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Abstract 

 

Bioaerosols containing pathogenic microorganisms can have health implications 

when respired. Of special concern are potential bioterrorism attacks conducted by 

deliberate aerosolization of hazardous toxins or pathogenic microorganisms. 

Investigation aiming at understanding the normal state of the bioaerosol 

environment is essential to facilitate detection of biological threat agents and 

deviations from the normal background. This MSc thesis presents a pilot study 

for investigation of the bioaerosol environment at a subway station in Norway.  

The aim of this study was to characterize airborne bacteria and Influenza virus 

at Nationaltheatret subway station in Oslo. A series of studies were conducted to 

examine the every-day concentrations and diversity of endospores and vegetative 

bacteria cells. Results showed that 20 times more cultivable bacteria were found 

during daytime compared to nighttime. An average of 400 CFUs/m3 was found in 

daytime samples, of which 3 % were cultivable endospore-forming bacteria. From 

the cultured bacteria, 92 different bacterial species were observed by tentative 

16SrRNA gene identification, and 37 different bacterial genera were identified. 

The diversity was found to be similar during daytime and nighttime, except for 

decreased representation of the family taxa Bacillaceae during nighttime (6 % 

compared to 32 % during daytime).  

402 cultured bacteria were further characterized based on observed colony 

morphology, hemolysis activity and antibiotic resistance. Characteristic traits of 

the ten most represented family taxa were found based on colony morphology. In 

order to include non-cultivable bacteria for characterization, performance of 

culture-independent analysis of total bacteria was needed. In order to facilitate 

such analysis, a bead mill homogenization method for efficient DNA extraction 

from samples containing both endospores and vegetative bacteria cells was 

optimized. The concentrations of total bacterial DNA in 15 different air samples 

were compared, and the observed pattern for daytime and nighttime 

concentrations resembled the concentrations found for the cultivable bacteria. 

Furthermore, a specific PCR assay was developed for detection and quantification 

of airborne Influenza A virus, and successfully verified by detection of 

commercial Influenza A virus particles. However, no viral RNA was found in the 

air samples from Nationaltheatret subway station. Inhibition of the PCR reaction 

was observed, and hence further investigation regarding inhibition is needed in 

order to rule out false negative results.  
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1 Introduction 

1.1 Bioaerosols 

Bioaerosols are airborne particles usually defined as particulate matter of plant,  

soil, animal or human origin, containing microorganisms or organic compounds 

(Douwes, Thorne et al. 2003). The particles become airborne when suspended in 

air as a result of wind, turbulence, coughing, traffic etc. When in air, the particles 

may adhere to tiny droplets of water or dust material, creating bioaerosols that 

can reside in the air for longer periods of time, depending on the weather 

conditions and the sizes of the particles (Francoise 2002). Particles below 5 µm 

remain suspended in the air stream for long periods of time, and they are of 

primary concern because they penetrate deep into our lungs when respired, 

potentially causing infections (Thomas, Webber et al. 2008). Bioaerosols can be 

found in all outdoor and indoor environments, and they often contain bacteria, 

virus or fungi, which may be pathogenic or non-pathogenic, viable or dead 

(Douwes, Thorne et al. 2003). The viability of the airborne microorganisms is 

dependent on measureable factors like relative humidity, solar irradiance and 

temperature, in addition to special properties of the bacteria themselves, like 

endospore-forming capability and pigment content (Gilbert and Duchaine 2009).  

The interest in bioaerosol exposure has increased over the last few decades, both 

due to the emerging understanding of its association with a wide range of adverse 

health effects, and due to the fear of bioterrorism. In hospitals, it could be 

important to quality test the air because it is a serious and widespread problem 

that patients acquire infections through the airborne route during hospital stay 

(L.A. Fletcher, C.J. Noakes et al. 2011) (Killingley, Greatorex et al. 2010). For 

safety reasons, monitoring the air at public places could help minimizing the 

proportions of potential bioaerosol attacks. An example of a bioterrorism event 

propagated by bioaerosols was the anthrax attacks in the United States in 2001 

(Centers for Disease Control and Prevention 2001). However, spread of anthrax is 

self-limiting, as it is not likely to infect other people than those directly exposed. 

A scenario even more dangerous than a new anthrax attack would be the spread 

of a contagious agent at a crowded public place, like a subway station, where 

every infected person will transmit the disease to others after leaving the station 

(Inglesby, Henderson et al. 1999). Biological agents that are easy to spread and 

capable of infecting human, causing incapacitation or death, can be considered 

biological threat agents (Centers for Disease Control and Prevention 2007). 

In order to minimize the consequences of a bioterrorism attack, early detection of 

the dispersed threat agent is necessary. Continual monitoring of the airborne 

environment for detection of specific agents is possible, but false positive results 

are likely to occur due to low background levels of naturally-occurring threat 
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agents (Philip J. Wyatt 2009). Investigation aiming at understanding the normal 

state of the bioaerosol environment is therefore essential (National Research 

Council 2005). Airborne fungi are of health concerns, as they are associated with 

allergy and respiratory diseases (Hope and Simon 2007). However, biological 

threat agents dispersed in a bioterrorism attack are more likely to be bacteria, 

toxins or virus, according to the list of critical biological agents obtained from 

Centers for Disease Control and Prevention (Rotz, Khan et al. 2002). 

Relatively many bioaerosol characterization studies have been conducted in 

hospitals, schools, farm buildings and other industry buildings, but few studies 

have been conducted in subway stations or train stations (Abdel Hameed and 

Awad 2002). A study performed in Beijing in 2010 investigated bacteria 

concentrations in different airborne environments, and found that the cultivable 

bacteria concentrations were significantly higher in train and metro stations 

than in hospitals, offices and in outdoor city centre (Dong and Yao 2010). 

However, among different studies performed in stations, the obtained results are 

not directly comparable due to use of different air sampling devices and analysis 

methods (Srikanth, Sudharsanam et al. 2008) (Stellman 1998). 

 

1.2 Bioaerosol sampling 

1.2.1 Sampling techniques 

Three basic sampling methods exist for collection of airborne microorganisms: 

filtration, impingement and impaction. Most air sampling devices in use rely on 

techniques that force surrounding air into the device, where airborne particles 

are departed from the air stream. These are active air samplers, and the airborne 

particles can be deposited onto a solid medium (impaction), into a liquid 

(impingement) or onto a filter (filtration) (John Burke Sullivan and Krieger 

2001). Methods for collection can also be passive. An example is use of settling 

plates, where particles deposit due to gravity. However, gravitational collection is 

not appropriate for quantitative analyses of airborne microorganisms, as 

sampling efficiency is highly dependent on motion in the surrounding 

environment (C. Pasquarella, O.Pitzurra et al. 2000).  

 

1.2.1.1 Impaction 

When considering active air sampling, impaction is a sampling method that 

separates airborne particles from the airflow by leading the airflow into the 

device, where the particles deviate from the air flow and impacts on a medium. 

Petri dishes with culture medium are often used as they can be incubated 

directly for microbiological growth studies after sampling (Cartwright, Horrocks 

et al. 2009). This makes impaction appropriate for culture-dependent studies, but 
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insufficient for culturing independent studies (Gilbert and Duchaine 2009). 

However, there is a high risk of overloading the plates with growing cultures, 

introducing error when estimating the microorganism concentrations. Therefore, 

impaction sampling is more suitable for less contaminated bioaerosol 

environments, or requires shorter sampling time (Cartwright, Horrocks et al. 

2009).  

Examples of different types of impaction devices are Andersen samplers and Slit 

samplers (Figure 1.1). These devices are efficient for collection of viable bacteria 

or virus, dependent on the growth medium or cell culture used. The Anderson 

sampler is designed for separation of the captured particles into fractions, based 

on aerodynamic sizes. Interestingly, correlations between particle sizes and types 

of microorganisms residing on them can be investigated. The Slit sampler can be 

used for determination of airborne microorganism concentrations as a function of 

time (Verreault, Moineau et al. 2008). In general, impaction samplers are usually 

most efficient at capturing large particles (>10 µm), as smaller particles (<10 µm) 

tend to follow the air stream through the instrument without impacting the 

medium (Gilbert and Duchaine 2009).  

 

 
Figure 1.1: Impaction samplers; a) Slit sampler, b) Anderson sampler (Verreault, 

Moineau et al. 2008) 

 

 

1.2.1.2  Impingement 

The principle of impingement is similar to that of impaction, but here the 

particles impact a liquid when the air flow abruptly changes its direction, and not 

a solid medium. The impingement method may induce less physical stress to the 

collected microorganisms than impaction, making impingement suitable for 

microbiological studies of viable microorganisms. Impingers also have the 
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advantage of being able to sample for long time intervals, and the collection in 

liquid makes multiple analyses possible per sample, including both culturing 

dependent studies and culture-independent studies by use of molecular biological 

techniques  (Cartwright, Horrocks et al. 2009).  

Impingers have been used for collection of airborne bacteria, fungi and virus 

(John Burke Sullivan and Krieger 2001). However, similar to the impaction 

method, impingement sampling is most efficient at capturing large particles (>10 

µm). Smaller particles (< 10 µm) might also be captured in the liquid, but are 

likely to re-aerosolize as a consequence of liquid medium evaporation (Verreault, 

Moineau et al. 2008).  

Impingement devices can be exemplified by the Swirling Aerosol collector 

(manufacture by SKC under the name Biosampler) and the All Glass Impinger 

(AGI) (Figure 1.2) (Verreault, Moineau et al. 2008). The SKC Biosampler can be 

considered an improvement of the AGI device in retaining viability of the 

collected microorganisms, as the swirling motion inside the Biosampler is gentler 

than the abrupt change in airflow seen in the AGI. Evaporation and re-

aerosolization are also minimized by use of the Biosampler compared to the AGI, 

suggesting better quantitative result reliability (Gilbert and Duchaine 2009). 

Impingement devices have also been developed where size fractionation of the 

collected particles is possible. These devices are called multistage liquid 

impingers (Verreault, Moineau et al. 2008).  

 

 

Figure 1.2: Liquid Impingers; a) SKC, b) AGI (Verreault, Moineau et al. 2008) 
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1.2.1.3 Filtration 

Filtration relies on collecting airborne particles by passing air through a porous 

medium. Depending on the sizes and charges of the particles, in addition to the 

streamline of the airflow though the filter, the particles will divide from the 

airflow and impact on the filter surface. This is a relatively simple and effective 

method for collection of airborne microorganisms (Cartwright, Horrocks et al. 

2009) (Verreault, Moineau et al. 2008). An advantage of filtration over impaction 

and impingement is that filters can be designed for efficient collection of particles 

with aerodynamic sizes less than 0.5 µm (Verreault, Moineau et al. 2008).  

Collection of airborne particles on a filter usually requires extraction of the 

particles into liquid prior to analysis, although gelatin filters can be placed onto 

agar plates for direct growth studies. An advantage of the samples extracted in 

liquid is that they can be tested by multiple assays, and both microbiological 

culturing analyses and molecular biological analyses are possible (Gilbert and 

Duchaine 2009). Filter samplers have potential for collection of excessive 

amounts of airborne microorganisms by long sampling periods or use of high flow 

rate. However, a drawback of the method is desiccation of microorganisms, 

resulting in loss of viability. The loss of viability is affected by the sampling time 

and humidity, appreciating that meteorological conditions should be measured 

while collecting filter air samples  (Cartwright, Horrocks et al. 2009).  

Different types of filter samplers differ mainly in composition and pore size of 

their filters. The filter material affects collection efficiency, but the yields 

obtained are also affected by the extraction efficiency of the filter in use (Abdel 

Hameed and Awad 2002). Filter samplers can be exemplified by the Smart Air 

Sampler System 3100 (SASS 3100) (Figure 1.3), which is a dry filter air sampler 

developed by Research International (Research International, Inc). The filter 

used by SASS 3100 consists of micro-fibrous material where each fiber is 

associated with an electric field, which makes these filters more efficient in 

capturing particles than conventional glass or cellulosic filters. SASS3100 has a 

collection efficiency ranging from 50 % of particles of 0.5 µm to 90 % of particles 

larger than 2.0 µm, which should make it sufficient for collection of virus, 

bacteria and fungi residing on particles of most sizes. Extraction efficiency from 

the filters is 100 % when using a 20 ml extraction buffer and a SASS 3010 

Manual Particle Extractor (Research International, Inc) (Research International 

2011). 
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Figure 1.3: SASS 3100 filter sampler (Research International 2011) 

 

 

1.2.2  The choice of sampling equipment 

Airborne particle harvesting for analysis purposes have been performed with a 

wide variety of sampling devices, and new instruments are continually being 

developed. Choice of sampling device is highly dependent on the aim of the study. 

For microbiological analyses of viable airborne microorganisms, sampling devices 

that maintain the viability of the microorganisms throughout the sampling 

process are required. On the other hand, high-flow sampling devices can be more 

efficient for molecular biological studies, where viability is not a requirement 

(Gilbert and Duchaine 2009).  

Other criteria that should be considered when choosing sampling device are ease 

of operation and transportation, cost, sampler reliability and optimum particle 

size range of the device (Cartwright, Horrocks et al. 2009). For analysis of 

bioaerosols potentially causing respiratory diseases, it is important to choose a 

sampling device approved for collection of particles below 10 µm (Thomas, 

Webber et al. 2008). Size range below 10 µm could also be the goal when aiming 

at collecting viruses or bacteria, as indicated by the Committee on Materials and 

Manufacturing Processes for Advanced Sensors, National Research Council  

(National Research Council 2005), but little is known about the relationship 

between typical size ranges of airborne particles and the microorganisms they 

contain. In general, the same kinds of sampling devices have been approved for 

analysis of airborne fungi and bacteria, whereas modifications have been 

necessary in order to detect viruses in the air samples (Gilbert and Duchaine 

2009). However, there has been a lack of standard protocols for treatment of air 

samples, making result comparison between different studies difficult (Srikanth, 

Sudharsanam et al. 2008). 
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1.3 Microbiological techniques 

Traditional microbiological techniques rely on culturing as a means to enumerate 

and characterize microorganisms from samples (Gilbert and Duchaine 2009). 

Some great advantages of microbiological culture studies, compared to culture-

independent studies, are the possibility for testing the viable bacteria found for 

pathogenic potential, metabolic requirements and endospore-forming capability.   

 

1.3.1 Culture-dependent quantification  

Culture-dependent methods are relatively easy and cheap to perform, and they 

are applicable to quantification of bacteria, fungi and viruses. For culturing of 

bacteria and fungi, use of semi-solid growth media is most common. The 

microorganisms may be collected onto the growth medium directly from air when 

using impaction-based sampling methods. When sampling is performed by 

impingement systems, the liquid sample must be spread onto the growth medium 

prior to culturing. For filter samples, the filter must be extracted in liquid buffer 

and spread onto the growth medium prior to culturing (Millie P. Schafer and 

Jensen 1998).  

Growth media appropriate for growth of the microorganisms of interest need to 

be selected. TSA is often used for enumeration of bacteria, while malt extract 

agar is commonly used for culturing of fungi (Millie P. Schafer and Jensen 1998). 

However, no single growth medium is suitable for all sorts of bacteria or all sorts 

of fungi, meaning that only the microorganisms able to grow and multiply on the 

chosen growth media are found and quantified. These cultivable microorganisms 

are estimated to represent about 1 percent of the total amount of viable and non-

viable microorganisms in the sample (Amann, Ludwig et al. 1995).  

Culturing of viruses is performed on cellular growth cultures, consisting of 

bacteria culture, animal tissue or human tissue. Viruses need to infect living cells 

in order to multiply, which can be observed as clear spots in the culture. These 

clear spots are called plaques and each plaque represents one initial viral 

particle. Counting the plaques gives a measure of the number of initial viruses in 

the sample poured onto the growth culture, given as plaque forming units (PFU). 

Bacteria and fungi form colonies when incubated on a growth medium, and each 

colony represents one single initial microorganism poured onto the medium. 

Counting the colonies gives a measure of the initial number of microorganisms in 

the sample, given as colony forming units (CFU). It is common to select for only 

bacteria or fungi, because the growth of fungi is likely to mask many bacterial 

colonies present. Growth inhibitors for fungi, like cyclohexamide, can be added to 

the growth media when bacteria counts are in focus (Cartwright, Horrocks et al. 

2009). 
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Problems related to viable counts are for example quantification error that occurs 

if large numbers of colonies (above 300) are grown on one culture plate. The 

colonies are then likely to merge, and one colony might represent several initial 

microorganisms. If the microorganisms were sampled directly on the culture 

plate by impaction methods, the sampling time must be reduced in order to 

reduce the number of colonies. Serial dilutions is needed if impingement or filter 

sampling resulted in too many colonies. Dilutions do however induce some error 

and should be avoided if possible (Cartwright, Horrocks et al. 2009).  

 

1.3.2  Traditional taxonomical classification  

Characterization of microorganisms by culture-dependent methods is the 

traditional approach for classification. The science of classification is called 

taxonomy, where the objective is to classify living organisms based on similarities 

and differences between the organisms (Millie P. Schafer and Jensen 1998). The 

classification can permit species-level identification when using appropriate 

numbers of characteristics tests per microorganism. 

Culture-dependent methods for characterization include incubation of 

microorganisms for studying their growth appearance. Formation of endospores 

is a characteristic property of some bacteria and fungi, and can be tested for by 

heat shocking the microorganisms prior to culturing. Bacteria can be classified 

more closely based on the results from biochemical, physiological and nutritional 

tests, which evaluate characteristics like temperature optimum, pH tolerance, 

modes of metabolism etc. (Millie P. Schafer and Jensen 1998). Culture-dependent 

methods for characterization can also include use of differential media and 

selective media. Differential media contain indicators that permit the recognition 

of microorganisms with particular metabolic activities. Growth on blood agar is 

an example, where growth of bacteria that degrade hemoglobin are detected 

(Payment, Coffin et al. 1994). Selective media contain compounds that inhibit the 

growth of particular microorganisms. Growth media with antibiotics are 

examples of selective media, were only bacteria with antibiotic resistance are 

able to grow (Michael T. Madigan and John M. Martinko 2006). Hemolytic 

activity and antibiotic resistance are of health concern, and can be tested for in 

order to investigate for pathogenic potential in an environment. 

For viruses, the need for specific animal or human tissue for reproduction has 

made large-spectrum characterization of viruses from air samples difficult. For 

bacteria and fungi, the species not able to grow on the medium provided or under 

the particular incubation conditions in use, are excluded from the study (L.A. 

Fletcher, C.J. Noakes et al. 2011). The microbiological techniques give 

information about types and quantities of cultivable microorganisms in samples, 
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but no information is to be obtained about the fraction of non-cultivable 

microorganisms.  

1.4 Molecular biological techniques 

It has been estimated that only 1 % of microorganisms collected from the 

environment can be cultivated in laboratories by standard techniques and growth 

medium (Amann, Ludwig et al. 1995). However, by molecular biological 

techniques the identity of the 99 % remaining non-cultivable microorganisms can 

be revealed, by analysis of their nucleotide sequences. Characterization of 

microorganisms in environmental samples has improved revolutionary as a 

consequence of the development of molecular biological techniques like 

Polymerase Chain Reaction (PCR) and DNA sequencing. 

 

1.4.1 Real-time PCR 

PCR is a technique that specifically amplifies a selected region of a DNA 

sequence by use of two short DNA fragments (primers), designed complementary 

to the ends of the target sequence. This requires sequence information from part 

of the DNA sequence that is to be amplified (David P. Clark 2005). Sequence 

information for a huge amount of microorganisms can be found in public 

databases like GenBank (Benson, Karsch-Mizrachi et al. 2009).  

The PCR process relies on cycles of heating and cooling, where the DNA is 

replicated in three steps: denaturation of the DNA strand, annealing of the 

primers to the complementary DNA strands, and finally elongation of the 

primers by DNA polymerase. The double-stranded DNA molecules obtained 

become targets for replication in the next cycle. The amplification process is 

exponential, and real-time PCR has been developed for continual measurement of 

the amount of DNA copies, expressed indirectly by level of fluorescence signal. 

SYBR Green dye can be added to the PCR for non-specific detection of double 

stranded DNA (Zipper, Brunner et al. 2004). Other fluorescing probes bind 

specifically to target sequences, like TaqMan probes (Applied Biosystems, Foster 

City, CA) (David P. Clark 2005).  

Sometimes the sequence of interest consists of RNA and not DNA. In such cases, 

an additional reverse transcription step is required prior to PCR amplification, 

where RNA-dependent DNA polymerase synthesizes complimentary DNA 

(cDNA) from the RNA template. The cDNA can be further replicated by DNA-

dependent DNA polymerase (Vellore, Moretz et al. 2004).  
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1.4.2 DNA sequencing  

DNA sequencing is any process used to find the precise sequence of the 

nucleotides that comprise a strand of DNA. PCR is often required prior to 

sequencing, because the sequencing techniques require many homologous 

sequences of appropriate sizes. In general, DNA sequencing methods generate 

sub-fragments representing all possible lengths of the initial template sequence. 

This means that each nucleotide base in the template sequence is represented by 

sequence copies ending at that particular nucleotide base (David P. Clark 2005).  

A method often used for sequencing is the chain termination method, where the 

replication is performed by DNA polymerases in a reaction mixture containing 

some dideoxynucleotides in addition to the standard nucleotides. Insertion of a 

dideoxynucleotide by chance leads to termination of replication due to lack of a 3‟-

OH group required for the formation of a bond between two nucleotides. Each of 

the resulting replicate fragments end on one of four dideoxynucleotides, which 

are labeled with four different fluoresce markers. The fragments are separated by 

length by high-resolution capillary electrophoresis. The shortest fragments reach 

the laser detector first, where the illuminated colour is recognized and translated 

into the specific dideoxynucleotide. The whole sequence of the DNA template is 

revealed when the longest fragment finally has passed the detector (Haqqi, Zhao 

et al. 2002).  

 

1.4.3 Molecular taxonomical classification  

Traditional methods for classification of microorganisms rely on phenotypic 

analysis, whereas modern classification is heavily dependent on genotypic 

analysis. The latter is generally fast and highly reproducible, but in order to 

identify and classify an organism based on its DNA, comparison with a reliable 

database with known sequences is required. GenBank is a database in daily use 

around the world, containing a huge amount of DNA sequences from a wide 

variety of organisms (Benson, Karsch-Mizrachi et al. 2009).  

Microorganisms can be classified based on similarities and variations in their 

DNA sequences, resulting in phylogenetic trees illustrating the evolutionary 

relationship between them. Ribosomal RNAs (rRNAs) are excellent 

chronometers, meaning that differences in their nucleotide or amino acid 

sequences appear to be a function of their evolutionary distance (Michael T. 

Madigan and John M. Martinko 2006). All cells contain ribosomes, which consist 

of ribosomal proteins and rRNAs. For bacterial classification, the 16SrRNA gene 

is often used as a chronometer. 16SrRNA gene sequences are easily obtained 

from unknown organisms by PCR amplification followed by DNA sequencing 

(Clarridge 2004). Furthermore, 16SrRNA gene sequences can be classified and 

given a best match species identity by database search by use of the Ribosomal 
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Database Project (RDP), which is a database updated monthly with 16SrRNA 

gene sequences from the International Nucleotide Sequence Database 

Collaboration (DDBJ, EMBL and GenBank) (Cole, Chai et al. 2007).  

When concerning viruses, it is difficult to identify and classify them without 

already knowing their identity. The diversity of viruses is very large, and there is 

no known viral chronometer resembling the 16SrRNA gene found in bacteria 

cells, making viral taxonomical classification based on genotype difficult 

(Edwards and Rohwer 2005). 

   

1.4.4  MALDI-TOF MS fingerprinting 

All bacteria contain a vast amount of ribosomes, consisting of ribosomal RNAs 

and proteins, making them good candidates for protein fingerprinting. The amino 

acid sequences of ribosomal proteins are highly conserved, but still there are 

small differences resulting in spectra that are unique and reproducible for each 

bacterial species (Sun, Teramoto et al. 2006). 

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass 

spectrometry has been adapted for identification of bacterial cells directly, with 

no need for protein extraction prior to analysis (Salaun, Kervarec et al. 2010). 

The identification is performed by smearing a bacterial colony directly on the 

sample target. The colony is overlaid with matrix, and thereafter irradiated by a 

laser pulse. The matrix absorbs most of the laser energy, leaving the proteins 

ionized but not fragmented. The ionized molecules are accelerated in an electric 

field and separated in the flight tube according to their mass to charge ratio. The 

proteins reach the detector at different times, contributing to a spectrum that is 

unique for each bacterium species (Seng, Drancourt et al. 2009). The mass 

spectra generated are analysed by dedicated software and compared with stored 

profiles in order to identify the bacteria (Sun, Teramoto et al. 2006). When 

developing the databases containing protein spectra of known identity, the 

MALDI-TOF MS fingerprinting method could hopefully replace the more time-

consuming 16SrRNA gene sequencing method for bacterial identification. 
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1.5 Aims of the study 

As part of the FFI project „1203 Biologisk beredskap - Deteksjon og identifikasjon‟ 

this work focused on characterization of airborne bacteria and Influenza A virus 

at Nationaltheatret subway station in Oslo.  

The objectives of this work were to: 

 investigate the concentration and diversity of total and endospore-forming 

cultivable bacteria at nighttime and daytime  

 characterize the cultured bacteria based on colony morphology, hemolysis 

activity and antibiotic resistance 

 optimize a DNA extraction method for samples containing both endospores 

and vegetative bacteria cells, in order to facilitate culture-independent 

analysis of total bacteria 

 investigate the presence of Influenza A virus during a typical common flu 

winter season 

Investigating the every-day background of airborne microorganisms is important 

in order to facilitate continual monitoring for detection of deviations, possibly 

associated to bioterrorism attacks. 
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2 Methods and material  

Characterization of airborne microorganisms at Nationaltheatret subway station 

in Oslo was performed during summertime for bacteria and during wintertime 

for virus. Both bacteria and virus were collected with the same sampling 

equipment, but processed and analysed differently. The summer and winter 

investigations were therefore divided into separate sections: „Characterization of 

airborne bacteria‟ and „Detection of airborne Influenza A virus‟, respectively.  

2.1 Air sampling 

2.1.1 Location and times for investigation  

Air samples were collected at Nationaltheatret subway station in Oslo. Indoor air 

sampling was performed at the westbound platform of the subway station, and 

reference outdoor air sampling was performed outside the station, between the 

two subway exits (Figure 2.1).  

 

Figure 2.1: Location for outdoor sampling (left), location for indoor sampling 

(right) (Picture by FFI) 
 

In order to characterize airborne bacteria, 19 air samples were collected during 

the summer months May - September 2010. From July to September, three 

samples were collected for each day of investigation: indoor at nighttime, indoor 

at daytime and outdoor at daytime (reference). The samples were given unique 
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names including the date of sampling and one of the letters N, D and R, coding 

short for Night, Day and Reference, respectively (e.g. “160810D”).  

In order to test for presence of airborne Influenza A virus, four air samples were 

collected in February 2011, week 7. The samples were collected indoors at 

daytime during the morning rush hours, from 7:00 – 9:00 am. These samples 

were given the unique names D_1, D_2, D_3 and D_4.  

 

2.1.2 Sampling instruments and performance 

The instruments used for analysis at Nationaltheatret subway station were a dry 

filter air sampler with electret filters, SASS3100 (Research International Inc., 

WA, USA), and an optical particle counter with external temperature and 

humidity probe, Aerotrak 8220 (TSI Inc., MN, USA) (Figure 2.2). Collection of 

airborne particles on filter for investigation of their biological content was 

performed with SASS3100, whereas monitoring of the sizes and concentrations of 

particles was performed with Aerotrak 8220.  

 
 

 

Figure 2.2: Aerotrak 8220 particle counter (left), SASS3100 filter sampler (right) 

(Picture by FFI) 
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Each air sampling was performed for two hours. Prior to sampling, the 

instruments were placed on tripods with their intakes about 1.5 metres above 

ground level The air flow through the filter sampler SASS3100 was set to 300 

litres per minute, corresponding to filter collection of airborne particles from 36 

m3 air after two hour‟s sampling. The Aerotrak 8220 was programmed to monitor 

particle concentrations and bin them into the size intervals 0.5-1.0, 1.0-2.0, 2.0-

3.0, 3.0-4.0, 4.0-5.0 and >5.0 µm. The particle monitoring and collection were 

performed in the same time interval for reliable correlation.  

 

Temperature and relative humidity (%RH) was continually monitored by 

Aerotrak 8220 during sample collection, and a short weather report was noted for 

each of the samples. For the four samples collected during week 7 in February 

2011, only the filter air sampler SASS3100 was used, and the number of people 

at the station was estimated.  

 

All the collected filter samples were processed and analysed at the Norwegian 

Defence Research Establishment (FFI), located at Kjeller. Transportation time 

from Nationaltheatret subway station to the laboratory was approximately 1 

hour. The airborne particles collected on filter were extracted by use of a manual 

particle extractor, SASS3010 (Research International Inc., WA, USA) (Figure 

2.3). Each filter was extracted with 20 ml extraction buffer (Phosphate buffered 

saline + 0.05 % Triton X-100) (Sigma-Aldrich, Inc.). The particle concentrations 

and their size distribution profiles were obtained from Aerotrak 8220, and 

expressed as particles per m3. 

 

 

Figure 2.3: Manual Particle Extractor (SASS3010) (Picture by FFI) 
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2.2 Characterization of airborne bacteria 

Culture-dependent bacterial analysis was performed for all the 19 air samples 

collected during the months May – September 2010 (section 2.2.1), including 

determination of concentrations and investigation of diversity. Culture-

independent estimation of total bacterial concentrations was performed for 15 

samples collected in the months July to September 2010 (section 2.2.2).  

 

2.2.1 Culture-dependent bacterial analysis  

2.2.1.1 Culturing  

Culture plates with two different growth media were prepared: Reasoner‟s 2A 

(R2A) with cycloheximide (100 µg/ml) and Trypto-Casein Soya Agar (TSA) with 

cycloheximide (100 µg/ml). For the TSA growth medium, 40 grams of TSA powder 

(Bio-Rad Laboratories, Inc.) was added deionized water to a final volume of 1000 

ml. It was autoclaved in a closed bottle (121 ˚C, 15 min), and then left to cool 

down to approximately 55 ˚C prior to adding cycloheximide stock solution (4 ml) 

(Sigma-Aldrich, Inc.). The growth medium was poured into sterile culture plates 

and left to solidify (30 minutes). The procedure was equal for the R2A growth 

medium except that 18 grams of R2A powder (Oxoid Ltd., UK) was weighed out.  

For enumeration of total cultivable bacteria, each extracted sample was plated in 

triplicates on TSA and R2A culture plates (100 µl per plate). For enumeration of 

endospore-forming bacteria, each extracted sample was heat-shocked in water 

bath (75 °C for 20 min) prior to being plated (100 µl per plate). For the heat-

shocked samples, triplicate TSA and R2A plates were made for both aerobic and 

anaerobic incubation. For anaerobic incubation, the culture plates were placed in 

an anaerobic incubation chamber (Oxoid Ltd., UK), set up in accordance with the 

manufacturer‟s instruction. All the culture plates were marked with sample 

name and incubated at 30 °C in the dark for 48 hours.  

After incubation, the number of colony forming units (CFUs) on each culture 

plate was counted. For each sample, the average CFU was calculated from the 

triplicate plates, and the standard deviation was found. This was performed both 

for the TSA and R2A triplicates. The average CFU values and the standard 

deviations found were converted to concentrations per m3 air, by multiplying with 

the dilution factor and dividing by the amount of collected air (Formula 2.2).  

    CFU (m3 air)-1 = (average CFU x 200) / (120 x 0.3 m3 air)         (Formula 2.2) 

According to the formula, the limit of detection (LOD) was 5.5 CFU per m3, 

corresponding to an average CFU value equal one.  
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2.2.1.2 Microbiological characterization  

For each sample incubated for enumeration of total cultivable bacteria (section 

2.2.1.1), all the morphologically distinct colonies observed were selected for 

further analysis. This selection was performed independently from TSA and R2A 

culture plates. For the samples incubated for enumeration of endospore-forming 

bacteria, all colonies were selected for further analysis, independent of their 

morphologies. Each selected colony was given a unique identifier including the 

sample name and a colony number (e.g. “160810D-02”).  

Clonal isolates were made by streaking each selected colony onto a new TSA 

culture plate. The plates were marked with the unique identifiers and incubated 

until appropriate size colonies were visible (~48 hours). After incubation, the 

morphologies were studied. Size, colour, shape and surface appearance of single 

colonies were noted, and interesting phenomenon and representative plates were 

photographed. Further downstream analyses of the clonal isolates were 

performed, as described in section 2.2.1.3 - 6.  

From each plate of pure colonies derived, multiple bacterial colonies were 

selected for freeze storage. Freeze storage medium was made by weighing out 

Brain Heart Infusion powder (18.5 g) (Oxoid Ltd, UK) into an autoclavable bottle, 

and adding deionized water (385 ml) and 85% Glycerol (115 ml) (Merck KGaA, 

Darmstadt, Germany). The bottle was heated on water bath to dissolve the 

powder prior to autoclaving (121 °C, 15 min). The cooled medium was pipetted (1 

ml) into Cryo tubes (2.0 ml, Thermo Fisher Scientific Inc.). Each selected colony 

was transferred to a tube marked with its unique identifier, and stored at -80 °C. 

 

2.2.1.3 Examination of hemolytic activity  

All the clonal isolates (section 2.2.1.2) were tested for hemolytic activity. Culture 

plates with Colombia blood agar (5 % sheep blood) was obtained from Oxoid 

(Oxoid Ltd, UK). From each clonal isolate, a colony was transferred to blood agar 

and incubated at 30 °C in the dark for 48 hours. After incubation, each colony 

was classified as α-hemolytic (green halo around the colony), β-hemolytic 

(transparent halo around the colony) or γ-hemolytic (no hemolysis).  

 

2.2.1.4 Determination of antibiotic resistance  

All the clonal isolates (section 2.2.1.2) were tested for antibiotic resistance on five 

different antibiotics media. Five bottles with 1000 ml TSA growth medium were 

prepared (section 2.2.1.1) to make five different media by adding ampicillin, 

tetracycline, nalidixic acid, streptomycin and chloramphenicol (Sigma-Aldrich, 

Inc.) to the final concentrations of 50, 10, 20, 50 and 25 µg/ml, respectively. The 

antibiotics growth media were poured into sterile culture plates and left to 

solidify (30 minutes). A colony from each clonal isolate (section 2.2.1.2) was 

transferred to each of the five different antibiotic culture plates, and incubated at 

http://www.thermofisher.com/
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30°C in the dark for 48 hours. After incubation, each plate was inspected and 

antibiotic resistance noted for each colony as positive or negative.  

 

2.2.1.5 16SrRNA gene sequencing  

From each plate of pure colonies derived, a bacteria colony was transferred to an 

Eppendorf tube (1.5 ml, Axygene Inc.) with nuclease-free water (100 µl) (Ambion, 

Life Technologies), marked with the colony‟s unique identifier. Lysis of the 

bacteria cells was performed with four freeze/thaw cycles with liquid nitrogen 

bath for freezing (1 minute) and heat block for thawing (94 ˚C, 1 min). The tubes 

were vortexed between the cycles. After lysis, the tubes were centrifuged (10,000 

g, 3 min) to pellet bacterial cell content. The supernatants were used as template 

for real-time PCR amplification using SYBR Green detection (Zipper, Brunner et 

al. 2004).  

96-well PCR plates were prepared by adding 27 µl reaction mixture to each well 

and then 3 µl of template. Per reaction, the mixture contained SYBR Green 

master mix (15 µl) (Roche Diagnostics, USA), nuclease-free water (6 µl) and 10 

µM forward and reverse primer (3 µl each). Universal bacterial 16SrRNA gene 

primers were obtained from Invitrogen (Invitrogen Ltd, UK), with the following 

sequences: forward 27F (5‟-GAGTTTGATCMTGGCTCAG-3‟) (Lane 1991) and 

reverse 1492R (5‟-ACGGYTACCTTGTTACGACTT-3‟) (Weisburg, Barns et al. 

1991)., where M codes for the nucleotide bases A or C, and Y codes for C or T.  

The PCR was performed in a LightCycler 480 instrument (Roche Diagnostics 

Corp., IN, USA) (Figure 2.4) under the following conditions: initial denaturation 

(95 °C, 5 minutes), 35 cycles of denaturation (95 °C, 20 seconds), annealing (55 

°C, 20 seconds) and extension (72 °C, 90 seconds), and finally a terminal 

extension (72 °C, 10 minutes).  

 

 

Figure 2.4: LightCycler 480 PCR machine (left) and LightCycler Computer 

Program (right) (Roche Diagnostics Corp., IN, USA) (Picture by FFI) 
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The 16SrRNA gene PCR amplified samples were sent to Eurofins MWG Operon 

in Germany for purification and 16SrRNA gene sequencing (Eurofins MWG 

Operon, Germany). Both forward and reverse sequencing were ordered for better 

result reliability. The result sequences were obtained from Eurofins MWG 

webpage and imported into the standardized Biological Background Study 

BioNumerics database (BioNumerics 6.0, Applied Maths, Belgium). In 

BioNumerics, the two sequences (forward and reverse) from each clonal isolate 

were combined to one sequence that was given the unique identifier name of the 

original clonal isolate (e.g. “160810D-02”). The sequences were further trimmed, 

manually inspected and corrected for obvious base calling errors (performed by 

Marius Dybwad at FFI). Only combined sequences with <1% ambiguous bases 

and more than 400 base pairs were used for further analysis.  

All the approved sequences were taxonomically classified down to genus level by 

the Classifier tool at the Ribosomal Database Project (RDP), release 10.18 (Cole, 

Chai et al. 2007). The classification results were compared to the corresponding 

colony morphology observations (section 2.2.1.2), in order to look for interesting 

patterns for microbiological identification. Furthermore, by RDP_SeqMatch the 

sequenced isolates were given the best species scores available for identification 

(Cole, Chai et al. 2007). 

 

2.2.1.6 MALDI-TOF MS fingerprinting  

The reliability of MALDI-TOF MS fingerprinting for identification of bacterial 

isolates was compared to the best match species identities given by 

RDP_SeqMatch, as MALDI-TOF MS fingerprinting is quicker and less expensive 

than the sequencing process required prior to PDR_SeqMatch analysis. In order 

to reduce replicate isolates for this analysis, hierarchical clustering was 

performed for the sequenced isolates. The sequences were binned into operational 

taxonomic units (OTUs) of 97 % sequence similarity, and within each group, the 

sequence that most accurately represented all the group members was chosen as 

the OTU representative isolate.  

Freeze stored isolates representing the 84 resulting OTUs (section 2.2.1.5) were 

thawed and streak-plated onto new TSA plates marked with the unique colony 

identifiers. After incubation (30 °C, 48 hours) the colonies were given a best-score 

identification by MALDI-TOF MS fingerprinting technology.  

Matrix solution was prepared prior to analysis as following: stock solution was 

made in an Eppendorf tube by mixing ultra pure water (475 µl), acetonitrile 

(ACN) (500 µl) and 100% trifluoro acetic acid (TFA) (25 µl) (Sigma-Aldrich, Inc.). 

From this stock solution, 250 µl was transferred to a tube with portioned dry α-

Cyano-4-hydroxycinnamic acid (HCCA), obtained from Daltonics (Bruker 

Daltonics Inc). The matrix was dissolved by vortexing at room temperature until 
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clear solution, to obtain a final concentration of 10 mg HCCA/ml. Analysis of the 

84 OTU isolates was performed by a direct transfer method, by smearing a single 

colony as a thin film directly on a MALDI target. Metal plates with 96 spots were 

used, where each OTU isolate was transferred in three parallels onto the plate. 

An Escherichia coli standard was included on each plate (Bruker Daltonics Inc). 

Both the standard and all the samples were overlaid with HCCA matrix solution 

(1 µl) and left to air dry prior to analysis.  

When dry, the bacterial isolates were analysed by Biotyper 2.0, which is a fully 

automated system coupled to a Microflex MALDI-TOF MS instrument (Figure 

2.5) (Bruker Daltonics, Inc.). The best-match identification results obtained were 

compared to the results obtained from database search with RDP_SeqMatch 

(section 2.2.1.5).  

 

 
Figure 2.5: MicroFlex MALDI-TOF MS instrument  

(Bruker Daltonics Inc., Germany) (picture by FFI) 

 

 

2.2.2 Culture-independent bacterial analysis 

2.2.2.1 Bead mill homogenization optimization  

Analysis of total microbial DNA in environmental samples required an extraction 

method efficient in lysis of both endospores and vegetative cells. Cell lysis and 

DNA extraction have often been performed by freeze-thawing, bead mill 
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homogenization, sonication and chemical lysis. However, a study by K.L. 

Anderson and S. Lebepe-Mazur compared all these methods for bacterial lysis, 

and found that bead mill homogenization gave the greatest quantity of extracted 

DNA (Anderson and Lebepe-Mazur 2003). Unfortunately, no common bead mill 

homogenization protocol for combined samples with bacterial endospores and 

vegetative cells was found during a literature study, so investigation was needed 

to find the optimal homogenization conditions for this experiment.  

Optimization was performed separately for bacterial endospores (Bacillus 

atrophaeus) and vegetative cells (E. coli), in order to compare the effect of the 

different homogenization conditions on endospores and cells. DNA extraction was 

performed by MoBio UltraClean Soil DNA Isolation kit (MoBio Laboratories, 

Solana Beach, CA), with some modifications. The bead tubes supplied with the 

kit were replaced with autoclaved (121 °C, 45 minutes) bead mill homogenization 

tubes (2 ml, Sarstedt AG & Co, Germany) filled with Zirconia/Silica beads (0.1 

mm, BioSpec Products Inc., USA). A variety of different bead mill 

homogenization conditions were tested for bacterial samples (100 µl, 1.0*106 

endospores or cells /µl): 

 the optimal amount of the DNA extraction reagents: MoBio Bead Solution, 

Inhibitor Removal Solution and S1 Lysis Solution (MoBio Laboratories, 

Solana Beach, CA) 

 the effect of antifoam A (Sigma-Aldrich, Inc.) 

 the optimal amount of Zirconia/Silica beads 

 the optimal duration of bead beating for release of maximum amount of 

DNA with minimum fragmentation 

 final DNA isolation by silica column (supplied with the kit) or ethanol 

precipitation 

For each test, the amount and quality of the resulting extracted DNA was tested 

by real-time PCR (section 2.2.1.5). 

 

2.2.2.2 Isolation of total DNA  

For 15 samples collected at Nationaltheatret subway station, the remaining 

sample extract (~18 ml) from culture-dependent analysis (section 2.2.1.1) was 

used for total DNA extraction, by use of MoBio UltraClean Soil DNA Isolation 

kit. 

15 bead mill homogenization tubes were prepared with MoBio Bead Solution (440 

l), Inhibitor Removal Solution (200 l) and S1 Lysis Solution (60 l), as found to 

be optimal (section 2.2.2.1). The 15 sample extracts were centrifuged (5 °C, 6,000 

g, 45 min), and the supernatants discarded prior to adding the pellets to the bead 

tubes marked with the unique sample names. Bead mill homogenization was 

performed in a Mini Beadbeater-8 (BioSpec Products Inc., USA) for 2 minutes at 

maximum speed.  
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After centrifugation (10,000 g, 3 min), the supernatants were transferred to 15 

new Eppendorf tubes (2.0 ml) and added S2 Protein Precipitation Solution (500 

l). The tubes were briefly vortexed and chilled for 10 minutes at 4 °C, and finally 

centrifuged for 3 minutes at 10,000 g. The supernatant (~1400 l) was combined 

with MoBio S3 High Salt DNA-binding Solution (2800 l), vortexed briefly and 

run on silica column in 650 l aliquots. The column was washed with MoBio S4 

High Salt Ethanol Wash Solution (300 l) and the nucleic acids were eluted by 

running MoBio S5 Elution Buffer (60 l) through the column three consecutive 

times to maximize the elution efficiency. The 15 DNA isolates were stored at – 20 

°C until further analyses. 

 

2.2.2.3 Analysis by gel electrophoresis 

2 µl from each of the 15 DNA isolates (section 2.2.2.2) were amplified by real-time 

PCR (section 2.2.1.5) prior to analysis by gel electrophoresis. The remaining DNA 

isolates were stored for future analyses.  

The PCR conditions were as described in section 2.2.1.5, except use of 55 ºC 

during the annealing steps. The reaction mixture was prepared with 2X SYBR 

Green master mix (10 µl), nuclease-free water (3 µl), 13.4 µg/µl Bovine Serum 

Albumin (BSA) (1 µl) (Applied Biosystems, USA) and 10 µM forward and reverse 

primer (2 µl each), per reaction. A 96-well PCR plate was prepared by adding 18 

µl reaction mixture to each well and then 2 µl of template (DNA isolate). 

Nitrile glows were used for safety during gel electrophoresis set up. Agarose gel 

was prepared by adding 1 gram agarose (LE agarose, Seakem) to 100 ml Trizma 

Borsyre EDTA (TBE) buffer (11 g/L Trizma, 6 g/L Borsyre, 4 ml/L 0.5 M EDTA) 

and heating this in a microwave oven at maximum effect until a homogene 

solution was formed (2 minutes). The agar solution was left to cool down to about 

50 °C before SYBR safe (10 µl) (Invitrogen Ltd, UK) was added and mixed in by 

gentle swirling. A gel container was prepared with a 30-wells comb placed 2 mm 

from the bottom. The agar solution was poured into the container and left to 

solidify (approximately 40 minutes). When solid, the comb was removed and the 

gel placed in the electrophoresis container, filled with TBE buffer.  

Each of the 15 PCR amplified DNA isolates were prepared by mixing 4 µl PCR 

product with 4 µl Loading Buffer (0.05 % xylene cyanol, 0.25 % bromfenol, 60 % 

glyserol) and applied in separate wells on the gel. A negative PCR control was 

included, and 1 kb plus DNA ladder (5 µl) (Invitrogen Ltd, UK) was loaded on the 

gel in the first and the last well. The gel electrophoresis was performed at 88 Volt 

for ~1 hour. The gel was then photographed under UV-radiation for visualization 

of the PCR products. 
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2.3 Detection of airborne Influenza A virus 

The four samples collected during February 2011, week 7 (section 2.1.1) were 

investigated for presence of Influenza A virus RNA. 

 

2.3.1 RNA isolation 

2.3.1.1 Method verification  

A trizol-chloroform based method was used for RNA extraction as recommended 

for samples contaminated with particulate matter (Fabian, McDevitt et al. 2009). 

The protocol for trizol-chloroform RNA extraction published by Gern et al was 

slightly modified for this experiment and tested on commercial Influenza A virus 

particles in order to verify the method (Gern, Martin et al. 2002). Virus particles 

were obtained from Helvetica Health Care (HHC, Switzerland) and were of type 

H1N1 Influenza A (strain Singapore/63/04). The concentration was determined to 

be 7*108 virus particles per ml based on the manufacturer in house standard.  

Influenza A virus particles (100 μl, 7*107 particles/μl) were mixed with 1 ml 

TRIzol LS Reagent (Invitrogen Ltd, UK) in a 2 ml Eppendorf tube by vortexing 

(25 °C, 10 min). The resulting mixture was supplied with chloroform (270 μl), 

vortexed (25 °C, 5 min), and then centrifuged (4 °C, 12,000 g, 15 min). The 

aqueous phase (~800 μl) was transferred to a new tube and mixed with 5 μl 

RNase-free glycogen (20 μg/μl) (Applied Biosystems, USA) and 670 μl isopropanol 

(Sigma-Aldrich, Inc.) and incubated at −20°C for 1 hour to precipitate RNA. The 

RNA precipitant was pelleted by centrifugation (4 °C, 12,000 g; 10 min). Further, 

the RNA pellet was washed once with 75 % ethanol (1400 μl) (Arcus, Norway), 

centrifuged (4 °C, 12,000 g, 5 min), and air dried for 10 minutes prior to being 

resuspended in nuclease-free water (20 μl). Qualitative detection of isolated RNA 

was performed by one-step reverse transcriptase real-time PCR, as described in 

section 2.3.2.  

 

2.3.1.2 Isolation from samples 

The four filter air samples collected at successive days at Nationaltheatret 

subway station (D_1, D_2, D_3 and D_4) were each extracted with 20 ml 

extraction buffer (section 2.1.2). The sample extract was centrifuged in two 15 ml 

tubes (5 °C, 6000 g; 45 min), and the supernatant transferred to 8 ml 

ultracentrifugation tubes while the pellets were kept on ice prior to RNA 

extraction. Ultracentrifugation was performed for 90 minutes (4 °C, 136,000 g) 

(Krammer, Nakowitsch et al. 2010). Thereafter the supernatant was discarded 

and the pellets combined with the pellets kept on ice, giving approximately 100 µl 

concentrated sample. RNA extraction was performed (section 2.3.1.1), and the 

samples were resuspended in nuclease-free water (12 µl).  
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RNA isolates from the two first samples (D_1 and D_2) were frozen at -80 ˚C 

until the third day, when they were analysed together with sample D_3, as 

described in section 2.3.2. Sample D_4 was analysed as described in section 2.3.3.   

 

2.3.2 Reverse transcriptase real-time PCR 

2.3.2.1 Primer and probe design 

The highly conserved matrix protein gene of the viral influenza A genome was 

selected as the amplification target (Fouchier, Bestebroer et al. 2000). Two pairs 

of primers known to be specific for the matrix gene were tested, in order to choose 

the most sensitive and specific pair for this study. The first primer pair with a 

corresponding hybridization probe has been used in a number of projects for 

Influenza A detection, and was designed by van Elden et al (van Elden, Nijhuis et 

al. 2001). For this study, the van Elden primers and probe were obtained from 

TIB Molbiol (GmbH, Germany).  

The second primer pair, with corresponding hybridization probe, was designed by 

Ward et al (Ward, Dempsey et al. 2004) and obtained from TIB Molbiol (GmbH, 

Germany). The hybridization probes were designed with 5´reporter dye (6FAM) 

and 3´quencher dye (BBQ) for specific real-time fluorescence monitoring of gene 

copies made during PCR. The expected lengths of the PCR products were 

calculated from information about primer hybridization locations in the target 

gene (Table 2.1).  

 

Table 2.1: Van Elden and Ward primer and probe sequences. The Y-nucleotide 

base codes for nucleotide C or T.  

van Elden assay Sequence 
Nucleotide 

location  

Reverse primer 5´-GGACTGCAGCGTAGACGCTT-3´ 217–236 

Forward primer 5´-CATYCTGTTGTATATGAGGCCCAT-3´ 382–405 

Probe 5´-TCAGTTATTCTGCTGGTGCACTTGCCA-3´ 349–376 

PCR product Length of PCR product = 405–217+1 = 188 bp 

Ward assay Sequence 
Nucleotide 

location  

Forward primer 5´-AAGACCAATCCTGTCACCTCTGA-3´ 169-191 

Reverse primer 5´-CAAAGCGTCTACGCTGCAGTCC-3´ 242-263 

Probe 5´-TTTGTGTTCACGCTCACCGT-3  ́ 209-228 

PCR product Length of PCR product = 263–169+1 = 95 bp     
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The specificity of the primers and probes from both assays were tested by in silico 

BLAST-search among consensus sequences in GenBank, belonging to all 

sequenced viral, fungal and bacterial strains (Benson, Karsch-Mizrachi et al. 

2009).  100 % specificity for the Influenza A genome was required in this study 

due to low expected virus concentration in the air samples.  

The sensitivity of the assays (van Elden and Ward) were tested by looking for 

base-pair hybridization errors between the primer and probe sequences and the 

matrix gene sequence from different Influenza A strains, obtained from the 

Influenza Research Database (Squires, Chang et al. 2008). The specificity and 

sensitivity were also tested by molecular biological techniques, as described in 

section 2.3.2.2.  

 

2.3.2.2 Method optimization 

Influenza A virus genome detection required a reverse transcriptase step for 

conversion of the viral RNA genome to cDNA prior to DNA-dependent DNA 

amplification (Fouchier, Bestebroer et al. 2000). Both reverse transcription and 

PCR amplification were performed in the same PCR well by use of a reaction 

mixture for one-step reverse transcriptase real-time PCR; „RealTime Ready RNA 

Virus Master‟ (Roche Applied Science, USA).  

LightCycler 480 real-time PCR System with 96-well reaction plates was used for 

analysis (Roche Applied Science, USA). The PCR assay was performed with a 

final volume of 20 µl per well, containing RNA sample, probe, primers, reaction 

mixture (buffer and enzyme blend) and water, according to the manufacturer‟s 

instructions. Two assays corresponding to the two different primer pairs were 

compared, and they required slightly different amounts of PCR reagents (Table 

2.2). Slightly different PCR conditions were also recommended for the two assays, 

for optimal amplification of target sequence (Table 2.3).  

 

 

     Table 2.2: PCR reaction mixtures 

Amount per PCR well (µl) Reagent 

van Elden Ward  

4.4 4.4 2X master mix 

1 1 10µM Probe 

2 2 10µM Forward primer  

1 3 10µM Reverse primer  

6.6 5.6 Water (nuclease-free) 

5 5 RNA sample 
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Table 2.3: Amplification programmes. 45 cycles of amplification were 

recommended for van Elden assay, and 50 cycles for Ward assay 

 Van Elden assay Ward assay 

Program 
Temperature 

(°C) 
Duration 

Temperature 

(°C) 

Duration 

(min) 

Reverse transcription  

(1 cycle) 
50 8 minutes 50 8 minutes 

Initial denaturation 

(1 cycle) 
95 30 seconds 95 30 seconds 

Amplification 

95 1 second 95 15 seconds 

60 20 seconds 58 45 seconds 

72 1 second 58 45 seconds 

Cooling 

(1 cycle) 
40 30 seconds 40 30 seconds 

 

 

Amount of RNA isolated from commercial virus particles (section 2.3.1.1) were 

tested by both assays (van Elden and Ward). Genomic RNA from Influenza A 

virus (A/H1N1/Virginia/ATCC/2009) was ordered as control RNA for the PCR 

amplification process (LCG Standards, England). For each PCR plate, negative 

controls (water) and positive RNA controls (ATCC RNA) were included.  

After PCR, the products were analysed on agarosis gel (section 2.2.2.3) to 

compare the specificity and sensitivity of the two assays (van Elden and Ward). 

 

 

2.3.2.3 Standard curve construction 

Two alternative methods for standard curve construction were tested. The first 

method constructed a curve based on theoretical concentrations of RNA, 

calculated from known initial virus particle concentration prior to RNA 

extraction. Loss of RNA during RNA extraction was expected, both when 

extracting RNA from commercial viral particles for standard curve preparation 

and when extracting RNA from unknown air samples. The percentage-wise loss 

of RNA was expected to stay constant in both cases, and thereby work as an 

internal calibration, making it possible to find the true number of initial virus 

particles collected, independent of the RNA loss caused during extraction.  

The second method for standard curve construction did not calculate for the loss 

of RNA during extraction, but gave exactly correct concentrations of the 

standards used. A DNA sample of known concentration was used directly for 

standard curve construction, and therefore no extraction procedure was needed 

prior to measurement, ensuring no unexpected loss of DNA.  
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RNA standard curve 

1 ml solution containing 7*10^8 virus particles were obtained from Helvetica 

Health Care (HHC, Switzerland). Viral RNA was extracted with TRIzol (section 

2.2.1.2), and the RNA pellet was resuspended in 14 µl nuclease-free water to 

obtain a theoretical concentration of 5.0*107 RNA copies /µl. This concentrated 

solution was used as the highest standard for standard curve construction. 11 

lower concentrated standards were prepared by five-fold serial dilution from the 

highest concentrated solution (5 µl standard + 20 µl water).  

Reverse transcriptase real-time PCR was performed with 4 parallels of each 

standard, where 2 µl standard solution was added to each PCR well containing 

18 µl reaction mixture. The Ward PCR assay was used for amplification (Table 

2.2 and Table 2.3), with 7.6 µl water per reaction. After PCR, a standard curve 

was constructed by plotting the crossing point value (Cp value) obtained for each 

standard against the log quantity of the corresponding standard RNA copy 

number. In this case the standard RNA copy numbers were the theoretical start 

concentrations of RNA in the PCR wells (Table 2.4). The standard curve was 

saved to be included in later analyses of samples for quantification of their viral 

content.    

 

 

DNA standard curve 

Plasmids containing the matrix protein gene (DNA) of Influenza A virus were 

obtained from TIB Molbiol (GmbH, Germany), verified by OD measurement to 

contain 1010 DNA copies. The DNA was dissolved in 100 µl water to obtain a 

concentration of 1.0*108 copies /µl. This concentrated solution was used as the 

highest standard for standard curve construction. 5 lower concentrated standards 

were prepared by ten-fold serial dilution from the highest concentrated solution 

(10 µl standard + 90 µl water), and then 5 lower standards were made by five-fold 

dilution (5 µl standard + 20 µl water).  

Reverse transcriptase real-time PCR was performed with 3 parallels of each 

standard, where 5 µl standard solution was added to each PCR well containing 

15 µl reaction mixture. The Ward PCR assay was used (Table 2.2 and Table 2.3). 

A standard curve for viral RNA quantification was constructed by plotting the Cp 

value obtained for each standard against the log quantity of the corresponding 

standard copy number. In this case, the standard copy numbers were the start 

concentrations of DNA in the PCR wells (Table 2.4). The standard curve was 

saved to be included in later analyses of samples for quantification of their viral 

content.   
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   Table 2.4: Standard concentrations in PCR 

Standard number 
Copy number in PCR well ( /µl) 

RNA standard DNA standard 

1 5,0*106 2,5*107 

2 1,0*106 2,5*106 

3 2,0*105 2,5*105 

4 4,0*104 2,5*104 

5 8,0*103 2,5*103 

6 1,6*103 2,5*102 

7 3,2*102 5.0*101 

8 6,4*101 1.0*101 

9 1,28*101 2.0*100 

10 2,56*100 4.0*10-1 

11 5,12*10-1 8.0*10-2 

12 1,024*10-1  

 

 

2.3.2.4 Quantitative analysis of virus content in samples 

The RNA isolated samples D_1, D_2 and D_3 (section 2.3.1.2) were tested for 

Influenza A viral RNA by Ward reverse transcriptase real-time PCR assay 

(section 2.3.2.2). The PCR was prepared with two parallels of each sample, 

positive controls (ATCC RNA) and negative controls (water). Included in the PCR 

were also two parallels of the third highest concentrated RNA- and DNA 

standards (Table 2.4), for correlation with the corresponding saved standard 

curves.  

Finally, after amplification, the Cp values obtained from the amplification curves 

of the unknown samples were plotted on the standard curves for quantification of 

influenza A virus RNA copies.  

 

2.3.3 Inhibition test 

A fourth air sample (D_4) was collected at Nationaltheatret subway station in 

order to test for inhibition of the PCR amplification process. The RNA in the 

sample was extracted with trizol (section 2.3.1.1), and re-suspended in 20 µl 

nuclease-free water. Ward reaction mixture was prepared, both with and without 

BSA (13.4 µg/µl). A pre-study performed by Marius Dybwad revealed samples 

from Nationaltheatret subway station inhibited 16SrRNA gene PCR, and that 

addition of BSA counteracted the observed inhibition (Marius Dybwad, FFI, 

unpublished results). Those air samples were not extracted with trizol, but the 

effect of reducing inhibition with BSA was described also for trizol-extracted 

samples in an article published by Silvy et al (Silvy, Pic et al. 2004). 
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A PCR plate was prepared with five wells containing reaction mixture (RM) with 

BSA (13 µl per well) and seven wells containing RM without BSA (13 µl per well). 

A RNA spike was prepared from aliquots saved during construction of the RNA 

standard curve. RNA spike (2 µl) and isolated RNA from air sample D_4 (5 µl) 

were added to the PCR wells (Table 2.5). Included in the PCR were also a RNA 

standard and a DNA standard (Table 2.4) for correlation with the corresponding 

saved standard curves. The PCR was run with Ward reverse transcriptase real-

time PCR conditions (section 2.3.2.2). 

 

Table 2.5: Schematic PCR assay 

         1 2 3 4 5 6 

A RM+BSA 

Spike 

Sample 

RM+BSA 

Spike 

water 

RM+BSA 

water 

Sample 

RM+BSA 

negative 

 

RM+BSA 

negative 

 

RM 

DNA 

Standard 

B RM 

Spike 

Sample 

RM 

Spike 

water 

RM 

water 

Sample 

RM 

negative 

RM 

negative 

RM 

RNA 

standard 

 

An agarosis gel was prepared for analysis of the PCR products from inhibition 

test (section 2.1.4.3). The PCR products amplified in the PCR wells A1-4 and B1-

4 (Table 2.5) were applied on the gel in separate wells, and included was also 

previously amplified positive control (ATCC) RNA.  
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3 Results 

3.1 Air sampling 

3.1.1 Samples and sampling conditions 

In order to characterize the airborne bacteria at Nationaltheatret subway station, 

19 air samples were harvested in the period May - September 2011 (Table 3.1). 

The weather conditions for the nighttime, daytime and reference samples were 

stable throughout the sampling period (Table 3.1 and Figure 3.1). The nighttime 

and reference samples showed greater variations in humidity than the daytime 

samples, but this observation was not found to influence on the bacterial 

concentrations found (Table 3.3). 

 

 

Table 3.1: Weather conditions measured by Aerotrak 8220, expressed as 

average values for the time interval of measurement +/- the standard deviations 

Sample  

name 

Time  

interval  
Weather report 

Temperature  

(°C) 

Humidity 

(%RH) 

180510D 11:00 – 13:00 Indoors conditions 17.5 +/-0.4 69.1 +/-3.8 

140610D 11:00 – 13:00 Indoors conditions 18.3 +/-0.3 62.9 +/-6.4 

280610D 11:00 – 13:00 Indoors conditions 19.6 +/-0.4 69.8 +/-3.3 

280610N 02:00 – 04:00 Indoors conditions 18.9 +/-0.5 63.3 +/-2.0 

260710D 10:30 – 12:30 Indoors conditions 19.4 +/-0.5 75.6 +/-0.5 

260710N 02:30 – 04:30 Indoors conditions 20.4 +/-0.3 71.6 +/-1.5 

260710R 09:00 – 11:00 Overcast, no wind 20.2 +/-1.2 65.2 +/-4.4 

160810D 11:00 – 13:00 Indoors conditions 21.7 +/-0.5 69.5 +/-5.9 

160810N 01:30 – 03:30 Indoors conditions 19.9 +/-0.2 74.7 +/-3.4 

160810R 09:00 – 11:00 Overcast, light wind 19.0 +/-0.6 56.2 +/-3.3 

300810D 10:56 – 12:56 Indoors conditions 19.3 +/-0.3 66.3 +/-6.9 

300810N 01:20 – 03:20 Indoors conditions 18.8 +/-0.3 61.1 +/-1.4 

300810R 08:48 – 10:48 Sunshine, no wind 17.7 +/-1.1 46.0 +/-3.7 

130910D 10:54 – 12:54 Indoors conditions 19.3 +/-0.5 69.8 +/-5.0 

130910N 01:20 – 03:20 Indoors conditions 18.3 +/-0.5 67.1 +/-1.1 

130910R 08:45 – 10:45 Sunshine, no wind 15.9 +/-1.7 67.4 +/-8.3 

270910D 09:47 – 11:47 Indoors conditions 16.6 +/-0.3 62.4 +/-7.4 

270910N 01:30 – 03:30 Indoors conditions 14.9 +/-0.4 47.6 +/-0.8 

270910R 11:50 – 13:50 Sunshine, light wind 12.6 +/-1.0 47.6 +/-3.2 
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Figure 3.1: Average temperature and humidity values obtained for the daytime, 

nighttime and reference samples, with error bars illustrating the standard 

deviations  

 

 

 

 

In order to investigate the presence of Influenza A virus during the common flu 

winter season, four air samples were collected in week 7, February 2011 (Table 

3.2). The number of people at the station stayed constant for the four days of 

sampling.  

 

Table 3.2: Number of people waiting for a train or passing by at the westbound 

platform during the morning rush hours in week 7, 2011   

Sample name Time interval  Average number of people 

D_1 07:00 – 09:00 Approximately 100 

D_2 07:00 – 09:00 Approximately 100 

D_3 07:00 – 09:00 Approximately 100 

D_4 07:00 – 09:00 Approximately 100 
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3.1.2 Airborne particle concentrations 

In order to investigate aerosol size distribution profiles for samples collected 

indoor at day, indoor at night and outdoor, aerosol sizes and concentrations were 

monitored during sample collection in May – September 2011 (Figure 3.2). The 

aerosol concentrations and size distribution profiles were stable throughout the 

study for the daytime, nighttime and reference samples. No apparent correlation 

was observed between the aerosol concentrations and the daily weather 

conditions wind, temperature and %RH (Table 3.1 and Table A.1 in Appendix A).  

 

 

 

Figure 3.2: Airborne particle concentrations and size distribution profiles for the 

average daytime, nighttime and reference sample, with error bars illustrating the 

standard deviations  
 
 

For all size intervals, the particle concentrations were highest for indoor daytime 

samples and lowest for outdoor reference samples. 90 % of the total numbers of 

airborne particles for indoor, outdoor and reference samples where represented 

by indoor daytime samples (Figure 3.2). For the particle size distribution profiles 

it was observed that the smallest size-interval (0.5 - 1.0 µm) represented 85 % of 

the total particle count.  
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3.2 Characterization of airborne bacteria 

 

3.2.1 Cultured bacteria 

3.2.1.1 Sample concentrations 

In order to characterize as many viable bacteria as possible, total culturing and 

selective endospore culturing were performed on both TSA and R2A growth 

media (Table 3.3). However, neither TSA nor R2A was found to provide better 

conditions for growth, so average colony count numbers from TSA and R2A media 

were used for further result analysis. No correlation was observed when 

comparing the cultivable bacterial concentrations found and the weather 

conditions (Tables 3.1 and 3.3). 

 

Table 3.3: Average bacterial concentrations calculated from colony growth on 

triplicate plates, expressed as CFU m-3 of air +/- the standard deviation  

Sample 

CFU m-3 * 

Total culturing Endospore culturing 

Aerobe incubation Aerobe incubation Anaerobe incubation 

TSA R2A TSA R2A TSA R2A 

180510D 480 +/-26 517 +/-22 <LOD <LOD <LOD <LOD 

140610D 461 +/-82 454 +/-74 11 +/-0 17 +/-10 <LOD <LOD 

280610D 352 +/-69 344 +/-20 15 +/-8 7 +/-8 <LOD <LOD 

280610N 13 +/-18 30 +/-13 <LOD <LOD <LOD <LOD 

260710D 222 +/-29 289 +/-67 <LOD <LOD <LOD <LOD 

260710N 17 +/-6 30 +/-14 <LOD <LOD <LOD <LOD 

260710R 35 +/-17 76 +/-55 22 +/-24 76 +/-63 <LOD 30 +/-14 

160810D 461 +/-212 276 +/-12 <LOD <LOD <LOD <LOD 

160810N 31 +/-3 30 +/-3 <LOD <LOD <LOD <LOD 

160810R 181 +/-25 104 +/-33 20 +/-12 11 +/-10 6 +/-0 <LOD 

300810D 441 +/-50 444 +/-112 11 +/-10 6 +/-6 <LOD <LOD 

300810N 43 +/-20 28 +/-17 <LOD <LOD <LOD <LOD 

300810R 161 +/-19 228 +/-124 13 +/-3 6 +/-6 <LOD <LOD 

130910D 469 +/-143 493 +/-43 65 +/-98 11 +/-6 <LOD <LOD 

130910N 6 +/-6 7 +/-3 <LOD <LOD <LOD <LOD 

130910R 57 +/-26 137 +/-18 7 +/-8 11 +/-11 <LOD <LOD 

270910D 341 +/-46 350 +/-47 26 +/-18 7 +/-3 22 +/-11 9 +/-6 

270910N 7 +/-8 <LOD <LOD <LOD <LOD <LOD 

270910R 70 +/-35 94 +/-15 7 +/-3 9 +/-12 9 +/-8 <LOD 

*The LOD was set to 5.5 CFU per m3 air, as found to correspond to average CFU 

from triplicate plates equal one (Formula 2.2 section 2.2.1.1) 
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The concentrations of airborne bacteria found from total culturing were stable for 

the daytime, nighttime and reference samples (Figure 3.3). However, the 

concentration of the average daytime sample was higher than the average 

nighttime and reference sample, by a factor of approximately 20 and 4, 

respectively.  

The daytime samples contained 75 % of all the cultivable bacteria found (Table 

3.3). Further, 90 % of the total average particle concentrations were measured by 

Aerotrak 8220 for the daytime samples (Figure 3.2), giving that the nighttime 

and reference samples together were 2.5 times higher concentrated with 

cultivable bacteria per collected particle than the daytime samples.  

 

 

Figure 3.3: Average bacterial concentrations calculated from total culturing on 

TSA and R2A, with error bars illustrating the standard deviations  

 

 

From selective endospore culturing, growth was observed for 10 of in total 19 

samples, where aerobe incubation resulted in 82 % of the observed endospore-

forming bacteria (Table 3.3). The aerobic endospore fraction found in the average 

outdoor reference sample was higher than the fractions for the average indoor 

daytime and nighttime samples, by a factor of approximately 5 and 4, 

respectively (Figure 3.4).  
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Figure 3.4: Aerobe endospore fractions found in the average daytime, nighttime 

and reference samples 
 

 

3.2.1.2 Taxonomic classification results 

In order to investigate the diversity of the cultivable bacteria found, isolates were 

taxonomically classified. From total culturing, all colonies with unique 

morphology appearance were selected for classification, and from endospore 

culturing, all colonies found were selected (section 2.2.1.2). 291 isolates from total 

culturing and 111 from endospore culturing were successfully 16SrRNA gene 

sequenced and classified down to genus level (section 2.2.1.5). The classified 

isolates were distributed between only three phyla: Actinobacteria (35 %), 

Firmicutes (58 %) and Proteobacteria (7 %). However, 22 distinct bacterial 

families were represented, under which in total 37 different bacterial genera 

were observed (Table 3.4).  

The majority of the classified isolates belonged to the genera Bacillus (31.3 %), 

Micrococcus (23.4 %) and Staphylococcus (18.7 %), implying that species of these 

genera show high diversity and varying colony morphologies. However, it should 

be noted that the major genera also could be due to replicate isolates, in addition 

to high species diversity. Distinct morphologies were selected from total culturing 

independently for each sample, and all colonies from endospore culturing were 

selected, resulting in possibility for replicates (section 2.2.1.2).  
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Table 3.4: Taxonomical classification results for 402 bacterial isolates, including 

the numbers of isolates representing each family and genus  

Isolates Family 

 

Isolates Genus 

133 33.1 % Bacillaceae 

 

126 31.3 % Bacillus 

107 26.6 % Micrococcaceae 94 23.4 % Micrococcus 

75 18.7 % Staphylococcaceae 75 18.7 % Staphylococcus 

18 4.5 % Paenibacillaceae 17 4.2 % Paenibacillus 

13 3.2 % Pseudomonadaceae 13 3.2 % Pseudomonas 

11 2.7 % Microbacteriaceae 9 2.2 % Microbacterium 

8 2.0 % Streptomycetaceae 8 2.0 % Streptomyces 

6 1.5 % Dermacoccaceae 6 1.5 % Dermacoccus 

6 1.5 % Nocardiaceae 5 1.2 % Arthrobacter 

5 1.2 % Planococcaceae 5 1.2 % Kocuria 

4 1.0 % Enterobacteriaceae 5 1.2 % Rhodococcus 

3 <1 % Rhodobacteraceae 3 <1 % Lysinibacillus 

2 <1 % Acetobacteraceae 3 <1 % Paracoccus 

2 <1 % Caulobacteraceae 3 <1 % Rothia 

2 <1 % Corynebacteriaceae 2 <1 % Brevundimonas 

1 <1 % Comamonadaceae 2 <1 % Corynebacterium 

1 <1 % Dietziaceae 2 <1 % Paenisporosarcina 

1 <1 % Intrasporangiaceae 2 <1 % Pantoea 

1 <1 % Leuconostocaceae 2 <1 % Planococcus 

1 <1 % Moraxellaceae 2 <1 % Roseomonas 

1 <1 % Promicromonosporaceae 2 <1 % Viridibacillus 

1 <1 % Sphingomonadaceae 1 <1 % Brevibacillus 

   
1 <1 % Cellulosimicrobium 

   
1 <1 % Comamonas 

   
1 <1 % Curtobacterium 

   
1 <1 % Dietzia 

   
1 <1 % Enhydrobacter 

   
1 <1 % Erwinia 

   
1 <1 % Exiguobacterium 

   
1 <1 % Gordonia 

   
1 <1 % Janibacter 

   
1 <1 % Plantibacter 

   
1 <1 % Serratia 

   
1 <1 % Sphingomonas 

   
1 <1 % Sporosarcina 

   
1 <1 % Tumebacillus 

   
1 <1 % Weissella 
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21 of the 22 bacterial families found were represented in the indoor samples, 

compared to only 11 of 22 families represented in the outdoor samples (Table 

3.5). However, this observation could not be considered a proof of richer bacterial 

diversity indoors compared to outdoors. For the indoor samples, colonies with 

unique morphologies were selected from in total 3708 bacterial colonies, whereas 

for the outdoor samples, colonies with unique morphologies were selected from 

only 742 bacterial colonies (Table 3.3). This implied that the families only 

observed indoors could have been found outdoors if higher numbers of outdoor 

bacteria were obtained prior to morphology-based selection.  

Table 3.5: Family taxa observed in indoor and outdoor samples 

Indoor samples (day and night) 
 

Outdoor samples (day) 

Family taxa Isolates 

 

Family taxa Isolates 

Acetobacteraceae 1 <1 % 

 

Acetobacteraceae 1 <1 % 

Bacillaceae 84 28 % Bacillaceae 49 46 % 

Caulobacteraceae 2 <1 % 
   

Comamonadaceae 1 <1 % 
   

Corynebacteriaceae 2 <1 % 
   

Dermacoccaceae 5 2 % Dermacoccaceae 1 <1 % 

Dietziaceae 1 <1 % 
   

Enterobacteriaceae 4 1 % 
   

Intrasporangiaceae 1 <1 % 
   

Leuconostocaceae 1 <1 % 
   

Microbacteriaceae 8 3 % Microbacteriaceae 3 3 % 

Micrococcaceae 91 31 % Micrococcaceae 16 15 % 

Moraxellaceae 1 <1 % 
   

Nocardiaceae 5 2 % Nocardiaceae 1 <1 % 

Paenibacillaceae 8 3 % Paenibacillaceae 10 9 % 

Planococcaceae 4 1 % Planococcaceae 1 <1 % 

   
Promicromonosporaceae 1 <1 % 

Pseudomonadaceae 10 3 % Pseudomonadaceae 3 3 % 

Rhodobacteraceae 3 1 % 
   

Sphingomonadaceae 1 <1 % 
   

Staphylococcaceae 55 19 % Staphylococcaceae 20 19 % 

Streptomycetaceae 8 3 % 
   

Total 296 100 % 

 

Total 106 100 % 

 

The only relatively high deviations observed between the sampling locations were 

a higher percent representation in the outdoor samples of Bacillaceae (46 % to 28 

%) and Paenibacillaceae (9 % to 3 %), and a lower representation of 

Micrococcaceae (15 % and 31 %) (Table 3.5). 
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Among the isolates originating from endospore culturing, 80 % were classified as 

the bacterial genera Bacillus, Paenibacillus, Viridibacillus, Tumebacillus and 

Brevibacillus and 15 % as the genus Staphylococcus. These observations 

correlated well with the observation of a higher endospore fraction in the outdoor 

samples (Figure 3.4) and a higher percent representation of the family taxa 

Bacillaceae and Paenibcillaceae in the outdoor samples (Table 3.5). 

In order to investigate the effect of human activity and train traffic on the 

bioaerosol environment, bacterial diversity was compared for indoor daytime 

samples and nighttime samples (Table 3.6).  

 

Table 3.6: Family taxa observed in indoor daytime and nighttime samples  

Daytime indoor samples 
 

Nighttime indoor samples 

Family taxa Isolates 
 

Family taxa Isolates 

Acetobacteraceae 1 <1 % 

 

   
Bacillaceae 81 32 % Bacillaceae 3 6 % 

Caulobacteraceae 2 <1 % 
   

Comamonadaceae 1 <1 % 
   

   
Corynebacteriaceae 2 4 % 

Dermacoccaceae 5 2 % 
   

Dietziaceae 1 <1 % 
   

Enterobacteriaceae 1 <1 % Enterobacteriaceae 3 6 % 

Intrasporangiaceae 1 <1 % 
   

Leuconostocaceae 1 <1 % 
   

Microbacteriaceae 6 2 % Microbacteriaceae 2 4 % 

Micrococcaceae 75 30 % Micrococcaceae 16 35 % 

Moraxellaceae 1 <1 % 
   

Nocardiaceae 1 <1 % Nocardiaceae 4 9 % 

Paenibacillaceae 7 3 % Paenibacillaceae 1 2 % 

Planococcaceae 4 2 % 
   

Pseudomonadaceae 9 4 % Pseudomonadaceae 1 2 % 

Rhodobacteraceae 3 1 % 
   

Sphingomonadaceae 1 <1 % 
   

Staphylococcaceae 43 17 % Staphylococcaceae 12 26 % 

Streptomycetaceae 6 2 % Streptomycetaceae 2 4 % 

Total 250 100 % 
 

Total 46 100 % 

 

 

Fewer family taxa were observed in the nighttime samples than for the daytime 

samples. However, as also smaller bacterial concentrations were obtained for the 

nighttime samples (Figure 3.3), there is a possibility that more taxa could have 

been observed if more nighttime samples were collected. Interestingly, the largest 
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deviation in percent representation between the daytime and nighttime samples 

was observed for Bacillaceae (Table 3.6), which also was found to represent the 

largest deviation between the indoor and outdoor samples (Table 3.5).  

 

 

 

3.2.1.3 Characteristic morphologies 

In order to further characterize the 402 classified bacterial isolates, colony 

morphology (Table B.1 in Appendix B) was linked to the taxonomical 

classification results (Table 3.4). Dominant traits observed for the largest family 

taxa were suggested as morphologies characteristic for these families. The 

characteristic patterns found included colony colour, size, shape and surface 

appearance, noted after 48 hours incubation (Table 3.7 and Figure 3.5a-f). 

 

Table 3.7: Characteristic morphologies for the ten largest families, where 

percentage abundance of the trait among the family isolates are given  

Taxonomical family Isolates Colour Size Shape Surface 

Bacillaceae 133 
Beige  

94 % 

5 mm  

88 % 

Irregular  

78 % 

Textured  

62 % 

Micrococcaceae 107 
Yellow  

78 % 

1 mm  

90 % 

Round  

78 % 

Smooth 

77 % 

Staphylococcaceae 75 
Beige 

71 % 

1 mm  

79 % 

Round  

89 % 

Smooth  

89 % 

Paenibacillaceae 18 
Beige  

67 % 

5 mm  

50 % 

Irregular  

61 % 

Smooth  

89 % 

Pseudomonadaceae 13 
Yellow  

54 % 

1 mm  

69 % 

Irregular  

77 % 

Ruffled  

54 % 

Microbacteriaceae 11 
Yellow  

91 % 

1 mm  

100 % 

Round 

90 % 

Smooth  

100 % 

Streptomycetaceae 8 
White  

88 % 

1 mm  

100 % 

Round  

75 % 

Ruffled  

88 % 

Dermacoccaceae 6 
Orange  

50 % 

1 mm  

100 % 

Round  

100 % 

Smooth  

100 % 

Nocardiaceae 6 
Pink  

33 % 

1 mm  

100 % 

Round  

83 % 

Smooth  

100 % 

Planococcaceae 5 
Orange  

60 % 

1 mm  

100 % 

Round  

80 % 

Smooth  

100 % 
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Figure 3.5 a-f: Examples of colonies with morphologies found to be characteristic 

for the family taxa a)Bacillaceae, b)Micrococcaceae, c)Staphylococcaceae, 
d)Pseudomonadaceae, e)Nocardiaceae and f)Planococcaceae. Colours appear in 

picture not exactly as observed in laboratory (Picture by FFI)  

 

 
3.2.1.4 Hemolytic activity 

The 402 classified isolates were successfully assayed for hemolytic activity. 22 % 

of the isolates showed hemolytic activity, in which all isolates were classified as 

inducing beta-hemolysis, except two that were classified as inducing alpha-

hemolysis. 87 % of the isolates showing hemolytic activity were classified as the 

genus Bacillus. The other genera were Staphylococcus, Streptomyces, Erwinia 

and Pseudomonas.   

 

3.2.1.5 Antibiotic resistance 

Among the 402 classified isolates, 32 %, 12 %, 65 %, 3 % and 8 % showed 

resistance against the antibiotics ampicillin, streptomycin, nalidixic acid, 

tetracycline and chloramphenicol, respectively. The distribution of antibiotic 

resistance in the dominant genera (Table 3.4) illustrated the trend (Table 3.8). 

Among the dominant genera, only Paenibacillus were frequently resistant 

against streptomycin. Very few isolates among the dominant genera displayed 

resistance against tetracyclin, except some isolates of Pseudomonas. 
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Table 3.8: Distribution of antibiotic resistance in the dominant genera 

Genus AMP STR NAL TET CHL 

 

Colour codes 

Bacillus 48 % 14 % 17 % 2 % 13 % 

 

Very high >90% 

Micrococcus 4 % 6 % 98 % 1 % 2 % High > 30% 

Staphylococcus 53 % 9 % 95 % 1 % 4 % Moderate >10% 

Paenibacillus 12 % 76 % 12 % 0 % 12 % Low <10% 

Pseudomonas 31 % 8 % 54 % 15 % 23 % 

  

 

3.2.1.6 Species identity 

In order to tentatively identify the bacterial isolates on species level, they were 

all compared to sequences of known identity by RDP_SeqMatch (2.2.1.5), giving a 

best-match identity score. From the 291 isolates selected based on different 

colony appearance (total culturing), 92 unique bacterial species were found. It 

should be noted that the 291 colonies were selected independently for each of the 

19 samples (section 2.2.1.2). Furthermore, colonies were selected independently 

from TSA and R2A culture plates per sample, giving that 38 replicates were 

expected per species. However, most of the species replicates found were selected 

multiple times from one sample, and only 17 of the 92 different species were 

observed in more than two different samples. The only specie observed in more 

than 9 samples was Micrococcus luteus, which was found in 17 of the 19 samples. 

The lack of replicates indicated high bacterial diversity in the airborne 

environment at Nationaltheatret subway station.  

Furthermore, it was found that 89 of the 291 isolates were replicates of another 

isolate, collected at the same time and location and grown on the same medium. 

This observation suggested that selection of different bacteria species based on 

observation of different colony appearance was an insufficient method. However, 

it was found that 69 of the 89 unnecessary replicates were due to M. luteus. 

When excluding M. luteus, only 7 % of the isolates were incorrectly selected as 

unique bacteria species based on colony appearance.  

From endospore culturing, all colonies found were selected for classification, and 

therefore replicate isolates were expected. Among the 111 classified endospore-

forming isolates, 37 unique bacterial species were found by RDP_SeqMatch 

database search (2.2.1.5). 

In order to investigate the identification reliability of MALDI-TOF MS 

fingerprinting compared to RDP_SeqMatch, representative isolates from each 

OTU (n=84) were analysed by MALDI technology, and the results compared to 

the RDP_SeqMatch results (Table C.1 in Appendix C). 33 of 84 bacterial isolates 

were identified with corresponding species names, 24 of 84 bacterial isolates were 
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identified with corresponding genus names (wrong species), and 26 of 84 bacterial 

isolates were identified with non-corresponding names. However, 50 % of the 

isolates identified with non-corresponding species names were found to be 

lacking in the MALDI database (Table C.2 in Appendix C). When subtracting for 

the identifications that could never have been equal the RDP_SeqMatch results 

because of lack of their identification spectra in MALDI-database, the 

identification of bacterial isolates by MALDI-TOF MS fingerprinting gave 

corresponding genus identification for 74 % of the OTU isolates. One isolate 

failed to give MALDI-spectra for unknown reasons.  

 

3.2.2  Culture-independent bacterial analysis 

3.2.2.1 Optimal DNA extraction method 

In order to optimize a method for extraction of microbial DNA from samples 

containing endospores and vegetative bacteria, various bead mill homogenization 

conditions were tested (section 2.2.2.1). The optimization study resulted in the 

optimal conditions, as verified by PCR:  

 use of MoBio Bead Solution (440 l), Inhibitor Removal Solution (200 l)  

and S1 Lysis Solution (60 l)  

 no use of antifoam A  

 final DNA isolation by silica column  

These conditions were found to be optimal both for endospores (B. atrophaeus) 

and vegetative cells (E. coli). However, the optimal amount of beads and duration 

of bead beating varied for the endospores and the vegetative bacteria cells (Table 

D.1 in Appencix D). A compromise that seemed to disfavor the cells and the 

endospores equally was chosen as the standard conditions for the unknown air 

samples; 1.5 gram beads and bead beating for two minutes.  

 

3.2.2.2 16SrRNA gene quality and quantity 

In order to analyse the total microbial DNA extracted from 15 air samples 

(section 2.2.2.2), their 16SrRNA gene PCR products were run on agarosis gel 

(Figure 3.6). All of the bands in the gel corresponding to the daytime samples (D) 

appeared strong, whereas the bands corresponding to the reference samples (R) 

appeared strong only for two of five samples. All the five nighttime samples (N) 

showed weak bands in the gel, implying that there were less DNA in these 

samples.  

These results correlated well with the results from the culture-dependent 

analysis, where higher numbers of cultivable bacteria were found in the daytime 

samples than in the nighttime and reference samples (section 3.2.1). This trend 
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seemed to be true also for total bacteria, represented by the amount of amplified 

16SrRNA gene visible on the gel (Figure 3.6).    

 

Figure 3.6: 16SrRNA gene amplified total DNA, representing five reference, 

daytime and nighttime samples, and a negative control  

 

A very weak band could be seen in the lane of the negative PCR control (C) 

(Figure 3.6). The band appeared in the same row as the 16SrRNA gene products 

of the samples, and was most likely due to cross-contamination. 

 

The remaining total DNA extracts (section 2.2.2.3) will be further analysed in a 

culture-independent diversity study using DGGE and 16SrRNA gene based 

microarrays, by Marius Dybwad at FFI.    
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3.3 Detection of airborne Influenza A virus 

 

3.3.1 RNA isolation 

In order to verify the RNA extraction method prior to testing air samples for viral 

RNA, extraction was performed from commercial whole virus particles (section 

2.3.1.1). Successful PCR detection of viral RNA extracted from commercial virus 

particles confirmed the RNA extraction method, although the losses from the 

isolation process remained unknown. Successful detection of target RNA also 

confirmed the one-step reverse transcriptase real-time PCR assay (section 2.3.2).  

 

3.3.2 Reverse transcriptase real-time PCR 

Testing and comparison of the two competing PCR assays designed by van Elden 

and Ward (sections 2.3.2.1 and 2.3.2.2) revealed better results for the Ward 

assay. All the primers and probes were found to be specific for the Influenza A 

genome by in silico BLAST specificity testing in GenBank (Benson, Karsch-

Mizrachi et al. 2009). However, sensitivity testing by sequence alignment 

revealed that the Ward probe bound best to all the target sequences tested, 

whereas the van Elden probe had from two to four mismatches in some target 

sequences. No mismatches were found for the primer sequences.   

In order to test the specificity and sensitivity of the two assays in laboratory, 

their PCR products were compared on agarosis gel (Figure 3.7). Both assays were 

found to be equally specific, as only bands corresponding to PCR products of the 

expected lengths (Table 2.1, section 2.3.2.1) were visible on the gel, except for the 

primer dimers which also appeared in the negative samples. However, a weak 

band in well number six indicated that the van Elden assay was less sensitive in 

amplification of the trizol-extracted RNA than the Ward assay. This observation, 

together with the in silico test results, made us choose the Ward assay for further 

studies. 
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Figure 3.7: PCR products from amplification of positive control RNA (ATCC 

RNA) and trizol-extracted RNA (Trizol RNA), by van Elden and Ward assays. 

Negative PCR controls are shown in well number 3, 5, 7, and 9  
 

 

 

 

In order to quantify Influenza A viruses, potentially present in the air samples, 

two standard curves were prepared (section 2.3.2.3). For the RNA standard 

curve, the lowest concentrated standard that appeared in the linear area of the 

curve represented a theoretical initial concentration of 1.6*103 copies per µl in 

PCR (Figure 3.8). This limit of quantification for the RNA standard curve 

(1.6*103 copies per µl in PCR) was higher than expected, indicating huge losses of 

RNA during the RNA extraction process (section 2.3.1). Internal calibration 

(section 2.3.2.3) corrects for the RNA loss, but still an initial concentration of 

virus particles corresponding to minimum 1.6*103 RNA copies per µl in PCR need 

to be collected, in order to quantify the virus particles in the sample correctly. 

However, qualitative detection is possible for concentrations below the limit of 

quantification. The LOD was estimated to be 10 RNA copies per µl in PCR from 

the standard concentrations (Table 2.4, section 2.3.2.3) and standard curve 

picture (Figure 3.8). 

 

For the DNA standard curve, perfect linearity was seen for the six highest 

concentrated standards, but also the seventh standard was included as part of 

the linear area (Figure 3.9). This was considered reliable as no deviation was 

observed for the three standard parallels. The error value obtained for the curve 
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was 0.00548; far below the required <0.2, and the efficiency of the curve was 

found to be 1.951 (Lightcycler Computer Program). The lowest concentrated 

standard in the linear area of the curve represented a theoretical initial 

concentration of 50 copies per µl in PCR. This limit of quantification was 

considered suitable for the study, and still qualitative detection was possible 

below the limit of quantification. However, it should be noted that the DNA 

standard curve only gives information about RNA concentrations after RNA 

extraction, and not information about the number of initial viral particles 

collected. 

 

 

 
Figure 3.8: RNA standard curve 
 

 

 

Figure 3.9: DNA standard curve 
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3.3.3 Detection and quantification of airborne Influenza A virus 

In order to test for presence of Influenza A virus RNA in the air samples, a 

specific reverse transcriptase PCR assay was performed on the RNA isolated air 

samples (section 2.3.2). The PCR assay worked correctly because the positive 

controls were amplified and the negative controls were not. The standards 

included in the assay for correlation with the saved standard curves obtained 

equal crossing points with their corresponding saved standards, implying good 

reproducibility. However, no amplification was seen for the RNA isolated air 

samples (Figure 3.10).  

The RNA isolated air samples were not given crossing points by the PCR analysis 

program, and could therefore not be related to the standard curves for 

quantification. Logically, no crossing point was given when no amplification 

occurred; indicating lack of target sequences in the RNA isolated air samples.  

 

Figure 3.10: PCR showing amplification of a) positive RNA control, b) RNA 

standard and c) DNA standard, but no amplification of negative controls or air 

samples 

 

In order to test the RNA isolated air samples for inhibition, reverse transcriptase 

PCR assay was performed with and without BSA (section 2.3.3) (Figure 3.11). 

The assay worked correctly because again the positive controls (in this case the 

standards and spike) were amplified, and the negatives were not amplified. 

However, no amplification was observed in the PCR wells containing RNA 

isolated air sample from Nationaltheatret subway station. This was true also for 

the air samples spiked with high concentrations of RNA, confirming inhibitors in 

the air samples. Unfortunately, the inhibited samples containing BSA showed no 

recovery from inhibition compared to the samples without BSA.   
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Figure 3.11: PCR showing amplification of a) RNA spike and standard, b) DNA 

standard, but no amplification of negative controls or air samples 

 

Gel electrophoresis of the inhibition-tested PCR products (section 2.3.3) showed 

that no PCR products were visible in the wells containing sample (well 3, 5, 7, 9), 

not even primer dimers (Figure 3.12). For the negative controls (well 6 and 10), 

weak bands corresponding to primer dimers were visible. The RNA spikes 

without inhibiting RNA isolated air sample and the control RNA showed clear 

bands corresponding to fragments of the same lengths. The observations showed 

that the inhibition from the air samples was total. No effect, positive or negative, 

was observed from use of BSA, which was added in well 3-6.  

 
Figure 3.12: Gel picture showing total inhibition of PCR products containing 

RNA isolated air sample from Nationaltheatret subway station 
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4 Discussion 

This study can be considered the first one that deals with investigation of the 

bioaerosol environment at a subway station in Norway. Experiments were 

conducted in order to characterize the airborne microorganisms at 

Nationaltheatret subway station. According to the aims of the study: 

 the concentration and diversity of total and endospore-forming cultivable 

bacteria were investigated for daytime and nighttime samples  

 the cultured bacteria were further characterized based on colony 

morphology, hemolysis activity and antibiotic resistance 

 a DNA extraction method for samples containing both endospores and 

vegetative cells was optimized 

 a specific quantitative PCR detection assay was developed for investigation 

of the presence of airborne Influenza A virus 

4.1 Air sampling 

In this study, all air samples were harvested with SASS3100 filter sampler 

(Research International, Inc), which was chosen because of its collection 

efficiency, wide particle size range, ease of handling and transportation, and ease 

of filter extraction (Research International 2011). As a high-flow air sampler with 

potential for long-time sampling, a drawback with SASS3100 is desiccation of 

microorganisms during sampling, possibly reducing their viability (Cartwright, 

Horrocks et al. 2009) (section 1.2.1.3). In this study, it was observed that the 

nighttime and reference samples together contained 2.5 times more cultivable 

bacteria per airborne particle than the daytime samples (section 3.2.1.1). The 

number should be considered approximate, as it relies on 100 % collection 

efficiency by SASS3100 filter sampler (section 1.2.1.3). However, the results 

implied that reduced viability was observed for the daytime samples. As the 

daytime samples contained 75 % of the total number of cultivable bacteria found 

(section 3.2.1.1), reduced viability could be a consequence of higher bacterial 

concentrations on the daytime filters, as previously suggested by Hirvonen et al. 

(Hirvonen, Huttunen et al. 2005). 

Whether loss of viability during filter collection occurred in a randomly fashion, 

or dominated for certain types of bacteria, could not be interpreted from the data 

obtained in this study. If the last case was true, the observed diversity for the 

daytime samples could not be trusted to give a correct characteristic pattern of 

bacterial genera residing in air during daytime (Table 3.6, section 3.2.1.2). For 

further investigation, it would be interesting to test whether certain bacterial 

genera dominate in losing their viability during filter sampling. SKC Biosampler 
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(section 1.2.1.2) is an example of a gentle air sampler, which could be used in 

parallel with SASS3100 to test the reproducibility of the bacterial diversity 

found.  

Meteorological data can influence the airborne particle concentrations and the 

viability of microorganisms residing on them (section 1.1). In this study, the air 

sampling conditions stayed constant for all samples, and relative humidity was 

measured to be within the range of highest survival for microorganisms in the 

airborne environment (40 - 80 %RH) (Gilbert and Duchaine 2009) (Table 3.1, 

section 3.1.1). Constant weather conditions reduced the possibility for observing 

the effect of these conditions on viability. However, the concentration and 

diversity comparison performed in this study, between the daytime, nighttime 

and reference samples (sections 3.2.1.1 and 3.2.1.2), could be considered reliable 

because of the constant weather conditions.  

The results from the particle counter Aerotrak 8220 showed that 85 % of the total 

number of detected particles were of sizes <1.0 µm (section 3.1.2). This 

observation is of health concerns, because airborne particles below 5 µm 

penetrate deep into our lungs when respired, potentially causing infections 

(Thomas, Webber et al. 2008). For further investigation, it would be interesting 

to investigate if there exist some correlation between types of microorganisms 

and airborne particle sizes, but that will require use of other air samplers, like 

the Anderson sampler (Verreault, Moineau et al. 2008) (section 1.2.1.1).  

4.2 Cultivable bacteria 

4.2.1 Concentrations 

From total culturing, the indoor daytime samples were found to be 20 times more 

concentrated with cultivable bacteria than the indoor nighttime samples (section 

3.2.1.1). This observation suggested that human activity and traffic was the main 

cause of indoor bioaerosols, as few bacteria were found during nighttime when no 

trains or people were at the station.  

An average value of 400 bacterial CFU/m3 was found during daytime at 

Nationaltheatret subway station in Oslo. For comparison, 12,639 bacterial 

CFU/m3 was found at a subway station in the highly populated and traffic 

crowded Beijing, measured by Biosampler instrument and gelatin filters (Dong 

and Yao 2010) (section 1.1). The CFU numbers were not directly comparable due 

to use of different collection methods (Srikanth, Sudharsanam et al. 2008). 

However, observation of 31 times more cultivable airborne bacteria in a Beijing 

subway station suggested that indoor bioaerosol concentrations in general could 

be related to the level of people and traffic.  
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Compared to the CFU numbers from total culturing, the aerobic endospore 

fractions were 2.9 % and 3.8 % at Nationaltheatret subway station during 

daytime and nighttime, respectively (section 3.2.1.1). However, the aerobic 

endospore fractions found in the outdoor reference samples were 16.0 %. These 

results were similar to those previously reported by Hameed et al, where slightly 

higher levels of endospore-forming bacteria were found in Cairo at an outdoor 

station compared to an indoor station (Abdel Hameed and Awad 2002).  

4.2.2 Diversity 

In order to investigate the bacterial diversity at Nationaltheatret subway station, 

all cultivable bacteria with different colony morphologies were classified down to 

genus level. Among the selected isolates, 37 different genera were observed, in 

which the major genera were Bacillus (31.3 %), Micrococcus (23.4 %) and 

Staphylococcus (18.7 %) (Table 3.4, section 3.2.1.2). These findings correlated 

well with other studies performed in indoor environments, where for example the 

same three genera was found to dominate in 100 different indoor locations 

studied in Poland (Rafal L. Gorny and Jacek Dutkiewicz 2002).   

Database search by RDP_SeqMatch tentatively identified the selected isolates on 

species level, resulting in observation of 92 different bacterial species (Cole, Chai 

et al. 2007) (section 3.2.1.6). Only 17 of the 92 different species were observed in 

more than two different samples, suggesting that more than 19 air samples were 

needed in order to find characteristic patterns of bacteria diversity on species 

level. However, only 85 different bacterial species were observed in together 100 

different indoor locations in Poland (Rafal L. Gorny and Jacek Dutkiewicz 2002), 

implying that most species residing in the airborne environment possibly may 

have been found in this study, although few replicates were observed. 

Bacterial diversity deviations observed between daytime and nighttime samples 

were mainly due to higher concentration of the family taxa Bacillaceae at 

daytime (32 %) compared to at nighttime (6 %) (Table 3.6 section 3.2.1.2). 

Observations of 46 % Bacillaceae in outdoor samples implied that the airborne 

particles containing Bacillaceae taxa originate outdoors, and come into the 

station through open doors during daytime. Furthermore, as the fraction of 

Bacillaceae was the most reduced taxa in the nighttime samples compared to the 

daytime samples, the results also implied that Bacillaceae reside on larger 

particles than other family taxa, resulting in settling to the ground in shorter 

time. However, this relationship between family taxa and particle sizes is only a 

theory, possibly explaining the observations seen in this study. Investigation is 

needed in order to learn more about whether such relationships between family 

taxa and particle sizes occur and are reproducible.  
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For the endospore-forming bacteria found during selective cultivation, 

comparison between daytime and nighttime diversity was not performed because 

growth was below LOD for all nighttime samples (Table 3.3, section 3.2.1.1).  

For tentative species identification, MALDI-TOF MS fingerprinting was 

compared to RDP_SeqMatch results, and was found to give corresponding genus 

identity for 74 % of the isolates investigated (section 3.2.1.6). However, this result 

required subtraction of false identifications due to lack of species-spectra in 

MALDI-TOF MS database, which implied that still, MALDI-TOF MS is only 

appropriate for indications of genus identity and not for indications of species 

identity, and additional methods are required for reliable identifications. 

However, the score values given by the Biotyper 2.0 program seemed to be good 

indicators of the reliability of the results given (Table C.1 in Appendix C).  

In this study, the MALDI-TOF MS results were compared to RDP_SeqMatch 

results, but the 16SrRNA gene databases used by RDP_SeqMatch do not yet 

contain correct unique sequences for all bacterial species, suggesting that also 

identifications based on sequences need additional validation by other methods in 

order to be confirmed (Song, Liu et al. 2003) (section 1.4.3). 

4.2.3 Characteristics  

Downstream analysis of the selected cultivable bacteria revealed that it was 

possible to find characteristic morphology traits for the bacterial family taxa 

(Table 3.7, section 3.2.1.3). However, even though most of the characteristic 

colours, colony sizes, shapes etc. were observed for more than 70 percent of the 

family members for each family, these observations might not be reproducible as 

most of the families were represented by less than 18 isolates. The three largest 

families, Bacillaceae, Micrococcaceae and Staphylococcaceae (Table 3.4, section 

3.2.1.2), represented 75 % of the 291 isolates selected from total culturing based 

on different morphologies. This implied that those three families showed more 

morphology variations for their members. In order to investigate the distribution 

of each family in the airborne environment, all colonies found should be analysed 

in further studies.  

One species, M. luteus, was selected based on different morphologies 69 times 

more than predicted. This implied that M. luteus appeared with many different 

colony morphologies, or perhaps that some of the different M. luteus species 

actually were other species for which there were no correct best match identity in 

the 16SrRNA gene databases (Cole, Chai et al. 2007) (section 1.4.3). However, 

except for M. luteus, this study showed that most bacterial colonies showing 

different morphologies actually were different species (section 3.2.1.6). 
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22 % of 402 classified isolates showed hemolytic activity, meaning that they 

produced exotoxins which act on red blood cells to lyse or break them down 

(section 3.2.1.4). Hemolysis is generally regarded as a bacterial virulence factor, 

meaning that the presence of hemolytic bacteria in the airborne environment can 

be regarded as an indicator for pathogenic potential (Payment, Coffin et al. 1994) 

(section 1.3.2). More investigation is needed in order to describe the potential 

health threat from respiration of airborne hemolytic bacteria. However, some 

bacteria, like Staphylococcus aureus, is known to cause infections through 

airborne transmission in hospitals (Shiomori, Miyamoto et al. 2001). S. aureus 

was found in two of the air samples in this study, and was classified as beta-

hemolytic (section 3.2.1.4). This implied that the air at Nationaltheatret subway 

station potentially can cause infection if respired by immunodeficient people.  

Also of health concern, the 75 characterized isolates of Staphylococcus showed 

high resistance against the antibiotics ampicillin (53 %) and nalidixic acid (95 %) 

(Table 3.8, section 3.2.1.5). Potential for emerging antibiotics resistance among 

bacteria as a consequence of overuse in hospitals is a cause for concern, as this 

makes bacterial infections difficult to treat (Hawkey 2008) (Stevens, Bisno et al. 

2005).   

4.3 Culture-independent total bacteria 

For culture-independent analysis, the samples from Nationaltheatret subway 

station needed to be bead beaten in order to release DNA from both bacterial 

cells and endospores prior to DNA isolation. The culture-dependent study showed 

that there were approximately 3 %, 4 % and 16 % aerobe endospore-forming 

bacteria in the daytime, nighttime and reference samples, respectively (Figure 

3.4, section 3.2.1.1). However, the number of endospore-forming bacteria that 

were collected as endopores is not known, appreciating the importance of an 

optimal DNA extraction method for combined samples of endospores and cells.  

A problem observed in this study was that the endospores released more DNA 

when bead beaten for minimum three minutes, whereas the vegetative cells 

released their DNA instantly, leading to lower yields after only one minute bead 

beating, probably due to DNA fragmentation (section 3.2.2.1). Two minutes bead 

beating was chosen because it resulted in reproducible PCR detection of 

endospore DNA (B. atrophaeus) in the optimization tests, and still the DNA from 

the vegetative cells (E. coli) had good quality (Table D.1 in Appencix D). However, 

it is not unlikely that two minutes bead beating was too short time for breaking 

all types of endospores in the mixed environmental samples, where the 

concentration of each endospore probably was low. The loss of the DNA from 

vegetative cells would on the other hand have been high if the bead beating 

interval was increased further.  
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Ideally, the DNA from all species of endospores and vegetative bacteria should be 

extracted, in order to facilitate correct characterization based on molecular 

biological techniques (section 1.4). In order to achieve this goal, dividing each 

environmental sample into two parts prior to bead beating should be considered 

if repeating these experiments. When dividing the samples, optimal bead beating 

conditions could be used for both the endospores and the vegetative bacteria. In 

order to maintain maximum number of bacteria per sample, two filter air 

samples could be collected in parallel.  

4.4 Detection of airborne Influenza A virus 

RNA isolated from commercial Influenza A virus particles was successfully 

detected by one-step reverse transcriptase PCR (section 3.3.2). When 

investigating RNA isolated from air samples for presence of Influenza A virus, 

the PCR results were negative, indicating too low viral concentrations in air for 

PCR detection. Quantification of virus content by the constructed standard 

curves (section 3.3.2) was therefore not possible. However, during construction of 

the RNA standard curve, it was found that the LOD was 10 RNA copies per µl in 

PCR. The LOD for the DNA standard curve was even lower, but not realistic as 

the losses of RNA during extraction was found to be high. For the experiments 

performed, a LOD equal 10 copies /µl in PCR corresponded to collection of 480 

virus particles per filter sample, because the extracted RNA was resuspended in 

12 µl water to obtain two parallels in PCR. Testing for viral RNA without PCR 

parallel should have been considered, as only 200 virus particles would have been 

needed per filter sample when resuspending in 5 µl water.  

480 viral particles per filter sample corresponded to collection of four viral 

particles per minute. Lower concentrations could have been obtained during 

sample collection, but other aspects should be considered prior to drawing any 

conclusions. 

Prognosis from the public health institute showed that people still got infections 

from Influenza A virus during the week of sample collection (Nasjonalt 

folkehelseinstitutt 2011). Further, the samples were collected at a high traffic 

location where the number of people stayed constant (Table 3.2, section 3.1.1), 

indicating high potential for creation of bioaerosols containing Influenza A 

viruses by coughing, talking and sneezing (Killingley, Greatorex et al. 2010). 

Each air sample obtained represented 36 m3 air, filtered through a filter capable 

of collecting particles of sizes in the range 0.3-5.0 µm (Research International 

2011), and viability was not a requirement for detection of the collected viruses. 

These considerations suggested that other factors than viral concentrations and 

sampling method might have influenced the negative PCR results.   
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Environmental samples are known to contain inhibitors of different sorts which 

can lower the sensitivity of the PCR assay in use (Maher, Dillon et al. 2001). In 

this case, the environmental samples were treated with trizol, chloroform, 

isopropanol and ethanol in order to isolate pure RNA (section 2.3.1). Still 

inhibition from the RNA isolated air sample D_4 was found to be total, as no PCR 

detection was observed when addition of high-concentrated RNA spike to the 

sample (section 3.3.3).  The nature of this inhibition is not known, but 

environmental samples often contain humic acids, which inhibit PCR (Kreader 

1996). It has been reported that BSA can reverse the inhibition from humic acids 

when added to PCR (Kreader 1996). In this study, BSA was added in PCR for air 

sample D_4, but without observable effect. It is not known whether the inhibition 

still was total because inhibitors not affected by BSA were present, or because 

the concentrations of humic acid were so extreme that more BSA would be 

needed in order to counteract the inhibition.  

The inhibition test showed that detection of airborne viruses at Nationaltheatret 

subway station is difficult, if not impossible. More investigation is needed in 

order to solve the PCR inhibition problem for viral RNA amplification.     

4.5 Biological threat agents 

Investigation of the every-day background of airborne microorganisms is 

essential in order to facilitate continual monitoring for detection of deviations 

from the normal background, possibly associated to bioterrorism attacks. In this 

study, none of the bacterial species found were among those listed as critical 

biological agents by Centers for Disease Control and Prevention (Rotz, Khan et 

al. 2002) (section 1.1). However, many more biological agents than those listed as 

critical can be considered threat agents, being relatively easy to spread and 

capable of infecting humans (Centers for Disease Control and Prevention 2007). 

The number of isolates selected for identification in this study was too limited for 

characterization of the every-day background of microorganisms on species level, 

implying that this study should be repeated in larger scale in order to 

characterize the every-day background of airborne microorganisms on species 

level. 
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5 Conclusions  

The aim of this study was to characterize the airborne bacteria and Influenza A 

virus at Nationaltheatret subway station.  

By culture-dependent methods, airborne cultivable bacteria were found to be 20 

times more concentrated in air during daytime compared to nighttime. This 

pattern was found to be similar for total bacteria, estimated by analysis of total 

extracted DNA. A bead mill homogenization method for DNA extraction from 

both endospores and vegetative bacterial cells was optimized, in order to 

facilitate culture-independent analysis of total bacteria.  

From the cultured bacteria, 92 different bacterial species were observed by 

tentative 16SrRNA gene identification, and 37 different bacterial genera were 

identified. The diversity was found to be similar during daytime and nighttime, 

except for decreased representation of the family taxa Bacillaceae during 

nighttime (6 % compared to 32 % during daytime). The results obtained can be 

used as indicators for the numbers of replicate samples needed in order to 

perform in-depth studies regarding bacterial every-day diversity. Tentatively 

species identification indicated that 19 air samples was a limited number for 

such comprehensive investigations, as few species were observed in more than 

two air samples. Use of supplementary air samplers should also be considered 

when optimizing the results. 

In this study, 402 bacterial isolates were closely characterized based on colony 

morphology, hemolysis activity and antibiotic resistance, and characteristic traits 

of the ten most represented family taxa were found based on colony morphology. 

However, in order to verify these results, repeated studies need to be done. For 

future investigations, use of more than 402 isolates is advised as most families in 

this study were represented by less than 18 isolates, limiting the reproducibility 

of the results.  

A specific PCR assay was successfully developed for detection and quantification 

of commercial Influenza A virus. However, no viral RNA was found in the air 

samples from Nationaltheatret subway station. Inhibition of the PCR reaction 

was observed, and hence further investigation regarding inhibition is needed in 

order to rule out false negative results. Furthermore, longer sampling times 

should be tested in order to ensure collection of detectable concentrations of 

virus. The efficiency of the SASS3100 air sampler in collecting virus could be 

tested by use of other air samplers in parallel to SASS3100 in hospitals or other 

indoor locations known to contain airborne Influenza virus.  
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Appendix A 

 

Airborne particle monitoring 

In order to investigate airborne particle size distribution profiles for samples 

collected indoor at day, indoor at night and outdoor, particle sizes and 

concentrations were monitored in parallel time intervals to sample collection in 

May – September 2011 (Table A.1). 

 

 

Table A.1: Airborne particles monitored by Aerotrak 8220, expressed as numbers 

of aerosols detected during two hours sample collection 

Sample 

name 

Number of particles monitored per size interval (µm) 

0.5-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 >5.0 

180510D 91445915 13022425 2068093 802998 302477 313914 

140610D 94423718 12920111 2059884 785216 293746 298059 

280610D 70846300 9107893 1666468 662405 248388 258989 

280610N 10201078 1498907 221267 101098 44295 58747 

260710D 66412793 10278239 1750351 703699 273061 286669 

260710N 6060589 739525 161850 74821 32474 39370 

260710U 2842204 353375 111447 57307 30244 67769 

160810D 116051253 18112949 2739787 1063510 397502 409296 

160810N 2479204 180400 49005 27101 15387 31881 

160810U 2279177 223025 76441 44935 25964 65822 

300810D 97432099 8912054 2537407 1033805 400486 415790 

300810N 10637705 1496836 450555 223226 102382 132374 

300810U 2149048 167471 43700 26518 15737 36933 

130910D 71659691 7834304 2627128 1098610 429928 432778 

130910N 6234463 1081269 295429 117835 48503 53986 

130910U 3465125 286624 104192 53571 28122 52911 

270910D 40157745 5596006 1635227 712434 293294 332737 

270910N 4399464 383719 193275 90372 40697 52497 

270910U 1500513 117569 47316 26365 14376 33637 
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Appendix B: 

 

Microbiological characterization 

Colony morphologies were noted for each colony selected for classification (Table 

B.1).  

Table B.1: Morphology observations for 402 isolates, noted after 48 hours 

incubation at 30 °C. _AS means aerobe endospore culturing and _ANS means 

anaerobe endospore culturing. 

Sample 

name Medium Colour 

Colony 

size Colony shape Surface 
130910D-01 TSA YELLOW 1mm IRREGULAR SMOOTH 

130910D-02 TSA YELLOW 5mm IRREGULAR RUFFLED 

130910D-03 TSA YELLOW 5mm IRREGULAR RUFFLES 

130910D-04 TSA BEIGE 5mm ROUND SMOOTH 

130910D-05 TSA YELLOW 1mm ROUND SMOOTH 

130910D-06 TSA BEIGE/CLEAR 1mm ROUND SMOOTH 

130910D-07 TSA ORANGE 5mm IRREGULAR RUFFLED 

130910D-08 TSA LIGHTYELLOW 5mm IRREGULAR RUFFLED 

130910D-09 TSA DARKORANGE 1mm ROUND SMOOTH 

130910D-11 TSA BEIGE 5mm IRREGULAR TEXTURED 

130910D-12 R2A ORANGE 5mm ROUND TEXTURED 

130910D-13 R2A BEIGE 5mm IRREGULAR TEXTURED 

130910D-14 R2A BEIGE/WHITE 5mm IRREGULAR TEXTURED 

130910D-15 R2A PINK <1mm IRREGULAR SMOOTH 

130910D-16 R2A BEIGE/CLEAR 5mm IRREGULAR TEXTURED 

130910D-17 R2A BEIGE 5mm IRREGULAR TEXTURED 

130910D-18 R2A BEIGE 1mm IRREGULAR SMOOTH 

130910D-19 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

130910D-20 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

130910D-22 TSA_AS BEIGE 1mm ROUND SMOOTH 

130910D-25 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

130910D-27 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

130910D-28 R2A_AS BEIGE/YELLOW 5mm ROUND SMOOTH 

130910N-47 TSA YELLOW 1mm ROUND SMOOTH 

130910N-48 TSA LIGHTYELLOW 1mm ROUND SMOOTH 

130910N-49 TSA BEIGE 1mm ROUND SMOOTH 

130910N-50 R2A PINK 1mm ROUND SMOOTH 

130910N-51 R2A BEIGE 1mm ROUND SMOOTH 

130910N-52 R2A BEIGE 1mm ROUND SMOOTH 

130910U-29 TSA BEIGE 5mm IRREGULAR TEXTURED 

130910U-30 TSA YELLOW 1mm IRREGULAR RUFFLED 

130910U-31 TSA YELLOW 1mm ROUND SMOOTH 

130910U-33 TSA YELLOW 1mm ROUND SMOOTH 

130910U-35 TSA BEIGE 1mm ROUND SMOOTH 

130910U-36 R2A LIGHTPINK 1mm ROUND SMOOTH 

130910U-37 TSA_AS DARKBEIGE 5mm IRREGULAR TEXTURED 

130910U-38 TSA_AS BEIGE 1mm IRREGULAR TEXTURED 

130910U-39 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

130910U-40 TSA_AS YELLOW/CLEAR 1mm IRREGULAR SMOOTH 

130910U-42 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 



VI 
 

130910U-44 R2A_AS BEIGE 1mm ROUND SMOOTH 

130910U-45 R2A_AS BEIGE 1mm ROUND SMOOTH 

140610D-01 R2A_AS BEIGE 1mm IRREGULAR RUFFLED 

140610D-03 R2A_AS BEIGE 5mm ROUND TEXTURED 

140610D-04 R2A_AS BEIGE 1mm ROUND SMOOTH 

140610D05A R2A_AS WHITE/GREY 5mm IRREGULAR TEXTURED 

140610D05B R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

140610D-06 R2A_AS BEIGE/GREY 5mm IRREGULAR RUFFLED 

140610D-07 R2A_AS BEIGE 5mm IRREGULAR/ROUND TEXTURED 

140610D-08 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

140610D-09 TSA_AS BEIGE/PINK 5mm IRREGULAR RUFFLED 

140610D-10 TSA_AS ORANGE 5mm IRREGULAR TEXTURED 

140610D-11 TSA_AS BEIGE 5mm ROUND TEXTURED 

140610D-12 TSA_AS BEIGE 5mm IRREGULAR RUFFLED 

140610D13A1 TSA BEIGE 1mm ROUND SMOOTH 

140610D13A2 TSA BEIGE 5mm IRREGULAR TEXTURED 

140610D-13B TSA BEIGE 5mm IRREGULAR RUFFLED 

140610D-14 TSA BEIGE/ORANGE 5mm IRREGULAR RUFFLED 

140610D-15 TSA YELLOW 1mm ROUND SMOOTH 

140610D-16 TSA WHITE 1mm ROUND SMOOTH 

140610D17A1 TSA YELLOW 1mm ROUND SMOOTH 

140610D17A2 TSA BEIGE/WHITE <1mm ROUND SMOOTH 

140610D-17B TSA YELLOW 1mm ROUND SMOOTH 

140610D-18 TSA YELLOW 1mm ROUND SMOOTH 

140610D-19 TSA YELLOW 1mm ROUND SMOOTH 

140610D-20 TSA BEIGE/WHITE 1mm IRREGULAR TEXTURED 

140610D-21 TSA YELLOW 1mm IRREGULAR/ROUND RUFFLED 

140610D-22 TSA YELLOW 1mm ROUND SMOOTH 

140610D-23 R2A BEIGE 5mm IRREGULAR RUFFLED 

140610D-24A R2A BEIGE <1mm ROUND SMOOTH 

140610D-24B R2A BEIGE 1mm ROUND SMOOTH 

140610D-25A R2A YELLOW/GREY 1mm ROUND SMOOTH 

140610D25B1 R2A YELLOW 1mm ROUND SMOOTH 

140610D25B2 R2A YELLOW 5mm IRREGULAR RUFFLED 

140610D-26 R2A BEIGE 5mm IRREGULAR/ROUND SMOOTH 

140610D-27 R2A YELLOW/WHITE 1mm ROUND RUFFLED 

140610D-28 R2A BEIGE 5mm ROUND TEXTURED 

140610D-29 R2A BEIGE 5mm ROUND TEXTURED 

140610D-30 R2A BEIGE/GREY 1mm ROUND SMOOTH 

140610D-31 R2A YELLOW 1mm ROUND SMOOTH 

140610D-32 R2A YELLOW/WHITE 1mm ROUND RUFFLED 

140610D-33A R2A ORANGE/GREY 1mm ROUND SMOOTH 

140610D-33B R2A YELLOW 5mm ROUND SMOOTH 

140610D-34 R2A YELLOW 1mm ROUND SMOOTH 

140610D-35 R2A YELLOW/WHITE 1mm IRREGULAR/ROUND SMOOTH 

160810D-37 TSA BEIGE 5mm IRREGULAR TEXTURED 

160810D-38 TSA YELLOW 1mm IRREGULAR RUFFLED 

160810D-39 TSA BEIGE 5mm ROUND SMOOTH 

160810D-40 TSA YELLOW 1mm ROUND SMOOTH 

160810D-41 TSA BEIGE/PINK 1mm ROUND SMOOTH 

160810D-42 TSA YELLOW 5mm IRREGULAR RUFFLED 

160810D-43 TSA YELLOW 1mm ROUND SMOOTH 

160810D-44 TSA YELLOW 1mm ROUND SMOOTH 

160810D-45 TSA BEIGE 1mm IRREGULAR SMOOTH 

160810D-46 TSA BEIGE 1mm ROUND SMOOTH 



VII 
 

160810D-47 TSA ORANGE 1mm ROUND SMOOTH 

160810D-48 TSA YELLOW 1mm ROUND SMOOTH 

160810D-49 R2A WHITE 5mm IRREGULAR TEXTURED 

160810D-50 R2A BEIGE/PINK <1mm ROUND SMOOTH 

160810D-51 R2A YELLOW 1mm ROUND SMOOTH 

160810D-52 R2A WHITE 5mm ROUND SMOOTH 

160810D-53 R2A YELLOW 5mm IRREGULAR RUFFLED 

160810D-54 R2A YELLOW 5mm ROUND SMOOTH 

160810D-55 R2A BEIGE 5mm IRREGULAR TEXTURED 

160810D-56 R2A BEIGE 5mm IRREGULAR TEXTURED 

160810D-57 R2A YELLOW 1mm ROUND SMOOTH 

160810D-58 R2A WHITE 1mm ROUND SMOOTH 

160810D-59 TSA_AS BEIGE/YELLOW 5mm IRREGULAR TEXTURED 

160810D-60 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

160810N-80 TSA YELLOW 5mm IRREGULAR SMOOTH 

160810N-81 TSA BEIGE 1mm ROUND SMOOTH 

160810N-82 TSA YELLOW/CLEAR 5mm IRREGULAR TEXTURED 

160810N-83 TSA BEIGE 1mm ROUND SMOOTH 

160810N-84 TSA YELLOW/CLEAR 5mm ROUND SMOOTH 

160810N-86 R2A BEIGE 1mm ROUND SMOOTH 

160810N-87 R2A YELLOW/CLEAR 5mm ROUND SMOOTH 

160810U-01 TSA YELLOW/PINK 1mm ROUND SMOOTH 

160810U-02 TSA YELLOW 1mm ROUND SMOOTH 

160810U-03 TSA WHITE 1mm ROUND SMOOTH 

160810U-04 TSA BEIGE 1mm ROUND SMOOTH 

160810U-05 TSA BEIGE/PINK 1mm ROUND SMOOTH 

160810U-06 TSA YELLOW/CLEAR 1mm ROUND SMOOTH 

160810U-08 TSA BEIGE 5mm IRREGULAR TEXTURED 

160810U-09 R2A BEIGE 5mm IRREGULAR TEXTURED 

160810U-10 R2A WHITE/BEIGE 5mm IRREGULAR TEXTURED 

160810U-11 R2A BEIGE 5mm ROUND SMOOTH 

160810U-13 R2A BEIGE 5mm IRREGULAR SMOOTH 

160810U-14 R2A BEIGE 5mm ROUND TEXTURED 

160810U-15 R2A YELLOW 1mm IRREGULAR SMOOTH 

160810U-16 R2A YELLOW <1mm ROUND SMOOTH 

160810U-17 R2A PINK <1mm ROUND SMOOTH 

160810U-18 R2A YELLOW 1mm ROUND SMOOTH 

160810U-19 R2A YELLOW 1mm ROUND SMOOTH 

160810U-20 R2A BEIGE 1mm ROUND SMOOTH 

160810U-21 R2A BEIGE/DARK 5mm IRREGULAR RUFFLED 

160810U-22 R2A YELLOW 1mm ROUND SMOOTH 

160810U-24 TSA_AS BEIGE/YELLOW 1mm ROUND SMOOTH 

160810U-25 TSA_AS BEIGE/PINK 5mm ROUND SMOOTH 

160810U-26 TSA_AS WHITE/BEIGE 5mm IRREGULAR TEXTURED 

160810U-27 TSA_AS BEIGE 5mm IRREGULAR SMOOTH 

160810U-28 R2A_AS WHITE/BEIGE 5mm IRREGULAR TEXTURED 

160810U-29 R2A_AS BEIGE/DARK 5mm IRREGULAR RUFFLED 

160810U-30 R2A_AS BEIGE/DARK 1mm IRREGULAR TEXTURED 

160810U-31 R2A_AS WHITE/BEIGE 1mm IRREGULAR TEXTURED 

160810U-33 TSA_ANS BEIGE 5mm IRREGULAR TEXTURED 

160810U-34 TSA_ANS BEIGE 5mm IRREGULAR TEXTURED 

160810U-35 TSA_ANS BEIGE 5mm IRREGULAR TEXTURED 

160810U-36 R2A_ANS BEIGE 5mm IRREGULAR TEXTURED 

180510-01 TSA_ANS BEIGE 5mm ROUND SMOOTH 

180510-02 R2A_AS BEIGE/CLEAR 1mm ROUND SMOOTH 



VIII 
 

180510-03 R2A_AS BEIGE 5mm IRREGULAR SMOOTH 

180510-05 TSA BEIGE 1mm ROUND SMOOTH 

180510-06 TSA ORANGE/CLEAR <1mm ROUND SMOOTH 

180510-07 TSA WHITE 1mm ROUND SMOOTH 

180510-08 TSA BEIGE 1mm ROUND SMOOTH 

180510-09 TSA YELLOW 1mm ROUND SMOOTH 

180510-10 TSA WHITE 1mm ROUND SMOOTH 

180510-11A TSA WHITE 1mm ROUND SMOOTH 

180510-11B TSA YELLOW 1mm IRREGULAR RUFFLED 

180510-12 TSA YELLOW 1mm ROUND SMOOTH 

180510-13 TSA YELLOW 1mm ROUND SMOOTH 

180510-14 TSA WHITE/BEIGE 1mm ROUND RUFFLED 

180510-15 TSA BEIGE/CLEAR 1mm ROUND SMOOTH 

180510-16 TSA BEIGE 1mm ROUND SMOOTH 

180510-17 TSA YELLOW/BEIGE 1mm ROUND SMOOTH 

180510-18 TSA PINK 1mm ROUND SMOOTH 

180510-19 TSA ORANGE 1mm ROUND SMOOTH 

180510-20 TSA BEIGE 1mm IRREGULAR RUFFLED 

180510-21 TSA YELLOW/BEIGE 1mm ROUND SMOOTH 

180510-22 TSA WHITE/BEIGE <1mm ROUND SMOOTH 

180510-23 TSA BEIGE 1mm IRREGULAR RUFFLED 

180510-24 TSA YELLOW 1mm ROUND SMOOTH 

180510-25 TSA YELLOW 1mm ROUND SMOOTH 

180510-26 TSA WHITE/BEIGE 1mm ROUND SMOOTH 

180510-27 TSA YELLOW 1mm ROUND TEXTURED 

180510-28 R2A WHITE/BEIGE <1mm ROUND SMOOTH 

180510-29 R2A WHITE/BEIGE 5mm IRREGULAR TEXTURED 

180510-30 R2A ORANGE <1mm ROUND SMOOTH 

180510-31B R2A YELLOW 1mm ROUND SMOOTH 

180510-33 R2A PINK 1mm ROUND SMOOTH 

180510-34 R2A YELLOW 1mm ROUND SMOOTH 

180510-35 R2A YELLOW 1mm ROUND SMOOTH 

180510-37A R2A ORANGE/YELLOW <1mm ROUND SMOOTH 

180510-37B R2A BEIGE 1mm ROUND SMOOTH 

180510-38 R2A YELLOW/BEIGE 1mm ROUND SMOOTH 

180510-39 R2A BEIGE 5mm IRREGULAR TEXTURED 

180510-40 R2A BEIGE 5mm IRREGULAR TEXTURED 

180510-41 R2A BEIGE 5mm IRREGULAR TEXTURED 

180510-43 R2A YELLOW 1mm IRREGULAR RUFFLED 

180510-44 R2A YELLOW 1mm ROUND SMOOTH 

180510-45 R2A WHITE/BEIGE 1mm ROUND RUFFLED 

180510-47 R2A YELLOW 1mm ROUND SMOOTH 

180510-48 R2A WHITE/BEIGE 1mm ROUND SMOOTH 

260710D-02 TSA WHITE 1mm ROUND SMOOTH 

260710D-04 TSA YELLOW 1mm ROUND SMOOTH 

260710D-05 TSA YELLOW 1mm ROUND SMOOTH 

260710D-06 TSA LIGHTYELLOW 1mm ROUND SMOOTH 

260710D-07 TSA BEIGE 5mm ROUND TEXTURED 

260710D-08 TSA WHITE 1mm ROUND SMOOTH 

260710D-10A TSA YELLOW 1mm IRREGULAR SMOOTH 

260710D-10B TSA BEIGE/PINK 5mm ROUND SMOOTH 

260710D-11 TSA BEIGE 1mm ROUND SMOOTH 

260710D-12 TSA BEIGE 5mm IRREGULAR TEXTURED 

260710D-13 TSA YELLOW 1mm IRREGULAR RUFFLED 

260710D-14 TSA YELLOW 1mm IRREGULAR RUFFLED 
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260710D-15 R2A LIGHTYELLOW 5mm IRREGULAR SMOOTH 

260710D-16 R2A BEIGE/YELLOW 5mm IRREGULAR SMOOTH 

260710D-17 R2A YELLOW 5mm ROUND SMOOTH 

260710D-18A R2A YELLOW 1mm ROUND SMOOTH 

260710D-19 R2A BEIGE/DARK 5mm ROUND SMOOTH 

260710D-20 R2A YELLOW 1mm IRREGULAR RUFFLED 

260710D-21 R2A BEIGE 1mm ROUND SMOOTH 

260710D-22 R2A BEIGE/WHITE 1mm ROUND SMOOTH 

260710D-23 R2A YELLOW 1mm ROUND SMOOTH 

260710D-26 R2A YELLOW 1mm ROUND SMOOTH 

260710D-27 R2A BEIGE 5mm IRREGULAR TEXTURED 

260710D-28 R2A YELLOW 1mm ROUND TEXTURED 

260710D-29 TSA_AS YELLOW 1mm ROUND SMOOTH 

260710D-30 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

260710N-36 TSA BEIGE/WHITE 5mm ROUND SMOOTH 

260710N-37 TSA LIGHTYELLOW 1mm ROUND SMOOTH 

260710N-38 TSA BEIGE/WHITE 1mm IRREGULAR RUFFLED 

260710N-39 TSA BEIGE/WHITE 1mm ROUND SMOOTH 

260710N-40 R2A BEIGE/YELLOW <1mm IRREGULAR SMOOTH 

260710N-41 R2A BEIGE 1mm ROUND SMOOTH 

260710N-42 R2A BEIGE/WHITE 1mm IRREGULAR RUFFLED 

260710N-43 R2A PINK 1mm ROUND SMOOTH 

260710N-44 R2A ORANGE <1mm ROUND SMOOTH 

260710N-45 R2A_AS BEIGE/YELLOW 5mm ROUND SMOOTH 

260710U-47 TSA YELLOW 1mm ROUND SMOOTH 

260710U-49 TSA BEIGE 5mm IRREGULAR RUFFLED 

260710U-50 TSA WHITE 1mm IRREGULAR TEXTURED 

260710U-51 TSA BEIGE 5mm IRREGULAR TEXTURED 

260710U-52 R2A BEIGE 1mm IRREGULAR RUFFLED 

260710U-54 R2A WHITE 1mm ROUND SMOOTH 

260710U-55 R2A YELLOW 1mm IRREGULAR RUFFLED 

260710U-56 R2A BEIGE 1mm ROUND SMOOTH 

260710U-57 R2A BEIGE 5mm IRREGULAR RUFFLED 

260710U-59 TSA_AS BEIGE 5mm IRREGULAR RUFFLED 

260710U-60 TSA_AS BEIGE 1mm ROUND SMOOTH 

260710U-62 TSA_AS YELLOW 1mm ROUND SMOOTH 

260710U-63 TSA_AS YELLOW 1mm ROUND SMOOTH 

260710U-64 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

260710U-65 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

260710U-67 R2A_AS BEIGE/BROWN 5mm ROUND TEXTURED 

260710U-68 R2A_AS BEIGE/PINK 1mm ROUND TEXTURED 

260710U-69 R2A_AS YELLOW/CLEAR 1mm ROUND TEXTURED 

260710U-70 R2A_AS WHITE 1mm ROUND SMOOTH 

260710U-71 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

260710U-72 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

260710U-73 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

260710U-74 R2A_AS BEIGE 1mm IRREGULAR RUFFLED 

260710U-76 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

260710U-77 R2A_ANS BEIGE/WHITE 1mm ROUND SMOOTH 

260710U-78 R2A_ANS BEIGE 5mm IRREGULAR TEXTURED 

270910D-15 TSA BEIGE 1mm ROUND SMOOTH 

270910D-16 TSA BEIGE 1mm IRREGULAR RUFFLED 

270910D-17 TSA YELLOW 1mm ROUND SMOOTH 

270910D-18 TSA ORANGE/CLEAR 1mm ROUND SMOOTH 

270910D-20 TSA YELLOW 1mm IRREGULAR RUFFLED 
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270910D-21 TSA BEIGE 5mm IRREGULAR TEXTURED 

270910D-22 TSA BEIGE 5mm IRREGULAR RUFFLED 

270910D-23 TSA YELLOW 5mm IRREGULAR RUFFLED 

270910D-24 TSA BEIGE 5mm IRREGULAR SMOOTH 

270910D-25 R2A BEIGE 5mm IRREGULAR TEXTURED 

270910D-26 R2A WHITE 5mm IRREGULAR TEXTURED 

270910D-27 R2A BEIGE 5mm IRREGULAR SMOOTH 

270910D-28 R2A BEIGE 5mm IRREGULAR SMOOTH 

270910D-29 R2A BEIGE <1mm ROUND SMOOTH 

270910D-30 TSA_AS BEIGE 5mm ROUND SMOOTH 

270910D-31 TSA_AS PINK 1mm ROUND SMOOTH 

270910D-32 TSA_AS BEIGE 1mm ROUND SMOOTH 

270910D-33 TSA_AS BEIGE 1mm ROUND SMOOTH 

270910D-34 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

270910D-35 TSA_AS BEIGE/WHITE 1mm ROUND RUFFLED 

270910D-36 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

270910D-37 R2A_AS ORANGE/CLEAR 1mm IRREGULAR SMOOTH 

270910D-38 R2A_AS BEIGE <1mm ROUND SMOOTH 

270910D-39 R2A_AS BEIGE 1mm ROUND SMOOTH 

270910D-41 TSA_ANS BEIGE/WHITE 1mm ROUND SMOOTH 

270910D-42 TSA_ANS BEIGE/WHITE 1mm ROUND SMOOTH 

270910D-43 TSA_ANS BEIGE/WHITE 1mm ROUND SMOOTH 

270910N-44 TSA YELLOW 1mm ROUND SMOOTH 

270910N-45 TSA YELLOW/CLEAR 1mm IRREGULAR SMOOTH 

270910U-01 TSA ORANGE/CLEAR 5mm IRREGULAR SMOOTH 

270910U-02 TSA BEIGE 1mm IRREGULAR RUFFLED 

270910U-03 TSA YELLOW 1mm ROUND SMOOTH 

270910U-04 TSA BEIGE 1mm ROUND SMOOTH 

270910U-05 TSA PINK/BROWN 5mm IRREGULAR TEXTURED 

270910U-06 TSA ORANGE 1mm ROUND SMOOTH 

270910U-07 TSA BEIGE 1mm IRREGULAR SMOOTH 

270910U-08 R2A YELLOW 1mm IRREGULAR RUFFLED 

270910U-09 TSA_AS BEIGE 5mm IRREGULAR SMOOTH 

270910U-10 TSA_AS BEIGE 5mm IRREGULAR SMOOTH 

270910U-11 TSA_AS BEIGE 5mm ROUND SMOOTH 

270910U-12 TSA_AS BEIGE 1MM ROUND SMOOTH 

270910U-13 R2A_AS BEIGE 5mm ROUND SMOOTH 

270910U-14 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

270910U-40 TSA_ANS BEIGE/WHITE 1mm ROUND SMOOTH 

280610D-07 TSA BEIGE 1mm IRREGULAR RUFFLED 

280610D-08 TSA BEIGE 1mm IRREGULAR TEXTURED 

280610D-09 TSA BEIGE 5mm IRREGULAR TEXTURED 

280610D-10A TSA YELLOW/BEIGE 1mm IRREGULAR RUFFLED 

280610D-10B TSA BEIGE/WHITE 1mm IRREGULAR SMOOTH 

280610D-11 TSA YELLOW 1mm ROUND SMOOTH 

280610D-12 TSA YELLOW 1mm ROUND TEXTURED 

280610D-13 TSA YELLOW 1mm ROUND SMOOTH 

280610D-14 TSA BEIGE 5mm ROUND SMOOTH 

280610D-15 TSA BEIGE/YELLOW 1mm ROUND SMOOTH 

280610D-17 R2A YELLOW 1mm ROUND SMOOTH 

280610D-18 R2A ORANGE 1mm ROUND RUFFLED 

280610D-19 R2A BEIGE/WHITE 1mm ROUND SMOOTH 

280610D-20 R2A YELLOW 1mm ROUND SMOOTH 

280610D-21 R2A BEIGE/PINK 5mm ROUND SMOOTH 

280610D-22 R2A BEIGE/YELLOW <1mm ROUND SMOOTH 
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280610D-23 R2A YELLOW 5mm IRREGULAR TEXTURED 

280610D-24 R2A BEIGE/WHITE 1mm ROUND SMOOTH 

280610D-25 R2A YELLOW 1mm ROUND SMOOTH 

280610D-26 TSA_AS BEIGE 5mm IRREGULAR RUFFLED 

280610D-27A TSA_AS BEIGE/WHITE 1mm ROUND SMOOTH 

280610D-27B TSA_AS BEIGE/TRANS 1mm IRREGULAR TEXTURED 

280610D-28 TSA_AS BEIGE 5mm IRREGULAR SMOOTH 

280610D-29 TSA_AS BEIGE/WHITE 5mm IRREGULAR RUFFLED 

280610D-30 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

280610D-31 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

280610D-32 TSA_AS BEIGE 5mm IRREGULAR RUFFLED 

280610D-33 TSA_AS BEIGE 5mm ROUND TEXTURED 

280610D-34 R2A_AS BEIGE 5mm ROUND TEXTURED 

280610D-35 R2A_AS BEIGE/YELLOW 5mm IRREGULAR TEXTURED 

280610D-36 R2A_AS WHITE/TRANS 5mm IRREGULAR TEXTURED 

280610D-37 R2A_AS BEIGE 5mm ROUND TEXTURED 

280610N-2A TSA YELLOW/BEIGE 1mm ROUND SMOOTH 

280610N-2B TSA BEIGE <1mm ROUND SMOOTH 

280610N-03 TSA YELLOW 1mm ROUND SMOOTH 

280610N-05 TSA BEIGE <1mm ROUND SMOOTH 

280610N-06 R2A WHITE 1mm ROUND SMOOTH 

280610N-07 R2A YELLOW 1mm ROUND SMOOTH 

280610N-09 R2A WHITE/BEIGE 1mm ROUND SMOOTH 

280610N-10 R2A YELLOW <1mm ROUND SMOOTH 

280610N-11 R2A YELLOW 1mm ROUND SMOOTH 

280610N-12 R2A YELLOW 1mm ROUND SMOOTH 

280610N-14 R2A WHITE 1mm ROUND SMOOTH 

280610N-15 R2A ORANGE <1mm ROUND SMOOTH 

280610N-17 TSA YELLOW 1mm ROUND SMOOTH 

280610N-18 TSA YELLOW 1mm ROUND SMOOTH 

300810D-23 TSA YELLOW 5mm IRREGULAR TEXTURED 

300810D-24 TSA YELLOW 1mm ROUND SMOOTH 

300810D-25 TSA BEIGE 1mm ROUND SMOOTH 

300810D-27 TSA YELLOW 1mm ROUND SMOOTH 

300810D-28 TSA BEIGE 5mm IRREGULAR TEXTURED 

300810D-29 TSA BEIGE 1mm ROUND SMOOTH 

300810D-30 TSA YELLOW/CLEAR 5mm IRREGULAR SMOOTH 

300810D-31 TSA YELLOW/CLEAR 1mm IRREGULAR SMOOTH 

300810D-32 TSA BEIGE 5mm IRREGULAR TEXTURED 

300810D-33 TSA BEIGE 5mm IRREGULAR TEXTURED 

300810D-34 TSA BEIGE/CLEAR 1mm ROUND SMOOTH 

300810D-35 R2A YELLOW/BEIGE 5mm ROUND SMOOTH 

300810D-36 R2A BEIGE 5mm IRREGULAR TEXTURED 

300810D-37 R2A YELLOW 1mm ROUND SMOOTH 

300810D-38 R2A BEIGE 5mm ROUND SMOOTH 

300810D-39 R2A BEIGE 5mm IRREGULAR TEXTURED 

300810D-40 R2A ORANGE 1mm ROUND SMOOTH 

300810D-41 R2A BEIGE 5mm IRREGULAR TEXTURED 

300810D-42 R2A YELLOW/CLEAR <1mm ROUND SMOOTH 

300810D-43 R2A BEIGE 1mm ROUND SMOOTH 

300810D-44 R2A YELLOW/CLEAR <1mm ROUND SMOOTH 

300810D-45 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

300810D-46 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

300810D-47 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 

300810D-48 TSA_AS BEIGE 5mm IRREGULAR TEXTURED 
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300810D-49 TSA_AS BEIGE 5mm ROUND SMOOTH 

300810D-50 TSA_AS BEIGE 5mm ROUND TEXTURED 

300810D-51 R2A_AS BEIGE 5mm IRREGULAR RUFFLED 

300810D-52 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

300810D-53 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 

300810N-61 TSA BEIGE 5mm IRREGULAR TEXTURED 

300810N-64 TSA YELLOW/CLEAR 1mm ROUND SMOOTH 

300810N-65 R2A BEIGE 5mm IRREGULAR TEXTURED 

300810N-67 R2A YELLOW/WHITE 1mm ROUND SMOOTH 

300810N-68 R2A BEIGE 1mm IRREGULAR SMOOTH 

300810N-69 R2A BEIGE 1mm ROUND SMOOTH 

300810N-71 R2A_AS BEIGE 1mm ROUND SMOOTH 

300810U-01 TSA BEIGE 5mm IRREGULAR TEXTURED 

300810U-02 TSA WHITE/PINK 1mm ROUND SMOOTH 

300810U-03 TSA BEIGE 5mm IRREGULAR SMOOTH 

300810U-04 TSA YELLOW/CLEAR 1mm IRREGULAR SMOOTH 

300810U-05 TSA BEIGE/WHITE 1mm ROUND SMOOTH 

300810U-06 TSA BEIGE 5mm ROUND SMOOTH 

300810U-07 TSA BEIGE/WHITE 5mm ROUND SMOOTH 

300810U-08 TSA BEIGE 1mm ROUND SMOOTH 

300810U-09 R2A YELLOW 1mm ROUND SMOOTH 

300810U-10 R2A BEIGE 1mm ROUND SMOOTH 

300810U-12 R2A YELLOW/CLEAR 1mm ROUND SMOOTH 

300810U-13 R2A BEIGE 5mm IRREGULAR TEXTURED 

300810U-15 R2A BEIGE 5mm IRREGULAR TEXTURED 

300810U-16 R2A WHITE/CLEAR <1mm IRREGULAR SMOOTH 

300810U-17 TSA_AS BEIGE 1mm ROUND RUFFLED 

300810U-18 TSA_AS YELLOW/CLEAR 5mm ROUND SMOOTH 

300810U-19 TSA_AS BEIGE 1mm ROUND SMOOTH 

300810U-20 R2A_AS BEIGE 5mm IRREGULAR SMOOTH 

300810U-21 R2A_AS BEIGE 5mm ROUND SMOOTH 

300810U-22 R2A_AS BEIGE 5mm IRREGULAR TEXTURED 
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Appendix C 

 

MALDI-TOF MS compared to RDP_SeqMatch 

402 bacterial isolates were given a best match species identity by RDP_SeqMatch 

database search. In order to investigate the identification reliability of MALDI-

TOF MS fingerprinting compared to RDP_SeqMatch, 84 bacterial isolates (OTUs) 

were analysed by MALDI-technology, and the results compared to the 

RDP_SeqMatch results (Table C.1).   

Table C.1: Identification by MALDI-TOF MS compared to RDP_SeqMatch, where 

green colour represents corresponding species identifications, white colour 

corresponding genus identification and red colour no corresponding identification 

OTU RDP_SeqMatch identification MALDI-spectra identification 

MALDI 

Score* 

    1 Paracoccus yeei  no peaks found 0,000 

2 Sphingomonas sanguinis Sphingomonas paucimobilis 2,412 

3 Brevundimonas vesicularis Brevundimonas vesicularis 1,790 

4 Roseomonas mucosa  Roseomonas mucosa 2,359 

5 Comamonas koreensis  Alcaligenes faecalis  1,373 

6 Kocuria rosea Kocuria rosea 2,510 

7 Kocuria palustris Kocuria palustris  1,946 

8 Micrococcus luteus Micrococcus luteus 2,137 

9 Rothia nasimurium Rothia nasimurium  1,481 

10 Rothia amarae Rothia amarae 1,960 

11 Kocuria kristinae Kocuria kristinae  2,199 

12 Cellulosimicrobium funkei Cellulosimicrobium cellulans  2,156 

13 Arthrobacter koreensis Arthrobacter gandavensis  2,545 

14 Microbacterium esteraromaticum  Curtobacterium albidum 1,372 

15 Curtobacterium pusillum Curtobacterium flaccumfaciens 1,443 

16 Plantibacter flavus Kytococcus sedentarius 1,399 

17 Dermacoccus nishinomiyaensis Dermacoccus nishinomiyaensis 1,938 

18 Streptomyces luridiscabiei  Streptomyces badius  2,083 

19 Microbacterium oxydans Microbacterium saperdae 1,346 

20 Microbacterium oleivorans Lactobacillus kimchii  1,399 

21 Microbacterium phyllosphaerae Microbacterium paludicola  2,396 

22 Janibacter limosus  Staphylococcus saprophyticus 2,064 

23 Microbacterium lacus Arthrobacter castelli 1,838 

24 Microbacterium hatanonis Pseudomonas pictorum  1,452 

25 Gordonia alkanivorans  Gordonia alkanivorans  2,191 

26 Rhodococcus pyridinivorans  Rhodococcus rhodochrous 2,366 

27 Rhodococcus qingshengii  Rhodococcus erythropolis  2,319 

28 Dietzia cinnamea Sphingobium cloacae  1,329 

29 Corynebacterium callunae  Corynebacterium callunae  2,300 
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30 Arthrobacter humicola Arthrobacter polychromogene 1,832 

31 Arthrobacter tumbae  Arthrobacter ilicis  1,689 

32 Pseudomonas asplenii  Lactobacillus vitulinus  1,239 

33 Pseudomonas stutzeri  Pseudomonas stutzeriL 2,228 

34 Pseudomonas psychrotolerans Pseudomonas oryzihabitans  1,866 

35 Pseudomonas poae  Pseudomonas poae  2,142 

36 Pseudomonas asplenii Pseudomonas brenneri 1,822 

37 Pseudomonas fulva  Pseudomonas fuscovaginae 1,823 

38 Enhydrobacter aerosaccus Moraxella osloensis  1,846 

39 Pectobacterium cypripedii  Escherichia coli  1,661 

40 Erwinia tasmaniensis Burkholderia sacchari 1,474 

41 Serratia grimesii  Serratia liquefaciens  1,835 

42 Bacillus simplex Bacillus simplex 1,901 

43 Bacillus asahii Bacillus asahii  2,193 

44 Bacillus flexus  Bacillus flexus  1,927 

45 Bacillus megaterium Bacillus megaterium 1,933 

46 Bacillus luciferensis Rhizobium rhizogenes 1,427 

47 Bacillus litoralis Aeromonas schubertii 1,483 

48 Bacillus thuringiensis Bacillus thuringiensis  2,060 

49 Bacillus subtilis Bacillus subtilis  2,247 

50 Bacillus licheniformis Bacillus endophyticus  1,447 

51 Bacillus altitudinis  Bacillus pseudofirmus  1,938 

52 Bacillus drentensis Bacillus novalis  1,756 

53 Bacillus bataviensis Burkholderia xenovorans  1,466 

54 Brevibacillus choshinensis Brevibacillus choshinensis  1,736 

55 Bacillus psychrodurans Bacillus psychrodurans  1,997 

56 Paenisporosarcina quisquiliarum  Bacillus bataviensis 1,388 

57 Viridibacillus arvi  Viridibacillus neidei  1,961 

58 Planococcus rifietoensis  Achromobacter xylosoxidans  1,349 

59 Bacillus massiliensis  Lysinibacillus sphaericus 1,438 

60 Lysinibacillus sphaericus Lysinibacillus sphaericus 1,809 

61 Sporosarcina ureae  Lactobacillus parabuchneri  1,418 

62 Exiguobacterium indicum Clostridium novyi  1,377 

63 Weissella confusa Bacillus asahii  1,378 

64 Staphylococcus epidermidis Staphylococcus epidermidis 2,055 

65 Staphylococcus aureus Staphylococcus aureus  2,428 

66 Staphylococcus warneri  Staphylococcus warneri  1,924 

67 Staphylococcus lentus Staphylococcus lentus  2,005 

68 Staphylococcus equorum  Staphylococcus equorum  2,002 

69 Staphylococcus kloosii Staphylococcus equorum 1,718 

70 Staphylococcus cohnii  Staphylococcus cohnii 1,815 

71 Staphylococcus saprophyticus Staphylococcus saprophyticus  2,149 

72 Staphylococcus haemolyticus Staphylococcus haemolyticus  2,000 

73 Staphylococcus succinus  Staphylococcus succinus  1,849 

74 Tumebacillus permanentifrigoris  Staphylococcus auricularis  1,383 
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75 Paenibacillus glucanolyticus  Paenibacillus glucanolyticus 2,392 

76 Paenibacillus konsidensis Paenibacillus glucanolyticus  1,695 

77 Paenibacillus favisporus Paenibacillus rhizosphaerae  2,055 

78 Paenibacillus odorifer Paenibacillus odorifer  1,829 

79 Paenibacillus peoriae  Paenibacillus polymyxa  1,972 

80 Paenibacillus woosongensis Pandoraea pnomenusa  1,414 

81 Paenibacillus turicensis  Lactobacillus curvatus  1,459 

82 Paenibacillus kobensis Paenibacillus agaridevorans  1,536 

83 Paenibacillus pabuli Paenibacillus amylolyticus  1,758 

84 Paenibacillus hodogayensis Staphylococcus cohnii  1,597 

*The MALDI score values were given by the MALDI identification software 

program 

 

50 % of the isolates identified with non-corresponding species names were found 

to be lacking in the MALDI-database (Table C.2). 

 

Table C.2: Lack of identification spectra for 25 of the OTUs identified with non-

corresponding species by MALDI-TOF MS compared to RDP_SeqMatch 

OTU 
MALDI compared to 

RDP 

Identification spectra lacking in MALDI-database 

genus Species 

5 incorrect 

 
Comamonas koreensis 

12 correct genus 

 
Cellulosimicrobium funkei 

14 incorrect 

 
Microbacterium esteraromaticum  

15 correct genus 

 
Curtobacterium pusillum 

16 incorrect Plantibacter  Plantibacter flavus 

18 correct genus 
 

Streptomyces luridiscabiei  

22 incorrect Janibacter Janibacter limosus 

23 incorrect 
 

Microbacterium lacus  

24 incorrect 

 
Microbacterium hatanonis 

27 correct genus 

 
Rhodococcus qingshengii 

28 incorrect 

 
Dietzia cinnamea  

30 correct genus 

 
Arthrobacter humicola  

34 correct genus 

 
Pseudomonas psychrotolerans 

38 incorrect Enhydrobacter Enhydrobacter aerosaccus 

51 correct genus 

 
Bacillus altitudinis  

56 incorrect Paenisporosarcina Paenisporosarcina quisquiliarum 

58 incorrect Planococcus Planococcus rifietoensis  

59 incorrect 

 
Bacillus massiliensis  

61 incorrect 

 
Sporosarcina ureae  

62 incorrect Exiguobacterium Exiguobacterium indicum 

74 incorrect Tumebacillus Tumebacillus permanentifrigoris  

76 correct genus 

 
Paenibacillus konsidensis 

80 incorrect 
 

Paenibacillus woosongensis 

81 incorrect 
 

Paenibacillus turicensis 

84 incorrect 

 
Paenibacillus hodogayensis 
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Appendix D 

 

Bead mill homogenization 

A method for extraction of microbial DNA was optimized for samples containing 

both endospores and vegetative bacteria cells. Bead mill homogenization was 

chosen as the method for cell lysis prior to DNA isolation, and different amounts 

of beads and duration of bead beating were tested separately on samples 

containing endospores (B. atrophaeus) and vegetative bacteria cells (E. coli).  

The optimal amount of beads and duration of bead beating was found to vary for 

B. atrophaeus and E. coli. 1.0 gram beads and bead beating for maximum one 

minute gave the best results for E. coli, whereas 2.0 gram beads and bead beating 

for minimum three minutes gave the best results for B. atrophaeus, as 

investigated by PCR (data not shown). A compromise that seemed to disfavor E. 

coli and B. atrophaeus equally was chosen; 1.5 gram beads and bead beating for 

two minutes. The effect of these conditions on equally initial numbers of B. 

atrophaeus and E. coli were investigated, and compared to non-bead beaten 

samples (Table D.1).  

Table D.1: Comparison of DNA level in bead beaten and non-bead beaten 

samples, containing B. atrophaeus and E. coli. Low crossing point (Cp) means 

high initial concentration of DNA 

Sample Cp Parallel (Cp) Average St.dev. 

Bead beaten B. atrophaeus 

(1.0*106 spores/µl) 
16.76 17.18 16.97 0.297 

B. atrophaeus 
(1.0*106 spores/µl) 

25.70 25.49 25.60 0.148 

negative control (water) 30.00 30.00 30.00 0.000 

Bead beaten E. coli 
(1.0*106 cells/µl) 

13.51 13.46 13.49 0.035 

E. coli 
(1.0*106 cells/µl) 

13.44 14.43 13.94 0.700 

negative control (water) 30.00 30.00 30.00 0.000 

 

For B. atrophaeus, the amount of DNA in the bead beaten samples was higher 

than in the non-bead beaten samples, verified by lower Cp (Table D.1). More 

DNA was released in the bead beaten E. coli samples than in the bead beaten B. 

atrophaeus samples, as expected due to weaker cell walls for vegetative cells. For 

E. coli, equal amount of DNA was measured in the non-bead beaten and the bead 

beaten samples, implying that the initial heat step in PCR was sufficient for lysis 

of these cells. The results implied that no loss of DNA due to fragmentation was 

observed in the E. coli samples after two minutes bead beating.  
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