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Abstract
This thesis is focused on naming games and other language games and
how they can be used to simulate the emergence of human languages.
One specific naming game model proposed in the literature is reviewed

and examined in detail. It is successfully reimplemented with the intention
of verifying the results presented in the original article. The resulting
implementation serves as a starting point for the development of new
naming game model.
The proposed new model incorporates elements known from evolution-

ary algorithms into the naming game framework. The model is implemen-
ted and used for simulations of language evolution in several scenarios.
The results are discussed in relation to other naming game models and
human language evolution.
The thesis is concluded with a summary of what has been achieved and

an outline of possible areas for future work in the field.
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Sammendrag
Denne masteroppgaven fokuserer på navneleker og andre språkspill, samt
hvordan de kan brukes til å simulere måten menneskelige språk oppstår
på.

Én spesifikk navnelek-modell hentet fra litteraturen blir gjennomgått
og undersøkt i detalj. Den blir re-implementert, med en intensjon om å
kunne verifisere resultatene fra artikkelen hvor den ble beskrevet. Den
resulterende implementasjonen fungerer videre som et utgangspunkt for
en ny navnelek-modell.

Den foreslåtte navnelek-modellen inkorporerer elementer kjent fra evolus-
jonære algoritmer inn i navnelek-rammeverket. Modellen implementeres
og brukes til simuleringer av språkutvikling i flere ulike scenarioer. Res-
ultatene fra den diskuteres i relasjon til andre navnelek-modeller og men-
neskelige språk sin utvikling.

Masteroppgaven avsluttes med en oppsummering av hva som har blitt
oppnådd og noen idéer for fremtidig arbeid i feltet.
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1 Introduction
The field of linguistics is an interesting one — among many others it deals
with questions such as “How did human languages come to be?” and
“What are the main forces behind their evolution?”. Where these research
questions meet traditional computer science, we find computational lin-
guistics.
In computational linguistics the main goal is still the same — revealing

facts about the languages used by humans. But while traditional linguists
do this through thorough study of today’s languages and historical records,
researchers within computational linguistics try to simulate their way to
the conclusions. A more precise explanation on the difference between the
subbranches of linguistics is offered in Section 2.1.
The thesis will look at what has been done within the field of compu-

tational linguistics, and it will delve into one model in particular, later
proposing an extending of the same model.
This chapter provides a brief introduction to the Master’s thesis. It

states the goal of the project and the research questions, it briefly presents
the research method, it lists up the major contributions of the thesis, and
it gives an overview of the general report structure.

1.1 Goals and Research Questions

This section presents the main goal of the project as a whole. It is then fur-
ther elaborated through the partitioning into a number of atomic research
questions.

Goal Exploring in which ways an evolutionary extension of a naming game
model can be used as a simplified model of how languages evolve over
time.
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1 Introduction

The naming game model, which is to be explained later, serves as a
backbone for the entire thesis. It is already known that various naming
game produce an emerging language within a population. In this thesis the
intention is to implement a new model incorporating evolutionary aspects.
It will then be held against the evolutionary process of human languages
to determine to which extent similarities can be found.

Research question 1 Is The Naming Game on Adaptive Weighted Net-
works (NGAWN), proposed by Lipowska and Lipowski (2012), veri-
fiable and reproducible?

Lipowska and Lipowski (2012)’s NGAWN is to be examined. An at-
tempt at a verification of the model will be made by implementing it
based on the authors’ description and comparing the results.

Research question 2 Can an evolutionary model based on NGAWN be
constructed?

With NGAWN as a basis, engineering a new model incorporating various
evolutionary elements will be attempted.

Research question 3 What can be achieved in terms of realistic simula-
tions with an evolutionary model based on NGAWN?

Then the thesis seeks to find out what the results of running simulations
on the model are, and evaluate the model based on the results. Human
language evolution should be looked at when the model is evaluated.

1.2 Research Method
The thesis will search to answer the research questions in a mostly prac-
tical approach. First it closely examines a proposed naming game model
through literature study and implementation, before using that imple-
mentation as a basis for a more complex model. The results of simulations
are then studied and compared to known facts about human language evol-
ution. More details about the experiments can be found in Sections 4.2
and 5.3.

2



1.3 Contributions

1.3 Contributions
The main contributions to the field from this thesis are:

• A verification of the NGAWN model proposed by Lipowska and
Lipowski (2012).

• A new model called The Evolutionary Naming Game (ENG) and a
justification of its setup.

• Extensive experimental results for ENG and an evaluation of it.

1.4 Report Structure
After the Introduction, the report continues with some Background
Theory (Chapter 2). That chapter presents theory relevant to the project.
In Related Work (Chapter 3), research papers this project is based

upon are described. The goal of that chapter is to establish what is the
current state-of-the-art within the field.
Implementing the Naming Game Model on Adaptive Weighted

Networks (Chapter 4) is the first of two chapters covering implementa-
tion. In this chapter one particular model from the literature is examined
and implemented, and the results are commented.
The Evolutionary Naming Game (Chapter 5) covers a new model

made on the basis of the one from Chapter 4. A description of the model
is accompanied by the setup of experiments and results thereof.
Discussion (Chapter 6) discusses what has been achieved and how it

relates to existing literature.
Finally, Conclusion and Future Work (Chapter 7) evaluates the

thesis in relation to the research questions and goal stated in Section 1.1.
It also looks forward and presents some areas of possible further work.
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2 Background Theory
In this chapter background theory which is relevant for understanding the
context of the related work, the experiments and the discussion parts of
this report, namely Chapters 3, 4, 5, 6, and 7, is presented.
A brief introduction to linguistics, with a focus on evolutionary linguist-

ics, computational linguistics and the combination of these two, will be
provided. Some relevant theories will be presented, and it is described
how one can simulate phenomena such as the emergence of language. The
chapter concludes by providing some background material on machine
learning approaches, especially Evolutionary Algorithms (EA).

2.1 Linguistics

Human language — a powerful device vital to the success of our species
— remains one of the unsolved mysteries of science (Knight et al., 2000).
Linguistics is the study of how to solve this mystery.
Linguistics is a broad field, seeing contributions from disciplines as

(seemingly) unrelated as anthropology, neurobiology, psychology and many
others (Steels, 2011). This thesis will almost exclusively concentrate on
the contributions seen from the subbranches of computer science, although
they obviously intervene with discoveries and theories known from other
disciplines. Furthermore, while linguistics deals with phonology (the sounds
in language), morphology (words and their relationships), etymology (the
history of words) and an extensive list of other phenomena, this thesis will
take part in the evolutionary linguists’ search for the origin of language.

2.1.1 Evolutionary Linguistics

It seems clear that there are evolutionary forces driving the development
of language, and that these forces share traits with forces present in other

5



2 Background Theory

areas, e.g., the evolution of species, i.e., Darwinian evolution. However,
answers to what shapes the evolution of languages are still not clear, and
David Premack’s 1986 quote “Human language is an embarrassment for
evolutionary theory” can still be regarded as true (Steels, 2011).

Furthermore, language does not evolve in a vacuum. According to Steels
it is an outcome of three interconnected processes: Biological evolution,
cultural evolution, and social evolution. While the first one establishes
the neurobiological necessities for spoken language, the two others shape
the use and form of language within a population (Steels, 2011).

A central concept in the theory of language learning is the Baldwin ef-
fect, named after the American psychologist James Mark Baldwin (Schil-
hab et al., 2012).

According to Darwinian evolution, learned traits cannot be passed to the
next generation — only genetic attributes can. This is a widely accepted
scientific fact. However, according to Baldwin (1896), cultural learning,
e.g., language, can guide human evolution. Specifically, this means that
if having a cultural-specific trait in one’s genes will be an advantage for a
species, evolution will be steered towards these genetics. This means that
skills that originally had to be learned by each individual can be encoded
in the genes, saving the culture from doing said teaching. It is worth
noting that this principle does not contradict Darwinian evolution in any
way. On the contrary, it can be viewed as an integrated part of Darwin’s
theory.

2.1.2 Simulating the Emergence of Natural Language

To investigate the underlying processes of human language, many research-
ers have worked on various computer simulations of language acquisition,
language development, and similar phenomena in populations. These are
interesting because of their experimental nature — they can provide us
with insight it would be difficult or even impossible to acquire through
more traditional research methods (Nolfi and Mirolli, 2010).

It is, however, challenging to design these simulations in such a way that
they represent a somewhat realistic setting for communication, interaction,
cognitive capacities, and the dynamics in a population. One reason for this
is that human culture and the human brain are too complex to be modeled
in a meaningful way within the scope of such simulations. Another reason

6



2.1 Linguistics

is that many of the mechanisms and principles that make the basis of
human language and the context in which it is used, are largely unknown;
e.g., scientists do not fully understand every single aspect of the brain or
even the parts that are concerned with language or communication.
Since realistic simulations are out of the question, linguists and com-

puter scientists create language games that mimic certain aspects of hu-
man communication. In this kind of simulation one tries to look at com-
munication between agents in a (usually) heavily restricted world following
some rules. A language game is called so because it treats the participants
— speaker and hearer — as players in a game where successful communic-
ation is the goal and certain restrictions in the simulation environment are
the game rules (Routledge and Chapman, 2009). The term was coined by
the Austrian-British philosopher Ludwig Wittgenstein in the early 1950s.
Language games consist of a population of individuals (the agents who

communicate), a context (some environment for the communication to
take place in), and a communicative purpose (a goal) (Steels, 2012). What
such a goal can be naturally varies between different games, but Wittgen-
stein (1953) used as an example a builder (of a house or similar) that
needs to communicate with his assistant, who will be handing stones to
the builder.
One of the most common — and also one of the simplest — types of

language games, is the naming game. It consists of a world populated by
a number of agents alongside a number of objects. The agents’ purpose is
to agree on names for the objects. This can be done in a variety of ways
— ranging from the trivial to the complex.
A simple naming game, as the one described in Steels and Loetzsch

(2012), works in the following way: A number of agents with initially
empty vocabularies inhabit a world with a number of unique objects. For
each dialog in the game, a speaker in the population will try to draw a
hearer’s attention to a specific object by uttering a word — either one
already in his vocabulary or one he invents on the fly. If the hearer is able
to correctly the object, the dialog is a success. The goal of the game is
to over time develop the same vocabularies across agents, and thus have
a high number of dialog successes. This game is explained in detail in
Sections 3.1.1 and 3.1.2.
A game as the one proposed by Steels and Loetzsch above will (if suc-
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2 Background Theory

cessful) develop a set of words and meanings. However, it does not include
any behavior complex enough to create any relation between the words —
there is no grammar. While this does not sound to faithfully represent any
version of the complex human languages we know today, it resembles the
protolanguage described by Bickerton (1990). He writes that the first steps
towards modern languages — the protolanguage — were taken somewhere
between 500,000 and 1.5 million years ago, and that such a protolanguage
is characterized by a lexicon containing a number of concepts, but with
no grammatical elements and no syntax.

However, more complex language games exist, and some of them address
this lack of syntactic structure. For example, van Trijp (2012) looks at a
language game meant for developing case structure among agents, which
is done with quite some success.

2.1.3 Social Structure in Simulations

An important aspect of human culture is the social relations — “no man
is an island”, as written by the English poet John Donne in 1624. These
relations form social networks, a phenomenon that has been studied by
many different scientists in many different contexts (Costa et al., 2011).
With the rise of modern technology such as social media, these networks
continue being an important area of research.

Of course, when simulating language, social relations should not be
ignored, or at least not without a valid reason. It is therefore no surprise
that a great portion of today’s research on agent communications has
a focus on the networks the communications take place in context the
context of. Part of the background for this is that the assumption that
any two agents communicating is equally probable, as in the simple naming
game (Steels and Loetzsch, 2012), is highly unrealistic (Baronchelli et al.,
2006).

There are countless ways to arrange the agent in a social network. Gong
et al. (2004) choose to to implement a model with numerical weights
between the agents, with the weights being manipulated following success-
ful and unsuccessful communication attempts. A similar social network
also serves as the foundation of Lipowska and Lipowski (2012), further
discussed in Section 3.2.1 and Chapter 4.

Social relations do not need to be restricted to a (weighted) network.

8



2.1 Linguistics

One can also introduce social roles, rules governing communication within
the network, etc. One implementation using some of these elements can
be found in Lekvam (2014).

2.1.4 Evolution in Languages

It is an open question whether all the thousands of languages existing
today share the same root or not. But as Bickerton (2007) point out, it
does not necessarily matter. In any case, languages have evolved, split
and died out for a long time, possibly several million years. As should be
obvious, the origins of languages is not something one can hope to obtain
a good understanding of anytime soon. It is easier, an perhaps just as
interesting, to look at the forces and processes behind language evolution
in a smaller time-frame. In a way, one can say that linguists traditionally
work their way backwards: They start with what is known (the present
languages) and make hypotheses for earlier languages based on evidence
and known rules. When using computer simulations, on the other hand,
the starting point is the opposite: One starts with what is given (the
absence of any language) and simulate one’s way forward based on models
and assumptions.

Nevertheless some linguists have speculated about the origin of lan-
guages. Hurford (2003) writes that the proto-language — the imagined
first language among humans — very well may have had a much simpler
structure than today’s languages. For example he writes that there might
not have been any proper names, fewer words with less specific meanings,
less differentiation between syntactic classes such as verb and noun, and
fewer grammatical elements.

This view fits into what is known as the grammaticalization theory: The
theory that grammatical structures originates as words without a gram-
matical function that are used in a specific role often enough to become
an integrated part of the language’s grammar. Thus, the starting point
for languages seems to be a non-syntactic organization, i.e., more of a
collection of words than a syntactic structure.
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2 Background Theory

2.2 Machine Learning Approaches

Traditionally, algorithms used in various computer science branches have
been carefully engineered to represent how the programmers think solu-
tions should be found. This has led to rule-based systems. This approach
has been common within the field of Artificial Intelligence too — with
algorithms such as Minimax or A*. However, another trend has emerged:
Using Machine Learning methods, where the algorithm is not specified
entirely by the programmer, and it can change (and hopefully improve)
over time.

2.2.1 Evolutionary Algorithms

A current trend in Machine Learning is drawing inspiration from biological
processes in nature. A prime example of this is the use of EA.

Methods used by EA are reproduction, mutation, and natural selection,
among others.

Types of EA include genetic programming and evolutionary program-
ming, where the solutions to be found are computer programs set out to
solve specific computational problems. The Genetic Algorithm (GA) is
examined in GA.

While the mechanisms prevalent in GA and EA in general could be ex-
plained in great detail, that will not be done in this thesis, as the work
done in this thesis do not to any particular degree integrate specific tech-
niques know from other EA. The curious reader is recommended to have
a look at Ashlock (2006) for an introduction to the field.

Whether natural selection plays a role in language adaption and evol-
ution is not entirely uncontroversial. Linguists debating this question
can generally be split into two groups: The adaptionists who argue that
natural selection as first described by Darwin is the only way to explain
language, and that evolutionary biology is a highly relevant context to
study language within. On the other hand, the non-adaptionists argue
that language evolution rely on “spandrels” — that language skills did
not evolve as a fitness advantage to its users as much as it evolved as a
side-effect of other skills (Szathmáry, 2010).

Using EA on linguistic problems and hoping to achieve something in
terms of an explanation of human language, inevitably seems to position
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2.2 Machine Learning Approaches

oneself among the adaptionists. However, it fits neatly the trend of relying
on agent-based modeling to study social dynamics, a trend that is also pre-
valent in computational linguistics. The goal of such models is to move the
problem of emergence from the micro level to the macro level, constructing
simple agents modeling a complex phenomenon (Loreto, 2010).

2.2.2 Genetic Algorithms

One of the most well-known EA is the GA. These algorithms operate with
a number of possible problem solutions as individuals in a population.
The goal for the GA is to produce the best solutions, judged by some
fitness measure set by the programmer. To achieve this, the principles of
Darwinian evolution are applied: The fittest solutions reproduce, resulting
in individuals with similar traits as themselves, though random mutations
also occur. When applying this approach to rather large populations over a
span of several generations, impressive and sometimes surprising solutions
can be found.

A typical GA consists of the following steps:

1. Initialization: First a number of random solutions (binary strings
or whatever fits the problem at hand) is generated.

2. Selection: For every generation, a number of solutions/agents are
selected to reproduce. Many different selection strategies exist, but
they all use the fitness function to assert a probability of choosing a
specific agent. The fitness function is a problem-specific measure of
how good a specific solution is. If an exact fitness function is hard
to find, simulations can be used.

3. Genetic operators: When two agents are chosen to produce an
offspring, the offspring should have a mix of the genes of the two
parents. This happens through a two-step process:
a) Crossover: The two solutions are combined by selecting a ran-

dom crossover-point. For example, if the two parent solutions
are “0000” and “1111”, and the crossover-point is chosen to be
between the second and third digit, the new agent can get the
solution “0011”.

11
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b) Mutation: In order find new solutions it is often not enough
to recombine the existing ones. Therefore there is often a given
probability for a mutation. Should this happen, is the most
common strategy to flip a single bit in the representation of
the solution (in case of a binary string).

4. New generation: The newly generated agents take over for the ex-
isting ones, and one goes back to step 2. Whether some old agents
survive and continue to be in the pool or not, vary between imple-
mentations.

5. Termination: If a good enough solution is found, or a pre-defined
number of generations has passed, the algorithm is terminated.

12



3 Related Work
In this chapter a collection of related work within the field will be presen-
ted. This work forms the basis for the research and experiments presented
later in the thesis.

3.1 Naming Games

One of the most common language games is the naming game. The
simplest form of it is described in Section 3.1.1. More complex variants
will be further explored later.

3.1.1 The Simple Naming Game

In Steels and Loetzsch (2012), Luc Steels and Martin Loetzsch describe
a simple naming game which has already been outlined in Section 2.1.2.
Here a more thorough description will follow.
A round in the naming game consists of a speaker trying to draw a

hearer’s attention to a specific object by referring to it in such a manner
that the hearer is able to correctly identify it. Specifically, these points
constitute a round:

1. A speaker, a hearer and an object are selected.

2. The speaker selects the name for this object from his vocabulary and
then utters it.

3. The hearer looks of this name in his vocabulary and identifies which
(if any) object is associated with it.

4. The hearer signals to the speaker which object he has identified.

13
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5. The speaker checks whether this is the correct object. If it is, the
game is a success, and if not, it is a failure.

6. The hearer gets to know the outcome of the game.

The interesting parts in this procedure are the ones involving the agents’
vocabularies. Which words reside there, and why? Steels and Loetzsch
point out that the game is most interesting when the agents start without
any prior vocabulary and have to invent words for the objects as the game
goes on. This can be carried out using a few simple rules:

• If the speaker has no name for the object, he invents a name on the
fly.

• If the hearer does not know the name used by the speaker, the game
is a failure, and the hearer inserts this word in his vocabulary.

• If the hearer signals the wrong object (because the word is used
differently in his vocabulary), the game is a failure, and he associates
the word with the object the speaker meant in his vocabulary.

Note that both homonyms and synonyms can exist — meaning that
in an agent’s vocabulary, a word can be associated with several objects
and an object can be associated with several words, respectively. If a
new association is made, previous associations of this word or object are
not deleted. As a consequence, the game can result in a failure even
when the correct word-object association is in the hearer’s vocabulary, as
he is forced to pick an object among several possible. Another problem
with this straight-forward approach is that it creates far more synonyms
than desirable. In a way, one can say that the game gives each agent
the knowledge of all other agents’ languages instead of creating something
that converges into a single, common language.

Steels and Loetzsch run experiments where they tried out these simple
rules on a small population of ten individuals, placed in a world with
five different objects. The results after five independent runs show that
the number of successful dialogs steadily rises from zero to all within
about 500 dialogs per agent. The authors point out that this means that
the communication systems has the required expressive adequacy — the

14
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evolved language is able to express everything in the world with absolute
precision. However, they also point out that the resulting vocabulary is
not exactly optimal: on average, each object has nearly five synonyms.

3.1.2 The Naming Game With Alignment

The authors Steels and Loetzsch (2012) describe a mechanism designed to
avoid the situation with a too large vocabulary, described in the previous
section, which they call alignment. Specifically, one particular method
known as the lateral inhibition strategy is explained. Using this strategy,
all word-object associations in the vocabulary of an agent are given a
numerical score, initially some σinit. Any time a game results in a success,
both the speaker and the hearer increases the score of the association
between the word and the object used in the game by a fixed constant
δsuccess. After a failed game, the speaker and the hearer both decrease the
score of the used association by a corresponding δfailure. Associations that
reach a score of 0 will reach an inactive state and will not be used again
unless their scores increase again, which can happen if another agent uses
that word.
This approach causes the (active) vocabularies of the agents to decrease

in size and eventually stabilize in a situation with no synonyms or hom-
onyms.
The experiments conducted using this strategy yield the following res-

ults: The communicative successes need substantially less time to reach
100 % with this approach. In addition it can be seen that the size of the
vocabulary actually decreases after the initial phase. It eventually sta-
bilizes at one active name per object, the simulation thus having created
an optimal vocabulary. The authors conclude that this was indeed the
emergent behavior they wanted to achieve, and that alignment based on
the outcome of communication triggered the necessary self-organization.
What the authors call “the Grounded Naming Game” — as opposed to

the “Non-Grounded” variant explained above — utilizes physical, embod-
ied agents and objects, which adds complexity to the task. That path will
not be followed in this thesis. However, it deals with a few other interest-
ing attributes, among others introducing the need to map from a concept
in the mind of an agent to the correct physical object.
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3.2 Social Structure in Experiments

As argued in Section 2.1.3, there is good reason to incorporate social
structure in language experiments. A few articles doing so is presented in
this section.

3.2.1 Naming Games on a Weighted Network

Lipowska and Lipowski (2012) present a naming game based on social
relations implemented as weights between individual agents, called the
The Naming Game on Adaptive Weighted Networks (NGAWN).

The naming game outlined in (Steels and Loetzsch, 2012) is extended
with a numerical weight for each agent-pair. Successful communications
increase this weight, while unsuccessful ones decrease it. Additionally, in
each dialog the speaker has a bias towards picking a hearer with which
it has a high weight value. This simulates the emergence of an internal
social structure in the population.

Lipowska and Lipowski find that while a clear social structure is defined,
the number of languages steadily decreases and even reaches one — i.e.,
all agents share the same language — within some configurations. How-
ever, they are also able to produce configurations where the populations
reach a stable state of several languages co-existing, akin to the way the
human population is split into a number of sub-populations with their own
language.

3.2.2 An Evolutionary Approach to Language Games

In Lipowski and Lipowska (2008), Adam Lipowski and Dorota Lipowska
examine a simulation of a naming game model for a set of communicating
agents.

On the surface, the game lies very close to the different naming games
already discussed in this chapter, with the goal of establishing a common
vocabulary through dialogs between a speaker and a hearer. The model
also incorporates weights for each word in an agent’s vocabulary, similar
to the alignment in Section 3.1.2.

What separates Lipowski and Lipowska’s approach from the plain nam-
ing games, though, is that they simultaneously evolve the population with
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breeding, mutation, and death. That is, they place the language game in
the context of some sort of Evolutionary Algorithms (EA).
The communicative success of an agent does not determine for how long

it survives or whom it will breed with. Its vocabulary does, however, play
a role when the agent has an offspring: The offspring inherits the agent’s
highest scoring word. (At this point it should probably be mentioned that
Lipowski and Lipowska tried to establish a vocabulary for one object only,
though they argue that their approach can be used for larger environments
as well.)
The genetics, however, affect the communication simulation. Each agent

has a learning ability encoded in its genes, which is subject for inheritance
and mutation when the agent is born. This learning ability decides how
the weights of words will be modified following a dialog.
The experiments conducted by the authors show that the population

quickly achieves a high learning rate and a 100 % communicative success.
They also find that when allowing many dialogs and little evolution in a
short span of time, the success rate goes up, followed more slowly by the
learning rate. This means that fast cultural changes guide evolution, a
phenomenon known as the Baldwin effect, explained in Section 2.1.1.
The model is further analyzed in (Lipowska, 2011). Here the author

points out that the speed of cultural changes might be a factor affecting
the evolution of language.
Lekvam et al. (2014) were not able to reproduce all the results from

(Lipowska, 2011). They write that the model was in fact not as robust as
Lipowska argued, and that the parameters need to be monitored carefully
to be able to maintain a stable environment. They were, however, able to
reproduce some of the results, but not with the same parameters as were
used originally.
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4 Implementing the Naming
Game Model on Adaptive
Weighted Networks

The very core of this thesis is the execution of various language experi-
ments. This chapter covers the first half of those experiments, which then
forms a basis for other experiments in Chapter 5.
The Naming Game on Adaptive Weighted Networks (NGAWN), pro-

posed by Lipowska and Lipowski (2012), is implemented. The chapter
begins with a detailed description of the implementation, and follows up
with results from various experiments. Those are compared to the original
results of the Lipowska and Lipowski article. Some concluding remarks
about the significance of said results are left to the general discussion
(Chapter 7).

4.1 Architecture

Although an outline of NGAWN is presented in Section 3.2.1, a more
detailed breakdown of the algorithm, including pseudo-code, is offered in
this section.

P (b) = w(a, b) + ε∑
x

(w(a, x) + ε) (4.1)

Formula 5.1 shows the probability of speaker a choosing hearer b based
on the weights w ( number of dialogs

number of successes).
Algorithm 1 is the starting point of the simulation of a dialog. The

other algorithms presented are called by the main algorithm.
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Algorithm 1 NGAWN, general simulation
Input: agents, a set of agents with vocabularies
Input: dialogs, an array with the number of performed dialogs for each

agent-pair
Input: successes, an array with the number of successful dialogs for each

agent-pair
Returns: a boolean saying if the game was a success or not

1: speaker ← randomly drawn agent from agents
2: hearer ← choose_hearer(speaker, agents, dialogs, successes)
3: word← speak(speaker)
4: success← listen(hearer, word)
5: if success then
6: speaker.retain_only(word)
7: hearer.retain_only(word)
8: else
9: hearer.vocabulary.add_word(word)

10: end if
11: dialogs[speaker][hearer]← dialogs[speaker][hearer] + 1
12: if success then
13: successes[speaker][hearer]← successes[speaker][hearer] + 1
14: end if
15: return success
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Algorithm 2 The choose_hearer function of NGAWN
Input: speaker, a chosen speaker for the dialog
Input: agents, a set of agents with vocabularies
Input: dialogs, an array with the number of performed dialogs for each

agent-pair
Input: successes, an array with the number of successful dialogs for each

agent-pair
Returns: a hearer for the dialog from agents

1: weights← sum of successes[speaker][agent]/dialogs[speaker][agent]
for all agent in agents

2: random← a random real number between 0 and weights
3: temp← 0
4: for all agent 6= speaker in agents do
5: success_ratio = successes[speaker][agent]/dialogs[speaker][agent]
6: temp← temp+ success_ratio+ ε
7: if temp > random then
8: return agent
9: end if

10: end for

Algorithm 3 The speak function of NGAWN
Input: speaker, an agent to utter a word
Returns: a word to be used in the dialog

1: if speaker.vocabulary is empty then
2: # Add randomly generated word
3: speaker.vocabulary.add_word(new_word)
4: end if
5: return randomly chosen word from speaker.vocabulary
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Algorithm 4 The listen function of NGAWN
Input: hearer, an agent to hear a word
Input: word, an uttered word
Returns: a boolean saying if the hearer understood the word or not

1: if hearer.vocabulary.contains(word) then
2: return true
3: else
4: return false
5: end if

4.2 Experimental Setup
The main goal for the experiments conducted in this chapter is to repro-
duce many enough of Lipowska and Lipowski (2012)’s results to be able
to verify them.

In order to do that, the same configurations, including number of agents
(N) and parameter for selecting a hearer (ε) has been used. In some
cases the number of generations (t) has been reduced, but not where any
important changes happen in the later stages of the original results.

The results presented in Section 4.3 are:

• The number of languages L, calculated for ε = 10−4.

• The number of languages L, calculated for ε = 10−5.

• The success rate s, calculated for Nε2 = 10−5.

• The number of languages L, calculated for Nε2 = 10−5.

• The number of languages relative to the population size, L/N , cal-
culated for Nε2 = 10−5.

• The share of agents using the most common language, Nd/N , cal-
culated for Nε2 = 10−5.

4.3 Results
As explained above, in Lipowska and Lipowski (2012)’s naming game,
most agents initially invent a likely unique word. Therefore we say that
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L The number of languages in the population
N The number of agents in the population
Nd The number of agents using the most popular word
t The number of generations simulated
ε Parameter used when speaker selects a hearera

s The communicative success rateb

aA larger ε means more variance, i.e., higher chance of choosing hearers with which
the speaker has an unsuccessful communicative history (low relational weight). For
the formula, see Formula 4.1.

bThe share of successful dialogs.

Table 4.1: Explanation of the parameters in Lipowska and Lipowski’s ex-
periments.

each of them have their own language. As the game progresses, some
agents discard their own language and adapt that of another agent, so
that the total number of languages is reduced. In the first experiments
with this game, it is examined how the number of languages L present in
the population develops over time t, for different population sizes N . One
time-step represents one generation in the simulation. Each generation
involves N dialogs with randomly chosen agents, meaning that each agents
will on average participate in two dialogs per generation, as either speaker
or hearer.
All experimental results presented are based on the average of ten in-

dependent runs, which should be enough to be able to obtain results with
a relatively small margin of error. Lipowska and Lipowski also present
the average of several runs in their graphs, but the exact number is not
specified in their article.
The implementations have been as faithful to the descriptions in Lipowska

and Lipowski (2012) as possible, in the way interpreted and shown in Sec-
tion 4.1. The experiments have been conducted using Java1, a relatively
fast programming language allowing for the simulation a large amount of
games in a short time. Below the individual results obtained are discussed
in relation to the original research.
Figures 4.1 and 4.2 show how the results obtained from the experiments

1https://www.oracle.com/java/index.html
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(a) Results from Lipowska and Lipowski (2012). Re-
printed with permission.

(b) Results from this thesis’s experiments.

Figure 4.1: The time dependency of the number of languages L, calculated
for ε = 10−4 and for various numbers of agents N (logarithmic
scale).
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(a) Results from Lipowska and Lipowski (2012). Re-
printed with permission.

(b) Results from this thesis’s experiments.

Figure 4.2: The time dependency of the number of languages L, calculated
for ε = 10−5 and for various numbers of agents N (logarithmic
scale).
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in this thesis differ from Lipowska and Lipowski’s results (note the dif-
ferent span in the number of generations). We see a very similar trend
among the two sets of experiments.

Figure 4.3 shows how the success rate depends on the time (number of
generations) when the product of the population size and the squared ε
is kept constant. The general trend again seems very similar. The only
noticeable difference is that the results are not identical in raw numbers:
For example, for N = 8000, in Lipowska and Lipowski’s research s drops
to 0.55− 0.6 at its lowest (after the initial phase), while it in this thesis’s
research drops well under 0.50. It cannot easily be established whether
this is due to random fluctuations in the individual runs the graphs are
based on or differences in the implementations.

Figure 4.4 shows how the number of languages depends on the time
(number of generations) when the product of the population size and the
squared ε is kept constant. Again, there are very few differences between
the two graphs.

Figure 4.5 shows how the relative number of languages (the number of
languages relative to the population size) depends on the time (number of
generations) when the product of the population size and the squared ε is
kept constant. The graphs are more or less identical.
Figure 4.6 compares how the share of the agents using the most common

languages depends on the time (number of generations) when the product
of the population size and the squared ε is kept constant. There are no
notable differences to the results published by Lipowska and Lipowski.
A fact that has not been mentioned above, but is persistent across most

of the plots, is that the implementations of this thesis show a steep increase
in L for the first few generations. This can be explained easily: As the
speaker in every dialog is drawn randomly, it will take a few generations
until all agents have participated in at least one dialog and expanded their
vocabulary to the size of 1 (initially all vocabularies are empty). As the
graphs of Lipowska and Lipowski (2012) all begin with t = 10, this effect
cannot be seen in their work, but there is no reason to believe it is not
present.
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4.3 Results

(a) Results from Lipowska and Lipowski (2012). Re-
printed with permission.

(b) Results from this thesis’s experiments.

Figure 4.3: The time dependency of the success rate s, calculated for
Nε2 = 10−5 and for various numbers of agents N . Left: Res-
ults from Lipowska and Lipowski (2012)
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(a) Results from Lipowska and Lipowski (2012). Re-
printed with permission.

(b) Results from this thesis’s experiments.

Figure 4.4: The time dependency of the number of languages L, calcu-
lated for Nε2 = 10−5 and for various numbers of agents N
(logarithmic scale).
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(a) Results from Lipowska and Lipowski (2012). Re-
printed with permission.

(b) Results from this thesis’s experiments.

Figure 4.5: The time dependency of the number of languages relative to
the population size, L/N , calculated for Nε2 = 10−5 and for
various numbers of agents N .
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(a) Results from Lipowska and Lipowski (2012). Re-
printed with permission.

(b) Results from this thesis’s experiments.

Figure 4.6: The time dependency of the share of agents using the most
common language, Nd/N , calculated for Nε2 = 10−5 and for
various numbers of agents N .
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5 The Evolutionary Naming
Game

In this chapter a new model is presented and examined. It has been
given the name The Evolutionary Naming Game (ENG) for simplicity,
but a more descriptive name could be The Naming Game on Adaptive
Weighted Networks, in an Evolutionary, Multi-Conceptual Setting.
These experiments differ from the ones presented in Chapter 4 in the

following manner:

• The pool of agents is renewed for each generation. This is done
through reproduction: A successful communication results in the
speaker and the hearer producing an offspring. When the number
of generated children reaches the size of the agent pool, the children
replace the existing agents and a new generation begins.

• An agent adopts the full vocabulary of its two parents, possibly with
a small change (“mutation”).

• A newborn is given a social relation to other children and adult
agents. This is done by the child “inheriting” the average number
of dialogs and successful communications from its parents, between
them and every other agent.

• The game is not restricted to words for one concept only. A few dif-
ferent setups regarding the number of existing concepts were tested.
Each communication attempt involves one randomly chosen concept.

While Section 5.1 offers a much more detailed presentation of the model
than the above bullet points, Section 5.2 presents the motivation for why
the specifics of the model have been decided on. Section 5.3 describes
the experimental setup. An simple example of a single experiment run is
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presented in Section 5.4. The initial experimental results are presented,
mostly in tables and plots, in Section 5.5, along with a brief discussion.
Some more experiment results are presented in Section 5.6, where the
impact of the different parameters in simulation is examined. The main
discussion of the results and how they compare to The Naming Game
on Adaptive Weighted Networks (NGAWN) from Chapter 4 is placed in
Chapter 6.

5.1 Architecture
This section will describe the details of the implementation. An outline
can be found above.

NGAWN (Lipowska and Lipowski, 2012) serves as a basis for these
experiments. That means that they are conducted within a population of
agents trying to establish a common vocabulary, i.e., a traditional naming-
game setting.

As opposed to NGAWN, there can be varying number of concepts in
the environment. Several configurations will be tested.

1. N agents are generated. These agents have empty an vocabulary for
all existing concepts.

2. Until N children are generated, a random speaker is chosen for a
dialog.

3. A hearer is chosen for the dialog, based on Formula 5.1.

4. The speaker utters a randomly chosen word from his vocabulary for
a randomly chosen concept.

5. If the speaker has no words for the concept, a new word is generated.

6. Whether the hearer has the word in its vocabulary determines if the
dialog is a success or not.

7. If the dialog is a failure, the hearer adds the word to its vocabulary.

8. If the dialog is a success, both the speaker and the hearer retain only
the spoken word in their vocabularies.
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9. In case of a successful dialog, a child is also generated, with the
speaker and the hearer as parents.

10. The child inherits all words for all concepts from its parents, but
for each word there is a given probability of a changed word — the
equivalent of a mutation.

11. The child also inherits the number of dialogs and successes for all
other existing agents from its parents, further elaborated below.

12. WhenN children are generated, the children replace the adult agents
and a new generation begins. The game runs for t generations.

P (b) = w(a, b) + ε∑
x

(w(a, x) + ε) (5.1)

Formula 5.1 shows the probability of speaker a choosing hearer b based
on the weights w ( number of dialogs

number of successes). (The formula is identical to For-
mula 4.1, but is repeated for the sake of convenience.)
A note on the inheritance of number of dialogs and successes (social

weights): Every time a new agent is generated, its number of dialogs
with another agent a is set to the average number of dialogs between the
agent’s two parents and a. The same happens for the number of success-
ful dialogs. This processes is repeated for all existing agents, including
children generated up until this point. As all weights are symmetric, i.e.,
w(a, b) = w(b, a), this means that all children eventually will have weights
between each other in place. The reason it has to be done for the old
generation of agents as well, is for these agent to have a relation to the
child in question in case they themselves become parents later in the gen-
eration, and thus need to pass on their weights for the child (and all other
agents) to their own child.
A detailed breakdown of the procedures is offered as pseudo-code. Al-

gorithm 5 is the starting point of the simulation of a dialog. The other
algorithms presented are called by the main algorithm. Note that Al-
gorithms 7, 8 and 9 are mostly identical to their counterparts for NGAWN,
presented in Section 4.1.
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Algorithm 5 ENG, general simulation
Input: t, the number of generations
Input: N , the number of agents
Input: c, the number of concepts

1: agents← a set of agents with empty vocabularies, of size N
2: concepts← a set of concepts of size c
3: dialogs ← an array with the number of performed dialogs for each

agent-pair
4: successes ← an array with the number of successful dialogs for each

agent-pair
5: for t generations do
6: children← an initially empty set of agents
7: while children.size < N do
8: children ← game(agents, dialogs, successes, concepts,

children)
9: end while

10: agents← children
11: end for

5.2 Motivation and Justification

The changes from NGAWN to ENG are not arbitrary, and a justification
of them is attempted in this section.

According to Bickerton (2008), one of the main factors holding research
on language evolution back, is the large differences between human lan-
guages and existing computational models. ENG is not by any means
intended to serve the role as a realistic framework for human language
evolution, but some steps are taken to get closer to how language works in
human societies. Many aspects are still unrealistic: For example it often
take quite some more than one successful communication for two people
to have child.

As opposed to NGAWN, ENG takes place in an evolutionary setting.
The thought behind this is that in order to look at language evolution
in a way relating to human languages’ evolution, one has to do so in an
evolutionary setting. One of the most defining features of ENG is the
replacement of the entire agent pool for every generation. Evolution in
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Algorithm 6 The game function of ENG
Input: agents, a set of agents with vocabularies
Input: dialogs, an array with the number of performed dialogs for each

agent-pair
Input: successes, an array with the number of successful dialogs for each

agent-pair
Input: concepts, a set of concepts in the world
Input: children, a set of children generated until now
Returns: a boolean saying if the game was a success or not

1: concept← randomly drawn concept from concepts
2: speaker ← randomly drawn agent from agents
3: hearer ← choose_hearer(speaker, agents, dialogs, successes)
4: word← speak(speaker, concept)
5: success← listen(hearer, word, concept)
6: if success then
7: child← produce_offspring(parents, concepts, agents, children)
8: children.add(child)
9: speaker.retain_only(word, concept)

10: hearer.retain_only(word, concept)
11: else
12: hearer.vocabulary[concept].add_word(word)
13: end if
14: dialogs[speaker][hearer]← dialogs[speaker][hearer] + 1
15: if success then
16: successes[speaker][hearer]← successes[speaker][hearer] + 1
17: end if
18: return success

human languages is largely driven by the replacement of generations, as
there exists evidence supporting most language learning and changes in
an individual’s vocabulary being done at an early age, often referred to as
“the critical period” or “the window of opportunity” (Pinker, 1994). The
replacement is still a simplification, of course, as there at any time is more
than one generation inhabiting the Earth.
The agents inherit (or “learn”) both their parents’ entire vocabulary.

Other arrangements were considered, but this one stood out as the most
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Algorithm 7 The choose_hearer function of ENG
Input: speaker, a chosen speaker for the dialog
Input: agents, a set of agents with vocabularies
Input: dialogs, an array with the number of performed dialogs for each

agent-pair
Input: successes, an array with the number of successful dialogs for each

agent-pair
Returns: a hearer for the dialog from agents

1: weights← sum of successes[speaker][agent]/dialogs[speaker][agent]
for all agent in agents

2: random← a random real number between 0 and weights
3: temp← 0
4: for all agent 6= speaker in agents do
5: success_ratio = successes[speaker][agent]/dialogs[speaker][agent]
6: temp← temp+ successratio+ ε
7: if temp > random then
8: return agent
9: end if

10: end for

Algorithm 8 The speak function of ENG
Input: speaker, an agent to utter a word
Input: concept, the concept to reference
Returns: a word to be used in the dialog

1: if speaker.vocabulary[concept] is empty then
2: speaker.vocabulary[concept].add_word(new_word) #

Randomly generated word
3: end if
4: return randomly chosen word from speaker.vocabulary[concept]

sensible. Human children who grow up with parents speaking different
languages, indeed do learn both their parents’ languages at a native level
(Paradowski and Bator, 2016). The approach of this model is thus in line
with reality.

The vocabularies are as mentioned above subject to mutation. Spe-
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Algorithm 9 The listen function of ENG
Input: hearer, an agent to hear a word
Input: word, an uttered word
Input: concept, the concept referenced
Returns: a boolean saying if the hearer understood the word or not

1: if hearer.vocabulary[concept].contains(word) then
2: return true
3: else
4: return false
5: end if

cifically, for each word that is inherited, there is a fixed probability that a
single letter in the word will be altered, e.g., ADELE may become IDELE.
Such changes do happen at the societal level in reality, and they must ne-
cessarily originate from the individual level. However, in the real world
which “mutations” happen, or at least which ones get spread in the pop-
ulation, is a phenomenon governed by what is called sound laws (Anttila,
1989).
When it was initially decided that the agent pool would be replaced

regularly, no attempt to transfer the social relations between generations
was intended. However, this approach undermines the whole point of
developing different social weights between the agents: If these weights do
not get the time to develop properly, but are instead reset as soon as a
number of dialogs are completed, communities are not given the chance to
form, and one of the most interesting parts of NGAWN is removed. Thus,
one needs to somehow maintain some social relations across a number of
generations. Now how is this done in the real world? Our world consist
of billions of people. There are indeed social relations governing the who
communicates with whom — the people one person speaks to during a
day heavily depends on that person’s acquaintances, i.e., his or her social
relations. These are in turn not arbitrary. It can be argued that they
ultimately often stem from the parents, who introduce their child to many
of their acquaintances, as well as raising it into a specific community at a
specific physical location.
A trivial solution of how to pass on social weights through generations

could be to simply add the weights from the two parents for each agent
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Algorithm 10 The produce_offspring function of ENG
Input: parents, a list of the two agents producing an offspring
Input: concepts, a list of the concepts in the simulation
Input: agents, a list of adult agents
Input: children, a list of generated children
Returns: child, the new agent generated

1: child← a new agent
2: for all concept in concepts do
3: for all word in (agents[1].vocabulary[concept] ∪

agents[2].vocabulary[concept]) do
4: r ← a random real number between 0 and 1
5: if r < ρ then
6: word← word with one letter modified
7: end if # ρ is the mutation rate
8: child.vocabulary.add_word(concept, word)
9: end for

10: end for
11: for all agent in (agents ∪ children) do
12: dialogs[child][agent] ← average of dialogs[parents[1]][agent] and

dialogs[parents[2]][agent]
13: successes[child][agent] ← average of successes[parents[1]][agent]

and successes[parents[2]][agent]
14: end for
15: return child

in the world. However, if an average weight (or more precisely, either
a number of dialogs or a number of successes) is n, a child of the next
generation could count on getting weights of about 2n. Their children
would in turn obtain weights of 4n, on average. The pattern is, of course,
average weights in generation i of ni. Anyone just slightly familiar with
computational complexity will notice that this is a number that in the
course of a couple dozen generations is unmanageable. As the average
weights thus need to be kept relatively stable, the approach explained in
Section 5.1 was decided on. Empirical data show that the average size of
the weights do not vary a lot as generations pass by, but a slight increase
can be seen. This is natural, as any dialog, successful or not, will increase
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the number of attempted dialogs, and, possibly, the number of successful
ones.
The last change that is made from NGAWN is that the world has been

extended from one consisting of a single object to one consisting of any
number of objects (though a small number has still been used in the simu-
lations). Loreto et al. (2011) write that the naming game can be reduced
to one with one concept only without the loss of generality. The reason
for this is that as long as the number of available words is large enough
to make the chance homonyms (the same word for two different concepts)
negligible, the hearer does not have to guess which object the speaker is
referring to — if he has it in his vocabulary, the game is a success. The
setup of ENG would not offer any increased complexity in this respect even
if homonyms were likely, seeing that the agent only checks its vocabulary
for the object in question.
When the simulations nevertheless are done in a multi-concept environ-

ment, this is because it is still interesting to see the effects it has on the
model. They turn out to be substantial. It must, however, be noted that
in terms of realism, an increase from one to for example five concepts is
not very significant, keeping in mind that real languages consist of words
for thousands of different objects and concepts.

5.3 Experimental Setup
The goal of the research can be summarized as follows:

• Test whether a more realistic model is suitable for research, and if
so:

• Find whether the model results in one or several co-existing language
communities.

• Test different combinations of parameters to discover their effects.

• Determine if any configuration of the model compares to aspects of
human language evolution.

All results are plotted on the basis of averaged results from nine inde-
pendent runs, to avoid issues with unlikely results from single runs.
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L The number of languages in the population
N The number of agents in the population
Ni The number of agents using the ith most popular word
t The number of generations simulated
ε Parameter used when speaker selects a hearera.
s The communicative success rateb

c The number of concepts
ρ The mutation rate when an agent learns from its parents

aA larger ε means more variance, i.e., higher chance of choosing hearers with which
the speaker has an unsuccessful communicative history (low relational weight). For
the formula, see Forumla 5.1

bThe share of successful dialogs.

Table 5.1: Explanation of the parameters in the ENG experiments.

Table 5.1 explains parameters and symbols used in this and following
sections of the chapter.

The initial experiments of Section 5.5 were done on a total of 10 con-
figurations, presented in Table 5.2. As can read from the table, these
experiments focus on different values of N and c. r and ε are held con-
stant, at 0.03 and

√
10−5

N , respectively. Section 5.6 will focus on the impact
of different values of these parameters.

An overview of the experiments that were conducted can be found in
Table 5.3. Each references which figure a specific plot for a specific con-
figuration (using the numbering from Table 5.2) can be found.

5.4 An Example

To further clarify what happens in the course of a simulation, an example
will be presented. The data stems from one run with the following para-
meters:
N = 10, c = 2, ε =

√
10−5

N = 10−3, ρ = 0.03.
N is kept smaller than in the other experiments to make it easy to track

the changes, as well as keeping the size of the example within the scope
of what is practical to present in this format.

40



5.4 An Example

Configuration N c

#1 20 1
#2 100 1
#3 200 1
#4 500 1
#5 100 2
#6 200 2
#7 500 2
#8 100 5
#9 200 5
#10 500 5

Table 5.2: The configurations used in the ENG experiments.

Configuration L(t) Ni(t)a s(t) SWb NGc

#1 5.1 5.4 5.14 5.17 5.20
#2 5.1 5.5 5.14 5.17 5.21
#3 5.1 5.6 5.14 5.17 5.22
#4 5.1 5.7 5.14 5.17 5.23
#5 5.2 5.8 5.15 5.18 5.24
#6 5.2 5.9 5.15 5.18 5.25
#7 5.2 5.10 5.15 5.18 5.26
#8 5.3 5.11 5.16 5.19 5.27
#9 5.3 5.12 5.16 5.19 5.28

#10 5.3 5.13 5.16 5.19 5.29
at = 1, 2, 3.
bPercentile diagrams of social weights. Further explained in Section 5.5.4.
c(Social) network graphs.

Table 5.3: Figure reference for Section 5.5.
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# Agents Weight C Vocab A Vocab B Word S
1 7, 3 0

0 = 0 1 – – RIKYC N
2 10, 7 0

0 = 0 2 – – FOMOP N
18 6, 5 0

1 = 0 1 JISAH JISAH JISAH Y
34 7, 2 1

3 = 0.33 1 POTOT
RIKYC
JALIQ

POTOT
JISAH

JALIQ N

64 6, 5 7
11 = 0.64 2 NEFUQ

SAJAJ
TUNYV

NEFUQ NEFUQ Y

Table 5.4: Data for a selection of dialogs in ENG, generation 1.

# Agents Weight C Vocab A Vocab B Word S
1 6, 8 1.44

2.06 = 0.65 1 POTOT
RIKYC
JISAH

RIKYC
JISAH

POTOT N

2 4, 9 1.59
2.47 = 0.65 2 NEFUQ NEFUQ NEFUQ Y

5 5, 8 1.56
2.50 = 0.63 2 NEFUQ NEFUQ NEFUQ Y

9 6, 2 1.44
2.22 = 0.65 1 POTOT

RIKYC
JISAH

JISAH RIKYQ N

12 3, 4 1.59
2.47 = 0.65 2 NEFUQ NEFUQ NEFUQ Y

Table 5.5: Data for a selection of dialogs in ENG, generation 3.

Tables 5.4, 5.5, 5.6, and 5.7 show a selection of the performed dialogs
in the generations 1, 3, 20, and 100, respectively. Agents is the two agents
in question — speaker and hearer, respectively. Weight is the number of
successes divided by the number of dialogs, i.e., the social weight. C is
the chosen concept. Vocab A and Vocab B are the vocabularies for the
chosen concept for the speaker and the hearer, respectively. Word is the
word uttered. S denotes whether the dialog was successful (Y) or not (N).
Table 5.8 shows key data for a selection of the generations. Dialogs is

the total number of dialogs in the generation. Successes is the number
of those that were successful. This number corresponds to N , because a
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5.4 An Example

# Agents Weight C Vocab A Vocab B Word S
1 8, 9 1.31

1.43 = 0.92 1 JISAH JOSAH
JISAH

JISAH Y

2 8, 3 1.48
1.62 = 0.92 2 NEFUQ NEFUQ NEFUQ Y

4 4, 6 1.80
1.95 = 0.92 1 JISAH JISAH JISAH Y

7 7, 3 1.60
1.75 = 0.91 2 NEFUQ NEFUQ NEFUQ Y

10 9, 1 2.33
2.46 = 0.95 2 NEFUQ NEFUQ

NEFUG
NEFUQ Y

Table 5.6: Data for a selection of dialogs in ENG, generation 20.

# Agents Weight C Vocab A Vocab B Word S
1 1, 7 1.66

1.69 = 0.99 1 JISAH JISAH JISAH Y
2 10, 7 1.54

1.58 = 0.98 2 NEFUQ NEFUQ
NOFUQ
NEXUQ
NENUQ
NEXUF
FEFUQ

NEFUQ Y

6 9, 6 2.11
2.13 = 0.99 2 NEFUQ

NOFUQ
JEFUQ
NEXUQ
NENUQ
NEXUF
FEFUQ

NEFUQ
NOFUQ
NEXUQ
NENUQ
NEXUF
FEFUQ

FEFUQ Y

9 3, 6 1.72
1.74 = 0.99 2 NEFUQ

NOFUQ
NEXUQ
NENUQ
NEXUF
FEFUQ

FEFUQ NOFUQ N

11 7, 2 2.66
2.69 = 0.99 1 JISAH JISAH JISAH Y

Table 5.7: Data for a selection of dialogs in ENG, generation 100.
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# Dialogs Successes Words 1 Words 2
1 64 10 6 9
2 14 10 3 2
3 12 10 5 2
4 12 10 5 1
20 10 10 1 2
50 13 10 3 3

100 11 10 1 7

Table 5.8: Data for a selection of generations in ENG.

generation is finished when N children are generation, and a new child is
generated for each successful dialog. Words 1 and Words 2 is the total
number of words existing for concepts 1 and 2, respectively.
This small example will not be analyzed in any detail, but a few com-

ments can be made:
The number of dialogs and successes between the agent-pairs does not

hold any intuitive meaning after the first generation is completed. The
reason for this, of course, is that when a new child is generated, it inherits
the average number of dialogs and successes for each other agent from its
parents. For a justification of this process, see Section 5.2.
The effects of mutation can be seen clearly. The word NEFUQ seems to

have been the subject of particularly many mutations, with some agents
having as many as seven variations of it in their vocabularies.
All aspects of the example above are not necessarily representative for

simulations with other parameters, e.g., a higher number of agents. For
example it can be seen that in this example the success rate quickly ap-
proaches 1, surpassing 0.7 already in the second generation.

5.5 Initial Results

This section presents the results from the experiments mentioned in Table 5.2.
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5.5 Initial Results

Figure 5.1: L(t) in ENG. c = 1, ε =
√

10−5

N . Logarithmic scale.

5.5.1 Number of Languages in Population

The first set of results that is examined is the number of languages L in
the population as a whole, as a function of the time (number of genera-
tions), t. More specifically, all words that appear in at least one agent’s
vocabulary are counted. In the scenarios with more than one concept, the
number of words is only counted across a single concept. While counting
all combinations of words across all concepts would be interesting, and
perhaps a more realistic measurement of the number of “languages”, it is
highly impractical — with the variations offered by the configurations used
in these experiments the number of permutations would be enormous.
Figures 5.1, 5.2 and 5.3 compare L(t) for four different choices of N .
For a small number of concepts and agents, L relatively quickly con-

verges towards 1. Because of random mutations between the generations
it, however, never stabilizes at a single language.
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Figure 5.2: L(t) in ENG. c = 2, ε =
√

10−5

N . Logarithmic scale.
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Figure 5.3: L(t) in ENG. c = 5, ε =
√

10−5

N . Logarithmic scale.
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Figure 5.4: Ni(t) in ENG. N = 20, c = 1, ε =
√

10−5

N , i = 1, 2, 3.

For a large number of concepts (five), L grows and quickly reaches very
high values. E.g., with c = 5 and N = 500, there are more than 100,000
unique words in the simulation after 100 generations. This means that
each agent on average knows 2000 unique synonyms for a single concept!
Simulating this scenario for 1000 generations is simply not computation-
ally feasible, as the vocabularies continue to grow.

5.5.2 Popularity of Most Used Languages

This section features plots showing the popularity Ni of the three most
used languages (i = 1, 2, 3), as a function of the number of generations
t. This means that the frequencies of all words in the population are
found, and the number of agents having each of those in their vocabulary
is counted. Only occurrences across a single concept are plotted.
Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 each show

Ni(t) for a specific choice of N and c.
When the world consists of one and two concepts, eventually nearly

100 % of the agents have the most common word in their vocabularies.
This trend is clear for all N , but the greater the number of agents, the
more generations it takes.
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Figure 5.5: Ni(t) in ENG. N = 100, c = 1, ε =
√

10−5

N , i = 1, 2, 3.

Figure 5.6: Ni(t) in ENG. N = 200, c = 1, ε =
√

10−5

N , i = 1, 2, 3.
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Figure 5.7: Ni(t) in ENG. N = 500, c = 1, ε =
√

10−5

N , i = 1, 2, 3.

Figure 5.8: Ni(t) in ENG. N = 100, c = 2, ε =
√

10−5

N , i = 1, 2, 3.

50



5.5 Initial Results

Figure 5.9: Ni(t) in ENG. N = 200, c = 2, ε =
√

10−5

N , i = 1, 2, 3.

Figure 5.10: Ni(t) in ENG. N = 500, c = 2, ε =
√

10−5

N , i = 1, 2, 3.
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Figure 5.11: Ni(t) in ENG. N = 100, c = 5, ε =
√

10−5

N , i = 1, 2, 3.

Figure 5.12: Ni(t) in ENG. N = 200, c = 5, ε =
√

10−5

N , i = 1, 2, 3.
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Figure 5.13: Ni(t) in ENG. N = 500, c = 5, ε =
√

10−5

N , i = 1, 2, 3.

When c = 5, no word successfully makes its way into the vocabulary of
more than at most 30 % of the agents. There is no considerable emergence
of one word gaining popularity on behalf of others in these plots.

5.5.3 Success Rate

In this section the success rate s as a function of the number of generations
t is examined. The definition of the success rate is simply the share of
successful dialogs among all dialogs.
The results are depicted in Figures 5.14, 5.15 and 5.16. Each of them

compare s(t) for a varying number of agents N .
As can be seen in the figures, in every configuration involving 1 or

2 concepts s almost immediately reaches 1, meaning that practically all
dialogs are successful. The smaller the N , the more variance there seems
to be. This is most likely due to the fact that a single mutated word,
which will almost always lead to a failed dialog (but could obviously lead
to successful ones later on, when other agents have learned the mutated
version of the word), having a greater relative impact when the population
and total number of dialogs is smaller.
The last figure shows the situation when there are 5 concepts in the
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Figure 5.14: s(t) in ENG. c = 1, ε =
√

10−5

N .
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Figure 5.15: s(t) in ENG. c = 2, ε =
√

10−5

N .
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Figure 5.16: s(t) in ENG. c = 5, ε =
√

10−5

N .
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Figure 5.17: Percentile diagram showing social weights in ENG. c = 1,
t = 1000.

world. The population size has no considerable impact here, as all con-
figurations initially reach a success rate of ∼ 0.7, which quickly starts
dropping, reaching a level where less than half of the dialogs are success-
ful.

5.5.4 Social Weights

The figures in this section show what has been named percentile diagrams
for the social weights. The “social weights” are the relationships between
the number of successful dialogs and the number of total dialogs between
two agents. In other words, they relate to the likelihood of choosing one
particular hearer based on the speaker in a dialog. A social weight of 1
means that all dialogs between the agents in question have been successful,
while a weight of 0 means that none of them have.
The diagrams in figures 5.17, 5.18 and 5.19 depict all social weights in

the simulation divided into percentile, comparing different Ns. Specific-
ally:

1. pi = number of pairs j, k (j 6= k), such that i − 1 < sj,k

dj,k
< i, where

57



5 The Evolutionary Naming Game

Figure 5.18: Percentile diagram showing social weights in ENG. c = 2,
t = 1000.

Figure 5.19: Percentile diagram showing social weights in ENG. c = 5,
t = 100.
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pi is the size of percentile i.

2. j and k are agents.

3. sj,k and dj,k are the number of successful dialogs and total dialogs
among the agent-pair (j, k), respectively.

When the number of concepts is low (≤ 2), the number of weights below
0.9 is negligible. This points towards a high number of successful dialogs,
as already shown above.
Again the story is different when the number of concepts is increased to

5. The majority of the weights are in the first percentile, i.e., the interval
[0, 1〉. However, some substantially higher weights can be seen.

5.5.5 Social Network Graphs

The last set of results is the social network graphs. In these graphs, all
agents are shown as dots (i.e., vertices), and all social weights w > 0.5 are
shown as lines between agents (i.e., edges). One cluster — a set of agents
connected to each other — can be interpreted as a community with high
internal intelligibility.
As opposed to the plots and graphs in the sections above, the ones

presented here are not averaged over several runs, but rather snapshots
from one single run. This could doubtlessly lead to certain graphs being
less representative of the typical case than what would be optimal. How-
ever, there is no obvious way to present averaged versions of these network
graphs.
Figures 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28 and 5.29 each

consist of up to four separate images. They show how the social networks
evolve over time. The images 1–4 (numbered in the order upper-left, upper-
right, lower-left, lower-right) show the situation after 10, 50, 100 and 200
generations, respectively. One figure covers one specific configuration of
N and c.

Clusters are formed in all cases. After a certain amount of time, all
agents are members of a cluster for all the configurations. In several of
the configurations tested all agents form one single cluster within the 200
generations depicted. The speed of this transition seems to be connected
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Figure 5.20: Social network graph for ENG. N = 20, c = 1. 1: t = 10. 2:
t = 50. 3: t = 100. 4: t = 200.
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Figure 5.21: Social network graph for ENG. N = 100, c = 1. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.22: Social network graph for ENG. N = 200, c = 1. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.23: Social network graph for ENG. N = 500, c = 1. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.24: Social network graph for ENG. N = 100, c = 2. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.25: Social network graph for ENG. N = 200, c = 2. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.26: Social network graph for ENG. N = 500, c = 2. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.27: Social network graph for ENG. N = 100, c = 5. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.28: Social network graph for ENG. N = 200, c = 5. 1: t = 10.
2: t = 50. 3: t = 100. 4: t = 200.
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Figure 5.29: Social network graph for ENG. N = 500, c = 5. 1: t = 10.
2: t = 50. 3: t = 100.
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c N = 20 N = 100 N = 200 N = 500
1 1.4 ↓ 3.1 ↓ 6.2 ↓ 16.6 ↓
2 6.7 ↓ 13.0 ↓ 25.1 ↓ 51.4 ↓
3 22.9 ↑ 8596.2 ↑ 2882.2 ↑ 19296.3 ↑
5 3244.1 ↑ 11929.9 ↑ 73935.8 ↑ 176683.8 ↑

Table 5.9: Number of languages (L) for various values of N . t = 100,
ε =

√
10−5

N , ρ = 0.03.

to the number of concepts and agents, with a lower c and N leading to a
faster transition.
Note that the last figure, with N = 500 and c = 5, lacks an image for

t = 200. This is due to vocabularies growing so large that it is difficult to
handle computationally.

5.6 Impact of Parameters

In addition to the experiments described above, several more have been
carried out in order to determine the impact of the various parameters.
The main question seems to be under which conditions the simulation
“converges” into one single language. Section 5.3 shows that with the
initial parameters above (ε =

√
10−5

N , ρ = 0.03), this convergence can be
seen in all situations where c ≤ 2. However, c = 3 and c = 4 have not
been tested.

In this section a more systematic approach is followed. Tables 5.9, 5.10,
and 5.11 show the number of languages L present in the population after
100 generations (averaged over 9 runs, as in the initial experiments from
Section 5.5) for different values of N , ε, and ρ, respectively. Each table
shows the situation for the same set of numbers of concepts.

The arrows in the tables denote whether the number of languages is
relatively stable (→), is increasing (↑), or is decreasing (↓).

Table 5.9 tells us that for the “standard” values of ε and ρ, convergence
can be seen when c ≤ 2, independent of the number of agents N . N does
however influence L in a close to proportional manner for larger values of
N . However, for small values of N (e.g., N = 20) this does not seem to
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c ε = 10−5 ε =
√

10−5

N = 3.16× 10−4 ε = 10−4

1 8.0 ↓ 3.1 ↓ 3.7 ↓
2 11.0→ 13.0 ↓ 10.1→
3 4158.9 ↑ 8596.2 ↑ 9080.4 ↑
5 11860.8 ↑ 11929.9 ↑ 16094.9 ↑

Table 5.10: Number of languages (L) for various values of ε. t = 100,
N = 100, ρ = 0.03.

c ρ = 0 ρ = 0.001 ρ = 0.005 ρ = 0.01 ρ = 0.03 ρ = 0.1
1 1.6 ↓ 1.9 ↓ 2.2 ↓ 2.2 ↓ 3.1 ↓ 1.7 ↓
2 2.1 ↓ 2.9 ↓ 3.8 ↓ 6.9 ↓ 13.0 ↓ 48.9→
3 2.0 ↓ 6 ↑ 35.8 ↑ 55.0 ↑ 3596.2 ↑ 110.4 ↑
5 2.8 ↓ 17.2 ↑ 180.2 ↑ 417.8 ↑ 3244.1 ↑ 210349.2 ↑

Table 5.11: Number of languages (L) for various values of ρ. t = 100,
N = 100, ε =

√
10−5

N .

be the case.
Table 5.10 shows what happens when ε, i.e., the probability given to

the choice of a hearer in addition to its dialog history, is changed. The
general trend is that a larger ε means a higher L. A few of the results
for a larger number of concepts do not fit this scheme. There is no real
reason to believe L begins dropping as ε is increased sufficiently, so this
could likely be the result of fluctuations in the simulations. With these
quite enormous L values it is easy to imagine large differences between
different independent runs.
Another interesting aspect of this table is what happens when c = 2.

When ε is kept small, i.e., ε = 10−4 or ε = 10−5, the simulation does
not seem to converge to a single-language community, but the number of
languages instead stabilizes around 10.
The final table, Table 5.11 shows the results for different mutation rates

when an agent learns the vocabularies of its parents (ρ). The general trend
is doubtlessly that a larger ρ causes a lager number of languages, but there
are some exceptions in the data. Most notably, an extreme mutation rate
(ρ = 0.1) seems to suggest a highly unpredictable behavior. While some
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of the rows show a continued larger N for this ρ value, some of them show
the opposite effect.

The case ρ = 0 is worth commenting. In this case all agents learn all
words from their parents perfectly, and there is no evolution of words in
the world. This leads to a more stable environment — the c value no
longer causes the number of languages to grow when high enough, and L
in all cases approaches convergence. The absolute number of languages in
these cases is higher when c is higher, though.
One last interesting thing to notice is what happens in the case where

c = 2 and ρ = 0.1. As opposed to all other scenarioes, this one does
not eventually converge into a single-language regime, but instead seems
stable around N = 50 before and after t = 100.
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6 Discussion
This chapter discusses the findings of Chapters 4 and 5. Relevant inform-
ation from the Background Theory (Chapter 2) is also taken into account.

6.1 Evaluation of the NGAWN Implementation

Chapter 4 focused on the implementation of the model described in Lipowska
and Lipowski (2012), in this thesis called The Naming Game on Adaptive
Weighted Networks (NGAWN).
One of the goals of this part of the research was to be able to verify the

model proposed by Lipowska and Lipowski. If that could be done, that
model could be used as a basis for the development of other models.
As shown in Section 4.3, the results obtained in this thesis are in most

cases close to identical to the Lipowska and Lipowski (2012) results. In
particular, all the basic configurations tested yielded a situation where the
number of languages in the population decreased as time went by.
As commented in Section 4.3, one noticeable difference between the

implementations that can be seen in the plots is a rather small difference
in the absolute numbers for success rate in some cases. This fact has not
been given any weight when evaluating the implemented model.
In sum, two things can be concluded regarding the NGAWN:

1. Lipowska and Lipowski (2012)’s naming game model and its results
can be verified.

2. The implementation done in this thesis is correct and can serve as a
skeleton for further experiments.
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6 Discussion

6.2 Evaluation of the ENG

The model described and implemented in Chapter 5, an extension of
NGAWN with evolutionary aspects, was given the name The Evolutionary
Naming Game (ENG).

Four reasons for implementing the model were stated in Section 5.3.
Below follows a summary of what was achieved in terms of each statement.

Test whether a more realistic model is suitable for research.
As summarized in the introduction of Chapter 5 and further elaborated
in Section 5.1, several steps were taken to make ENG more realistic than
what was offered by NGAWN. The resulting model indeed proved to be
suitable for research. Within the limits of some parameters, it could be
seen that the simulations were converging into a single-language regime.
Examining the social networks also showed that several distinct communit-
ies with strong internal relations were formed.

Find whether the model results in one or several co-existing
language communities. When the number of concepts is small (1 or 2)
and the mutation rate ρ is not too large, the model over time converges into
a single-language community. This does not mean that no new languages
are introduced — as long as the mutation rate is non-zero, new words will
arise from time to time. These do not, however, in most instances, form
their own communities parallel to the existing one.

A few selected settings gave results where the number of total languages
in the population seemed to stabilize. This is not necessarily the same as a
number of co-existing language communities, but could also be the result
of a rather large number of synonyms per agent.

Test different combinations of parameters to discover their
effects. Section 5.6 dealt with the impact of different parameters on the
general situation of the simulation. Table 6.1 summarizes the findings.
Testing setups where the world consisted of a different number of con-

cepts was a major part of the research. While the model certainly “works”
for a varying number of concepts, the sizes of the vocabularies seem to

74



6.2 Evaluation of the ENG

Parameter Effect of t→∞
c c ≤ 2 makes the simulation converge to a single-language

regime in nearly all instances. c > 2 makes the number
of synonyms grow drastically.

N The larger the N , the more generations until conver-
gence.

ε The larger the ε, the more generations until convergence.
Most notable with a small c.

ρ Always convergence when ρ = 0. For ρ > 0, the larger
the ρ the more generations until convergence. If ρ gets
high enough, some normally converging setups might not
lead to convergence.

Table 6.1: What effects different values of ENG parameters have as t→∞.

quickly get out of hand when c > 2. Therefore it can be concluded that
using a world with one or two objects seems more suitable for research.
The other parameters have proven not to have much of an effect in the

general flow of the simulation. They do, however, substantially impact
how quickly the simulation reaches towards a given state.

Determine if any configuration of the model compares to as-
pects of human language evolution. There is at a first glance little
that reminds of languages like English or Norwegian when one looks at
the output of the ENG simulations. But if we ignore the fact that the
complexion that characterizes real languages, some things are also similar
to existing languages and their evolution:

• Words (sometimes) change over time. NEFUQ becomes NEXUQ,
which becomes NEXUF. In reality sound changes do, however, not
happen at random, but instead often follow certain patterns, called
sound laws (Anttila, 1989).

• In some configurations, the number of synonyms is kept small and
stable.

• Social clusters form, though they are not stable and in most cases
seek to converge into one single cluster with a common language.
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Although there is no doubt that the real world experiences a glob-
alization process, this does not mean that all social relations in the
world even out.

• The simple language that arises can be compared to the proto-
language described by Hurford (2003) (referred in Section 2.1.4), in
the sense that there are no syntactic structure. For this to emerge,
however, a more sophisticated model is needed.

6.3 Comparison of the Models

Some of the graphs from Chapter 4 can be compared directly to graphs
from Chapter 5, as long as one is careful with comparing a single N value
(e.g., N = 500).

The number of languages in the population, L(t), is not too different
between the implementations. ENG drops faster, but when it reaches a
specific point the decrease goes much slower, and much more unstable,
than what is the case in NGAWN. This can be explained by the presence
of mutation, as new words are generated regularly, preventing a quick
convergence.
Looking at the success rate, s(t), the implementations seem to differ sub-

stantially. In the comparable results from ENG, the success rate quickly
reaches almost 1, while this happens much slower in NGAWN.
The share of agents using the most common word, N1, is again a little

different between the implementations. While NGAWN eventually reaches
a state where all agents have the most common word in their vocabulary,
ENG does not seem to do so in the comparable plots, even though it
reaches a situation where 80–90 % of the agents share the most common
word.
Among the things that cannot be directly compared, are the graphs

made for c > 1 in ENG. It can be seen that this situation without excep-
tion makes communication in the world harder, with L increasing and s
decreasing, as well as the variance within a single concept increasing —
fewer agent share the same words.
All in all, 5 in many ways seems more unstable than 1 in most as-

pects. It seems likely that the mutation of words has a large part of the
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6.3 Comparison of the Models

responsibility for this. New words are generated every generation, mak-
ing convergence go slower and less smooth. Even when the simulation is
converging into a single-language community, new words will still pop up,
though most of them at that stage will be short-lived.
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7 Conclusion and Future
Work

7.1 Conclusions
This section will make some conclusions based on the goal and research
questions from the Introduction chapter (Chapter 1).

7.1.1 Research Questions

The research questions posed in Section 1.1 are here revisited, and an
evaluation of them is made.

Research question 1 Is The Naming Game on Adaptive Weighted Net-
works (NGAWN), proposed by Lipowska and Lipowski (2012), veri-
fiable and reproducible?

This question has an easy answer: Yes, the model is verifiable. As
discussed in Section 6.1, the results obtained are in most cases close to
identical. This made it possible to use this implementation as a foundation
for the The Evolutionary Naming Game (ENG) implementation.

Research question 2 Can an evolutionary model based on NGAWN be
constructed?

An evolutionary model in the naming game framework has been con-
structed. It does not incorporate a proper Evolutionary Algorithms (EA),
but uses several elements known from there: Generations with replace-
ment of agents, reproduction, inheritance, and some kind of mutation.

Research question 3 What can be achieved in terms of realistic simula-
tions with an evolutionary model based on NGAWN?
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As discussed in Section 6.2, ENG offer some interesting qualities in
terms of realism in the setup. It is, however, important to note that it is
still a simple computation model taking inspiration from the real world,
and not in any way a model simulating the real world.

As has already been mentioned, the languages emerging from the ENG
have more in common with the assumed proto-language than modern hu-
man languages. And as was stated in 2.1.4, this is in line with the typical
computation approach — begin from a community without any language
and run simulations to create a more advanced language as time goes by.

ENG does not support any further complication of the language (e.g.,
syntactic structure), and running it for a large number of generation would
it most cases not yield any results comparable to the language situation in
the world, as close to no configurations maintain a stable environment over
time, neither quickly converging to a single-language regime nor producing
an ever increasing number of synonyms.

7.1.2 Goal

The goal stated in Section 1.1 was:

Goal Exploring in which ways an evolutionary extension of a naming game
model can be used as a simplified model of how languages evolve over
time.

An extension of NGAWN has been made, several configurations have
been tested, and the results have been presented. The results have been
discussed in relation to the implementation of NGAWN, and in relation
to language evolution in the real world.

Some configurations proved unstable in the sense that the number of
words in the simulation became unmanageable within a relatively small
number of generations. Others produced situations where a single-language
regime with all agents having high social relations between each other. A
selected few configurations lead to situations that seemed stable in the
number of total languages, but these will need to be examined more closely
to determine if this is the case also with a large number of generations
(more than the 1000 that were tested in those particular cases).
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There are, however, certain aspects of the simulations that resemble
human language in a way NGAWN could not. These are summarized in
Section 6.2.

7.2 Future Work
There are many areas of possible further research within both naming
games and the rest of the field of computational linguistics. This section
will focus on some ideas for future work more or less in direct relation to
the work done in this thesis.
There are doubtlessly some problems with the proposed model. One of

the most apparent ones is the abrupt increase in the size of agent vocab-
ularies in certain configurations, especially when there are three or more
concepts in the world. An interesting technique to tackle this development
could be to involve some kind of alignment scheme as the one described
in “the naming game with alignment” (Steels and Loetzsch, 2012). This
would mean to associate each word in an agent’s vocabulary with a numer-
ical score, making words which are not communicated successfully with
inactive, i.e., unavailable for use.
Another interesting area of work, particularly if a more stable state

could be developed, for example using a technique like the one described
above, could be to run the simulations for a larger number of generations.
There are two main reasons this has not been done in this thesis:

1. In many cases it is not very interesting, as it is quickly apparent if
the trend is convergence or divergence.

2. The model is quite computationally demanding, and with the cur-
rent setup many configurations cannot be run for a large number of
generations without extensive computational power.

If one wishes to develop the model in a more realistic direction, one idea
could be to introduce social roles. For example in (Munroe and Cangelosi,
2002) agents can take the role of teacher or speaker, depending on their
age. This is one of many imaginable steps that can be taken to make
the social aspects of ENG more similar to the culture surrounding human
language learning.
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7 Conclusion and Future Work

More steps can also be taken to obtain a model with a stronger evol-
utionary profile. As done in (Lekvam, 2014), it is possible to equip the
agents with one or more genes governing their behavior in certain stages
of the simulations, for example which agents they choose to communicate
with.
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