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Preface
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The thesis assumes the reader has a technological background and is familiar with terms
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Abstract

In the power trading market, transmission system operators and other actors buy and sell power

related to future production. Power production from wind- and solar farms is affected by rapid

weather changes, and producers of this power often have to trade in reaction to the changes.

Ongoing actual power production data for wind- and solar farms is published by the transmis-

sion system operators. These numbers indicate what volumes these actors have to trade to keep

up with the weather changes, and are therefore one of the largest cost drivers in the market.

Therefore, the ability to forecast power production is highly relevant in the power trading indus-

try.

In this master thesis we do a case study with focus on wind energy, and the main research

task is to predict wind power production. We introduce three models named CCPR, UCPR and

CPR-LP, where all are based on a new methodology. The methodology starts out with one or two

initial forecasts, in the form of cumulative density functions. The CCPR and UCPR use one initial

forecast, and the method proceeds by transforming the initial forecast through a beta transfor-

mation function, returning a calibrated final forecast. The CPR-LP uses two initial forecasts,

where the methodology beta transforms a weighted sum of these. The parameters which define

the beta transformation function are modelled as functions of deterministic forecasts related to

the wind power production. We divide our test results into groups, based on these deterministic

forecasts. UCPR is performing very well compared to the other models for large deterministic

forecasts, and CCPR is performing well for small deterministic forecasts. The CPR-LP model on

the other hand is preferable when considering all groups as a whole.
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Sammendrag

Systemoperatører og andre aktører i kraftmarkedet kjøper og selger strøm for fremtidig strøm-

produksjon. Strømproduksjon fra vind- og solenergi blir påvirket av endringer i været, som gjør

at produsenter av slik strøm i tillegg må handle på kraftmarkedet for å gjøre opp for disse en-

dringene. Løpende strømproduksjonstall blir publisert av systemoperatørene, og indikerer hvor

mye vind- og solprodusentene må handle på kraftmarkedet for å gjøre opp for værendringene.

Derfor er disse tallene en av de største prisdriverne i kraftmarkedet. Varsel som estimerer disse

strømproduksjonstallene er derfor svært relevant i denne industrien.

I denne masteroppgaven skal vi utføre et case-studie med fokus på vindenergi, der hove-

doppgaven er å varsle strømproduksjonen fra vind. Vi introduserer de tre modellene CCPR,

UCPR og CPR-LP, som alle er basert på en ny metodologi for å danne probabilistiske varsel.

Denne metodologien starter med en eller to initialvarsel i form av kumulative distribusjons-

funksjoner. CCPR og UCPR bruker kun et initialvarsel, og metoden bruker en betafordeling for å

transformere dette til et kalibrert endelig varsel. CPR-LP bruker to initialvarsel, hvor betafordelin-

gen transformerer en vektet sum av disse. Parameterne som definerer betafordelingen mod-

elleres som en funksjon av deterministiske varsel, hvor disse inneholder informasjon om strøm-

produksjonen fra vind. Vi deler testresultatene inn i grupper basert på disse deterministiske

varslene. UCPR har best resultater sammenlignet med de andre modellene for høye determin-

istiske varsel, og CCPR har best resultater for små deterministiske varsel. CPR-LP er den fore-

trekkende modellen, og har best resultater når vi ser på alle gruppene som en helhet
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Chapter 1

Introduction

Elbas1 and EPEX2 are the two largest exchanges for power trading in Northern Europe. They

conduct different types of auctions, two of which are called spot auction and intraday auction. A

spot auction happens the day before power delivery, whereas intraday trading is possible down

to one hour before delivery. In the time between spot auction and delivery, producers and con-

sumers might fall out of balance. Imbalance means that the final consumption/production from

these actors becomes different compared to what they bought and sold the day before. These

actors have the opportunity to buy or sell power on the intraday market to correct their bal-

ance (NordPool).

Producers of renewable energy like wind- and solarenergy, can not reliably control their pro-

duction and are very vulnerable to weather changes. A high amount of their revenue might get

lost between spot auction and delivery. Intraday is therefore especially important for these pro-

ducers to restore this revenue. Transmission system operators for each country publish ongo-

ing actual power production data (hereafter referred to as actual production or simply actuals).

This includes actuals for wind- and solar production. These numbers are one of the largest cost

drivers in the market, because the indicate how much the producers of wind- and solar power

have to trade. It is therefore very useful to be able to predict this production.

Until the early 1990s, deterministic forecasts were the most common type of forecast. Weather

forecasts, for example, were a deterministic endeavour where one weather prediction was gen-

1Elbas is a system for intraday auction managed and developed by Nord Pool: http://www.nordpoolspot.
com/TAS/Intraday-market-Elbas/elbas-4/

2EPEX: http://www.epexspot.com/en/company-info/about_epex_spot

1

http://www.nordpoolspot.com/TAS/Intraday-market-Elbas/elbas-4/
http://www.nordpoolspot.com/TAS/Intraday-market-Elbas/elbas-4/
http://www.epexspot.com/en/company-info/about_epex_spot
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erated (Gneiting and Raftery, 2005). However, all forecasts are associated with some sort of un-

certainty and probabilistic forecasts are often preferred over deterministic forecasts to better

express this uncertainty. The probabilistic forecast takes the form of a pdf (probability density

function) or a cdf (cumulative density function) (Gneiting et al., 2007). The way a probabilistic

forecast represent uncertainty allows more nuanced decision making. As a result, probabilistic

forecasts have seen increased impact in many applications, such as economics, meteorology

and climatology (Gneiting and Ranjan, 2013).

The aim of a probabilistic forecast is to maximise the sharpness subject to calibration. Cal-

ibration refers to the statistical consistency between the probabilistic forecast and the obser-

vations, whereas sharpness refers to the concentration of the predictive distributions (Gneiting

et al., 2007). If we declare an interval or event to have probability p, the forecast is calibrated if

the event happens a proportion p of the time on average (Raftery et al., 2005). Probability inte-

gral transform (PIT) diagrams are commonly used to check for calibration. Clearly, the sharper

the forecast the better, as long as it is still calibrated. The width of p% prediction intervals mea-

sures the sharpness of a probabilistic forecast. The continuous ranked probability score (CRPS)

combines both sharpness and calibration to evaluate the performance of a forecast. The score

is minimized when the probabilistic forecast is identical to the distribution of the process we

want to forecast, and is thus a proper scoring rule (Gneiting et al., 2007).

The dominant approach to probabilistic forecasting in areas such as weather forecasting,

has been to use ensembles of deterministic forecasts in which a model is run several times with

different initial conditions. A post processing approach could then be used to form a prob-

abilistic forecast from this ensemble. Bayesian model averaging (BMA) is one such post pro-

cessing technique (Raftery et al., 2005). In recent years, probabilistic forecasts in the form of

predictive probability distributions have become more prevalent in various fields, such as eco-

nomics, finance and meteorology. Research has therefore shifted towards the construction of

post processing methods, used to combine several probabilistic forecasts (Bassetti et al., 2015).

The prevalent method has been the linear pool, which is a weighted sum of the available proba-

bilistic forecasts. Hora (2004), Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013) have

all pointed out shortcomings with the linear pool, all revolving around lack of calibration. Gneit-

ing and Ranjan (2013) introduced the beta transformed linear pool, which composites the linear
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pool with a beta transformation to improve calibration. This approach has been generalized fur-

ther by Bassetti et al. (2015) who introduce a combination of several weighted beta transformed

linear pools.

The main research task of this master thesis to forecast the actual wind power production

for several countries in Northern Europe. We introduce a new methodology, inspired by the

forecasting method from Borhaug (2014), which in turn is based on the beta transformed linear

pool presented by Gneiting and Ranjan (2013). The CCPR (Climatology Cumulative Probability

Regression) model from Borhaug (2014) has been reimplemented and used for our case study.

This method takes advantage of historical data, i.e. the climatology, and different determin-

istic forecasts to create a probabilistic forecast. Based on the challenges experienced with the

CCPR model for our case study, we introduce two new models named UCPR (Uniform Cumu-

lative Probability Regression) and CPR-LP (Climatology Cumulative Probability Regression with

Linear Pooling). These are based on the same methodological concept as the CCPR, but are

tailored to increase the forecasting performance when used for our case study. However, the

method behind the two new models is presumably applicable to any set of historical data and

deterministic forecasts, and opens up an interesting path for further research.

This master thesis is also an extension to Malmgård (2016)3, which was a specialisation

project with the exact same data and research task. The forecasting models tested by Malmgård

(2016) were based on the well known method of linear regression, accompanied by autoregres-

sive models originating from the temporal dependencies. These models had a substantial dis-

advantage because the probabilistic forecasts did not always match with the nature of the data,

i.e. the forecasts did not always make sense physically. The actuals are never below zero, and

there is also a maximum limit for actual production. Because the resulting probabilistic fore-

casts were normal distributions, you could end up with a forecast having considerable density

mass for negative production, or above the maximum limit for actual production. The best per-

forming model tested by Malmgård (2016) was the ARn-SFR-model. In addition to not being

physically valid, it suffered from consistent underdispersion, i.e. giving too narrow probabilistic

forecasts. The main motivation behind our choice of forecasting methodology is thus to obtain

physically valid and calibrated forecasts.

3Please email andreas@malmgard.com for the full paper.
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The rest of the thesis is organized as follows. Chapter 2 gives an introduction to our case

study and a brief explanatory analysis, illustrating some important features of the data. Chap-

ter 3 states the background theory required to develop our forecasting methodology, as well as

the methods used to evaluate the forecasting performance. Chapter 4 describes the concept

behind our forecasting methodology. First with a toy example to illustrate desired properties,

before formally defining the three forecasting models CCPR, UCPR and CPR-LP. Chapter 5 es-

tablishes some useful notation and defines the parameter models for each forecasting model

used in our case study. An interpretation of the coefficients used to model these parameters is

also included. The results of the case study are given in Chapter 6, and Chapter 7 concludes the

thesis with a summary and suggestions for further work.



Chapter 2

Data

In this chapter we start by introducing the data for our case study in Section 2.1. Section 2.2

includes a brief explanatory analysis, illustrating some important features of the data.

2.1 Wind Farm Actuals and EC-forecasts

The observations in our case study are time series of power production from wind plants in

megawatts. The resolution is of one value each hour, where this value is the mean production

during that hour. Each time series includes the production for one whole bidding area. A bid-

ding area is a geographical area within which market participants are able to exchange power

without capacity allocation (Ofgem, 2014). A total of ten bidding areas are included, and a map

of these can be seen in Figure 2.1. Further, we also have available time series of forecasts. Both

actuals and forecasts are detailed below:

Actuals where mentioned in Chapter 1 and are actual wind power production in megawatts. These

are in reality estimates provided by the transmission system operators or other external

actors. Appendix A includes a list of where actuals for each bidding area are published.

The actuals are gathered from these sources and provided as a whole by Markedskraft ASA.

An example of the actual production for all areas can be seen in Table 2.1, and plotted in

Figure 2.2a.

Forecasts (hereafter referred to as EC-forecasts) are forecasts of the actuals given in megawatts. They

5
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Figure 2.1: The map marks the ten different bidding areas considered. Each bidding area has its
own color. "RWE/Amp." is divided into two separate geographical areas that comprise a single
bidding area.

are calculated based on a wind speed forecast, and provided by Markedskraft ASA two

times daily. EC00-forecast starts calculations at midnight, and the result is issued at 08:00.

EC12-forecast starts at midday, and the result is issued at 20:00. Because of this delay,

Kalman filtering is used to minimize the errors of the EC-forecast at issue time. As an

example, when EC00 is available at 08:00, there are already observed actuals from 00:00 to

08:00 which is used in this filtering. The EC-forecast used in this project is a combination

of EC00 and EC12. For any given day, the EC-forecast is equal to EC00 from 08:00 to 19:00,

and equal to EC12 from 20:00 to 07:00 the next day. An example of the EC-forecast for all

areas can be seen in Table 2.2, and plotted in Figure 2.2b.

We also want to introduce the notion of lead time of the EC-forecast. This is how far

ahead in time we forecast, i.e. the time between the forecast valid time and its issue time.

Consider again the EC00-forecast as an example (which is issued at 08:00). The EC00-

forecast for 15:00 has a lead time of 7 hours. At the end of Section 2.2, we see how the error
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in EC-forecasts increase with increasing lead time.

The length of each provided data series vary, but all of them reach back to at least 4th of

August 2015, and last until 6th of June 2016. This time period is used for this project. Table 2.3

displays some fundamental information of both the actuals and EC-forecasts.

2.2 Explorative Analysis

We start this section by investigating the correlation between the actual production, EC-forecast

and EC-error within each bidding area, where EC-error is defined as actuals minus EC-forecast.

Figure 2.3 displays the results. The correlation between actual production and EC-forecast is

clear for all areas, whereas the two other combinations does not have a clear common pattern.

The autocorrelation of the actual production is quite high for small lags as shown in Fig-

ure 2.4a. The only area standing out is Austria. In contrast to the other bidding areas, Austria is

mostly covered by mountains as it is located in the Alps. This creates weather regimes that differ

from what is found in the other low land bidding areas, and may explain the low autocorrela-

tions. The autocorrelation curves for the EC-errors in Figure 2.4b are all lower than the curves

for actual production as to be expected, but they have a rather large spread among the bidding

areas. The EC-errors should ideally have low autocorrelation.

Next we investigate the EC-error sample variance. As mentioned at the start of the chapter,

two forecasts are issued each day, at 08:00 and at 20:00. Figure 2.5a displays the relative error

variance at each hour of the day. Looking at the mean curve, the variance is clearly increasing

in the hours from 08:00 to 16:00, and gets lower towards 20:00. This behaviour of increasing

variance with increasing lead time is expected, since an increase in lead time means larger time

frame between forecast valid time and its issue time. In addition, Figure 2.5b shows that the

relative variance of the actuals have similar shape in the hours between 08:00 and 20:00. This is

not a coincidence as larger variance in the actuals makes it harder to forecast, which is another

reason for the large EC-error variance in this time frame.

At 20:00, the EC-error variance drops because a new forecast with updated initial conditions

gets issued. The increase of variance is not as prominent after 20:00, it is instead rather low dur-

ing the whole period from 20:00 to 07:00, even though the lead time increases. The explanation
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Date

2015−08−05 00

AT

2015−08−05 01

BE

2015−08−05 02

DK1

2015−08−05 03

DK2

2015−08−05 04

DE_ENB

2015−08−05 05

DE_EON

2015−08−05 06

DE_RWE

2015−08−05 07

DE_VAT

2015−08−05 08

FR

2015−08−05 09

NL

2015−08−05 10

2015−08−05 11

2015−08−05 12

2015−08−05 13

2015−08−05 14

 503.00

 502.75

 431.00

 269.75

 360.25

 427.75

 579.00

 751.00

 727.75

 914.25

1016.50

 288.25

 326.50

 273.50

 217.00

555.17

585.75

415.08

297.09

317.14

299.65

356.79

313.84

242.10

201.99

 98.45

 67.28

 80.15

 98.76

159.29

374.75

433.50

449.25

464.00

519.00

584.50

547.75

580.75

472.75

474.75

513.50

514.75

545.00

559.25

566.50

 30.25

 11.25

 16.50

144.75

266.75

233.50

141.25

 89.50

 92.25

 49.50

 40.50

 43.00

 31.75

 32.75

 32.00

36.50

29.50

13.75

 9.25

 5.00

12.50

25.75

34.50

36.75

26.50

16.50

13.25

10.75

11.50

12.50

2719.00

2478.00

2137.00

1721.00

1666.50

2010.75

2157.75

2047.25

1868.25

1485.50

1483.50

1746.75

1861.75

1686.50

1225.75

444.50

392.75

333.75

280.25

267.00

284.25

365.00

477.50

475.75

316.25

229.00

275.25

277.00

261.75

317.75

3457.00

2689.75

2149.25

2072.50

2009.25

1646.75

1399.50

1244.50

 917.25

 638.25

 377.50

 275.50

 247.00

 228.75

 243.25

 638.25

 589.00

 639.25

 742.75

 789.75

 935.25

1134.25

1269.75

1239.25

1102.25

 703.50

 693.00

 920.00

1050.00

1044.25

1040.00

 949.50

 792.25

 702.75

 637.00

 605.75

 723.00

 645.25

 490.50

 292.25

 214.25

 219.00

 154.00

 114.25

 110.00

Table 2.1: Actual wind production in all ten bidding areas for 15 consecutive hours, starting from
5th of August 2015 at midnight.

Forecast

EC12

Date

EC12

AT

EC12

BE

EC12

DK1

EC12

DK2

EC12

DE_ENB

EC12

DE_EON

EC12

DE_RWE

EC00

DE_VAT

EC00

FR

EC00

NL

EC00

EC00

EC00

EC00

2015−08−05 00

2015−08−05 01

2015−08−05 02

2015−08−05 03

2015−08−05 04

2015−08−05 05

2015−08−05 06

2015−08−05 07

2015−08−05 08

2015−08−05 09

2015−08−05 10

2015−08−05 11

2015−08−05 12

2015−08−05 13

2015−08−05 14

303.67

385.80

574.32

706.54

690.38

620.85

583.36

493.79

388.75

322.31

225.48

148.96

 98.32

 71.17

 45.68

358.68

313.47

286.94

295.06

275.65

265.90

225.95

186.40

140.27

121.24

145.71

173.90

189.32

185.63

187.61

445.15

503.05

522.22

520.34

501.43

462.03

567.44

529.23

456.41

443.98

494.98

587.48

641.79

597.57

553.04

205.58

192.67

178.50

163.14

139.20

114.63

111.90

 90.55

 65.42

 47.21

 35.17

 25.97

 18.88

 14.04

 10.36

13.41

11.63

14.37

15.15

12.20

 5.90

 8.42

11.26

12.19

13.65

12.93

12.10

11.53

10.29

 9.39

2650.55

2470.65

2240.40

2011.80

1734.76

1459.22

1759.44

1582.65

1345.81

1187.00

1173.40

1099.90

 870.83

 698.41

 532.28

456.73

459.81

478.57

492.78

482.47

479.51

436.08

343.64

303.31

282.55

290.04

307.01

311.81

307.08

288.33

1920.95

1729.43

1575.11

1414.84

1289.25

1306.87

 618.98

 302.56

 190.51

 155.64

 161.18

 195.88

 182.18

 153.25

 103.87

1171.87

1325.38

1413.38

1433.17

1378.30

1216.89

 967.52

 739.78

 696.72

 734.51

 787.31

 865.58

 972.79

1053.80

1117.19

486.44

478.41

457.85

462.73

476.42

521.29

497.46

413.33

313.64

275.51

334.07

379.29

440.69

487.62

541.25

Table 2.2: EC-forecast of wind production in all ten bidding areas for 15 consecutive hours, start-
ing from 5th of August 2015 at midnight.
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Figure 2.2: The left figure is a plot of the data in Table 2.1 and the right figure is a plot of the data
in Table 2.2.
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Table 2.3: Fundamental information about the data. Including start dates of actuals and EC-
forecasts, sample means and sample standard deviations.
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Figure 2.3: Each matrix displays the correlation between actual production(A), EC-forecast(F)
and EC-error(E) for each bidding area. The correlation coefficients ranging from −1 to 1 are also
represented by colors ranging from dark red to dark blue respectively.
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Figure 2.4: Autocorrelation plots for (a) actual production and (b) EC-error for each bidding
area. The legend in (a) is also valid for (b).
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Figure 2.5: Relative variance of (a) the EC-error and (b) actuals at different lead times/hours of
the day. The grey curves are the variances for each of the ten bidding areas, while the black curve
is the mean of these.

is related to the time varying weather conditions. From Figure 2.5b we see that the actuals have

lower variance during night time. This is because the weather is more stable at night with lower

wind speeds in general.

As a conclusion, Figure 2.3 showed that the EC-forecast is highly correlated with the actuals,

and is going to be an important part of our forecasting models. In addition, the actuals them-

selves are highly autocorrelated (Figure 2.4a), and are also going to be an important part of our

models, especially for shorter lead times. The relative variance of the EC-errors in Figure 2.5a

are increasing with increasing lead time. The EC-errors also seem to increase with increasing

variance of the actuals, plotted in Figure 2.5b.



Chapter 3

Background

In this chapter we introduce the background theory required to develop our forecasting method-

ology in Chapter 4. We also present the methods used to evaluate the methodology in Chapter 6.

Section 3.1 provides a summary of the beta distribution and some of its properties, including

several plots to demonstrate the wide variety of shapes the distribution can take. The beta dis-

tribution is a key tool in our forecasting methodology where it is used to transform one prob-

abilistic forecast into another. Section 3.2 introduces the logit link function, which maps (0,1)

onto the entire real line. We use the inverse logit link as a tool to model the mean of the beta dis-

tribution, which is on the interval (0,1). In Section 3.3, we present the beta transformed linear

pool, which acts as the foundation of our forecasting models. The methods used to evaluate the

sharpness and calibration of our probabilistic forecasts are given in Section 3.4. This includes

a brief introduction to the method of cross validation, which is a schematic way of fitting and

evaluating a model.

3.1 Beta Distribution

A random variable Y ∈ [0,1] follows a beta distribution with parameters α and β, if its pdf

f (y ;α,β) is

f (y ;α,β) = bα,β(y) = 1

B(α,β)
yα−1(1− y)β−1,

12
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where

B(α,β) = Γ(α)Γ(β)

Γ(α+β)
,

is the beta function, Γ(·) is the gamma function and α,β> 0 (Johnson et al., 1995). We will later

denote the beta cdf as Bα,β(y), which should not be confused with the beta function B(α,β). The

expected value and variance are given as

E[Y ] = α

α+β and Var(Y ) = αβ

(α+β)2(α+β+1)
.

For modelling purposes, it is convenient to reparameterize the beta distribution in terms of its

mean and a precision parameter (Ferrari and Cribari-Neto, 2004). Letµ=α/(α+β) andν=α+β,

with µ ∈ (0,1) and ν> 0. It then follows that

α=µν, β= ν(1−µ),

and

E[Y ] =µ, Var(Y ) = µ(1−µ)

1+ν .

This reparametrization allows us to model the mean µ and the precision parameter ν.

The beta distribution is well suited for modelling purposes because its density can attain a

wide variety of shapes by varying the two parameters µ and ν. Figure 3.1 shows a few different

examples of how the density behaves for different parameter values. We see that the density is

symmetric when µ= 0.5, and asymmetric when µ 6= 0.5. Furthermore, the dispersion increases

as ν decreases. In particular, the beta distribution can also attain the form of a standard uniform

distribution when µ= 0.5 and ν= 2.

3.2 Logit Link

Consider a vector of observations y = (y1, . . . , yn). This vector is assumed to be a realization

of a random variable Y = (Y1, . . . ,Yn), whose components are independently distributed with

means µ = (µ1, . . . ,µn). Let each observation yi be related to a set of p explanatory variables
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Figure 3.1: Beta pdf and cdf for varying parameter µ and fixed parameter ν. ν= 5 in (a)/(b) and
ν= 50 in (c)/(d).
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xi = (xi 1, . . . , xi p ). The linear predictor ηi is then defined as

ηi =
p∑

j=1
xi jβ j , i = i , . . . ,n,

where ηi can take any value on the real line. Least squares estimators of the parameters β j ,

j = 1, . . . , p, are obtained by fitting the multiple linear regression model

yi =
p∑

j=1
xi jβ j +εi ,

to the data set {(yi , xi 1, . . . , xi p )}n
i=1, where εi is the random error associated with yi (Walpole

et al., 2012).

For generalized linear models, a link function relates the linear predictor ηi to the mean

value µi of Yi . If we write

ηi = g (µi ),

then g (·) is called the link function. In classical linear models the link function is the identity

function, and the predictor ηi = µi . However, when µ ∈ (0,1) as for the beta distribution, we

need a link function which maps (0,1) onto the real line. The logit function given by

ηi = logit(µi ) = log
( µi

1−µi

)
, (3.1)

does exactly this and is continuous and increasing on (0,1) (McCullagh and Nelder, 1989). More

explicitly, we use the inverse logit function

µi = logit−1(ηi ) = 1

1+exp(−ηi )
,

to transform the real valued linear predictor ηi into µi , the mean value of Yi . Figure 3.2 shows

how the inverse logit function maps the the real axis onto the interval (0,1).
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Figure 3.2: The inverse logit link function, connecting µ with η.

3.3 Beta Transformed Linear Pool (BLP)

A probabilistic forecast can be represented in the from of a cdf F (y). In many situations there are

several complementary or competing forecasts available from various sources. Let {F1(y), . . . ,Fk (y)},

y ∈R be a set of available probabilistic forecasts of the random variable Y . To aggregate this set

of individual predictive distribution functions into a single combined forecast, we have to spec-

ify an aggregation method. The prevalent method is the linear pool, which is defined as

F (y) =
k∑

i=1
wi Fi (y), (3.2)

where the weights wi ≥ 0 ∀i and
∑k

i=1 wi = 1 (Wallis, 2005). The idea is to weigh each forecast

based on their respective performance over a training period.

Despite the success of the linear pool in a large number of applications, Hora (2004) and Ran-

jan and Gneiting (2010) point at its shortcomings and limitations. They showed for special cases

that if each of the individual predictive distributions are calibrated, any nontrivial linear com-

bination is necessarily uncalibrated. A trivial linear pool is the case when one weight is equal to

one, and the rest is zero, resulting in one of the original forecasts. Gneiting and Ranjan (2013)

generalize these findings and state that dispersion tends to increase under any linear aggrega-

tion. As stated in Section 3.4, calibration is a desired and important property for a probabilistic
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forecast. Therefore, we want other aggregation methods that outperform the linear pool.

One such method investigated by Gneiting and Ranjan (2013) is the beta transformed linear

pool (BLP). This is a nonlinear aggregation method defined as

Fα,β(y) = Bα,β

( k∑
i=1

wi Fi (y)

)
, (3.3)

where Bα,β(·) is the beta cdf withα> 0 andβ> 0, and Fα,β(y) is on the form of a cdf. This method

composites on the linear pool (3.2) with a beta transform.

Let fα,β(y) be the corresponding pdf of (3.3), and fi (y) the pdf related to Fi (y). Using the

well known relation fα,β(y) = d
d x Fα,β(y) and the chain rule of differentiation, the pdf of the beta

transformed linear pool is defined as

fα,β(y) =
( k∑

i=1
wi fi (y)

)
bα,β

( k∑
i=1

wi Fi (y)

)
, (3.4)

where bα,β(y) denotes the beta probability density with parameters α> 0 and β> 0.

In practice, the weights w1, . . . , wk and parameters α and β need to be estimated from train-

ing data {(F1 j (y), . . . ,Fk j (y), y j ) : j = 1, . . . , J }, where F1 j , . . . ,Fk j are probabilistic forecasts of y j

on the form of cdfs. Let f1 j , . . . , fk j be the corresponding pdfs. Using (3.4) and the training data,

we can find the log-likelihood function which is defined as.

l (w1, . . . , wk ,α,β|y1, . . . , y J ) =
J∑

j=1
log

( k∑
i=1

wi fi j (y j )

)
+

J∑
j=1

log

(
bα,β

( k∑
i=1

wi Fi j (y j )

))
. (3.5)

We get the maximum likelihood estimators of the parameters w1, . . . , wk ,α andβ by maximizing

the likelihood function (3.5) with respect to these parameters.

3.4 Evaluation Methods

The purpose of this project is to develop and investigate models for predicting wind power pro-

duction, and from these be able to provide probabilistic forecasts. The performance of the mod-

els is evaluated with respect to both predictive sharpness and calibration, as these are desired

forecast properties. As stated by Gneiting et al. (2007), calibration refers to the statistical consis-
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tency between the forecast distribution and the observations, whereas sharpness refers to the

concentration of the predictive distributions. With both actual values and predictions in hand,

we need ways to quantify how well the model did in relation to sharpness and calibration. This

topic is addressed in this section.

3.4.1 RMSE

The root-mean-square-error (RMSE) is a common way to measure the differences between ob-

served values and predicted values. It represents the sample standard deviation of the differ-

ences between predicted values and observed values. Let ŷt be the prediction of the observed

yt at time t . If t = 1, . . . ,n then

RMSE =
√∑n

t=1

(
yt − ŷt

)2

n
. (3.6)

3.4.2 PIT-diagram

The probability integral transform (PIT) relates to the fact that random variables from any given

continuous distribution can be transformed into random variables having a standard uniform

distribution. Gneiting et al. (2007) describe how this technique can be used to compare a prob-

abilistic forecast with the distribution of the corresponding observations. The PIT thus relates

to the calibration of the forecasts.

We assume that the observed outcome yt of a process in nature follows the distribution Gt

at times t = 1,2, . . . ,n, which is the true data generating distribution. As forecasters, we provide

probabilistic forecasts in the form of cdfs, Ft at t = 1,2, . . . ,n. If Ft = Gt for all t , we are perfect

forecasters. It is not a straightforward task to compare these two distributions, especially since

Gt is never know, only hypothetical. However, we have the observations yt that are samples

from Gt .

Consider now the hypothetical situation where we know Gt . If we then computed pt =
Gt (yt ), pt would be a sample from a standard uniform distribution. Moving back to the real

situation where we only know Ft , we instead do the comparable calculation pt = Ft (yt ). If we

are perfect forecasters, pt is still a sample from a uniform distribution. However, more often
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Figure 3.3: (a): The red curve G is the true data generating distribution, while the other distribu-
tions are various probabilistic forecast distributions. (b): PIT-diagrams for the distributions in
(a) with respect to observations from G .
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than not, Ft 6=Gt for all t , and we want to study how they are different.

A histogram of pt = Ft (yt ) for t = 1,2, . . . ,n often provides hints to the reason for forecast

deficiency. Figure 3.3 shows some examples. In the upper plot, we have several suggested prob-

abilistic forecasts F together with the true data generating distribution G , plotted in red. The

lower plot shows the corresponding PIT-diagrams. We see that the blue curve is overdispersed,

which results in a hump-shaped PIT-diagram. The green curve is underdispersed, which re-

sults in a U-shaped PIT-diagram. The cyan curve is biased, and results in a triangle-shaped

PIT-diagram. If the forecast is properly calibrated we get a uniformly distributed PIT-diagram.

Even though a PIT-diagram can give an indication to the reason for forecast deficiency, uni-

formity of the PIT-diagram is only a necessary condition for the forecaster to be perfect, not

sufficient. Gneiting et al. (2007) reiterate an example from Hamill (2001), where a perfect fore-

caster having Ft = Gt for all t , has three other competing forecasters. The three competitors

have slightly different forecasting models compared to the perfect forecaster. Despite this, the

PIT-diagrams for all four forecasters are essentially uniform, and cannot be used to distinguish

between the ideal forecaster and the competitors.

3.4.3 CRPS

The continuous ranked probability score (CRPS) is a verification tool for probabilistic forecast

systems, and is a quantity that relates to both forecast sharpness and calibration. It can be de-

fined as follows (adapted from Hersbach, 2000).

The forecast pdf at time t is denoted by ft , and the corresponding observation by yt . Fig-

ure 3.4a shows an example where ft has a standard normal distribution, and yt = 1. The two

cdfs for ft and yt are then respectively given as

Ft (y) =
∫ y

−∞
ft (ε)dε and

Pt (y) = H(y − yt ),

where

H(y) =


0 for y < 0

1 for y ≥ 0
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Figure 3.4: Visual interpretation of CRPS where the probabilistic forecast is a standard normal
distribution.

is the so-called Heaviside function. The CRPS at time t is then defined as

C RPSt =C RPS(Ft , yt ) =
∫ ∞

−∞

[
Ft (y)−Pt (y)

]2d y. (3.7)

A visualization at a given time t can be seen in Figure 3.4b. The red and black lines represent Ft

and Pt respectively. The CRPS is negatively oriented, in that a smaller CRPS indicates a better

forecast. The area between Ft and Pt marked grey is directly linked to C RPSt , i.e. minimizing

this area also minimizes C RPSt . The area (and C RPSt ) is minimized when the observation

is equal to the median of the probabilistic forecast. In practice, the CRPS is averaged over an

interval of time, such that we get one single value for the CRPS:

C RPS =
∑n

t=1 C RPSt

n
.

One advantage of the CRPS is that it reduces to absolute error if the forecast is determin-

istic, i.e. when there is no randomness involved in the forecast. To understand this, consider

Figure 3.4b as the forecast cdf becomes a step function, like the observation. Then the area

between these two functions is given by the rectangle formed by the two step functions. The
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rectangle will have height equal to 1, such that the area directly represents the absolute error. In

practice, this makes it possible to directly compare a deterministic forecast with a probabilistic

forecast in a consistent manner.

3.4.4 Cross Validation

Cross validation is the preferred way to fit a model and compute predictions. Consider a data set

S. Divide the data into two parts: Training set and test set. The idea is then to fit the model using

the training set, and test the model using the test set. Another option when fitting a model would

be to use all data available. However, this approach implies that no data is left to do testing, and

we are forced to use that same data for testing as we used for fitting. The evaluation of the

predictions become too optimistic, because the model is fitted to minimize the error based on

this particular data set.

We describe here a common type of cross validation called k-fold cross validation. A schematic

overview of this method is given as follows:

1. Divide the data set S into k groups, or folds, S1, . . . ,Sk of approximately equal size. How

the data is divided depends on the nature of the data and model.

2. For j = 1, . . . ,k, do the following:

(a) For the j -th fold (test set), fit the model to the other k −1 folds (training set).

(b) Do testing of the model on the j -th fold.

3. Combine the test values for all test sets.

In this project, k-fold cross validation is used, where the data is divided into k subsequent folds.



Chapter 4

Methodological Concept

In this chapter we describe the concept behind our forecasting methodology, and start with a

toy example in Section 4.1 to make the idea behind clear. There are several ways to build up

a forecasting model following this concept. Section 4.2 introduces the CCPR model presented

by Borhaug (2014), which is the basis and inspiration behind the two other forecasting models

following the same concept. Based on challenges experienced with the CCPR model, we intro-

duce the UCPR model in Section 4.3 and the CPR-LP model in Section 4.4. All sections in this

chapter use the same synthetic data to give examples and illustrations which are used to easier

understand the properties of the models.

4.1 A Toy Example

Our forecasts are based on explanatory variables, which is available information related to the

quantity we want to forecast. We utilize these explanatory variables to construct probabilistic

forecasts in the form of a density function, either a pdf or a cdf. In this section we present a toy

example to illustrate some desired properties of this forecast. The model behind the example

is the CCPR, but the details behind this model is first presented in Section 4.2. In this section

we instead focus on how the resulting probabilistic forecast is a function of the explanatory

variables. Even though the CCPR model is used to carry out the example, the forecast properties

we observe in this section are also valid for the other forecasting models introduced later in this

chapter.

23
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Figure 4.1: Climatology distribution as (a) pdf c(y) and (b) cdf C (y).

Establishing a probabilistic forecast can be done in numerous ways. Our method starts with

an initial forecast which is some prior belief on the forecast density. For the CCPR model, which

is the model used in this example, the initial forecast is based on the weather climatology and

is denoted by c(y) (pdf) or C (y) (cdf). Let the observed time series from the process we want

to forecast be denoted by y = (y1, . . . , yn) where n = 10000, and yt ∈ [a,b] for t = 1, . . . ,n. The

actual wind power production data presented in Section 2.1 has such a restriction. The power

production is never below zero, and each area has a maximum production capacity. The clima-

tology pdf c(y) of the time series y is simply a sample distribution function of these observations,

and is plotted in Figure 4.1 together with the cdf C (y). Like we mentioned in the beginning of

this chapter, the observations that form the climatology are synthetic data. However, the data

is constructed to make the climatology in Figure 4.1 mimic the climatology of our case data in

Chapter 2. All argumentation in this section and the rest of this chapter based on the climatology

from the synthetic data is therefore also valid for our case study. This is important to remember

throughout the rest of this chapter as some of our forecasting models are developed to perform

well when the climatology has the form in Figure 4.1.

If we did not have any other information, the climatology could be used as our probabilistic
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forecast for any new observation from the same process. This is not a very sophisticated forecast

as it does not change with time, but is the same for all future time points. However, we have

access to a deterministic forecast for y, denoted by x = (x1, . . . , xn). This deterministic forecast

can be used to adjust the climatology c(y), and results in a new adapted probabilistic forecast

f (y ; xt ). Note the indexing including t , as we get such an adjusted forecast for each unit of time.

Typically, the new forecast pdf f (y ; xt ) is sharper and shifted towards the deterministic forecast

xt . Section 4.2 explains in detail how this adjustment is done. For now, let us focus on how the

shape and sharpness of f (y ; xt ) is dependent on the predictive performance of x.

We introduce three different deterministic forecasts for y with different predictive perfor-

mance. These three forecasts are denoted by x1 = (x1
1 , . . . , x1

n), x2 = (x2
1 , . . . , x2

n) and x3 = (x3
1 , . . . , x3

n),

and result in the three corresponding probabilistic forecasts f
(
y ; x1

t

)
, f

(
y ; x2

t

)
and f

(
y ; x3

t

)
. A

section of the four data series y, x1, x2 and x3 is plotted in Figure 4.2a. As we can see, x1 repre-

sented by the red line is the most accurate forecast and has a RMSE of 10.1. The second most

accurate forecast is x2 (green) with a RMSE of 40.7, followed by x3 (cyan) with RMSE of 266.6.

RMSE is a way to measure the predictive performance of a deterministic forecast, and is defined

in (3.6).

Figure 4.2b shows the probabilistic forecasts at time t0 = 1244, together with the climatology

from Figure 4.1a. The corresponding deterministic forecasts at t0 are marked in Figure 4.2a. As

we can see, the red curve f
(
y ; x1

t0

)
has the most concentrated density. This is in accordance

with the fact that x1 is the most accurate forecast. f
(
y ; x2

t0

)
is wider because x2 is a slightly less

accurate deterministic forecast compared to x1, as shown in Figure 4.2a. The third probabilistic

forecast f
(
y ; x3

t0

)
is almost identical to the climatology c(y). From Figure 4.2a we see how the

deterministic forecast x3 has no clear correlation with the observations y. In this case, x3 has

next to no information about y, and the best probabilistic forecast is therefore the climatology

itself. This result marks an important property of the probabilistic forecasts. As the determin-

istic forecasts get less accurate, the corresponding probabilistic forecasts converge towards the

climatology.
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Figure 4.2

4.2 CCPR (Climatology Cumulative Probability Regression)

The previous section focused on how the predictive performance of x affects the shape and

sharpness of f (y ; xt ). This is an adjusted probabilistic forecast based on the initial forecast,

which was the climatology c(y) in last section. In this section we introduce the CCPR forecasting

model (Borhaug, 2014), which is one way to perform the adjustment. This model is the basis and

inspiration behind the development of our other forecasting models which all follow the same

methodological concept.

We keep the notation introduced in Section 4.1, but also introduce the notion of a collection

of deterministic forecasts at time t . To repeat, we might have several forecasts x1,x2, . . . of y. The

collection of deterministic forecasts at time t is then denoted as x1,2,...
t = (

x1
t , x2

t , . . .
)
, where the

superscript 1,2, . . . denotes the forecasts included.

Our starting point is the initial forecast C (y), i.e. the climatology, which is a cdf that trans-
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forms observations belonging to an interval [a,b] into the unit interval [0,1]. The climatology

cdf in Figure 4.1b illustrates this, where a = 0 and b = 1200. We want to find a better probabilistic

forecast for yt than the climatology itself. Given the deterministic forecasts x1,2,...
t , our approach

proceeds by transforming C (y) into a new cdf FC
(
y ; x1,2,...

t

)
. The goal is to make FC

(
y ; x1,2,...

t

)
a

sharper forecast of yt compared to C (y), while still calibrated. Note that in Section 4.1, we only

used probabilistic forecasts of the form FC
(
y ; x1

t

) (
or fC

(
y ; x1

t

))
, i.e. only a function of one single

deterministic forecast. This is only a special case of the more general FC
(
y ; x1,2,...

t

)
, which is a

function of several deterministic forecasts.

The transformation from C (y) to FC
(
y ; x1,2,...

t

)
is done using the beta cdf Bα,β(·), i.e. a beta

transform. This particular choice of transformation function is based on the beta transformed

linear pool from Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013). The beta distribu-

tion is defined on the interval [0,1], which suits our purpose well as C (y) has exactly this range.

In Section 3.1, we saw that the beta distribution is appropriate for such a transformation, as it

can take on a large variety of shapes (Figure 3.1). The α and β parameters are not necessarily

modelled as constants over time, but could both be modelled as a function of the determinis-

tic forecasts x1,2,...
t (Borhaug, 2014). This way, the beta distribution is time varying through the

deterministic forecasts. Section 4.5 explains how α and β are modelled.

We can finally link the climatology C (y) with the adjusted FC
(
y ; x1,2,...

t

)
and express the CCPR-

model through the following expression.

FC
(
y ; x1,2,...

t

)= Bx1,2,...
t

(
C (y)

)
, (4.1)

where Bx1,2,...
t

(·) denotes the beta cdf determined by the collection of deterministic forecasts. This

expression is similar to (3.3) if we set k = 1 and let F1(y) =C (y), i.e. the model in (4.1) is a special

case of the beta transformed linear pool (BLP) model from Section 3.3. In the case where k = 1,

the BLP-model can be used to provide calibration and dispersion correction of C (y) (Gneiting

and Ranjan, 2013).

To make the somewhat abstract transformation in (4.1) more clear, we have illustrated the

procedure in the upper two plots of Figure 4.3. We are going to follow the transformation in de-

tail for one point y ′, marked by the dotted lines. The model starts out with the climatology C (y)
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Figure 4.3: Illustration of the transformation procedure through the climatology in (a) and the
beta transform in (b), resulting in the final calibrated probabilistic forecast cdf FC

(
y ; x1,2,...

t

)
in

(c) (and as pdf in (d)).
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plotted in Figure 4.3a. Along the x-axis are all possible outcomes of the forecast. Throughout

the paper, we refer to the possible outcomes as the domain. In relation to our case study, the

domain is represented by the possible values for wind power production. Along the y-axis are

the functional values of the climatology C (y) for the whole domain. We see from Figure 4.3a that

C (y ′) = P (y ′ < 200) ≈ 0.47, i.e. the climatology tells us that any new production value is less than

or equal to 200 with a probability of 0.47. The functional value of C (y) is a probability, which

ranges between 0 and 1.

The beta transformation function Bx1,2,...
t

(
C (y)

)
is plotted in Figure 4.3b. Along the x-axis

are values from the climatology C (y), and along the y-axis are functional values of Bx1,2,...
t

(
C (y)

)
which also range between 0 and 1. The functional value of the beta transformation is in fact also

a probability, which means it transforms one probability into another. Following the point y ′

from before gives Bx1,2,...
t

(
C (y ′)

)= P (C (y ′) < 0.47) ≈ 0.16. This result is visualized with the dotted

line in Figure 4.3b. The beta transformation Bx1,2,...
t

(
C (y)

)
thus tells us that any new climatology

value C (y) is less than or equal to 0.47 with a probability of 0.16.

This transformation of y ′ is performed for all y ∈ [0,1200], and we end up with the new prob-

abilistic CCPR forecast FC
(
y ; x1,2,...

t

)
plotted in red in Figure 4.3c. The dark dotted line in this plot

shows that FC
(
y ′; x1,2,...

t

) = Bx1,2,...
t

(
C (y ′)

) ≈ 0.16. This is a substantial change from the climatol-

ogy which gave C (y ′) ≈ 0.47 (represented by the transparent dotted line). The new probabilistic

CCPR forecast is plotted as a pdf in Figure 4.3d, and compared with the climatology pdf.

The performance of this forecasting model is investigated thoroughly in Chapter 6. However,

we end this section by studying the shape of the climatology and how it affects the probabilistic

forecasts returned by the CCPR-model. This is relevant as the results are a direct cause for the

introduction of another similar forecasting model, namely the UCPR-model in Section 4.3.

Consider the two collections of forecasts x1,2,...
t1

and x1,2,...
t2

(at time t1 and t2). These two col-

lections give the two corresponding beta transformations Bx1,2,...
t1

(·) and Bx1,2,...
t2

(·), plotted in Fig-

ure 4.4. To shorten the notation for this example, let the two beta transformations be denoted

by B1(·) and B2(·) respectively. The two beta transformations in Figure 4.4 have similar shape,

but B2(·) is shifted to the right compared to B1(·). This way, we can compare two similar trans-

formations placed on two different areas of the domain.

Figure 4.5a displays the corresponding CCPR forecast cdfs FC1

(
y ; x1,2,...

t1

)
and FC2

(
y ; x1,2,...

t2

)
.
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(·) and Bx1,2,...
t2

(·) denoted by B1(·) and

B2(·) respectively (to shorten notation).

The corresponding pdfs fC1

(
y ; x1,2,...

t1

)
and fC2

(
y ; x1,2,...

t2

)
are plotted in Figure 4.5b. This reveals an

interesting result. Even though the two beta transformation functions are similar, the resulting

CCPR forecasts are very different in shape. This difference is due to the shape of the climatology.

To explain this difference, we look back at the beta transformations in Figure 4.4. The in-

teresting domain of transformation is where the function value is above zero and below one,

i.e. the domain where we see the slope of the function. Looking at B1(·), this is approximately

when C (y) ∈ (0.2,0.4). Comparing with Figure 4.5a, the slope of C (y) is quite steep when C (y) ∈
(0.2,0.4), which results in a compressed slope for FC1

(
y ; x1,2,...

t1

)
. Moving on to B2(·) in Figure 4.4,

the slope of the function is approximately when C (y) ∈ (0.8,1.0). Comparing this with Fig-

ure 4.5a, the slope of C (y) is quite gentle when C (y) ∈ (0.8,1.0), which results in a stretched

slope for FC2

(
y ; x1,2,...

t2

)
. Comparing with Figure 4.5b, we see how these findings translates to

the forecast pdfs: The forecast is sharp when the climatology has high probability density, and

not so sharp when the climatology has low probability density. As sharp forecasts are desired,

we want to find a way to obtain sharp forecasts on the domain where the climatology has low

density, which in this case is for the upper half of the domain.
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Figure 4.5: Climatology and CCPR forecasts as (a) cdfs and (b) pdfs. The CCPR forecasts are
computed using the two beta transformations in Figure 4.4.

4.3 UCPR (Uniform Cumulative Probability Regression)

Let u(y) be the uniform distribution over the domain of possible observations. This uniform

distribution has the same density over the whole domain, which means it does not have a di-

minishing density for the upper half of the domain like the climatology c(y). The uniform dis-

tribution u(y) is the initial forecast of the UCPR model. Let FU
(
y ; x1,2,...

t

)
be the UCPR forecast

at time t , given the collection of forecasts x1,2,...
t . The UCPR model is then defined as

FU
(
y ; x1,2,...

t

)= Bx1,2,...
t

(
U (y)

)
, (4.2)

where Bx1,2,...
t

(·) denotes the beta cdf determined by the collection of deterministic forecasts. Sub-

stituting the climatology cdf C (y) in (4.1) by the uniform distribution cdf U (y), we end up with

the UCPR model in (4.2). The modelling of the parameters that define Bx1,2,...
t

(·) are set up in

Section 5.3. Like the CCPR-model in (4.1), the UCPR-model in (4.2) is a special case of the beta

transformed linear pool in (3.3) where k = 1 and F1(y) =U (y).

Like we did with the CCPR-model in Section 4.2, we want to study the shape of the uni-

form distribution U (y) and how it affects the probabilistic forecasts returned by the UCPR-
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Figure 4.6: Uniform distribution and UCPR forecasts as (a) cdfs and (b) pdfs. The UCPR forecasts
are computed using the two beta transformations in Figure 4.4.

model. We still use the two beta transformations B1(·) and B2(·) from Figure 4.4, which give

the UCPR forecasts FU1

(
y ; x1,2,...

t1

)
and FU2

(
y ; x1,2,...

t2

)
plotted in Figure 4.6a. The corresponding

pdfs fU1

(
y ; x1,2,...

t1

)
and fU2

(
y ; x1,2,...

t2

)
are plotted in Figure 4.6b. The result is quite different from

the corresponding CCPR forecasts in Figure 4.5. Because the uniform cdf U (y) has a constant

slope over the whole domain, the two UCPR forecasts FU1

(
y ; x1,2,...

t1

)
and FU2

(
y ; x1,2,...

t2

)
attain

the same shape and slope as the beta transformation itself (Figure 4.4). This translates into the

two very similar pdfs in Figure 4.6b, which leads us to the conclusion that UCPR forecasts have

similar sharpness and shape on the whole domain for similar beta transformations. Comparing

the CCPR and UCPR forecasts in Figures 4.5 and 4.6 respectively, we note that UCPR obtains a

sharper forecast for the upper domain, and CCPR obtains a sharper forecast for the lower do-

main.
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4.4 CPR-LP (Cumulative Probability Regression with Linear

Pooling)

The CPR-LP-model is designed to keep the benefits of the two previous models, while elimi-

nating the disadvantages. Section 4.2 showed how the CCPR was capable of delivering a sharp

forecast in the lower area of the domain. Likewise, Section 4.3 showed how the UCPR was ca-

pable of delivering a reasonably sharp forecast in the upper area of the domain. These are the

properties we want to combine in the CPR-LP model.

To aggregate the two forecasts into a single combined forecast we simply use the beta trans-

formed linear pool (Gneiting and Ranjan, 2013) from (3.3). The pool consists of both previous

initial forecasts, the climatology C (y) and the uniform distribution U (y). Let FLP
(
y ; x1,2,...

t

)
be

the CPR-LP forecast at time t , given the collection of forecasts x1,2,...
t . The model is then defined

as

FLP
(
y ; x1,2,...

t

)= Bx1,2,...
t

(
wC (y)+ (1−w)U (y)

)
, w ∈ [0,1], (4.3)

where Bx1,2,...
t

(·) denotes the beta cdf and w is the weight parameter. Both Bx1,2,...
t

(·) and w are

modelled as a function of the collection of deterministic forecasts. The details behind the mod-

elling of w and the parameters of Bx1,2,...
t

(·) can be found in Section 5.4.

Figure 4.7 illustrates how different values for the weight parameter w affects the CPR-LP

forecast. Like the previous plots in Figure 4.5 and 4.6, the red forecasts are computed using B1(·)
and the blue forecasts are computed using B2(·) (both plotted in Figure 4.4). The red and blue

bars to the right indicate the weight parameter used for each plot. We see that the two CPR-LP

forecasts are identical to the two CCPR forecasts (Figure 4.5) for w = 1, and identical to the two

UCPR forecasts (Figure 4.6) for w = 0. Because w is modelled as a function of the deterministic

forecasts, the CPR-LP model is able to weigh the climatology C (y) when forecasting on the lower

part of the domain, and weigh the uniform distribution U (y) when forecasting on the upper

part of the domain. As a result, the model is able to get the sharpest forecasts in both ends of the

domain.
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Figure 4.7: CPR-LP forecasts as (a) cdfs and (b) pdfs. The forecasts are computed using the two
beta transformations in Figure 4.4.

4.5 Modelling the Beta Parameters µ, ν and the Weight

Parameter w

The beta cdf Bx1,2,...
t

(·) used in the transformation procedure of the forecasting models in this

chapter, is parameterized with mean µ and and precision parameter ν (Section 3.1). This allows

us to to model the mean and the precision of the distribution separately (Ferrari and Cribari-

Neto, 2004). To make sure µ ∈ (0,1), we model it through the logit function (3.1) (Borhaug, 2014),

restated here as

logit(µt ) = log
( µt

1−µt

)
= ηt , (4.4)

where ηt can be written as

ηt = q
(
x1,2,...

t

)
,

where q(·) is a function of the deterministic forecasts x1,2,...
t at time point t .

The precision parameter ν is also modelled as a function of the deterministic forecasts.

νt = r
(
x1,2,...

t

)
.

Because ν> 0, we need r
(
x1,2,...

t

)> 0, ∀ x1,2,...
t .
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Finally, the weight parameter w is modelled similarly to µ because w ∈ [0,1], i.e.

logit(wt ) = log
( wt

1−wt

)
= vt , (4.5)

where vt can be written as

vt = s
(
x1,2,...

t

)
,

where also s(·) is a function of the deterministic forecasts x1,2,...
t at time point t . Chapter 5

presents the choices of q(·), r (·) and s(·) for each model in our case study.



Chapter 5

Case Study: Models and Evaluation Scheme

In this chapter we start by establishing some useful notation in Section 5.1. Our case study

applies the three models CCPR, UCPR and CPR-LP introduced in Chapter 4, to the data from

Chapter 2. Sections 5.2, 5.3 and 5.4 specify how the functions from Section 4.5 are defined for

each of these three models respectively. These functions tell how to model the parameters be-

longing to each model. In adition, we have included a brief explanation of the ARn-SFR-model

from Malmgård (2016) in Section 5.5. This model is used as a reference for model performance

in Chapter 6. Section 5.6 presents visual interpretations of the model coefficients found in the

CCPR, UCPR and CPR-LP models. Section 5.7 describes how the models are fitted and tested.

5.1 Notation: EC- and Persistence Forecast and Hourly Changes

As concluded in Section 2.2, the EC-forecast and the temporal dependency between actuals are

the important sources of information for our forecasting models. The temporal dependency is

critical to introduce a so-called persistence forecast. A persistence forecast relies upon previous

observations to forecast the future.

Let Yt denote future actual production at time t . The persistence forecast of Yt is simply the

last available observation denoted as xP
t ,l , where t denotes the forecast valid time, and l is the

lead time. In other words, the persistence forecast xP
t ,l is the observation yt−l . The EC-forecast

of Yt is denoted as xEC
t . As we only have one EC-forecast per observation, we do not label it

with lead time. Revisit Section 2.1 to see how the EC-forecast is generated. We denote a vector

36
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including both forecasts by xEC ,P
t ,l = (

xEC
t , xP

t ,l

)
. In this chapter and Chapter 6, we refer to both

the EC-forecast and the persistence forecast collectively as the deterministic forecasts.

As we saw in Figure 2.5b, the variance in actual wind power production changes during the

day. This is an effect of the different wind conditions during a 24-hour cycle. Typically, the

weather is more stable at night with lower wind speeds. Because of this daily cycle, it is natural

to fit one climatology for each hour h of the day. We denote these Ch(y), where h = 0, . . . ,23.

5.2 Model 1: CCPR

As we fit one climatology distribution Ch(y) for each hour h of the day, we define the CCPR

model expression (4.1) as

FC
(
y ;h,xEC ,P

t ,l

)= BxEC ,P
t ,l

(
Ch(y)

)
, (5.1)

to explicitly indicate that the CCPR forecast does not only vary with the forecast y , but also with

the hour h of the day. The beta cdf BxEC ,P
t ,l

(·) in (5.1) is parameterized by µ and ν, where the mean

µ is related to the linear predictor η through the logit function in (4.4). The predictor η is mod-

elled as a linear function of the EC-forecast and the persistence forecast, and the coefficients

vary with lead time l and hour h of the day:

ηt ,l = q
(
xEC ,P

t ,l

)= γ0
h,l +γEC

h,l Ch
(
xEC

t

)+γP
h,lCh

(
xP

t ,l

)
, (5.2)

where t denotes the forecast valid time. By inserting (5.2) into (4.4), we have the complete model

for µt ,l .

The linear predictor q(·) is a function of both the EC-forecast and the persistence forecast.

This is desirable as the two deterministic forecasts switch between being the most accurate fore-

cast for increasing lead time. Figure 2.4a shows how the temporal dependency between actuals

decrease with increasing lead time, making the persistence forecast less desirable for higher lead

times. Section 6.1.1 thoroughly investigates this.

Instead of using
(
xEC

t , xP
t ,l

)
as covariates, we use

(
Ch(xEC

t ),Ch(xP
t ,l )

)
(Borhaug, 2014). This

way, ηt ,l is affected by changes in
(
Ch(xEC

t ),Ch(xP
t ,l )

)
, and not necessarily by changes in

(
xEC

t , xP
t ,l

)
.

Consider for example the cumulative climatology in Figure 4.1b, and let η1 = q
(
xEC ,P

1

)
and η2 =
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q
(
xEC ,P

2

)
, where xEC ,P

1 = (800,800) and xEC ,P
2 = (1000,1000). Ifηt ,l is defined with

(
Ch(xEC

t ),Ch(xP
t ,l )

)
as covariates, η1 and η2 are almost identical, as the climatology is almost constant from 800 to

1000. However, if ηt ,l is defined with
(
xEC

t , xP
t ,l

)
as covariates, η1 and η2 are more different from

each other. This is assuming γEC
h,l and γP

h,l are significantly different from zero.

The precision parameter ν has a somewhat more complicated model defined by

νt ,l = r
(
xEC ,P

t ,l

)= exp
(
a0

h,l

)+exp
(
aEC

h,l

)[
Ch

(
xEC

t

)(
1−Ch

(
xEC

t

))]
+exp

(
aP

h,l

)[
Ch

(
xP

t ,l

)(
1−Ch

(
xP

t ,l

))]+exp
(
aD

h,l

)[
1− ∣∣Ch

(
xEC

t

)−Ch
(
xP

t ,l

)∣∣], (5.3)

where the coefficients vary with lead time l and hour h of the day, and t denotes the forecast

valid lead time. The second and third term in (5.3) are only functions of the EC-forecast or

the persistence forecast respectively. They model the precision as a symmetric function of the

forecasts, with a centred maximum. A more thorough interpretation of these two terms and (5.3)

as a whole is done in Appendix B. The fourth term models the precision as an increasing function

with increasing absolute difference between the two deterministic forecasts. The intercept is not

a function of the deterministic forecasts and is important in the cases where all the other terms

are close to zero. For example, when both the EC- and persistence forecast are close to zero and

identical.

5.3 Model 2: UCPR

With respect to modelling, the UCPR model is very similar to the CCPR model. The only differ-

ence between the two is the initial forecast, where the climatology Ch(y) in CCPR is substituted

with the uniform distribution Uh(y) for the UCPR.

Because we fit the uniform distribution Uh(y) for each hour h of the day, the UCPR model

expression (4.2) is denoted as

FU
(
y ;h,xEC ,P

t ,l

)= BxEC ,P
t ,l

(
Uh(y)

)
, (5.4)

to explicitly indicate that the UCPR forecast varies with the hour of the day. The linear predictor
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η is modelled as

ηt ,l = q
(
xEC ,P

t ,l

)= γ0
h,l +γEC

h,l Uh
(
xEC

t

)+γP
h,lUh

(
xP

t ,l

)
. (5.5)

The difference between (5.5) and (5.2) is that the climatology Ch(y) in (5.2) is substituted with

the uniform distribution Uh(y) in (5.5). In contrast with the CCPR model, there is now no sub-

stantial difference between using
(
xEC

t , xP
t ,l

)
or

(
Uh(xEC

t ),Uh(xP
t ,l )

)
as covariates. Because Uh(y)

is a linear function, it only scales any deterministic forecast onto the interval [0,1]. However, we

would like the coefficients of (5.2) and (5.5) to be of similar magnitude, and therefore choose(
Uh(xEC

t ),Uh(xP
t ,l )

)
as covariates in (5.5).

The precision parameter ν is modelled by

νt ,l = r
(
xEC ,P

t ,l

)= exp
(
a0

h,l

)+exp
(
aEC

h,l

)[
Uh

(
xEC

t

)(
1−Uh

(
xEC

t

))]
+exp

(
aP

h,l

)[
Uh

(
xP

t ,l

)(
1−Uh

(
xP

t ,l

))]+exp
(
aD

h,l

)[
1− ∣∣Uh

(
xEC

t

)−Uh
(
xP

t ,l

)∣∣]. (5.6)

This model is similar to the dispersion parameter model for CCPR in (5.3). The difference is that

the climatology Ch(y) in (5.3) is substituted with the uniform distribution Uh(y) in (5.6).

5.4 Model 3: CPR-LP

Also for CPR-LP, we fit the climatology Ch(y) and the uniform distribution Uh(y) for each hour

h of the day. Therefore, the CPR-LP model from (4.3) is denoted as

FLP
(
y ;h,xEC ,P

t ,l

)= BxEC ,P
t ,l

(
wCh(y)+ (1−w)Uh(y)

)
, w ∈ [0,1]. (5.7)

The linear predictor η is modelled similarly to the CCPR model, i.e.

ηt ,l = q
(
xEC ,P

t ,l

)= γ0
h,l +γEC

h,l Ch
(
xEC

t

)+γP
h,lCh

(
xP

t ,l

)
. (5.8)
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The precision parameter ν is modelled similarly to the UCPR model, i.e.

νt ,l = r
(
xEC ,P

t ,l

)= exp
(
a0

h,l

)+exp
(
aEC

h,l

)[
Uh

(
xEC

t

)(
1−Uh

(
xEC

t

))]
+exp

(
aP

h,l

)[
Uh

(
xP

t ,l

)(
1−Uh

(
xP

t ,l

))]+exp
(
aD

h,l

)[
1− ∣∣Uh

(
xEC

t

)−Uh
(
xP

t ,l

)∣∣]. (5.9)

The weight parameter w is related to the linear predictor v through the logit function in (4.5).

The predictor v is modelled similarly to η in (5.2). Only the coefficients are different, i.e.

vt ,l = s
(
xEC ,P

t ,l

)=ω0
h,l +ωEC

h,l Ch
(
xEC

t

)+ωP
h,lCh

(
xP

t ,l

)
. (5.10)

We end this section by commenting the use of either the climatology Ch(y) or the uniform

distribution Uh(y) in the modelling of the CPR-LP parameters. The CCPR model uses the same

initial forecast, the climatology, in both the beta transformation, and to model the beta parame-

ters. The same goes for UCPR, but with the uniform distribution as initial forecast instead of the

climatology. Interchanging the initial forecasts has been tried, but the CCPR and UCPR mod-

els perform better when we use the same initial forecast to model the parameters as the one

used in the beta transformation. However, the CPR-LP model performs a beta transformation

of (a weighted sum of) both the climatology and the uniform distribution. Therefore, it is not

clear whether or not we should use the climatology or the uniform distribution to model the

parameters. With three parameters to model and two initial forecast to choose between, there

are several combinations. However, after testing the performance of the CPR-LP model with all

possible combinations, the combination presented in this section (with Ch(y) in (5.8) and (5.10),

and Uh(y) in (5.9)) proved to give the best results.

5.5 Model 4: ARn-SFR

Like we mentioned in Chapter 1, the forecasting methodology we propose is in response to the

results of Malmgård (2016). The ARn-SFR forecasting model was the best performing model

tested by Malmgård (2016), and is used as a reference model with respect to forecasting per-

formance in Chapter 6. In this section we restate the description of the ARn-SFR-model from

Malmgård (2016). The notation is changed to follow the notation introduced in Section 5.1.
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Let y be the vector of all actual production values. These actuals are assumed to be a realiza-

tion of a random variable Y whose components are independent normal variables with means

µ, and constant variance.

The ARn-SFR-model is defined by modelling µt through the following linear relationship.

µt =β0
h,l +βEC

h,l xEC
t +βP

h,l yt−l ,

where xEC
t is the EC-forecast at valid time t , and yt−l is the last observed actual with lead time l .

The coefficients β0
h,l , βEC

h,l and βP
h,l are unique for each hour h of the day and lead time l .

5.6 Toy Models: Interpretation of Model Coefficients Using

Synthetic Data

In this Section, we are going to take a closer look at the coefficients in the CCPR, UCPR and CPR-

LP models. We let both the EC-forecast and the persistence forecast be random synthetic data,

without any temporal dependency, i.e. independent and identically distributed random vari-

ables from a uniform distribution. We then fit the models using these deterministic forecasts,

and plot the coefficients for the various bidding areas and lead times. The purpose is to give

more meaning to the somewhat abstract model definitions in this chapter. A similar interpreta-

tion of the ARn-SFR model coefficients can be found in Malmgård (2016).

5.6.1 CCPR coefficients: Synthetic Forecasts

Figure 5.1 displays the fitted model coefficients. We explained in Section 4.1 that the model

will converge towards the climatology when the deterministic forecasts have no information

about the observations. The CCPR model returns the climatology when the beta transformation

function in (5.1) corresponds to the uniform cdf, i.e. when the mean parameter µ= 0.5 and the

precision parameter ν = 2 (Section 3.1). Remember that µ is related to the linear predictor η

through the logit function in (4.4), such that µ= 0.5 when η= 0.

The coefficients γ0, γEC and γP in Figure 5.1 belong to the modelling of η in (5.2). We here-

after refer to these coefficients as the mean coefficients. They are all centred around zero for all
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Figure 5.1: The coefficients of the CCPR model for all bidding areas when both the EC-forecast
and the persistence forecast are synthetic random time series. Lead times in hours are on the
x-axis.

lead times and areas, which give η = 0, i.e. µ = 0.5. Consider now the coefficients a0, aEC , ap

and aD used to model the precision parameter ν in (5.3). We hereafter refer to these coefficients

as the precision coefficients. aEC , ap and aD are all close to -10. We work with the exponential

of these coefficients in (5.3) and the exponential of a negative number of this magnitude is ap-

proximately equal to zero, which means we are only left with exp(a0) in (5.3). The coefficient a0

is approximately equal to 0.7 for all lead times and areas, such that ν≈ exp(a0) ≈ 2.

These values for µ and νmake the beta transformation a uniform cdf, and the CCPR forecast

in (5.1) is thus the climatology itself as expected. Figure 5.2 illustrates this result for the forecast

cdf in the upper row, and for the forecast pdf in the lower row. The first column displays the cli-

matology. The second column displays the beta transformation which is a uniform distribution.

The third column displays the CCPR forecast which is similar to the climatology itself because

of the uniform beta transformation.
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Figure 5.2: Illustration of how the CCPR is similar to the climatology itself when the model coef-
ficients are estimated as in Figure 5.1.

5.6.2 UCPR coefficients: Synthetic Forecasts

Figure 5.3 displays the fitted model coefficients. If we compare Figure 5.3 with Figure 5.1, the

precision coefficients a0, aEC , aP and aD from (5.3) and (5.6) are almost identical. As a result,

the precision parameter ν= 2, just like it was for CCPR in Section 5.6.1. Moving over to the mean

coefficients γ0, γEC and γP from (5.5) however, there is a change compared to CCPR. All coeffi-

cients are no longer zero. The coefficient γ0 ranges between -1 and -0.5, varying with bidding

area. This results in a mean parameter µ ranging between 0.26 and 0.38. Figure 5.4 illustrates

how these coefficient values affect the UCPR forecast, as cdf in the upper row, and as pdf in the

lower row. The plots show the results for the bidding area RWE in Germany, i.e. when γ0 =−1.

Section 4.1 and Figure 4.2b explained that our forecasting methodology will converge to-

wards the climatology if there is no information about the observations in the deterministic

forecasts. The CCPR model in (5.1) is a beta transformation of the climatology. For this model

to return the climatology, the beta transformation has to be a uniform distribution function,

which will return the climatology itself like we saw in Figure 5.2. The UCPR in (5.4) on the other

hand, is a beta transformation of a uniform distribution. To make the UCPR forecast similar to

the climatology, the beta transformation itself has to mimic the shape of the climatology. This is



44 CHAPTER 5. CASE STUDY: MODELS AND EVALUATION SCHEME

2 4 6 8 10

−
4

0
2

4
a0

Lag

2 4 6 8 10

−
20

−
10

0

aEC

Lag

aE
C

2 4 6 8 10

−
20

−
10

0

aP

Lag

aP

2 4 6 8 10

−
20

−
10

0

aD

Lag

aD

2 4 6 8 10

−
2

−
1

0
1

2

γ0

Lag

2 4 6 8 10

−
2

−
1

0
1

2

γEC

Lag

γE
C

2 4 6 8 10

−
2

−
1

0
1

2

γP

Lag

γP

UCPR−coefficients

at be enb eon rwe vat dk1 dk2 fr nl

Figure 5.3: The coefficients of the UCPR model for all bidding areas when both the EC-forecast
and the persistence forecast are synthetic random time series. Lead times in hours are on the
x-axis.
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Figure 5.4: Illustration of how the UCPR is similar to the climatology itself when the model co-
efficients are estimated as in Figure 5.3.

exactly what the beta transformation function in Figure 5.4 does.
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Figure 5.5: The coefficients of the CPR-LP model for all bidding areas when both the EC-forecast
and the persistence forecast are synthetic random time series. Lead times in hours are on the
x-axis.

5.6.3 CPR-LP coefficients: Synthetic Forecasts

The coefficients for the CPR-LP model are plotted in Figure 5.5. There are some clear similarities

with the two other models. The precision coefficients a0, aEC , aP and aD found in the modelling

of the precision parameter ν in (5.9), are just the same as they were for CCPR and UCPR. The

result is that ν= 2 for all lead times and bidding areas.

The mean coefficients γ0, γEC and γP in the modelling of the mean parameter µ in (5.8), are

all close to zero for all areas and lead times. This is similar to CCPR in Figure 5.1, which makes

the mean parameter µ = 0.5. These values for ν and µ make the beta transformation in (5.7)

correspond to a uniform cdf, as it did in Section 5.6.1 for the CCPR model.

We move over to the coefficientsω0,ωEC andωP , which are used in (5.10) to model the linear
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Figure 5.6: Illustration of how the CPR-LP is similar to the climatology itself when the model
coefficients are estimated as in Figure 5.5.

predictor v . We hereafter refer to these coefficients as the weight coefficients. The predictor v

is related to the weight parameter w through the logit function in (4.5), which maps the real

number v onto the unit interval [0,1]. The weight parameter w is found in the CPR-LP model

definition (5.7), and is used to weigh between the climatology C (y) and the uniform distribution

U (y) inside the beta transformation. If w = 1, the CPR-LP model is a beta transformation of

only the climatology C (y), and the model corresponds to the CCPR model in (5.1). If w = 0, the

CPR-LP model is a beta transformation of only the uniform distribution U (y), and the model

corresponds to the UCPR model in (5.4).

The weight coefficientsωEC andωP in Figure 5.5 are both equal to zero for all lead times and

areas. Both the EC-forecast and the persistence forecast are therefore not giving any information

to the model, as expected when these forecasts are random as in this example. We are left with

the intercept ω0 which ranges between approximately 0 and 5, varying with the bidding area.

The weight parameter w is then ranging between 0.5 and 1, which means that the CPR-LP model

is mostly similar or equal to the CCPR model. In particular, the model is an even mix between

UCPR and CCPR when w = 0.5, and equal to CCPR when w = 1.

Figure 5.6 illustrates how these coefficient values affect the CPR-LP forecast, as cdf in the

upper row, and as pdf in the lower row. The plots show the results for the bidding area RWE
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in Germany, where ω0 is close to 5 for all lead times. This gives w ≈ 1, such that the CPR-LP

corresponds to a CCPR model. As CCPR in Figure 5.2, the CPR-LP forecast is almost identical to

the climatology itself.

5.7 Inference, Evaluation and Implementation

To fit and test our forecasting models the software R is used (R Core Team, 2016). R is a free

software environment for statistical computing and graphics. Below follows a pseudo code for

how the models were tested using the evaluation methods in Section 3.4.

for each bidding area do

for each lead time l do

for each hour h do

k-fold cross validation to;
1. fit model;
2. derive probabilistic forecasts;
3. compute CRPS and PIT-value;

end

end

end
Algorithm 1: Algorithm for testing the forecasting model using the evaluation methods in Sec-

tion 3.4. The data is divided into k = 10 subsequent folds.

The k-fold cross validation is done as described in Section 3.4.4, where the models are fitted to

each of the k training sets. Even though all four models in this chapter follow the scheme in

Algorithm 1, the coefficient estimation in the ARn-SFR model is executed differently from the

other three models. It simply uses the lm-function in R to carry out the linear regression, which

returns maximum likelihood estimates of the model coefficients. The estimation procedure for

the other three models is self implemented, where all coefficient estimates are maximum likeli-

hood estimates with respect to the log-likelihood function in (3.5). The maximisation procedure

is done using the optim-function in R. The log-lokelihood function is multimodal, i.e. a function

with many local maxima. To find the global maxima, we first run optim using a small test set of
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our data, and put wide search intervals for each coefficient. The coefficient estimates from this

optimisation are then used as initial coefficients in the final model fitting.

Let Ft (·) be any of our probabilistic forecasts at valid time t , and yt the actual production

value at valid time t . The PIT-values are then computed as Ft (yt ) for all t , which gives the PIT-

diagrams when plotted as a histogram. The CRPS is computed as defined in (3.7), and approxi-

mated with a Riemann sum.



Chapter 6

Results

In this chapter we present the results when testing the models from Chapter 5 on our case data

from Chapter 2. Section 6.1 presents an analysis of the estimated coefficients in the three models

CCPR, UCPR and CPR-LP. The ARn-SFR model is excluded from this section, but a correspond-

ing analysis of its coefficients can be found in Malmgård (2016). Section 6.2 presents forecast

performance of the models, first by investigating the shape of the probabilistic forecasts, and

then with respect to sharpness and calibration.

6.1 Model Coefficients

6.1.1 CCPR coefficients: Actual Forecasts

The fitted coefficient estimates for the CCPR model are plotted in Figure 6.1. We start with the

mean coefficients γ0, γEC and γP from (5.2). First of all we notice the relationship between

γEC and γP . As γEC increases, γP decreases accordingly. Based on the decreasing temporal

dependency between actuals in Figure 2.4a, γP is expected to decrease for increasing lead time.

For the shortest lead times, the temporal dependency between actuals is strong enough to make

the persistence forecast a better forecast compared to the EC-forecast. However, the EC-forecast

quickly becomes the most accurate forecast as the lead time increases, i.e. the corresponding

coefficient γEC increases.

Bidding areas with high values for γEC tend to have low values for γP . This reflects the re-
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Figure 6.1: The coefficients of the CCPR model for all bidding areas with the EC-forecast and the
persistence forecast as defined in Section 5.1. Lead times in hours are on the x-axis.

lation between the predictive performance of the EC-forecast and the persistence forecast. The

Netherlands for example, has very low values for γEC and accordingly high values for γP . The

relative predictive performance of the EC-forecast compared to the persistence forecast is there-

fore worse for the Netherlands compared to the other bidding areas. This is in agreement with

what we observe in Figure 2.3, where the Netherlands has the poorest correlation between ac-

tuals and EC-forecasts.

The remaining coefficients in Figure 6.1, a0, aEC , aP and aD , are the precision coefficients,

used to model the precision parameter ν in (5.3). The modelling of ν multiplies each term with

the exponential of the precision coefficients. Therefore, a small change in a precision coefficient

might result in a large change in ν. The precision coefficients aEC and aP in Figure 6.1 are quite

similar. These coefficients are related to the term in (B.2), which is plotted in Figure B.2. Because

both aEC and aP are of substantial magnitude, both the EC-forecast and the persistence forecast

are important to this part of the precision parameter model. However, aP decreases for the first

few lead times, which suggests that the persistence forecast is most important for shorter lead

times. This is similar to what we have already seen for γP , which is also related to the persistence
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forecast.

The two coefficients a0 and aD are of smaller magnitude compared to aEC and aP . a0 is the

intercept of the precision model in (5.3), and the term related to aD models the precision as a

function of the absolute difference between the EC-forecast and the persistence forecast. Be-

cause aD is non-negative, but centred around zero, the absolute difference between the two

deterministic forecasts is somewhat important in the modelling of the precision parameter.

However, it is far from the magnitude of aEC and aP , especially when we take into account the

exponential of these coefficients, which is used in the precision modelling (5.3).

As a final comment to the coefficients of the CCPR model in Figure 6.1, we want to point out

Austria’s values for the precision coefficients. All precision coefficients, except for aD , are small

for Austria compared to the other bidding areas. We know from Section 2.2 and Figures 2.3

and 2.4a that Austria is a difficult area to forecast. This fact is reflected through the small preci-

sion coefficients of Austria, which lead to small precision, i.e. large variance.

6.1.2 UCPR coefficients: Actual Forecasts

The fitted coefficient estimates are plotted in Figure 6.2. We start with the mean coefficients γ0,

γEC and γP from (5.5). As for the CCPR model in Figure 6.1, γEC increases while γP decreases

for increasing lead time. With the exception of EON in Germany, the relation between the two

coefficients for each bidding area is still the same. That is, areas with high values for γEC tend to

have small values for γP .

The precision coefficients (from Equation (5.6)) of UCPR in Figure 6.2 are very similar to the

precision coefficients of the CCPR model in Figure 6.1. Austria still has lower values for a0, aEC

and aP compared to the other bidding areas, and we still observe the decrease in aP for the first

shorter lead times.

6.1.3 CPR-LP coefficients: Actual Forecasts

Figure 6.3 displays the fitted CPR-LP coefficient estimates. We start with the mean coefficients

γ0, γEC and γP , which are used in the modelling of the mean parameter µ through the linear

predictor η in (5.8). These coefficients are very similar to what we saw for both CCPR and UCPR
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Figure 6.2: The coefficients of the UCPR model for all bidding areas with the EC-forecast and the
persistence forecast as defined in Section 5.1. Lead times in hours are on the x-axis.

in Figures 6.1 and 6.2 respectively. The coefficient γEC is increasing while γP is decreasing for

increasing lead time. In addition, areas with high values for γEC tend to have low values for γP .

We refer to Section 6.1.1 for a detailed evaluation of these observations, as it also applies to this

model.

We continue with the precision coefficients a0, aEC , aP and aD from (5.9), used to model the

precision parameter. These coefficients are different from what we saw for CCPR and UCPR in

Figures 6.1 and 6.2, respectively. The coefficient aEC is below -8 at all lead times for all areas,

which is much lower than it was for CCPR and UCPR. The term belonging to this coefficient in

Equation (5.9) is therefore neglected in the modelling of the precision parameter (because we

use the exponential of the coefficient in the model). The other 3 precision coefficients a0, aP

and aD are therefore increased compared to CCPR and UCPR, to maintain the level of precision.

In particular, aD has increased compared CCPR and UCPR. This suggests that low absolute dif-

ference between EC-forecast and persistence forecast is more important for the CPR-LP forecast

precision. In addition, aP decreases as lead times increase, which suggests that the persistence

forecast is most important for shorter lead times.
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Figure 6.3: The coefficients of the CPR-LP model for all bidding areas with the EC-forecast and
the persistence forecast as defined in Section 5.1. Lead times in hours are on the x-axis.

We move over to the weight coefficients ω0, ωEC and ωP which are used in (5.10) to model

the linear predictor v . This predictor is related to the weight parameter w through the logit

function in (4.5). The intercept ω0 is always positive, but with various magnitudes depending

on the bidding area, centred around 50. This implies that the weight parameter is close to 1

when both the EC-forecast and the persistence forecast are zero, and makes the CPR-LP model

in (5.7) correspond to a CCPR model.

The weight coefficients ωEC and ωP on the other hand, are negative, and makes the weight

parameter w decrease for increasing lead time. When the weight parameter decreases and ap-

proaches zero, the CPR-LP model in (5.7) becomes more similar to the UCPR model. ωP is more

negative than ωEC for the shortest lead times, which suggests that the persistence forecast is

more important compared to the EC-forecast when it comes to lowering the weight parame-
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ter for the shortest lead times. This is in accordance with all other coefficients related to the

persistence forecast, which all suggest that this forecast is less accurate for longer lead times.

To summarize, the patterns in the estimated weight coefficients behave as expected. Be-

cause ω0 is positive, and ωEC and ωP are negative, the weight parameter w starts at 1, and de-

creases towards zero for increasing EC-forecast and persistence forecast. Hence, the CPR-LP

model in (5.7) starts like a CCPR model for low forecasts, and becomes more like a UCPR model

for higher forecasts. This form is exactly what we intended when we constructed the model in

Section 4.4.

6.2 Model Evaluation

The forecasting methodology we introduce in this thesis, is a response to weaknesses of the fore-

casting methods presented by Malmgård (2016). The best performing forecasting model from

Malmgård (2016) was the ARn-SFR-model, which is described in Section 5.5. The results for

this model are included in this section, and the model is now considered as a reference forecast

for the other three models. When testing the forecasting models, we see similar results for all

bidding areas. Therefore, most of the results are only described for one area, RWE in Germany.

6.2.1 Probabilistic Forecasts

Deterministic forecasts near zero will typically lead to probabilistic forecasts also centred near

zero. This property is shared by all of the four forecasting models. However, the shape of the four

different probabilistic forecasts might differ. One model might have the sharpest forecast for

deterministic forecasts near zero, while still having the most dispersive forecast for deterministic

forecasts near the maximum production capacity.

Figure 6.4 displays all four probabilistic forecasts together with the corresponding determin-

istic forecasts and actual value, for three different forecast valid times(one per column) and four

different lead times (one per row). The valid times are referred to by their date, and are picked

deliberately to plot three forecasts covering three different areas over the domain. Even though

we only see forecasts at three individual valid times, they represent the general differences be-

tween each model well.
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Figure 6.4: Probabilistic forecasts from all four models for RWE in Germany at three different
forecast valid times and four different lead times: Lead time 1 (a), lead time 2 (b), lead time 5
(c) and lead time 10 (d). In addition to the probabilistic forecasts, each plot includes the corre-
sponding deterministic forecasts and actual value. Density on the y-axis and MW on the x-axis.



56 CHAPTER 6. RESULTS

The probabilistic forecasts from CCPR and CPR-LP on October 27th are quite similar. This

is expected, as the CPR-LP is weighed towards the CCPR for small deterministic forecasts. Both

are also sharper compared to the other two forecasts at this valid time, because they are based

on the climatology C (y), and not the uniform distribution U (y) like the UCPR is. Moving on to

November 13th, the CCPR and CPR-LP forecasts have decreased sharpness and are quite similar

to the other two models. The exception is at lead time 1, where ARn-SFR is the sharpest forecast

for both November 13th and November 14th. The CCPR and CPR-LP forecasts, on the other

hand, are rather dispersive on November 14th for all lead times. The sharpness of the UCPR

forecast is comparable to ARn-SFR at this valid time.

With increasing lead time we see a clear tendency of more dispersive forecasts, for all models

and valid times. The change is most prominent for the shortest lead times. Compared to the

transition from lead time 1 to lead time 2, the transition from lead time 5 to lead time 10 sees

almost no notable changes to the shape of the forecasts. Increasing the lead time also makes the

CPR-LP forecast more similar to the CCPR forecasts, even for larger deterministic forecasts. The

CPR-LP model is designed to weigh the UCPR forecast for large deterministic forecasts, but this

is seemingly most desirable for short lead times.

Before ending this section, we want to take a closer look at the ARn-SFR forecast on October

27th for all lead times. We mentioned in Chapter 1 how the ARn-SFR forecasts are not always

physically valid, i.e. below zero production or above maximum production. This problem is

visualized in Figure 6.4 where the ARn-SFR forecast has some of its density below zero.

6.2.2 Sharpness

The CRPS for all four models is plotted in Figure 6.5. The corresponding plots for the other nine

bidding areas are found in Appendix C, Figure C.1. Of the four models, the CCPR forecast has

the highest CRPS values for all lead times, followed by the UCPR forecast. The best performing

model with respect to CRPS is the ARn-SFR model, where the CPR-LP is the second best, only

slightly worse.

We know from Chapter 4 that a model might perform well when forecasting low values, and

worse for high values, or vice versa. We want to investigate how this is reflected through the

CRPS. Figure 6.6 is similar to Figure 6.5, only now we have divided the data into three groups,
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Figure 6.5: CRPS for the bidding area RWE in Germany.

with respect to the deterministic EC-forecasts. The first plot includes the lowest 60% of all EC-

forecasts, and is called group low. The third plot includes the highest 10% of all EC-forecasts, and

is called group high. The remaining 30% of the data is plotted in the middle, and is called group

intermediate. Note that the lower 60% of the EC-forecasts in group low only spans between

0 MW and 1290 MW, where the upper 10% of the EC-forecasts in group high spans between

3289 MW and 6459 MW, i.e. a much wider domain. This clearly shows we are forecasting low

production values most of the time.

We know from Section 4.3 that the UCPR model struggles to attain sharp probabilistic fore-

casts for small deterministic forecasts. This is why the CRPS of the UCPR is much larger com-

pared to the other forecasts in group low. The CCPR, CPR-LP and ARn-SFR forecasts have very

similar performance in group low. The CRPS has increased for all models in group intermedi-

ate. The UCPR is no longer an outlier, but is more similar in performance with the other mod-

els. Figures C.4, C.5 and C.6 show that when we consider all bidding areas at the same time,

the ARn-SFR is the overall best performing forecast with respect to CRPS in group intermediate.

The order of the remaining three forecasts varies with lead time and between areas. Group high

clearly illustrates the weakness of the CCPR model, as it attains much higher CRPS values than
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Figure 6.6: CRPS for the bidding area RWE in Germany divided into three groups with respect to
different values of EC-forecasts. CRPS on the y-axis and lead time on the x-axis. The minimum
and maximum EC-forecast in MW are shown in the brackets, and n is the number of data points
belonging to this group.

the other models. This is the result of the difficulties illustrated in Section 4.2, where the model

fails to attain sharp forecasts in the upper part of the domain.

Further, we want to investigate the width of the 95% prediction intervals. We continue to use

the same division of data based on different EC-forecasts. A box plot of the prediction interval

widths for the different models and lead times is given in Figure 6.7.

As we observed in Figure 6.4, all models perform worse as lead times increase. That is, all

models have increasing 95% interval widths. Moving from group low up to group high, the ARn-

SFR and UCPR models are barely changing. This is in contrast to CCPR and CPR-LP, which have

increasing 95% interval widths. However, the widths of CCPR and CPR-LP are shorter compared

to the two other models for group low.

6.2.3 Calibration

The PIT-diagrams for each model are plotted for lead times 1, 2, 5 and 10 in Figure 6.8. We

still use RWE in Germany as an example representing the results for all bidding areas. The PIT-

diagrams for the remaining nine areas are found in Appendix C, Figures C.2 and C.3.
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Figure 6.7: Box plots of the 95% prediction interval widths for RWE in Germany.
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Figure 6.8: PIT-diagram for the bidding area RWE in Germany.

Comparing the PIT-diagram of CPR-LP with the one of ARn-SFR in Figure 6.8, we see a great

improvement in calibration. The diagram for CPR-LP is close to a uniform distribution for all

lead times. The same can be said about the CCPR model which is quite similar to CPR-LP. The

ARn-SFR on the other hand shows tendencies to being overdispersed, but the frequencies are

quite satisfactory for higher PIT-values. The diagram of the UCPR is also overdispersed, but with

a bias, especially for lower lead times.

Figure 6.9 also plots the RWE, Germany PIT-diagrams for each model at lead times 1, 2, 5

and 10, but the data is now divided into the three groups we also investigated in Section 6.2.2.

Starting with group low, we notice that ARn-SFR and UCPR are even more overdispersed for all

lead times, compared to the diagrams in Figure 6.8. The 27th of October in Figure 6.4 displays

that these two forecasts are wider compared to the other two forecasts for group low. According

to the PIT-diagrams, these probabilistic forecasts are in fact too wide. The CPR-LP is arguably

the best performing model for group low. However, it does have a slight U-shape for lead time

10, which is an indication of underdispersion.

Moving on to group intermediate we note that most models seem more calibrated compared



6.2. MODEL EVALUATION 61

0
1

2

L 1

0
1

2

L 2

0
1

2

L 5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0.05 0.25 0.45 0.65 0.85

0
1

2

L 10

0

0

Group 
 low

EC in [ 0 , 1290 ]

n =  4420 ( 60 %)

0
1

2

L 1

0
1

2

L 2

0
1

2

L 5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0.05 0.25 0.45 0.65 0.85

0
1

2
L 10

0

0

Group 
 intermediate

EC in [ 1290 , 3289 ]

n =  2211 ( 30 %)

0
1

2

L 1

0
1

2

L 2

0
1

2

L 5

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
0.05 0.25 0.45 0.65 0.85

0
1

2

L 10

0

0

Group 
 high

EC in [ 3289 , 6459 ]

n =  738 ( 10 %)

CRPS for RWE, Germany in groups

ARn−SFR CCPR UCPR CPR−LP
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to group low. The UCPR diagram is now biased, with too high frequencies to the right, whereas

the CCPR model on the other hand is overdispersed. The CPR-LP model is performing quite

well for all lead times, but is also somewhat overdispersed, especially for lead time 10. The ARn-

SFR forecast is slightly underdispersed for all lead times. This shape carries over to group high,

where the underdispersion is even more prominent. Figure 6.4 displays that the ARn-SFR model

attains the sharpest forecasts of all models on November 13th and November 14th, especially for

lead time 1. However, based on the PIT-diagrams, these forecasts are too sharp on average.

Considering all PIT-diagrams for group high in Figure 6.9 as a whole reveals that all models

struggle to forecast high production values. The PIT-diagram of CCPR is clearly biased with too

high frequencies to the right, especially for the first two lead times. The UCPR is biased in the

opposite direction, but not as substantial as CCPR. Yet again, the CPR-LP is arguably the most

calibrated diagram, even though it is far from uniformly distributed.



Chapter 7

Discussion and Conclusion

The main research task of this thesis is to predict wind power production in the bidding ar-

eas depicted in Figure 2.1, based on the production data itself, and the forecast referred to as the

EC-forecast. The predictions should be given as probabilistic forecasts, where the goal is to max-

imise their sharpness subject to calibration. Malmgård (2016) already developed probabilistic

forecasts with the exact same research task in mind, thus using the same case data. The forecast-

ing models tested by Malmgård (2016) were based on the well known method of linear regres-

sion, accompanied by autoregressive models originating from the temporal dependencies in the

wind power production. However, these forecasts had problems related to calibration, and were

not always physically valid. That is, the models could forecast impossible production values,

like negative production. In this thesis, we introduce a new forecasting methodology, which is a

response to these weaknesses. The best performing model tested by Malmgård (2016) was the

ARn-SFR model, which is used as a reference for model performance.

The new forecasting methodology is inspired by the CCPR method from Borhaug (2014),

which in turn is based on the beta transformed linear pool presented by Gneiting and Ranjan

(2013). The methodology starts out with an initial probabilistic forecast, in the form of a cdf. In

the case of the CCPR, this forecast is the climatology, i.e. a sample cdf of wind power production

history. We proceed by transforming the initial forecast using a beta cdf. That is, the beta trans-

form takes a cdf as input, and returns a new cdf, which is our probabilistic forecast. The beta

transform is parameterized with mean parameter µ and precision parameter ν. These parame-

ters, and thus the shape of the beta transform, are modelled as a function of the EC-forecast and

63



64 CHAPTER 7. DISCUSSION AND CONCLUSION

previous observations, i.e. a persistence forecast.

Chapter 4 includes a more thorough introduction to the CCPR model, as well as the new

UCPR and CPR-LP models. The two latter models are developed as a response to the CCPR

model performance for the case study. As we saw in Section 4.2, the CCPR is unable to attain

sharp forecasts when the deterministic forecasts are large, i.e. when forecasting on the upper

area of the domain. The UCPR model introduced in Section 4.3, tries to solve this problem by

substituting the climatology in the CCPR model by a uniform distribution (over the domain of

possible production values). However, this sacrifices the sharp forecasts obtained by the CCPR

for small deterministic forecasts, i.e. when forecasting on the lower part of the domain. The

solution is the CPR-LP model introduced in Section 4.4, which is designed to keep the ben-

efits of the two other models, while still eliminating the disadvantages. This is done by beta

transforming a weighted sum of the climatology and the uniform distribution, where the weight

parameter is a function of the deterministic forecasts. This gives the CPR-LP model the ability

to mimic the CCPR model for small deterministic forecasts, and to mimic the UCPR model for

large deterministic forecasts.

The models are fitted and tested using k-fold cross validation as explained in Section 3.4.4.

The fitting sequence estimates the model coefficients presented in Chapter 5 for each area, lead

time, and hour of the day. Section 6.1 investigates the behaviour of these coefficients and reveals

that all coefficients related to the persistence forecast tend to decrease with increasing lead time.

This behaviour is in agreement with the observation in Figure 2.4a, where the actual wind power

production has decreasing temporal dependency for increasing lead time. The testing sequence

computes the CRPS and PIT-values as defined in Section 3.4.3 and 3.4.2, respectively. The CRPS

is a quantity that relates to both forecast sharpness and calibration, and the CRPS results for all

models are presented in Section 6.2.2. Figure 6.5 reveals that the CPR-LP performs better than

both the CCPR and the UCPR with respect to CRPS, but is slightly worse compared to ARn-SFR.

However, if we include the CRPS results for all bidding areas in our analysis, plotted in Figure C.1,

the CPR-LP is in fact the best performing model for certain bidding areas.

The PIT-diagram is used to test the forecasting models for calibration, and the results are

analysed in Section 6.2.3. The PIT-diagram of the ARn-SFR model in Figure 6.8 is overdispersed,

and is arguably the least calibrated of all models. This is one of the major problems with this
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forecasting model, and an important reason why we have chosen the new methodology in this

thesis. The PIT-diagrams for the CPR-LP and CCPR models on the other hand, are close to uni-

form distributions for all lead times. Another problem with the ARn-SFR model is that it is not

always physically valid, i.e. it may forecast production values which are not physically possi-

ble to obtain. The new methodology behind the CCPR, UCPR and CPR-LP forecasts omits this

weakness.

To conclude, we argue that the main research task of predicting the wind power production

in various bidding areas in Northern Europe is fulfilled. We have developed a new forecasting

methodology, where the best performing forecast is arguably the CPR-LP forecast. It is well cal-

ibrated, physically valid, and competing with the ARn-SFR with respect CRPS performance. In

fact, it is actually better than ARn-SFR with respect to CRPS for certain bidding areas. How-

ever, there are still alternatives and extensions to the CPR-LP model that should be investigated

further.

Recall the definition of the term initial forecasts, which is a common term for the climatology

and the uniform distribution, i.e. they are both initial forecasts. The CCPR model uses the same

initial forecast, the climatology, in both the beta transformation, and to model the beta parame-

ters. The same goes for UCPR, but with the uniform distribution as initial forecast instead of the

climatology. This choice leads to best forecasting performance. The CPR-LP on the other hand

is a beta transformation of the climatology and the uniform distribution summed together, and

it is not clear whether or not we should use the climatology or the uniform distribution to model

the beta parameters. An interesting alternative is to instead introduce a beta mixture (Bassetti

et al., 2015). We would then get a weighted sum of two separate beta transformations, where

one transforms the climatology and the other transforms the uniform distribution. This leads

to two sets of beta parameters, where each set could be modelled using the initial forecast cor-

responding to the initial forecast in the beta transformation.

Section 4.2 explained why the CCPR model is unable to attain sharp probabilistic forecasts

for the upper part of the domain, i.e. for large deterministic forecasts. In short, the reason

behind this is the shape of the climatology which has a diminishing density in this area. The

UCPR-LP model solves the problem by introducing a combination of both the climatology and

the uniform distribution. It beta transforms a weighted sum of these two initial forecasts. How-
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Figure 7.1: Example of a climatology c(y) and a uniform distribution u(y) together with other
alternative initial forecasts.

ever, the method is not limited to including only two initial forecast. An extended version of the

CPR-LP model could include a weighted sum of several initial forecasts in the beta transform.

Figure 7.1 illustrates an example where the climatology and the uniform distribution are plot-

ted together with additional initial forecasts. Further research should invetigate how to choose

the number of initial forecasts and their shape, depending on the climatology of the problem in

question.



Appendix A

Actual Production Sources

Austria APG: https://www.apg.at/en/market/Markttransparenz/generation/Erzeugung%

20pro%20Typ

Belgium Elia: http://www.elia.be/en/grid-data/power-generation/wind-power

Denmark NordPool: http://www.nordpoolspot.com/Market-data1/Power-system-data/Production1/

Wind-Power/ALL/Hourly1/?view=table

Germany EEX: https://www.eex-transparency.com/homepage/power/germany/production/

usage/solar-wind-power-production/solar-wind-power-production-table

France EEX: http://clients.rte-france.com/lang/an/clients_distributeurs/vie/prod/

realisation_production.jsp

Netherlands EEX: https://transparency.entsoe.eu/generation/r2/actualGenerationPerProductionType/

show
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Appendix B

Interpretation of r (·)

The function r (·) is used to model the precision parameter ν of the CCPR, UCPR and CPR-LP

models, and is given as

νt ,l = r
(
xEC ,P

t ,l

)= exp
(
a0

h,l

)+exp
(
aEC

h,l

)[
Gh

(
xEC

t

)(
1−Gh

(
xEC

t

))]
+exp

(
aP

h,l

)[
Gh

(
xP

t ,l

)(
1−Gh

(
xP

t ,l

))]+exp
(
aD

h,l

)[
1− ∣∣Gh

(
xEC

t

)−Gh
(
xP

t ,l

)∣∣], (B.1)

where Gh(·) is either the climatology Ch(·) or the uniform distribution Uh(·). Let us first convince

ourselves that νt ,l = r
(
xEC ,P

t ,l

)> 0, ∀ xEC ,P
t ,l as this is required for νt ,l . The expression (B.1) consists

of four terms in total. All exponentials are always positive, meaning the the first term is positive.

Because Gh(·) is a cdf, the range of the function is between 0 and 1. The second and third term

of (B.1) is thus an exponential multiplied by two functional values between 0 and 1, which gives

a non-negative value. The fourth term subtracts a functional value between -1 and 1 from 1,

giving a value between 0 and 2. Multiplying this with an exponential value, gives a non-negative

value. With all terms considered, it is clear that νt ,l = r
(
xEC ,P

t ,l

)> 0, ∀ xEC ,P
t ,l .

The design of (B.1) is a reaction to the performance of earlier builds of our models. One

such build modelled the precision parameter as a constant. Figure B.1 displays the CRPS of

this particular CPR-LP build for RWE in Germany at lead time 1, both as a function of the EC-

forecast and the persistence forecast. Note how the CRPS reaches lower values at the edges, but

is considerably higher in the intermediate domain. This observation is a result of the CPR-LP

forecast being sharper at the edges, compared to the intermediate domain. The variance of the
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Figure B.1: CPRS for a previous build of the CPR-LP model where the precision parameter νwas
modelled as a constant. The CRPS is plotted against the EC-forecast in (a), and against the per-
sistence forecast in (b). The colors represent the density of points through the transformation
function f (x) = x0.25, where x is a 2D kernel density of points, and f (x) is the density trans-
formed to the color scale.

beta transformation in the CPR-LP model is related to the precision parameter such that the

variance decreases when the precision parameter increases. To attain a sharp forecast in the

intermediate domain, i.e. a beta transformation of low variance, we need a large value for the

precision parameter in this region.

We choose to model the precision parameter through a function which supports this prop-

erty. Let us define z(·) as

z
(
xt ,l ; ah,l

)= exp(ah,l )
[
Gh(xt ,l )(1−Gh(xt ,l ))

]
, (B.2)

where xt ,l is either the EC-forecast or the persistence forecast, and ah,l is some parameter to be

estimated. Figure B.2 displays (B.2) with ah,l = 0 and Gh(·) = Uh(·), over the domain [0,6700].

The full model of the precision paramter in (B.1) includes (B.2) in the second and third term,

where ah,l = aEC
h,l , xt ,l = xEC

t for the second term, and ah,l = aP
h,l , xt ,l = xP

t ,l for the third term.

In addition to (B.2), the dispersion modelling in (B.1) includes an intercept and a fourth term
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Figure B.2: Visualization of (B.2), with ah,l = 0 and Gh(·) =Uh(·), over the domain [0,6700].

representing the absolute difference between the EC-forecast and persistence forecast.
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Additional Figures
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Figure C.1: CRPS for all models for each bidding area. CRPS values on the y-axis and lead times
on the x-axis.
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(a) PIT diagrams for bidding area Austria(AT).
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(b) PIT diagrams for bidding area Belgium(BE)
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(c) PIT diagrams for bidding area ENB, Germany.
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(d) PIT diagrams for bidding area EON, Germany.
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(e) PIT diagrams for bidding area VAT, Germany.
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(f) PIT diagrams for bidding area Denmark 1(DK1).

Figure C.2
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(a) PIT diagrams for bidding area Denmark 2(DK2).
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(b) PIT diagrams for bidding area France(FR).
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(c) PIT diagrams for bidding area Netherlands(NL).

Figure C.3
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Figure C.4: CRPS divided into three groups with respect to different values of EC-forecasts for
various areas: Austria(a), Belgium(b) and ENB in Germany(c). CRPS on the y-axis and lead time
on the x-axis. The groups are defined in Section 6.2.2. The minimum and maximum EC-forecast
in MW are shown in the brackets, and n is the number of data points belonging to this group.
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Figure C.5: CRPS divided into three groups with respect to different values of EC-forecasts for
various areas: EON in Germany(a), VAT in Germany(b) and Denmark 1(c). CRPS on the y-axis
and lead time on the x-axis. The groups are defined in Section 6.2.2. The minimum and maxi-
mum EC-forecast in MW are shown in the brackets, and n is the number of data points belong-
ing to this group.
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Figure C.6: CRPS divided into three groups with respect to different values of EC-forecasts for
various areas: Denmark 2(a), France(b) and the Netherlands(c). CRPS on the y-axis and lead
time on the x-axis. The groups are defined in Section 6.2.2. The minimum and maximum EC-
forecast in MW are shown in the brackets, and n is the number of data points belonging to this
group.
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