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Summary

The internet is constantly expanding across millions of web pages. Using the internet ef-
fectively is a hard skill to learn both for humans and machines. The Semantic Web is
an attempt to standardize the data across the web making it accessible and usable. This
thesis is meant as a practical guide to using knowledge graphs the main building blocks
of the Semantic Web. A knowledge graph is a large data source with facts about millions
of real and fictional entities. Wikidata and DBpedia are two publicly available knowledge
graphs that we use to look at three major aspects: Understanding knowledge graphs, find-
ing relevant information from knowledge graphs, and creating features from knowledge
graphs. These three aspects will be explained by using the task of finding similar entities,
specifically similar artists.
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Chapter

Introduction

1.1 Background and Motivation

The introduction of the Internet has impacted how we organize and find information. The
semantic web is a part of the Internet’s evolution, it attempts to make information on
the Internet accessible and understandable for humans and machines. Knowledge Graphs
(KGs) are the main building blocks of the semantic web. These are huge graphs describing
real and fictional entities: “things not strings” (Google Inc.). Since KGs describe millions
of entities and relations, their application areas are numerous: enriching entities, finding
similar entities, finding related entities, exploring relations between entities, answering
questions about entities, etc. Schuhmacher and Ponzetto (2014); Pirrd (2015); Cheng et al.
(2014); Yahya et al. (2016) However, using a KG is complicated by its large size. With
millions or billions of statements KGs require a systematic approach for finding relevant
information. Therefore, the goal of this thesis is to give an introduction on how to extract
knowledge from a KG with a more in depth analysis on how to find similar entities.

1.2 Problem Outline

When extracting knowledge from KGs there are four main challenges:
1. Understanding the information structure
2. Extracting features
3. Ranking features
4. Presenting the knowledge to a person

The first issue when using a KG is to understand how the information is structured. The
resource description framework (RDF) (details in sec. 2.1.1) is the only standard that
exists across knowledge graphs. This standard enables KGs to use shared vocabularies.
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These vocabularies are important since they make it possible to talk about the same thing
by using the same identifiers. There exist efforts to standardize the vocabularies (e.g.
schema.org); however, most KGs use their own ontology and identifiers for representing
entities and their relations. The second challenge when using a KG is to create features
from the RDF-statements. E.g. Di Noia et al. (2012) creates a recommender-system for
movies where each movie is represented by a vector which is build by using the property
of the statements in the movie domain. The third challenge concerns ranking the fea-
tures. Also, by considering the data and user of the query this problem is further compli-
cated. E.g. a recommender-system for similar artist might requires different ranking than
a recommender-system for similar politicians and both systems most likely also depend
on the user’s preferences. Presenting the information to a human is the fourth challenge
of using knowledge graphs. Although the RDF has formats which are understandable to
humans (e.g. turtle syntax), these formats require existing competence and are limited in
their expressive power.

This thesis focus mostly on the three first challenges: the information structure, the pro-
cess of feature generation, and the process of feature ranking for Wikidata and DBpedia.
Moreover, this thesis use the task of finding similar entities as the knowledge extraction
task. Previous approaches often use the KG in conjunction with other information sources
(e.g. search engines, social media, dictionaries, web pages)Yahya et al. (2016); Zhang
et al. (2015); Pirro (2015); Bi et al. (2015) These information sources often prove valu-
able since they can contain more information relating to the task (e.g. entity popularity
or user preferences). On the downside, these information sources make the experiments
much harder to replicate since they depend on inaccessible or non-deterministic sources.
Additionally, most work use a combined set of features with an unique weighting scheme
which makes it hard to determine the importance of the different features from the KG.
By using features exclusively from the KG, analyzing one type of feature at a time, and
testing on a gold standard dataset this thesis presents reproducible methods for extracting
knowledge from the KG. Wikidata was selected based on the quality of the information
(user created content with references) and the newness of the knowledge graph. DBpedia,
on the other hand, is an older and more widely studied knowledge graph; therefore, a good
candidate for comparison and knowledge extraction.

1.3 Research Goals and Questions

Providing as a guidance for the thesis, the following research questions have been defined:

RQ1: Which features are the most important to compute similarity and/or relatedness be-
tween two or more entities in Wikidata and DBpedia?

RQ2: How can the relationship between two or more given entities be described or la-
beled?

RQ3: How can similar/related entities be found in Wikidata and DBpedia?

RQ4: How can the context from news articles (containing the entity) be used in order to
find similar/related entities?




RQ5: How can the informativeness of the properties of the entities in Wikidata and DB-
pedia be measured?

1.4 Research Contributions

This thesis contains three research contributions: First, a description and comparison of the
data model, type- and property-hierarhcy of Wikidata and DBpedia (chapter 4). Secondly,
paper 1: How to retrieve relevant information from knowledge graphs using common
subsumers: Entity types, similar types, and entity requirements. The paper presents four
methods for retrieving relevant information based on an entity’s type and properties. And
each method is tested on the Semantic Artists Similarity dataset Oramas et al. (2015)
(chapter 5). Third, paper 2: Feature generation methods for Knowledge Graphs based on
Common Subsumers and counts. The paper evaluates five feature generation methods for
extracting and ranking information from the knowledge graph (chapter 6).

1.5 Thesis Structure

The rest of this thesis is structured as follows: Chapter 2 describes relevant background
information. Chapter 3 gives an overview of related work areas relevant to the 4 chal-
lenges introduced in sec 1.2. Chapter 4 describes Wikidata and DBpedia. Chapter 5 and 6
present the two papers. And chapter 7 concludes the paper by summarizing the result and
suggesting further work.







Chapter

Theoretical Background

This chapter focus on the underlying concepts for the report. The three themes are: the
Semantic Web, the linked open data (LOD) project, and information retrieval.

2.1 The Semantic Web

The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in
cooperation

Hendler and Berners-Lee (2010)

The goal of the semantic web, also known as Web 3.0 Shannon (2016), is to enhance the
usability of the web by giving explicit meaning to data both in the real world and online.
Linking data enables useful interaction with data for both humans and machines (Bizer
et al. (2009)).

Example 1. ”Barrack Obama is the president of the US”

Example 1 is understandable for a human being who is familiar with the concept of
president and the two entities Barrack Obama and US. For a machine, this sentence is only
Os and 1s; therefore, the meaning is lost. The semantic web is a framework of making
the semantic (meaning) of data understandable to a machine. By using the framework,
we prepare the content, so the machine can perform complex tasks like location based
information and question answering. Yahya et al. (2016). Figure 2.1 shows the structure
of the semantic web. The next three sections describes four of these building blocks: RDF,
how we represent data, RDFS and OWL, how we reason with data, and SPARQL, how we
query the data.

2.1.1 RDF Resource Description Framework

RDF is the layer for representing information about anything, be it a real person or a
web page. Written on top of XML, RDF uses Uniform Resource Identifiers (URIs) to
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disambiguate entities, meaning we know exactly which entity we are describing. Figure
2.3 shows example 1 as a RDF statement. Statements represent information and are split
into three parts: (as seen in figure 2.2)

1. Subject/resource. Must be a full URI. For any property we label the set of subjects
as the domain.

2. Predicate/property. Must be a full URI

3. Object/Value. Can be a full URI or literal (String, integer, date, etc.) For any prop-
erty we label the set of objects as the range.

The bottom row of figure 2.3 shows a statement found in Wikidata, note how each
component is a URI, another type of statements use a literal value instead of a URI in
the range, height of a person is an example statement with a decimal literal value. URIs
are not expected to return any content, different from an URL, it is merely an identifier;
however, this is an desired attribute (see 2.2). Anyone can create URISs, to improve the
organization of URIs, we use vocabularies, they contain common URIs (e.g. wd and wdt
in fig. 2.3). URIs should be shared and reused (see Yu, 2014, Chap.2 p 34) because without
common URIs data will be isolated instead of interlinked. There is a way of combining
URIs that point to the same entity (owl:sameAs) but this should be avoided whenever
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Figure 2.3: Example 1 as a RDF statement. Prefixes in grey. Exact statement at bottom, URIs
switched with labels on top

possible to make it easier to reuse data. A collection of statements, also called triples, can
be represented in a graph (e.g. fig 2.3) or in a file format: RDF/XML, is the standard, other
types are turtle and n3.

2.1.2 RDF Schema - RDFS and The Web Ontology Language - OWL

The examples so far show instance data, also know as ABox statements Sazonau et al.
(2015). An ontology use ground truths, also know as TBox statements to describe what
information can be represented for a domain, e.g. which classes exist and which prop-
erties exist. Schema modeling is the process for building an ontology. RDFS' allows
schema modeling (TBox statements) by expanding the range of keywords. Examples
are: rdfs:subClassOf states that a class has a more general parent class(e.g. car-vehicle),
rdfs:subPropertyOf states that a more general property exist (e.g. official model model),
rdfs:domain states the subjects of a property must be one of a set of classes, rdfs:range
states the same for objects of the property. The vocabulary also includes two important
properties for describing instances: rdf:type states which class an instance is (e.g. human)
and rdfs:label states a human readable name of the resource (e.g. wd:Q20 rdfs:label "Nor-
way”).

OWL provides more TBox statements and allows for inference of classes and properties.
E.g. all persons with a mother of or father of statement are parents. These two vocabularies
form the basis for building class- and property-hierarchies in the ontology.

2.1.3 SPARQL Standard Protocol and RDF query language

SPARQL fills the need for a language to effectively query RDF data. Most open datasets
are accessed by using a SPARQL endpoint, a URL where any agent can use SPARQL
queries. Queries are written in turtle’ and contains a set of types, operands, and func-
tions, for a full specification see 3. Furthermore, a query has a list of statement patterns
that are matched, each pattern is composed of unknown variables, prefixed with a ”?”,
and/or known variables which use a prefix (wdt, wd in 2.3) or a full URI (e.g.http:

"https://www.w3.org/TR/rdf-schema/
2https://www.w3.org/TR/turtle/
Shttps://www.w3.org/TR/sparqlll-overview/
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//dbpedia.org/resource/Ringo_Starr ).”?s ?p 70” is a query which returns
all statements in the graph.

2.2 Linked open data (LOD)

As aforementioned, reusing URISs is important, it connects datasets and uniquely identifies
entities. Resolvable URIs returning RDF data and accessible dataset are required for a
dataset to be part of the LOD cloud. Currently, about 1254* datasets exist in the LOD
cloud, but despite the size the LOD cloud has not matured yet Schmachtenberg et al.
(2014). Issues in most datasets: link to few others, few global vocabularies exist and
meta data describing the dataset are missing. In this work, we label big RDF datasets as
knowledge graphs (KG).

2.2.1 Knowledge Graph

Knowledge Graph is a recently new term introduced by Google in 2012 Paulheim (2017).
It is used as a label for a dataset with a large amount of diverse (not restricted to a specific
domain) instance data described by an ontology Firber et al. (2015). DBpedia’, Wikidata®,
Yago’, and Google Knowledge Graph® are examples of knowledge graphs where Google
Knowledge Graph is the only one not publicly accessible and therefore not part of the
LOD cloud.

2.3 Information Retrieval

Information retrieval concerns finding objects from a data source relevant to a query, the
objects found are then labeled as relevant or irrelevant. If the data source is a KG the
objects are most likely URIs and if the data source is a news paper the objects are most
news articles.

2.3.1 Vector space model

Vector space model is often used to represent the retrievable objects. Generally, a vector
space model (see Schiitze, 2008, Chap. 6.3 p 120) use a transformation to map input into
a vector space. A text document can be represented by using the english dictionary as
a transformation where we label each unique word in the dictionary with a number. By
creating a vector with a dimension equal to the dictionary size, and setting all terms found
in a text document to one, we have a vector representation.

‘https://datahub.io/dataset?tags=1lod

Shttp://wiki.dbpedia.org/about

Shttps://www.wikidata.org/wiki/Wikidata:Main_Page

"http://yago-knowledge.org/

Shttps://www.google.com/intl/es419/insidesearch/features/search/
knowledge.html
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2.3.2 TF-IDF

TF-IDF is a measure to determine how important a term (word) in a document is. TF
stands for term frequency and is the count of the term in a document. IDF is the inverse
document frequency, how many documents do not contain a term, measuring how rare a
term is (see Schiitze, 2008, Chap. 6.2,2 p 119). The TF-IDF approach prioritizes rare and
frequent terms for representing documents.

2.3.3 Precision and recall

Precision and recall measure how well the algorithm did at finding relevant objects to
the query. Precision is defined as the proportion of retrieved objects that were relevant,
and recall is defined as the proportion of all the relevant objects that were retrieved (see
Schiitze, 2008, Chap. 1 p 42). E.g. An artist have 10 other similar labeled artists, we name
them the expected similars. Suppose an algorithm for finding similar entities retrieves 20
entities and 5 of these are among the expected similars, then precision= %= 25% and
recall = 1% =50%
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Chapter

Related work

The four main challenges discussed are: Understanding the information structure, extract-
ing features, ranking features, and presenting the knowledge to a person.

This chapter gives an overview of related work areas within the Semantic Web that are
most relevant to this thesis. As this section aims to give an overview of related work and
give the reader a starting point for finding literature, it is less detailed than the related work
sections in the two papers. It groups important literature into the four challenges presented
in the introduction.

1. As a starting point for understanding the semantic web it is worth reading Bizer
et al. (2009) except chapter 5 which is outdated. Then the comparison between the
four knowledge graphs Wikidata, DBpedia, Freebase, OpenCyc and YAGO Firber
et al. (2015) gives a good introduction to aspects of a knowledge graph as well as
differences between the KGs. Finally, the next chapter and its references should be
valuable if Wikidata and DBpedia are inteded for usage.

2. For extracting features chapter 7 on transformation in Ristoski and Paulheim (2016)
is a good starting point. This study is a comprehensive survey which looks at how
KGs are being used. If the purpose is only to add data to an existing dataset then
Paulheim and Fiimkranz (2012) can be a lightweight alternative. Another point of in-
terest is from the interlinking dataset area. This area contains methods for detecting
similarities between datasets, ontologies and entities which can enable aggregation
of features. It should also be noted that named entity recognition is often neces-
sary to use a KG. However, this is not the focus of this thesis and third party tools
exist for the task, e.g. DBpedia Spotlight Daiber et al. (2013) and Entityclassifier
Dojchinovski and Kliegr (2013) .

3. Roa-Valverde and Sicilia (2014) gives a great overview of different aspects of rank-
ing statements in addition to the existing state of the art ranking methods. Inspiration
can also be gathered from the area of relationship queries (e.g. Yahya et al. (2016)
which use some method for prioritizing statements connecting two or more entities.
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4. The challenge of presenting the knowledge to a person is most studied in the area
of exploratory search. Exploratory search (also know as Discovery search) focus on
giving the user a tool for exploring a knowledge graph from one or more entities.
Using Ringo Starr as the input entity the tool might link to his songs, albums, related
artists, bands, etc. Two examples of such tools are: Discovery Hub Marie et al.
(2013) (figure 3.1) and Google Search (figure 3.2, right square). Marie and Gandon
(2014) provides a great overview of exploratory search task and existing approaches.

Discovery Hub,

Q Start your exploration here...

topics to explore
kinds of topics

A
aatnkl
Ringo Starr <

Avalable on

Profies

[ A 0O @

Figure 3.2: Google search interface
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Chapter

How Wikidata and DBpedia are
organized and how to access them

This chapter describes the two knowledge graphs: DBpedia and Wikidata. The goal of
the description is to give the reader an understanding of how the KGs: store statements,
organize the type- and property-hierarchy, and are accessible. Their main characteristics
are summarized in table 4.1.

Characteristic ‘ Wikidata ‘ DBpedia

Statement count 150M 241M

Class count 38533 754

Property count 2398(12926*) | 1396

Type-hierarchy depth 15 7

Type-hierarchy has cycles | Yes No

All types in type-hierarchy | No Yes

Deepest child example Too deep owl: Thing, Place, PopulatedPlace,

From top of the hierarchy Region,AdministrativeRegion,
Governmental AdministrativeRegion,
Province, HistoricalProvince

Table 4.1: Characteristics of Wikidata and DBpedia. M = Million. * count with qualifier properties
(see sec: 4.2)
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4.1 DBpedia

4.1.1 Background and data-model

DBpedia is the most used KG in the literature. Its: long existence (11 years), big size (more
than 1 billion statements), and central function as a hub (connecting many datasets) makes
it a great choice Lehmann et al. (2015) . The statements in DBpedia are found by collab-
oratively created bots. These bots are executable scripts that collect data from Wikipedia.
The ontology in DBpedia is used to organize the collected data. It was constructed man-
ually and consist of 754 types and 1396 properties. The DBpedia type-ontology is well
organized, the 754 types are distributed on 7 levels where every type is connected to the
hierarchy. Only 5 types in the hierarchy have two parents and there is no cycles. The
distribution of entities per type are more uniform compared to Wikidata (Wikidata having
a greater amount of lower counting types). Statements in DBpedia are on the standard
RDF form with subject-predicate-object. Although the statements have provenance in-
formation', specifying where the data was collected (Wikipedia page and location), their
reliability relies on the Wikipedia collaborators.

4.1.2 Accessing DBpedia

There is a public SPARQL access point available at: http://dbpedia.org/spargl
However, using exclusively the online access point is suboptimal because of the extra
round trip time; therefore, storing a local version is advisable. The latest full dump ver-
sions can be found at http://wiki.dbpedia.org/downloads—2016-04 (the
version used throughout this thesis) . Alternatively, the scripts can be executed manually
2

The dump is partitioned into different datasets (see * for descriptions). This thesis se-
lected 8 of these datasets (shown in table 4.2). The most noteworthy datasets and their
role are: Page links that collects all links between wikipedia pages, Mappingbased Liter-
als and Mappingbased Objects that collect data formated in the tables of wikipedia pages,
SKOS categories that categorizes entities, and Interlanguage Links that links to Wikidata
ids. Adding these datasets to a local RDF triple store are trivial since all the statements are
already on the subject-predicate-object form.

4.2 Wikidata

4.2.1 Background and data-model

Wikidata is a collaboratively edited knowledge-base with about 2398 properties and more
than 24 million items. It started in October 2012 with the intention of gathering knowl-
edge from different languages in Wikipedia into one repository, making the data reusable

"http://wiki.dbpedia.org/services—resources/datasets/dbpedia-datasets#
h434-17

2https://github.com/dbpedia/extraction—framework

Shttp://wiki.dbpedia.org/services—-resources/datasets/dbpedia-datasets
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Dataset name Statement count

SKOS categories 5.6M
Topical concepts 179.8K
Instance types 5.2M
Article categories 22.6M
Page links 175.9M

Mappingbased Literals | 16.9M
Mappingbased Objects | 18.3M
Interlanguage Link 34.TM

Table 4.2: Selected DBpedia datasets and their statement counts. K = thousands and M = Million

and readable (Erxleben et al. (2014)). Wikidata can be argued to be more reliable than
DBpedia since statements come directly from users and the statements themselves often
contain references and qualifiers (described below). The datamodel’s two types are items
and properties.

An item is a resource with an itemID (Starting with Q), a label, aliases, descriptions in
different languages, sitelinks (to wikipedia pages), and claims (see Fig. 4.1 %). Claims are
RDF statements and can have: references (statement sources), qualifiers (further describe
the claim), and a rank. The rank determines the claim display order e.g. the rank deter-
mines that the current population of Berlin should be displayed at the top of the result and
as the selected value in queries.

Properties are similar to items but differs by having an unique property id starting with P
and datatypes instead of sitelinks. Differently from DBpedia, Wikidata do not reuse prop-
erties from other vocabularies directly. Instead they have their own equivalent properties:
e.g. wd:P31 = rdf:type and wd:P279 = rdfs:subClassOf.

The type-hierarchy in Wikidata has 15 levels and represent 70% of all possible types in
the knowledge graph. The type-hierarchy contains cycles, which can complicate search-
ing. The number of entities per type varies extensively, with more than 36000 types having
a count less than 100 and 23 types having a count greater than 100 000. The deep hierar-
chy level and diversity of types provide rich information by being specific and connected.
Nevertheless, the great variance in entities per type, types outside of hierarchy, and multi-
ple types per entity make it a challenge to conclude similarity between types. Therefore,
it might be necessary to pre-process the types and filter out or combine types if one plans
to use the type information.

4.2.2 Accessing Wikidata

There is a public SPARQL access point available at: https://query.wikidata.
org/. As mentioned above for DBpedia, the online access point has its limitations and a
local version is advisable. The complexity of the data model in Wikidata makes represent-
ing the data in RDF more complicated. This process called reification has been studied by
Hernandez et al. (2015). Although their methods captures the data, they all introduce an

‘https://www.mediawiki.org/wiki/Wikibase/DataModel/Primer
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YA nigue
ae — Douglas Adams (o«2) nique
identifier
—T English writer and humorist
description Douglas Noél Adams | Douglas Noel Adams aliases
» In more languages
Statements
property {educated at] = [StJohn's College} value
end lime 1974
academic major English literature o
academic degree Bachelor of Arts qual Iﬂ ers
start time 1971
rank v 2 references
stated in Enyclopaedia Britannica Online
Treference URL hetplwwwnndb.comipeoplel731/000023662 opened
original language of work English -
statement retrieved 7 December 2013 references
publisher NNDB

group

title

Douglas Adams (English)

= Brentwood School

end time
start time

+ add reference

1970
1959

» O references

collapsed

+ add (statement)

reference

Figure 4.1: Wikidata data model from https://upload.wikimedia.org/wikipedia/
commons/a/ae/Datamodel_in_Wikidata.svg

intermediate node for qualifier properties that makes the subject not directly connected to
the object of the qualifier property. By creating a new property with property-id= concate-

99 99

nating the property-ids and adding a ”’q”, our approach avoids this issue (see Figure 4.2 for
details). Therefore, obtaining a local version in the standard RDF format of the Wikidata
datset is a bit complicated. A guide for reproducing the dataset can be found here’.

Shttps://github.com/EspenAlbert/readknowledgeGraph
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types, and entity requirements

Espen Albert
Department of Computer and
Information Science NTNU
albertespen@gmail.com

ABSTRACT

A challenge when using big knowledge graphs (KGs) such
as Wikidata and DBpedia is to select a proper subset of the
KG. This paper compares using entity types and property-
roles as filters for selecting relevant entities in a KG. Property-
roles e.g. performedBy-object (entity is a performer) or
genre-subject (entity has a genre) are found by using the
most frequent statements for a query entity. The Seman-
tic Artists Similarity dataset contains artists with their top
ten most similar artists, by using each artist as a query en-
tity and filtering the KG on the query entity’s types, similar
types, and property-roles we measure recall (percentage of
similar artists found) and precision (percentage of entities
in knowledge graph not satisfying the filter). The results
show that using property-roles outperforms entity types in
Wikidata, recall 99.5% vs 88% and precision 98.4% vs 84.2%
(compared to using the query entity’s types). Interestingly,
there is little difference in using property-roles and similar
entity-types in DBpedia: 97.6% vs 98.4% recall and 93.1%
vs 88.6% precision, likely because of a more well defined
type-hierarchy in DBpedia compared to Wikidata.

1. INTRODUCTION

A knowledge graph (KG) is defined as a large set of state-
ments (subject-property-object, e.g. figure 1) describing and
linking entities (also known as resources) in an ontology [7].
Wikidata [6] and DBpedia [2] are two popular KGs with in
excess of 19 and 6 million entities where each entity has the
role of subject or object in more than 50 statements on aver-
age. The big size presents a wealth of information. However,
consider the problem of finding similar entities to one or
more query entities in the KG. This problem requires select-
ing and representing relevant entities. The most common so-
lution is to perform a breath first search (BFS) starting from
the query entity(s) and traversing the knowledge graph (us-
ing statements) adding entities that are connected by paths
(chained statements) to the given entity(s) [16][3][9](8]. Al-
though this method are well suited for finding similar enti-

Cristina Marco
Department of Computer and
Information Science NTNU g
cristina.marco@ntnu.no jag@

Jon Atle Gulla
Department of Computer and
Information Science NTNU

idi.ntnu.no

ties, there are some challenges: 1. Selecting relevant state-
ments to explore 2. Ranking relevance of a statement to the
given entity(s) 3. Knowing when to stop the search 4. Han-
dling multiple entities. The literature contains vast amount
of work tackling these challenges. Differently from previous
work, this paper isolates the process of finding relevant in-
formation by selecting entities based on a common subsumer
(CS) [4] instead of performing a BFS. A CS is used to rep-
resent the commonalities between entities. By representing
each entity as an r-graph [4](a graph starting with the entity
as the root. Built by exploring the entity’s statements) and
replacing statement components (subject, property, object)
by blank nodes one can create a CS in polynominal time [4]
(see table 2 for examples). The three main advantages of us-
ing a CS is: performance (can be computed in polynominal
time), testability (can be represented as a SPARQL query),
and flexibility (can be combined to fit multiple entities or
used together with a search). The contributions of this pa-
per are:

1. Four methods for retrieving relevant information given
a single entity. The methods are based on CS, entity
types, and rareness of statements

2. Evaluation of the four methods using the Semantic
Artists Similarity Dataset on Wikidata and DBpedia.
The results demonstrate the methods ability to reduce
the size of the knowledge graph while maintaining a
high recall of the relevant entities and differences in
the type-hierarchy between Wikidata and DBpedia.

The rest of the paper is structured as follows: Section 2
present related work, section 3 presents the methods, sec-
tion 4 presents the evaluation setup and results. Results
and further work are discussed in section 5 while section 6
concludes the paper.

2. RELATED WORK

This section describes related work for selecting or prioritiz-
ing relevant information in a knowledge graph. This section
is limited to : exploratory search, relationship and similarity
finding, and entity type comparison, although more applica-
tion areas apply. Each approach is described by its solution
related to one or more of the four challenges presented in
the introduction.

Exploratory search: [8]’s approach finds entities by explor-
ing a fixed number of paths of length 2 starting from the



query node. These paths are selected based on probabili-
ties where higher probability is given to properties with rare
edges (low count). Finally, the found entities are clustered
based on their properties. [10] starts at the query entity as
the previous approach but explores paths of various length
both where the entity is subject or object. They use the
entity’s type to filter the search and a spreading activation
algorithm. The algorithm prioritize entities sharing a high
degree of statements with the query entity and entities where
the neighbors also are similar to the query entity.
Relationship and similarity finding: [1] use the KG to rank
relationships (paths) between entities. Their approach use
the path’s entity types to check for coherence with the schema
(expected type in domain/range) and the path’s properties
rareness (low count) to rank the paths. [14] ranks rela-
tionships by finding paths connecting entities with a length
less than 5. Each path are ranked based on three factors:
property rareness (low count globally), property diversity,
and entity proportion of statements with property (e.g. two
paths going through the same entity, the path using the most
common property for that entity will be ranked higher). [12]
measures semantic distance, a measure between two entities
calculated by finding paths of length one: either two entities
are directly connected (one is subject and the other is ob-
ject) or the entities share a property and value (subject or
object). [13] finds document similarity by comparing entities
in the documents. Their approach explores paths of length
3 where the entity has the subject role. Entity similarity is
based on the number of paths connecting two entities and
the length of these paths. They also use the hierarchy in
the KG by giving a higher similarity to entities where their
types have a close common ancestor.

Entity type comparison: [15] builds a type-hierarchy across
KGs and ranks an entity’s type given a context document.
Their results show that using the type-hierarchy and priori-
tizing entity types lower in the hierarchy works better than
prioritizing entity types with many entities. [5] goes into
depth on how to compare entity types suggesting that en-
tity types sharing an ancestor lower in the hierarchy with
compatible children are similar.

The methods presented in this paper use some of the same
assumptions as the papers above: 1. A lower global property
count for a statement makes it more relevant 2. An entity
with a high local count for a property makes the property
relevant 3. An entity’s type and its position in the type-hier-
archy can be used as a filter for relevant entities.

Of the approaches using entity types it has been difficult
to see the impact of filtering or finding relevant information
based on entity types since they are used in conjunction with
some other method or only as a mean to determine the best
entity type. By isolating the approaches using entity types
we assess the effectiveness of filtering based on entity type.
Differently from the entity requirement method (section 3),
the mentioned approaches are unable to find relevant infor-
mation from statements where the object is a literal (e.g.
string, integer, date,etc.) since they all use paths where the
object is an entity to find entities.

3. METHOD

This section describes four methods for retrieving relevant
information from a knowledge graph based on creating Com-
mon Subsumers (CS). The CSs presented in this section
are distinguished from the original paper [4] in three ways:

rofs 'u bClassOf

rdfs:subClass
RockBand I Human

performed by  performed by

Figure 1: Example RDF graph, Band (DBP) and
Muscial Artist (DBP) is the types used in DBpedia.
Muscial Duo, Band, RockBand, and Human are the
types used in Wikidata. Note, the example is only
for illustration and do not accurately represent the
KGs

Example

l Word

John Lennon-Member Of-
The Beatles

Statement1:
Subject-property-object

Subject-role John Lennon (Statementl)

Object-role The Beatles (Statement])

Domain count rdf:type=4, performedBy=1

Range count performed By=2

Property-role count rdf:type-subject=2

for entity (John Lennon)
Property-role count performedBy-object=1

for entity (John Lennon)

Ancestor Ancestor(RockBand)=Band

Band, Musical Duo, RockBand,
Human (Wikidata)

Type-hierarchy

MemberOf-subject,
performedBy-object, and
rdf:type-subject (Human)

Type-property-
distribution

Table 1: Vocabulary with examples from Figure 1

1. The CS is created from a single enitity instead of multiple
entities 2. The CS can include statements where the entity
has the object role in addition to the subject role. 3. The
CS can contain optional statements.

All methods receive an entity as input and produce a CS,
the methods are shown in table 2 with an example of the
CSs created for John Lennon.

Baseline. Select entities based on entity type. Identify all
the types of the entity (using the rdf:type or an equivalent
property). Then select entities having at least one of the
entity types.

Hierarchy search. This method assumes that types within
a short distance in the type-hierarchy are similar. It is in-
spired by previous work using the type hierarchy to find
a common ancestor [13] [15] [5]. It performs a search of
length D starting at the query entity’s types and follows the
rdfs:subClassOf property (or an equivalent property) in ei-



D=1 (same prefix as above)Band,
Artist,ClassicalMusicArtist,BackScene,
MusicDirector,Instrumentalist, Singer

?entity wd:instanceOf** wd:Twin*
(same prefix as above)Human,

Types matching
Property-Roles

K=10, T=6 Band,Duo,RockBand,Fictional Human
Entity 7s wd:performedBy ?entity
Requirements 7s wd:lyricsBy 7entity

K=6 ?s wd:composer ?entity

?7s wd:castMember 7entity
?entity wd:instrument 7o
?entity wd:occupation 7o

Table 2: The four methods with example SPARQL
queries selecting distinct ?entity for John Lennon.
The two first methods for DBpedia the last two
methods for Wikidata. *Labels are used instead of
IDs (QXXX) for types in Wikidata, **instanceOf is
equivalent of rdf:type in Wikidata.

ther direction (up or down in the hierarchy) to find similar
types. This implies: the distance between two siblings (e.g.
RockBand and MusicalDuo figure 1) is 2 and the distance
between a child and parent (e.g. RockBand and Band fig-
ure 1) is 1. The method require no pre-processing, but it
depends on adjusting the distance D of the search which
are influenced by the type-hierarchy of the KG. KGs with a
deeper hierarchy might require a longer distance, conversely,
KGs with multiple parent types might require a shorter dis-
tance.

Types matching property-roles Assumes two types are simi-
lar based on sharing property-roles. E.g. Humans and Rock-
Bands (fig: 1) have the performedBy-object role; therefore,
humans and bands are similar. Given a single entity the
method finds the top K property-roles. These are selected
by prioritizing property-roles with a high count for the query
entity. Then T similar types matching the property-roles
are determined by giving higher weight to property roles
with fewer type matches. Increasing T leads to more in-
formation being retrieved while increasing K will impact
which types are selected. In order to find type having the
property-roles the method performs a pre-processing step
storing a type-property distribution for each type in the
knowledge graph. A type-property distribution contains
property-roles if entities of the type with the property-role
exist. The complexity of finding the type-property distribu-
tions is O(|T'ypes| x| Properties|*2). In reality, this memory
complexity is much less since most types are not represented
for all properties. We decrease the memory complexity by
excluding distributions for types with less than 100 enti-
ties. We also reduce the risk of noise by requiring each
type to have more than 100 or 0.01% of its entities with the
property-role.

Entity requirements. Like the previous method, entity re-
quirements selects the top K property-roles of the query en-

Method CS John Lennon [ Method | Configuration

Each line wrapped in {} Baseline No configuration

UNION between lines HierarchySearch DBp: D=2, WD: D=3
Baseline 7entity a dbo:MusicalArtist Types matching DBp & WD: K=10, T=10
HierarchySearch | 7entity a dbo:MusicalArtist Property-Roles

Entity Requirements | DBp & WD: K=10 PT=250k

Table 3: The four methods with the best configura-
tion parameters for the evaluation

tity. However, it filters property-roles with a count greater
than a threshold PT. The method finds entities satisfying at
least one of the property-roles. A greater K or PT increases
the number of entities retrieved. Note that requiring similar
entities to satisfy every property-role would make the num-
ber of retrieved entities much less and risks ignoring rele-
vant entities. Knowing property counts is the only required
pre-processing step. Its complexity is O(|Properties| * 2)
(domain and range count per property).

4. EVALUATION AND RESULTS

This section describes the experiment and presents the re-
sults of using the Semantic Artist Similarity dataset [11] to
test the methods from the previous chapter on Wikidata
and DBpedia. The dataset contains 2363 artists where each
artist has a list of the ten most similar artists, we will refer
to these ten artists as the expected similars. It was con-
structed by using the Last.fm API and after mapping the
ids to Wikidata and DBpedia there are 2315 artists with on
average 9.87 expected similars.

The experiment assess the relevance of an entity by using
the following premise: An entity is relevant to an artist if
it is one of the expected similars (all other entities are ir-
relevant). In reality, this is a simplification since there are
more than 10 artists similar to an artists. But using this
simplification the performance is measured in two ways:

1. Recall, percentage of relevant entities satisfying the
common subsumer (CS)

2. Precision/compression factor, percentage of entities in
the knowledge graph not satisfying the CS.

The experiment is performed on Wikidata and DBpedia (the
detailed setup can be found on github') with the configu-
ration of each method shown in table 3. This configura-
tion was found by picking the best performing method from
the set of parameter options: D=[1,2,3], K=[1,3,5,10,15,20],
T=I[5,10,15,20,30], PT=[100k,250k,500k]

Recall levels is shown in figure 2 and precision is shown in
figure 3.

5. DISCUSSION OF RESULTS

As shown by the low recall (<88%) in figure 2 selecting
only the type based on query entity (baseline) is not enough
to retrieve all relevant artists . (Human,Band) and (Band,
MusicalArtist) are the most frequent non-recalled type pair

"https://github.com/EspenAlbert/
SimilarEntitiesWikidata
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Figure 3: Precision

(query entity type, expected similar type) in Wikidata and
DBpedia. The hierarchy search method increases the recall
in DBpedia by 18.5 %, by finding all the types within a
distance of 2 the method is the best at recalling entities in
DBpedia. Conversely, in Wikidata it is increasing recall with
less than 1% with the cost of a 19% decrease in precision.
This is probably due to the quality of the type-hierarchy:
Wikidata has more than 50 times as many types as DBpe-
dia (38533 vs. 754 ) and the type-hierarchy is more than
twice as deep (15 vs. 7 levels). Human is the largest entity-
type in Wikidata (3 372 432 entities), while DBpedia have
more balanced entity-types (Person entity type has entity
count = 502 661). This helps explain why the baseline has
the highest precision in DBpedia.

The types selected by using property-roles do not suffer the
same way as the hierarchy search and seem to imply that
properties is a better way of selecting comparable types in
Wikidata, whereas the opposite is true in DBpedia. Finally,
using entity requirements proves to work well on both KGs
achieving the best precision and recall in wikidata and the
2nd best recall and precision in DBpedia. However, the spar-
sity of the entity seem to have a great influence on the per-
formance. Of the entities not recalled the average minimum
non-common statements count (domain count less than 250
000) of the pair query entity and expected similar was 9.3
in wikidata (average for dataset is 23.7) and 3.1 in DBpedia
(average for dataset is 10.7).

Two weaknesses of the proposed approaches are: First, the
methods works only for a single KG, having seen the dif-
ference in result, the performance could increase by using
multiple KGs. Secondly, the dataset do not show the per-
formance on entities with a high degree (many statements).
Using the object-role on such entities might cause the selec-
tion of the property-roles to be slow. For further work it
would be interesting to see the benefit of selecting property-
roles based on a machine learning approach such as a deci-
sion tree or a support vector machine. Furthermore, testing
with a dataset having multiple entities as input would be
interesting since CSs are easily combined. Moreover, select-
ing different patterns such as property and value for the CSs
could also increase the performance.

6. CONCLUSION

Freely available knowledge graphs continue to expand, but
making use of such KGs is a challenge due to the big size.
In this work, we proposed four methods that receives an en-
tity as input and constructs a common subsumer which are
used for retrieving relevant information in the KG. These
methods can be applied in conjunction with a search or stan-
dalone to select data based on query entity(s). The methods
were evaluated using the Semantic Artist Similarity dataset
on two popular knowledge graphs Wikidata and DBpedia.
The result showed that selecting entities based on entity
types alone was not enough to retrieve all relevant informa-
tion. Furthermore, using the type-hierarchy works only if
the KG has a well defined type-hierarchy. Moreover, using
an entity’s property-roles worked well for finding relevant
types as well as for finding relevant entities directly, proved
by retrieving 97.6% and 99.5% of the relevant entities while
filtering 98.4% and 93.1% of the entities in DBpedia and
Wikidata.
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Feature generation methods for Knowledge Graphs based
on Common Subsumers and counts

ABSTRACT

Having millions of statements, knowledge graphs (KGs) are
good sources for seeking information about similar entities.
However, their big size makes it challenging to efficiently
gather relevant information for similarity computation. A
breath first search can be too slow and inadequate to find
all the similar entities.

This paper proposes five methods for feature generation that
use two factors: rareness and context. Rareness is deter-
mined by the global feature count where a lower count makes
the features faster and more specific. Context refers to the
statements of the query entity which are used to create fea-
tures. To test the feature generation techniques we used the
Semantic Artists Similarity Dataset on both Wikidata and
DBpedia. The result shows that most features are created
within 1 second and that the recall is 15- and 7 % higher
than a breadth first search of length 2 for Wikidata and
DBpedia.

1. INTRODUCTION

The semantic web and its many knowledge graphs (KGs) de-
scribe millions of entities. Consider using a KG exclusively
to find similar entities. There are primary three steps: Find-
ing RDF statements, creating features from the statements,
and ranking these features. Creating these features are chal-
lenging and much effort is put into creating features [11, 4]
and ranking features [12].

Differently from previous work this paper seeks to create fea-
tures that are independently testable without any informa-
tion source other than a knowledge graph. The assumption
that similar entities share the same properties enables the
features to be generated without performing a deep search
such as a breath first search (BFS) which is a solution widely
adopted in the literature [5, 1, 8, 13].

This paper presents 5 feature generation methods that gen-
erate features from a query entity. Finding the statements
is done by finding all statements where the entity is either
subject or object (e.g. S2 and S1 in figure 1). By gener-
alizing the statements: replacing the subject, property, or

i%‘ Ringo Starr (2632)
7p

[ ﬁ
Ringo Starr
S1 ‘ S2
Yellow Submarine Ringo Starr
(film){Q1131791)
member of (P463)
cast member(P161)
- The Beatles
Ringo Starr (Q1299)

Figure 1: How statements are found from the query
entity

object the features are created (table 1). Finally, by using
the feature counts (table 2) one can rank the features. The
contributions of this paper is:

5 feature generation strategies for a KG tested indepedently
and compared to a BFS using the Semantic Artists Simi-
larity dataset [7] for speed, recall, and information content
on the two knowledge graphs Wikidata and DBpedia. The
result show great performance for recall (achieving nearly
100%) and query time (most features below 1s).

The rest of the paper is structured as follows: Section 2
describes common subsumers and related work for creating
features from a knowledge graph. Section 3 describe the
feature generation methods in detail. Section 4 present the
setup of the two experiments, dataset, and the results. Sec-
tion 5 discuss the results while section 6 concludes the paper

2. RELATED WORK

This section relates the feature generation methods to the
work with common subsumers and presents existing litera-
ture which use similar or identical features.

A common subsumer (CS) is a recent method for finding
commonalities between entities which can be computed in



[ Feature [ Representation (S1 & S2) |
Statement- Q1131791 P161 Q2632
Match Q2632 P463 Q1299
ValueProperty- | Q1131791 P161 7o
Match ?s P463 Q1299
Value- Q1131791 7p 7o
Match ?s 7p Q1299
Type- [a Film] P161 7?0
Match ?s P463 [a RockBand]
Property- ?any P161 7o
RoleMatch ?s P463 7any

Table 1: Representations of S1 & S2 for the five
feature methods . The id variables (QXX, PXXX)
in the representations should be prefixed with wd:
http://www.wikidata.org/entity/

[ Name [ Count S1 | Count S2 |
StatementMatch 2 2
ValuePropertyMatch 10 5
ValueMatch 36 360
TypeMatch 97058 809
PropertyRoleMatch 113258 134277

Table 2: The number of entities satisfying the five
features created from S1 & S2.

polynominal time [3]. It consists of RDF paths which are
RDF statements chained together where each subject, prop-
erty or object can be a blank node. Therefore, the features
in this paper can be seen as RDF paths of length 1. How-
ever, the feature generation methods differ in three ways:
First, creating features from a single entity instead of two
entities. Secondly, creating multiple features per statement.
Thirdly, finding entities from each feature instead of using
the whole CS. (1) allows more flexible input, (2) is used to
find as many relationships as possible, and (3) is used to
rank each feature.

A challenge when creating features is to handle entities with
many connections. One solution limits the generation of fea-
tures to statements where the entity has the subject role [5,
1, 8]. Another solution use stop URIs to filter such entities
[4, 13] .

Finding statements to create features from often involve us-
ing counts. [5, 9, 13, 2] prefer statements with a lower global
count when selecting and ranking statements. Conversely,
most prefer statements with a higher local count.

[1, 8, 6] use the hierarchy structure of a knowledge graph
to compute relevance based on closeness in the hierarchy
and/or the schema cohesion. This implies prioritizing enti-
ties with a short distance in the hierarchy and prioritizing
entities based on the expectancy of a certain entity type
for a property. Also, most of the work above use the dis-
tance from the query entity to rank statements (preferring
a shorter distance)

Gathering information from literal values is rarely utilized,
except in the area of interlinking datasets. [15] offers a set of
methods for different datatypes but require a user to specify
the applicability. [14, 10] interlinks data by using string edit
distance, the first paper also use numeric values.

The feature generation methods in this papers differs mainly
from previous work in three ways: use a single entity to cre-

ate features, do not perform a nested search, and require no
human intervention.

3. METHOD

This section describes the feature generation process and
how it can be used to find similar entities. The feature
generation process consists of three major stages: Finding
statements from a query entity (fig. 1) , creating features
from the statements (tbl. 1), and ranking the features.
Selecting statements from an entity is straightforward: use
the query entity as the subject and object and find all property-
value pairs (fig. 1). S2 is an example statement where Ringo
Starr is the subject and the property-value pair is mem-
ber of-The Beatles. S1 exemplifies the second case where
Ringo Starr is the object and the property-value pair is cast
member-Yellow Submarine.

StatementMatch finds all entities directly connected to the
query entity by using the statement as it is. The rest of the
methods replace some part of the statement with a blank
node. ValuePropertyMatch replaces the query entity role.
It finds all entities connected to the same value by the same
property. For S2 (fig. 1) the feature will find other mem-
bers of the Beatles. Conversly, ValueMatch finds all entities
somehow connected to the Beatles by replacing both the
property and the query entity role (subject).

Domaincount(property)

SharedV alueRatio(property) = Rangecount(property)

Domaincount(property) =unique subjects of property

Rangecount(property) =unique objects of property

o)

TypeMatch finds the type of the property-value and replace
the value with its type (e.g. The Beatles is replaced by rock
band) creating features for any entity that is connect with
the same property to the same type. Again, for S2 (fig.
1) this is all entities who are member of a rock band. How-
ever, the feature is only applicable if two conditions are met.
First, shared value ratio (eq. 1) is less than 10. Secondly,
there is not any single object-value with more than 1000
entities. These two conditions are necessary to avoid using
properties where an object-value has many subjects, such as
gender and country of citizenship.

Lastly, PropertyRoleMatch replaces both the query entity
role and the value of the property-value pair. This creates
features for all entities sharing the same role as the query
entity for the same property, e.g. entities that are member of
something for S2 and entities that are cast member of some-
thing for S1 (fig. 1). Table 2 shows the number of entities
found for the two example statements S1 and S2. State-
mentMatch is the most specific and PropertyRoleMatch is
the least specific. Finding these counts is trivial since all
features are represented as SPARQL statements. Depend-
ing on the application needs this can be performed at query
time or as a pre-processing step.

Finding similar entities from a query entity can be done by
first creating features for all the statements of the query en-
tity and then executing the SPARQL representation of each
feature. Optionally, the counts can be used to only execute
features with a low count. Aggregating the features for each
entity found and weighing the features by a formula based
on the count produce a ranking of similar entities.



4. EVALUATION

This section describes the experiments used to test the fea-
ture generation strategies from the last chapter and the
dataset and knowledge graphs used throughout the experi-
ments.

4.1 Experiments

The first experiment use the feature types to find similar en-
tities to a query entity. The performance of each feature type
is measured by recall, query time, and the average number
of features per entity found (see below). There are two goals
of the experiment: assess the performance of each individual
feature type and assess the importance of high counting fea-
tures. The importance of high counting features are found
by varying a threshold count: ¢, only executing features with
a count less than ¢.

The second experiment combines the features to find similar
entities to a query entity. The performance is compared to
a breath first search (BFS) of length 2 which has a 5 second
query timeout exploring all statements where the entity is
subject or object for Wikidata and DBpedia, except for the
wikipageWikiLink property (DBpedia) where only the state-
ments where the entity has the subject role are explored.
The goal of the evaluation is to analyze the recall compared
to the BF'S and see the impact of not using statements where
the entity is object.

4.2 Dataset

The Semantic Artist Similarity dataset [7] is used through-
out the experiments with Wikidata and DBpedia as the
KGs. The dataset contains 2363 artists where each artist has
a list of the ten most similar artists, we will refer to these ten
artists as the expected similars. It was con- structed by us-
ing the Last.fm API and after mapping the ids to Wikidata
and DBpedia there are 2315 artists with on average 9.87 ex-
pected similars. The experiments assess the relevance of an
entity by using the following premise: An entity is relevant
to an artist if it is one of the expected similars (all other
entities are ir- relevant). In reality, this is a simplification
since there are more than 10 artists similar to an artists.
But using this simplification the performance is measured
in three ways:

1. Speed (query time)
2. Recall (proportion of expected similars found)

3. Relevant information (the number of relationships found
for expected similars )

The experiment is performed on Wikidata and DBpedia (see
! for details on their data).

4.3 Results

The recall, query-time, and relationship count per entity of
experiment 1 for Wikidata are shown in figure: 3, 4, and
5. Furthermore, the result of experiment 2 on DBpedia are
shown in figure: 6, 7, and 8. The recalls from experiment 2
are shown in figure 2.

"https://github.com/EspenAlbert/readknowledgeGraph
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Figure 2: Experiment 2: Recall feature types com-
bined vs. BFS baseline of L=2. (Baselines are inde-
pendent of threshold t)
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5. DISCUSSION OF RESULTS

5.1 Experiment 1

The only feature type independent of the threshold count t
is the StatementMatch. Looking at the recall levels it has
only features for 0.8% of the entities in Wikidata and 21.7%
in DBpedia. This shows that few of the similar entities are
directly connected, especially in Wikidata.

The performance of ValueMatch (VM) and ValueMatch-
Property (VMP) are almost identical, VMP has slightly
lower query time in both KGs. As VMP produce features
for all statements where VMs produce features this was ex-
pected.

The difference in feature count per entity between the KGs
are major. This is due to DBpedia having the "wikiPage Wik-
iLink” property which connects many entities, reflected by
the high feature count for VM and VMP with more than 132
features per entity compared to 3 in Wikidata. Conversly,
the difference is almost none when looking at the feature
count from the PropertyRoleMatch features (6.7 vs. 5.4).
Moreover, the result show that a high feature count increase
the query time indepedent of feature type. Finally, the slow
execution time of the TypeMatch features shows that it is
unsuitable when query time is of importance, using on av-
erage more than 2 minutes when features with less than
100,000 entities is allowed. As TypeMatch is the most ad-
vanced feature (use a blank node with a type instead of only
a blank node) this could indicate that more complex features
will be slower.

5.2 Experiment 2

The average query times in Wikidata and DBpedia of 38 and
68 seconds (not shown in figure) shows that using a normal
BFS to find similar entities can be slow. Although most of
the features except the TypeMatch have a query time less
than 1s, it is hard to tell exactly how much they will reduce
the query time.

The recall level of 85% and 93% also reveals that the BFS
is unable to find all the similar entities. The high recall lev-
els for low counts in DBpedia show a potential for both low
query times and a high recall. Differently, Wikidata needs
a threshold above 20,000 to beat the recall of the baseline.
Note that the high potential for recall improvement in DB-
pedia is partly due to setup of the experiment: not exploring
statements with the wikipageWikiLink property where the
entity is object in DBpedia. This indicates that exploring



exclusively properties where the entity is subject risks loos-
ing information.

6. CONCLUSION

Creating features from a knowledge graph can be useful for
many applications. However, the feature generation process
can be challenging due to the big size of the KG. This paper
investigated 5 feature generation methods based on common
subsumers [3] and counts. With the task of finding similar
artists using the Semantic Artist Similarity dataset [7] and
measuring recall, query time, and feature count of the re-
called entities each method was assessed independently.
The assessment showed that features created from shared
values were the only features able to recall more than 50%
(78.5% and 99% in Wikidata and DBpedia) of the entities
when each feature had a limit of 20,000 entities. Further-
more, the result showed the importance of the KG and its
properties where a single property in DBpedia (wikiPageWik-
iLink) made a huge impact on the feature count.

The second experiment showed how a normal breath first
search is slow and unable to recall all similar entities. More-
over, how selecting only a properties where the entity is sub-
ject can be detrimental to performance. Lastly, the exeri-
ment showed the potential of the feature generation methods
to both increase recall from 85% and 93% to almost 100%
and decrease query time by a factor greater than 10 (3s vs.
38 and 68s) in Wikidata and DBpedia respectively.
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Chapter

Conclusion

This chapter attempts to summarize the main findings in chapter 4, 5, and 6. And suggest
directions for further work

7.1 Summary of Contributions

Chapter 4 bridge the graph left by the theoretical background (chpt. 2) by showing how
the building blocks of the Semantic Web and the principles of linked open data are applied
in DBpedia and Wikidata. DBpedia has a well defined type-hierarchy and its reuse of
vocabularies makes it maybe the most important public knowledge graph in the Semantic
Web. However, since its data depends on bots, the data provenance is questionable and the
user skill for contributing is high.

Differently, Wikidata has a simpler user interface which make contribution easier. More-
over, the data often contain provenance information which makes it reliable. But the reli-
ability has the cost of a more complex data model. Furthermore, Wikidata is at an early
stage shown by the immature type-hierarchy which has cycles and more than 33,000 types.

The lack of clear results in the literature whether type or some other information can be
used as a filter for relevant information motivates the paper from chapter 5. The paper use
a state of the art dataset of similar artists to measure if relevant information can be filtered.
The paper finds that using the type itself is insufficient as it risks filtering away similar
artists. But filtering on the type and its similar types can work if the types are found with
correspondence to the knowledge graphs. Using the type-hierarchy proved to work well in
DBpedia (keeping 98.7% of the similar artists while reducing the information by 88.6%).
Conversely, this did not work well for Wikidata (88.8- and 65.7%) which had a much bet-
ter result by using the property-roles of the artist to select types (97.7- and 82.4%).

The innovative method of using property-roles instead of types performed decently in both
KGs: Keeping 97.6- and 99.5% of the similar artists while reducing the information by
93.1 and 98.4 % in DBpedia and Wikidata respectively.

31



The paper in chapter 6 continues the approach from chapter 5 of testing methods exclu-
sively dependent on the KG (no outside features, e.g. social media, search engines, etc.)
in isolation. This time the paper seek to answer which feature types are able to create
relevant information, how fast are they found, and how much information do they gather.
Again, the similar artist dataset is being used.

The findings show that a breath first search of length 2 with a query timeout of 5s can be
inadequate of finding paths between similar artists as well as being slow. It finds paths
for 93- and 85% of the similar artists in 68- and 38s on average for DBpedia (only paths
were entity is subject for the wikipageWikiLink property) and Wikidata. Alternatively, the
feature generation methods found by generalizing the statements of the queried artist led
to almost 100% of the similar artists sharing features. This seem to imply that generalizing
statements based on a query entity are highly applicable for similarity computation.
Moreover, the paper finds that more complex features comes with a high cost in query time
(e.g. TypeMatch; creating features by finding entities which has the same type in the value
of the statement). The paper also demonstrated how query time increase with the feature
count.

Furthermore, the DBpedia property wikipageWikiLink dominated the proportion of fea-
tures created in DBpedia. It makes finding similar entities from only low counting features
a possibility in DBpedia, a possibility not present in Wikidata (96.5- vs. 20.8% of similar
artists sharing features with less than 1000 entities).

Moreover, the PropertyRoleMatch features showed that artists in DBpedia and Wikipedia
share a similar amount of properties (6.7 and 5.4) with less than 100,000 entities.

Lastly, the features from shared entities (ValuePropertyMatch and ValueMatch) were the
prevailing features with low counts (less than 20,000) (99.1% and 78.5% recall), outper-
forming features from directly linked entities, StatementMatch (21.7% and 0.8% recall).

7.2 Further Work

This thesis has hopefully provided some guidance for using knowledge graphs. The further
work proposed in this section attempts to connect the work in this thesis to the research
questions defined in section 1.3 and propose further work. The questions are reiterated
below to enhance readability.

RQ1: Which features are the most important to compute similarity and/or relatedness be-
tween two or more entities in Wikidata and DBpedia?

RQ2: How can the relationship between two or more given entities be described or la-
beled?

RQ3: How can similar/related entities be found in Wikidata and DBpedia?

RQ4: How can the context from news articles (containing the entity) be used in order to
find similar/related entities?

RQ5: How can the informativeness of the properties of the entities in Wikidata and DB-
pedia be measured?
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Continuing the work of chapter 6 to better answer RQ1 and RQ5 it would be valuable to
count the features created per dataset. Then comparing these feature counts with the global
counts one could find the most important features (RQ1). Furthermore, grouping by the
properties of these features would answer help RQS5.

For describing the relationship between entities (RQ2), aggregating the features (found by
the method in chpt. 6) shared by two or more entities by feature type might prove valuable
in describing their relationship. As an alternative, the types or property-roles found by the
methods in chapter 5 can be used.

Improving the method for finding similar and related entities by also incorporating the
context of a news article is an exciting area for future work (RQ3 and RQ4). By accessing
a dataset of news articles and assuming that the entities in an article are related, one could
use machine learning to learn a connection between words in the article and the features
shared by the entities. This connection between words and features could then be used to
prioritize features that have connecting words present in a query context to find similar or
related entities.
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