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Abstract  

As part of new initiatives from Norwegian Public Road Administration (NPRA) and Nye Veier 

AS towards reduced cost of road construction and maintenance, alternative materials for bridges 

are being considered. For the construction phase, quick installation and utilization of 

prefabricated units are being requested. For the operational phase, solutions not requiring 

periodical maintenance are favorized. In total, these new requirements are well suited for the 

use of aluminum. Especially for pedestrian bridges crossing roads with heavy traffic. The 

primary objective of this thesis is to evaluate the potential of aluminum solutions within 

pedestrian bridges. This seen in competition with common steel and concrete solutions as well 

as new materials such as fiber reinforced polymer (FRP). The thesis contains a literature study 

on aluminum as construction materials and a concept development of an aluminum pedestrian 

bridge. This concept bridge is compared to one of two baseline solutions from NPRA.  

 

Many existing and successful aluminum pedestrian bridges demonstrates aluminum's potential 

in this sector. As a construction material, aluminum contains several advantages. High specific 

strength, high corrosion resistance, no need of periodic maintenance, low residual stresses 

caused by constrained thermal deformation and it is field proven bridge material. A pedestrian 

bridge can be designed with unique solutions by utilizing the possibilities of friction stir welding 

and extrusion of profiles. There is a general lack of knowledge and a historical lack of standards 

and guidelines for aluminum. The building sector's reliance on acquisition cost and warranty 

condition for their investments and not life-cycle cost analysis (LCCA) have put a limitation 

for aluminum pedestrian bridge projects.  The initial evaluation of the bridge concept provides 

a 23-ton bridge structure with a fabrication cost of 6.65 MNOK. Compared to the baseline 

solution from NPRA the aluminum bridge only has 45% of the weight in aluminum as FRP in 

the baseline solution. The estimated fabrication cost ended up almost equal for the two concepts, 

and only the significant deviation in weight is differentiating them.  

 

Aluminum has a bright future if increased knowledge among builders and engineers, better 

standards and guidelines, and increased focus on LCCA becomes a reality. The development 

of the aluminum pedestrian bridge in this thesis demonstrates aluminum capabilities applicable 

for pedestrian bridges in Norway.  
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Sammendrag på Norsk 

Som en del av nye tiltak fra Statens vegvesen (NPRA) og Nye Veier AS for å reduserte 

kostnader for veibygging og vedlikehold, vurderes alternative materialer for broer. For 

byggefasen, blir rask installasjon og bruk av prefabrikkerte enheter forespurt. I driftsfasen 

favoriseres løsninger som ikke krever periodisk vedlikehold. Til sammen er disse nye kravene 

godt egnet for bruk av aluminium. Spesielt for fotgjengerbroer som krysser veier med tung 

trafikk. Hovedformålet med denne oppgaven er å evaluere potensialet for aluminiums løsninger 

innenfor fotgjengerbroer. Dette sett i konkurranse med vanlige stål- og betongløsninger, samt 

nye materialer som fiber forsterket polymer (FRP). Avhandlingen inneholder en litteraturstudie 

om aluminium som byggemateriale samt en konseptutvikling av en aluminiums gangbro. 

Denne konseptbroen er sammenlignet med en av to broløsninger fra NPRA.  

 

Mange eksisterende og vellykkede gangbroer av aluminium viser materialets potensial i denne 

sektoren. Som byggemateriale inneholder aluminium flere fordeler. Høy spesifikk styrke, høy 

korrosjonsbestandighet, ikke behov for periodisk vedlikehold og lave restspenninger forårsaket 

av fastholdte termiske deformasjoner. Materialet er også utprøvd over tid som bromateriale. En 

fotgjengerbro kan designes med unike løsninger ved å benytte mulighetene friksjonssveising 

og ekstrudering av profiler. Begrenset bruk av aluminium som bromateriale skyldes 

hovedsakelig mangel på kunnskap og historisk mangel på standarder og retningslinjer. 

Byggesektorens tillitt til anskaffelseskostnad og garantistilling for sine investeringer og ikke 

livssykluskostands analyser (LCCA) har også satt en begrensning. Den første evalueringen av 

gangbro konseptet gir en 23-tonn brostruktur med en fabrikasjonskostnad på 6,65 MNOK. 

Sammenlignet med broen fra NPRA har aluminiumbroen kun 45% av vekten i aluminium som 

FRP i NPRA broen. Anslått produksjonskostnad ble nesten lik for de to konseptene, og den 

betydelige forskjellen i vekt skiller de. 

 

Aluminium har en lys fremtid om økt kunnskap blant entreprenører og ingeniører, bedre 

standarder og retningslinjer, samt økt fokus på LCCA blir en realitet. Utviklingen av 

aluminiumgangbroen i denne oppgaven har vist aluminiumsegenskaper som er anvendbare for 

fotgjengerbroer i Norge. 
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1 Introduction 

1.1 Background and Motivation 

As part of new initiatives from Norwegian Public Road Administration (NPRA) and Nye Veier 

AS towards reduced cost of road construction and maintenance, alternative materials for bridges 

are being considered. For the construction phase, quick installation and utilization of 

prefabricated units are being requested. For the operational phase, solutions not requiring 

periodical maintenance are favorized. In total, these new requirements are well suited for the 

use of aluminum. Especially for pedestrian bridges crossing roads with heavy traffic, it's 

assumed a significant business potential for aluminum solutions.  

1.2 Project Scope 

The study will be based on two planned bridges from NPRA. One already developed for fiber 

reinforced polymer (FRP) and one that is currently designed in steel with a diagonal tubular 

arch. 

1.2.1 Objectives 

The main objective of this study is to evaluate the potential of aluminum solutions within 

pedestrian bridges, in competition with common steel and concrete solutions as well as new 

materials such as FRP. 

• Provide a short description of key requirements for bridge materials and how aluminum 

compares to other alternatives within this application 

• Describe the manufacturing capability of Marine Aluminium AS (MA) 

• Evaluate the feasibility of introducing aluminum solutions for the two bridges from 

NPRA, based on manufacturing at MA 

• Select the most suitable case, and develop an aluminum concept 

• Perform initial evaluation of structural capabilities, weigh and cost of the proposed 

concept 

• Based on available information, compare performance of aluminum concept with 

baseline solution from NPRA 

1.2.2 Research Questions 

Are aluminum bridges competitive considering weight, cost and structural capabilities in the 

Norwegian light weight pedestrian bridge market?   
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1.2.3 Delimitations 

The thesis only includes development of the aluminum bridge structure. Surrounding concrete 

foundation and bridge bearings is not included. Also fatigue calculation have been left out of 

the scope for this thesis. 

1.2.4 Thesis Structure 

This thesis consists of several chapters, including an introduction, a theory chapter, a case 

study, conclusion, reference list, and appendices. Throughout the concept development, the 

results are evaluated consecutively after each chapter. 

Chapter 1: This is the introduction to the thesis and describes the background, project scope, 

objectives. It also presents the research questions. 

Chapter 2: presents the theory about aluminum as a construction material. It first starts off 

with the aluminum history as a bridge material, then describes aluminum properties as 

construction material and the manufacturing of aluminum. Further, a bridge material 

comparison and existing pedestrian bridge solutions in aluminum are highlighted. The end of 

this chapter ends with design aspects for pedestrian bridges. 

Chapter 3: in this chapter, the baseline solution from NPRA is presented and chosen for 

further use in the case study.   

Chapter 4 -11: is these chapters the development of the aluminum pedestrian bridge concept 

is described. It starts with the product development methodology and briefly explains the 

product development process and present the user demand specification. FEA and calculation 

in accordions with NS EN-1999-1-1 is performed in these chapters as well.   

Chapter 12: the initial evaluation of the pedestrian bridge concept is presented and evaluated 

with weight on structural integrity, weight and fabrication. 

Chapter 13: this chapter compares the developed aluminum pedestrian bridge concept with 

the baseline solution from NPRA. Structural capabilities, weight and cost is the main factors 

in the comparison. 

Chapter 14: here the thesis is summarized, discussed and concluded. Also recommended 

further work is written in this chapter  

Chapter 15: The thesis ends with a reference list.    
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2 Theory 

2.1 History of Aluminum in Bridges 

The history of aluminum bridges goes back to 1933 when the first aluminum bridge deck was 

built in the United States [1]. Since then, many similar bridge decks have been installed. 

Aluminum bridge decks have reduced weight, is easy to install with only a short closure time 

of traffic, easy to transport and possible to prefabricate. In 1950, Arvida the first all-aluminum 

bridge was built over the Saguenay River in Canada [1] as illustrated in Figure 1. In 1996 

Norway’s first all-aluminum road bridge was constructed at Forsmo. The Forsmo bridge has no 

reported damage or maintenance issues related to the bridge [2]. The first aluminum bridge built 

in Europe is the Schwansbell Bridge build in 1956. Also this bridge had minimal degradation 

after over 50 years in service reported in 2006 [2].  

 

 

Figure 1: Arvida bridge [3]. 

 

Figure 2: Forsmo bridge [1]. 

Over several decades aluminum in bridge application has proven to be a sustainable material. 

Compared to steel the high initial costs are often held against aluminum.  When considering the 

life-cycle cost (LCC) of aluminum, there are large benefits with the material [1, 2, 4]. 

Aluminum is increasingly strengthening its position as a bridge material as the LCC approach 

becomes more familiar and accepted. Seen in perspective of the first aluminum bridges the 

aluminum alloys now has gained 50% more strength [1]. One of the most dominating reasons 

for the limited use of aluminum in bridges is the lack of knowledge among builders and bridge 

engineers [2, 4]. Also, the historical lack of adequate construction standards and guidelines has 

restricted aluminum as a bridge construction material [2, 5].  The lack of construction guidelines 

can for instance be illustrated by the absence of aluminum guidelines in NPRA handbook N400. 

In the last decade, a significant contribution has been put into the development of harmonized 

design and execution standards like the Eurocodes with National Annexes [6]. The use of 

aluminum in pedestrian bridges seems to be increasing, and several companies now deliver a 

variety of prefabricated bridges in both the US and Europe. 
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2.2 The Properties of Aluminum as Construction Material 

Aluminum consists of eight groups of aluminum alloys which are numerically classified by the 

American Association. The first four digits are the primary alloying element, and the three 

others are the secondary alloying elements. The most common alloying series for bridge 

construction is the 5000 series and the 6000 series. In the 5000 series, magnesium is the primary 

alloying element. This series is often used in welded construction without suffering too much 

strength loss in the heat affected zone [7]. The 6000 series, magnesium, and silicon constitute 

as alloying elements. The 6000 series is especially suitable for extrusion and welding [7] and 

6082 T6 is the strongest alloy in the series. The suffix T6 indicates that the material is heat 

treated and then artificial aged to increase the strength of the alloy [8]. A good way to describe 

aluminum as a construction material is to compare it with the much more common construction 

material, steel. The main differences between the two materials are that the density and Young’s 

modulus of aluminum is one-third of steel. Aluminum is also more corrosion resistant than 

steel. Whereas steel typically needs corrosion protection in most environments, a thin inert 

oxide film is formed on exposed surfaces of the aluminum [7]. This oxide film protects the 

aluminum from further corrosion. Still, construction details must be properly designed to avoid 

crevice, pitting and galvanic corrosion of the aluminum. 

 

A stress-strain curve comparison between the materials shows that both materials follows linear 

elastic behavior with differentiated slopes, see Figure 3. After the linear elastic area, aluminum 

has a continuous strain-hardening while steel has a defined perfect plastic plateau. A significant 

difference is that aluminum's ultimate deformation is about 10% lower than for steel [7]. The 

parameter 𝑓/𝛾 ratio is considered highly important [7], and a comparison between several 

materials is conducted in Section 2.4. 𝑓0 is the yield strength of steel and 𝑓0.2 the yield strength 

of aluminum. 𝛾 is the material density. For aluminum this ratio can vary from 8 – 17, this is 

superior compared to mild steel which is in the range of 3 – 4.5 [7].  It is not always possible to 

utilize this advantage in aluminum constructions due to the low Young’s modulus. Local 

buckling can occur under compression load. The elastic deformations are also three times larger 

than for steel [9]. There are several complications related to the reduced Young’s modulus of 

aluminum. According to the article [9] which is related to aluminum in the ship industry, an 

equivalent structural panel of aluminum and steel has approximately the same natural frequency 

of vibration. Aluminum structures will have a lower vibration frequency when exposed to a 

high level of nonstructural mass. This reduced frequency could lead to resonant problems [9]. 

Resonant problems combined with larger susceptibility of fatigue damage [9] makes it a 
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limiting factor in aluminum design. Other differences are that aluminum has higher thermal 

expansion coefficient than steel. This thermal expansion coefficient makes aluminum more 

prone to thermal induced vibration. Residual stresses caused by constrained thermal 

deformation is on the other hand about 30% lower than steel [7]. High temperatures also create 

other problems for aluminum. Aluminum has a much lower melt temperature compared to steel. 

This comparingly low melt temperature reduces aluminums structural capabilities when 

exposed to high temperatures like a fire. Unlike the high temperature properties, aluminum have 

excellent properties at low temperatures. Due to aluminums face-centered-cubic crystal 

structures it will retain good ductility and adequate toughness at subzero temperatures [10]. 

 

 

Figure 3: A general stress – strain curve comparison 

between aluminum alloy and steel [7]. 

As discussed aluminum have low density and a large cross-section with thin wall thickness 

must be used to utilize the property. Welded joints in aluminum trusses designed would in most 

cases be the limiting factor. This limitation is due to the strength reduction in the heat affected 

zone (HAZ). Internal ribs will therefore not be necessary for the compression members. It is 

usually more beneficial to increase the cross-section thickness and avoid cross-section class 4 

than adding internal stiffeners. Cross-section class 4 is prone to local buckling before the 

attainment of proof stress in parts of the cross-section [11].  

2.3 Manufacturing and Joining of Aluminum 

Structural components made of aluminum alloys can be manufactured with a variety of different 

methods. Rolling, casting, extrusion and drawing processes are all available methods. The most 

important method which makes aluminum stand out from for instant steel and FRP is the 

extrusion process. This process is more thoroughly explained in Section 2.3.1. Beneficial bridge 

structural members can be produced by combining extrusion and welding techniques [12]. 
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Concerning joining of aluminum friction stir welding (FSW), fusion welding, cohesive 

bonding, bolting and riveting are all well-known methods. FSW and fusion welding is further 

explained in Section 2.3.2 and 2.3.3. 

2.3.1  Extrusion 

One of the big advantages aluminum has compared to steel is ease of forming and the possibility 

of extruding complex profiles. This gives the possibility to design a multifunctional profile 

without extra cost. Bridges with free span between 50-60 m can be obtained with special 

extrusions presses with more than 8000 tons of force [6, 13]. There is a variety of different 

extrusion processes. In general, the extrusion is a process where cast billets is shaped by 

pressing it through a die. The metal flows continuously out of the orifice and appears as a long 

profile. The profile will have the approximately same shape as the orifice geometry [14]. The 

profile is stretched immediately after and during the extrusion. The stretching is to ensure 

straightness and to avoid accumulation of material right after it comes hot out of the die. An 

extrusions press is illustrated in Figure 4. 

 

 

Figure 4: Extrusions press [15]. 

The standard cost of extruded profiles is 30 NOK/kg. Large profiles are more expensive to 

produce. This increased cost is not only because of the kg price but also because there are much 

fewer large extrusion presses in the world. Fewer extrusion presses give the production plants 

the opportunity to charge a higher price. SAPA construction manual [16] presents some 

guidelines for profile design making the extrusion process more economical and easier. Simple, 

round shapes with arched corners are preferable. It is impossible to extrude sharp corners, but 

it is sufficient with a radius between 0.5-1 mm. SAPA also recommend small variations in the 

wall thickness even though the different thickness is often acceptable. The recommendation is 

to ensure an even material flow during the extrusion process and finished profile. As an 
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exception, for profiles designed for high bending resistance, the mass should be placed far away 

from the neutral axis as possible. With this design principal, the wall thickness may vary with 

thicker walls further away from the neutral axis. 

2.3.2  Friction Stir Welding 

Because of strength reduction during welding of aluminum, The Welding Institute of UK 

invented FSW in 1991 as a solid state joining technique. It is classified as a solid state joining 

technique since the temperature does not exceed the melt temperature of the workpiece.  FSW 

consists of a non-consumable rotating tool with a shoulder and a pin as illustrated on Figure 5. 

The tool has two primary functions, heat and stirs the material to create a joint. Heat is a result 

of friction and plastic deformation of the workpiece. The tool is plunged in the material until 

stopped by the shoulder and translated along the weld direction when rotating. Local heat and 

movement of material make an FSW by local plastic deformation. Concerning the development 

of metal joining Mishra et al. [17] states that FSW is the most significant invention in a decade. 

This statement is a result of FSW energy efficiency, environment friendliness, and versatility. 

Other benefits with FSW are listed in Table 1.  

 
(a) 

 
(b) 

Figure 5: a) Tool geometry, b) Weld affected zones. 

 

   Table 1: Key benefits of friction stir welding [17].  
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Concerning fatigue strength, FSW is shown to be better than both metal inert gas (MIG) welding 

and laser welding. This increased fatigue strength is because of the finer and more uniform 

microstructure for the FSW weld. The fatigue life is very much limited to surface crack 

initiation and significant improvement to the fatigue life can be obtained by removing a layer 

on both top and bottom side of the weld [17].  

 

Aluminum is known for its excellent corrosion resistance, and in principal, FSW does not add 

or change the chemical composition of the base metal so the corrosion resistance should stay 

unchanged [18]. FSW produces different zones with differing microstructures as illustrated in 

Figure 5 b). These zones exhibit different corrosion susceptibility. Studies of pitting and stress 

corrosion cracking behavior shows that these are the most dominant in FSW welds. FSW welds 

showed higher pitting resistance than the base alloy [17]. Another paper by Gharavi et al. [19] 

concluded that FSW is susceptible for pitting corrosion and intergranular corrosion. 

 

A limiting factor concerning FSW is the issue of clamping. Clamping is important to obtain 

joints with good mechanical performance. Since FSW is a solid-state process, it requires higher 

clamping force. A good FSW depends on several factors, and the FSW must be carefully 

controlled. Significant reduction in quality may be the result if the process is not monitored. 

Another downside with FSW is the lack of capability to weld structural joints. The amount of 

pressure needed to do a proper FSW makes it difficult to utilize robot arms. The largest stress 

is found in the joints and connection of structures. Conventional fusion welding together with 

bolting is the only alternative. Hopefully, new technologies like the hybrid metal extrusion & 

bonding developed by HyBond at NTNU can be utilized for such use in the future [20].  

 

2.3.3  Fusion Welding  

Welding is the joining of two surfaces by a coalescence of the surfaces in contact. When the 

two surfaces are joined by melting, it is called fusion welding. Fusion welding can roughly be 

placed in two main categories. Tungsten inert gas welding and MIG welding. An ideal weld 

would have the same properties in weld material HAZ and base material, but this is not the case 

for aluminum [21]. Possible defects Gene Mathers [21] lists in his book; Gas porosity; oxide 

inclusions and oxide filming; solidification (hot) cracking; reduced strength in the HAZ; Lack 

of fusion; reduced corrosion resistance; reduced electrical resistance. When designing a 

construction in aluminum the strength reduction in the HAZ is the most critical defect. A 

decrease in strength up 50% can occur as shown in Figure 6. Concerning the stiffness of the 
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material in the HAZ, there is no to a little change in Young’s modulus. The binding forces 

between atoms determine the modulus of elasticity and are one of the most structure-in-

sensitive mechanical properties [22]. Heat treatment has therefore only a slight impact on the 

stiffness, as illustrated in Figure 6. 

 

Figure 6: AA6082 T6 stress-strain curve of base material and 

HAZ [23]. 

 

2.4 Bridge Material Comparison 

Traditionally bridges are constructed with combinations of materials to obtain the optimal 

solution. As an example, the lightweight London Millennium Bridge is built with a material 

combination of steel and aluminum. The bridges have a steel structure and a light aluminum 

bridge deck. As mention in Section 2.2, the strength to weight ratio is of high importance for 

aluminum. The comparison chart compares a variety of construction materials in Figure 7. The 

chart illustrates the deviation in material properties. The material offering the greatest specific 

stiffness-to-weight ratio lies towards the upper right corner. Concrete has a significantly lower 

specific strength compared to all the other construction materials. Concrete also has a lower 

specific stiffness. Steel and aluminum come better out of the comparison whereas GFRP comes 

a bit lower. Aluminum is closely related steel in this comparison but has a greater potential. 

Carbon fiber reinforced polymer is arguably the material with the highest specific modulus – 

Specific strength ratio. 
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Figure 7: Specific Youngs modulus – Specific Strength comparison chart [24]. 

Polymers and fiber reinforced polymer material is gaining its popularity in bridge constructions 

due to low density, high chemical resistance, dyeability and simple forming processes. The 

downside polymer is lower E-module, high rheological forming, low thermal resistance and 

aging due to UV radiation [2]. It is also hard to predict the degradation of the materials due to 

temperature, environment and mechanical damage. There is still a significant need for research 

in this area. There is ongoing work on establishing a Eurocode for FRP bridges [2, 25].  Like 

aluminum, reduced weight, pre-fabrication and reduced installation time are often the 

arguments for composite bridges. One of the significant issues with composite as of today is 

the absent possibility of recyclability [2, 25]. Tension strength of GRFP can vary between 130-

600 N/mm2 and can obtain an E modulus of 55,000 N/mm2 [2]. These values determined the 

strength in the longitudinal direction of the fibers. Load transverse of the fibers will give a much 

lower resistance. Good design can avoid this issue. 

 

Another material that has gained some popularity in the bridge building sector the last years is 

weathering steel. This steel corrodes 6-8 times slower than regular steel under optimal 

conditions. Weathering steel forms an initial layer of corrosion which slows the process of 

further corrosion. In areas with road salting in the winter, this protective rust layer is found to 

have little effect [2].  
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2.5 Existing Pedestrian Bridge Solutions in Aluminum 

Aluminum has been used as a bridge material for almost 100 years now. Since the early 

aluminum alloys in bridge construction, they are now 1.5 times stronger. Accounting the 

inflation, they have essentially the same cost [1]. Demitris Kosteas [6] states that seven pillars 

support the success and economically attractive application of aluminum in structures; light 

weight; extrusion; joint design; reliability; durability; acquisition and life-cycle cost; 

sustainability. 

 

Several aluminum pedestrian bridges have now been built around the world with great success 

both onshore and offshore. Due to the development of knowledge and availability of aluminum 

the last decade, a pedestrian bridge in Germany, 2008 was estimated a price of 140.000 Euro 

compared to 300.000 Euro for a similar concrete solution [2]. Often bridges are built in steel or 

concrete. Sebastian Joux [4] write that the two main advantages of aluminum in complete LCC 

are longevity and low maintenance. Due to these two benefits, the to two pedestrian bridge 

examples studied in the article gave the best return on investment compared conventional 

materials. In the later years, a lot of companies have come to the market with aluminum 

pedestrian bridge solutions. The German based company PML and their partner in Australia, 

Landmark, started to deliver systems for large spans between 25 – 80 m in 2007. Bridges of 40 

– 50 m in length and 2 – 3.5 m wide is delivered in the price segment of 115,000,- Euro – 

200,000,- Euro [26]. That is equivalent to 1.1 – 1.9 MNOK with a currency of 9.5 NOK per 1 

Euro. Also, other companies like Excel, Gator, Maadi, and Glück deliver similar solutions for 

aluminum pedestrian bridges. Glück claims to be the market leaders in aluminum pedestrian 

bridges, with over 540 structures in a variety of country’s [13]. 

 

Tomasz Siwowski concludes in his paper [1] that an effort to reduce the initial cost would 

increase the competitive advantage of aluminum. He also states that aluminum in bridges has a 

favorably LCC which further increases aluminum's potential in bridge building. A life-cycle 

cost analysis (LCCA) consist of four stages; development-design-material; fabrication-

transport-assembly-erection; disposal-recycling; service-maintenance [6]. Studies shows that 

with an assumed equivalent acquisition cost it only takes 10 – 20 years before a breakeven point 

is reached [6]. This study is illustrated in Figure 8 from a MAADI Group study, Canada in 

2011. The lifetime of a bridge is often more than 100 years, and significant money can be saved 

be choosing aluminum. 
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Figure 8: Life-cycle costa comparison [6] 

Structural weight plays a major role concerning the acquisition cost. Earlier Norwegian studies 

state that if aluminum structures reach a 50% weight reduction compared to steel structures, the 

acquisition price is equal [6]. This estimate is now attained by pedestrian bridges as well [6]. 

Comparison of acquisition cost is rather rare for pedestrian bridges. This comparison is rare due 

to lack of access to details of bids, the material price usually just “arbitrary” set, final details 

and cost are adapted later in design stages [6]. The different stages in the bridge lifetime are so 

different that a comparison between aluminum and some bridge materials makes no sense. 

However, some estimates of acquisition prices are made as illustrated in Figure 9. This 

comparison is for a 31.7 m long and 2 m wide bridge in the UK which is based on actual bids 

from 2014. Due to the much lower acquisition price for the stairs and support solutions in 

aluminum, the total acquisition price is much lower for the untreated aluminum bridge. Even 

though it is hard to compare acquisition cost, the building sector still makes most of their 

investments based on acquisition cost and warranty condition. This fact is most likely to do 

with lack of knowledge and availability of data [6]. Aluminum will gain significant benefits 

compared to many other construction materials when LCCA gets more accepted and used. 

 

 

Figure 9: Cost breakdown of 31.7 m long closed frame truss bridge (left). Initial cost 

comparison for FRP – Steel – Aluminum (right).    
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2.6 Design Aspects for Pedestrian Bridges   

The primary function of a pedestrian bridge is to allow people to pass obstacles safely. People 

directly experience the pedestrian bridge, and that’s what makes them unique compared to road 

bridges and railway bridges. People walk over it, looks at it and touches it. That is why the 

bridge functionality requirements is to be so precisely analyzed and defined [27]. How a 

pedestrian experience to go through a closed frame truss compared to an open truss bridge are 

aspects to consider in the design phase. Inclined trusses or arches will result in a wider bridge 

construction. The pedestrian needs a finite amount of height under the arch or truss. To maintain 

the height above the walkway, the bridge needs to be wider. For prefabricated bridge design, 

this is not preferable, due to transportation and installation. In a meeting with two architects at 

NTNU [28], it was told that almost all bridge types could be esthetically nice if the detailing is 

executed properly. Detailing could be, joint design, surface finishing, railing, and lighting. 

These details have much to do with the closer user interference between the pedestrians and the 

bridge itself. Further, in this chapter, truss bridges and tied arch bridges are more explained in 

Section 2.6.1 and 2.6.2. 

 

2.6.1 Truss Bridge 

A truss structure consists of individual straight members which are connected at joints. It is 

assumed that the joints permit rotation and that the structural members only carry axial force in 

either tension or compression. In reality, the joints often do not allow free rotation and will 

introduce some bending effects to the members [29]. Truss structures are very efficient and use 

minimal of material and is therefore lightweight [29]. It can both be statically determined and 

undetermined according to the Equation 1 for a 2D truss. b: bars, j: joints. 

Equation 1 

𝑏 = 2𝑗 − 3            

The lightest bridge structure is the simple statically determinate truss structures. For instance, 

the Warren truss and Pratt truss. The Pratt truss compared to the Howe truss has shorter 

compression elements. The Howe truss diagonal members are the compression elements which 

makes them a fraction longer than for the vertical compression members in the Pratt truss. The 

Warren truss is more economical as it requires less material on shorter spans than the Pratt truss. 

However, the Warren truss may be for a bridge over 40 m long, require a greater depth at the 

center [30]. Figure 10 illustrates the different truss configurations.  



 

28 

 

 

   
Figure 10: Truss statically determinate configuration [31].   

As general rules for truss structures in steel, Kumar et.al [30] suggest that an even number of 

truss bays should be chosen.  An even number of truss bays will avoid a central bay with crossed 

diagonals. Kumar et.al recommends that the angle of the trusses to be between 50º and 60 º to 

the horizontal. Thesis angels are recommended to have a coincident intersection point between 

the members to avoid bending stresses. [30, 32] Kumar et.al gives the optimum value for the 

span to depth ratio in the region of 10 depending on the loads applied to the bridge. Concerning 

the compression members, they should be designed with minimal length. The compression 

members should also have equal slenderness value in both directions. Tension members should 

be as compact as possible. For an open truss configuration, the upper chord in compression is 

in risk of lateral deflection. Transverse stiffeners may be added between the two upper chords. 

Transverse stiffeners make an efficient stabilization. On the other hand, this will change the 

characteristics of the bridge. The user now walks through the support structure as mention in 

Section 2.6.  

2.6.2  Arch Bridge 

As a form of support structures, the arch is one of the oldest in bridge constructions [27]. 

Relevant parameters when designing the arch is the starting point of the arch and the height of 

the arch. An unchangeable combination of an economical and efficient support structure is the 

ideal combination for arch design. If not, bending stresses and normal stress will occur in the 

arch and make material use much greater by increasing the dimensions [27]. Deflection in the 

arch can result in further deformations of the arch and increased stress. This phenomenon is 

called a geometrically non-linear effect for small deformation in the structural analysis [27]. 
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Figure 11: Tied arch bridge [33]. 

There are mainly two kinds of arch bridges. The standard arch bridge where the horizontal shear 

component is transferred to the ground below. Moreover, the tied arch bridge is where the 

horizontal component is transferred by a tension member in the bridge deck or through the 

hangers in a network arch bridge [27]. Figure 11 illustrates the load transfer in a tied arch bridge, 

with vertical hangers. The main advantage with the tied arch bridge is that the subsoil only takes 

on the vertical force from the bridge. This advantage makes it possible to prefabricate the bridge 

and assemble the entire structure at once. 

 

The most common type of arch bridges has vertical hangers. This way the hangers only act as 

tension members. By applying crisscrossed hangers, some global shear forces will be transfers 

along the span as well. Full shear transfer through the triangulated web can be obtained by 

substituting the hangers with truss members. With this substitution, the bridge is now called a 

bowstring truss bridge [33]. The optimal rise of an arch bridge is approximately one tenth of its 

span length. Greater arch forces will be the result if a lower arch height is chosen [27].  

2.6.3 Bridge Deck 

There exist several types of bridge deck configurations on the market. Typical for aluminum, 

is bridge decks with different stiffness in longitudinal and transverse directions. These bridge 

decks are called orthotropic bridge decks. The bridge deck developed for Florida Department 

of Transportation [34] is an orthotropic bridge deck, stiffened in the transverse direction. The 

Alumabridge deck is engineered to withstand 44.5 kN from wheel patches of 254x508 [mm2]. 

The bridge deck panels oriented perpendicular to the traffic direction and the top of the stringers 

act as a support. The weight without wearing surface is 85 kg/m2 [35]. According to the report 

[34] on bridge decks, this was the absolute best solution for replacing the bascule steel grid 

decks. The results from the bascule bridge reports [34, 35] show that there are significant 

advantages of utilizing aluminum in bridge decks. For a pedestrian bridge application, 
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orthotropic aluminum bridge deck would be a great benefit. The bridge deck would serve as a 

good point load distributor to surrounding structural members. It will also add stiffness to the 

superstructure. Figure 12 shows a draft of a typical orthotropic bridge deck design. This design 

has extruded profiles FSW together in larger configuration; this method gives fast and easy 

assembly [34]. 

 

 

Figure 12: Alumabrige 5” Bridge deck. 

 

2.6.4 Wearing Surface  

Concerning wearing surface the report of bascule bridges [34] considered two light weight, 

wearing surfaces. Thin polymer overlay wearing surfaces and hot spray applied metal overlay. 

The main factors considered in their report when choosing a skid resistant overlay is; the unit 

weight; skid resistance; service life; wear resistance; bond strength; ultraviolet light resistance; 

chemical resistance and corrosion; tensile (flexural) strength; maintenance [34]. Lack of 

knowledge and experience with long-term use makes no one of the two solutions applicable. 

Asphalt is one of the most utilized wearing surfaces on roads and bridges. Asphalt is used to 

increase the durability of the bridge and protect the bridge from possible defects. For instant 

intrusion of salts can be harmful to the bridge structure and lead to severe corrosion attacks 

[36]. The biggest downside with asphalt is high density. A significant weight reduction of the 

bridge structure could be obtained if the development of wearing surfaces continues. 

2.6.5 Transportation and Installation 

There is no definitive solution to the transportation, and each transportation route needs to be 

studied individually. Sverre Fordal at Prøven Transport [37] claimed that there is rarely a 

problem with a transportation length of 30 meters. The total height should not be higher than 

4.5 m. Length above 35 m needs escort cars which make the transportation more expensive. 

Concerning transportation of a prefabricated bridge, there will be a demand from the 

government that the bridge is transported to the nearest dock [37]. This requirement is to 
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minimize transportation time onshore. Bridge modules under 3 m wide, 15 – 16 m long and 3.5 

m high are referred to as a standard transportation job. For loads wider than 3 m it is required 

to have escort cars. For loads, over 23 m just a simple approval is needed to do the transportation 

job. Installation of the bridges are also an important aspect of the bridge design. As an example 

of the escort cost of a 30 m long and 4 m wide load can be 25k NOK during a night [37]. A 

street with a speed limit of 30 – 40 km/h and an annual average daily traffic (AADT) 0 -4000 

and AADT heavy < 100 the road profile is 6 m wide including the clearance to the edge stone. 

Whereas the narrowest type of national roads with an AADT < 12 000 and a speed limit of 60 

km/h is 7.5 m including road shoulders [38]. These road requirements illustrate the importance 

of the transport dimensions.  

 

Loading and unloading the bridge of ships with a single crane needs to consider an engineering 

design requirement. Along the Norwegian coast, there are cargo ships with crane capacities 

between 50 – 80 tons.  A normal strap angle is 45 under lifting and 60 for heavier loads. These 

strap angels can provide an issue concerning the total height of the crane if the lifting points are 

far apart. On location where the distance between each mobile crane can be miles apart. The 

cost of hiring one for unloading the bridge from the cargo ship can get significant. Proper 

transportation equipment and reduction of the crane capacity demand could give a significant 

cost reduction. 

 

Where the bridge is installed over a road, the crane can be located at the center of the bridge 

with a minimized radius. If the bridge crosses a river or a densely trafficked road, the crane 

must be placed at the end of the bridge. The crane gets half of the bridge length as the radius 

with this solution. Figure 13 shows a complete solution from assembly to complete installation 

of an aluminum pedestrian bridge in Germany. This solution is based on solution 3 in Table 2 

and two cranes for installation. Other installation methods can be sliding the bridge in place. 

This method is expensive and space demanding.   
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Figure 13: Aluminum pedestrian bridge assembled and installed over A5 in Germany [39]. 
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 Table 2: Transportation alternatives. 

1 

 
Pros:  

- Utilize most of the transportation height  

Cons:  

- Short transportation length 4.5 – 11m 

2 

 
Pros:  

- Versatile and no demands for custom equipment. 

Cons:  

- Both reduced transportation height 0.3 m and length 4.5 m 

3 

 

Pros:  

- Utilize the total transportation length of the truck 

Cons: 

- Give a reduced transportation height between 0.3 -0.5 m 

4 

 

Pros: 

- Utilize the total height of 4.5 meters. 

- Can handle length up to 35 meters 

- Flexible 

- Can be designed to load the bridge without the help of a 

crane  

Cons:   

- Demands custom transportation gear 
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3 Baseline solutions from the Norwegian Public Road 

Administration 

As case studies, two bridges have been found accessible and relevant for an aluminum 

pedestrian bridge concept study. The bridges are further explained and evaluated for their 

feasibility for introducing aluminum. 

3.1 Forus Bridge 

The Forus bridge crosses Fv44 in Stavanger and is a part of the municipal development plan of 

Park-2020 “10-minutes city”. Because of this development plan the bridge is thought to be a 

landmark of the promising future with a monumental expression. The diagonal arch bridge 

design was chosen because of its landmark esthetics and affordable price. The arch was 

proposed in steel with the dimensions Ø610x40 [mm] with an arch height of 13 m from the 

bridge deck [40]. The bridge has a free span of 40 meters. The bridge deck consists of two 

longitudinal load bearing beams Ø508 [mm] and transverse beams with a scatter distance of 4,0 

m [40]. Due to minimum free height, the transversal beams must be elongated to fit the cable 

anchors. Even though the bridge is proposed built in steel, new requirements have stopped the 

progress. With an AADT > 8000 no periodic maintenance is allowed per N400 1.1.3.3 [5]. As 

commonly known, steel corrodes and needs surface treatment with periodic maintenance to 

hinder degradation of the structure. 

 

 

Figure 14: Forus Bridge. 
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3.2 Paradis Bridge 

Paradis bridge as illustrated in Figure 15. The bridge is a proposed pedestrian bridge developed 

as an alternative for a stainless-steel truss bridge [41]. The Dutch company Royal 

HaskoningDHV (RH) in cooperation with NPRA has developed the bridge concept. No 

periodic maintenance, a single span of 42 m, quick installation time of less than 72 hours and 

easy transportation and building on the site. These requirements were the main demands of the 

Pardis bridge. The Paradis bridge is the first FRP bridge for NPRA. Challenges when designing 

an FRP bridge is to develop a bridge deck suitable for spike tires. The wet and cold climate in 

Bergen and Norway in general, vibration, buckling, creep, joints and cost were also challenging 

for RH and NPRA [41]. 

 

In the initial development of the bridge, the material of choice became GFRP with steel joints. 

The steel joints are both bolted and adhesively connected to the FRP structure [41]. The FRP 

constituted only 42 tons of the total mass of 87 tons. The remaining 45 tons consist of asphalt 

and steel parts. Substitution of the asphalt wearing surface with a lighter wearing surface will 

give a huge weight reduction. 

   

 
Figure 15: Paradis Bridge. 

 

3.3 Evaluation  

The composite bridge in Paradis was chosen as the reference bridge for developing an 

aluminum pedestrian bridge. This choice was based on Marine Aluminum experience of 

building truss based pedestrian bridges for the offshore market. A meeting with Marit Reiso 

[42] at ÅF Engineering also highlighted the Paradis bridge as the most suitable case for 

introducing aluminum. GFRP and aluminum are two good material options for lightweight 

bridge structures. Since these two materials have many of the same properties, they are therefore 

interesting for a comparison study.  
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4 Product Development 

4.1 Development Process 

To illustrate the development process of the aluminum bridge, the IPM model has been utilized. 

Figure 16 shows the model. This model is a simplified version of the Cooper’s stage-gate model 

[43]. For every stage, there is a milestone. At each millstone, a decision is made either to go 

back, terminate or proceed the development process. As this model is mainly descriptive rather 

than prescriptive, Design for X (DfX) is utilized as a guide and principle. The guidance and 

principals are follow when evaluating the different concepts during the product development 

process. Design for X is explained in more detail in Section 4.1.1. The book Product Design 

and Development [44] have been used to evaluate some parts of the concept development as 

well.       

 

 

 
Figure 16: IPM model. 
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4.1.1 Design for X 

Products have several abilities which are created under the development process. These abilities 

are often named by the common term “X” which creates the term DfX [45]. Design for 

manufacturing (DfM) and assembly (DfA) is two of the most important aspects to consider 

when designing a bridge. A lecture handout from the New Mexican University (NMU) [46] 

states that design decisions determine over 70% of the manufacturing costs of a product. These 

design decisions include the cost of material, processing, and assembly. This statement is 

contrary to production decisions that are claimed to just be responsible for 20%. Design for X 

could be seen as a strategy, method or knowledge base, but cannot be interchanged with an 

overall product development process [45]. A list of relevant aspects of a good DfM and DfA 

gathered from the Sintef report [45] is shown below. The lecture handout from NMU also 

stresses the importance of using standard components and avoid separate fasteners. 

 

1. Minimize the amount of parts 

2. Develop a module based construction 

3. Minimize the variation between the parts 

4. Design multifunctional parts 

5. Design parts for easy manufacturing 

6. Minimize the assembly direction where a top-down approach is desirable 

7. Symmetrical parts to avoid orientation directions 

8. Exaggerate unsymmetrical parts for ease of orientation 

9. Avoid flexible (soft) components   
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4.2 User Demand Specification  

User Demand Specification 

Product:  

Pedestrian Bridge in Aluminum  

Written by:  

CARB 

Approved: 

 

Page: 

1 of 4 

Description “demand” “whishes” 

1. Function demands 

1.1. Dimensions [41] 

External: Single span. 42 m. Width. 7 m. 

Internal: Width 6 m. minimum height 3.1 m 

 

According to V129 [47] the slope of the bridge cannot exceed 1:20 

(5%). 

 

The minimum free width of a pedestrian bridge is 3m between the 

hand railing according to N100 [38]. If the width exceed 6m 

complementary load models has to be considered for each project 

[48]. 

1.2. Weight of Paradis Bridge [41] 

Superstructure < 42 tons 

Total weight < 87 tons 

1.3. Bridge deck  

Suitable for spike tires [41] 

1.4. Loads 

1.4.1. Vibrations from pedestrian load [48]: 

Vertical direction frequency ranges from 1-3 Hz  

Horizontal direction frequency range from 0.5 – 1.5 Hz    

1.4.2.  Distributed load from pedestrians [48] 

Dimensioning model LM4: 5 kN/m2 

 

Horizontal force 𝑄𝑓𝑙𝑘 action along the bridge deck axis at the 

pavement level should be considered for footbridges only. 

According to section 5.4 [48].   

- 10% of total uniformly distributed load. 

- Or 60% of total weight of service vehicle.  

The forces are considered as acting simultaneously.  

 

 

 

 

√ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ 

 

 

 

 

√ 

 

 

 

 

√ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ 
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User Demand Specification 

Product:  

Pedestrian Bridge in Aluminum  

Written by:  

CARB 

Approved: 

 

Page: 

2 of 4 

Description “demand” “whishes” 

2. Function demands 

2.1.1.  Service Vehicle: Yes  

 

2.1.2.  Snow loads [49] 

NA.A2.2 [6] - Snow loads shall generally not be combined with 

gr1, uniformly distributed load and gr2, service vehicle. Since the 

snow load is smaller than the distributed load, snow loads are 

neglected. 

2.1.3. Wind load [50, 51]:   

The wind loads are calculated for the specific location at Paradis 

in Bergen and is taken from the AIP file provided by the Public 

Road Administration: 

 

Peak pressure: 𝑞𝑝(𝑧) =  0.75 kN/m2 

Longitudinal: 𝑊𝑥 = 0.4 kN/m2 

Transversal: 𝑊𝑦 = 1.7 kN/m2 

Vertical: 𝑊𝑧 = 0.7 kN/m2 

 

Per N400 5.4.3.3 there is no demands for simultaneously control 

of wind and traffic loads on separate pedestrian bridges.  

 

 

 

 

 

√ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ 

 

 

 

 

 

√ 
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User Demand Specification 

Product:  

Pedestrian Bridge in Aluminum  

Written by:  

CARB 

Approved: 

 

Page: 

3 of 4 

Description “demand” “whishes” 

3. Function demands 

3.1.1. Thermal loads [51, 52]: 

The temperatures are from the area of Bergen city. 

Hottest temperature: 𝑇𝑒,𝑚𝑎𝑥 = +34℃ 

Coldest temperature: 𝑇𝑒,𝑚𝑖𝑛 =  −20℃ 

3.1.2.  Static deflection [51]: 

𝐿/350 [5], L is the length of the considered span.  

3.2. Surface and subsurface drainage. [5] 

(1% longitudinal direction and 2% one sided in other) 

For retaining walls and abutments perforated drainage pipe shall 

be provided. 

3.3. Capable of single crane lift under 50 or 80 tons [37] 

3.4. Road transportation limitations [37] 

Module size must be less than 4.5 m high and 35m long  

 

 

√ 

 

 

 

 

 

√ 

 

 

√ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

√ 

√ 

4. Market demands 

4.1. Cost (Steel bridge with curved trusses 25k NOK/m2 not 

included installation cost) [40]. 

  

 

√ 

5. Production demands 

5.1. Joining methods 

Bolting, welding and FSW 

5.2. Max extrusion size restriction 

5.3. Prefabricated elements with minimal connections on site  

  

6. Design demands 

6.1. Timeless design 

6.2. Scalable 

  

 

√ 

√ 

7. User demands 
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User Demand Specification 

Product:  

Pedestrian Bridge in Aluminum  

Written by:  

CARB 

Approved: 

 

Page: 

4 of 4 

Description “demand” “whishes” 

8. Safety demands 

8.1. Handrails [51, 53] 

1,4 m high, q = 1,5 kN/m. Openings for snow is max 50x50 mm 

 

 

√ 

 

9. Environmental demands 

9.1. Recyclable 

Easy to separate components with different alloys 

  

 

√ 

10. Additional demands 
  

11. Product life demands 

11.1. Design working life is 100 years [48, 51] 

11.2. Quick installation < 72 hrs closure of light rails [51] 

11.3. N400 1.1.3.3. AADT > 8000. No periodic 

maintenance [5] 

 

 

√ 
 

√ 

 

 

 

√ 
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4.3 Concept Development 

By utilizing a Function-/Solution Tree [54] as illustrated in Figure 17, the concept development 

process is orderly to follow. This way ideas for potential problems and solutions set into order. 

The first and most important decisions were taken when choosing the truss structure, the 

orientation of the bridge deck and the joint design of the trusses. There are several types of 

bridge designs, such as slab, truss, arch, cable-stayed, suspension, and some other kinds, like 

stress ribbon bridges. Because of limitations for the thesis and since the bridge is planned 

prefabricated and have a medium to long span, the truss bridge, arch bridge and a combination 

is chosen for further development. The focus has been on developing the bridge deck, truss 

structure, and railings with specific aluminum solutions and associated details. 

 

  

Figure 17: Function-/Solution tree. 
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5 Trusses 

5.1 Truss Configurations 

There are requirements for the bridge to be simply supported and to be prefabricated. The most 

feasible alternative is tied arch bridge, and truss bridge as illustrated in Table 3. Because of the 

statically determinants of the Pratt and Warren truss, they are chosen for further evaluation. 

These truss configurations give the best weight to strength ratio. The Pratt truss is selected over 

the Howe truss, due to shorter compression members. Shorter compression members provide a 

minor reduction in buckling susceptibility. Warren truss might need a larger depth at longer 

spans, but it is the system with best material effectiveness for shorter spans. The tied arch bridge 

might be a light alternative where compression in the arch and tension in the bridge deck takes 

the load as explained in Section 2.6.2. The Tied arch truss bridge is a combination of the two 

constructions principle, where the trusses take most of the load. These alternatives are also 

chosen since they have their load carrying construction above the bridge deck. This design 

criterion gives a more versatile design where the clearance criteria to under laying roads and 

train tracks easier can be fulfilled. To keep the bridge design compact for transportation inwards 

or outwards angled trusses are not considered as feasible. Load carrying construction at the 

center of the bridge has the same issue where the bridge deck must be wider to keep a 6 m wide 

bridge deck with the clearance criteria of 3.1 m of free height. 

 

For further evaluation, the Warren truss is chosen out of the four alternatives in Table 3. The 

decision is mainly based on the Warren truss material efficient construction method for shorter 

spans. Also, the visual aspect is found to be more appealing than the Pratt truss, which gives a 

more industrial expression. 
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       Table 3: Truss alternatives. 

        
Tied arch 

 
Pros: A potential light construction 

Cons: High shear forces at each end. 

Pratt truss 

 
Pros: Shorter compression members than 

the Howie truss 

Cons: Boring design 

Warren truss 

 
Pros: Material efficient at shorter spans 

Cons: Need a greater depth at longer spans 

Tied arch truss bridge 

 
Pros: Best of both worlds? 

Cons: High shear forces at each end. 



 

47 

 

5.2 Truss Initial Analytical Calculation 

As an initial estimate of the truss height, a simplified calculation is done. The bridge is 

considered as a simply supported beam with a distributed load q as illustrated in Figure 18. The 

distributed load q gives a moment, M and is provided by the 5 [kN/m2] load. The factor of two 

is applied to give a better estimate and include the self-weight and combination of loads. The 

upper chords get compression stress, and the lower chords have tension stress. By considering 

the forces in the upper and lower chords as two opposing forces with a height difference. The 

height could be found by using the moment from q. This estimate is illustrated in Figure 18 as 

well. Three standard profiles from MA’s assortment is used as a reference for the beam 

dimension size. The calculations are conducted in Excel and shown in Table 5. The reduction 

in strength due to HAZ in truss joints are accounted for by utilizing the force equation with the 

HAZ yield limit. 

       

Table 4: Initial Truss Calculation Equations. 

Equations 2: 

Moment Force Force from NS EN 1999-1-1, HAZ The height, h 

𝑀 =
𝑞𝑙2

8
  𝐹 =

𝑀𝐸𝑑

ℎ
 

𝐹 = 𝑓0,𝐻𝐴𝑍×𝐴/𝛾𝑀1 
ℎ =

𝑀𝐸𝑑×𝛾𝑀1

𝑓0,𝐻𝐴𝑍×2×𝐴(𝑥)
  

 

 
Figure 18: Assumptions for initial truss height. 
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Table 5: Initial truss calculations.  

 

The distance between the diagonals is chosen to give an optimal angle at each end of the truss. 

Optimal truss angels are explained in Section 2.6.1. The initial height of the truss is found to be 

4 m for a flat truss. With the arch, an approximate average is used as illustrated in Figure 19. 

With an initial arch height of 2.5 m and a height of 4.5 m at the center of the bridge span. This 

height is exactly the maximum allowable transportation height. 

 

 

Figure 19: Initial truss design. 

  

M [N/mm] 13230000000 

q [N/mm] 30.00 

l [mm] 42000.00 

Factor of self-weight and combination loads 2.00 

h [mm] 6288.43 h [mm] 

f0,HAZ [N/mm2] 125.00  
γM1 1.10  
320x320x12 [mm2] 14440.00 4031.3 

300x300x10 mm2] 11257.00 5171.18 

250x250x10 [mm2] 9257.00 6288.43 
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6 Bridge deck  

During the development process, two bridge construction concepts have been found feasible. 

Transverse bridge deck (TBD) and longitudinal bridge deck (LBD). The Idea behind the TBD 

is to utilize the extrusion and FSW methods applicable for aluminum. Potentially the TBD could 

replace the underlying structure of the bridge. This approach could minimize the total amount 

of parts used in a pedestrian bridge construction. The bridge deck design is based on the 

helideck profiles, HMA5360 from MA.  

6.1 Initial Calculation of Bridge Decks 

Some simplified calculation is performed to give an indication of profile dimensions. 

6.1.1 Transverse Bridge deck  

Equation 3  for deflection of a beam with a point load, found in Technical Tables [55] was 

utilized to determine the necessary bending stiffness of the bridge deck profile. The limiting 

load case is the point loads from the service vehicular. Figure 20 explains the parameters in the 

Equation 3. 

Equation 3: 

𝑦1,2 =
𝑃𝑐2𝑐1

2

6𝐸𝐼𝑙
(2

𝑥

𝑐
+

𝑥

𝑐1
−

𝑥3

𝑐2𝑐1
) 

The deflection criteria set by de NPRA is given in Section 4.2. The super position principal is 

used to find the bending stiffness with two point loads. 𝑦1 = 𝑦2 → 2𝑦 =
𝑙

350
→ 𝑦1 =

𝑙

700
. Even 

though physical test [56] shows a load distribution of 0.2, a conservative estimate of 0.25 is 

used as a load distribution factor. 𝐹 = 40 kN. 𝑃 = 0.25𝐹. Second moment of area about the 

principal x-axis:   

𝐼𝑥 =
0.25𝐹𝑐2𝑐1

2

6𝐸𝐼𝑙
(2

𝑥

𝑐
+

𝑥

𝑐1
−

𝑥3

𝑐2𝑐1
)

700

𝑙
= 7.0×107 mm4 

 

 
Figure 20: Beam with point load off center. 

 

Figure 21: Point load at center. 
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6.1.2 Longitudinal Bridge Deck 

Longitudinal Bridge Deck I-beams 

With LBD I-beams, they are the weight distributing members of the bridge. The calculation is 

based on the same formula as the calculation conducted for the TBD solution in Section 6.1.1. 

The only difference is that there is assumed no load distribution. 𝑃 = 𝐹. Which gives the second 

moment of area about the principal x-axis: 

𝐼𝑥 = 2.8×108 mm4 

Longitudinal Bridge Deck Profiles 

The truss joint is 3m apart. The LBD profiles need a sufficient stiffness for a 3m span. Equation 

4 for the deflection of a beam with a point load, in Technical Tables [55], was utilized to find 

the necessary bending stiffness of the bridge deck profile. Figure 21 illustrates the parameters 

in the equation. The same deflection criteria are used, 𝑓 =
𝑙

350
. The load distribution is assumed 

to be the same as in Section 6.1.1, 𝑃 = 0.25𝐹 with 𝐹 = 40 kN. 

Equation 4: 

𝑓 =
𝑃

𝐸𝐼

𝑙3

48
 

Gives a second moment of area about the principal x-axis: 

𝐼𝑥 =
0.25𝐹

𝐸

350

𝑙

𝑙3

48
= 9.4×106 mm4 

 

6.2 Transverse Bridge Deck Modeling - Local Behavior 

As an attempt to utilize the advantage of extrusion of complex cross-sections. The helideck 

profiles developed at MA transfer the point loads through torsion stiff cross-sections. MA has 

conducted a test on their helideck profiles of type HMA5360. This test shows a point load 

distribution of 80% to the surrounding profiles [56]. To evaluate the different methods of 

modeling the local loads from the service vehicle on the bridge deck. Figure 22 and Figure 23 

illustrates the test setup with sketches. Two finite elements (FE) modeling approaches were 

tested in SCIA. 
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Figure 22: Longitudinal load position. 

 

 

 

Figure 23: Transverse load position. 

Appendix 1 explains method number one. The second approach is found appropriate to be 

applied by utilizing beam elements. An equivalent cross-section of the HMA5360 helideck 

profile is applied in the longitudinal direction. Point load distribution is obtained by applying 

beam elements with a square cross-section in the transverse direction. The height and width 

were adjusted to give the same vertical displacement as the physical test. The beam elements 

are joined with hinged cross-links. Figure 24 illustrates the cross-link. This link gives moment 

free couplings between the beams and the point load is placed at the center of the longitudinal 

center beam. 

 

 

Figure 24: FSW bridge deck model. 

The method showed good results for distributing the point load. The physical test conducted at 

MA showed a displacement of 24.15 mm at the center of the helideck test-deck. This 

displacement is equal to the analysis in SCIA as illustrated in Figure 25. No measurements of 

the deflection in the transverse direction on the physical test were conducted. Pictures from the 

test report show an equivalent distribution as Figure 25 shows from the analysis. The deflection 

is magnified on the plot. This FE modeling method is further used for the evaluation of the local 

bridge deck behavior. 
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Figure 25: Vertical deflection of FSW bridge deck. 

 

6.2 Bridge Deck Modeling – Global Behavior 

If the orientation of the bridge deck is in the transverse direction, it must withstand the global 

shear forces. In practice, solved by utilizing FSW panels. For the local finite element analysis 

(FEA) with point load distribution, the bending stiffness of the transverse planks has little 

influence on the load distribution. The planks have therefore and arbitrary width. On the global 

model, this width has a large impact on the shear resistance. Therefore, the function Ribbed 

Slab is used to simulate the effect of an FSW-panel in SCIA. 

6.3 Bridge Deck Profile 

The wanted torsion stiffness is obtained with a bridge deck profile design with several closed 

sections. The height to width ratio also has some influence. To maintain the serenity of the load 

distribution from the physical test, the width was decided to be kept equal as the helideck 

profiles from MA. The height of the profile is the most influencing dimension concerning the 

moment of inertia about the x-axis. This influence can be illustrated by the second moment of 

area of a square or Steiner’s theorem. 

 

Equation 5: Second moment of area Equation 6: Steiner’s theorem 

𝑊𝑥 =
1

6
𝑏ℎ2 

𝐼𝑥 = 𝐼1 + 𝑏2𝐴 

In Equation 6, b is the distance from the neutral axis to the neutral axis of the area A. With higher 

profiles, this contribution will exponentially increase since b is squared. Increasing b will have 

a larger impact than increasing the area A. The same can be argued based on the second moment 

of area of a square cross-section illustrated in Equation 5. Here the height, h is squared. 

Increasing the height has a larger influence than increasing the width. Figure 27 illustrates the 

TBD profile. 



 

53 

 

 

MA does not have a double sided FSW machine. Turning an FSW panel upside down to weld 

it on both sides are time demanding and expensive. SAPA has a double sided FSW machine 

in Finspong, so the technology exists. Also, the design solution as illustrated in  

 

Figure 26 could be utilized.  100 NOK/m weld is an average estimate of FSW cost. This solution 

will give three times as many FSW and will increase the cost. Due to these reasons, only single 

sided FSW panels are considered in the evaluation. Anyhow a double sided FSW panel will 

give an even bigger stiffness contribution to the bridge. Almost all the FSW bridge decks out 

on the market are double sided [1, 34] except form the bolted solutions. 

 

 

Figure 26: Hitachi design for double sided FSW 

panels [57]. 

 

Figure 27: New bridge deck 

profile. 
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7 SCIA Modelling 

7.1 Loads 

In this section, all the loads are explained in detail. Section 7.2 gives a summary of loads and 

load combinations.  

Asphalt  

The bridge is designed with an asphalt layer of 6 cm to ensure an equal basis for comparison 

with the Paradis bridge. This asphalt layer is equivalent to a distributed load of 150 kg/m2. 

Normally a layer of 4 cm is sufficient, but snow plowing demands with 6 cm. In Trondheim 

municipality, all new pedestrian bridges have a 6 cm layer [58]. The load is applied as line loads 

on the transverse I-beams. 4.45 kN/m and 2.25 kN/m for the two end I-beams. Figure 28 

illustrates the loads.   

 

 
Figure 28: Distributed load spread out on the transverse I-beams as line loads. 

 

Pedestrians 

Load model LM4 (5 kN/m2) from the NS EN-1991-1-2 is used [48]. The load is distributed 

through a load panel in SCIA and gives line loads on the transverse I-beams equal to 14.92 

kN/m and 7.42 kN/m for the two end beams. Figure 28 shows the load distribution. 
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Self-weight of Panels for Longitudinal Bridge Deck Concept 

When calculating the initial self-weight of the LBD, MA's HMA5360 helideck profiles are used 

as the base. This base choice is made by the calculation in Section 8. Table 6 shows the total 

weight estimates. The load distribution is equal to the distribution in Figure 28. Line load is -

1.07 kN/m and 0.54 kN/m for the two end beams. 

 

Table 6: Bridge deck weigh calculation. 

 

Self-weight of Bridge Structure 

The self-weight of the structure is automatically calculated in SCIA. The self-weight of the 

bridge structure comes from the resultant of reaction forces in the SCIA model. The weight is 

calculated to be 15913 kg. The density of the aluminum is 2700 kg/m3. 

 

10% Horizontal Force Along the Bridge Deck  

To ensure the horizontally and longitudinal stability a horizontal force is added in combination 

with the pedestrian load. According to EN 1991-2:2003 this force is normally adequate to 

ensure the stability [48]. In Equation 7 the area, A is the total area of the bridge deck, Q is the 

pedestrian load, and L is the total length of the bridge. 

Equation 7 

𝑄10% =  
𝐴𝑄0.1

𝐿
= 3 kN m⁄  

The load is applied on the lower chord as a line load. The SCIA model is illustrated in Figure 

29. 

Bridge deck weight calculation 

𝑞 = 8
kg

m
 

 

 

𝑚 = 𝑞𝑙
𝑤𝑏𝑟𝑖𝑑𝑔𝑒

𝑤𝑝𝑟𝑜𝑓𝑖𝑙𝑒
= 6720 kg 

 
To ensure a conservative weight of the bridge deck 9000 kg is used. 

𝑤𝑝𝑟𝑜𝑓𝑖𝑙𝑒 = 300 mm 

  𝑙 = 42 m 

  𝑤𝑏𝑟𝑖𝑑𝑔𝑒 = 6000 mm 
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Figure 29: Vertical force along the lower chord. 

 

Service Vehicular 

The first axel has a total load of 80 kN which gives two point loads of 40 kN. The rear axle has 

a total load of 40 kN which gives two point loads of 20 kN. The distance between the four, 

wheel patches is illustrated in Section 4.2. The loads are placed at the center of the bridge. 

Figure 30 shows the applied load. For the splice calculation of the top and bottom chords in 

Section 10.4, the service vehicular is applied to the nearest I-beams closest to the splice. 

 

 
Figure 30: Point loads from service vehicular.  
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Wind Load 

The transverse wind load is found in the user demand specification in Section 4.2. The wind 

load is calculated per NS EN-1991-1-4 Section 7.1.1 Lattice Structures and Scaffolding [50]. 

The load is illustrated in Figure 31. The solidity ratio, 𝜑 is defined by expression 7.26 in NS 

EN-1991-1-4 [50]:  

Equation 8 

𝜑 =
𝐴

𝐴𝑐
 

A: Sum of the projected area. 

𝐴𝑐: Area enclosed by the boundary of the face projected from the truss 

 

A and 𝐴𝑐 is found from NX computer-aided design model. 𝜑 =
41873091 𝑚𝑚2

166919144 𝑚𝑚2 = 0,25. 

From Figure 7.33 in NS EN-1991-1-4 [50] the force coefficient 𝑐𝑓0 for plane lattice structure 

with angle members. The force coefficient was found to be, 𝑐𝑓0𝑒 = 1,6. From Figure 7.34 in 

NS EN-1991-1-4 [50] the force coefficient 𝑐𝑓0𝑖 for a spatial lattice structure with angled 

members. The line for a box truss was utilized as the closest equivalent shape to the U-shaped 

truss on the concept bridge. The force coefficient is found to be, 𝑐𝑓0 = 2,6. To find the 𝑐𝑓0 for 

the second truss the differential between 𝑐𝑓0𝑒 from Figure 7.33 and 7.34 in NS EN-1991-1-4 

[50]. 𝑐𝑓0𝑖 = 2,6 − 1,6 = 1. The line loads are calculated in Excel as shown in Table 7. 

 

Table 7: Wind load calculation. 
NS EN-1991-1-4 Wind loads: Section 7.1.1 

Wind load; W_y [kN/m2] 1.7 

Force coefficient external: cf0 1.6 

Force coefficient internal: cf0i 1 

Line load: qi q_i=Wy*bi*cf0(i) 

Cross-section type Width [m] Line load external [kN/m] Line load internal [kN/m] 

320x320 0.32 0.8704 0.544 

270x200 0.2 0.544 0.34 

250x150 0.15 0.408 0.255 
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Figure 31: Wind load indicated by green arrows on SCIA model. 

 

7.2 Summary of Loads 

The loads found summarized in Table 8 with applied loads in X, Y and Z direction. Table 9 

shows the load combinations (LC) used in Section 9. 

 
Table 8: Load summary 

 

 
Table 9: Load combinations 

 

 Description X - direction Y - direction  Z - direction 

Self-weight  [kN] [kN] [kN] 

1 Asphalt   0 0 371 

2 Bridge deck    0 0 88.3 

3 Bridge structure  0 0 157 

Variable loads     

4 Pedestrian  0 0 1260 

5 Horizontal Line load 0 126 0 

6 Service vehicular   0 120 

7 Wind   0 168 0 

          Loads 
LC* 

1 2 3 4 5 6 7 

1 x x x x x   

2 x x x   x  

3 x x x    x 

4 x x x     

5        

*LC: Load combination 
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7.3 Finite Element Modeling of Bridge Deck Solutions 

The bridge FE model consists of beam elements connected by coincident nodes. This FE 

technique means that there is a stiff connection between the beam elements. The rigid 

connection is chosen since the truss joint is welded. The TBD beams are designed with bolted 

connections. With proper joint design, a rigid connection in the global model is a valid 

assumption. The bridge is simply supported and has supports on each end of the two lower 

chords. Both sides have a free rotation, whereas one side has free translation along the bridge 

length and the other fixed. The FE model is illustrated in Figure 33. All the profiles used in the 

FE model is tabulated in Table 10 and Figure 32 describes the location of the profiles. Figure 

27 shows the bridge deck profile for TBD with dimensions. Table 11 summarizes the material 

data. The TBD profile is designed with the 6005A T6 alloy, rest of the bridge is in 6082 T6.  

 

 
Figure 32: Bridge structure members. 

 
Table 10: Profile dimensions. 

 

 

 

 

 

 

 Transverse truss profiles Longitudinal truss profiles 

Chords RHS  320;320;14 RHS  320;320;14 

Truss members, 1 RHS  270;200;10 RHS  270;200;10 

Truss members, 2 RHS  270;200;14 RHS  250;150;10 

Bridge deck beams  I  420;180;15;10;21 
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Table 11: Material data. 

 

For static analysis, the mesh data has no impact on the accuracy of the results. To perform an 

NS EN 1999-1-1 code check in SCIA, HAZ reduction is added to the ends of the truss diagonals. 

This HAZ reduction is indicated by the small orange arrows shown in Figure 33. In the NS EN 

1999-1-1, the HAZ strength reduction is accounted for by reducing the cross-section wall 

thickness. The welding data applied is MIG welding and filler material in the 5xxx alloy class 

with a temperature of 333.15℃. The buckling length factor, k, is set to 1.5 for all the truss 

members is both directions. This buckling length factor is equal to a; Rotation: clamped – 

restrained; displacement: fixed – free, compression member per NS EN 1999-1-1 [11]. 

  

Two load cases have been applied to evaluate the two bridge deck solutions. The service 

vehicular load and the distributed load with the 10% horizontal load. For the LBD solution, an 

additional distributed force is added to simulate the weight of the bridge deck panels. This force 

is a conservative approach when considering the LBD alternative up against the TBD. The 

conservativisms are because the bridge deck panels additional stiffness is not included. Figure 

28 shows the distributed load on the LBD alternative. or the global TBD analysis, the load is 

distributed evenly on the 2D plane with ribs. Both the 10% horizontal load and the service 

vehicular load is applied similarly to both bridge deck models as illustrated in Figure 29 and 

Figure 30. The different FEA models for the two concepts are illustrated in Figure 33 - Figure 

37.  

 

 Units EN-AW 6005A T6 (5-10)* EN-AW 6082 T6 (5-15) 

Product form  EP EP 

Unit mas  [kg/m3] 2700 2700 

E modulus  

 

[N/mm2] 

70000 70000 

𝑓0  200 260 

𝑓𝑢 250 310 

𝑓0,ℎ𝑎𝑧 115 125 

𝑓𝑢,ℎ𝑎𝑧 165 185 

Buckling class  A A 

*Alloy applied on transverse bridge deck profiles. 
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Figure 33: Longitudinal bridge deck analysis model in SCIA. 

 

 

Figure 34: Transverse bridge deck model in SCIA (local loads). 

 

 

Figure 35: Transverse bridge deck model for local loads in SCIA (Close up). 

 



 

63 

 

 

Figure 36: Transverse bridge deck model in SCIA (global). 

 

 

Figure 37: Transverse bridge deck model for global loads in SCIA 

(Close up). 2D panel with ribs. Only ribs are illustrated on the figure. 

 

7.4 Finite Element Model of Chosen Concept    

The FEA model of the chosen concept is identical to the LBD concept model except from some 

changes. Figure 38 illustrates the full model and the changes are listed below. 

1. 6082 T6 is the new material for the bridge deck. The shape of the profiles is simple 

enough to be extruded in a harder material. 

2. For the Eurocode check, HAZ are added where the bridge is spliced and at joined 

members. These HAZ are shown in Figure 39, indicated by yellow arrows.  

3. FSW bridge deck is added as longitudinal beams with a cross-section of B300 x H72 

[mm]. The FSW bridge deck is divided into three zones indicated by the pink color in 

Figure 40. Connected with moment free connections between FSW beams and bridge 

deck I-beams. This joint gives free rotation in the connection.   
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4. The diagonal bridge deck I-beams is modeled with joints with free rotation in both ends. 

Figure 41 illustrates the joint. This assumption is made, so the detailed design of the 

joint is coincident with the assumptions made in the global model. 

For nonlinear analysis and the linear stability analysis, the mesh data has a large influence on 

the end results [59]. Both the stability and eigenfrequency analysis is dependent on an adequate 

mesh refinement to find critical modes. Both wrong mode shapes and eigenfrequencies can be 

missed out from the calculation with course mesh. To ensure adequate mesh refinement, SCIAs 

recommended mesh setup for time-dependent analysis is used [60]. The recommended 

parameters are listed below.  

• Minimal distance between two points ł 0.001 m 

• The average number of tiles of a 1D element must be ł 2. 

• Generation of nodes under concentrated loads on beam elements = on. 

• For reasons of numerical stability of TDA solver it is recommended to adjust: Minimal 

length of beam element = 0.05 m. 

These settings give a total of 520 nodes and 601 1D elements in the FE model.  

 

 

Figure 38: Chosen concept model. 
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Figure 39: HAZ indicated by arrows. 

 

 

 

Figure 40: FSW panels model as beams in three lengths in the longitudinal direction. Marked 

by pink-gray-pink zones. 

 

 

 

Figure 41: Free support as joint boundary 

conditions for diagonal I-beam.  

 

Figure 42: Illustration of the mesh. 
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8 SCIA Results of Bridge Deck Solutions 

8.1 Transverse Bridge Deck 

The service vehicular is the limiting load when analyzing the bridge deck locally. The deflection 

criteria is given by:  

Equation 9 

𝑑 = 𝐿𝑡/350 = 17.1 mm 

As shown in Figure 44, the relative deflection of the transverse bridge span is no more than 7 

mm. This deformation is according to the the deflection criteria from NPRA, approved. Also, 

the von Mises stress was held below the yield limit of the extruded 6005 alloy with only 24.2 

N/mm2 as shown in Figure 43. From the load distribution plots, the method of modeling the 

distribution of point loads seems to be satisfying on larger models. The method also gives a 

good interpretation of the load distribution. The low stress and displacement gives room to 

improve the TBD design for this load case and reduction in weight could be obtained. 

 

 
Figure 43: Stress plot from underneath the bridge. 

 
Figure 44: Distribution of point load in 

total displacement.  

The two models are geometrically identical, but the TBD model has larger profile dimesion in 

the diagonals. The cross-sections are tabulated in Table 10, and the geometry of the bridge is 

illustrated in Figure 33. The deflection criteria for the longitudinal deflection is given by:  

Equation 10 

𝑑 = 𝐿𝑙/350 = 120 mm 

Figure 45 shows a U total of 132.9 mm. This displacement exceeds the deflection criteria, and 

the truss height or chord dimension must be increased to meet the demand. The von Mises stress 

is well below the yield limit for the HAZ as illustrated in Figure 46. There is also stress 

concentration around the truss joints. This concentration is an indication of practical analysis 
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results since it naturally there will be higher stress levels around joints. Aluminum is a relatively 

soft material with a low young’s modulus as appointed in Section 2.2. The deflection of 

aluminum is therefore often the limiting criteria. In this case, the von Mises stress is much lower 

than the displacements relative to the rules. 

 

 

Figure 45: Total displacement from the distributed load combination.  

 

 

Figure 46: Stress plot from the distributed stress plot. 

The bridge was checked up against the NS EN-1999-1-1 in SCIA. Beam B2 and B3 are the two 

first diagonals in the trusses. They are the two truss members that are subjected to the largest 

magnitude of the shear force. These forces are equal to the two members on the opposite side 

of the bridge. Even though the cross-section is increased compared to the LBD concept, it did 

not fulfill the criteria for the stability check. Concerning the top chord, B4, and B32 as shown 

in Table 12, the stability check failed since it has a buckling length of 1.5×39 m. This buckling 

length is unrealistic because a global buckling of the whole truss must happen. Sideways 
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buckling of the top chord is therefore not considered in the bridge deck comparison. This 

phenomenon will be equally critical for both concepts. 

  

Table 12: Excerpt of the NS EN 1999-1-1 code check. 

 

8.2 Longitudinal Orientation SCIA Analysis  

The deflection criteria in the transverse direction are 17.1 mm as found in Section 8. The relative 

vertical deflection is found to be approximately 10 mm as seen in the color plot in Figure 48 

below. The maximum von Mises stress is 44.4 N/mm^2 at to top and bottom flange of the 

beam supporting the front axle of the service vehicular. Figure 47 illustrates the stress plot. 

Both the stress and deflection of the transverse beam is well within the criteria. There may also 

be potential for weight savings by optimizing the beam dimensions.     

  

 
Figure 47: Stress plot from service vehicular load. 

 
Figure 48: Vertical displacement from 

service vehicular. 

In Section 8.1 the longitudinal deflection criteria were found to be 120 mm. The color plot at 

Figure 49 shows a total deflection in the negative z direction is 92.7 mm. This deformation is 

below the deflection criteria. Concerning the von Mises stresses the highest stresses is at the 

first diagonal truss members on each truss side. The stress is decreasing closer to the truss center 

as the shear force decreases. There are also stress concentrations around the truss joints as 

shown in Figure 50 with near 52 N/mm2. Concerning the NS EN 1999-1-1 code check, the 

LBD concept had a value below one on the unity checks for all the members, except B4 and 
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B32. B4 and B32 are as mention in Section 8.1 a case of global buckling. Because of this, the 

sideways buckling of this member is ignored at this stage. 

  

 

 
Figure 49: Vertical displacement from distributed load case.  

 

 
Figure 50: Stress plot from distributed load case. 
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8.3 Bridge Deck Evaluation 

From the book, Product Design and Development [44] a concept-scoring matrix is used to 

validate the two different concepts. The TBD is chosen as the reference concept, and the LBD 

concepts are rated by using simple codes. + for “better than,” 0 for “same as” and – for “worse 

than.” 

 

The summarized analysis data for the comparison is found in Table 13. The LBD concept is 

almost superior the TBD concept in all the analysis result. The TBD had a lower relative 

deflection in the transverse direction, but both concepts were well within the deflection criteria. 

The LBD had a significant less deflection over the longitudinal bridge span compared to the 

TBD concept. The LBD beams have diagonal members between the transverse. These were 

added to obtain stiffness in the transverse horizontal direction. Analysis result shows however 

that they also contribute to the vertical deflection over the longitudinal bridge span. For the 

TBD analysis, it is only a 10 mm plate that contributes to vertical stiffness over the longitudinal 

bridge span. This estimate is considered as a good, due to the bridge deck profiles design with 

only a top side FSW. However, no physical test has been conducted to verify it, and the TBD 

may contribute more than the analysis shows. Due to these results, the LBD concept is rated 

better than the TBD concerning the structural integrity. LBD concept is also rated much better 

on self-weight with an 8.2 tons’ lighter construction. The self-weight is an important criterion 

due to installation, transportation and crane lifting capacity. Both options have room for 

structural optimization and improvement.     

 

Table 13: Analysis comparison chart. 

  

 Longitudinal bridge deck Transverse bridge deck  

Displacement U total [mm] 

longitudinal 

92.7 132.9 

Displacement U total [mm] 

transverse 

10 7 

Von Mises stress [N/mm2] 62.5 101.0 

Self-weight (ton) 25.6 33.8 

NS EN-1999 code check √ - 
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For rest of the selection criteria, the two concepts are found to be equally good. Table 14 gives 

the selection matrix. Considering the ease of manufacturing both concepts have their pros and 

cons. As the list for DfM in Section 4.1.1 implies, reduction of parts, ease the manufacturing 

process. For the LBD concept, there is an increase of different parts compared to the LBD which 

is a con. By laying the bridge deck in the longitudinal direction, the FSW panels could be 

produced much larger. Due to max transportation dimension, a maximum of six bridge decks 

modules for LBD compared to a minimum of fourteen for the TBD. This difference makes both 

the manufacturing and installation easier for LBD. Since the manufacturing and installation are 

considered equal in this phase of the product development, the cost is also found to be similar 

for the two concepts. The only deviation is if the material cost plays a significant role, then the 

LBD concept has an advantage. Concerning the aesthetics, they are rated “similar as.” The LBD 

may have a thicker bridge deck construction, but slimmer truss construction and the opposite 

for TBD. 

 

Table 14: Selection matrix. 

 

  

 Concepts 

 

 

Selection Criteria 

A 

 

Longitudinal bridge deck 

B 

(Reference) 

Transverse bridge deck 

Ease of manufacturing 

Ease of installation/assembly 

Transportation 

Weight/material usage 

Cost 

Esthetics 

Structural integrity 

0 

0 

0 

+ 

0 

0 

+ 

0 

0 

0 

0 

0 

0 

0 

Sum +’s  

Sum 0’s 

Sum –‘s 

1 

5 

1 

0 

7 

0 

Net Score 

Rank 

  Continue? 

2 

1 

YES 

0 

2 

NO 
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9 SCIA Result for Chosen Concept 

In this section, all the analysis is divided into different LC and presented in chronological order 

from 1 - 5. All the combined loads in the different LC is tabulated in Table 9 in Section 7.2. At 

the end of the section, the results are summarized in Table 17 and discussed. 

9.1 Load Combination 1 

LC 1 is the most critical LC concerning the global integrity of the bridge construction. As 

appointed in Section 8.1, the deflection criteria for the longitudinal bridge span is 120 mm. As 

illustrated with a color plot in Figure 51 the total displacement of 89.3 mm is well within that 

criteria. The largest deflection is found at the center of the bridge, marked with dark red. In 

Figure 52 shows how the moment stiff joints between chords and truss diagonals make the 

trusses deflect inwards. A cross-bracing at the top of the bridge will hinder this motion. The 

peak stress of 188.7 N/mm2 which is indicated by the color bar in Figure 53, is seen at the 

support at each end of the bridge. It is below the material yield limit and located in a very 

concentrated area. On the rest of the structure, one can observe that there is stress concentration 

around the truss diagonals and at the top chords. The fixed joint condition takes bending 

moment in the coupling and creates stress concentrations. 

 

 

Figure 51: Total displacement plot for load condition 1.  
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Figure 52: Displacement y- direction. 

 

 
Figure 53: von Mises plot for load condition 1. Bridge deck planks are not displayed but 

included in the analysis. 

Due to the issue of buckling length factors addressed in Section 8.1. In this section, the top 

chords failed the SCIAs NS EN 1999-1-1 check, because of unreasonable long local buckling 

length. LC1 also fails the Eurocode check for the same reason. The check for each member is 

found in Appendix 3 for LC1. Linear stability analysis of the bridge is performed with LC1 to 

ensure adequate resistant against global buckling. The analysis helps to find the critical global 

buckling modes and buckling loads of the bridge structure. It is usually the first mode with the 

lowest critical load coefficient that makes a collapse possible [61]. In the analysis, it is assumed 

physical linearity; members are taken ideally straight and have no imperfection; the load is 

guided to the mesh nodes; the load is static; between the nodes, the forces are taken as constant 

[61]. Mesh refinement is necessary as addressed in Section 7.4. to ensure a satisfactory result. 

The structure becomes unstable when the loading reaches an applied load equal the current 

applied load, multiplied by the critical load factor. The first buckling mode is illustrated in 
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Figure 54 a). The buckling mode seems realistic since the highest compression forces are found 

at the center of the top chord. The shear forces are taken by the diagonal trusses at the bridge 

ends. A buckling load factor of 3.42 is found from the first mode. A buckling load factor of this 

size can to some extent ensure that a global buckling of the bridge will not happen with normal 

load condition. Findings from nine aluminum pedestrian bridges in China state however that 

linear elastic theory’s applied on aluminum half-open bridges is not considered safe [62]. This 

unsafety is due to out-of-plane buckling of upper chords in the first buckling modal. The 

nonlinear inelastic analysis should be adopted in the further development of the bridge. The two 

next, higher order buckling modes are illustrated in Figure 54 b) and c). 

 

 

 
 

(a) (b) 

 
(c) 

Figure 54: Linear stability analysis: a) Mode 1 – 3.42, b) Mode 2 5.22, c) Mode 3 7.69. 
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9.2 Load Combination 2 

This LC consists of the service vehicular load and inflict relatively high peak stresses on the 

structure. This LC is the most critical concerning the vertical deflection over the bridge width.  

The von Mises stress level is 76.5 N/mm2 and is well below both yield limits of the base material 

and HAZ. The largest total displacement is found at the center of the bridge where the load is 

applied. This deflection is illustrated in Figure 55, marked with red. The relative deformation 

is calculated by utilizing the displacement found in the longitudinal center node of the lower 

chord. This deflection is 30 mm. This deviation gives a relative vertical deflection over the 

width of the bridge to be 17.2 mm.  This deformation exceeds the criteria marginally with 0.1 

mm, and some adjustments or refined analysis are needed to fulfill the criteria. 

 

 

Figure 55: Displacement 
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9.3 Load Combination 3  

For separate pedestrian bridges, there is no demand of combining wind loads and service load 

as appointed in the user demand specification in Section 4.2. There are no direct criteria 

concerning the deflection in the horizontal direction if the vertical deflection over the 

longitudinal span is assumed to be the criteria. The deflection is on an acceptable level below 

120 mm as illustrated in Figure 56. The joint between the truss and bridge deck is rigid; this is 

an assumption that needs to be followed by appropriately designing detailed joints as discussed 

later in Chapter 10.  Under the discussion of the horizontal deflection under LC1, a cross bracing 

at the top of the bridge was mention. This cross bracing could be the next step to improve the 

horizontal deflection, but will also change the user experience of the bridge. In the NPRA 

handbook for bridges N400 [5], this bridge is a wind class 1 bridge. With a maximum natural 

conciliation period of < 2 s. In this wind class, the dynamic loads are found neglectable. For 

aluminum, the dynamic wind load could be of interest since the material is more prone to 

vibration compared other materials like steel. The highest von Mises stress in the LC is 77 

N/mm2. This stress level is well below the material capacity. 

   

 

Figure 56: Displacement in y-direction. 
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9.4 Load Combination 4 

In this LC a modal analysis is performed, and the following masses in Table X are added as 

self-weight to the structure. The analysis has been carried out with and without LBD planks. 

These FEA with no large deviation in results. In SCIA the self-weight is automatically added 

in the modal analysis. This self-weight only consists of the structural members and not the 

bridge deck and asphalt. The self-weight is therefore multiplied by a factor of 4 as calculated 

in Table 15. Bolts, welds, and railings in not considered. The analysis has been performed with 

and without LBD planks. These FEA with no substantial deviation in results. 

 

Table 15: Self-weight load factor 

Dynamic frequency equation:  

Equation 11 

𝜔𝑛 = √
𝑘

𝑚
 

Simple harmonic motion frequency formula:  

Equation 12 

𝑓 =
1

2𝜋
𝜔𝑛 

Eigenfrequency means fluctuations a system can perform without external forces acting [63]. 

Equation 11 and Equation 12 illustrates that increased mass of the bridge reduces the 

eigenfrequency of the structure. Masses which is neglected in the analysis will, therefore, give 

a reduced frequency. SCIA solves the eigenfrequency problem by solving Equation 13 with the 

use of subspace iteration method [63]. This equation assumes the damping to be equal to 0. 

Equation 13 

𝑴�̈� + 𝑲𝒓 = 𝟎 

M is the mass matrix, K is the stiffness matrix and r is the vector of translation and rotations in 

nodes where �̈� is an equivalent vector for accelerations. The calculation is applied on the FE 

Weight 𝑆𝑒𝑙𝑓 − 𝑤𝑒𝑖𝑔ℎ 𝑙𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟; f 

Asphalt: 37800 kg 

Bridge deck: 9000 kg  

Bridge structure: 15913 kg 

Total = 62713 kg 

 

𝑓 =
𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠

𝑏𝑟𝑖𝑑𝑔𝑒 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑚𝑎𝑠𝑠 
= 3.94 
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model used in the static calculation.  Discretization is the difference between the models which 

give a finite number of degrees of freedom in the analysis [61]. 

 

As found in section 4.2 there are some critical eigenfrequency-areas for the bridge. In the 

vertical direction, the area is 1-3 Hz, and for the horizontal directions, the area is 0.5 – 1.5 Hz.   

Figure 57 illustrates four different eigenmodes. All the eigenmodes are out of reach of the 

critical zone. The first mode is lowest with 3,89 Hz. In this mode, the truss structure moves 

from side to side in a horizontal movement. The first vertical mode shape is number 5, and the 

first global horizontal mode is mode number 9 as illustrated in the figure below. Eigenmode 

number 5 and 9 is what the pedestrian is most sensitive for. These frequencies are out of the 

critical area. 

 

  

(a) (b) 

 
 

(c) (d) 

Figure 57: Eigenmodes: a) Mode 1 – 3,89 Hz b) Mode 2 – 3,89 Hz c) Mode 5 – 7.09 Hz d) Mode 9 

– 10,47 Hz. 
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9.5 Load Combination 5  

Thermal loads are not included in the concept development due to time, effort and relevance.  

As mention in Section 2.2, the thermally induced stresses in aluminum is relative low, even 

though the expansion of aluminum is greater compared to steel. The bridge is also simply 

supported with fugue at one end and fixation at the other. This support makes the thermal loads 

less important, but must be accounted for further development of the bridge concept. 

9.6 Result Summary and Evaluation 

The results of the analysis show promising result concerning the structural integrity of the 

bridge. All the results are tabulated in Table 17. The total weight of the bridge is calculated to 

be 23 tons excluding the asphalt. Table 16 shows all applied loads and corresponding reaction 

forces in the SCIA FE model. This way one can ensure that all applied loads are included in the 

analysis model. 

 

Unbiased sources for error could be optimistic joint boundary condition in the FE model. The 

bolted connection might be less stiff than the assumption of a rigid connection. The analysis is 

linearly elastic and may miss out some more complex phenomenon. The deflection calculation 

has not considered the HAZ, but as discussed in Section 2.3.3 the HAZ will only influence the 

material yield strength and not Young’s modulus. 

 

The NS EN 1999-1-1 check for LC1 can be found in Appendix A3. The two first truss diagonal 

members at each end are pushed to its limit concerning buckling resistance. For LC2 the 

deflection criteria are not met. The relative and vertical transverse deflection exceed the 

standards with 0.1 mm. A more refined analysis must be conducted, to make sure the bridge is 

fulfilling the criteria. One method to reduce the bridge deflection is to compensate for the 

deformation resulted by the bridge self-weight. A small initial arc in the lower chord. The bridge 

will go straight when the bridge is installed. Concerning the global buckling and modal analysis, 

both show signs of excellent structural integrity.  
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Table 16: Reaction forces. 
  Units X - direction Y - direction Z - direction 

 

LC1 

Applied loads  

 

[kN] 

0 126 1876.3 

Reaction forces 0 126 1887.5 

 

LC2 

Applied loads 0 0 736.3 

Reaction forces 0 0 747.9 

 

LC3 

Applied loads 0 168 616.3 

Reaction forces 0 168.8 627.85 

 

Table 17: Result summary.  

Result summary 

Load 

combination 

Displacement* 

[mm] 

von Mises 

[N/mm2] 

Linear stability 

factor 

Eigen frequency 

Mode 1:  [Hz] 

NS EN-1991-1-1 

1 89.3 188.7 3.42 - √ 

2 17.2 76.5 7.74 - √ 

3 56.9** 77 8.65 - √ 

4 - - - 3.89  

5 - - - -  

*the displacement is relative to the considered span length 

**Displacement in transverse direction and not relative 
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10 Bridge Detailing 

When designing structural details like joints, it is important that the assumption made in the 

global FEA is consistent with the joint properties. In the global analysis of the chosen concept, 

the transverse I-beam connection is assumed rigid. To ensure fulfillment of the assumption, a 

full bending moment stiff connection is required. The only two LC considered when designing 

the connection is LC1 and LC2. Both LC are tabulated in Table 18. The internal forces mark 

with green is used as applied load on the bolts and welds in the joints. The challenge by splicing 

and connecting beams with closed cross-section is the lack of access to tightening the bolts 

from the inside. One solution could be to utilize blind bolts. These bolts can be tightened only 

with the excess from the outside of the square beam.  In slip resistance connections they are not 

recommended in the research program notes from the bascule bridge deck project [35]. Blind 

bolts are not covered in the NS EN-1999-1-1 and are therefore not investigated further in this 

thesis. Slip resistant bolts should be utilized in all connections to ensure high fatigue resistance 

[11]. All the bridge details designed in this chapter is illustrated in Figure 58. 

 

 
Figure 58: Bridge deck details. 
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10.1 Bridge Deck Profiles 

The bridge deck profiles are much alike the LBD profiles designed in Section 6.1 and 6.3 and 

is illustrated in Figure 59. The lower flange of the profiles is designed with more area, to move 

the neutral axis to the center of the profile. With this configuration, a maximum utilization of 

the profiles bending stiffness is obtained. The end profile is design with an extra edge, to keep 

the asphalt in place. Otherwise, the design guidelines described in Section 2.3.1 is followed to 

ensure a more economical and easier production. Each corner has a small radius, and the wall 

thickness is fairly consistent. Detailed drawing of the profile is in Appendix A2. Further 

optimization of the profiles self-weight can be done by decreasing the profile wall thickness 

without going into cross-section class 4 and maintaining the bending stiffness. 

 

 

 

 

 

Figure 59: Bridge deck profiles. End profile (left). 

 

10.2 Truss  

The truss design is so that the neutral axis of all connecting beams meets at a coincident point. 

This point is coincident both in the transverse and longitudinal direction of the lower chord. 

The execution is illustrated in Figure 60 by a K-joint with a gap, the joints in this bridge concept 

have overlapping diagonals which are an equivalent solution [32]. The truss joints are welded 

and assumed rigid in the global analysis. No further work has been conducted concerning failure 

modes and weld dimension of the truss joints. The failure modes that can occur in the joints are 

illustrated in the graph in Figure 60; (1) The load reaches the elastic limit; (2) deformation limit 

reached; (3) remaining deformation limit reached; (4) crack initiation; (5) ultimate load reached 

[64]. Optimal truss angels are found discussed in Section 2.6.1. The truss diagonals at each end 

of the trusses take most of the shear forces. These truss diagonals have an angle within the 

optimal angle dimension. The truss diagonals at the center have a much larger angle but are 

inflicted less load. Bolted trusses have not been evaluated. The idea of prefabricating as large 

modules as possible in the workshop, makes it more feasible to use welded trusses. If the truss 
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joint is bolted, the bridge should be delivered in single member components to the installation 

site as illustrated in Figure 13 in Section 2.6.5.   

 

  
Figure 60: K-joint [64]. 

 

10.3 I-beam – Lower Chord Connection 

From Table 19 solution 3 was found appropriate by an evaluation of the different pros and 

cons of the solutions. The main thought behind solution three is easy assembly. The truss 

section can be lifted on to the end of the bridge deck I-beams. Consider only LC1 and LC2 

this connection transfers the tension forces directly to the top flange of the lower chord. And 

the compression forces at the bottom flange of the lower chord. The shear forces are taken as 

shear in the flange connection and tension in the top bolts. The bolt and weld capacity is 

calculated in accordance with NS EN-1999-1-1 Section 8.5.5 and 8.6.3. The loads are 

tabulated in Table 18. Beam B357 is the transverse bridge deck I beam at the center of the 

bridge. 

 

Table 18: Internal forces in B357 for two different load cases. 

 
  

Beam dx [m] Load combination Vz,Ed [kN] My,Ed [kNm] 

B357 0 LC1 47.16 -4,18 

B357 6 LC1 -29.47 1.54 

B357 0 LC2 38.02 -19.42 

B357 6 LC2 -41.20 -18.71 
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Table 19: Bridge deck beam - lower chord joint. 

  

Name and figure Pros Cons 

1 

 

Flexible design and no heat 

affected zone from welding. 

Needs blind bolts. 

2 

 

Flexible solution. Extra parts. Needs blind 

bolts. 

3 

 

Potential easy assembly and 

good force transfer between 

I-beam and lower chord at 

LC1 and LC2.  

Cross-section of lower 

chords getting even larger. 

4 

 

May ease the assembly by 

the extruded I-beam support. 

Improved force transfer 

from I-beam to HHS-beam 

by having internal stiffener. 

HHS-beam gaining 

weight/meter with internal 

stiffener.  

5 

 

Easy assembly with the 

extruded I-beam support  

Cross-section of lower 

chords getting even larger. 

For LC1 and LC2 not a god 

solution. Needs blind bolts. 

6 

 

No extra parts needed under 

assembly. 

Most likely a too weak 

connection. The endplate 

must be welded or bolted to 

the I-beam 

7 

 

Simple shear connection. Considered as a free joint 

connection. 
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10.3.1 Design Resistance of Bolts and Welds 

Figure 61 shows the bracket designed for the I-beam lower chord connection. 

 
Figure 61: Bracket. 

Stainless steel bolts are chosen to prevent galvanic and crevice corrosion in the bolt connection. 

In a dry unpolluted and rural area, stainless steel bolts on aluminum need no treatment according 

to Table D.2 in NS EN-1999-1-1 [11]. The bolt data is gathered from Table 3.4 in NS EN-1999-

1-1 [11] and shown in Table 20. 

Table 20: Stainless Steel bolt data [11]. 

  

 

10.3.2 Resistance of Bolts and Welds on Bracket   

Shear Resistance: Bolts on Bracket 

Table 8.5 from [11] is as design resistance of bolts. First, the shear resistance per shear plane is 

checked by Equation 14. 

Equation 14: 

𝐹𝑣,𝑅𝑑 =
𝛼𝑣𝑓𝑢𝑏𝐴

𝛾𝑀2
 

 

With an elastic load distribution, the design load is calculated for two bolts by Equation 15 

below. p is the distance between the two bolts. 

Material Type of 

fastener 

Alloy 

Numerical 

designation: 

EN AW-. 

Alloy 

Chemical 

designation: 

EN AW-. 

Temper or 

grade 

Diameter 𝑓0           

N/mm2 

𝑓𝑢           

N/mm2 

Stainless 

Steel 

Bolts A2, A4  80 ≤ 39 600 800 
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Equation 15: 

𝐹𝑣,𝐸𝑑 = √(
𝑀𝐸𝑑

3𝑝
)

2

+ (
𝑉𝐸𝑑

3
)

2

 

 

 Table 21: Shear resistance per shear plane [11] 

 
 

    

 

 

 

The shear force is assumed distributed between the two bolts on the bracket and tension in the 

top bolts in the lower chord. When Equation 14 is solved for the shear area: 

𝐴 = 214.3 mm2 

Two M16 bolts with the stress area as tabulated in Table 22, gives sufficient shear resistance.  

Table 22: Metric Hexagon Bolt data [32] 

  

 

  

Description Values 

 Safety factor, 𝛾𝑀2 1.25 

 Ultimate strength of bolt, 𝑓𝑢𝑏  [N/mm2] 800  

 Factor, 𝛼𝑣 0.5 

 Design load, 𝐹𝑣,𝑅𝑑 [kN] 68.6  

Bolt size Stress area: 𝐴𝑠 [𝑚𝑚2] Hole diameter: Normal 

M20 245 22 

M16 157 18 

M12 84.3 13 
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Bearing Resistance 

The bearing resistance is checked with the Equation 8.11 from NS EN-1999-1-1 [11] and is 

labeled Equation 16 in this document. The Fasteners spacing symbols are illustrated in Figure 

62.  

 

Figure 62: Fastener spacing symbols [11]. 

Equation 16 

𝐹𝑏,𝑅𝑑 =
𝑘1𝛼𝑏𝑓𝑢𝑑𝑡

𝛾𝑀2
 

In the direction of the load transfer:  

Equation 17 

𝐸𝑑𝑔𝑒 𝑏𝑜𝑙𝑡𝑠: 𝛼𝑏 = 𝑚𝑖𝑛 {
𝑒1

3𝑑0
;
𝑓𝑢𝑏

𝑓𝑢
; 1} 

Equation 18 

𝐼𝑛𝑛𝑒𝑟 𝑏𝑜𝑙𝑡𝑠: 𝛼𝑏 = 𝑚𝑖𝑛 {
𝑝1

3𝑑0
−

1

4
;
𝑓𝑢𝑏

𝑓𝑢
; 1} 

Perpendicular direction of the load: 

Equation 19 

𝐸𝑑𝑔𝑒 𝑏𝑜𝑙𝑡𝑠: 𝑘1 = 𝑚𝑖𝑛 {2.8
𝑒2

𝑑0
− 1.7 ; 2.5} 

Equation 20 

𝐼𝑛𝑛𝑒𝑟 𝑏𝑜𝑙𝑡𝑠: 𝑘1 = 𝑚𝑖𝑛 {1.4
𝑝2

𝑑0
− 1.7 ; 2.5} 

By maximizing the bearing resistance, 𝛼𝑏 = 1. In accordance with Section 8.5.12 in the NS EN 

1999-1-1 [11] the factor 𝑘1 = 1.5 for single lap joints are used. These factors give us a capacity, 

FRd higher than the design load, FEd. 

𝐹𝑏,𝑅𝑑 = 153.6 kN 
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The spacing of fasters becomes: 

𝑒1 ≥ 54 mm      𝑝1 ≥ 67.5 mm      𝑒2 ≥ 27 mm      𝑝2 ≥ 54 mm 

 

Design for Block Tearing Resistance 

The block tearing resistance for the bracket is checked for a bolt group subjected to eccentric 

loading. The block tearing resistance is given by Equation 21. As Table 23 summarizes, the 

block tearing resistance is sufficient to withstand the design load found in Table 18.  

Equation 21 

𝑉𝑒𝑓𝑓,2,𝑅𝑑 = 0.5𝑓𝑢

𝐴𝑛𝑡

𝛾𝑀2
+

1

√3
𝑓0

𝐴𝑛𝑣

𝛾𝑀2
 

 
Table 23: Design for Block Tearing Resistance. 

 

Design Resistance of Weld Connections 

The bracket illustrated in Figure 61 is welded to the lower chord with fillet welds. For double 

fillet weld joints, loaded perpendicular to the weld axis, the throat thickness, a, is calculated 

by Equation 22 and Equation 23 [11]. The throat thickness is illustrated in Figure 63. MEd,y 

induce FEd in Equation 23. The top bolts capacity is not included in this calculation which 

makes it conservative. The effective weld length is taken as the total length of the weld. The 

perpendicular load is the most critical and a weld of 3.6 mm is required to for the connection 

to hold as tabulated in Table 24. 

 

Description Value Validation 

Area subjected to tension 𝐴𝑛𝑡 [𝑚𝑚2] 450  

 

 

 

 

 

Area subjected to shear 𝐴𝑛𝑣 [𝑚𝑚2] 1330 

6082 T6 (EP) 𝑓0 [𝑁/𝑚𝑚2] [11] 260 

6082 T6 (EP) 𝑓𝑢 [𝑁/𝑚𝑚2] [11] 310 

𝛾𝑀2 [11] 1.10 

𝛾𝑀2 [11] 1.25 

   

𝑉𝑒𝑓𝑓,2,𝑅𝑑 [𝑘𝑁] 216 √ 

Tension and shear area are switched: 

 𝑉𝑒𝑓𝑓,2,𝑅𝑑 [𝑘𝑁] 

 

219 

√ 
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Figure 63: Throat distance a [11]. 

Equation 22 

𝑎 ≥
1

√2

𝜎𝐸𝑑𝑡

𝑓𝑤/𝛾𝑀𝑤
 

Equation 23 

𝜎𝐸𝑑 =
𝐹𝐸𝑑

𝑡𝑏
 

 

Double fillet welded joint loaded parallel to the weld axis [11]:  

Equation 24 

𝑎 ≥ √(
2

3
)

𝜏𝐸𝑑𝑡

𝑓𝑤/𝛾𝑀𝑤
 

Equation 25 

𝜏𝐸𝑑 =
𝐹𝐸𝑑

𝑡ℎ
 

 

 
Table 24: Design resistance of Welds. 

 

  

Description Value 

𝜎𝐸𝑑   [𝑁/𝑚𝑚2]  84.8 

𝜏𝐸𝑑  [𝑁/𝑚𝑚2]   21.43 

𝑡  [𝑚𝑚]  10 

Weld material 5xxx: 𝑓𝑤 [𝑁/𝑚𝑚2] [11] 210 

𝛾𝑀𝑤  [11] 1.25 

𝑎 [𝑚𝑚] (Perpendicular)  3.6 

𝑎 [𝑚𝑚] (Parallel) 1.04 



 

92 

 

Design Resistance in HAZ 

By Section 8.6.3.4 in NS EN-1999-1-1 [11] the design resistance in HAZ is checked with 

Equation 26. 

Equation 26 

√𝜎ℎ𝑎𝑧,𝐸𝑑
2 + 3𝜏ℎ𝑎𝑧,𝐸𝑑

2 ≤
𝑓𝑢,ℎ𝑎𝑧 

𝛾𝑀𝑤
 

𝑓𝑢,ℎ𝑎𝑧 = 185 N/mm2. This stress level gives the satisfactory result: 92.6 ≤ 148 

 

10.3.3 Top Bolts Resistance 

As mention in Section 2.3.1, the price of an extrusion can rise significantly for profiles with a 

large cross-section. To minimize the dimensions of the lower chord the top bolt resistance is 

checked. The minimum fastener spacing is found with an acceptable bearing resistance. After 

minimizing the fasteners edge distance, the tearing resistance was still high enough to withstand 

the applied design load. Table 25 summarizes the calculation results. The same equations are 

used and explained in more detail earlier in Section 10.3.2.  

 

Table 25: Top Bolts Resistance Calculations 

 

Top Bolts Resistance Validation 

Shear force on top bolts *  𝑁𝑀𝑦
 [𝑁] 70.7  

Shear resistance for two shear planes. M16 bolts.  𝐹𝑉,𝑅𝑑 [𝑘𝑁] 100.5 √ 

Calculated minimal edge distance factor 𝛼𝑏 0.526  

Minimal edge distance factor 𝑒1 = 𝛼𝑑3𝑑0 [mm] 28.4 

Minimal edge distance factor ** 𝑒2 = 1.2𝑑0 [mm] 21.6 

  

Block tearing resistance 𝑉𝑒𝑓𝑓,1,𝑅𝑑 [kN]*** 804 √ 

Area subjected to tension  𝐴𝑛𝑡 [mm2] 3200  

Area subjected to shear  𝐴𝑛𝑣  [mm2] 840 

* 10 kN added from axial forces in the I-beam 

** Minimal edge distance factor perpendicular on load direction 

*** For a symmetric bolt group subjected to concentric loading. 

 𝑉𝑒𝑓𝑓,1,𝑅𝑑 = 𝑓𝑢
𝐴𝑛𝑡

𝛾𝑀2
+

1

√3
𝑓0

𝐴𝑛𝑣

𝛾𝑀2
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10.3.4 Evaluation of Joint Solution 3 

Since only LC1 and LC2 is utilized as design loads for the joint, the impact of LC3 was 

overlooked. LC3 will give a b moment in the opposite direction of LC1 and LC2. This bending 

moment will induce compression forces at the top of the lower chord and tension forces at the 

bottom. Since solution 3 only relay on the I-beam pushing itself onto the lower chord in 

compression, solution 3 will have a significantly reduced stiffness under LC3. This problem 

can be solved by adding connection bolts to the bottom flange of the connecting I-beam and 

add a bottom flange to the lower chord. LC3 induces much smaller forces, so the connection 

will still be valid if similar bolts are added as for the rest of the joint. The disadvantage of this 

new solution is that the lower chord profile gets larger and more expensive. The assembly will 

become much harder since the I-beams must be placed in between the two flanges on the lower 

chord.  Further Investigation of this solution is needed, and a bolted flange solution, like 

solution 5 can be found adequate.     
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10.4 Splicing of Trusses and Chords 

Figure 64 shows the three different places the bridge is planned sectionalized. As mention in 

Section 2.6 detailing of the bridge is of high importance when it comes to the aesthetics and the 

pedestrian's experience of the bridge. Therefore, the esthetic outcome of each solution 

illustrated in Table 27 is highly emphasized. Table 26  tabulates the internal forces, and different 

splice solutions are illustrated in Table 27. For the top chord and truss diagonal equal splice 

design has been chosen. No calculation on the bolts has been executed since the top chord is 

under compression forces. For further development of the bridge concept, the top chord splice 

must be further check.  

 

 
Figure 64: Splices; 1) Top chord splice (compression), 2) Truss diagonal splice 

(tension/compression) 3) Lower chord splice (tension). 

 

 
Table 26: Internal forces in top (green), bottom chord (yellow) and truss diagonal (red). 

  

Beam dx [m] Load case NEd [kN] My,Ed [kN] Mz,Ed [kN] TEd [kNm] 

B4 13.6 LC1 -1029.09 1.18 -2.38 - 

 13.6 LC3 -277,37 0.36 -3.08 - 

 13.6 LC5 -465.46 1.38 -5.29 0.49 

B34 13.6 LC1 -1072.02 1.20 1.03 - 

 13.6 LC3 -424.77 0.66 -1.6 - 

B348 13.3 LC1 190.99 5.77 -0.89 - 

 13.3 LC3 24.53 1.59 -0.98 - 

 13.3 LC5 101.56 3.70 0.45 4.21 

B349 13.3 LC1 240.70 6.01 -1.53 - 

 13.3 LC3 109.92 2.53 -1,23 - 

B13 2.2 LC1 102.7 1,12 0,22 - 
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Table 27: Splice design solutions. 

 

 

 

Name and figure Pros Cons 

1 

 
From the Steel Tube Institute [65] 

Esthetically anonyms by not 

exceeding the beam 

dimension to much. 

Reduced effective cross-

section by introducing 

access hole in the beam. 

2 

 
From the Steel Tube Institute [65] 

Structural efficient. Takes 

the tension forces in shear of 

the bolts.   

Not esthetically nice. 

3 

 
From the Steel Tube Institute [65] 

Simple and esthetically 

pleasing.  

Loose the squared tubes 

torsional stiffness.  

4 

 
From the Steel Tube Institute  [65] 

Very compact  

and efficient splice. 

Maintain the torsional 

stiffness. 

Not esthetically pleasing by 

exceeding the beams 

dimensions. In tension 

connection, a prying force Q 

must be added. 

5 

 
From Atlas Tube [66] 

Need only access from one 

side of the bolt to make a 

connection.  

Blind bolts or expansion 

bolts are not treated in NS-

EN 1999-1-1 or -1-4. Some 

solutions need larger holes 

for the bolt.  

6 

 

 
From steelconstruction.info [67] 

Compact joint and 

esthetically pleasing if non-

structural cover is used.   

 

 

 

 

Demands a lot of welding. In 

tension, deflection of the end 

plates can cause problems. 

Extra stiffeners might be 

necessary to be added.    

http://www.steelconstruction.info/images/f/fe/Arch_fig66.png
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10.4.1 Truss Splice 

The truss diagonal's internal forces decrease towards the center of the bridge. Therefore, a single 

splice at the mid of the length of the diagonal is found appropriate. This solution is structural 

qualified, gives an easier assembly and less loose parts. Table 28 summarizes the splice 

calculations. The splice is checked for tension in bolts, punching shear resistance, the butt weld 

between the splice and the truss diagonal and design resistance in HAZ. The same bolts and 

welding material are used as in Section 10.3.1. Tension resistance Equation from Table 8.5 in 

NS EN-1999-1-1 [11] is numbered as Equation 27 in this document. Butt weld subjected to 

normal stresses is shown in Figure 65. 

Equation 27 

𝐹𝑡,𝑅𝑑 =
𝑘2𝑓𝑢𝑏𝐴𝑠

𝛾𝑀2
 

Punching shear resistance is given by: 

Equation 28 

𝐵𝑝,𝑅𝑑 =
0.6𝜋𝑑𝑚𝑡𝑝𝑓𝑢

𝛾𝑀2
 

The design of butt welds by Section 8.6.3.2 in NS EN-1999-1-1 [11]. The equation is 

numbered as Equation 29. 

Equation 29 

𝜎⊥𝐸𝑑 =
𝐹𝐸𝑑

∑ 𝑤𝑖𝑡𝑖
 

 

Figure 65: Butt weld subjected to normal stresses [11] 
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Table 28: Truss diagonal splice calculation 

 

  

Truss diagonal splice calculation Validation 

Tension resistance per bolt (M16) [kN] 

𝑘2 = 0.5 (𝑎𝑙𝑢𝑚𝑖𝑛𝑢𝑚 𝑏𝑜𝑙𝑡𝑠) 

𝐹𝑡,𝑅𝑑 

 

50.3 

 

 

Tension resistance 4 bolts (M16) [kN] 𝐹𝑡,𝑅𝑑 201 √ 

Punching shear resistance per bolt (M16) 

[kN] 

𝑑𝑚 = 24 mm*  

𝑡𝑝 = 10mm ** 

𝑓𝑢,ℎ𝑎𝑧 = 185 N/mm2 *** 

𝐵𝑝,𝑅𝑑 67  

Punching shear resistance 4 bolts (M16) 

[kN] 

𝐵𝑝,𝑅𝑑 268 √ 

Full penetration butt weld for primary load-

bearing members [N/mm2] **** 

𝜎⊥𝐸𝑑 34.3    

Normal stress, tension or compression 

perpendicular to weld axis [N/mm2] 
𝜎⊥𝐸𝑑 ≤

𝑓𝑤

𝛾𝑀𝑤
 

34.3 ≤ 168  

 

√ 

Design resistance HAZ [N/mm2] 

𝐴 = 8068 𝑚𝑚2 

𝜎𝐸𝑑 12.8  

HAZ butt welds 𝜎𝐸𝑑 ≤ 𝜎ℎ𝑎𝑧,𝐸𝑑 12.8 ≤ 148 √ 

* 𝑑𝑚: is the mean of the across points and across flats dimensions of the bolt 

head or the nut or if washer. Whichever is smaller.  

** Thickness of plate 

*** Conservative approach with HAZ yield limit of base material 

*** Only the two top welds in the connection are used in the check 
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10.4.2 Lower Chord Splice 

As mention as a con in Table 27, solution 6 is prone to endplate deflection, which makes the 

coupling less stiff. Solution 1 is found best to avoid this endplate deflection problem. Solution 

1 avoids the end plate deflection problem by taking the tension load in shear at the bolts. This 

solution also gives the splice a neutral aesthetic expression. The calculation is summarized in 

Table 29 where the tension load of 240.7 kN is used as design criteria. From the calculation, 

the splice is found to be sufficiently strong. The calculations are similar to the shear connection 

between the lower chord and I-beams, these calculations are explained in more detail in Section 

10.3.2. The bolt quality is equivalent to the bolt listed in Table 20. 

 

Table 29: Splicing of lower chord calculation summary. 

 

10.4.3 Evaluation of Splice Solution 

To summarize the evolution of the splice designs further work should be accomplished to ensure 

structural adequateness. Slip resistance connections has not been calculated but should be 

investigated in the further work of the bridge. These connections will improve fatigue 

resistance. From the calculation utilized in this section shows promising results based on the 

internal forces from the SCIA analysis. The solution gives the bridge an appealing look, by 

basing the splice design on a relatively aesthetic solution.      

Splicing of lower chord Validation 

Shear resistance 24 shear planes [kN]: (M20) 𝐹𝑣,𝑅𝑑 1881.6 √ 

Bearing resistance [kN] 

𝑘1 = 1, 𝛼2 = 2.5 

𝐹𝑏,𝑅𝑑 5734.4 √ 

Block tearing resistance [kN]:  

𝐴𝑛𝑡 = 1232 mm2 

𝐴𝑛𝑣 = 2688 mm2  

 

𝑉𝑒𝑓𝑓,1,𝑅𝑑 

 

628 

 

√ 

Cross-section hand hole reduction, design 

stress [N/mm2]: 

𝜎𝐸𝑑   14.6 √ 
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11 Concept Evaluation 

In the initial evaluation, the aluminum pedestrian bridge concept, the structural capabilities, 

weight, functionalities, and cost of the proposed concept is discussed. The bridge concept is 

illustrated in Figure 66. Detailed drawing of the bridge components and assemblies can be 

found in Appendix 2. The bridge weight in aluminum is 23 tons. A fabrication cost estimate 

from MA gives an approximate cost of 6 650 000 NOK for the bridge. Chapter 12 takes this 

discussion further.  

 

 

 
Figure 66: Bridge concept. 

 

11.1 Transportation 

The thought behind the bridge assembly is to divide the trusses into three sections as illustrated 

in Figure 67. The I-beams and trusses are transported separately and assembled close to the 

installation site.  By dividing the bridge into three parts, the splice is moved away from the area 

at the center with the highest internal forces. If the bridge modules were kept under 3 m wide, 

15 – 16 m long and 3.5 m high, it is a referred to as a standard transportation job. The mid truss 

sections are 4.5 m high, but still within the requirements of the maximum transportation height 

as found in Section 2.6.5. The transportation solution which utilizes the total transportation 

height should be used. This design will ensure efficient transportation and short assembly time 

with few parts to assemble.  
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Figure 67: Bridge assembly for transportation.  

11.2 Connections and Splices 

Most of the connections and splices are all illustrated in Figure 68 from a) – d). The lower chord 

splice is shown in Figure 69. The same design is used on the upper chord splice as the truss diagonals 

and is therefore not illustrated explicitly. Principals from DfX found in Section 4.1.1 were utilized in 

the development. Multifunctional parts, minimized the amount of parts and design for easy 

manufacturing are all principals used. One of the DfX principles suggests that the assembly directions 

should be minimized, where a top-down approach is most desirable. These principles are only partly 

fulfilled since most assembly directions are used. The structural integrity of the joint should be adequate 

according to the calculation done in Section 10.4. Further work has to be done to ensure that all the 

joints have sufficient stiffness, especially the lower chord – I-beam connection and the upper chord 

splice. 

 

    

    (a)              (b)   (c)   (d) 

Figure 68: Connections and splices: a) Lower chord – I-beam b) Lower chord – I-beam diagonal c) 

Truss diagonal splice without non-structural cover. d) Non-structural cover (marked with orange).  

 

:  

        (a)              (b) 
Figure 69: Lower chord splice: a) Front side, b) Back 

side. 
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11.3 Bridge deck 

The LBD solutions were found to be the best option as discussed in Section 8.3. Figure 70 a) 

illustrates the cross-section design. Detailed drawings can be found in Appendix A2. Because 

of transportation size restriction, panels are divided into three lengths up to 15 m in length. The 

width of the panels is 3 meters so that they can lay flat on a truck floor under transportation. 

The panels layout installed on the bridge is illustrated in Figure 70 b). The end profile has a 6 

cm long extruded edge, as indicated by the orange arrow in Figure 70 a). This edge is designed 

to keep the asphalt in place. The bridge deck profiles are joined by bolts, to the underlying I-

beams. The FSW bridge deck shows great potential, but there is still some detailing remaining. 

The joints between the FSW panels in both longitudinal and transverse direction is not 

addressed in this study. Also, detailed calculation and design concerning the connection to the 

I-beams must be done. 

 

(a) (b) 

Figure 70: Bridge deck profile: a) FSW bridge deck with end profile. b) FSW panel lay out.  

 

11.4 Railing 

The handrails are designed to explore and demonstrate some of the possibilities within an 

aluminum design. The railing is illustrated in Figure 71 a).  The railing consists of wooden top 

rail at the height of 1.4 m and stainless-steel wires to ensure adequate safety. Due to ergonomic 

findings [27] the railing also has an extra rail in the height of 90 cm. The railing is bolted onto 

the lower chord top flange and utilizes the multifunction extrusion of the lower chord. The 

bridge has a very efficient and compact design. By having the rails bent inward, the needed 

clearance to the trusses is obtained. The inwards angle on the handrails also prevents people 

from from climbing on the rails [27]. Easy connection between the aluminum and wood is 

obtained by a Christmas tree design [16] on the top handrail seen in Figure 71 b). The 

connection strength is not analyzed for the Christmas tree design, but could also be combined 

with gluing or bolting. Another aluminum specific design is the design of the clips [16] shown 
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in Figure 71 c) on the lower handrail. No structural calculation has been performed on the railing 

system, and further detailing needs to be done. These solutions show the great potential of 

aluminum. A fast and easy assembly will be obtained with these methods. 

 

  

  

(a)          (b)    (c) 

Figure 71: Handrailing: (a) Railing connection to lower chord and perspective view (c) Top 

handrail connection (d) Lower handrail connection. 

11.5 Discussion 

The pedestrian bridge concepts show the favorable result with a low self-weight. Smart and 

creative use of FSW and extruded profiles gives the pedestrian bridge concepts unique 

solutions. There is still some work that needs to be done until a fully functioning and safe bridge 

solution is ready. The relative vertical deflection over the transverse bridge span is not fulfilling 

the criteria for deflection. Anyhow this pedestrian bridge concept demonstrates the potential of 

utilizing aluminum as a bridge construction material in the lightweight pedestrian bridge 

segment.   
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12 Comparison Between Aluminum Concept and Baseline 

Solution from NPRA 

In this section, the developed aluminum concept bridge, see Figure 72, is compared with the 

chosen baseline solution from NPRA, shown in Figure 73. Fabrication cost, weight, and 

structural integrity is the comparison basis. Aspects like assembly, transportation, and 

installation are hard to compare due to lack of information. The NPRA cost estimate is 

calculated for an alternative bridge solution for the Forus bridge in Stavanger [68]. The cost 

estimate of the FRP truss bridge is for a bridge with a length of 40 m and 6.6 m width, the 

estimate includes also a special pedestrian bridge railing. Very few composite bridges and 

structures exist in Norway. The price is therefore mostly based upon composite value from 

international estimates. This method is presumably a good way to estimate the prices in Norway 

as well since the bridge can be produced and shipped from anywhere in the world [68]. The 

cost estimate is not directly related to the Paradis bridge in Bergen, but dimensions and 

surrounding conditions are very similar to the Forus bridge. It will, therefore, give a good cost 

estimate of the Paradis bridge. The cost estimate from MA is primarily based upon fabrication 

cost in NOK/kg of the bridge structure. MA uses the same estimate for their regular gangways 

and is presumably a good estimate for this conceptual pedestrian bridge as well [69]. The 

additional cost is added for railings in NOK/m. This estimate is based upon one of MA railing 

systems. The values for weight and cost comparison are tabulated in Table 30. 

 

  
Figure 72: Aluminum pedestrian bridge concept.  Figure 73: Baseline solution from NPRA. 

Table 30: Comparison between aluminum concept and Paradis bridge. 

 Aluminum Concept Bridge GFRP Paradis Bridge 

Weight of bridge: [tons] 23 42 

*Total weight: [tons] 63 87 

Estimated fabrication cost: [NOK] 6 650 000 6 350 000 

*The total weight includes the steel inserts in the GFRP joints and the asphalt layer. 
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As tabulated in Table 30, the aluminum bridge is found to be a much lighter bridge construction 

than the GFRP bridge solution. Even with more detailed analysis and worst-case scenarios of 

the aluminum concept which can increase the bridge load. The aluminum concept can 

experience a 45% weight increase before it reaches GFRP solution weight. There are also other 

arguments for the aluminum solution to be lighter than the GFRP bridge. For instant aluminum 

comes better out of the specific strength – specific stiffness ratio comparison shown in Section 

2.4. The GFRP Paradis bridge also has challenges with joint design, where steel inserts are used 

as mention in Section 3.2. Degradation and aging due to low thermal resistance and UV 

radiation, GFRP must be designed accordingly to these phenomena. These aspects may add 

some extra weight to the GFRP solution which is not added in the aluminum design. 

 

The fabrication cost of the bridges is found almost identical. The values are tabulated in Table 

30. As discussed earlier in this section, there is related some uncertainty to the estimates. 

Regardless the cost comparison gives a good indication on how the two bridges are compared 

to each other. Aluminum has proven to be competitive on initial cost on some specific 

pedestrian bridge projects. In general, due to higher initial cost compared to conventional bridge 

materials both GFRP and aluminum benefit from the increased use of LCCA. Compared to 

GFRP, aluminum has two distinct advantages as construction material. Aluminum is field 

proven with excellent results in very harsh environments both on shore and off shore. Norway's 

climate varies with extreme cold, humid environment, and salty roads. With aluminum's unique 

corrosion properties and toughness at low temperature, it will make a design which fit for all 

environments more easily. The consequences of long-term degradation of GFRP is still in need 

of research. The second advantage is aluminum's recyclability after ended lifetime, whereas 

GFRP ends up as scrap. This advantage makes aluminum more environmental friendly solution. 

To summarize, the aluminum is found highly competitive as a lightweight bridge material. 

Compared to the baseline solution from NPRA, the aluminum concept bridge shows a 

promising result.  
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13 Summary and Recommendations for Further Work 

13.1 Summary and Conclusions 

The primary objective of this thesis is to evaluate the potential of aluminum solutions within 

pedestrian bridges. This seen in competition with common steel and concrete solutions as well 

as new materials such as FRP. In the theory chapter, a comparison of aluminum to other 

construction materials is made. Many existing and successful aluminum pedestrian bridges 

demonstrates aluminum's potential in this sector. As a construction material, aluminum contains 

several advantages. High specific strength, high corrosion resistance, no need of periodic 

maintenance and low residual stresses caused by constrained thermal deformation. The material 

is also field proven since 1933 as a bridge material. Concerning manufacturability of aluminum, 

smart and creative use of manufacturing methods gives the material an advantage. A pedestrian 

bridge can be designed with unique solutions by utilizing the possibilities of FSW and extrusion 

of profiles. Some downsides concerning aluminum as a construction material are susceptibility 

for fatigue, low stiffness compared to steel, low fire resistance, prone to local buckling and 

strength reduction in HAZ. The consequences of these aspects can very often be minimized 

with good design. The limited use of aluminum as bridge material is mostly based on the lack 

of knowledge and historical lack of standards and guidelines.  The building sector's reliance on 

acquisition cost and warranty condition for their investments and not LCCA have also put a 

limitation for aluminum pedestrian bridge projects.    

 

The manufacturing capabilities of MA is only mentioned in relevant chapters concerning the 

development of the pedestrian bridge concept. The feasibility of introducing aluminum of the 

two bridges from NPRA is covered in Chapter 3. The GFRP bridge at Paradis in Bergen was 

found to be the most suitable case. This finding is due to aluminum and FRP competition as 

materials in the lightweight pedestrian bridge segment. Both materials hold many of the same 

qualities with different disadvantages. 

 

The development of the aluminum pedestrian bridge concept is based on the structural 

requirements of the Paradis bridge. These requirements gave a useful foundation for the 

comparison. The initial evaluation of the bridge concept provides a 23-ton bridge structure with 

a fabrication cost of 6.65 MNOK. Compared to the baseline solution from NPRA the aluminum 

bridge only has 45% of the weight in aluminum as GRFP in the baseline solution. The initial 

cost estimate of Paradis bridge is 6.35 MNOK with a weight of 42 tons in GFRP. The estimated 
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fabrication cost ended up almost equal for the two concepts, and only the significant deviation 

in weight is differentiating them. As discussed in Chapter 12 aluminum has two distinct 

advantages as construction material compared to GFRP. Aluminum is field proven with 

outstanding results both onshore and offshore. With several environmental independent and 

resistant material properties, aluminum is suitable for the large climate variations in Norway. 

The second advantage is aluminum recyclability after ended lifetime, which is a significant 

environmentally gain.    

 

Aluminum has a bright future if increased knowledge among builders and engineers, better 

standards and guidelines, and increased focus on LCCA becomes a reality. The development 

of the aluminum pedestrian bridge in this thesis, demonstrates aluminum capabilities applicable 

for pedestrian bridges in Norway. 

13.2 Further Work  

The further work short-term recommendations for this particular study would be:  

- Further evaluation of a TBD concept with double sided FSW panels. 

- The nonlinear inelastic analysis should be adopted in the future development the bridge. 

- Thermal analysis.  

- Further detailing and Structural analysis of railing system.   

- The joint between the FSW panels in both longitudinal and transverse direction is not 

addressed in this study and between the FSW panels and bridge deck I-beams. 

- More detailed studies of the structural behavior of joints and splices.  

- In-depth analysis of eigenfrequencies and eigenmodes. 

- Bridge specific details like fugues, bridge bearings, and expansion joints.  

- General weight optimization and further detailing of the bridge concept. 

- Fatigue analysis of bridge structure. 

 

For medium and long-term work that needs to be done to further promote and prove 

aluminum as the future for pedestrian bridge material is:  

- Raise awareness of aluminum's advantages as construction material among students, 

builders, and engineers. 

- Further development of pedestrian bridge design guidelines for aluminum.   
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Appendix A:   
 

A1: Method 1 Two Heights  

Loads and supports illustrated in Figure A1.1. Hinged and sliding supports on both short 

sides. The point load is a “free force” of 100 kN and is placed using coordinates at the center 

of the plate.  

 

Figure: A1.1 

 

Figure: A1.2 

In SCIA help the method is described as “This type of orthotropy is suitable for slabs that 

feature "different height" in two parallel directions.”. “The panels and the topping are 

"linked" together through reinforcement protruding from the panels and entering the 

topping.” http://help.SCiA.net/15.0/en/rb/modelling/orthotropy_manager.htm And is clearly 

developed for orthotropic concrete slabs with a casted in situ top layer as illustrated in Figure 

A1.2. With the assumption that the height could be take out from the section modulus formula 

for a massive, square cross-section. The height was found by using the moment of inertia of 

the HMA5360 helideck profile.   

𝑊𝑥 =
𝐼𝑥

𝑦
= 1.5×105 mm2 

By utilizing the point load distribution, 80% of the section modulus of seven panels was 

added to the equation.    

http://help.scia.net/15.0/en/rb/modelling/orthotropy_manager.htm
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0,8×7×𝑊𝑥 =
1

6
𝑏ℎ2 → ℎ = √

6×0.8×7×𝑊𝑥

𝑏
= 49.7 𝑚𝑚2 

Flexural rigidity = Bending stiffness. Membrane theory describes the mechanical properties of 

shells when twisting and bending moments are small enough to be negligible. The flexure and 

membrane height is set to equal values. With these assumptions, the total displacement was 

way too high by applying a height of 50 mm as illustrated in Figure A1 and Table A1. The 

stiffness in x- direction had little influence on the total displacement. To test 𝑑1 = 75mm was 

used and 𝑑2 = 20𝑚𝑚. Theses measures gave the right displacement, but with two unknown 

factors, this method could not be used in this case. SCIA support was contacted without replay. 

The method has potential since the distribution of loads in both directions seems to be 

distributed nicely.  

    

𝐹 (𝑘𝑁) 𝑑1 (𝑚𝑚) 𝑑2 (𝑚𝑚) 𝑢𝑧 (𝑚𝑚) 𝑢𝑦  (𝑚𝑚) 

100 50 40 -60 0 

100 75 20 -23 0 

 Table A1.1 

 

Figure A1.3 
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A2: Cost Estimate Underlaying 

Nr: Name Description Quantity m/profile 

1 LC1 Lower chord 1 4 84.5 

2 LC2 Lower chord 2 2 

3 TC1 Top chord 1 4 80.7 

4 TC2 Top chord 2 2 

5 I-beam_t I-beam transverse 15 182.8 

6 I-beam_d I-beam diagonal 14 

7 Truss 

diagonals 

Truss diagonals 4  

207.6 

8 Truss 

diagonals 2 

Truss diagonals 2 2 

9 Flange Flange 58 12.8 

10 Splice Splice 4(8) - 

11 Tension splice Tension splice 16 - 

12 Bridge deck 

profile 

Bridge deck profile 54 756 

 

13 Bridge deck 

end profile 

Bridge deck end 

profile 

6 84 

14 T1 assembly  Truss 1 assembly 4 - 

15 T2 assembly Truss 2 assembly 2 - 

16 FSW 1 

assembly 

FSW 1 assembly 4(6) - 

17 Railing 

assembly 

Railing assembly 28 84 

18 Bridge Bridge total 

assembly 

1 - 

Table A2.1 
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A3: NS-EN 1999-1-1 Check with SCiA Engineering  
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