to the distance function is that it checks an area around the end-
point to find the minimum distance to nearby obstacles. As an extra safety measure,
the middle point along the trajectory is also checked in this way. An illustration of
the resulting search areas can be seen in figure 6.4.
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Figure 6.4: A very rough illustration of the two distance search areas that are
evaluated in the distance function

A square area is defined as the search space, where the evaluated point on the
trajectory is the center of the area. In this search area, the distance from the center
to the various obstacles within the search space is calculated. This information is
processed in two steps. The first step is to find the absolute minimum distance
between the evaluated point and an obstacle. If there is no obstacles in the area,
the minimum distance is set to a constant that approximately corresponds to the
maximum achievable distance in the search area.

The second step processes the distance information to find the absolute minimum
distance in the approximate velocity direction. The predicted velocity at the tip
of the trajectory is used to determine which quadrant of the search area should be
used to determine the minimum distance. A rough illustration of this can be seen
in figure 6.5.

(a) A situation where two quadrants are
evaluated

(b) A situation where the direction con-
straint is satisfied

Figure 6.5: An illustration of the distance functions ability to evaluate distance
information in the velocity direction

As can be seen in the figures, there are some constraints and simplifications done
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to achieve this. The general rule is that only the two quadrants that are ”in front”
of the velocity direction needs to be evaluated, as seen in figure 6.5a. This way
obstacles that are behind the vessel at this predicted point will not be considered
when calculating the minimum distance. This is a big simplification in comparison
to what could have been done to reduce the search area. One could for example have
defined a cone shaped area corresponding to each of the velocity directions, where
the distance to obstacles within the cone shaped area would have been evaluated.
However, if the velocity satisfies a constraint regarding the velocity direction, the
search area will be reduced to only one quadrant as can be seen in figure 6.5b. To
achieve this, the velocity must satisfy the equation:

|vx| ≥ Vi(vx, vy) ∧ |vy| ≥ Vi(vx, vy) (6.12)

Where Vi(vx, vy) is a function of vx and vy and sets the constraint relative to the
magnitude of the velocity. Vi is determined by the equation:

Vi(vx, vy) = Ci ·
√
v2
x + v2

y (6.13)

Where Ci is a tuning parameter, in order to approximately set the velocity directions
which determines what velocity directions that is eligible for a reduced distance
search area.

From this it can be stated that the velocity directions that satisfies this constraint
has a clear advantage over the velocity directions that are close to the axes. This
often leads to that the vessel will avoid obstacles at an angle that satisfies equation
6.12.

From all this one gets two values for the minimum distance. In order to combine
these values into a resulting distance function, the values are weighed and added
together as can be seen in the equation:

dist(vx, vy) = dvwv + dtwt (6.14)

Where dv is the minimum distance relative to an obstacle in the velocity direction
and dt is the minimum distance in all quadrants of the search area. The weight
constants must satisfy the equation:

wv + wt = 1 (6.15)

Since dv only represents the minimum distance to obstacles in one or two quadrants
of the search area, the full scope of the situation in regards to potential hazards
will not be represented in dv. But because of this, dv will more likely promote
trajectories that circumvents obstacles. However, these trajectories might become
too risky when circumventing dynamic obstacles. In order to better evaluate if such
a trajectory is safe, dt is weighed in so that the distance function reflects the hazards
of the situation better.

The reasoning for calculating the minimum distance to nearby obstacle in this man-
ner, is to get a better understanding of the situation each trajectory will lead to. The
velocity for the obstacles has not been estimated, so the extra information about
potential hazards along each trajectory will help the maximization function 6.18.
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The belief is that the algorithm will handle dynamic obstacles better this way, and
chose trajectories that are less risky than the original DW algorithm. However, this
is strongly dependant on how well the G-score function 6.18 is tuned, which will be
further explained in chapter 6.3.2.

One thing to note, is that the radius of the CS Saucer is compensated for, by
subtracting the Saucer radius from the resulting weighed minimum distance.

Admissible Velocities and The Dynamic Window

The velocity search space Vr, as defined in equation 3.8 is defined by determining
the admissible velocities Va and the Dynamic Window Vs. The admissible veloci-
ties are determined by evaluating the listed parameters for each of the trajectories
corresponding to the velocities:

• Weighted minimum distance to the obstacles along the path

• Weighted minimum distance from the current vessel position to the nearest
obstacles

• Obstacles intersecting with the trajectory and the trajectory extensions

As described in chapter 3.2, the admissible velocities are determined by the distance
function. To determine if the velocity is admissible the weighted minimum distances
listed above must satisfy equation 6.16 in order to be deemed safe.

Va =
{

(vx, vy)| |vy| ≤
√

2 · dist(vx, vy) · V̇b , ∧ |vy| ≤
√

2 · dist(vx, vy) · V̇b
}

(6.16)
This way, the velocities that might lead the vessel into a hazardous situation will
be excluded from the velocity search space. In equation 6.16, V̇b is the magnitude
of the maximum break acceleration, while vx and vy describes the velocity at the
endpoint of the trajectory. One thing to note, is that in this case, the distance
function also contains the information about the weighted minimum distance to an
obstacle relative to the actual vessel position. This might force a whole spectrum
of velocities out of the admissible velocity sets, and promote that the velocity is
reduced when the vessel is very close to obstacles. However, this might not always
be desired, as it may limit the vessels ability for a quick escape when it is very close
to an obstacle.

In addition to the constant velocity phase already described, the trajectory is ex-
tended even further with a second constant velocity time interval. This trajectory
extension is not evaluated by a distance function, but is only used to check for in-
tersections with obstacles further along the trajectory. If there is an intersection,
the velocity will be deemed hazardous, and excluded from the velocity search space.
This was implemented to help the vessel in head-on situations.

The Dynamic Widow constraint is set to limit the search space to velocities that are
reachable within the given time window. This is done by evaluating if the magnitude
of acceleration is feasible, and that the velocity is actually achievable. This is done
by enforcing the constraint:
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√
a2
x + a2

y ≤ amax ,
√
v2
x + v2

y ≤ Vxyd (6.17)

Where amax is the magnitude of the maximum achievable acceleration and Vxyd is
the desired velocity. It is assumed that the desired velocity is realistically chosen,
and set to be within the dynamic limitations of the vessel. The velocities that satisfy
equation 6.17 will form the set of velocities Vd describing the dynamic window. From
this, the search space of possible velocities, Vr, is determined as in equation 3.8.

6.3.2 Determining the Optimal Trajectory

The optimal trajectory is determined by maximizing the G-score function, in much
the same way as described in chapter 3.2. However, some small changes were made
to the G-score function:

G(vx, vy) = α · heading(vx, vy) + β(dist) · dist(vx, vy) + γ · speed(vx, vy) (6.18)

From equation 6.18 it can be seen that the tuning parameter β(dist) is dependent on
the distance function. β(dist) is set to be a step function as shown in the equation
below:

β(dist(vx, vy)) =

{
β1, dist(vx, vy) ≤ db
(β1

db
dist(vx,vy) + β2), dist(vx, vy) > db

(6.19)

Where db is the desired bearing to obstacles along the trajectory, and the tuning
constants β1 and β2 are set to satisfy:

β1 ≥ β2 (6.20)

By setting β1 high, the distance term will dominate the G-score function compared
to the other terms when dist(vx, vy) ≤ db. This will ensure that dist(vx, vy) is the
most important parameter of maximization function while the distance function has
a lower value than db. This will promote trajectories that keeps a bearing to to
obstacles, corresponding to the value set for db.

The terms α · heading(vx, vy) and γ · speed(vx, vy) are much the same as described
in chapter 3.2. The only difference is that they are now a function of vx and vy.
Another thing to note is that the smoothing function is not applied in equation 6.18.

The tuning parameters of the equations 6.14, 6.18 and 6.19 is listed in table D.1.
One thing to note is that the parameters are tuned differently for the simulations
and the model-scale experiments. This will be further discussed in chapter 6.3.4.
Another thing to note is that α is set very small compared γ, β1 and β2. this
is due to the function heading(vx, vy) in degrees. gamma is set relatively high in
order to promote circumvention of obstacles, instead of reducing the velocity to keep
distance.

6.3.3 Determining the Dynamic Constraints

The dynamic constraints of the vessel describes break acceleration, and what veloc-
ities are reachable within a certain time interval. To determine this constraints, the
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step response of the CS Saucer was evaluated. By applying the desired velocity as a
step, the resulting response was analyzed. The response was analyzed from the start
of the step, and up until the time constant of the step response. The time constant
is the time it takes a step response to reach 1−1/e ≈ 63.2% of its asymptotic value.
This was done both for the case of accelerating the vessel up to a desired velocity
velocity, and bringing the vessel to a complete stop down from the desired velocity.
This can be seen in figure 6.6, which depicts data from one of the tests that were
used to determine the values.
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Figure 6.6: One of the tests that were preformed in order to determine the dynamic
constraints set in the Dynamic Window algorithm

The acceleration were found by simplifying the problem to become linear so that
only two points needed to be used. Since the vessel is omnidirectional, one can
assume that one only needs to evaluate the magnitude of the velocity. This lead to
that the simple equation listed below could be used:

a =
Vxy(T )− Vxy(t)

T − t
(6.21)

Where T is the time constant and t is the simulation time. Equation 6.21 was used
to find both the break acceleration, and the maximum acceleration reachable by the
vessel. The values for these accelerations are listed in table D.1.

One thing to keep in mind, is that these acceleration estimates are very rough. They
are strongly dependent on the controller gains, and how well the observer estimates
the velocity. This means that the estimated acceleration constraints are only valid
for the controller gains presented in appendix D, and the accuracy of the estimates
is strongly dependent on how well the observer estimates the velocity.
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6.3.4 Practical Considerations

In this section, some considerations regarding the limitations and performance of
the modified dynamic window algorithm.

Time Usage and Time Delays

The modified DW algorithm developed in this thesis needs much more computational
power than the original algorithm. The time it takes to generate and evaluate the
trajectories, when the parameters are set as seen in table D.1, was found to be
approximately 0.05 seconds. This corresponds to the number of trajectories seen in
figure 6.2a. In a way the computational time, or the time delay will be the reaction
time the collision avoidance operates in.

A collision avoidance scheme is very sensitive in regards to time delays and time
lag. The modified DW algorithm is implemented in the ”exploration pathplanner”
simulink node. In this node, both the map processing and the global path plan-
ning takes place. In other words, the ROS node is one of the most computational
expensive ROS nodes in the system. This ROS node contains a real time-pacer
block, that tries to force the simulink time into real-time. This means, that the
implemented DW algorithm is dependent on the computational time of the entire
”exploration pathplanner” node, as well as the real-time pacer.

The resulting time delay could have been avoided in a fashion, and the delay has
a very negative impact on the collision avoidance. The time delay could have been
avoided by implementing the modified dynamic window as a separate ROS node.
However, since the experiments were done at a very late stage in the semester, there
was not enough time to rework the system in such a way, and collect new results.
The benefits of reducing the time delay, is that it will improve the reaction time of
the collision avoidance scheme.

Diversifying the Trajectories

Due to the resolution of the map, and the nature of the distance function, a problem
occurred where the g-score functions where to similar. This was mostly due to the
trajectories being to close together, which would lead to that the trajectories had
very similar distance functions. On order to diversify the trajectories, the time for
the acceleration phase was set relatively high (2 seconds). In addition, the constant
velocity phase after the acceleration phase was added. This would lead to that the
spacing between the trajectories increased, and that the diversity in regards to the
heading(vx, vy) and dist(vx, vy) functions is greatly increased.

The obstacle distance search area is set to be very large, and is defined as a square
of (60x60) nodes. In hindsight, one could have reduced this distance Search area to
diversify the trajectories more in regards to the distance function, and save time on
the computations. The reduced search are may have made the vessel a little less risk
averse, and maybe even work in favor for trajectories that circumvents obstacles.
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Difficult Tuning Process

As seen previously described, there has been introduced many new tuning variables
for the modified DW, compared to the original DW. This lead to that the tuning
process for the modified DW became quite difficult and time consuming. The dis-
tance function made the vessel more risk averse. This made it more difficult to tune
the vessel to circumvent dynamic obstacles while retaining the ability to satisfyingly
follow a path relatively close to static obstacles.

As can be noted from table D.1, the modified DW algorithm was tuned differently
for the experiments compared to the simulations. The reason for this was that the
CS saucer behaved very differently in the experiments compared to the simulations.
In the experiments, the CS Saucer was a little unpredictable when accelerating
and when sudden direction changes were needed. This lead to that the CS Saucer
would often fail behave as predicted by the local trajectories. This lead to that
the weighing function described equation 6.14 was set so the distance function was
mostly described by dt. This promotes the trajectories that holds the clearance
during the whole process of the obstacle avoidance, rather than choosing trajectories
that leads a more sudden change in direction to steer towards the path after the
initial avoidance maneuver. This made the vessel more risk averse in the experiments
compared to the simulations.

Local Minima

In some cases, the dynamic window algorithm will lead the vessel into a local minima.
In most cases, the modified DW algorithm will not be able to find its way out of a
local minima on its own. In such cases the path needs to be re-planned in hopes of
guiding the vessel out of the local minima situation.

Dynamic Feasibility

As will be discussed in chapter 6.4.4 there will be a constant offset in the desired
velocity and the estimated velocity. This offset was found to be approximately 20%
of the desired value. This offset is compensated for in the modified DW algorithm, by
multiplying the desired velocity by 0.8 before it is used to evaluate the trajectories.

As previously mentioned, the time-step for the acceleration phase was set relatively
high. This will lead to that some of the velocity commands will require the full time
interval to develop. This might even have caused some of the problems that were
deemed to be because of the time lag.

An important thing to note, is that the acceleration for the vessel is not measured
or estimated in this system. This means that the acceleration of the vessel is not
taken into account when determining the dynamic window. In other words, this
might lead to that a given candidate acceleration used in the calculations might not
be reachable within the time interval. This will lead to that some of the trajectories
that are evaluated are actually not dynamically feasible.
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6.4 Motion Control System

6.4.1 Thrust Allocation

The vessel is equipped with three rotatable Azimuth thrusters. The orientation
of the thrusters and the corresponding thrust allocation has not been altered from
what was used in (Ueland, 2016) and (Sharoni, 2016). A brief summary of the thrust
allocation used in (Ueland, 2016) will be presented.

The three thrusters are placed tangentially to a circle with a radius of 0.138m (rt =
0.138), and with a spacing of 120 degrees. The circle shares it center of origin with
the vessel. The thruster orientations are fixed. Relative to the Body-frame of the
vessel the three thrusters have the following orientations: α1 = 90◦, α2 = −30◦ and
α3 = −150◦. An illustration of this can be seen in figure 6.7, where the black arrows
shows the positive force direction. The relationship between local thrust force and
body-fixed thrust force on the vessel becomes:

τ = Tf (6.22)

Where the individual thrust force vector is f = [f1 f2 f3]T and the generalized force
vector is τ = [X Y Z]T . In (Ueland, 2016) the thrust allocation was found to be:

T =

0 sin(2π
3 ) sin(4π

3 )
1 cos(2π

3 ) sin(4π
3 )

rt rt rt

 (6.23)

The desired force given from each thruster can be determined by equation 6.22 by
applying the inverse of the thrust allocation matrix.

f = T−1τ (6.24)

According to (Fossen, 2011, Ch. 1.2.2), ), marine crafts with equal or more control
inputs than generalized coordinates are deemed as fully actuated. This means that
the vessel is fully actuated for the case with fixed thruster orientations.

Figure 6.7: Position and orientation of the thrusters, courtesy of Ueland (2016)
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6.4.2 Reference Model

A reference filter has been implemented to smooth the desired velocity as it is passed
to the controller. The reference filter implemented in this thesis is a first order
Butterworth filter. A Butterworth filter is a lowpass filter, that smooths or filters
out high frequency components of a signal. The transfer function of the filter in the
frequency domain can be written as (J. Sørensen, 2013, Ch. 6.1.1):

b(s) =
ωc

s+ ωc
(6.25)

Where ωc is the cut-off frequency. A drawback of using a lowpass filter to smooth
a signal, is the time delay it introduces to the resulting signal. To solve this, the
butterworth filter was tuned to give a fast response. A satisfying value for the cut-off
frequency was found to be ωc = X. This gave a fast response, while still smoothing
the velocity demand in a satisfactory manner. In figure 7.22 the filtering can be seen
during an experiment.

6.4.3 Observer

The observer used in this thesis is a non-linear passive observer. This observer was
developed for the CS Saucer in (Ueland, 2016). No changes has been made to the
non-linear passive observer in this thesis, other than that the tuning gains has been
changed. For further reading on the theory and implementation of the observer, the
author refers to (Ueland, 2016).

As stated in chapter 6.2 and chapter 6.3.1, the vessel navigates only by the use of
velocity commands. It is the non-linear passive observer that estimates the velocity
of the vessel. In order for the velocity to make sense in a control perspective, the
observer needed to be re-tuned. Satisfying values for the tuning parameters were
found to be:

T = diag(0.1, 0.1, 0.1) (6.26)

K2 = diag(x, y, z) (6.27)

K3 = diag(0.2, 0.2, 0.15) (6.28)

K4 = diag(5, 5, 0.5) (6.29)

This tuning made it so that the modeled dynamics of the vessel has a bigger role
when estimating the velocity. This has its drawbacks, since there are still some
uncertainties regarding the dynamical model (Ueland, 2016). Another drawback
with this approach is that the thrusters are unreliable, especially when the thrust
direction changes (Sharoni, 2016). This might lead to that the velocity estimates
does not reflect the actual velocity in some cases.

6.4.4 Velocity- and Heading- Controller

A PD-controller has been implemented to control the heading of the vessel, while a
P-controller has been utilized for the speed.
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Velocity Controller

The P-Controller for the velocity determines the desired control force based on the
error between the actual velocity and the desired velocity. This error is multiplied by
a gain vector Kpv, which makes the controller proportional to the error in velocity.
A proportional controller on its own could in a general case lead to oscillations,
overshoot and a steady state offset.

To dampen the controller one could introduce a derivative term. For this case
however, that would require that the acceleration of the vessel was known. In the
current state the system does not estimate the acceleration of the vessel, nor does
it have any means of measuring it. However, the controller was tuned for having an
offset in regards to the desired velocity, which circumvented a potential overshoot,
and oscillations around the desired speed in a satisfactory manner.

An integral term would have compensated for the offset. Since the vessel needs to
react fast, and often changes its course, a integral term might have lead to undesir-
able controller dynamic. An integral term could have been applied if it was limited
by an anti-windup term, and tuned to react fast to changes in the desired veloc-
ity. However this was deemed unnecessary, since the implemented DW algorithm
already takes the offset into account when determining the optimal speed, as stated
in chapter 6.3.4. The offset in the demanded velocity and the actual velocity makes
the proportional term produce a constant thrust, that keeps the ”actual desired
velocity” as can be seen in figure 6.6.

Heading Controller

The heading controller is a regular PD controller. The heading is controlled to a
constant value, to stop the CS Saucer from rotating around its own axis. This will
help control the vessel in a satisfactory manner, and in addition to this the laser
scanner/SLAM algorithm works better for a steady heading. The desired heading
is usually set to 0[rad].

The Resulting Controller

Given that the gain matrices are of the form:

Kp = diag(kpv, kpv, kph), Kd = diag(0, 0, kdh) (6.30)

Where kpv is the proportional gain for the velocity, kph is the proportional gain for
the heading and kdh is the derivative gain for the heading. The desired force in
body-frame can be written as:

τbody = RT (ψ̂)Kp

[
Vxyd − v̂xy
ψd − ψ̂

]
−Kd

[
02x1

r̂

]
(6.31)

Where RT (ψ̂) is a rotation matrix, that rotates the force from basin-relative frame
into body fixed frame. Vxyd is the desired velocity along the x- and y-axis, v̂xy is the
estimated velocity vector along the x- and y- axis in the basin-relative frame, and r̂
is the estimated rate of turn in yaw.
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6.5 Sensor Fusion

This chapter will present the sensor fusion between the converted Qualisys position
and the converted Hector-SLAM position. Both the positions have been fully con-
verted to the basin-relative frame. The conversion is described in chapter 5.1.4. The
sensor fusion is responsible for fusing the two position estimates into a more robust
position signal, and detect loss of signal. If both of the position signals are lost, the
motors will be stopped.

6.5.1 Central Limit Theorem

The converted measurements from Qualisys (Pq) and Hector-SLAM (PH) were com-
bined by applying the Central Limit Theorem. The Central Limit Theorem uses the
measurement noise of the signals, in this case σ2

q and σ2
H to combine the measure-

ments:

PF = σ2
F (σ−2

q Pq + σ−2
H PH) (6.32)

Where PF is the fused signal, and σ2
F is the noise of the combined signal, defined as:

σ2
F = (σ−2

q + σ−2
H )−1 (6.33)

Where σ2
q and σ2

H are the noise from the Qualisys and Hector-SLAM systems re-
spectively.

Equation 6.32 is a weighted function, and the signal with the lowest variance will be
weighed the most. Equation 6.32 and 6.33 is taken from (Wikipedia, d), and theory
and proofs for the central limit theorem is presented in (Bulinski and Shashkin,
2007, Ch. 3).

For the sensor fusion implemented in this system, the residuals after the non-linear
passive observers are used as a measurement of the position variances. Both the
position measurement of the converted Qualisys and converted Hector-SLAM are
treated by a non-linear passive observer. The residual after the observer, is the
error between the measured position and the position estimated by the non linear
passive observer. By logging a set of the absolute values of the residuals over time,
one could use the mean of these as a measure of the position variance. This way,
the ”variance” of the positions are estimated online. This is done for both of the
position signals by using the equation:

|re| =
n∑
i=1

|re(i)|
n

(6.34)

Where |re| is the resulting mean of the absolute values of the residual and re(i) is
the i’th residual in the logged set.

By using the residuals, one introduces a dependency on the accuracy of the non-
linear observers. This is a drawback compared to actually calculating the variance
online, which would only be dependent on the signals themselves. One could also
use a simpler approach, by calculating the variance beforehand, and use constant
variances in the Central Limit Theorem. However, this will lead to that changes
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in the variance of the signals are not taken into account during the experiments.
The benefits of using the residuals, is that it is quite a simple approach, and works
as intended in the weighing function. However, it this approach will not weigh the
signals as accurately against each other as using the online variances.

6.5.2 Detecting Loss of Signal and Switching Between Positions

As already stated, the sensor fusion scheme has been implemented with the ability
to detect loss of signal, and switch between the position signals if necessary. A set of
position measurements is logged and evaluated when checking for loss of signal. The
first thing to check is the value of the current position. If it is not a number (NaN),
the current position measurement will be filtered out from the logged set, and the
corresponding position signal is switched out from the sensor fusion. After this, the
data set is evaluated to determine if the position signals are frozen. If the set of
logged positions is completely equal to each other, the signal is considered frozen,
and switched out from the sensor fusion. Since the sensor fusion only consists of
two position signals, the sensor fusion position signal will be equal to the remaining
signal.

Of the two signals, it is the converted Qualisys signal that is most trusted. This is
due to the fact that the Hector-SLAM algorithm does not handle dynamic obstacles
very well, which might lead to problems in the position estimate. The scan matching
method described in chapter 3.3.1, will end up failing if the map contains too many
obstacles that has changed positions during the map generation, which might lead to
either a jump or complete failure. In the case of a jump, the Hector-SLAM position
might get a persistent offset in the position estimate, since it will start generating
a new map from this position. The scan matching will then identify this area as
the current position, rather than where it was located before the jump. Another
problem with the Hector-SLAM position, is that it struggles in featureless areas. An
example of this is a long corridor, or the MC-lab without any static obstacles. In
other words, the Hector-SLAM algorithm needs static obstacles present in order to
determine its position. This means that there is an additional constraint set on the
Hector-SLAM position signal.

This constraint is imposed such that the converted Hector-SLAM position must
not deviate more than a maximum allowed limit relative to the converted Qualisys
position. This is determined by both looking at a set of logged position, and the
instantaneous position. The mean of the absolute error is estimated from the data
set as:

∆η =

n∑
i=1

|ηq(i)− ηH(i)|
n

(6.35)

Where ∆η must satisfy the limit:

∆η ≤ ∆ηmax (6.36)

Where ∆ηmax is the maximum allowed deviation. If ∆η does not satisfy equation
6.36, the Hector-SLAM position estimate is most likely having trouble with the
scan matching. As an early safeguard for jumps in the Hector-SLAM position, the
instantaneous position is also evaluated. Here it is the instantaneous error that is
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evaluated in much the same manner as in equation 6.36. The allowed limit for the
instantaneous error is set to be a bit higher than that of the mean error.

Qualisys can also fail to provide measurements. At least four of the infrared reflectors
mentioned in chapter 4.3 must be seen by at least two of the infrared cameras at
all times. These conditions will often fail to hold, resulting in a frozen position
measurement in a zero-order hold from the Qualisys system. It is therefore important
that the converted Hector-SLAM position can be used independently. Since the
Hector-SLAM position is converted using mean values as described in 5.1.3, the
converted position will keep its independence as long as the mean values are not
updated while the Qualisys system is out of commission.

There is always a possibility that both of the position measurements will fail to
provide information. This case is not accounted for, and might happen in some
cases. To be able to better handle a situation like this, dead-reckoning should have
been introduced to the system. However the non-linear passive observer created in
(Ueland, 2016) has not been modified to preform dead-reckoning in this thesis.

6.5.3 Refresh Rate

As stated in chapter 4.1.2 and 4.3 the refresh rate for the Hector-SLAM is around 2-
10Hz, and 50Hz for the Qualisys system. The Sensor Fusion simulink node operates
at a fixed time step of 0.1s, which corresponds to 10Hz. This means that the position
values from the Qualisys system and Hector-SLAM will be extracted at a sampling
frequency of 10Hz. The LIDAR refresh rate is set to be about 8Hz, which is not
far off from 10Hz. From this it can be concluded that the time delay between the
signals will be so small that there is no need to compensate for this time delay in
the sensor fusion.

6.6 Map Processing

6.6.1 Map generation

In this thesis the map is assumed be known a priori, in either a global or a local
sense. The already known map is created by running the complete system devel-
oped in (Ueland, 2016). This means that the map is generated by the open-source
Hector-SLAM package. By adjusting the parameters in the hector SLAM launch
file, the resolution of the map is set to 0.1m and the grid size is set to (256x256).
The map is plotted, and visualized the same way as it was done in (Ueland, 2016),
however the map is updated with new information. The visualization process needs
quite a lot of processor power in order to plot the new information to the map. For
the laptop utilized in this thesis, the visualization process needed approximately 0.5
seconds to be completed. This process was done for each iteration in the ”explo-
ration pathplanner” node.

As mentioned in chapter 5.1.4 the Hector-SLAM ROS node is run during the ex-
periments. This means that a map is being generated in the background. This map
will potentially have a different orientation and origo compared to the map that is
known in advance, as was stated in chapter 5.1.1. In order to determine the status
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of each cell, (Ueland, 2016) applied the a threshold function, which can be seen in
table 6.1.

Cell status Cell- and Threshold Value

Explored and occupied Cell value > 50
Explored and free 0 ≤ Cell value ≤ 50

Unexplored Cell value = -1

Table 6.1: Cell Threshold Values

In Matlab, the a priori map is represented as a (256x256) matrix, where each cell is
considered as either unexplored, occupied or free. The values denoting the status of
the cell can be listed as follows:

• -1: Unexplored

• 0: Explored and free

• 1<Node value: Explored and occupied

6.6.2 Online processing

During experiments and simulations, the map is continually updated and processed
online. The map is updated with new information from the raw laser scans, as
well as the redeployed SLAM map. The information represented in the resulting
map is processed in various steps before the path planning and obstacle avoidance
algorithms are applied.

Including the Proximity Data From the Laser Scans

The laser scans are included in the map, in order to represent information about the
proximity of the vessel. The laser scan is represented as [1x360] vector, where the
LIDAR reference system can be seen in figure 6.8. So in order to properly represent
this information in the map, one needs to rotate the laser scan to the Basin-relative
frame. Since the position of the vessel is known one could use the x and y position
as the ”origin” of the laser scans in the map, and use the heading to rotate the
laser scan. Using figure 6.8, the angle the laser scans needed to be rotated with was
found to be ψr = −ψ− π

2 . Using this, one could rotate each of the 360 points in the
vector and include them in the map. The resulting laser points are then rounded to
represent their corresponding cell/node in the map.
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Figure 6.8: A figure showing the frame of the rpLIDAR, courtesy of Robo Peak

There are drawbacks of using the laser scan information after it has been processed
in this way. As stated before, the map is discretely represented by a set of nodes.
When the laser scan is converted to be a node, the accuracy of the laser will be
limited by the resolution of the map. This means that the raw laser scans are much
more accurate than the processed laser scans. However, the processed laser scans
are much easier to work with regards to the path planning and obstacle avoidance
algorithms.

Inflating the Map

To inflate the map, means to set nodes near an obstacle to be deemed as inaccessible,
and thus seen as an occupied cell. This process is done for a defined inflation radius,
where the free cells around the occupied cell will be labeled as occupied. This is
done to define a safety radius around an obstacle. For the implemented system this
is done both globally, and locally.

The global inflation is only preformed only when planning the path, and the resulting
map is only used for global path planning. Different methods for local inflation is
done for both re-planning, and for the local planner. The three methods and their
uses, are presented below:

• Global inflation: The global inflation of the map is only preformed when the
path is planned. This scheme inflates every explored occupied node. This will
ensure that the generated path will keep a distance from obstacles.

• Local node weighing for re-planning: For the case of re-planning a local
weighing is used to process the globally inflated map. The reasoning for this
will be further discussed in chapter 6.7. The local weighing processes the map
that is within the LIDAR range. For the case of re-planning the local weighing
scheme takes the distance between the vessel and the obstacle into account.
It uses this distance to determine a weight for the affected nodes, rather than
just labelling them as occupied. Cells that are placed further away from the
vessel gets a lower weight.

• Local inflation for the local planner: The local inflation is done in the
same fashion as the local weighing. Instead of weighing the affected nodes
are set as occupied. Local inflation was applied to the map before it is sent
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to the modified Dynamic Window algorithm. The local inflation is preformed
each iteration in the ”exploration pathplanner” node, and uses a computational
time of approximately 0.05 seconds.

The Hector-SLAM map, and updating the existing map

The existing map might not be fully explored. In order to update the missing
pieces, the information generated in the re-deployed Hector-SLAM map is used.
Since the position of the vessel is known in both maps, one can use the vessel
position to convert information from one map to the other. The distance between
the vessel position and a given node in the re-deployed Hector-SLAM map, will be
approximately the same for the corresponding node in the known map. By using the
relative position between the vessel position and the node in the re-deployed map
frame, one can rotate the relative position to the existing map frame.

The relative position of the node is rotated and converted in the same way as de-
scribed in chapter 5.1.3. The rotation angle is still defined in the same manner, and
is the heading difference between the unconverted position in the re-deployed map
and the vessel heading in the known map. For this case it is not the mean values
that are used, but the instantaneous errors, and the offset compensation uses only
the initial offset to compensate for the offset in the origin. After the conversion,
the corresponding node in the known map is updated if it is not already marked
as explored. This updating process is done for every node within the range of the
LIDAR.

However, some constraints set to hinder the known map being updated with bad
information. One of the constraints is that the offset between the vessel position
in the known map and the re-deployed map frame must be within a certain limit.
This is enforced by comparing the offset with the initial offset. The initial offset is
set as the offset between the vessel position in the known map and re-deployed map
at the very first time interval. If the offset is persistently changing, it implies that
the scan matching in the Hector-SLAM algorithm is failing, as it was discussed in
chapter 6.5.2. If this fails to hold, the position in the re-deployed map will be wrong
relative to the known map, since it is only defined by the Hector-SLAM position.

The other constraint is that neither of the Qualisys position or the Hector-SLAM
position can be switched out from the sensor fusion. This is an extra safety measure,
to ensure that the position in the known map is not only defined by the Hector-SLAM
position.

Due to the discrete nature of the maps, this approach will introduce some uncer-
tainties as it will not be able to represent the information in the re-deployed map
with full accuracy.

Simple Simulated Dynamic Obstacles

The map can also be set to contain pre-defined simple simulated dynamic obstacles.
These virtual obstacles can be applied to the map both for simulations and experi-
ments in the basin. The virtual obstacles can be defined to be a square of different
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dimensions, and set to have a constant velocity. One can also define a time interval
where the velocity changes direction.

The drawback with these obstacles are that they are simple, meaning that they
does not contain any dynamics other than a constant velocity. They are discretely
defined in the map, and are displayed in the map if they are in the line of sight
of the LIDAR. However, for testing purposes they function quite well and are very
simple to implement to customize.

Simulated dynamic obstacles were originally planned to be created as a separate
simulation node or an extension of the ”Mapping Simulator node” developed in
(Ueland, 2016), but was implemented directly into the map processing instead. More
work should have been invested in this, to make it represent the situation in the
MC-lab better. For instance, the time lag may have been represented better in the
simulations had the obstacles been implemented as a separate ROS node.

Plans for obstacle velocity estimation which were not implemented

One of the plans that was not implemented, was to use the laser scan data to estimate
the velocity of obstacles relative to the vessel. The velocity information would have
been used to influence the local inflation, in such a way that the predicted position
of the vessel would be deemed occupied, much the same way as the POA described
in chapter 2.2.2. This would have greatly increased the situational awareness of the
vessel. The relative velocity would have been estimated from a set of laser scans
over time. However, estimating the full velocity vector for the obstacles would have
been challenging, and might have required some sort of tracking scheme. Still, using
only the relative velocity to compensate for velocities that points towards the vessel
would have been a great aid for the collision avoidance system.

6.6.3 Blind Spots

In figure 4.1, one can see a cap that was introduced to the vessel. This cap was used
to elevate the infrared reflectors, so that they could easier be seen by the infrared
cameras described in chapter 4.3. Another reason was to get the infrared reflectors
at the center of the vessel, and reduce the interference with the LIDAR scan plane.
However, this particular solution will still interfere with the laser scan. As can
be seen by figure 4.1, three pillars will block the view of the LIDAR at certain
angles. This introduces a blind spot in the laser scan. Figure 6.9 shows a laser scan
illustrating one of the blind spots quite clearly. In the slam algorithm, and when
the laser scan is processed the minimum range of the laser scans are set to be the
radius of the ship.
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Figure 6.9: A raw laser scan of the MC-lab control room. One of the blind spots is
marked with a blue circle

To compensate for this, the plan was to include the acoustic proximity sensors
introduced in (Spange, 2016). However, due to time limitations this was not done.
There are many ways the blind spot could have been minimized. One way to do this
could be to use another solution for the placement of the infrared reflectors. Another
solution could be to use four pillars attached with reflectors placed at the edge of
the vessel radius. This would put the obstacles further away from the LIDAR, and
reduce the blind spot. However, for the existing installation, the best solution was to
twist the pillars and then fasten them in the twisted position. This would minimize
the blind spot for the given installation.

The blind spot will have a negative impact on the system as a whole. The blind spots
is not compensated for in any way. It will introduce uncertainties to the Hector-
SLAM algorithm, as well as decrease the overall situational awareness. In a worst
case scenario a blind spot might even lead to collision. However, the blind spots
are relatively small, and shrinks the closer one gets to the vessel. The proximity
information represents the hazards in the vicinity adequately, despite the blind spots.

6.7 Re-planning the path

Certain criteria has been introduced in regards to the re-planning of the path. These
criteria are set so that re-planning will be preformed only when it is strictly needed.
These criteria are based on how well the vessel follows the path, and the progress
along the path. The following criteria are used to determine this:

• Cross-track error limit: When avoiding obstacles, the vessel will most likely
deviate from the path. From chapter 6.2 it can be seen that the cross-track
error becomes a measure of this deviation. In chapter 6.2.1 the switching
mechanism defines a circle to determine the next lookahead point. From this
it can be deduced that if the cross-track error is much larger than this circle
radius, the switching mechanism will fail. This might lead to that the vessel
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will hold a desired course that does not follow the path. To prevent this from
happening, there has been set a limit for the maximum allowed cross-track
error. When this limit is reached, the path will be re-planned form the current
vessel position to the goal.

• Along-track distance limit: Since the tolerated cross-track error is set
somewhat larger than the radius of the circle defined in 6.2.1, an additional
criteria needs to be set. In this thesis, the along track distance is defined as
the path-relative distance between the lookahead point and the vessel position.
This means that an abnormally large along track distance s(t) implies that the
vessel is off track relative to the path. One possible scenario for this to occur
is a collision avoidance where e(t) is larger than the switch circle for quite
some time, but not larger than the cross-track limit. This might result in a
situation where the vessel does not switch the lookahead point along the track,
resulting in that a change in the path course will not be taken into account.
Consequently the LOS steering will minimize e(t) and follow the course de-
fined by the now constant lookahead point. By evaluating s(t) this behaviour
can be detected. By setting a re-plan criteria based on s(t) the path will be
re-planned to avoid the vessel going off-course.

• Time limit: If the progress along the path is halted, it can imply that the
vessel is trapped in a local minima as described in chapter 6.3.4. Since the
path lookahead point is discretely defined, one can easily use the change in the
lookahead point as a measure of the progress along the path. If the lookahead
point remains constant for a set amount of time, the path will be re-planned.

As mentioned in chapter 6.6.2, the map is inflated locally before the path planner
is allowed to re-plan the path. This local node weighing is applied in addition to
the global inflate. The reasoning for this scheme, is that it might greatly help the
global path planner to avoid generating paths that will lead to a local minima for
the local path planner. To mention one situation where this is of great help, is for
re-planning when faced with a narrow gap. The local path planner won’t allow the
vessel through this gap, but the global path is generated to lead the vessel through
this path. By re-planning with an additional local node weighing, the narrow path
may be closed off due to the additional inflation. This will force the global path
planner to find a path that does not lead through this particular narrow gap. The
method for weighing the cells, as described in chapter 6.6.2, is to avoid the vessel
being trapped between two or more gaps. In other words if the only routes that
can be taken are through narrow gaps, the path re-planner will choose the gap that
is furthest away from the vessel. There is no guarantee that the local planner will
allow to navigate through this gap, and the vessel might end up in a local minima
yet again. However, this scheme forces the path re-planner to try new routes if one
path fails.

For the case of re-planning when off track, the local node weighing will act as an
extra safety. When the vessel goes off-course relative to the path it is almost implied
that the vessel has encountered a dynamic obstacle. This means that the resulting
extra space between the re-planned path and eventual obstacles, will in many cases
be a safer path to follow.
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Chapter 7

Results

In this chapter, the results from the experiments and simulations will be presented.
The result was logged in simulink, by writing the data to .m files, as well as saving
the visualization of the map at important moments as a figure. Logging information
this way requires quite a lot of processor power, as much data is being logged.

7.1 Sensor Fusion

The sensor fusion results corresponding to the experiment done in chapter 7.4 will
be presented in this section, to showcase the sensor fusion performance.
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Figure 7.1: Fused position along the x- and y-axis over time

In figure 7.1, the fused position over time can be seen. Note that the measurements
becomes more noisy at around 80 seconds into the experiment. From figure 7.2 one
can see that the converted Qualisys position is frozen, and holds the same value
for some time. This is most likely due to that the infrared cameras do not see the
reflectors. From 7.3 one can see that during the frozen period, the Qualisys position
is switched out from the sensor fusion. This means that the noise is actually the
Hector-SLAM position noise.
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Figure 7.2: Converted Qualisys and converted Hector-SLAM position along the x-
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Figure 7.3: Weight, determined by the observer residuals

One can also note from figure 7.3 that the weighing function works quite well in
this case. However, there are some instances where both the position estimates
are available that the converted Hector-SLAM position is weighed higher than the
Qualisys system. This can be seen at around 132 seconds. Normally the Qualisys
system has a precision much greater than the Hector-SLAM position estimate. By
studying the graph in figure 7.2 one can conclude that this is also the case for the
positions at 132 seconds.
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Figure 7.4: Weight, determined by the observer residuals

In figure 7.4, the unconverted XY-position for both of the systems can be seen. From
this figure it can be seen just how different the unconverted positions are compared
to one another. One thing to note is that the Qualisys system seems shorter, only
because of the loss of signal, described in figure 7.2. This can be seen at position
[−4.7, 3]T in figure 7.4.
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7.2 Simulations

7.2.1 Dynamic Obstacle, Parameters Tuned for Simulations

As stated in chapter 6.6.2, the ability to simulate simple dynamic obstacles has been
added in the online map processing. The simulated obstacles can be added both for
the simulations and for the experiments.

The map implemented in the simulator can be seen in figure 7.5a. The map was
generated in the MC-lab, and has a resolution of 0.1m. The legend describing hoe the
information is displayed in the map is shown in figure 7.5b. The dynamic obstacle in
this case, is a simulated obstacle described by (7x4) nodes with a constant velocity
of [-0.1,0.1] [m/s].
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Figure 7.5

The complete simulation run is presented in figure 7.6. From figure 7.6a shows that
the path has been generated and that the simulated obstacle can be seen at the
edge of the laser scan range. From figure 7.6b the vessel can be seen keeping its
distance to the static obstacle, and that the simulated osbtacle is getting closer. In
figure 7.6c, 7.6d and simulate 7.6e one can see the obstacle avoidance maneuver.
The vessel moves into the course of the simulated obstacle in this case, which does
not satisfy the COLREGS regulations. However, if one does not take COLREGS
into account, the collision avoidance was successful. And in figure 7.6f the vessel
can be seen approaching the goal.
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Figure 7.6: A simulation preformed with a simple simulated obstacle
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7.3 Static Obstacles

In this experiment, the collision avoidance is tested against unknown static obstacles.
From figure 7.7 parts of the area of operation can be seen. The basin is cut off by
the use of trash bags, that are taped on to the carriage. This works as a wall, as
they were registered during the mapping process, which can be seen in figure 7.8a.

Figure 7.7: A picture of the static experiment environment

Figure 7.8a shows the a proiri map the vessel is deployed in along with the initial
position of the vessel. Note the axes of the figure. Figure 7.8b shows the legend of
the plots.
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Figure 7.8

The following figures depicts the complete experimental run. Note that the axes are
denoted the same way as in figure 7.8a.
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Figure 7.9: Experiment with unknown static obstacles

From figure 7.9b it can be seen that the laser scan detects one of the static obstacles,
and that it is located on the path. As it tries to avoid this obstacle, it discovers
another obstacle, which can be seen in figure 7.9c. This results in that the vessel is
driven off-course to avoid the obstacles, and the resulting cross-track error relative
to the path causes the re-planner to take action. The re-planned path can be seen
in figure 7.9d, and the goal is reached figure 7.9f. Since almost the whole map
is known a priori, the map is not updated with information from the re-deployed
Hector-SLAM map. This can be seen by comparing figure 7.9b and 7.9f, which shows
that the information regarding the unknown obstacles are only mapped locally by
the laser scans.

To better illustrate the choices made by the modified DW algorithm, the optimal
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trajectories generated by the modified DW algorithm is presented in figure 7.10.
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Figure 7.10: The optimal trajectories for the static obstacle experiments

One thing to note from figure 7.10 is that one can see the local trajectory correspond-
ing the situation depicted in figure 7.9c point right towards one of the obstacles. Or
rather that the local planner tried to guide the vessel towards the gap between the
obstacle in a small time window. However, the vessel steers away and tries to circum-
vent the obstacles, instead of going through the gap. The reason for the trajectory
leading towards the gap being considered optimal might be because of a blind spot
making the gap seem less hazardous than it really was.
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7.4 Slowly Moving Thin Obstacle

In this experiment, the collision avoidance system was tested against a thin obstacle,
while the map was not completely explored beforehand. Figure 7.11 depicts the
dynamic obstacle in this experiment, which is a trash bag taped to a carriage. The
carriage was pushed by hand to make the obstacle dynamic.

Figure 7.11: A picture of the thin dynamic obstacle

Figure 7.12a shows the initial map along with the initial position of the vessel. Note
the axes of the figure. Figure 7.12b shows the legend of the plots.

-9.6 -6.4 -3.2 0    3.2  6.4  

Basin-Relative frame x-axis [m]

8    

7.2  

6.4  

5.6  

4.8  

4    

3.2  

2.4  

1.6  

0.8  

0    

-0.8 

-1.6 

-2.4 

-3.2 

-4   

-4.8 

-5.6 

-6.4 

-7.2 

-8   

-8.8 

B
a

s
in

-R
e

la
ti
v
e

 f
ra

m
e

 y
-a

x
is

 [
m

]

(a) The a priori map, and the initial position of the
vessel (b) Figure Legend

Figure 7.12

The full experimental run is presented in the following figures. Note that the axes
are denoted the same way as in figure 7.12a.
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Figure 7.13: Experiment with thin dynamic obstacle

In figure 7.13b one can see that the obstacle has been detected and is close to the
goal node. In figure 7.13c only a single node of the obstacle is detected, this might
be due to the a blind spot, or that the LIDAR rays are deflected away because of
the angle of the bags. However, one thing to note from this situation is that the
modified DW algorithm avoids the single obstacle node that is detected. In figure
7.13c the obstacle is no longer detected. However, since the obstacle was spotted
outside of the a priori map, the re-deployed Hector-SLAM map had mapped some
of the obstacle positions as occupied. This lead to that the map was updated with
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7.4. Slowly Moving Thin Obstacle

bad information, which did not reflect the actual situation. From figure 7.13e it can
be seen that the vessel fails to reach the goal without re-planning because of this.
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Figure 7.14: The vessel returns to the start area of the experiment

By comparing figure 7.14 with the initial map shown in figure 7.12a, one can clearly
see that the map has been updated with new information gathered by the Hector-
Slam algorithm.
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7.5. Dynamic Obstacles

7.5 Dynamic Obstacles

In this chapter, the experiments done with ”regular” dynamic obstacles will be
presented. The dynamic obstacle used in this case is shown in figure 7.15, and is
one of the cardboard boxes that was utilized as a static obstacle in chapter 7.3.

Figure 7.15: A picture of the cardboard box that plays the part of dynamic obstacle

7.5.1 Crossing situation
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vessel (b) Figure Legend

Figure 7.16

In this section, a crossing like situation will be presented. Figure 7.16a shows the
map that was generated before the experimental run, which in this case is partially
explored. The full experimental run is shown in figure 7.17.
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Figure 7.17: An experimental run in the MC-lab depicting a crossing situation

From figure 7.17a one can see that the path has been generated, and that the CS
Saucer is following the path. From figure 7.17b one can see that the vessel is already
reacting to the situation ahead. However, from figure 7.17c, 7.17d, one can see
that the collision avoidance leads the vessel into a dangerous situation. The vessel
is brought into the course of the moving obstacle, which in itself is a dangerous
maneuver. However, one must note that the relative speed, or the velocity of the
obstacle is not known. So if one regards each time frame as static, one can see that
the obstacle maneuvers makes sense from a static obstacle perspective. From figure
7.17e and 7.17f one can see that the collision was actually avoided, and that the
path has been re-planned.

One thing to note, is that the cardboard box was pushed quite hard for this case,
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7.5. Dynamic Obstacles

leading to a rapid approach and a high initial velocity. However, the obstacle has
no means of generating force, so the velocity is dampened out over time. This can
be seen by comparing the figures 7.17b, 7.17c and 7.17d.

7.5.2 Head On Situation

In the following run, the system is tested in a head-on situation. Figure 7.18a shows
the initial position of the vessel along with the initial map.
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Figure 7.18

The full experiment is presented in figure 7.19. In figure 7.19a and 7.19b one can see
that the path is generated, and that the dynamic obstacle appears. In figure 7.19c
the obstacle is very close, which results in the avoidance maneuver seen in figure
7.19d. In figure 7.19e one can see that the obstacle has lost its velocity, and that
the vessel is progressing towards the goal. In figure 7.19f the goal is reached.
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Figure 7.19: An experimental run in the MC-lab depicting a crossing situation

From figure 7.19e once can see that the vessel steers itself backwards at an angle
before circumventing the obstacle. From figure 7.20 one can see that the trajectories
generated by the modified DW algorithm is not being followed as intended. This can
be seen by comparing the course of the trajectories with the course of the obstacle
maneuver depicted in figure 7.19d. But, one must note that the trajectories are only
predictions made by the modified DW to evaluate the candidate velocities, and are
really meant to be followed. They are supposed to represent the predicted behavior
of the vessel, if the corresponding velocity command is chosen. In this case, one can
see that the predicted behaviour does not reflect the behaviour of the vessel in the
real world.
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Figure 7.20: The Optimal Local Trajectories generated by the modified DW algo-
rithm
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Figure 7.21: Velocity commands and actual velocity during the experiment

From 7.21 one can see the estimated velocity plotted against the desired velocity.
From this figure, one sees that the velocity controlled functions much the same way
as describe in chapter 6.4.4. From what can be seen in figure 7.21 it looks like the
reference is held quite well, with no abnormalities that would suggest a maneuver like
what is shown in figure 7.19. Still the velocity estimates may be somewhat unreliable
when the thrust changes direction as stated in chapter 6.4.3. In other words, the
abnormal nature of the avoidance maneuver may be caused by unreliability in the
thrust when the thrust changes direction.
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7.5. Dynamic Obstacles

7.5.3 The Enclosed Video

In the digital appendix there is enclosed a video that showcase two separate exper-
iments done in the MC-lab. One of the experiments is recorded as a screen capture
from the map, while the other is a recorded video of the second experiment. The
situations in the two experiments are similar, and shows two crossing like situa-
tions. The avoidance response in both of the cases can be seen to be very similar as
well. In this section some results corresponding to the experiment done in the com-
puter screen recording situation is presented. The video has also been uploaded to
Youtube: https://www.youtube.com/watch?v=DMAe6jWT5aE&feature=youtu.be

One thing to note, is that the velocity of the obstacles is relatively fast compared
to the SC Saucer’s velocity, however the velocity of the obstacles are damped out as
they approach the Saucer. The high initial velocity will lead to that the CS Saucer
will have little time to react and accelerate. In figure 7.22, the estimated velocity
is plotted against the desired velocity. The figure shows that the desired velocity is
being followed as intended, as described in chapter 6.4.4. Figure 7.22a shows that
the vessel commands in the x-direction changes quite rapidly.
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Figure 7.22: Velocity commands and actual velocity during the experiment
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Figure 7.23: The fused position of the CS Saucer during the experiment preformed
in the enclosed video

In figure 7.23 the fused x- and y-position of the vessel can be seen plotted over time.
From figure 7.23b the weighing of the position estimates can be seen. One thing to
note is that the Qualisys system no longer detects the vessel at about 38 seconds
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7.6. Virtual Obstacle in the MC-lab

into the experiment. This corresponds to when the CS causer is at its closest to the
recording camera.

7.6 Virtual Obstacle in the MC-lab

In this experiment, a virtual obstacle is added to the map. This virtual obstacle has
a velocity of the same magnitude as the simulated obstacles used in the simulations.
Figure 7.24 shows the complete experimental run.
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Figure 7.24: Experiment with a virtual dynamic obstacle

As seen in figure 7.24b, the virtual obstacle is not shown in the map before it is in
the line of sight of the LIDAR. Figure 7.24c and 7.24d shows the collision avoidance
maneuver. What can be stated immediately, is that the obstacle avoidance leads
the vessel in front of the velocity direction of the obstacle. However, the vessel
reaches its goal collision free. In figure 7.25 shows the optimal collision avoidance
trajectories that were chosen throughout the run.
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Figure 7.25: The vessel returns to the start area of the experiment

The tuning of the modified DW algorithm for the experiments was done using virtual
obstacles for the most part. Virtual obstacles were much easier and efficient to use in
comparison to using real obstacles for a long tuning process. The scenario presented
in this chapter was one of the tuning scenarios. From figure 7.24 and 7.25 one can
see that the vessel circumvents the vessel quite smoothly, as one should expect from
a tuning scenario.
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Chapter 8

Discussion

The results presented in chapter 7 show that the performance of the collision avoid-
ance system developed in this thesis. The collision avoidance system is shown to
handle unknown static obstacles very well. This is no surprise, considering that the
modified DW algorithm was designed to be more risk averse than the original DW
algorithm. However, there is still a chance that collisions with static obstacles might
occur, due to the blind spots in the laser scans. The chance for this occurring is
very low, and a thin obstacle as seen in 7.4 would be a worst case scenario where
collision due to the blind spots could occur.

The collision avoidance system is also shown to handle dynamic obstacle to a certain
degree. However, as illustrated in the results presented in chapter 7.5.1 and 7.6 the
collision avoidance system might lead the vessel into performing some dangerous
maneuvers that does not satisfy the COLREGS rules. This is as expected, since the
velocity of the obstacles are not estimated or known beforehand. This leads to that
the COLREGS rules could not be implemented to constrict maneuvers that would
lead the vessel into the course of dynamic obstacles. Velocity information regarding
obstacles could have been used to update the map with predicted obstacle positions,
or made the local inflation of the map a function of the obstacle velocity. Since
this is not done, the collision avoidance system is forced to see the situation in each
time frame as static. This will make a maneuver as seen in chapter 7.5.1 seem like
a good choice, since it will hold a greater bearing to the obstacles in the vicinity of
the vessel.

One huge limitation for the collision avoidance system as a whole is the time lag. To
avoid this, either the visualization process of the map, or the modified DW algorithm
itself should have been implemented as a separate ROS node. In this thesis, the col-
lision avoidance system’s reaction time depends on the computational time required
to do one iteration in the ”exploration pathplanner” node. The computational time
of the node as a whole was found to be approximately 0.5-0.6 seconds. This is a very
slow reaction time, even in comparison with the reaction time of an average human.
This time delay can be devastating for the performance of the collision avoidance
system, especially for head on situations. As already stated, the time delay problem
could have partly been solved by discretizising the ”exploration pathplanner” into
smaller ROS nodes. This would have made the nodes less dependent on each others’
computational time. In other words, one of the main strengths of ROS has not been
utilized properly in the system developed in this thesis.
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There is also the problem regarding the velocity estimate. As stated in chapter
6.4.3, thrusters are unreliable when the thrust changes direction. Considering how
the observer was tuned, this will lead to velocity estimates being flawed in certain
situations. This will lead to some unexpected behaviour, since the course of the
vessel is controlled by velocity commands for the x- and y-velocity of the vessel.
Combining this with the time delay may lead to unwanted behaviours for a given
control command. Especially when avoiding obstacles, where the thrust must often
change direction in order to alter the the vessels course.

Because of this, the modified DW algorithm that was initially tuned only in the
simulator, had to be re-tuned in order to function properly in the experiments. Still,
the results in the simulator and the experiments are still comparable and very similar
in some ideal cases. In the simulator, there will be no time delays and the vessel will
behave as the mathematical model predicts. However, the simulations were still a
valuable tool in order to test and evaluate the collision avoidance system. Two cases
that are especially comparable are those that are presented in chapter 7.2 and 7.6.
Since the experiment in chapter 7.6 uses virtual obstacles, it is a little less sensitive
to the time delay. However, comparing the results one can see a much smoother
collision avoidance response in the simulations.

As stated in chapter 6.3.4, the acceleration is not estimated or measured in this
thesis, which might lead to that some of the speed commands generated by the
modified DW algorithm might be unfeasible. This will lead to that some of the
desired velocities are not possible for the vessel to reach within the given time frame.
One could also question the accuracy of the dynamic constraints that were calculated
in chapter 6.3.3, due to the possible inaccuracies present in the velocity estimates.
An inertial measurement unit (IMU) could have been used in order to measure
the acceleration of the vessel. Using the data gathered from a IMU, the vessel
acceleration could have been taken into account in the modified DW algorithm,
resulting in a more dynamically feasible control. The acceleration measured by the
IMU could also have been integrated, in order to gain additional velocity information.
This velocity information could have been fused with the velocity estimate from the
observer, and perhaps used for preforming dead-reckoning.

From chapter 7.1, one can see that the sensor fusion works quite well, as long as at
least one of the position systems are operational. However, there has been some cases
during the experiments where both of the position signals were lost. Dead reckoning
should have been introduced to the system to enable the system to handle situations
where the position signal was lost. This would enable the vessel to maneuver for a
short period of time by estimating the position from the last measured position, and
would result in a more robust position signal. The combination of SLAM, a known
map and the laser scan proximity information complements each other quite well,
and results in a very good situational awareness. The dynamic obstacles are mapped
into the already known map, as well as new information generated by the SLAM
algorithm. However, the situational awareness could have been greatly improved by
estimating the velocity of obstacles and taking this information into account when
updating the occupancy grid. The blind-spots should also have been accounted for,
either by controlling the heading to point them away from the velocity direction, or
re-introducing the acoustic proximity sensors used in (Spange, 2016). In other words,
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improving the situational awareness would increase the autonomy of the guidance
layer, as seen in chapter 2.3.1. In this thesis, the guidance layer needs the human
operator to select the desired goal point in order to generate a path. Using the
taxonomy for autonomous systems introduced in chapter 2.3.2, the path generation
will be classified as level 3:”Human Decision Select Stage”, while the path following
and obstacle avoidance can be classified as level 8:”Autonomous Control Stage”.

The modified DW algorithm was specifically designed to be used for the CS Saucer.
This means that the collision avoidance system is designed to be used for a om-
nidirectional vessel. In order to be used for a conventional under-actuated ship,
the algorithm needs to be reworked to make the trajectories more similar to the
circular arcs used in the original DW algorithm. The situations and environment
of the situations presented in chapter 7 may be seen as similar to navigating in a
narrow canal, or a small port area. The sensors that are used in the experiments are
also comparable to real world scenarios. A radar could have been utilized to map
the environment, and detect the presence of dynamic obstacles almost in the same
manner as the LIDAR used in this thesis. A nautical-chart as described in 2.2.1
could have been used as an a prioi map of the static obstacles in area of operation.
A GPS system could have been utilized to function the same way as the Qualisys
system did in this thesis. In other words, sensors and tools that are equivalent to
those used in the experiment are among the most common sensors and tools used
in navigation for full-scale vessels. One should note however, that the experiments
were preformed in a small-scale sheltered environment. This means that the devel-
oped system has been tested in an environment without environmental forces. This
suggests that the system would need to be reworked in such a way that it would
handle a much harsher environment in order to even be considered for a full-scale
scenario.

From the results presented in this thesis, one can conclude that the obstacle avoid-
ance system handles static obstacles very well. For dynamic obstacles, more work
is needed in order to take the velocity of the obstacles into account, and use this
information to make the collision avoidance system CORLEGS compliant. As it
stands now, the obstacle avoidance system will often lead the vessel into the course
of dynamic obstacles, where the vessel must rely on its superior maneuverability
and velocity capabilities in order to avoid collision. From this it can be concluded
that the collision avoidance system is capable of handling dynamic obstacles to a
certain degree. This will enable the guidance system to autonomously follow a path
in an uncertain environment, while the path will be autonomously re-planned only
if deemed necessary by the system. However, the need of a human in the loop
to define the goal, as well as the need for operating computers has a diminishing
effect on the overall autonomy of the system. If the goal is defined however, the
vessel will autonomously plan and follow the path, while autonomously deploying
reactive avoidance maneuvers in a attempt to avoid dynamic obstacles. The sensors
and tools used in this thesis to build up the situational awareness of the vessel are
comparable to the most common sensors and tools used for navigation of full-scale
vessels. This implies that the system developed in this thesis will be compatible with
sensors used for full-scale vessels. The collision avoidance system is designed for an
omnidirectional vessel operating in a small scale sheltered marine environment. The
modified Dynamic Window algorithm would have to be reworked in order to function

81



properly for a conventional under-actuated vessel. However, for a full-scale vessel
the collision avoidance system needs to be COLREGS compliant, as well as being
able to handle a much harsher environment than a small scale sheltered laboratory
environment.
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Chapter 9

Concluding Remarks

9.1 Conclusion

In this thesis, a guidance system that combines a global path planner, and a local
obstacle avoidance scheme has been developed for the CS Saucer. In addition, a
sensor fusion scheme for combining the position estimates from the MC-lab Qualisys
system and SLAM based on a 2D LIDAR has been developed. The resulting system
has been extensively tested in computer simulations, and in experiments preformed
in the MC-lab.

From the results gathered during the experiments, the collision avoidance system
can be seen to work very well when encountering unknown static obstacles. The
obstacle avoidance system is shown to be able to handle dynamic obstacles to a
certain degree, however additional work is needed in order to enable the collision
avoidance to promote COLREGS compliant maneuvers. This would prevent the
collision avoidance system from guiding the vessel into the course of the dynamic
obstacle, and lead to a much safer collision avoidance. Since the vessel is not designed
to be COLREGS compliant and is designed for a sheltered environment, one can
easily conclude that the collision avoidance system does not meet the demands of a
full-scale scenario.

A collision avoidance system stands and falls on the information made available to
it. In this thesis, blind spots were affecting the laser scans. In order to improve the
situational awareness, the system should have been made aware of these blind spots
or utilized the acoustic sensors used in (Spange, 2016) to measure distances in these
directions. These blind spots could potentially lead to situations where collisions
could occur, despite the fact that these spots generally are very small. Additionally,
the relative speed between the CS Saucer and dynamic obstacles should have been
estimated and used to update the map in order to reflect this information. This
would have greatly increased the situational awareness of the system, and in return
improved the overall performance of the collision avoidance system.

The sensor fusion between the position estimated by the Hector-SLAM algorithm
and the position measurement from the Qualisys system made the position signal
more robust, and better able to handle a dynamic environment. However, there is
still a significant possibility for both of the position measurements to simultaneously
fail at providing a measurement for the vessel’s position.

83



9.2. Further Work

Despite all the limitations, the collision avoidance system demonstrated through
experiments and computer simulations that it could handle both static and dynamic
obstacles. The global path planner preformed very well, and in combination with the
LOS steering law it was able to guide the vessel towards a given goal. With further
work on the situational awareness and the modified Dynamic Window algorithm
could have improved the performance of the guidance system as a whole.

9.2 Further Work

In this thesis, many of the strengths of the Robot Operating System has not been
properly utilized. In order to eliminate some of the time delays that is affecting
the guidance system, the ROS node ”Exploration pathplanner” should have been
split up into smaller ROS nodes. This would have made the computational time
of each node more independent of each other. A suggestion for how this could be
done would be to split up the path planning, the visualization of the map and the
modified Dynamic Window algorithm into three different nodes. It should be noted
that it is the visualization of the map that needs most of the computational time.
This means that finding a less computational demanding way to visualize the map
to the operator would also solve much of the time lag problem.

As stated in the further work chapter in (Sharoni, 2016), the thrusters are unreliable
in certain situations. This unreliability is especially present in the zero thrust region,
and when thrust direction is changed. Another concern is that the thrust does
not increase or decrease in a smooth way. Furthermore, glitches are experienced
where sudden jumps in thrust can be detected. There is also a problem when the
thrusters rapidly changes direction of rotation. The motors are also very sensitive
to electromagnetic disturbances, which may cause unexpected behaviours for the
thrusters. Solving some of these issues would make the CS Saucer better able to
follow given control commands.

Because of the thruster unreliability, and possible flaws in the mathematical model
of the CS Saucer, the velocity estimated by the non-linear passive observer might be
flawed in some situations. A possible solution for acquiring more accurate velocity
information could be to install an IMU on the CS Saucer and integrate the acceler-
ation measurement to get an estimate of the velocity. This would have enabled the
option of fusing the two velocity estimates if deemed necessary. The information
gathered from the IMU could also be used to preform dead reckoning in the case of
loss of position. From what has been discussed in chapter 8, dead reckoning would
strengthen the position signal estimated in the sensor fusion. As stated in chap-
ter 6.3.4, acceleration measurements could have been used to further ensure that a
control command is dynamically feasible.

As stated many times earlier in this thesis, the blind spots that were introduce by
the cap atop of the CS Saucer must be accounted for. Either by making the blind
spots smaller in the same fashion as described in section 6.6.3, or re-introducing the
acoustics sensors that were used in (Spange, 2016) for the CS Saucer. Another pos-
sible solution is to simply make the system aware of the blind spots, and compensate
for them by controlling the heading point the blind spots away from the velocity
direction.
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9.2. Further Work

The relative speed between the CS Saucer and the dynamic obstacles should have
been estimated and taken into account during the inflation of the map. This would
have greatly improved the potential of the collision avoidance system. The LIDAR
could have been used to calculate the relative speed of an obstacle, by using a set of
laser scans and looking at the difference in them over time. By compensating for the
vessel’s own speed, one could get a measure of how fast a obstacle is approaching the
CS Saucer. This does not provide the full scope of the basin-relative velocity of the
obstacle, only the speed the vessel is approaching the CS Saucer. This information
could potentially be used to rework the collision avoidance system to be COLREGS
compliant, however it would be much easier to make the system COLREGS compli-
ant had the full scope of the obstacle’s velocity been known. In other words, further
work should prioritize to find a solution for estimating the obstacle’s velocity and
use this information to ensure that the avoidance maneuvers satisfies COLREGS.
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Appendix A

Electronic Attachments

The files described in this appendix are included in the electronic attachment of the
thesis.

A.1 Parameter Generation Files

VesselParametersSet.m

A matlab script for setting parameters for both the ”fuseMotionController2016a.slx”
simulink model, the ”VesselSimulator.slx” simulink model and ”MotionControl.slx
simulink model. The script runs another script called ”rotasjon.m”.

VesselParametersSetSimulations.m

Same as above, only that it sets the parameters for the simulations.

rotasjon.m

This script is responsible for calculating the conversion parameters for the Qualisys
system in regards to being converted to the Basin-relative frame. To do this it uses
data logged by the simulink model qualisys convert during the initial map genera-
tion phase, where the system developed in (Ueland, 2016) is used. The ”rotasjon.m”
script is dependent on the result files ”det rot.mat”, ”heading actual.mat”, ”head-
ing diff.mat”, ”Pq.mat” and ”Ph.mat”

Froniter256 original.mat

Files containing stored MATLAB workspaces. For simple setting of the dimensions
of the Simulink nodes.

posedata.mat

Files containing stored MATLAB workspaces. For initializing of simulations.

setPathPlanParams.m

This script sets the parameters for the ”Exploration pathplanner.slx” Simulink model.
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A.2. ROS nodes that are Launched During Deployment

setPathPlanParamsSimulations.m

Same as above, only for simulations.

A.2 ROS nodes that are Launched During Deployment

A.2.1 Exploration pathplanner.slx node

This is the Simulink model responsible for generating the path, deploying reactive
obstacle maneuvers, process the map, and visualizing the map for the operator.
The node subscribes to the vessel’s position, estimated velocity in Relative-basin
frame, the laser scans and the redeployed Hector-SLAM map, while it publishes
the velocity command form the modified DW algorithm. The node depends on the
following MATLAB functions:

• PathplannerAndVisualization.m

This function is responsible for generating the path, and visualizing the map
to the operator, as well as receiving input from the operator regarding the goal
that is to be reached. This function relies on several other MATLAB functions
which will be listed below:

1. inflatemapMats.m

Responsible for inflating objects according to the desired inflation radius.

2. inflatemapLocalMatsExpMain.m

Responsible for inflating/weighing nodes around obstacles that are within
LIDAR range when the path is re-planned.

3. LidarUpdate.m

Assumes that the vessel can see ahead in sections where there are no
obstacles detected in the map. Developed and used in (Ueland, 2016).

4. astar.m

Generates a path using the information present in the map, the position
of the vessel, and the position of the goal. This will only be run when
the goal is chosen by the operator. It will only run once, unless a re-plan
is deemed necessary by the guidance system.

• dynamic obstacles.m

This MATLAB function is responsible for adding simple simulated obstacles
to the map. This can be done in the simulations and during the experiments,
making it possible to tune the system using virtual dynamic objects in the
MC-lab

A.2.2 Hector2VesselPos

Hector2VesselPos.slx

Simulink model used to generate the node in C++. Transforms position vector from
LIDAR coordinate system to that of the vessel. Includes a quarternion transforma-
tion.
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A.3. Simulator nodes

Hector2VesselPos node folder

Is used to be run as a regular ROS node. Developed by (Ueland, 2016).

A.2.3 fuseMotionControl2016a.slx Node

The control system of the vessel. It controls the ship to hold the desired velocity,
with a small off-set. The sensor fusion and observer velocity estimation is also
preformed in this node. The observer and actuator mapping used in this node was
developed in (Ueland, 2016)

A.2.4 Hector-SLAM nodes

Open source nodes that are used for SLAM, see: http://wiki.ros.org/hector_

slam. Implemented for the CS Saucer in (Ueland, 2016).

A.2.5 RP-LIDAR node

Open Source nodes that are used as a driver for the RP-LIDAR, see: http://wiki.
ros.org/rplidar. Implemented for the CS Saucer in (Ueland, 2016).

A.2.6 ROS serial node

Open source package for the Audrino, see: http://wiki.ros.org/rosserial. im-
plemented for the CS Saucer in (Ueland, 2016)

A.2.7 Audrino code

CSSaucerThrustRPMVoltage.inu

Audrino code responsible for publishing PWM signals to the actuators and publish-
ing the Acoustic signals (in cm) if the acoustic sensors are connected as in (Spange,
2016). The code is written in C++ and utilizes Audrino/ROS libraries. Imple-
mented in (Ueland, 2016) and edited by (Spange, 2016).

CSSaucerSimple.inu

A simpler version of ”CSSaucerThrustRPMVoltage.inu” that only publishes signals
to the actuators. Implemented in (Ueland, 2016).

A.2.8 qualisys convert.slx

This simulink model is run while the system developed in (Ueland, 2016) is used
to generate the initial map. It logs position data from both the Qualisys system,
and the Hector-SLAM positioning system. This data is saved to separate files, and
processed by the MATLAB function ”rotasjon.m”.

A.3 Simulator nodes

A.3.1 VesselSimulator node

”VesselSimulator.slx” is a Simulink model used to simulate the CS Saucer in the
simulations. This node was developed in (Ueland, 2016).
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A.4. Launch Files

A.3.2 MotionControl.slx

A Simulink model that is used for simpler simulations, if one does not have all the
necessary drivers for the Qualisys system. It is a slightly modified version of the
motion controller developed in (Ueland, 2016).

A.3.3 Exploration pathplannerSimulations.slx

In many ways a simpler version of the ”Exploration pathplanner.slx”, since the ROS
subscription to the Hector-SLAM map and the laser scans are removed. This allows
for easier simulations if the original versions won’t start due to ROS errors.

A.4 Launch Files

Res01.launch

Launches the RP-LIDAR and Hector-SLAM nodes for mapping, with a resolution
of 0.1 [m] and a gridsize of [256x256]

LaunchNoLidar.launch

Launches nodes for deployment of vessel, excluding the RP-LIDAR and Hector-
SLAM nodes.

A.5 Other

A.5.1 Real Time Pacer

Open source simulink block for slowing simulations approximately down to real-time.
(Valhalla, 2010)

A.5.2 The enclosed Video

The enclosed video showcase two separate experiments done in the MC-lab. One of
the experiments is recorded as a screen capture from the map, while the other is a
recorded video of the second experiment. The situations in the two experiments are
similar, and shows two crossing like situations. The avoidance response in both of
the cases can be seen to be very similar as well. The video has also been uploaded to
youtube: https://www.youtube.com/watch?v=DMAe6jWT5aE&feature=youtu.be
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Appendix B

Software Set Up And
Installation

B.1 Manual for getting started with ROS and to install
the RP-lidar driver and Hector-SLAM package

A very good manual for helping NTNU students who wants to use ROS as their soft-
ware framework for projects in the NTNU marine cybernetics laboratory is presented
in the appendix of (Spange, 2016). The manual was originally presented in (Ueland,
2016), but some slight modifications were made in (Spange, 2016). Hence the reader
is referred to read the manual in (Spange, 2016) for guides on how to: Installing
ROS and UBUNTU on your personal computer, installing ROS and UBUNTU on a
RaspberryPi-2, getting started with ROS, Communicating between RaspberryPi-2
and personal computer, getting the Audrino on ROS and installing the drivers for
the RP-LIDAR and Hector-SLAM in ROS. There are also presented several ROS
tutorials for beginners in this manual.

B.2 Qualisys and ROS

For a guide on how to import data form the Qualisys motion capture system, the
reader is referred to read the appendix of (Sharoni, 2016), or use the guide on
Qualisys found in the MC-lab handbook, at: https://github.com/NTNU-MCS/MC_

Lab_Handbook
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Appendix C

Launch Manual

C.1 Deploy vessel for Experiment in the MC-Lab

This section describes how to deploy the vessel for operations as seen in this thesis.
The manual assumes that the system has not changed since this thesis. In this
manual, lines that start with $ are written in a Ubuntu terminal.

Figure C.1: Wiring diagram of the Audrino Mega, courtesy of Sharoni (2016)

• Make sure that the Arduino is connected as intructed in table 4.1. Also see
figure C.1.

• Connect the battery to the Raspberry Pi 2. And place the lid as seen in figure
C.2

Figure C.2: Lid placement and LIDAR placement, courtesy of Ueland (2016)
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C.1. Deploy vessel for Experiment in the MC-Lab

• Connect to the MC Lab network on the operator computer.

• Map Generation phase

Perform a run with autonomous exploration with the system developed in
(Ueland, 2016). The launch manual for his can be found in appendix C.1
in (Ueland, 2016). However, in order to log the Qualisys system while the
map generation phase takes place, some additional steps must be taken. This
means that the map generated, and the logging of qualisys data will be done
by following these steps:

1. Download the system developed in (Ueland, 2016) from https://github.

com/NTNU-MCS/CS_Saucer_ROS.

2. SSH into the RP2 and launch the RP2 nodes that are listed below by
preforming the following commands in the terminal window:

$ ssh ubuntu@ubuntu

$ cd catkin ws/src

$ roslaunch LaunchNoLidar.launch

3. If not already done, place the vessel on the water

4. Open another terminal, and ssh into the RP2, and launch the mapping
file according resolution 0.1[m]

$ ssh ubuntu@ubuntu

$ cd catkin ws/src

$ roslaunch Res01.launch

5. Now launch the simulink exploration node, in order to generate the map.
This is done by launching the ”Exploration pathplanner.slx” that was
used in (Ueland, 2016) (It may be very confusing that the old explo-
ration system in (Ueland, 2016) has the same name as the path planner
and collision avoidance node in this thesis) by doing the following in
MATLAB:

5.1 rosinit(’ubuntu’)(workspace commando)

5.2 load Frontier256.mat (workspace commando)

5.3 run Exploration pathplanner.slx (Old exploration version)

6. Now one must launch the Qualisys system by opening a new terminal
window and writing the command:

$roslaunch qualisys qualisys.launch

7. Make sure that all the reflectors are seen by the qualisys cameras, and
that at least the first measurements will be valid for further use before
running the ”qualisys convert.slx” Simulink model in order to log the
Qualisys data and Hector-Slam position estimates.

8. Start the exploration either by:

Option a: Connecting a second computer to the system. Use this com-
puter to run the motion controller node developed in (Ueland, 2016), and
autonomously explore and generate the map.
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C.1. Deploy vessel for Experiment in the MC-Lab

Option b: Explore area manually by fasting a rope to the CS Saucer
and leading it to un explored areas, and not launch the motion controls.
This way one only needs to launch the map generation. make sure that
it has moved around in the area, since this will make the conversion of
the Qualisys system more feasible.

• After the map generation phase, the old system is shut down, along with the
ROS nodes currently operative on the network. It is important to let the
MATLAB script ”setPathPlanParams.m” find and load the generated map.
One should also check if data gathered from the Qualisys system and the
Hector-SLAM algorithm lead to a successful conversion of the Qualisys system
into the Relative-basin frame by running the MATLAB script ”rotasjon.m”.
If the conversion was complete, then the CS Saucer is ready to navigate in the
generated map using the Qualisys positioning system.

• After this, one needs to SSH into the RP2 yet again (if not already connected
from the precious run), and launch the nodes as demonstrated below:

1. $ ssh ububntu@ubuntu

2. $ cd catkin ws/src

3. $ roslaunch LaunchNoLidar.launch

The vessel should also have been placed on the water.

• Start the mapping file by doing the following:

1. $ ssh ububntu@ubuntu

2. $ cd catkin ws/src

3. $ roslaunch Res01.launch

• Make sure that the qualisys system sees the reflectors, and launch the qualisys
ROS node as folows:

1. $ roslaunch qualisys qualisys.launch

• Run the MATLAB script ”VesselParametersSet.m”. Make sure that the data
collected by the Simulink model ”qualisys convert.slx” is in the same map as
the script ”VesselParametersSet.m” before doing this,

• After this, the Simulink model ”fuseMotionControl2016a.slx” must be started
and set to run. It is very important that the values of the Qualisys system
does not freeze during the startup, as it will potentially ruin the conversion of
the re-deployed Hector-SLAM position estimate.

• Use the other computer to run the MATLAB script ”setPathPlanParams.m”,
given that it has access to the map generated beforehand.

• Now, the Simulink model ”Exploration pathplanner.slx” with collision avoid-
ance can be started (remember that the already known map must be loaded
first), and used to navigate in the known map. A Goal can be set by pressing
on a pixel on the visualized map.
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C.2. Perform Simulations

One thing to note is that the first time the ”Exploration pathplanner.slx” is run
at a given MATLAB session, because of a ”setupimpl error” for the laser scans.
If this error occurs, just repeat the two previous steps. One thing to note, is
that the laser message needs to be set to a custom size. the standard size is
[1x128]. This needs to be set to [1x360] by going to ”Tools→ Robot Operating
System → Manage Array Sizes” And then selecting ”sensor msg/Laserscan”,
remove the check on the ”Use default limits for this message type” and write
360 in the maximum length field for the Ranges and Intensities.

Trouble Shooting

Trouble shooting as presented in (Ueland, 2016)

• Check if you can ping the RPi2 from one of the operator computers.

• Make sure that you can SSH both back and forth between the RPi2 and the
operator computer. If not, there might be a problem with either the network
connection or the hosts file. Also, make sure that open-ssh is installed, and if
using Virtual Box, that you use Bridged Network

• The IP addresses can change. Check the hosts file on both the RPi2 and the
operator computer if the IP adresses are up to date.

• Check that the bashrc file contains the following line:
export ROS MASTER URI=http://ubuntu:11311 where ubuntu is the corre-
sponding name to the RPi2 IP as set in the hosts file.

• Check the voltage of the battery

• Check that all pins are connected

• If one of the motors has stopped, check the lights on the motor-controller.
They may signal an error described in the following: http://www.mtroniks.

net/download.asp?ResourceID=1973

C.2 Perform Simulations

C.2.1 Simulations for the Developed System

In this manual it is assumed that all nodes are run on the operator computer, and
that they are not compiled to C++. First make sure that the line in the bashrc file
that exports the ROS master is uncommented. Make sure that the real time pacer is
added to the path. After this, simulations can be launched in the following manner:

• rosinit (workspace commando)

• run setPathPlanParamsSimulations.m

• run Exploration pathplanner.slx

• If error for a ”setupimpl error” for the laser scans, repeat the two previous
steps. If this does not work, see appendix C.2.2.

• run VesselParametersSetSimulations.m
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C.2. Perform Simulations

• run fuseMotionControl2016a.slx

• run VesselSimulator.slx

Note, that in order for the ”fuseMotionControl2016a.slx” to work one needs to com-
plete all the steps described in appendix B.2. If still not able to run the simulations
see the section below.

C.2.2 Easy Simulations

If the above section fails to yield simulations, then this section will provide an easier
solution that still showcase some of the primary functions of the system. Note that
it is assumed that these simulations is run with simulink on a Ubuntu operating
system. However, the simple simulator should also work on a Windows operating
system. In the electronic attachment these files are found in the ”SIMULATIONS
ONLY” folder. Follow the steps below to perform the simulations.

• Add the Real Time Pacer to the MATLAB path

• rosinit (workspace commando)

• run setPathPlanParamsSimulations.m

• run Exploration pathplannerSimulations.slx

• run VesselParametersSetSimulations.m

• run MotionControl.slx

• run VesselSimulator.slx

If everything went according to the plan, the simulations are now running.
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Appendix D

Parameters

Parameter Experiments Simulations

α 0.09 0.25
β 200 200
β2

80
7.5 8

γ 50 52
Ci 0.46 0.45
wv 0.15 0.8
wt 0.85 0.2
∆t 0.2 0.2

Table D.1: Dynamic Window Tuning Parameters
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Appendix E

Simulator ROS architecture

In all the stress surrounding this thesis, the node network for the ROS system in
the experiment was saved as a figure. Because of this, the third best thing has been
included instead, namely the node network of the easy simulations.

Figure E.1: Node network for the easy simulations. Apparently the author had
forgotten to save the node network during the experiments
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