
A mathematical model for calculating
river hydrographs using high resolution
digital elevation models

Anders Opskar Voldsund

Master of Science in Physics and Mathematics

Supervisor: Knut Andreas Lie, IMF
Co-supervisor: André Brodtkorb, Sintef

Odd Andersen, Sintef

Department of Mathematical Sciences

Submission date: June 2017

Norwegian University of Science and Technology

i

Abstract

Prediction of floods is important to prevent damage to human lives, build-
ings or infrastructure, and we have developed a simulation model to address
this. The model is a so-called distributed rainfall-runoff model, which accounts
for spatial variations within the watershed; it is based on a distributed version
of the time-area method (Clark, 1945). Travel times are calculated by assuming
that the flow can be modelled as creeping flow, and the resulting velocity field is
used to solve the so-called time-of-flight/Eikonal equation. Both topographical
and heterogeneous properties can be accounted for by the model, which ideally
can be used for both gauged and ungauged watersheds after calibration. An
automatic watershed delineation algorithm has been implemented to delineate
the river’s watershed using the D8 Algorithm (O’Callaghan and Mark, 1984).
To test our model, we create artificial rainfalls, and calculate the hydrograph re-
sponse at the watershed outlet. The model works well given the simplifications,
and is a framework which can be expanded upon and made more complex.

ii

Samandrag

Gode flaumvarslingar er viktig for å forhindre skader på menneskeliv,
bygningar og infrastruktur, og vi har utvikla ein simuleringsmodell som adresserer
dette. Modellen er ein såkalla distribuert nedbør/avløpsmodell som tek høgde
for romlege endringar i nedbørsområdet, og den baserer seg på ein distribuert
versjon av tid-areal metoden (Clark, 1945). Reisetider er rekna ut ved å anta
at flyten kan modellerast som ’creeping flow’, og det resulterande hastigheits-
feltet blir brukt til å løyse den såkalla ’time-of-flight’/Eikonal-likninga. Både
topografiske og heterogene eigenskapar kan bli tatt høgde for av modellen,
som ideelt sett kan bli nytta i nedbørsområder med og utan målestasjonar,
etter at modellen er kalibrert. Ei algoritme for å automatisk rekne ut nedbør-
sområder har blitt implementert ved bruk av D8-algoritma (O’Callaghan and
Mark, 1984). For å teste modellen har vi konstruert kunstige nedbørsbyger, og
rekna ut den resulterande vassføringa i elveutløpet. Modellen fungerer bra, gitt
forenklingane, og er eit rammeverk som kan bli tilført kompleksitet om ynskja.

iii Preface

Preface
The thesis before you has been written to fulfill the requirements for the Master
of Science in Applied Physics and Mathematics at the Norwegian University of
Science and Technology (NTNU), Trondheim. The research was conducted for the
Computational Geosciences group at SINTEF, from January to June 2017.

I would like to thank my supervisors, Knut-Andreas Lie, Odd Andersen, and
André Rigland Brodtkorb, for their neverending patience and willingness to help.
Their unique perspectives made the thesis more complete, and their guidance and
support have been greatly appreciated.

During my time here at SINTEF, I have had numerous discussions with col-
leagues, all of whom have been happy to offer insight and suggestions. It cannot be
emphasized enough how much I have enjoyed my time here, and I would be hard
pressed to find a more knowledgeable, friendly, and welcoming group of people.
The fascinating and entertaining lunch discussions, as well as the intense chess
matches, will be sorely missed. Lastly, I want to thank my family and friends for
always being there for me, and keeping me motivated until the very end.

Anders Opskar Voldsund

Oslo, June 7, 2017

Contents iv

Contents

1 Introduction 1

2 Important concepts in hydrology 5
2.1 The watershed . 5
2.2 The hydrologic cycle . 7
2.3 River hydrographs . 9
2.4 Rainfall-runoff models . 9
2.5 How can we predict floods? . 14

3 Delineate watershed 15
3.1 Fill single-cell depressions . 16
3.2 Compute flow paths . 18
3.3 Combine local watersheds . 21
3.4 Compute spill pairs for all watersheds 22
3.5 Identify traps and raise elevations . 25
3.6 Create cell connectivity matrix . 27
3.7 Calculate flow accumulation . 31
3.8 Get watershed of outlet . 33

4 Travel time estimation 37
4.1 Finite-volume discretization . 40
4.2 MRST grid structure . 42
4.3 Create grid . 43
4.4 Calculate face fluxes . 43
4.5 Set φ-values . 55
4.6 Run time-of-flight . 55

5 Calculate hydrographs 59
5.1 Uniform storm . 60
5.2 Precipitation with varying intensity 61
5.3 Moving storm front . 63
5.4 Moving disk . 68
5.5 Conservation of water . 74
5.6 Grid cell size ’convergence’ . 75

6 Results for real landscape data 77
6.1 Flow accumulation . 77
6.2 Coarse grid from delineated watershed 79
6.3 Time-of-flight for landscape . 80

v Contents

6.4 Optimization of hydrograph calculations 84
6.5 Hydrographs . 90

7 Conclusion and future work 97

A Data set and tools 99
A.1 The data set . 99
A.2 Languages and packages used . 99

B Drawbacks with the D8 Algorithm 101
B.1 Difference between D8 and D4 . 101

Bibliography 105

1 Introduction

1 Introduction
Norway is a country with a varied topography and climate, praised for its majestic
nature. The weather at the west coast and in the north can be both unpredictable
and intense. During the last hundred years there have been several floods with
severe consequences, in particular east in Norway. Frequent storms and floods call
for accurate weather forecasts, and the ability to predict these events. The advent of
supercomputers and remote satellite data have improved this tremendously.

Norwegian climate scientists estimate an increase in precipitation in the range of
5 % to 30 % for Norway by year 21001. The number of extreme precipitation events
is also expected to rise. A potential consequence of this is more frequent floods,
which threatens human lives and cause damage to infrastructure and buildings.
Floods are hard to predict, in particular if they are caused by a local rainfall. A
perfect example of this is the convective summer rainfalls in Norway, which bring
large amounts of water in a short time. Cities are particularly vulnerable because
of the many impermeable surfaces, and infrastructure incapable of handling large
water masses in a short time.

In order to investigate flood risk for a river, we need to delineate its watershed,
i.e., locate the region it collects its water from. One common method is the New
Hampshire Method [1], which relies on a map and a pen, but this is obsolete. The
increase in computational power and availability of elevation data, have paved
the way for automatic algorithms; an essential component of these is the choice of
flow direction algorithm. The most popular one is perhaps the D8 (deterministic
eight) Algorithm [26], which was used by Jenson and Domingue with excellent
results [16], even though D8 has some limitations [10]. Many other algorithms
have also been developed, like the Global Search Algorithm (GD8) [28], and the
Aspect-Driven Kinematic Routing Algorithm [19]; both of these, and also the D8
algorithm, are single flow direction (SFD) algorithms. This is advantageous for
watershed delineation, as no cell belongs to different watersheds simultaneously.

We build upon the implementations and findings in [39] in this Master’s the-
sis, and have expanded the algorithms and software implementations with new
functionality. It uses the D8 Algorithm, and largely follows the steps of Jenson and
Domingue [16] to make the landscape depressionless. Unlike Jenson and Domingue,
we refrain from setting flow directions in flat areas, as part of an optimization.
After the landscape is made depressionless, we construct a cell connectivity matrix,
which tells us the upslope and downslope neighbors of each cell. This gives us the
flexibility to delineate the watershed of any location. The connectivity matrix also

1According to a summary of NorClim’s findings in the article ’Mer regn i framtiden’ at forskning.
no. NorClim was funded by the Research Council of Norway, and was a climate research project that
lasted from 2007 to 2010. Findings of the study were used in The Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC) [27].

forskning.no
forskning.no

Contents 2

allows us to calculate accumulated flow in the landscape.
A so-called rainfall-runoff model can be used to predict a river’s discharge based

on the forecasted rainfall in the delineated watershed. These models have tradi-
tionally been used by engineers for flood forecasting and design flood estimations
[23]. Two of the most common model types are the lumped rainfall-runoff models,
and the distributed rainfall-runoff models [24]. The lumped model considers the
watershed as a single homogeneous unit [18], in which all inputs, outputs and
parameter values are averaged over the entire watershed [24]. This is fundamentally
different from the distributed type, which accounts for spatial variations within the
watershed.

Both lumped models and distributed models need to be calibrated before they
can yield reliable runoff estimates [37]. Lumped models usually have far fewer (4-
20) model parameters compared to distributed models (10 to 1000’s), which makes
lumped models more attractive. In reality, distributed models might have fewer than
this, because of the spatial correlation for parameters since cells close to each other
typically have the same soil type. Some people prefer distributed models because of
the stronger link between physical properties and model parameters. In theory, the
distributed models should outperform the lumped ones, but in practice this is not
always the case [18], and the model should be selected based on the availability of
data and its intended application. A drawback about most rainfall-runoff models
is their inability to provide good runoff estimates for ungauged watersheds. When
no historical input-output data is available for calibration, other methods must be
applied, such as regionalization and regional calibration [20].

Distributed rainfall-runoff models are expected to increase in popularity, as
some of its downsides have been remedied by the advent of supercomputers, and
increased access to remote satellite data [12]. In this thesis we will implement
a distributed model based on a version of the time-area method [7]. This has
traditionally been a lumped model, but if we allow non-uniform precipitation and
account for spatial variations within the watershed [34], it can become a distributed
one. Usually the time-area method divides the watershed into smaller areas, but
one statement says: ’it is conceivable that these areas are cells in a raster data set’
[5]; this is exactly what we will do in our implementation, in which we consider
cells of size 10 by 10 meters.

An integral part of our rainfall-runoff model is the estimation of speeds in the
watershed. The combination of the segmental approach and Manning’s Equation
can be used to approximate the speeds, in a method which takes some terrain effects
into account [5]. We have chosen another approach to estimate our velocity field. By
assuming that the flow can be modeled as a creeping flow, we can use a simplified
version of Darcy’s Law for single-phase flow [21, p. 16] in porous media. Both the
topography and the local heterogeneous properties can be included in the velocity
field. Based on this we calculate the so-called time-of-flight [21, p. 129] equation to
obtain the travel times to the watershed outlet. This allows us to create a hydrograph
to visualize the runoff in the river.

3 Introduction

In this thesis we have developed a framework that can account for both topo-
graphical and heterogeneous properties in the watersheds. Calibrating the model
is outside the scope of this thesis, but our vision is that once the model has been
calibrated, it does not have to be re-calibrated for every new watershed it is applied
to. Hence, it should also work for ungauged watersheds. Because the heterogeneous
properties are a part of the calibration process, these have not been included, which
means the travel time is only dependent on topography.

Finally, we test our model using synthetic precipitation forecasts where we
vary the rainfall’s shape, speed, direction, and intensity. A hydrograph for the
river is then created based on the runoff from the watershed. If the river has a
maximum discharge level before it floods, the hydrograph can tell us if the level
will be surpassed in the course of the rainfall (and the time after). In our model we
do not account for storage in the terrain, and let all precipitation become runoff.

Outline
In Chapter 2 we start with some hydrological concepts that are necessary to have
a basic understanding of before we go into details about our automatic watershed
delineation algorithm, and the rainfall-runoff model. This will include information
on the hydrologic cycle, what a watershed is and how we can obtain it, more about
different rainfall-runoff models and how they work, and the river hydrograph. In
Chapter 3, we outline our algorithm for automatic delineation of watersheds from
digital elevation models, and use examples to explain the process. Some of the
sections in Chapters 2 and 3 are based on the work in the specialization project [39]
at NTNU, but have been modified and expanded. Chapter 4 outlines the algorithm
to estimate travel times for the delineated watershed, which in turn are used in
Chapter 5 to estimate the hydrograph for the river. In Chapter 6 we test our different
algorithms on a high resolution digital elevation model. Appendices A and B are
based on the specialization project, and have been revised. All implementations can
be found at Github [38].

5 Important concepts in hydrology

2 Important concepts in hydrology
In this chapter we will define some concepts that are useful to know about if you
are new to hydrology. We mentioned in Chapter 1 that we want to estimate the
discharge for a forecasted rainfall in a watershed, and how a rainfall-runoff model
can accomplish this. Simply put, the rainfall-runoff model calculates the runoff
that is generated from a rainfall, and the resulting discharge is illustrated in a
hydrograph. If a river can only handle a certain discharge before it floods, the
hydrograph will tell us whether this threshold will be surpassed. In this chapter, we
will talk about more about these concepts, and we will start with the watershed.

2.1 Thewatershed
There are many synonyms for watersheds in use, and you may have encountered
the words catchment, river basin or drainage basin before. These words all mean
the same, but in this work we will use the term watershed. So what is a watershed?
Rumynin [33] states that a watershed is a topographic region in which all water
drains to a common outlet. This means that if a bucket of water is poured out at
any location within this region, the water will flow to the same outlet. Margulis [23]
phrases it slightly different: A watershed is the set of all upstream points that will
ultimately route water to a defined outlet point. Technically, the two definitions are
the same, as a set of points does not have to be discrete, but the wording of Margulis
is easily applicable to our discrete setting as we view the watershed as discrete data
points in our algorithms.

It is most common to define watersheds from outlets placed in large rivers,
because large rivers potentially indicate large watersheds. If we want to investigate
flooding, it is most sensible to study a location in the river that is particularly
vulnerable. This can for example be a point in the river where the river is narrower
or the river banks are lower.

Every watershed has a river network that leads the water to the outlet, and it
has the structure of a tree. The watershed outlet is located in the biggest branch,
where the river has the largest flow. It carries as much water as it does because it is
the result of many smaller rivers, streams, creeks and rivulets. When we talk about
a river that merges with a larger river, we call it a tributary river, and the tributary
river’s watershed is a sub-watershed of the largest river’s watershed.

We will now take a look at how increased computational power and availability
of elevation data have changed how we obtain watersheds in the last few decades.
In Chapter 3 we will also outline an algorithm to obtain our own watersheds.

The process of determining the watershed of a river outlet in the landscape is
called delineating a watershed. One common method for delineating a watershed

Thewatershed 6

Figure 2.1: The New Hampshire method. The figures, as well as the method, are
taken from Ammann and Stone [1]. In the left figure the two first steps are shown.
The two last are shown in the right figure. Step 1: Choose and mark the outlet with
a circle. Step 2: Mark all high points around the river and its tributaries with an x.
Step 3: Start drawing a line from the circle to connect each x. Make sure the line
is perpendicular to the contour curves. Step 4: Continue all the way around, and
connect with the circle from the other side. The area within the line will be the
watershed to the river outlet.

is the New Hampshire method. It was outlined by Ammann and Stone [1] and we
explain the process in Example 1.

Example 1. Ammann and Stone’s method has four steps, and the first two are
illustrated in the left figure of Figure 2.1. The first step is to mark the desired
outlet point in the river. This is indicated with a circle in the figure. Next, all high
points along both sides of the upslope river and its tributaries are marked with an x.
In steps three and four, each x is connected by forming a line that is starting and
ending in the circle. It is important that the line is perpendicular to the contour
lines. The resulting delineation is shown in the right figure.

What seems like a simple process can get very cumbersome, and often a great
effort is required to obtain a correct delineation. However, the difficulty will vary
for different topographies; an alpine landscape with large differences between the
highs and lows is easier to delineate compared to a landscape with rolling hills and
small variations in elevations.

With today’s computer power and availability of digital elevation models1 (DEM),
delineation of watersheds is a perfect example of something that can be automated

1A digital surface model (DSM) is a representation of the surface which includes the elevations

7

with excellent results. Research concerning automatic delineation started already
in the eighties, and many new algorithms emerged in the nineties. One of the
algorithms is the one developed by Jenson and Domingue in 1988 [16]. They
outline all the steps in a precise manner, some of which will be implemented in
our algorithm. In the evaluation of their algorithm, two rivers in New York were
considered: Susquehanna River and Genegantslet Creek. Jenson and Domingue
reported a 97% spatial agreement between their delineation and the manual one for
the Susquehanna River when using a planimeter2. After doing the same calculations
for the Genegantslet Creek, a large section was found to not match the manual
watershed delineation. Further examination concluded that there was an error in
the manual delineation, a testimony to the success of automated methods. When
this was fixed, the spatial agreement also turned out to be 97%.

As we recall from the beginning of this chapter, in order to obtain the hydrograph
for a point in the landscape, we need the point’s watershed. Once we know the
watershed, we can create precipitation scenarios in the watershed, and see how this
affects the hydrograph. We will get back to how we calculate the watershed with an
automatic delineation algorithm in Chapter 3. In the next section we take a look at
the hydrologic cycle and the water movement in the watershed.

2.2 The hydrologic cycle
The hydrologic cycle is also called the water cycle, and it describes how the water
continuously circulates between the atmosphere, the surface of the Earth, and the
sub-surface of the Earth. A simple example of the cycle is the journey a water drop
undergoes from it falls as precipitation until it returns to the atmosphere. The time
this takes, and the places it visits, depends on climate and terrain. If it trickles
down into the groundwater or flows to the ocean, it might take hundreds, maybe
thousands of years before it evaporates and becomes precipitation again. Figure 2.2
shows a simplified illustration of the hydrologic cycle.

A watershed can be treated as a closed system in which water is conserved. This
is reflected in the water balance equation,

P =Q+E + S. (2.1)

The left hand side of equation (2.1) represents the input to the system, which is only
the precipitation P . The output from the system can be represented as the runoff Q
at the watershed outlet, and the water that evaporates from the soil, lakes, plants
etc., i.e., evapotranspiration E. Finally, S represents the water that is stored within
the watershed.

of buildings and vegetation. To obtain the DEM, the non-ground points are filtered out, making it
bare-surface. The remaining elevations are represented as a regularly-spaced raster grid where the
heights are referenced to a common vertical datum.

2According to Encyclopedia Britannica, a planimeter is an instrument that can be used to measure
an area bounded by an irregular curve — in this case the outline of a watershed.

The hydrologic cycle 8

Figure 2.2: Illustration of the hydrologic cycle. The image is taken from ’Stream
Corridor Restoration: Principles, Processes, Practices’ [13, p. 2-3].

We will take a closer look at the movements of water that happens on, or below
the surface of the landscape. In Figure 2.2 only the flow that happens on the surface
— the surface runoff — is explicitly shown, but there are two other types of runoff as
well; these are called subsurface runoff and groundwater runoff. The runoff types are
often referred to as overland flow, interflow and baseflow, respectively. Collectively,
they are referred to as runoff, which Rumynin [33] describes as the flow of a water
layer over the surface and through the pores of soils and sediments that is coming
out of the watershed.

The runoff types are quite different, and we will briefly explain the differences.
Surface runoff is the water that flows at the surface of the landscape, which is
driven by gravitational forces. Unlike surface runoff, both subsurface runoff and
groundwater runoff take place below the ground surface. To explain the difference
between them, the vadose zone is key. The vadose zone is the unsaturated zone
where the pores in the soil are filled with both water and air. Water that passes the
vadose zone and enters the groundwater system eventually becomes groundwater
runoff. If water is blocked from reaching the groundwater by an impermeable or
semi-impermeable layer, it ends up as subsurface runoff, which is a lateral flow at
shallow depths in the vadose zone.

9

Characteristics of the watershed are important to predict how much water will
flow at the surface. Precipitation will infiltrate the ground until it is either saturated
or cannot infiltrate precipitation fast enough. Both types will initiate surface runoff.
The first type is called saturation excess runoff, and the second is called infiltration
excess runoff. One way of thinking about saturation excess runoff is that the ground
is full of water from below; there is no more storage space. Infiltration excess runoff,
on the other hand, happens because the water front is not moving fast enough inside
the vadose zone. Different soil properties affect which runoff type will occur. The
risk of a flood increases if either the soil is saturated and the water level in the
vegetation is at the maximum, or if soil and vegetation cannot absorb water fast
enough.

2.3 River hydrographs
A hydrograph shows the discharge for a point in the river over time, and is usually
measured in cubic meters per second, which we will also do in this work. The river
with the largest discharge in the world is the Amazon River, with a discharge of 209
000 cubic meters per second3. The Amazon River is rather exceptional as the next
river on the list, the Congo River, only has a discharge of 41 200 cubic meters per
second. The watersheds of these two rivers are vastly larger than the watersheds we
will look at, so our river discharges will naturally be much smaller.

After a heavy rainfall we can expect that the discharge will increase at the
watershed outlet. This alone is not necessarily enough to cause a flood, as the
discharge from a river fluctuates constantly. However, the moment the river stage
gets close to the flood stage, it is cause for concern. The river stage is the water
level of a river with respect to a chosen reference height, and the river will not
flood until the river stage hits the flood stage, which is when the water starts to
flood the riverbanks. One example that illustrates river stage is shown in Figure 2.3.
The illustration shows both the hydrograph and the river stage of the Mississippi
River during the flood in 1993. It is important to keep in mind that river stage and
discharge are not linearly related, as the discharge depends on the cross-sectional
shape of the river [25]. Thus discharge alone is not enough to determine if a river
will flood.

2.4 Rainfall-runoff models
To create a hydrograph for a given rainstorm, we need to predict the runoff after a
rainfall, something rainfall-runoff models are designed to do. Traditionally these mod-
els have been used by engineers for flood forecasting and design flood estimations4

3According to Wikipedia’s list of rivers by discharge: https://en.wikipedia.org/w/index.php?
title=List_of_rivers_by_discharge&oldid=767427793

4A design flood is the hypothetical maximum flood that a structure is designed to withstand, for
example a bridge.

https://en.wikipedia.org/w/index.php?title=List_of_rivers_by_discharge&oldid=767427793
https://en.wikipedia.org/w/index.php?title=List_of_rivers_by_discharge&oldid=767427793

Rainfall-runoff models 10

Figure 2.3: Hydrograph showing the river stage and discharge of the Mississippi
River during the flood in 1993. The image is taken from Nelson [25].

[23]. The models are commonly classified into how they describe physical processes
in the watershed (conceptually or physically), and how they describe watershed
processes spatially (so-called lumped or distributed) [31]. In this work we will only
scratch the surface of rainfall-runoff modelling, but two of the rainfall-runoff model
types will be briefly explained: lumped conceptual models and distributed physical
models. We will also discuss the state-of-the-art rainfall-runoff models, and the one
that we will implement in this work.

One thing most rainfall-runoff models have in common, is that they must be
calibrated before they can yield reliable runoff estimates [37]. To calibrate the mod-
els, historical input-output data is required for the watershed. It varies greatly how
many parameters a model can have, and Australia’s guidelines for rainfall-runoff
modelling [37] gives an indication of how many are needed for each type: So-called
lumped models are reported to have between 4 and 20 parameters, while distributed
models can have from 10 to 1000’s. In reality, distributed models might have fewer
than this, because of the spatial correlation for parameters since cells close to each
other typically have the same soil type. The lower number of parameters is one of
the advantages lumped models have [20], which in turn makes them both easier and

11

less time-consuming to calibrate. This is much of the reason why lumped models
are so popular [18]. Fewer parameters also makes it possible to use automated cali-
bration, which due to long run times has not been possible for distributed models
[37] before. The advent of high-performing computers has made this much more
attainable.

2.4.1 Lumped and distributed rainfall-runoff models
A lumped rainfall-runoff model treats a watershed as a single homogeneous unit
[18], which means that all inputs, outputs and parameter values are averaged over
the complete watershed [24]. Despite this, lumped models often yield good runoff
estimates after they have been calibrated [18]. We already mentioned some of the
upsides to the model parameters of lumped models, especially the relatively low
number of them, but there is one drawback: most parameters are not necessarily
connected to any measurable physical characteristics of the watershed. According to
Australia’s guidelines there are some exceptions to this, but overall the stronger link
between physical properties and model parameters is why some prefer distributed
models. Two popular lumped models are the Sacramento Model [4] and the Stanford
Watershed Model [8].

Distributed models are different from lumped models as they account for spatial
variations within a watershed. They also have the advantage that modelling param-
eters represent physical properties in the landscape. In a distributed model the
watershed is discretized into small units, where each unit shares the same properties.
Usually a regular grid or a triangular irregular network (TIN) [23] is used for this.
These units can be quite large, with examples of 250 x 250 m [9] and 1 x 1 km [24].
In recent years the resolution of available DEMs has improved, so it is expected that
much smaller units are used in the future. The higher resolution can potentially
yield more accurate results, but will also increase the need for computational power.
In our model to be presented later, we use cells that are ten by ten meters, but for
some areas it is possible to get grids with a resolution down to one meter5. In theory,
distributed rainfall-runoff models should provide better runoff estimates, but this is
in general not the case in practice. Several studies have compared different models,
where both lumped and distributed models were represented. In their studies, the
distributed models did not perform significantly better than lumped models [18],
nor did any single model outperform the other models in all cases [20]. Thus a
model should be selected based on what it will be used for, and the availability
of data. Two examples of popular distributed models are the Topmodel6 [3] and
the MIKE-SHE model [32]. An overview of lumped rainfall-runoff models and
distributed rainfall-runoff models can be found in the article by Li et al. [20].

5’Høyde DTM 1 meter WMS’ by Geonorge has a resolution of 1 meter.
6This is actually a semi-distributed model because it does not account for spatial variability of

precipitation [20].

Rainfall-runoff models 12

Something that has been a problem in the past, and still is today, is the prediction
of runoff from ungauged watersheds. It is hard to calibrate rainfall-runoff models
when the required historical data do not exist. As a consequence of this, lumped
models are often preferred over distributed models for ungauged watersheds, as
they require less data [18]. Two approaches have been developed to remedy the dif-
ficulties, called regionalization and regional calibration. In regionalization, the model
is calibrated against a gauged watershed, and afterwards the model parameters
are transferred to the ungauged watershed. In the second method, the parameters
are calibrated simultaneously against multiple watersheds from a wide region [20].
The International Association of Hydrological Sciences7 launched the so-called
’Predictions in Ungauged Basins (PUB)’ initiative. It lasted from 2003 to 2012 [14],
and was an effort to improve runoff predictions from ungauged watersheds. Despite
IAHS’s advances and the two methods we mentioned, the problem of predicting
runoff from ungauged watersheds still persists today.

An ideal distributed rainfall-runoff model can capture the hydrological processes
in each unit, and also calculate each unit’s discharge contribution to the hydrograph.
To capture the mechanism of runoff production in the physical model is hard to
accomplish, and a large number of cells lead to difficulties in terms of computational
cost [11]. This concern is nothing new. In the earlier days both computer power and
distributed hydrologial data were limited [24]. This has been somewhat remedied
in the last few decades. Weather data has become more easily accessible8 [12], and
computer power has increased enormously.

In a distributed rainfall-runoff model, many hydrological processes are intercon-
nected [20] to explain the movement of water within the watershed. In the water
balance equation (2.1), we saw that the input to the watershed, the precipitation,
could be divided into three categories: runoff from the watershed, evapotranspira-
tion, and storage in the ground, and in lakes and rivers. The models try to account
for the amount of water that ends up in each category and how it moves around.
There are a plethora of processes in the models, and some examples are: evaporation,
soil moisture dynamics, subsurface processes, runoff generation mechanisms, snow
melting and accumulation, and routing in lakes and rivers [20, 23]. Distributed
rainfall-runoff models account for spatial variations within the watershed, including
information about climate, terrain, soil type and vegetation. This information can
improve the hydrologic predictions that are made for the watershed [20].

Garbrecht et al. [12] discuss remote sensing9 and its potential use in distributed
rainfall-runoff models. The authors also discuss how data be acquired for precip-
itation, land use, vegetation indices, surface temperature, soil moisture, stream
networks and snow. This is data that is useful in distributed rainfall-runoff mod-

7IAHS’s website can be found at: iahs.info
8In ’Hvorfor er norske værdata gratis?’ from yr.no they talk about how they made Norwegian

weather data free to the public.
9The acquisition of data by the use of satellite or sensors on airplanes. Examples include data

about soil type, vegetation, rivers etc.

iahs.info

13

els, and the increase in available remote sensing data can potentially improve the
hydrological predictions.

Beven [2] discusses current state of the art of rainfall-runoff modelling and
argues that more powerful computers will continue to improve the advantages of
distributed models, but he also questions whether the increased complexity will
lead to better hydrological predictions. In the last two decades, rainfall-runoff
models using neural networks have also been presented [40, 15], and it will be
exciting to see where rainfall-runoff modelling is heading in the next decades.

2.4.2 Time-areamethod
We will base our rainfall-runoff model on the time-area method [7]. Ponze [30]
refers to it as a lumped model, but according to Saghafian et al. [34] it can become
a distributed one if we allow non-uniform precipitation and account for spatial
variations within the watershed. Something similar is also done in Muzik [24].

The regular time-area method divides the watershed into sections of approxi-
mately equal travel time to the watershed outlet. Borders between these sections
are called isochrones and indicate cells with equal travel time. It is possible to make
a time-area histogram, which shows the size of the areas within each time interval.
This is in turn paired with a storm hyetograph10 to estimate the runoff hydrograph.

Travel times in the time-area method are estimated from e.g., the segmental
velocity approach [5]. The flow paths are broken up into different segments where
each has a defined flow; examples of this include overland flow and channel flow. To
find the travel time, the length of the segment is divided by the associated velocity.
The sum of the travel times from a cell to the outlet will then be the cell’s travel
time. The Manning equation is used to calculate velocities.

2.4.3 Our rainfall-runoff model
In this thesis, our goal is to implement a distributed rainfall-runoff model that
utilizes the steadily increasing access to publically available weather and landscape
data. It will be based on the time-area method, and we will use elevation data with
high enough resolution to accurately represent the heterogeneous landscape.

To approximate the velocity field in the watershed, we assume the flow can be
modeled as creeping flow. This way we can use Darcy’s Law for a single-phase fluid
[21, p. 117], which allow us to account for the watershed’s heterogeneous properties.
This includes the topography, as well as all other parameters we might want to
include, such as vegetation, soil, land use etc. Data for this can be set on a cell level,
which allows us to capture the heterogeneity of the terrain. To compute the travel
times in the watershed, we solve the so-called time-of-flight equation. Unlike the
time-area method, which divides the watershed into areas of approximately equal
travel time, we will use each cell’s travel time as basis for the hydrograph.

10Wikipedia’s definition: ’A hyetograph is a graphical representation of the distribution of rainfall
over time’. https://en.wikipedia.org/w/index.php?title=Hyetograph&oldid=649439813.

https://en.wikipedia.org/w/index.php?title=Hyetograph&oldid=649439813

How canwe predict floods? 14

The rainfall-runoff models we described earlier in this chapter need to be cal-
ibrated for every new watershed if we want a good approximation of the surface
runoff. For our model, we have an ambition that it should provide good runoff
estimates after calibrating physical parameters once, given that all necessary data
(e.g., from remote sensing) is available. This will make it work for gauged and
ungauged watersheds alike. Due to the limited time we have in this project, we will
only include the topography to estimate the travel times, but ideally heterogeneous
properties can be added.

2.5 How canwe predict floods?
A variety of information is needed to predict floods. The U.S. Geological Survey11

lists four points that are important for flood prediction. The first two concern
monitoring of the amount of rainfall and the rate of change in the river. Both
happen on a real-time basis, but require preinstalled equipment. The third point is
knowledge about what type of storm it is, such as duration and intensity. This is
knowledge that the weather forecasting service can provide. The last point is about
the landscape. Examples include the size of the watershed, soil-moisture conditions
and the vegetation.

In our experiments, we will consider a precipitation scenario on a watershed, and
based on the time required to reach the watershed outlet, calculate a hydrograph.
The hydrograph is then investigated to see how the discharge at the outlet is affected
by the precipitation. This can be used to predict a flood. As we mentioned in the
previous section, it is not possible to say this for sure without a cross sectional-shape
of the river. However, in this work we will focus on the hydrograph.

11Information about how floods are predicted is presented in the frequently asked questions in the
USGS Floods and Droughts.

15 Delineate watershed

3 Delineate watershed
In Section 2.1 we gave a brief introduction to what a watershed is, and briefly dis-
cussed how the art of watershed delineation has been transformed with the advent
of computers. Later, in Section 2.4, we talked about the watershed’s importance
in rainfall-runoff modelling. In this chapter we will outline and implement an
algorithm that delineates the watershed of a location in the landscape. In Appendix
A.1 we talk more about the data set that we will use. The delineated watershed we
obtain in this chapter will be used as input for our rainfall-runoff model.

Our algorithm can be divided into roughly four steps. In the first step, we make
the landscape depressionless. A depression is an area that is completely surrounded
by higher elevations, which hinder flow routing and cause problems for the de-
lineation process [36]. When the landscape is made depressionless, elevations in
the DEM data are increased so that the depressions are removed. In the resulting
landscape, every cell has at least one monotonically decreasing path of cells that
leads to the domain boundary.

In the second step we divide the newly acquired landscape into watersheds
based on the flow directions in the landscape. Before we made the landscape
depressionless there were many flat areas that represented water accumulations like
lakes, dams, and ponds in the DEM. During the process in step one, the elevations
of these areas will increase or remain the same. As an optimization, we do not define
flow directions in flat areas, which we will come back to later. Because of this lack
of flow directions, the flat areas effectively trap the water (because they represent
lakes, dams, and ponds), which is why we refer to them as traps. Each trap in the
landscape has an upslope area it gathers water from, which is its watershed. We can
calculate where the trap will spill over into another watershed, which the spill pairs
will tell us.

The information we acquire in step two is enough to create a connectivity matrix
between cells in the landscape. The matrix tells us the upslope and downslope
neighbors of each cell. We can use this connectivity matrix to calculate the flow
accumulation for the entire landscape. The flow accumulation plot shows locations
that have a large upslope area, and hence have a potential to gather a lot of water.
This should come close to a plot of rivers and lakes in the landscape. The plot will
also be used to select a location for our rainfall-runoff model, i.e., the location we
will create a hydrograph for.

In the fourth step, we compute the watershed of the outlet based on the con-
nectivity matrix and the outlet cell. Once we have the connectivity matrix for the
landscape, we can delineate the watershed of any location in the landscape. The
four steps are combined into Algorithm 1, and we will walk through the algorithm
step-by-step in this chapter. Because many of the variable and function names are
self-explanatory, they will not always be explicitly stated.

Fill single-cell depressions 16

In the next chapters we will calculate travel times for each cell in the outlet’s
delineated watershed, and construct precipitation scenarios to obtain hydrographs
that measure the flow at the outlet.

Algorithm 1 CalculateWatershedOfOutlet takes a DEM E as input, and delineates
the watershed of a location in the landscape. The location is chosen based on the
flow accumulation in the landscape.

1: function CalculateWatershedOfOutlet(E)
2: E ← FillSingleCellDepressions(E)
3: f low_directions← CalcFlowDirections(E)
4: f low_destinations← CalcFlowDestinations(f low_directions)
5: local_watersheds, local_minima←

GetLocalWatersheds(f low_destinations)
6: combined_minima← CombineAdjacentMinima(local_minima)
7: watersheds← CombineWatersheds(local_watersheds, combined_minima)
8: watersheds, spillP airs←

CombineWatershedsSpillingIntoEachOther(watersheds, E)
9: dE ← RemoveDepressions(watersheds, spillP airs, E)

10:

11: watersheds, spill_pairs, f low_directions← RecalculateWatersheds(dE)
12: spill_heights, traps← GetTraps(dE, watersheds, spill_pairs)
13:

14: conn_mat← CreateConnectivityMatrix(f low_directions,
traps, spill_pairs)

15: accumulated_f low← CalculateFlowAccumulation(conn_mat)
16: outlet← DecideOutletBasedOnFlowAccumulation(f low_acc)
17: watershed_of _outlet ← ComputeWatershedOfOutlet(outlet, conn_mat,

traps)
18: return ws
19: end function

3.1 Fill single-cell depressions
One of the major obstacles in flow modeling is the presence of depressions. A
depression is an area that is completely surrounded by higher elevations, which
makes it impossible for flow to continue. Jenson and Domingue [16] dub it the
nemesis of determining hydrologic flow directions. O’Callaghan and Mark [26]
attempted to remedy the problem by smoothing the DEM data, which could fully
remove shallow depressions. Jenson and Domingue [16] went even further and
created a depressionless DEM in a process in which removed depressions are turned
into flat areas. Afterwards, the flow directions in the flat areas are defined in an
algorithm that uses the outflow points in the flat areas as starting points. In each

17

Figure 3.1: The process where single-cell depressions are filled. The left figure
shows the elevations of the landscape before single-cell depressions are filled. We
only consider interior cells (white background) as potential candidates for filling. In
the right figure, all cells with increased elevation have an orange border. Notice that
the elevation of each single-cell depression has been raised to the lowest neighbor
elevation.

iteration, cells in the flats are assigned a flow direction to a neighbor that has already
been assigned a flow direction, given that it is does not point back to the cell in
question. This process will eventually assign flow directions to all cells in the
domain.

In Algorithm 1, we begin with the same first step as Jenson and Domingue’s
algorithm [16] does — by filling single-cell depressions. A single-cell depression is a
cell where all eight neighbors in the grid are at a higher elevation than the center
cell. Thus, the center cell has no downslope flow direction. By raising the elevations
of the single-cell depressions to the heights of their respective lowest neighbors,
the number of depressions in the landscape are reduced. Because the number of
local minima is reduced, this is a simple adjustment to reduce the complexity of our
computations. An example of the filling is shown in Figure 3.1, where the left figure
shows the elevations of the cells. In the right figure, the orange borders indicate the
single-cell depressions that have been filled; these have now acquired the heights
of their respective lowest neighbors. The two cells that have a value of 1 next to
each other is also a depression, but because it is not a single-cell depression, it is not
removed. As for the cells at the domain boundary, there is not enough information
to determine if they are single-cell depressions. Hence, we only consider to raise the
cells on the white background. After all single-cell depressions have been filled, we
update the elevations in E.

Compute flow paths 18

3.2 Compute flow paths
When we model water flow for a raster model, we need to decide on an algorithm
that determines the flow directions in the grid. Several algorithms exist, and one of
the key distinctions between them is whether or not they allow flow from one cell to
multiple neighbor cells at the time. The algorithms that do not allow this are called
single flow direction (SFD) algorithms, while those that do are called multiple flow
direction algorithms (MFD). The SFD algorithms often perform poorly on flat or
convex surfaces [29], but are satisfactory on concave surfaces. Perhaps the most
common algorithm is the D8 Algorithm (deterministic eight directions) [26], which
is an SFD algorithm. The algorithm determines flow direction based on the neighbor
cell it has the steepest descent to. If there are multiple cells with the same gradient,
different variations can be implemented, such as selecting the first candidate in the
clockwise direction, choosing the middle one if there are three adjacent directions,
etc. In this thesis, we will implement the D8 Algorithm, and we will not go into
detail about any other (we discuss several in ’Automatic Delineation and Analysis of
Watersheds’ [39]). In Appendix B, we will mention some of the drawbacks of this
algorithm and also have a small discussion on D8 versus D4 (only flow in cardinal
directions).

One of the assumptions we make when we delineate a watershed is that the
landscape is impermeable and vegetationless. This implies that only surface runoff
affects the delineation and that subsurface flow is ignored.

In the D8 Algorithm, the flow direction for an arbitrary cell is towards the
neighbor cell with the largest positive ∆z/x, where ∆z is the elevation difference
between the cell and the neighbor, and x the distance between them in the 2D-
grid. Because our DEM has a resolution of 10 meters, xi will be 10 m for cardinal
neighbors, and a factor of

√
2 larger for diagonal neighbors. If we number the cell’s

neighbors in a clockwise manner from one to eight, we can encode the flow direction
as

d =

2i
∗−1, if ∆zi∗ > 0

−1, if ∆zi∗ ≤ 0
(3.1)

where i∗ is

i∗ = argmax
i∈{1,2,...,8}

∆zi
xi
. (3.2)

Here i∗ is the index of the chosen neighbor, and the resulting flow direction d is
encoded the same way as the one Jenson and Domingue uses [16]. For an arbitrary
cell c, the possible encodings are shown in Figure 3.2. If none of the cell’s neighbors
are lower in elevation, we set d to -1. These cells will be referred to as local minima
cells in Algorithm 1. Later in the algorithm, we will combine adjacent local minima.

In the following we will not calculate flow directions for boundary cells, which
means that these cells are only used in the calculations of the interior cells’ (cells

19

with eight neighbors) flow directions. This is because we do not have enough
information to determine the boundary cells’ flow directions. One upside of this, is
that we avoid special cases where the number of neighbors vary, which makes the
implementation easier.

When we run the algorithm, each cell in the grid is assigned a flow direction that
is either one of the cardinal directions (N, S, W, E), or one of the diagonal directions
(NW, NE, SW, SE), with the exception of cells where none of its neighbors are at a
lower elevation. In Example 2 we explain how the encoding can be useful for an
MFD algorithm. For now we will only allow flow in one direction from a cell, so
another possible encoding could be to simply use the index of the chosen neighbor.

Example 2. For an SFD algorithm, the flow direction encoding is 1 for a northeastern
flow direction, 2 for an eastern flow direction and so on, but an encoding as a power
of 2 also allows us to uniquely describe multiple flow directions at once. This can
be useful for an MFD algorithm. One example of this is the simultaneous flow in
the three directions N , SW and S. If we sum their individual encodings, we get a
value of 152, which can only be achieved by these exact directions.

c32 2

16 8 4

64 128 1

Figure 3.2: Flow directions encoding for an arbitrary cell x. If the flow is towards
the northeast its flow direction is encoded as 1. East is 2, southeast is 4, etc. This is
the same encoding used by Jenson and Domingue (1988) [16].

We will now look at an example grid where the elevations for the grid points
are given in Figure 3.3(a). After we have used Equation (3.1) to calculate the flow
directions for the interior cells, we obtain the result in Figure 3.3(b). In Example
3 we explain a little bit more about the result, and we will use the cell indices in
Figure 3.3(c) as part of the explanation.

Example 3. In this example we will make some remarks about the resulting flow
directions in Figure 3.3(b). Our flow direction algorithm assigns the flow directions
according to Equation (3.1) — if a cell has a neighbor at a lower elevation, the cell is
assigned one of the flow directions in Figure 3.2, but if it does not, its flow direction

Compute flow paths 20

(a) Landscape elevations. (b) Flow directions. (c) Overview using indices.

Figure 3.3: An example showing a landscape and the flow directions for the interior
cells.

is set to -1. Note also that only the interior cells (white background) have been
assigned flow directions.

In the landscape, three cells have been assigned a flow direction of -1: cells 7, 13
and 22. If we look at the elevations in Figure 3.3(a), we see that these local minima
cells are part of flat areas, where none of their neighbors are at a lower elevation. In
Figure 3.3(c) all local minima have been encircled.

To delineate watersheds, we want to answer the question: ’If a bucket of water is
poured out in cell c, where will the water flow?’ This question must be answered
for all cells in the domain. The flow from cell c will stream from cell to cell until it
hits a local minimum cell, which we refer to as cell c’s flow destination. In Example
4 we find the flow destination (and flow path) for one of the cells in Figure 3.3(c).
Because we do not assign flow directions to boundary cells, we will also not allow
flow to the boundary. This will not change the watershed delineation of the interior
cells. In cases where the flow direction is towards the boundary, we will change the
flow direction to -1. This has not been done yet to cell no. 10 in Figure 3.3(c).

Example 4. In this example we want to find the flow path and flow destination
of a cell in the landscape shown in Figure 3.3(a). In Figure 3.3(c) we can see the
resulting flow directions in the landscape. All flow paths will end up in one of the
local minima cells, and for reasons we just discussed, we also consider cell no. 10 to
be a local minimum. Because the local minima cells are part of pits or lakes, it is
natural that the other cells are routed to them.

We want to study the flow path from cell no. 9 in Figure 3.3(c). The flow
directions in Figure 3.3(b) tells us that water flows southwards from no. 9, which
brings us to cell no. 15. From here the flow is in the southeastern direction, i.e.,
towards cell no. 22. Because its flow direction is encoded as -1, the flow cannot
continue. This means that cell 22 is cell 9’s flow destination.

To do this for all cells, we first alter the flow directions for the cells with flow to
the boundary. Afterwards we transform the flow direction encodings to cell indices.
For each cell, we route the flow to the next cell, and check if it is a local minimum.

21

If it is, we have found its flow destination, otherwise, we proceed. When we have
calculated all flow destinations, we can combine the cells that have the same flow
destination into a local watershed. In a local watershed every cell has a flow path to
the same minimum. In Example 5 we show the local watersheds from the landscape
in Figure 3.3(a).

Example 5. The left figure in Figure 3.4 shows the landscape from Figure 3.3(a)
divided into local watersheds, of which there are four. We can see that all cells are
connected to a minimum: cells 9, 15, 16 and 21 are connected to cell 22; cell 8 is
connected to 7; cells 14, 19 and 20 are connected to cell no. 13, and cell no. 10 make
out its own local watershed.

In Figure 3.3(a) we can see that the two adjacent minima 7 and 13 are actually at
the same elevation, so water can flow between the two cells. Thus it makes sense
to combine their local watersheds, which brings us to the next step — connecting
adjacent minima cells, and their respective local watersheds.

Figure 3.4: The left figure shows the local watersheds in a landscape. The blue bor-
ders separate the local watersheds in the interior of the domain (white background).
The minimum cell in each local watershed is encircled and the flow direction of each
cell is shown. In the right figure we combine the local watersheds of all minima
that are adjacent to each other. This is because water can flow between the adjacent
minima cells, and hence between their local watersheds.

3.3 Combine local watersheds
DEMs are usually pre-processed in different ways, and we can take advantage of
this to locate the lakes. In our DEM, the grid points in each lake have been assigned
the exact same elevation, and we will assume this only applies to lakes1, so that

1It is not known whether e.g., parking lots and soccer fields have also been assigned elevations in
this way.

Compute spill pairs for all watersheds 22

flat areas are equivalent to being lakes. We know that all cells in a flat area will
be classified as local minima cells (i.e., cells with a flow direction of -1), so if we
combine all adjacent minima cells in the landscape, we will obtain the lakes. Now
that a lake can be represented by a collection of minima cells, we can obtain the
lake’s watershed if we merge the local watersheds of the minima cells.

To combine local watersheds of adjacent minima, we need to know which minima
are adjacent to each other. To do this, we look at each minimum and its eight
neighbors. If the minimum has a neighbor that is also a minimum, we create a tuple
with the indices of both minima. Each tuple represents that the adjacent minima
cells are connected, and that water can flow between them. All the connections can
be made into an undirected graph, where the vertices are the minima cells and the
edges are the connections between them. To get all adjacent minima we calculate the
connected components of the undirected graph. In Example 6 we show an example.

Example 6. Let a landscape contain five minima cells mi where i ∈ [1,2, . . . ,5]. We
first add all minima cells as vertices to our undirected graph, and afterwards we find
the connections between them. For each minimum we check if it has any neighbor
cells that are also minima cells, and if it has any, we add edges to represent that they
are adjacent to each other. In our example we assume m1 and m2 are adjacent, so we
add an edge between them. Ifm3 is adjacent tom2, we add another edge. This leaves
the cells m4 and m5. Let us assume the two cells are only adjacent to each other, and
not adjacent to any of the other three. Then a third and final edge is added. After
all minima have been checked, we calculate the connected components from the
undirected graph. In this case we get two connected components: {m1, m2, m3} and
{m4, m5}. These are shown in Figure 3.5.

After we have combined adjacent minima cells, we combine their respective
local watersheds to obtain the watershed of each combination. When we do this for
the example in the left figure in Figure 3.4 we get three combinations of minima
(three connected components), which means we get three watersheds. The obtained
watersheds are shown in the right figure in Figure 3.4. The local watersheds of cells
7 and 13 have been merged as their minima were adjacent to each other, whereas the
two others have been left as is because they did not have neighboring minima cells.

3.4 Compute spill pairs for all watersheds
For a large DEM we will have thousands of watersheds, and for each watershed we
want to figure out where it will spill over if it is filled with water. Once we know
the elevations of the spill points, we are close to having obtained a depressionless
landscape.

The cell where it pours out of the watershed, and into another, is called the
spill point (some articles may refer to it as the pour point). The pair with the spill
point, and the cell that it spills to, is called the spill pair. Often there are multiple
viable choices of spill pairs, and we will base our choice of spill pair on three factors:

23

Figure 3.5: Let the vertices labeled m1 through m5 represent five minima cells in a
landscape. For each minimum mi we check if any of its neighbors are minima; if
this is the case, we add an egde between the two vertices. Afterwards, if we calculate
the connected components of this undirected graph, we will get the minima that are
adjacent to each other. In this case we get the two connected components {m1, m2,
m3} and {m4, m5}.

the elevation of the boundary cells in the watershed, the elevation of cells at the
boundary of the surrounding watersheds, and the elevation of the domain boundary.
A boundary cell is here referred to as a cell in the watershed where at least one of
its eight neighbors are outside of the watershed. If there happens to be multiple
suitable spill pairs, we choose the one with the steepest descent.

In Algorithm 2 we calculate the spill pairs for the watersheds. The first step is to
calculate all boundary pairs for each watershed. A boundary pair is a pair of cells,
where the first cell is located in the watershed in question, while the other cell is
a neighbor cell in another watershed, or at the domain boundary. Out of all the
boundary pairs, only one will be chosen as the watershed’s spill pair. This procedure
is basically the same as the one found in Jenson and Domingue [16] for determining
pour points between watersheds.

Next, we turn our attention to the left figure in Figure 3.6, which shows a
landscape with three different watersheds: one orange, one green and one blue. In
Example 7 we will walk through the algorithm to obtain the spill pairs for the three
watersheds.

Example 7. In this example we will walk through the steps in Algorithm 2 to obtain
the spill pair for the blue watershed in the left figure in Figure 3.6. In the right
figure we show the elevations of the landscape. We will also find the spill pairs for
the green and orange watershed.

Compute spill pairs for all watersheds 24

Algorithm 2 The CalculateSpillPairs algorithm calculates where a watershed will
spill over, and where it spills to, if it is filled with water.

1: function CalculateSpillPairs(watersheds, E)
2: spill_pairs← []
3: for each ws in watersheds do
4: boundary_pairs← CalculateBoundaryPairsOfWatershed(ws)
5: max_pair_elevations← GetMaxPairElevations(boundary_pairs, E)
6: spill_height← GetMinimumValue(max_pair_elevations)
7: spill_pairs← PotentialSpillPairs(boundary_pairs, spill_height) .

Boundary pairs where their min of max equals spill height
8: selected_spill_pair ← SelectSteepestDescentSpillPair(spill_pairs, E)
9: spill_pairs← [spill_pairs, selected_spill_pair]

10: end for
11: return spill_pairs
12: end function

The first step in the spill pair-algorithm is to calculate the boundary pairs for
the watershed. One example of this, is the boundary pairs of cell no. 31, which have
been drawn in the figure. After we have found all boundary pairs for the other cells
in the blue watershed, we take the maximum elevation of each pair. One example
of this is the pair (31, 23) which has a maximum elevation of eight. If we do this
for all boundary pairs in the blue watershed, we get a list of maximum elevations;
the spill height hspill is obtained when we take the minimum of this list. The spill
height of the blue watershed will be hspill = 3, a value which is obtained in the two
boundary pairs (31, 25) and (31, 32), so these pairs will be the output from the
PotentialSpillPairs-function in Algorithm 2. We see from the right figure that if we
fill the blue watershed with water to the spill point elevation, it will overflow into
the orange watershed for both pairs. We could also have had a landscape where the
pairs spilled into different watersheds, and we had to choose one of them.

In reality there will typically be a difference in elevation, so that the spill pair is
unique. However, the data precision may not reflect this, which results in two points
being assigned the same elevation. If we have multiple spill pairs in our algorithm,
we choose the pair with the steepest descent away from the watershed. This is a
convention, and we could have chosen any of them. Based on this the boundary pair
(31, 25) is chosen as spill pair for the blue watershed.

Afterwards, we perform the same steps for the other watersheds. The orange
watershed will have (26, 27) as its spill pair with a spill height hspill = 3, while the
green watershed has (8, 0) as spill pair and hspill = 4 as spill height.

Occasionally, the spill pairs will create a cycle when water spills from watershed
to watershed. If we change the elevation of cell 27 in Figure 3.6 from two to ten, this
will create a cycle in our example. The spill pair of the orange watershed will change
to (32, 31), which creates a situation where the orange and the green watershed spill

25

Figure 3.6: The left figure shows a landscape with three watersheds: a blue, an
orange and a green. The boundary pairs for one of the cells in the blue watershed
have also been drawn. In the right figure, the elevations in the domain, and the
spill pairs (black arrows) of the watersheds are shown. The spill pair arrows shows
which watersheds that will flow to which given that the domain is filled with water
until the watersheds overflow.

into each other. In those special cases, the watersheds are combined, and a new
spill pair is calculated. In this case, the new spill pair will be (23, 15) with a spill
height of hspill = 8. Two watersheds that are spilling into each other are in reality
only two sub-watersheds of a larger watershed, which is why we merge them. If the
cycles are not removed, there will be watersheds that potentially can accumulate
infinite amounts of water. A cycle will also make it impossible to create a hierarchy
of watersheds.

The process where we combine watersheds that spill into each other can poten-
tially require many iterations. This especially holds true for a large grid. Figure
3.7 tries to explain why this is so. The example shows four different watersheds
that are iteratively combined because they are spilling into each other, a process
which requires four iterations. With small variations in elevations and thousands of
watersheds, the number of iterations can quickly accumulate.

3.5 Identify traps and raise elevations
In a depressionless landscape there will always be a monotonically decreasing path
to the boundary. This is not the case for our landscape yet, but after we found the
spill pairs and spill heights for each watershed in Section 3.4, we are closer than
ever.

We call the region below the spill height in the watershed for a trap, because

Identify traps and raise elevations 26

Figure 3.7: Illustration of the process where watersheds that spill into each other
are iteratively added. In the process, we imagine that we fill all watersheds in the
landscape up to the brim, and then add a little more water. If two watersheds spill
into each other, we merge the two watersheds. After each merge, the watersheds are
again filled to the brim, and the process is repeated.

it essentially traps all water below the spill height. In our DEM we can probably
assume that the surface elevations of the lakes are above the elevations of the rivers’
riverbeds flowing out from the lakes. This means that the flow from a lake will
continue even if its surface elevation is reduced. It is not certain that this is picked
up by the DEM. If a lake has a surface elevation below that of its surrounding area,
and the DEM does not have a resolution that picks up the river running out of it, the
spill height for the lake’s watershed will be set to a higher elevation than the lake’s
surface elevation. The consequence of this is that the traps might have a larger area
than the lakes.

Now that we have both the watersheds and the spill heights, we can identify the
trap in each watershed as the cells that are below the spill height. The final step we
need to do to obtain a depressionless landscape is to raise the elevations of the trap
cells to their respective spill heights. This way all cells in a watershed are either
above the spill height, or at the spill height, which ensures that the flow will not
stop in a depression (because they have been removed).

If the flow directions are to be used in further calculations, it is important to
remember that the new elevations of the depressionless landscape will also change
the flow directions; areas that were once hilly, might now be completely flat. In a

27

Figure 3.8: The initial landscape before we make it depressionless is shown in the
left figure. In the right figure all depressions (orange borders) have been filled to
make it depressionless. We can see that every cell in the depressionless landscape
has a flow path to the boundary that is monotonically decreasing. This ensures that
the flow does not stop anywhere.

later chapter we experienced a problem where the the delineated watershed of an
outlet had areas with adjacent traps in the landscape. To avoid this problem, we
will recalculate the watersheds and spill pairs.

Figure 3.8 shows how the example landscape from Section 3.1 changes when we
make it depressionless. The left figure shows the initial landscape, while the right
shows the resulting depressionless landscape. All depressions that have been raised
in the process have an orange border around them.

Two slightly more advanced examples are presented in Figure 3.9. The top left
figure shows the elevations of the landscape before it is made depressionless (E
in Algorithm 1). It is the same elevations as in the right figure in Figure 3.6. The
green and blue sections represent the different watersheds, and the spill points are
indicated with arrows. In the top right figure, we show how the depressionless
landscape will look like (dE in Algorithm 1). In the figure to the bottom left we
change the elevation of one of the cells at the right boundary, which changes one
of the spill points. Compared to the top right figure, this radically changes the
depressionless landscape.

3.6 Create cell connectivity matrix
In order to obtain the watershed of an arbitrary cell in the landscape, we create a
sparse connectivity matrix conn_mat that is based on the calculated flow directions,

Create cell connectivity matrix 28

Figure 3.9: The top left figure shows two watersheds, their spill pairs, and the
elevations before we make the landscape depressionless. In the top right figure
we show the resulting elevations. The two bottom figures show a slightly different
landscape, where we have altered the elevation of one of the boundary cells (increase
from two to ten). In the bottom right figure we can see that this radically changes
the depressionless landscape (compared to the top right figure).

29

the traps and the spill pairs. The elements in the connectivity matrix represent
which cells are upslope and downslope of each other. If water in cell x flows to cell
y, there will be a one in position (x, y) in the connectivity matrix. The connectivity
matrix makes it possible to obtain the watershed of any cell in the landscape, by
tracing its upslope cells. If our landscape is represented by a DEM of size m x n, the
connectivity matrix conn_mat will be mn x mn, but because it is sparse it will not
store that many elements. The algorithm to construct conn_mat is presented below
in Algorithm 3.

Algorithm 3 The CreateConnectivityMatrix algorithm constructs a connectivity ma-
trix for the cells in the landscape based on f low_directions, traps and spill_pairs.

1: function CreateConnectivityMatrix(f low_directions, traps, spill_pairs)
2: conn_mat← ConstructInitialConnectivityMatrix(f low_directions)
3: ExpandConnMat(traps, conn_mat)
4: AddDownslopeFromTrapNodes(traps, spill_pairs, conn_mat)
5: AddUpslopeToTrapNodes(traps, conn_mat)
6: RemoveUpslopeToOldTraps(traps, conn_mat)
7: RemoveFlowOutOfBoundary(conn_mat)
8: return conn_mat
9: end function

We will use Figure 3.10 to illustrate the algorithm, and the landscape elevations
are shown in the left figure. The first step is to construct an initial conn_mat based
on the flow directions in the middle figure, which we show in Example 8.

Example 8. The grid in the middle figure in Figure 3.10 has a size of 6x6, which
means that conn_mat is 36x36. If we add a connection for every flow in the figure,
the only nonzero elements in conn_mat will be in the positions: (9, 10), (14, 15), (15,
16), (19, 25), (20, 26), (21, 27), (22, 28) and (28, 27). The flow of water will be from
the first index to the second index in each pair. Notice that there is no internal flow
in each trap, which will hinder us from obtaining a correct watershed delineation
for an outlet. To get it to work, we have to modify conn_mat.

In Example 8 we mention the lack of flow between cells in the traps. We have
purposely refrained from assigning flow in traps to make the code more efficient.
To complete the flow within the whole landscape, we represent all cells in each trap
by a single cell which we call a trap node. Afterwards we reroute all incoming and
outgoing connections to the trap nodes.

In the connectivity matrix, we first expand the size of conn_mat by the number
of traps t. The trap nodes are numbered from mn x mn up to mn x mn+ t, which we
show in Example 9.

Example 9. Our connectivity matrix is based on the flow directions in the middle
figure in Figure 3.10. We want to expand conn_mat by the number of traps t in the

Create cell connectivity matrix 30

(a) Landscape elevations. (b) Flow directions. (c) Final connections in
conn_mat.

Figure 3.10: The left figure shows the elevations of the landscape, while the middle
figure shows the corresponding flow directions which are needed to create the cell
connectivity matrix. In the figures the colored areas show the watersheds, the white
areas the traps, and the flow directions are indicated by black arrows. The right
figure shows the flow directions after each trap has been merged to a single trap
node. All incoming and outgoing flow from traps have been rerouted using the new
trap node indices.

landscape, which in our case is three. This means the size of conn_mat is increased
to 39x39. In our example the three trap nodes get the indices 36, 37 and 38. We can
see the new indexing of the traps in the right figure.

Now that conn_mat is expanded, we will add the connections in and out of the
trap nodes, remove the connections to the old traps, and also remove the flow to
the boundary. In Example 10 we show how we obtain the final connections in the
connectivity matrix, shown in the right figure in Figure 3.10.

Example 10. We will use the steps after conn_mat has been expanded in Algorithm
3 to obtain the complete connectivity matrix. First we use the spill pairs to add all
outflow from the new trap nodes, i.e., the connections (36, 18), (37, 22) and (38, 31).
This ensures the flow out of traps. Next we need to add the upslope connections
to the trap nodes, i.e., the flow to the former trap cells. All connections that were
previously routed to different cells in a trap will now be routed to the same trap
node. One example is the connections to cell 37 — after we have added (9, 37) and
(15, 37), we remove the former connections (9, 10) and (15, 16). We also do this for
the other traps. When we have done this for all traps we get the connections: (9, 37),
(14, 15), (15, 37), (19, 38), (20, 38), (21, 38), (22, 28), (28, 38), (36, 18), (37, 22) and

31

(38, 31). The last step is to remove all connections going to the boundary. This means
that (36, 18) and (38, 31) are removed. The resulting connectivity matrix enables us
to delineate the watershed of any cell in the landscape. The final connections in the
connectivity matrix conn_mat is shown in the right figure in Figure 3.10.

We have now created a connectivity matrix where all cells are accounted for.
This means that we can use conn_mat to calculate the watershed of any cell in the
landscape. In the following, we will base our selection of a watershed outlet on the
flow accumulation in the landscape. This is because a point in the landscape with a
high flow accumulation will have a large watershed. In the next section we calculate
the flow accumulation.

3.7 Calculate flow accumulation
Now that we have calculated the connectivity matrix, we are able to delineate the
watershed of any point in our DEM. To select a point in the landscape we calculate
the flow accumulation, because it shows the locations of all major rivers and lakes.
Usually we are interested in the hydrograph from rivers with a large watershed, and
these are now possible to find. Below we outline an algorithm to calculate the flow
accumulation in the entire landscape.

Algorithm 4 The CalculateFlowAccumulation algorithm takes the connectivity ma-
trix conn_mat as input and calculates the flow accumulation in the landscape.

1: function CalculateFlowAccumulation(conn_mat)
2: start_cells← GetStartCells(conn_mat, traps)
3: f low_acc← AssignFlowAccToStartCells(traps, start_cells)
4: current_cells← GetDownslopeCellsOfStartCells(conn_mat, start_cells)
5: while current_cells do
6: cell_indices← AssignFlowAccTo(f low_acc, conn_mat, current_cells)
7: values← GetFlowAccValues(conn_mat, f low_acc, cell_indices)
8: f low_acc← UpdateFlowAcc(f low_acc, cell_indices, values)
9: current_cells← UpdateCurrentCells(cell_indices, current_cells)

10: end while
11: f low_acc← SetFlowAccToAllCellsInTraps(f low_acc, traps)
12: return f low_acc
13: end function

To explain the steps in Algorithm 4 we will use the example landscape in Figure
3.10. The first step in the algorithm is to assign flow accumulation to start cells.
A landscape will always have local maxima cells without any upslope cells, and
these will not have any flow accumulation besides their own contribution. In our
algorithm we use these cells as our starting cells, and they are the first cells we
assign flow accumulations. To calculate the start nodes we remove all boundary

Calculate flow accumulation 32

cells, cells with an upslope, and the original trap cells. The cell indices that remain
afterwards will be our start cells. We show the process in Example 11.

Example 11. The right figure in Figure 3.10 shows all connections in the landscape,
i.e., the flow for each cell in the terrain. After we remove the boundary cells, and
the cells with an upslope, we are only left with the cells with indices 9, 14, 19, 20,
21 and 36. These will the start_cells in Algorithm 4.

The flow accumulation algorithm is an iterative algorithm where we only assign
flow accumulation to a cell if all its upslope cells have already been assigned a
flow accumulation. The reasoning behind this is e.g., a point where two rivers
meet. Until the upslope area of both rivers are known, we cannot assign the point
a flow accumulation. The first cells we assign flow accumulations are the start
cells. If the start cell is a single cell, its contributing area will be one. If it is a
trap cell, it will be assigned a flow accumulation based on the number of cells
the trap cell represents. Afterwards, we add their downslope cells to the variable
called current_cells in Algorithm 4. This variable keeps track of cells that have been
reached by either one or several upslope cells. If there are cells in current_cells with
all their upslope cells’ flow accumulation assigned, they are added to cell_indices,
and we find their upslope areas (which also include the cells’ own sizes) values.
Afterwards we remove the cells from current_cells, but add their downslope cells.
Then the flow accumulation f low_acc is updated with the new entries. We do this
until current_cells is empty, which means that all cells have been assigned a flow
accumulation. We will show an example of the algorithm in Example 12, where we
will use f as a shorthand form of the flow accumulation value.

Example 12. In Example 11 we found the start cells, which we immediately can
assign f -values. Every cell in start_cells with an index below 36 is assigned one,
and cell 36 is assigned three, because it has a size of three cells. We then add their
downslope cells to current_cells: 15, 37 and 38. Out of these three cells only one
of them have all their upslope cells’ f -values defined: cell 15, which only relies on
the flow from cell 14. We can not assign an f -value to 37 because one of its upslope
cells, cell 15, do not have an f -value yet. In the next iteration, this is no longer true,
and cell 15 will be assigned an f -value of 2. Because its downslope is already in
current_cells, it is not necessary to add it again.

In the next iteration the cells in current_cells are 37 and 38. Now that both
upslope cells of 37 have an f -value, cell 37 is also assigned one, in this case a value
of 5. The downslope of 37 is then added, so the updated current_cells consists of
cells 22 and 38. Cell 22 is assigned an f -value of 6, and 28 is added to current_cells.
28 is assigned a value of 7, and finally only cell 38 remains in current_cells. Because
its four upslope cells now have a defined flow accumulation, it is assigned a flow
accumulation of 13.

The last step in the algorithm is to assign f -values to all original trap cells in the
landscape. This means that e.g., cells 25, 26 and 27 receive an f -value of 13. The

33

final resulting flow accumulation is shown in Figure 3.11. The darker the blue, the
larger the flow accumulation.

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 3.11: The flow accumulation of the example landscape. The trap in the
lower left corner has the darkest color. It accumulates flow from all 13 cells in the
watershed, as we recall that the three cells in the top left corner belong to a different
watershed.

In the Results section a flow accumulation plot of the entire Tyrifjorden land-
scape will be presented.

3.8 Get watershed of outlet
After we have calculated the flow accumulation in the landscape, we can visually
decide on a cell to be our outlet. A typical choice is a cell in a river which historically
often floods, and causes damage to houses and infrastructure. These locations are
often close to areas used by people, which is why the damage potential is great.
Once we have the coordinates of the cell, we will use the connectivity matrix from
Section 3.6 to obtain the watershed of the outlet.

Let us call the watershed of the outlet wo. The connectivity matrix gives us the
upslope cells of any given cell, so the algorithm starts by finding the upslope cells
of the outlet, which are added to wo. Sometimes it happens that an outlet point
has no upslope cells from the connectivity matrix. This happens in two cases: 1.
The outlet point actually has no upslope cells, which yields a wo with only one cell,
and 2. The outlet point is in a trap. We recall from Section 3.6 that only the trap
cells representing the traps have any connections in the connectivity matrix. The
individual cells in the traps do not have any connections, which explains why the

Get watershed of outlet 34

cell has no upslope cells. In that case a mapping between cells and traps is used to
locate the trap. Once we know the trap cell index, we can check if it has any upslope
cells. After all upslope cells have been found, the trap cells are mapped to their
traps. Then wo has been found.

We will now shown an example of how we get the watershed of an outlet. The
left figure in Figure 3.12 will be our landscape. It is the same figure as the right
figure in Figure 3.10, but to make it convenient for the reader, we present it again
here. As outlet we will use cell 26, which is the middle cell of the trap that trap
node 38 represents. From the accumulated flow plot in Figure 3.11 we know that its
flow accumulation is high.

Example 13. In this example we will calculate the watershed of outlet cell 26 in the
left figure in Figure 3.12. We will call the watershed for w26. In the first step we
check if the outlet cell has any upslope cells. Because it is a part of a trap, there are
no incoming or outgoing connections in the connectivity matrix. We use a mapping
between 1D-indices and the traps to locate cell 26 in trap node 38, which gives us a
temporary w26 = {38}. If we include cell 38’s upslope cells we obtain the watershed
w26 = {19,20,21,28,38}. We iteratively add new upslope cells of the upslope cells
that were recently added, i.e., {19, 20, 21, 28}. Their only upslope cell is cell 22,
which is added to w26. We proceed by adding cell 22’s upslope cells, which is
only cell 37. Next, cells 9 and 15 are added to w26, and finally their upslope cells,
which is only cell 14. This leaves us with w26 = {9,14,15,19,20,21,22,28,37,38}.
Now the trap cells must be mapped back to its traps. Cell 37 becomes {10, 16}
and cell 38 becomes {25, 26, 27}. The final delineated watershed for cell 26 is
w26 = {9,10,14,15,16,19,20,21,22,25,26,27,28}, which we show in the right figure
in Figure 3.12.

In this chapter we have created an algorithm, Algorithm 1, that is able to delin-
eate the watershed of any location in a DEM. We will use the obtained watershed,
watershed_of _outlet, in the following chapters. In the next chapter we will calcu-
late the travel times for all cells in the watershed, which in turn will be used for the
hydrograph calculations.

35

Figure 3.12: The left figure is the same as the right figure in Figure 3.10, but we show
it again so it is easier to follow the algorithm. The figure shows the three different
watersheds, their respective traps, spill pairs and flow directions. It illustrates the
information that is used to obtain the watershed of cell 26: w26. The resulting
watershed is shown in the right figure, and is the entire blue region. This means
that all water that falls within the blue region eventually ends up at the watershed
outlet.

37 Travel time estimation

4 Travel time estimation
In Chapter 3 we created and implemented an algorithm to delineate the watershed
of any location in the landscape. We now move on to the next part, which is to
estimate the runoff after a rainfall and visualize it in a hydrograph. In order to
do this, we need to know the time it takes water to travel from any location in the
watershed to the watershed outlet. In the time-area method this is often referred to
as the travel time [7, 30], and in this chapter we will obtain the travel time based on
the so-called time-of-flight equation [21].

Chow et al. [6] defines the travel time along a path from an arbitrary point β in
the watershed to the watershed outlet as

t(L) =
∫ L

0

dl
u(l)

, (4.1)

where L is the path distance, u(l) the particle speed along the path, and t the travel
time. If we divide the path into segments, and assume a constant speed ui along the
path segment li , the equation can be discretized into

t(L) =
I∑
i=1

li
ui
. (4.2)

The ui-values usually come from formulas that estimate the speed for overland flow
and channel flow (Manning’s Equation), but to make it simple, tables with different
slopes and terrain types are often used. This approach is similar to the segmental
velocity approach that we mentioned in Chapter 2.4.

Another method to estimate travel times, is to parametrize the streamline going
from point β to the watershed outlet, by using the time-of-flight. Lie [21, pp. 128-129]
outlines this method, and we will summarize the main points here. A streamline
from point β to the outlet, can be parametrized as ~x (r), where r is the arc length
from β to the outlet. We can also use the time-of-flight as parametrization, which
we will do here. Given a velocity field ~v, the time-of-flight is defined as

T (r) =
∫ r

0

φ(~x (s))∣∣∣~v (~x (s))
∣∣∣ ds, (4.3)

where T (r) represents the time it takes water to travel from β along the streamline
to the outlet. We see that Equation (4.1) is equal to Equation (4.3) if u = |~v | /φ.

To explain the φ-parameter in Equation (4.3), we assume a water flow along
a streamline from position A to the watershed outlet B. The streamline can be
discretized into cells that represent each path segment, shown in Figure 4.1. In
the model we will use, the water must completely fill up a cell before the flow can
continue to the next cell. To represent the fraction of volume that can be filled in

Get watershed of outlet 38

each cell, we set the φ-parameter for each cell to a value between zero and one. If φ
is low, the cell is quickly filled, and the particle speed |~v | /φ in the cell increases.

We will use φ = ε for the trap cells, where ε is a small value. This will increase
the particle speed in traps, and reduce the time it takes to cross them. We base this
on the assumption that traps in the landscape are completely filled with water, so
the water that enters, immediately flows out at the other side. Another way to think
of φ, is that φ represents the fraction of the cell volume that is soil. If we assume a
constant rate of flow (e.g., from precipitation), the water will flow faster in areas
with less soil. Neither a lake, nor a rock face, contains any soil, and because our
previous assumption only justifies high speed for lakes and ponds, we assume that
all non-trap cells contain soil. Our interpretation of φ is problematic if we account
for saturation, as a fully saturated cell will act like a trap cell completely filled with
water. Hence, our model will not account for the degree of saturation.

Figure 4.1: A series of cells represent a discretized streamline from point A to point
B in the landscape. In the model we use, the water needs to fill each cell before it
can continue to the next. The time it takes to reach point B will then depend on how
much water that can be filled in each cell, which is given by φ.

It is possible to write Equation (4.3) as

dT
dr

=
φ∣∣∣~v ∣∣∣ = ∇T · ~v∣∣∣~v ∣∣∣ , (4.4)

which we can write into the so-called time-of-flight equation,

~v · ∇T = φ. (4.5)

To use the equation, we need to approximate the velocity field ~v. If we assume
the flow in the watershed is a creeping flow, it enables us to use Darcy’s Law for
single-phase flow in porous media [21, p. 16],

~v = −κ (∇p+ ρg∇z) , (4.6)

where we obtain the so-called Darcy velocity. In the equation, κ is the permeability,
p the pressure, g the gravitational constant, ρ the mass density of the soil, and z the
elevation of the landscape. In a more complex model we would also include the
equation for the conservation of mass.

39 Travel time estimation

We will use a simplified version of Equation 4.6, where we set ∇p = 0. This is
based on the assumption that the atmospheric variations in the landscape are small,
if the differences in elevations are small. We also assume a constant pressure in the
upper soil layer. To further simplify, we set the term ρg to one.

A velocity field ~v based on topography alone, is not sufficient to realistically
represent velocities in the watershed. A simple example that shows this, is water
flow down two identical hills (same slope), but with a different surface: one with
sand, the other with granite. Because a granite surface has a lower friction, the water
will flow at a higher velocity down this hill, even though the two hills have the same
shape. These heterogeneous properties can be included in κ, which we can write as

κ = f (vegetation,snow, . . . , soil type), (4.7)

where f is a function that determines the influence each property has on the velocity
~v. Some of these properties might also affect φ.

The aforementioned simplifications result in an equation that relates the speed
to the slope in the terrain, and is scaled by a function of the heterogeneous properties
that affect the water flow speed,

~v = −κ∇h. (4.8)

If the model were to be calibrated, κ has to be determined based on how well the
runoff matches historical data. Because the model is based on physical parameters,
it will hopefully also work for ungauged watersheds. In our initial rainfall-runoff
model, we will set κ = 1 in our implementations. When it comes to the simulation
of rivers, our model will not be ideal, because we have assumed flow in a porous
media.

In our calculations we will assume that the time-of-flights are constant. This
is in general not true, as the flow rate and flow depth will change flow velocities
in a nonlinear way [2], but if we update our velocity field ~v over the course of the
simulation, we can change the time-of-flights, so that they are not constant.

The time-of-flight equation is popular in simulations of oil reservoirs [21, 17],
because the time-of-flight T represents the time it takes a particle to travel from
the nearest injector well to the production well. In our scenario we are not only
interested in the time from one point to the watershed outlet, but instead the time it
takes from the watershed outlet to every point in the watershed. We can find this by
flipping the fluxes in Equation (4.5).

To solve the time-of-flight equation we will use a solver from the diagnostics
module in the Matlab Reservoir Simulation Toolbox (MRST) [21]. It is a package
tailored for the oil industry, so its functionality is mostly related to the simulation
of reservoirs and subsurface flow, but because we model our flow as creeping flow,
we can use it for our simulations. In the next section we will discretize Equation
(4.5) using the so-called finite-volume method.

Finite-volume discretization 40

4.1 Finite-volume discretization
In order to solve Equation (4.5), we need to discretize the equation; a finite-volume
method [35] is used to accomplish this. In the finite-volume method, a so-called
control volume (a small volume) is constructed around each node point in the mesh.
We will use a cell oriented arrangement of nodes, where each grid point is located
in the center of a control volume. Both sides of the equation are integrated over a
cell volume, and the divergence theorem is used to convert it into a surface integral.
In the discretization, we will use an upwind scheme, as e.g., a centered scheme is
unstable [21, p. 140].

The first operation we do is to integrate equation (4.5) over an arbitrary control
volume Ci . We will think of the control volume as a cell with index i, which is the
structure we will use in MRST.∫

Ci

~v · ∇T dV =
∫
Ci

φ dV (4.9)

The product of a scalar-valued function and a vector field can be used to rewrite
(4.9), ∫

Ci

∇ · (T ~v)− T (∇ · ~v) dV =
∫
Ci

φ dV .

Next, we use the divergence theorem and obtain∫
∂Ci

T (~v · ~n) dS︸ ︷︷ ︸
a

+
∫
Ci

T (∇ · ~v) dV︸ ︷︷ ︸
b

=
∫
Ci

φ dV . (4.10)

We need to discretize both a and b in (4.10), and we start with a:∫
∂Ci

T (~v · ~n) dS =
∑
j∈U (i)

Tjfij + Ti
∑
j∈D(i)

fij . (4.11)

In Equation (4.11) we separate the boundary faces based on whether the flow over
the face is downstream or upstream from control volume Ci . The downstream
indices are D(i), and the upstream indices are U (i). The flux over the face between
cells i and j is fij .

To discretize b in (4.10) we again apply the divergence theorem and get∫
Ci

T (∇ · ~v) dV = Ti

∫
Ci

∇ · ~v dV

= Ti

(∫
∂Ci

~v · ~n dS

)
= Ti

 ∑
j∈D(i)

fij +
∑
j∈U (i)

fij

 .

41

We insert a and b back into (4.10) and get ∑
j∈U (i)

Tjfij + Ti
∑
j∈D(i)

fij

− Ti
 ∑
j∈D(i)

fij +
∑
j∈U (i)

fij

 = φi |Ci | ,

which we can further simplify to∑
j∈U (i)

Tjfij − Ti
∑
j∈U (i)

fij = φi |Ci | ,

and rearrange to finally obtain an expression for cell i’s time-of-flight:

Ti =

∑
j∈U (i)Tjfij −φi |Ci |∑

j∈U (i) fij
(4.12)

Now hat we have looked at the theory, we will turn our attention to the imple-
mentation we need to do to be able to run the solver in MRST. We recall that for
an arbitrary cell i, Ti is the average time a particle needs to travel from cell i to the
watershed outlet. It is an average because there are usually more than one flow path
leading from cell i to the outlet.

The coordinates of the watershed we acquired in Chapter 3 is not the only thing
we need in our calculations of the time-of-flight. We also need the elevations in our
depressionless landscape dE, the flow directions, and traps and spill pairs. Finally,
we need information about where the outlet is. In the following sections we show
examples where we explain the steps in Algorithm 5.

Algorithm 5 The CalculateTimeOfFlight algorithm calculates the travel times from
all cells in the watershed to the watershed outlet.

1: function CalculateTimeOfFlight(
watershed_of _outlet, dE, traps, f low_directions, spill_pairs, outlet)

2: G← TransformWatershedToGrid(watershed_of _outlet)
3: CG← OptimizeGridStructure(CG, traps)
4: f luxes← CalculateFaceFluxes(CG, dE, traps,

f low_directions, spill_pairs)
5: phi ← SetPhiValues(CG)
6: time_of _f light← CalculateTimeOfFlight(CG, f luxes, phi, outlet)
7: return time_of _f light
8: end function

Because MRST’s grid structure and the functionality it provides is a big part of
our calculations, we will start with a brief introduction to it in the next section.

MRST grid structure 42

4.2 MRST grid structure
In order to use the time-of-flight solver in MRST, we need to transform our delin-
eated watershed into the grid structure that MRST uses. The blue watershed from
the right figure in Figure 3.12 will be used as an example, and we will call it wb.

In Figure 4.2 we have transformed wb into the new grid structure, where the
coordinates of the watershed have become the centroids of the cells in the grid. In
this regular structured grid, the corners of each cell are the nodes, while the lines
between the nodes are the faces. The indices of the cells and faces are shown in the
figure, and positioned in the cell centroids and face centroids, respectively. Because
the watershed has been delineated from a DEM of resolution 10 meters, each cell
will have a size of 100 square meters, with side lengths of 10 meters.

In total the grid has 13 cells and 34 faces, and because it is a regular structured
grid each cell will have four faces, of which many are shared among two cells. We
will call this grid with all its cells, faces and nodes for Gb.

 1 2 3 4

 5 6 7 8

 9 10 11

12 13

 1 2 3 4 5

 6 7 8 9 10

11 12 13 14

15 16 17

18 19 20 21

22 23 24 25

26 27 28 29

30 31 32

33 34

Figure 4.2: The watershed previously referred to as w26 from Figure 3.12 trans-
formed into an MRST grid. The cell indices and face indices are positioned in the
cell centroids and face centroids, respectively.

This introduction, although brief, will hopefully be enough to better understand
the operations we do in the steps to obtain the time-of-flights (travel times).

43

4.3 Create grid
The first step we need to do in Algorithm 5 is to transform the delineated watershed
w into the grid structure provided by MRST. We already showed one example of
this in Section 4.2 when we obtained the grid structure Gb for the watershed wb. We
will come back to wb and Gb a little later, and for now focus on the general case.

In an effort to reduce the number of cells in the grid G, we combine the cells
in each trap into a single cell. This optimization will improve running time as the
number of cells and faces are reduced. If w has any traps, we modify G to obtain a
coarse version of the grid that we call CG. In the case where w does not have any
traps, CG will simply equal G. After each trap cell has been combined, only the
boundary faces of each trap remains, although their face lengths might have been
altered.

We return to Gb to see how it changes when we coarsen it. From Section 3.8 we
recall that there are two traps in wb, so we expect the two areas to be combined into
two cells. In Figure 4.3 we show the coarse grid CGb, and as expected, the cells in
the two traps (colored blue) have been merged. We observe that the new grid is both
unstructured and irregular, and has a new ordering of face indices and cell indices.
The trap cells have been assigned the highest indices on purpose, as it makes some
implementation details easier. Compared to the old grid Gb, the number of cells
and faces have now decreased from 13 to 10, and 34 to 28, respectively. Because of
these changes, the cells are not uniform in size anymore.

4.4 Calculate face fluxes
After we have transformed the watershed to the new framework, we need to calculate
the fluxes over the faces based on the velocity field ~v from Equation (4.8). Because
κ = 1, our initial velocity field do not account for heterogeneous properties in the
landscape.

We will now look at the flux over an arbitrary face F, with cells i and j as its
neighbors. The flux, which is denoted fij , is an average of the flux contributions
from cells i and j, as only these two cells affect the flow over the face. When we
move from a framework that allows flow in eight directions, to one that only allows
flow in four (the four faces), we need to project the flow on the two adjacent faces
for diagonal flow. The flux over the face can be written as

fij =
∫
F

(
~vij · ~nij
‖ ~nij ‖2

~nij

)
· ~nij dl

=
∫
F
~vij · ~nij dl

≈ (~vij · ~nij)‖ ~nij ‖ (4.13)

Calculate face fluxes 44

 1

 2 3 4 5

 6 7

 8

 9

10 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Figure 4.3: After the grid is coarsened, we are left with only ten cells. Two of them
are colored blue, and are the traps in the watershed. We can see that the cells and
faces have been renumbered for CGb.

where ~vij is the average velocity in the face (based on the flow in the two adjacent
neighbors)1, ~nij is the face normal of F, and |F| = ‖ ~nij‖ is the length of the face. If
fij is positive, the flux is directed in the same direction as ~nij . Otherwise, the flow
moves in the opposite direction.

Estimate velocities
The velocity estimate we derived in the introduction to this chapter, is given by
Equation (4.8), where we use κ = 1. We will use a discretized version of this equation,
based on the slope over the faces and the flow directions we calculated in Chapter 3.
We will define the average flow velocity over a face F as

~vij =
1
2

(
αFi
~di +αFj ~dj

)
, (4.14)

where ~di and ~dj are the flow directions of face F’s two neighboring cells2, which we
will refer to as the face flow directions of F. We scale the face flow directions by the

1A face at the watershed boundary only has one neighbor cell, but we do not calculate the fluxes
for these.

2In some cases we will use another flow direction, e.g., for faces in trap cells.

45

α-values αFi and αFj , which for an arbitrary cell c and face F is defined as

αFc =

0, if ~dc · ~nij = 0

C, if ∆z
h ≤ 0

∆z
h , if ∆z

h > 0.

(4.15)

This means that αFc is either set to 0, a constant C, or ∆z/h, which represents the
slope between cells i and j in the direction of flow. The slope is dependent on the
distance between the grid points in the DEM, which in our case is h = 10 m. Each
of these cases require some explanation, and we start with the first case. If the
flow direction of the cell and the face normal of F are perpendicular to each other,
there will be no flow over the face, so αFc is set to zero. For the two other cases,
we calculate ∆z/h based on whether the flow over the face is an inflow to c, or an
outflow. This gives us the following expression for ∆z:

∆z =

zin − zc, if flow towards c (inflow)

zc − zout , if flow away from c (outflow).
(4.16)

Thus ∆z is calculated as the difference in elevation in the direction of flow, where
zin is the cell the flow came from, and zout is the cell the flow moves to.

The second case in Equation 4.15 happens if a previously diagonal flow now
flows towards a cell of higher elevation (one of its projected faces). Regardless of
this, the flow has to continue, so αFc is set to a constant C > 0; in our calculations
we have used a C = 0.1. The reason why we force the flow in an uphill direction,
is that sometimes both faces adjacent to the diagonal have uphill flow. This can
potentially stop the flow, and make it impossible for water in some areas to flow
to the outlet in the delineated watershed. Even though MRST does not allow for
eight flow directions, we still want to maintain the watershed we delineated based
on eight flow directions.

Lastly, if the flow is downhill, we use ∆z/h. Because diagonal flow will get
different α-values based on the elevations of the adjacent faces’ neighbors’, the
resulting flow direction will no longer be in its original flow direction (diagonally),
but this is not something we will dwell upon.

In Example 14 we elaborate on the assignment of face flow directions, which
might be useful for Example 15 where we present an example of how α-values are
calculated.

Example 14. To calculate average velocity over a face (Equation (4.14)), we need its
face flow directions. In the left figure in Figure 4.4 we see an example with four
cells A, B, C and D, where we set the face flow directions for the faces of cell A,
based on the flow in the cell. The four arrows show the assigned face flow directions,
and these will represent the direction of the flux contribution from cell A. This is a
process that is done for all the cells, as two face flow directions are needed for each
face. For us to calculate the average velocity over e.g., the face between cells A and

Calculate face fluxes 46

C, we will also need to assign a face flow direction to the face based on the flow in
cell C.

Example 15. In Figure 4.4 we illustrate how we can calculate the α-values for two
of the faces that belong to A. We already talked about the assignment of face flow
directions in Example 14, and we will use the ones assigned by cell A in the left
figure to illustrate how we calculate the α-values for the northern face (FN) and the
eastern face (FE). The elevations in the right figure are necessary for this calculation.

Because cell A has a flow direction towards the northeast (from the D8 Algo-
rithm), the flow is projected on the two adjacent faces FN and FE . This will create
a situation where the flux contribution from the flow in A is uphill to the north,
and downhill to the east. When we calculate αFNA we know the flux contribution
over face FN is an outflow, so we get ∆z = −5 from Equation (4.16). This means the
second case in Equation (4.15) applies, and we set αFNA = C.

For the eastwards face, the third case will apply, as we get a positive ∆z = 5
from Equation (4.16). This yields an αFEA = 0.5. If we were to calculate the average
velocities ~vAC and ~vAB, we would also need the face flow directions for the faces FN
and FE set based on the flow in cells C and B, respectively, as well as their α-values.

A

DC

B 10

215

5

out

out

Figure 4.4: The left figure shows the assignment of face flow directions for cell
A’s faces based on the flow in A. In the right figure we show the elevations of the
landscape and the information we need to calculate the α-values for two of its faces.
In this case, the elevation difference to the north is negative, so the face’s α-value is
set to a constant C, while the α-value of the eastern face is set to ∆z/h.

An alternative approach to estimate the velocity field ~v, is to interpolate the
flow directions and the elevations in the landscape, where we use the resulting flow

47

directions in the face centroids. To account for topography, we can calculate the
elevation difference between the face centroids and the closest cells in their new flow
directions. This method might be more accurate than the one we have implemented.

Example of flux calculation
In Example 16 we show how we calculate the flux over the face between cells 1 and
5 in Figure 4.3. All relevation information from CGb is shown in Figure 4.5. This
includes the face normal of the face, and the flow directions of the adjacent cells.

1 1

14

15

2

5 5

24

21

14

~d1

~d5~n1,5

Figure 4.5: The face normals and flow directions of cells 1 and 5 from Figure 4.3.
The flow directions are colored red, while the face normals are colored black. To
compute the flux over the face with index 14, both the flow directions of cells 1 and
5, and the face normal of face 14 are required.

Example 16. We want to calculate flux f1,5 for the face between cells 1 and 5 in
Figure 4.5. Before we can use Equation (4.13), we need to calculate ~v1,5. In the
calculations we will also need the elevations of the two cells, which are given as
z1 = 4.5 and z5 = 7.0. The face normal is ~n1,5 = [0,1], and the flow directions are
~d1 = [−1,0] and ~d5 = [0,−1].

To calculate ~v1,5, we need to compute α
F1,5
1 and α

F1,5
5 . For simplicity we will use

α1 and α5. Because the flow direction ~d1 and the face normal ~n1,5 are perpendicular

Calculate face fluxes 48

to each other, α1 is simply 0. For α5 the flow over the face is an outflow, so ∆z =
7.0− 4.5 = 2.5, which yields α5 = 2.5/10.

Thus, the average velocity over the face will be,

~v1,5 =
1
2

(
α1
~d1 +α5

~d5

)
=

1
2

(
0 · [−1,0] +

2.5
10
· [0,−1]

)
= 0.125 · [0,−1] m/s.

If we insert the expressions for ~v1,5 and ~n1,5 into Equation (4.13), we get

f1,5 = (~vij · ~nij)‖ ~nij ‖
= 0.125 · [0,−1] · [0,1] · 10

= −1.25 m2/s

The negative sign means that the flow moves in the opposite direction of ~n1,5,
with a flux of 1.25 m2/s.

Implementation details
The computations of the fluxes are without a doubt the most challenging step in
Algorithm 5, when we compute the time-of-flights. Both the transition from eight to
four flow directions, and unexpected behavior in the coarse grid structure, created
some difficulties for us. At a later time, it has come to our attention that some of the
problems we experienced with the coarse grid could have been avoided, which we
will talk more about later. For the rest of this section, we will talk about how we
calculated the fluxes, and which problems we faced. An outline of the algorithm is
shown in Algorithm 6.

In the implementation of Algorithm 6 we experienced that the majority of the
effort is to get appropriate face normals and face flow directions for all faces in the
grid. In some cases we have to alter face normals or face flow directions to make flow
continue. The consequence if they are not altered, is that there might be faces where
the flux is so low (or zero) that it effectively stops all flow from its upslope areas.
Hence, the main goal in our flux calculations is to obtain face fluxes which yield
time-of-flights for all cells in the watershed. This is necessary for the hydrograph
creation, as precipitation must be able to flow from anywhere in the watershed to
the outlet.

In Algorithm 6 we start by setting all face normals equal to the face normals in
the grid object CG. It is only in some cases that they have to be changed to get the
desired flow over a face. Next, we assign face flow directions to all non-trap cells,
which are equal to their respective cells’ flow directions. Like for the face normals,
this usually works well, but sometimes they must be changed to get a continuous
flow in the watershed.

49

Algorithm 6 The CalculateFaceFluxes algorithm calculates the fluxes over all faces
in the coarse grid, which are used in the time-of-flight computations.

1: function CalculateFaceFluxes(CG, f low_directions, dE, traps, spill_pairs)
2: f ace_normals← SetInitialFaceNormals(CG)
3: f ace_f low_directions←

SetInitialFaceFlowDirections(CG, f low_directions)
4: f ace_normals, f ace_f low_directions←

EnsureFlowInCornerCases(CG, f ace_normals, f ace_f low_directions)
5: f ace_f low_directions←

EnsureFlowFromTraps(CG, f low_directions, traps, spill_pairs)
6: f lux← CalculateFluxes(CG, f ace_normals, f ace_f low_directions, dE)
7: f lux← AverageFluxes(CG, f lux)
8: return f lux
9: end function

Unlike for the non-trap cells, where we can say that the cell’s flow direction
represents the flow over all its faces, we can not say the same for a trap cell. This
is because the trap cell’s flow direction only represents the direction of the flow at
its spill point. Thus, the face flow directions over the trap faces must be defined in
another way. Because the traps are essentially lakes, dams and ponds in the terrain,
the neighbor cells usually have a flow in the direction of the trap. This motivates us
to assign a face flow direction that is equal to the neighbor cell’s flow direction (the
neighbor that is not in the trap). The initial assignments of face flow directions in an
L-shaped trap is shown in Example 17. The face that is closest to the spill point in
the trap’s flow direction will be referred to as the spill face, and we will give special
consideration to it later, as it is very important that the trap has an outflow.

Example 17. In Figure 4.6 we show an example of how face flow directions are
assigned to the faces in an L-shaped trap. The left figure shows the flow directions
of the cells that surround the trap, and we will use these for the assignment of face
flow directions.

In the right figure we use the neighbors’ flow directions to determine the face
flow directions for the trap faces. In most cases this is straightforward, but a
comment is needed for the red face. If a trap cell borders to a cell on more than one
side, these sides are combined into a single face. The red face is one such example,
and because it is a single face with twice the length, the entire face is only assigned
one face flow direction (red arrow).

The blue face shows the trap’s spill face. After the face flow directions have been
assigned, we have no guarantee that the one assigned to the spill face results in an
outflow from the trap. In the figure we were lucky that the flow direction of the trap
outlet’s neighbor was towards the east, because if it had been towards the north, it
would have resulted in no flow over the spill face. Thus, after we have found the
face flow directions for all trap faces, we need to reexamine the face flow directions

Calculate face fluxes 50

of the spill faces to make sure that there is an outflow from all traps. This will be
discussed later.

Figure 4.6: The left figure shows a trap cell and the flow directions of all surrounding
non-trap cells. Unlike non-trap cells we can not assign the same face flow direction
to all trap faces. Instead we do the following: For each trap face, assign the flow
direction of the neighboring cell as the face flow direction. The result of this is
shown in the right figure. All the faces have been assigned a face flow direction, but
the L-shaped red face has only been assigned one, when we expected two. This is
because the coarse grid creates a single face against a cell if several faces are shared
with the trap cell. The spill face (colored blue) and its assigned face flow direction
(blue arrow) results in an outflow from the trap, which is what we desire.

We will look at three corner cases where we need to take special care to obtain a
time-of-flight for all cells in the grid CG. In Example 17 we showed a case where a
trap bordered to a cell on more than one side, and how the faces were combined as a
result of it. This merging of faces by the coarse grid functionality has created many
problems for us, and we will talk about some examples where we ran into problems
because of it. In Example 18 we look at the first case where a cell is completely
surrounded by a trap.

Example 18. In this example we will look at the case where a cell is completely
surrounded by a trap cell. Figure 4.7 shows the cell with its eastern flow direction
(black arrow). The cell’s only face (colored blue) has a face normal of [0,0], so no
matter what the flow direction is, the flux from the cell will be zero. To fix this, we
need to assign the face a face normal. To avoid zero flux from the cell, we choose the
same direction as the cell’s flow direction. As the face normals in CG are scaled by
the side lengths, we also remember scale it by the length of a regular face.

The second example we will look at, is similar to the first, but now the cell
only shares three quarters if its combined face lengths with the trap cell. If we are

51

Figure 4.7: A cell surrounded by a trap cell. The border of the cell is shown in blue,
and the black arrow shows the cell’s flow direction. The cell has a single face with
face normal [0,0], which must be changed to obtain any outflow from the cell.

unlucky with the cell’s flow direction, this will again lead to no flux out of the cell,
which we will discuss in Example 19.

Example 19. In Figure 4.8 we show a situation where a cell only has two faces, and
how this can create a problem for the outflow from the cell. The blue face has been
combined from three of the cell’s faces because they all border to the same trap cell,
while the second face (colored red) borders to a regular cell. We use the same colors
to show their face normals.

In this situation there will no outflow from the cell as the flow directions and
the face normal are perpendicular to each other (α-values evaluate to zero for both
neighbor cells). In this case, it does not matter what the cell’s flow direction is, as
long as its water flows to the trap cell, so we change the face flow directions to be in
the direction of the face normal. This allows flow to continue.

Figure 4.8: A cell surrounded by a trap cell on three sides. The cell has two faces, one
colored blue and one colored red. Their respective face normals are colored with the
same color. Because the face normal (blue arrow) and the cell’s flow direction (black
arrow) is perpendicular to each other, we need to change the face flow direction of
the blue face, to have an outflow from the cell.

The third and final corner case we will show is the situation where a cell shares
two opposite faces with a trap cell. An illustration of this is shown in Figure 4.9,

Calculate face fluxes 52

and will be discussed in Example 20.

Example 20. If a cell shares two opposite faces with a trap cell, it still counts as one
face. In Figure 4.9 this special face (blue color) has a face normal of [0,0]. In our
case the cell’s flow direction is to the east, which results in zero flux over both faces
(also the red). The way we fix this, is to set the face normal of the blue face to point
in the same direction as the flow direction.

Figure 4.9: A cell is surrounded by two cells from above and below, and a trap cell
at the two other sides. The coarse grid structure assigns the cell three faces, colored
black, red and blue. Although it looks like the two blue lines are two separate faces,
they are in fact defined as a single face with face normal [0,0]. When the cell’s flow
direction is [1,0], the flux is zero over all faces. To get an outflow from the cell, the
face normal of the blue face is set to the cell’s flow direction.

It has come to our attention that it is actually possible to divide the trap faces
into smaller faces. This would most likely have solved our problems with the corner
cases, but because the code works well, we will leave it as it is for now.

With the special cases taken care of, we return to the potential problem of no
outflow from trap cells. Earlier in Algorithm 6 we set the face flow directions for
all faces in the traps, which by coincidence also worked for the spill face in Figure
4.6. To make sure that there is always an outflow over the spill face, we will find
the spill faces in each trap, and change their face flow directions to the trap’s flow
direction. We will walk through how we do this for the traps. To start off, we need
to locate the spill faces, which we remember are the faces closest to the spill point
in the trap’s flow direction. The spill point will be referred to as s.

One way to obtain the spill faces is to create vectors between the spill point s
and the centroids of all trap faces, where Γ = {~Γ1, . . . , ~Γn} represents the set of these
vectors. The choice of face/faces is then based on the angle between the vectors and
the trap’s flow direction vector ~dt. The spill faces are chosen based on the following
equation where both angle and distance to spill point is taken into consideration,

S = argmax
i∈{1,...,n}

1∣∣∣∣~Γi ∣∣∣∣ cosθi . (4.17)

53

Here θi is the angle between ~dt and Γi . When the angle goes to zero, cosθi increases.
The reciprocal of the distance makes sure that the closest angles are chosen. The set
S holds the indices of the spill faces.

In Figure 4.10 we show three examples of the process. The vectors in Γ are
shown with black arrows that starts in s and ends in the trap face centroids. A blue
arrow represents the flow direction ~dt from the spill point s, while the chosen spill
face/faces are indicated by the green color. In the left figure the distances to all
centroids are equal, but because the angle θ is lowest for the eastern face (θ = 0),
it is chosen as a result of this. In the middle figure the angles to the eastern and
northern faces are both θ = 45°, and because the distances to the two face centroids
are also the same, both will be chosen. Finally, in the right figure, the northeastern
direction is chosen, as its θ is zero.

s s

s

Figure 4.10: Illustration of the method to determine the spill faces in trap cells.
Both the spill faces and their centroids are colored green. To determine the spill
faces, we create vectors (black arrows) from the spill point s (blue point) to all trap
face centroids (black points). The selection process considers the angle between the
flow direction in the spill point and the vectors, as well as the distance between s
and the face centroids to determine the spill faces.

After we have located the spill faces in each trap, we set their face flow directions
to the trap’s flow direction. This process is illustrated in Example 21.

Example 21. The left figure in Figure 4.11 shows an illustration of a trap where its
initial face flow direction (black arrow) is set to an eastern direction. We can see
that the spill face normal (green arrow) is perpendicular to the face flow direction.
To ensure an outflow over the spill face (colored green), we change the face flow
direction to the trap cell’s flow direction ~dt, shown in the right figure.

Because each face in the grid has two face flow directions, the assignment of a
new face flow direction to the spill face might disrupt the flow of the neighbor, if
they have contributions in the opposite direction. In Example 22 we explain how
this can happen.

Calculate face fluxes 54

~dt ~dt

Figure 4.11: The green face shows the spill face for a trap. In the left figure there is
zero flux over the face, as the face flow direction is perpendicular to its face normal.
If we change the face flow direction to the trap outlet’s flow direction, there will be
an outflow over the spill face, which we show in the right figure.

Example 22. In Figure 4.12 we illustrate how the assignment of a new face flow
direction might disrupt the flow from its neighbor cell. The left figure depicts the
neighbor cell of a trap cell, and its assigned face flow directions. In an effort to
ensure an outflow from the trap cell, we have set the face flow direction of the spill
face (green face) to the trap outlet’s flow direction ~dt. These are shown in the middle
figure.

Because the left cell has a flow contribution towards the trap cell, and the flow
contribution from the trap cell is in the opposite direction, we might get a situation
where the left cell (or possibly both) loses its only outflow. To avoid this, we can
change the face flow directions of the left cell to point towards the cell the trap cell
would have spilled to if we had eight flow directions. This is shown in the right
figure.

~dt

Figure 4.12: The illustrations show how a cell’s face flow directions are changed
to avoid a potential loss of outflow over the spill face (colored green). In the left
figure, we show the face flow directions of the left non-trap cell, and we can see its
flow contribution over the spill face is towards the right. When we change the face
flow direction of the spill face in the middle figure, there will be a flux contribution
towards the left. To make sure that there is an outflow from the left cell (and the
trap cell), we change the left cell’s face flow directions, which is shown in the right
figure.

55

When we are done with all adjustments of the face flow directions and face
normals, we take the dot product to obtain all flux contributions and scale them by
their α-values, i.e., we have two flux contributions for each face. The last step in
Algorithm 6 is to take the average of the fluxes.

4.5 Setφ-values
The next step in Algorithm 5 is to set the φ-values for the cells in the watershed. As
we mentioned in the beginning of this chapter, we only use two values for φ: one
for trap cells, and another for non-trap cells,

φ =

ε, if cell is trap cell

1, if cell is non-trap cell.
(4.18)

This is based on the assumption that all traps are completely filled with water, so
any inflow will result in an immediate outflow at the trap outlet — we can call this a
bathtub model. This results in the simultaneous arrival of all precipitation that falls
within the trap cell at a given time, at the watershed outlet. This makes sense given
our assumptions, but in reality even a completely filled lake has a limited outflow
at its spill point, which depends on e.g., the cross-sectional area of its outlet.

To avoid this effect, a more complex method would have to be used, and addi-
tional information would be needed. This could include taking the water storage in
the terrain into account, and allowing fluctuations in the traps’ water levels.

In the time-of-flight solver the pore volumes of the cells are used. This can be
defined as

Φ = V ·φ, (4.19)

where Φ represents the volume in each cell that can be filled with water, based
on the cell’s volume V , and φ. We now have everything we need to apply the
time-of-flight solver to our watershed, and we will show some examples in the next
section.

4.6 Run time-of-flight
After we have constructed the coarse grid CG, calculated the face fluxes, and set the
φ-values for the cells, we are ready to run the time-of-flight solver in MRST. We will
calculate the time-of-flights for watershed wb. The elevations and flow directions
are shown in Figure 3.10. It is expected that the travel times are affected by the
elevation differences and the flow directions.

Figure 4.13(a) shows the calculated time-of-flights for the cells in wb when the
φ-values of the trap cells are φ = ε = 0.1. The numbers on white background show
the time-of-flights for the cells, where Ti is cell i’s travel time. The cell in the lower

Run time-of-flight 56

left corner is the source, and hence has a time-of-flight zero3. We will explain the
results a bit more in Example 23.

Example 23. In Figure 4.13(b) we show the directions and magnitudes of the face
fluxes. If we compare it to Figure 4.13(a) we can see it takes a much longer time for
water to reach the outlet if it passes faces with a low flux; this occurs at locations
where the slope is gentle. The closest cells to the outlet illustrate this well, as the
elevation differences of cells 2, 3 and 4 are ∆z = 6.0, and the difference for cell no. 1
is ∆z = 0.5.

We know low φ-values result in a higher speed, which is the case for cell no. 9,
but T9 is actually quite high. This is not because of the φ-value, but instead the low
slope over its spill face (∆z = 0), which results in the ’uphill scenario’ in Equation
(4.15), where α = C. Because we use C = 0.1, the assigned flux is low. It is possible
that C should be higher to avoid bottlenecks like this, but we will not focus on this
for now.

(a) Time-of-flights for wb.

 1

 2 3 4 5

 6 7

 8

 9

10

6.0 6.0 6.0

0.5

1.25

0.05 0.05

1.0 2.0

2.0

0.1

(b) Flux directions and magnitudes.

Figure 4.13: (a): The time-of-flights for watershed wb with φ = 0.1 for trap cells. The
values in the centroids of the cells show time-of-flights for the cells. (b): The vectors
and the adjacent numbers show the directions and magnitudes of the fluxes to better
understand the flow patterns. When T is calculated, all the fluxes are flipped so the
water flows from the source to all the upslope cells.

To verify that the solver works as expected, we use Equation (4.12) and calculate
the time-of-flight for one of the grid cells; this will in turn be compared to the

3The solver actually returns a non-zero time-of-flight for the source, because it factors in the time
it takes to fill it. We want the time-of-flight to represent travel time from a cell to the source, so we
subtract the source’s time-of-flight from all cells’ time-of-flights.

57

time-of-flight the solver yields for the same cell. Because of its small size, watershed
wb is ideal for this comparison. To make it easier to follow, we state Equation (4.12)
again, with a minor change: φi |Ci | has been replaced by the pore volume Φi of cell i,

Ti =

∑
j∈U (i)Tjfij −Φi∑

j∈U (i) fij
. (4.20)

The comparison is shown in Example 24 for cell number 6.

Example 24. To obtain the time-of-flight T6 from Equation (4.20), we need to locate
its upstream cells, and it is important to keep in mind that all fluxes must be flipped.
According to Figure 4.13(b) the only upstream cells are cells 3 and 7. We use
Φ6 = 100 m2 and the fluxes of the upstream cells to obtain,

T6 =

∑
j∈U (6)Tjf6j −Φ6∑

j∈U (6) f6j

=

∑
j∈{3,7}Tjf6j −Φ6∑

j∈{3,7} f6j

=
100
−1.05

+
(−0.05 ∗ 16.67

−1.05
+
−1.0 ∗ 517.48
−1.05

)
≈ 589 s.

The first part shows the time it takes to fill the volume of cell 6, while the calculations
inside the parentheses constitute a weighted average of the time the water uses if
it travels south or east, respectively. We see that both the solver and the equation
yield the same answer.

In Example 25 we will show two cases where we vary φ for trap cells to see how
φ affects T .

Example 25. In this example we will compare different values of φ for trap cells,
to see how it affects the time-of-flights. The first case we look at is the case where
we do not account for higher flow speed in trap cells. This means that φ = 1 in
the entire watershed. Compared to Figure 4.13(a), where φ = 0.1, we expect the
time-of-flight to increase. The left figure in Figure 4.14 shows that this is the case.
The areas that are downstream of cell no. 9 are unaffected, but the upslope cells 6, 7
and 8, as well as 9 itself, get much higher travel times. This is because the speed in
the cell is one tenth of what it is when φ = 0.1.

If we instead decrease the trap cells’ φ to 0.01, we expect that it takes a tenth of
the time to fill cell no. 9 compared to Figure 4.13(a). The right figure in Figure 4.14
shows the result. We can see that the flow speeds in the traps affect the travel times
a lot, and as we previously argued, it makes more sense that the trap cells take a
short time to fill, when our traps are full.

Up until now we have only calculated the time-of-flights for a small watershed,
but in the results chapter we will look at a much larger one.

Run time-of-flight 58

Figure 4.14: A comparison between two different φ-values for trap cells in the grid.
In the left figure φ = 1 for all cells, which yields very high T -values for cells with
flow to trap cell no. 9. It is further aggravated by the low flux between cells 9 and 5.
In the right figure, φ = 0.01, so it takes a short time to fill cell no. 9, meaning that
flow can cross the trap quickly.

59 Calculate hydrographs

5 Calculate hydrographs
In Chapter 4 we calculated the time-of-flight for every cell in the watershed. With
this in place, we can introduce precipitation to our watershed. From the weather
forecast we know that rainfalls vary, both in intensity and in pattern. Sometimes
storm clouds release the precipitation as a soft drizzle that never seems to end, and
other times it pours down with enormous force, until it abruptly stops, almost like
it never happened (for example convective summer showers in Norway). Both of
these cases are interesting to us, and we will construct different rainfalls where we
vary parameters like intensity, duration, and which areas that are affected. By doing
this, we learn how the precipitation and time-of-flight affects the hydrograph at the
outlet of the watershed. We will start with a discussion on how we calculate the
discharge, given information about the rainfall. This will later be put to use when
we compute the hydrograph.

An equation for the discharge as a function of time, can be written as

h(t) =
∫
Ω

P (x, t − T (x))dΩ, (5.1)

where h(t) is the discharge in time t at the watershed outlet. To represent the
precipitation in the domain Ω (the watershed) at a time t, we use the function P (x, t).
Because of the travel time, the water that affect the discharge in time t is the water
that fell a time T ago, so we use P (x, t − T (x)) in Equation (5.1).

To estimate the runoff from the watershed, we discretize the equation in space.
For cell i we approximate its runoff contribution at time t as

hi(t) =
∫
Ωi

P (x, t − T (x))dΩ

≈ AiP (xi , t − T (xi))

= AiPi(t − Ti),

(5.2)

where Ai is the cell’s area, Ti its time-of-flight, and Pi its precipitation. The precipi-
tation intensity in cell i’s centroid xi is used for the entire cell. We now use Equation
(5.2) to discretize Equation (5.1) as

h(t) =
∑
i

hi(t) (5.3)

≈
∑
i

AiPi(t − Ti).

The units of the discharge hi(t) will be,

[hi(t)] = [Ai Pi(t − Ti)] = [Ai][Pi(t − Ti)] = m2 mm
hour

=
10−3

3600
m3

s
= γ

m3

s
, (5.4)

Uniform storm 60

where we need to scale by a constant γ equal to 1/3.6 · 106 to get the discharge in
m3/s.

The first storm events we will look at are not based on real data. Rather, we have
created scenarios that visualize how the computed time-of-flight and precipitation
are coupled together to create hydrographs. In these rainfall events we will revisit
watershed wb from Chapter 4, and we will also use the time-of-flight results from
Figure 4.13(a). To keep it simple, we start with the most basic example: a uniform
precipitation intensity that covers the whole watershed for an equal duration. From
here on we will often refer to a rainfall as a rainstorm, or simply a storm.

5.1 Uniform storm
We will simulate a uniform storm in the entire watershed. To do this we let the
precipitation intensity and rainfall duration be the same for the entire area (Pi = P
and Di = D). Because the movement of water from watershed to outlet is not
instantaneous, the water will continue to flow after it has stopped raining. If we use
the travel time T and duration D, we can create a time interval which shows when
the outlet might receive precipitation

t ∈ [min(T), max(T) +D], (5.5)

where min(T) = 0 for every watershed, if the storms are uniform. The time interval
shows that the rainfall will affect the outlet a long time after it has stopped raining,
and the discharge might even peak hours afterwards.

We will take a look at the resulting hydrographs for watershed wb when we use
a precipitation intensity of P = 10 mm/hour, and compare the following durations:
one minute, ten minutes, and one hour. The travel times we use for wb are the ones
in Figure 4.13(a), where the outlet is located in the cell with time-of-flight zero. In
Figure 5.1 we show the three hydrographs. Before we talk more about the results,
we want you to notice the illustration in the top right corner of Figure 5.1(a). These
illustrations will be used throughout our examples to indicate which areas in the
watershed that receive precipitation; only the blue areas are affected by the rainfall.
In this case, all of wb will receive precipitation for the entire duration.

We will start with a small observation about the time interval in Equation (5.5).
If we calculate the time interval for the three durations, D = 60, 600 and 3600, we
get a contribution to the discharge at the outlet in the time intervals [0, 649], [0,
1189] and [0, 4189], respectively, which the three plots confirm. These time intervals
will only state the earliest and the latest time the outlet will receive water, and do
not say anything about what the discharge will be in the course of the interval.

Because these are the first hydrographs we show, we will take a closer look at
the one in Figure 5.1(a). The figure shows the discharge at the outlet in units m3/s
over time. Because the size of the watershed is so small1, and the duration of the

1We will later see that an increase in the number of grid points makes the hydrographs smoother.

61

0 200 400 600 800

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4
D

is
c
h

a
rg

e
(m

3
/s

)
×10

-3

(a)

0 500 1000 1500

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(b)

0 2000 4000 6000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(c)

Figure 5.1: Watershed wb’s resulting hydrograph when a uniform precipitation
of P = 10 mm/hour lasts for D = 60 (a), 600 (b) or 3600 (c) seconds. Note that
different time axes are used in the plots. The illustration in the top right corner of
(a) illustrates which areas receive precipitation, in this case all of wb.

rainfall so short, the hydrograph will look very discontinuous, which makes the
cells’ individual contributions easier to see. In the beginning, the cells with the
lowest time-of-flights, T = 0 seconds and T = 17 seconds, are the only contributions.
The superposition of their discharges results in the maximum discharge in the time
interval. Next, the two cells with T = 200 and T = 280 create two small peaks.
Afterwards the discharge hits zero until t = 480, where it picks up again. The
discharge increases at time 518, and even more at 530. The contributions from these
three cells result in the second largest discharge peak. After the flow from the trap
cell stops, there is a tiny overlap between the cells with T = 530 and T = 589. This
yields a small peak at the end. Finally the last flow arrives at the outlet.

In the second and third figure, Figure 5.1(b) and Figure 5.1(c) respectively,
the hydrographs look quite different from the first one. The longer duration of
precipitation causes the flow from the different cells to have more overlap. In the
third figure it is clear that the watershed cannot reach a higher discharge than
0.0036 m3/s, a level which is reached for a small period in the second figure as
well. This level is only attained when all cells in watershed wb contribute flow to
the outlet simultaneously. Both figures show that it potentially takes some time for
the discharge to reach its peak.

5.2 Precipitation with varying intensity
Unlike in the previous section, where we used a uniform precipitation, we now want
to do something slightly more realistic. Usually a rainfall has a storm center where
the precipitation’s intensity is at its highest. This intensity will decrease towards
the edges of the rainfall. To accomplish this we use an intensity function I(x). It

Precipitation with varying intensity 62

has the property that the intensity is at its highest in the center of the region, and
at its lowest at the boundary of it. In the following we will let the rainfall affect
different areas with different intensity. This means that the rainfall’s position is
dependent on time — the storm moves around. In the following scenarios we will
use a circular disk and a rectangle as the shape of our precipitation. The function
we use is a Gaussian function that we have tailored to our needs,

I(x) = Ae
− x2

2(R/3)2 . (5.6)

The intensity I(x) will represent the precipitation’s intensity a distance x from the
center of the rainfall. When the precipitation is shaped like a disk, x is simply the
distance from the disk’s center. For a rectangular shaped rainfall, we define the
center of the rainfall as the rectangle’s centroid. The distance from the center x
will then be the distance from the centroid in the direction of movement. We use
the amplitude A to represent the maximum precipitation intensity. This value is
given in mm/hour, and represents the intensity in the storm center. The value of
R is the radius of the disk for the first case, and half the width of the storm front
in the second case. As an example, the intensity I(x) for a radius R = 10 m and an
amplitude A = 5 mm/hour create the bell curve seen in Figure 5.2.

-10 -5 0 5 10

Distance from center (m)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

I(
x
)

Figure 5.2: The intensity function I(x) for a radius R = 10 m, and an amplitude
A = 5 mm/hour.

I(x) has an intensity equal to its amplitude A when the distance from the center
is zero, and is close to zero if the distance is R.

In the rest of this chapter we look at scenarios where the precipitation moves
around. In the calculations we let the precipitation stand still in time intervals of
length ∆t. If we assume that the last runoff comes in time tmax, we divide the time

63

interval [0, tmax] into ∆t-intervals, where one interval is denoted as [tn, tn+1] where
n ∈ {0, . . . ,N }. We let the precipitation’s location be constant in each time interval,
for which its position in the middle of the time interval, i.e., tn+ 1

2
is used. In this

chapter we will only use ∆t = 1 second, but in Section 6.4 we will use different
values for ∆t to speed up the computations.

5.3 Moving storm front
We will simulate a storm front sweeping across a watershed w, and based on the
fallen precipitation construct a hydrograph. The storm front is represented by a
rectangle of width w, length l and center (cx, cy), which moves at a given speed in
one of the four directions: north, south, west or east. Only the cells with their cell
centroids within the storm front will receive precipitation. This means that even if
only half the cell is inside, all of it will receive precipitation. This goes both ways,
and is a discretization error.

As we mentioned in Section 5.2, the intensity I(x) of the precipitation will vary
depending on the cells’ distance from the storm center. Equation (5.6) is used to
calculate this intensity. When the movement is meridional, i.e., movement north or
south, x represents the distance |y − cy | where x ∈ [0,w/2], and analogously for zonal
movement, i.e., movement east or west. The intensity I(x) is at its largest when x = 0,
and at its lowest when x = w/2. Our moving front scenario is different from the
scenario in Section 5.1 because not all cells are affected, and the cells that are, get a
different amount of rain. The cells at the outside of the storm front will not receive
any precipitation.

Figure 5.3 shows a storm that is moving north across wb at a speed of v = 5 m/s.
In the center of the storm, the precipitation has an intensity of A = 10 mm/hour,
while the intensity in the rest of the front is given by I(x). The front is represented
by the black rectangle, and the centroids of the affected cells in each time step
have been marked with black asterisks. If we compare the grid to Figure 4.3, it is
clear that it is the centroids of the fine grid that are used in the algorithm (not the
centroids of the trap cells). The reason is that we want to avoid situations where
an entire trap cell is assigned precipitation just because its centroid was inside the
storm. This is a problem because the trap cells are potentially much larger than
regular cells (see Section 4.3). However, we still need information from the coarse
grid, as we have to map the time-of-flight results from the coarse grid to the fine
grid in our calculations.

Initially, the storm starts halfway into wb, and it barely covers four of the cell
centroids. Because these are the only cell centroids within the front, they are the
only cells to receive precipitation. The first time step is also a good example of how
discretization errors can cause trouble. In our algorithm we assign precipitation
to cells inside of the front. In this case, only half of their areas are inside, but we
let the entire cell areas receive precipitation. This is not the only problem. The
four cells will all receive precipitation at the lowest intensity, even though there are

Moving storm front 64

Figure 5.3: A storm front crossing the watershedwb, represented by a black rectangle
moving north at a speed of v = 5 m/s. The intensity of the precipitation I(x) is given
by (5.6). Each time step is a second, and we show the first three seconds, along with
the last time step. The cells affected by the storm front have their centroids marked
with black asterisks.

sections within the cells that are closer to the storm center. Both of these problems
are hopefully something that evens out in the end, and are masked by uncertainties
inherent in precipitation measurements and other errors/uncertainties. The second
figure shows the next time step, where the cells now receive precipitation at full
intensity, and in the third time step four new cells are affected. The front continues
to move until it has crossed the watershed, and the last time step where cells in wb
receive precipitation is shown in the fourth figure.

The hydrograph the storm front creates is shown in Figure 5.4. In the process
to obtain the hydrograph, we use the time-of-flight results from Figure 4.13(a). It
is not a very interesting result as the discharge peaks are very concentrated, but
it would surely be interesting to observe the watershed outlet when multiple tiny
flash floods arrive. However, lack of discharge at times is expected if baseflow and
interflow are excluded. We will also observe later that longer rainfall durations
reduce the time periods of zero discharge at the outlet. In the figure we observe that
the beginning is the only time when discharges arrive simultaneously. Later, the
discharge from each cell arrives separately. As we saw in Figure 5.3, each cell is only
affected for a few time steps, so a cell’s discharge is very concentrated. If the cells
were affected for a longer time, the hydrograph would look different. We see in the
figure that each cell’s discharge comes after the sum of their time-of-flight value
and the time it takes the front to get there, and it lasts for a few seconds. We will
do a more thorough walk-through of why the hydrograph looks as it does in a later
example.

We mentioned that longer durations would affect the appearance of the hydro-
graph, and we will do a comparison to verify this. In order to accomplish longer
precipitation durations we reduce the speed of the front. The speeds we have used
in the comparison are: v = 0.5 m/s, v = 0.15 m/s, v = 0.10 m/s and v = 0.05 m/s. In
all cases the maximum intensity is A = 10 mm/hour. The result of the comparison is
shown in Figure 5.5. The sequence of hydrographs shows that the peaks gradually

65

0 200 400 600

Time (s)

0

1

2

3

4

5

6

7

8

9

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

Figure 5.4: The hydrograph created by a front moving north across wb at a speed of
v = 5 m/s with maximum intensity A = 10 mm/hour. Because the storm crosses the
watershed so quickly, the discharge is low and concentrated around the individual
cell’s discharge.

gets smeared out as the speed of the front decreases. This leads to fewer time periods
of zero discharge at the outlet. In the process the peaks slide over into each other,
and as this happens, the peaks grow taller. The longer durations cancel out the
differences in time-of-flight between the individual cells, so that their discharges
overlap. A hydrograph is only a superposition of the individual cell’s hydrograph
after all. Over the course of the four figures, we can see that the number of peaks is
reduced from nine to four. If the speed was further decreased, only one peak would
eventually be left.

In the previous examples we considered a storm front that moved northwards.
In the following example we observe how the appearance of the hydrograph is
changed when the storm front’s direction of movement is changed. We will see that
the change of direction alters when the first discharge arrives at the outlet, and
when the last water arrives at the outlet after the storm front has passed. We reduce
the speed of the front to v = 0.1 m/s, while keeping maximum intensity at A = 10
mm/hour. The four directions we will compare are towards the north, south, east
and west. The front will start with one half inside of wb, and the other half outside
of it.

Moving storm front 66

0 200 400 600 800 1000 1200

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(a) v = 0.5 m/s

0 200 400 600 800 1000 1200

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(b) v = 0.15 m/s

0 200 400 600 800 1000 1200

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(c) v = 0.1 m/s

0 200 400 600 800 1000 1200

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(d) v = 0.05 m/s

Figure 5.5: A comparison of the hydrographs for watershed wb when the speed v of
the storm front is varied. The direction of movement is north, and the maximum
intensity is A = 10 mm/hour. When the speed decreases, the area that contributes
discharge to the outlet in each time step, grows larger.

67

The resulting hydrographs vary quite a bit, and we will do a thorough explana-
tion of one of the examples, in addition to some comments on the rest. Instead of a
meridional movement, we turn our attention to a zonal one — west. Compared to
the northern movement in Figure 5.5(c), there are some differences we immediately
notice in Figure 5.6(d), such as differences in when the outlet receives flow in the
beginning and the end, and the differences in peak heights. It all comes down to
when the storm front arrives at the cells, and their time-of-flights. If you look at the
sixth peak in the figure. This will be our reference discharge, as this is the discharge
that comes from a single cell (100 m2). If a peak is not a multiple in height of
this peak’s height, the cells that contribute discharge simultaneously have different
time-of-flights.

We will now study Figure 5.6(d) more in detail. The first cells that receive
precipitation have time-of-flights T = 200, T = 280 and T = 480. This means that no
discharge will reach the outlet from any of them before 200 seconds have passed.
However, the front only uses 100 seconds to move to the cells with time-of-flights
T = 0 and T = 17, so their combined discharges create the first peak. Because of the
time difference, the peak is not quite twice the height of our reference peak, nor
is the second peak three times as large, even though it is caused by the discharge
from three cells: those with T = 0,17 and 200, specifically. Nevertheless, this is the
maximum discharge at the outlet in the recorded time. The last peak before a period
of zero discharge comes from the last pair of cells with T = 0 and T = 17, in addition
to the cell with T = 280. The former cells receive precipitation after 300 seconds,
so the overlap is not too great, which causes the peak to be only slighter taller than
the discharge from two cells. In terms of time-of-flight the watershed is kind of
separated in two, the bottom and the top region. This causes the discharge to be
zero for a little while, before the flow starts to come from the top region. The fourth
peak is a result of the discharge from the second trap cell with T = 480. It is exactly
twice the height of our reference peak. It takes 100 seconds before the precipitation
reaches the next cells, T = 518 and T = 530. The final peak is our reference peak
from the cell with T = 589, which arrives after 789 seconds, 200 seconds after the
rain started to pour there.

We will not analyze the other flow directions as much, but instead focus on some
key points. If we compare Figure 5.6(a) to Figure 5.6(b) we can see that the first two
peaks overlap slightly in the southern direction. When the front is moving south,
the cells with T = 17 reaches the outlet 17 seconds before the precipitation does, so
before it starts raining in the bottom trap cell where the outlet is, there is already a
discharge. The fact that the storm starts in the cells furthest away from the outlet,
makes the discharge have more overlap, which can be seen in the rest of the figure.
In this case, it also causes a larger peak discharge in the end, almost as tall as the
ones in the beginning. The east-direction is the direction that causes the shortest
peaks, and three similar peaks in the beginning from the cells with T = 0 and T = 17.
This direction is the only direction with the tallest peak in the end. It turns out that
watershed wb results in very different hydrographs depending on which direction

Moving disk 68

the storm front is moving in.
Although the examples we used in this section did not show it, situations might

arise where we get a double counting of the precipitation to the cells. This is caused
by a round-off error in centroid coordinates at machine epsilon level. This results in
situations where the cell centroids are just barely inside, or outside of, the storm
front. So sometimes, if the storm front is exactly in the middle between two cells,
like in the third time step in Figure 5.3, it is somewhat arbitrary how many of the
centroids that are included. We see that only the centroids at the top of the storm
front are within the rectangle, but sometimes you get the centroids at both sides,
which leads to counting their contributions twice. This is not possible to see when
we work with large watersheds, so we will ignore it, but an example is shown in
Figure 5.7. The intensity is uniformly set to A = 10 mm/hour, i.e., not a Gaussian
distribution. The front moves at a speed of v = 1 m/s, so the cell with time-of-flight
T = 480 will be reached after t = 20 seconds, but with a width w = 10 m completely
overlap the cell after t = 30 seconds. We can see that this coincides with a double
counting of the contributions in time 5112.

5.4 Moving disk
In the previous section we looked at how the hydrographs turned out when the
precipitation was shaped as a rectangle that represented a storm front. We will
now simulate precipitation as a moving disk. The intensity of the precipitation still
depends on the distance from the storm center, which for a disk is the euclidean
distance from the storm center. We denote this distance r, so our equation becomes

I(r) = Ae
− r2

2(R/3)2 , (5.7)

where the maximum intensity is denoted A, and the radius of the disk is R. We will
look at different scenarios where we vary the direction the storm moves in, and the
radius of the storm.

We start like we did in Section 5.3 with an illustration of a storm crossing wb.
The storm is shaped like a disk and starts with the center in the lower left corner of
wb, and moves north east at a speed of v = 5 m/s. The maximum intensity is A = 10
mm/hour, and the radius of the disk is R = 10 m. Because of the high speed, the disk
crosses the landscape very fast. The first three time steps, as well as the final time
step before the disk stops to contribute precipitation, is shown in Figure 5.8. The
centroids of cells that receive precipitation are shown with black asterisks. Their
distance from the center determines the amount of precipitation they receive.

The hydrograph in Figure 5.9 is the result of the moving storm in Figure 5.8. It
resembles the hydrograph we saw in Figure 5.3, but because the disk does not cover
all cells in wb in the course of its movement, there are fewer discharge peaks. Similar

2It should be at time t = 510, but because of Matlab’s one based indexing, everything is shifted by
one.

69

0 200 400 600 800 1000

Time (s)

0

1

2

3

4

5

6

7

8

9

D
is

c
h

a
rg

e
 (

m
3
/s

)

10
-4

(a) North

0 200 400 600 800 1000

Time (s)

0

1

2

3

4

5

6

7

8

9

D
is

c
h

a
rg

e
 (

m
3
/s

)

10
-4

(b) South

0 200 400 600 800 1000

Time (s)

0

1

2

3

4

5

6

7

8

9

D
is

c
h

a
rg

e
 (

m
3
/s

)

10
-4

(c) East

0 200 400 600 800 1000

Time (s)

0

1

2

3

4

5

6

7

8

9

D
is

c
h

a
rg

e
 (

m
3
/s

)

10
-4

(d) West

Figure 5.6: When a 10 by 40 meters large storm front crosses the watershed wb in
the four cardinal directions, these are the resulting hydrographs. The starting point
and direction of the storm front is shown in the top right corner of each hydrograph.
In all cases the maximum intensity is A = 10 mm/hour and the front travels at a
speed of v = 0.1 m/s.

Moving disk 70

0 200 400 600 800

Time (s)

0

1

2

3

4

5

6

7

8

9
D

is
c
h
a
rg

e
(m

3
/s

)
×10

-4

500 505 510 515 520

Time (s)

0

1

2

3

4

5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

Figure 5.7: A round-off error at machine epsilon level leads to a double counting
of precipitation in cases where the storm front and cell faces overlap. This is not
noticeable in hydrographs for larger grids.

Figure 5.8: A storm crossing watershed wb is represented by a disk outlined by a
black circle. The disk moves northeast at a speed of v = 5 m/s. The intensity of the
precipitation is given by (5.7), where A = 10 mm/hour. Each time step is a second,
and we show the first three seconds, along with the last time step. The cell centroids
of the affected cells are marked with black asterisks. The time-of-flights for the cells
are shown in the background.

to the moving front, the Gaussian function determines how much precipitation each
cell gets based on the cell’s proximity to the center. In the first time step, only one
cell receives precipitation, but because its centroid is close to the border of the disk,
it does not receive much. In the second time step, the cell will receive more. The
contributions from the cells with low time-of-flights creates the two large peaks in
the beginning, and the rest of the peaks are all from the upper part of wb.

Next, we compare two storms against a storm that moves in the northeastern
direction, to see how the direction affects the hydrographs. The two storms are

71

0 200 400 600 800

Time (s)

0

0.5

1

1.5

2

2.5

3

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

Figure 5.9: The hydrograph from a storm moving northeast across wb at a speed of
v = 5 m/s and a maximum intensity of A = 10 mm/hour. Because the storm crosses
the watershed so quickly, the discharge is concentrated around each cell’s discharge
and passes the outlet very quickly.

shifted 15° away from the northeastern direction, in either the northern or southern
direction. The result is seen in Figure 5.10. When the movement is changed, the
storm will either no longer release rain to the same cells, or they will receive rain at
different intensities. This is reflected in the hydrographs. Both this example and
the one we saw in Figure 5.6 shows that the direction a storm is coming from is not
insignificant for how the outlet in the watershed is affected.

In the following we will look at how the size of a storm affects the landscape and
the accompanying hydrograph differently. The radius of each disk will determine
the size of the storm. We will ensure that the volume of water that falls within
each disk in a given time period is equal by using different intensity functions.
More specifically this is achieved by varying the maximum intensity A. To calculate
the volume within each disk, we first integrate the intensity function (5.7) for an

Moving disk 72

~d

α = 30°

~d

α = 45°

~d

α = 60°

0 200 400 600 800 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

0 200 400 600 800 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

0 200 400 600 800 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

Figure 5.10: A storm with radius R = 10 m, and maximum intensityA = 10 mm/hour
has an initial storm center located in the lower left corner of the domain. The storm
moves at a speed of v = 0.1 m/s across the domain in direction ~d, an angle α north
of east.

arbitrary disk of radius R

V =
∫ t=tf

t=0

∫ θ=2π

θ=0

∫ r=R

r=0
I(r)r drdθdt

= 2πAtf

∫ r=R

r=0
r exp

(
−r2

2(R/3)2

)
dr (5.8)

=
2
9
πR2Atf

(
1− 1

e
9
2

)
,

where tf is the time where the storm no longer contributes precipitation to the
watershed. The volume V of fallen rain is measured in m3.

We will compare three different storms where the radii are R = 10 m, R = 20 m
and R = 30 m. The maximum intensity for the storm with a radius of 10 meters
is A = 10 mm/hour. We will use tf = 1 s, i.e., the volume of water that is released
from the storm in a second, to determine how the intensity functions for each storm

73

-30 -20 -10 0 10 20 30

Distance from center (m)

0

2

4

6

8

10
I(

x
)

-30 -20 -10 0 10 20 30

Distance from center (m)

0

2

4

6

8

10

I(
x
)

-30 -20 -10 0 10 20 30

Distance from center (m)

0

2

4

6

8

10

I(
x
)

0 500 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

(a) R = 10 m, A = 10
mm/hour

0 500 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

(b) R = 20 m, A = 2.5
mm/hour

0 500 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

D
is

c
h

a
rg

e
(m

3
/s

)

×10
-4

(c) R = 30 m, A = 1.11
mm/hour

Figure 5.11: The three figures show the hydrographs corresponding to a northeastern
movement where the radii are ranging from 10 m to 30 m. Different Gaussian
functions ensures that the disk theoretically receives equal amounts of water. Note
that the illustration in the top right corner of (c) only shows storm movement, not
radius. The radii will vary in the three cases.

will look. We get A = 2.5 mm/hour for R = 20 m, and A = 1.11 mm/hour for R = 30
m. All storms start in the bottom left corner of wb, and move in the northeastern
direction until no more cells are affected by the rain. The storm speed is v = 0.1
m/s. The intensity functions, as well as their hydrographs are shown in Figure
5.11. A scenario like this is very interesting because it looks at whether large soft
storms, or small intense storms are the most dangerous. In the figure we can see
that the smallest storm produces the largest discharge peaks, whereas the larger
storms create more steady flow at the outlet, but at lower discharge rates. This
makes sense, because if a large amount of rainfall is released to an area where the
distance to the outlet is close to identical, the probability that affected cells have a
similar time-of-flight is very high.

Conservation of water 74

(a) Elevations (b) Flow directions (c) Time-of-flight T
0

200

400

600

800

1000

1200

1400

1600

Figure 5.12: We create a 1000 x 1000 meters large landscape to check conservation
of water. The landscape (a) is shaped so it drains to the outlet in the middle at the
bottom, which the flow directions in (b) show. The time-of-flights (c) are also shown.
The watershed covers the entire landscape, and is called ws.

5.5 Conservation of water
If the total volume of water the rainfall releases to the watershed, is equal to the
total volume of water that leaves the watershed at the outlet afterwards, we have
conservation of water (mass). This means we must make sure all water we put
into the system, eventually goes out of it. We will run a test to confirm that this
holds. We construct a 1000 by 1000 meters large watershed where the topography
is shaped so the precipitation drains to the same outlet. We call this watershed ws.
The landscape is represented by a 100 x 100 grid, so each cell is 100 square meters
large. The elevations of the watershed, the corresponding flow directions and the
time-of-flights for the landscape are shown in Figure 5.12. As a side note, the figure
actually shows the limitations of the D8 Algorithm in a good way.

We let a storm shaped like a disk cross ws at a speed of v = 1 m/s, and we will
calculate the theoretical volume of water Vt from the precipitation. This is shown
below in Example 26.

Example 26. We let a disk with radius R = 20 m cross watershed ws. The storm
starts just within the top left corner of the grid, and its precipitation will stop when
the storm reaches the domain boundary in the bottom right corner. The intensity in
the middle of the storm is A = 2.5 mm/hour. We want to check the total volume of
water the storm releases to the landscape, and we use Equation (5.8) to calculate the
theoretical value. As the velocity of the storm is known, we only need to know the
distance the storm travels within the watershed. This is s =

√
9602 + 9602 m. Because

the speed is v = 1 m/s, tf is roughly 1358 seconds. This means that according to

75

Equation (5.8), we get a theoretical precipitation volume of

Vt =
2
9
πR2Atf

(
1− 1

e
9
2

)
(5.9)

=
2
9
π · 202 · 2.5 ·

√
9602 + 9602 ·

(
1− 1

e
9
2

)
· 1

103 · 3.6 · 103 (5.10)

≈ 0.2604 m3. (5.11)

Now that we know the theoretical volume input Vt, we calculate the numerical
volume input Vn to the watershed during the rainfall. If we sum up the contributions
in every time step, from the precipitation starts until the disk has reached the
opposite corner of ws, we get Vn = 0.2602 m3. This shows that the water is conserved
for the storm. Out of curiosity we also check Vn if we decrease the number of grid
points to 50 x 50, and also increase it to 250 x 250 and 500 x 500. First we check
the 50 x 50-grid. Our algorithm yields Vn = 0.2676 m3, which is higher than the
theoretical volume. We recall the discretization errors we mentioned in Section
5.3, an error which will decrease when the number of cells increase. Thus we try
to increase the grid size. When we use a 250 x 250 grid, Vn is much closer to
Vt, with 0.2603 m3. Finally, the 500 x 500-grid has a numerical water input of
Vn = 0.2604 m3. It is clear that a finer grid will result in more accurate calculations,
but sometimes finer grids are not available, or not practically possible.

5.6 Grid cell size ’convergence’
In nature, precipitation does not behave as an analytical function. Rain clouds
come in all shapes and sizes, and the intensity varies greatly. This means that the
error we do when we approximate rainfall over an entire cell is not necessarily
that significant. Sometimes a cell receives a bit too much water, other times to
little. However, it is still interesting to briefly look at how a finer grid affects the
hydrograph from the same rainfall. The storms are identical, so the only difference
is how fine the grids are. In Figure 5.13 we can see how the different grid resolutions
affect the hydrographs. When the number of cells increase, the rainfall in each cell
will decrease. The effect is that the arrival of water at the outlet is more frequent, but
the volume per arrival is less. This results in less spikes and smoother hydrographs.

In the next chapter we finally look at the results for a real life watershed.

Grid cell size ’convergence’ 76

0 500 1000 1500 2000

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(a) N = 50

0 500 1000 1500 2000

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(b) N = 100

0 500 1000 1500 2000

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(c) N = 250

0 500 1000 1500 2000

Time (s)

0

0.2

0.4

0.6

0.8

1

D
is

c
h
a
rg

e
(m

3
/s

)

×10
-3

(d) N = 500

Figure 5.13: A disk of radius R = 20 meters, with maximum intensity A = 2.5
mm/hour crosses the watershed ws in a southeastern direction. The figures show
how the number of grid cells N x N affects the hydrographs.

77 Results for real landscape data

6 Results for real landscape data
Up until now, we have only shown our algorithms for simple examples, but the
real fun starts when we apply them to real data and landscape information. In
this chapter we will delineate a watershed, calculate the travel times, and use our
rainfall-runoff model to predict the discharge in the river after a rainfall.

In this chapter we will look at the landscape that surrounds the fjord Tyrifjorden.
To get a better understanding of the topography of the landscape, we show a
hillshade plot in Figure 6.1. The elevations of the landscape range between 13.8
meters at the lowest to 710.5 meters at the highest. Because Tyrifjorden acts as a
basin for the majority of the landscape, the watershed we will look at will cover
most of the hillshade plot.

Figure 6.1: A hillshade plot of the landscape. The large flat in the middle is
Tyrifjorden.

In the next section we take a look at the flow accumulation results for the entire
DEM.

6.1 Flow accumulation
A flow accumulation plot is great for two reasons: it shows all large rivers and
lakes in the landscape, and we can use it to select the outlet that we delineate the

Flow accumulation 78

watershed of. In Algorithm 4 we used the cell connectivity matrix to calculate the
accumulated flow in the landscape. If we do this for the Tyrifjorden landscape, we
obtain the plot in Figure 6.2. The plots shows the number of upslope cells for each
cell in the landscape.

In this particular landscape, the accumulated flow plot does not convey the de-
tails of the river network very well, because some areas have a colossal accumulated
flow. One example is Tyrifjorden, which has around ten million upslope cells. This
amounts to an area of around one billion square meters. Besides Tyrifjorden, we
can also see some of the rivers that flow to the lake, in addition to the lakes’ outflow
river at the south west side of the lake. This river will merge with a tributary river
from the west further south.

Figure 6.2: Flow accumulation of the Tyrifjorden landscape. The colorbar shows the
number of upslope cells for each cell in the landscape; those with the highest flow
accumulation have more than 10 million upslope cells.

To better visualize the river network in the landscape, we plot the 10-logarithm
of the flow accumulation, which we show in Figure 6.3. The left figure depicts the
entire 40 x 40 km landscape, and we can see that major lakes and rivers are much
more visible now. In the right figure we zoom in on a section at the south west side
of the lake to see how rivers, or the lack of rivers, show the valleys in the terrain.
The rivers also show the connections between all lakes, dams and ponds at their
maximum water levels.

The flow accumulation is actually one of the parameters that could have been
included in κ in Equation (4.7), as a way to increase speed in areas with a large flow
accumulation.

79

Figure 6.3: To better illustrate rivers and smaller lakes in the Tyrifjorden landscape
we take the 10-logarithm of the flow accumulation. The left figure shows the
entire landscape, while the right figure shows a small section to the south west
of Tyrifjorden. It is much easier to see the river network, and how the lakes are
connected in the last figure, compared to Figure 6.2.

Next, we look at the outlet selection strategy. To properly test our implementa-
tion we choose the location with the highest flow accumulation in the landscape,
which is located in the river/lake at the west side of the southern boundary of the
domain in Figure 6.2. The outlet’s watershed will collect water from almost the
entire landscape in Figure 6.1. In the next section, we will transform the outlet’s
delineated watershed into the grid structure in MRST.

6.2 Coarse grid from delineated watershed
In Section 4.3 we showed how the watershed wb could be transformed into a grid in
MRST. Although the watershed was small and fictional, its small size made it easy
to explain how the time-of-flights had been obtained, and how the hydrographs
came to look like they did. We will now do the same for a much larger watershed.

If we choose an outlet in the lower left corner of Figure 6.2 (outlet located in the
river at the southern domain boundary), we obtain a watershed that we call wT . We
will transform wT into the grid structure used by MRST, and call this CGT , which
we show in Figure 6.4. All trap cells have been colored blue, while the non-trap
cells are colored grey.

If we plot the elevations of the watershed in 3D, and look from the north, we
get the plot in Figure 6.5. The plot gives a different perspective, and the watershed
outlet is not located in the upper right corner of the figure.

Time-of-flight for landscape 80

Figure 6.4: The coarse grid CG of the largest watershed in the Tyrifjorden landscape.
All trap cells have been colored blue, and the regular cells are grey.

6.3 Time-of-flight for landscape
In Chapter 4 we created a framework that allows us to estimate the travel times
for the cells in a watershed, and is the major component of our rainfall-runoff
model. This estimate uses a rough approximation of the velocity field ~v in the
landscape based only on topography, as we set κ = 1 in Equation (4.8). Because
of the framework we have created, it is possible to account for the heterogeneous
properties by adjusting κ, and obtain more accurate velocity fields. This will in turn
yield better estimates of the time-of-flights. There are many possible improvements
that can be made to the model, and we will come back to some of them in the
conclusion and future work.

In Chapter 4 we obtained time-of-flights for the small watershed wb, but we will
now do it for the cells in watershed wT . Because some of the trap cells are huge,
we set φ = 10−7. This will ensure a high speed in the Tyrifjorden trap cell, which
enables water to quickly flow from one end of Tyrifjorden to the other end. If we
had not done this, the trap cell would have been a major bottleneck in the watershed.
In Figure 6.6 we show the time-of-flights for watershed wT . The travel times are
given in seconds.

In Figure 6.6 the time-of-flights range between T = 0 and T = 699004 seconds.

81

Figure 6.5: A 3D-plot that shows the elevations of the Tyrifjorden watershed seen
from the north to give another perspective on the area. We have colored Tyrifjorden
black so it is easier to see.

This means that the cell with the longest travel time takes about 194 hours to arrive
at the outlet, which is longer than a week. This sounds like a very long time. It is
not an easy task to determine how long it takes water to flow to the outlet, because
there are so many parameters that will alter the estimate. To obtain a better estimate
of the travel times, we would have to change our velocity field. And perhaps the
constant C we used over faces with zero or negative elevation difference also need
to be changed.

If we have a side-by-side comparison of the elevations in the landscape and the
time-of-flights, it is easier to see how they are related. In Figure 6.7 we plot the
time-of-flights to the left and the elevations to the right using only 15 colors to make
the comparison easier. In general, we can see that the time-of-flight is low for areas
close to Tyrifjorden, which also have a steep slope towards it. When the distance
to Tyrifjorden increases, and the slope is gentle, the travel time also increases. In
this particular watershed Tyrifjorden will have a huge impact on the travel times,
and the close to instantaneous movement across makes the distance to Tyrifjorden a
very important factor.

To explain the high time-of-flight for the area located a bit south of the upper
right corner, we can look at Figure 6.5, where Tyrifjorden is colored black. The

Time-of-flight for landscape 82

Figure 6.6: The time-of-flight for wT when φ = 10−7 for traps.

area in question is shown in the lower left corner, and we see that it is far away
from Tyrifjorden. There will be other trap cells it has rapid flow in, but it takes
some time to get to them, and parts of the area within the mountains are quite
secluded. The plot also shows the gentle slopes in the watershed, which explains
higher time-of-flights.

When the trap cells grow as large as the Tyrifjorden cell, the φ-parameter will
have a lot to say. We will compare a choice of φ = 10−3 to φ = 10−7 for the trap cells
in Figure 6.8. The left figure shows the largest value, and it is clear that there is a
bottleneck in the Tyrifjorden trap cell, as the speed is very slow in this area. The
plot clearly shows the part of the watershed that does not go via Tyrifjorden, i.e.,
the watershed of the river that merges with the river from Tyrifjorden.

83

(a) Time-of-flights (b) Elevations

Figure 6.7: Comparison of time-of-flights and elevations for watershed wT , when
φ = 10−7 for trap cells. To make the comparison easier, we have only used 15 colors
in the plots.

Figure 6.8: A comparison of how the time-of-flights change when φ = 10−3 (left)
and φ = 10−7 (right) for trap cells.

Optimization of hydrograph calculations 84

6.4 Optimization of hydrograph calculations
The computation of the hydrograph can take a very long time if the watershed and
the storm are large. This is because we have to calculate which cells the precipitation
affect in each time step. If we had used real life-precipitation data in a raster format,
this would not be a problem. One way we can speed up the computations, is
to increase the ∆t from Section 5.2. Up until now we have used ∆t = 1 seconds,
which means constant precipitation for 1 second before the rainfall changes location.
From a weather simulation perspective, this is a very low ∆t, because the changes
that happen from one second to the next are very small. As an example, The
Norwegian Meteorological Institute1 uses a ∆t of 7.5 minutes for their radar images
that visualize precipitation.

When ∆t increases, we let the discharge from each cell be constant for a du-
ration of ∆t seconds. We will now look at different ∆t-values to see how much
the hydrographs change, and we let the hydrograph with ∆t = 1 be our reference
solution. Because we let the precipitation be constant in our computations, the
hydrograph will look like a discontinuous stepwise function. In Figure 6.9 a storm
front of width 10 km crosses wT at a speed of v = 1 m/s in the northern direction,
with a maximum intensity in its storm center of A = 10 mm/hour. The left figure
shows a good overlap between the hydrographs. However, when we zoom in on the
hydrographs, shown in the right figure, we can clearly see the discontinuities, and
how the ’steps’ grow smaller when ∆t decreases.

To smooth the discharges in Figure 6.9, we average the discharge for each time
interval [tn, tn+1], and plot it in time tn+ 1

2
. The resulting hydrographs are shown in

Figure 6.10. The left figure shows the entire hydrograph, while the right figure shows
the same time interval as the right figure in Figure 6.9. We see that the functions
are much smoother now and closer to the reference solution. The hydrograph that
∆t = 60 seconds produces is almost identical, and ∆t = 600 seconds is also very good.
When ∆t is as large as 3600 seconds, we see its hydrograph is not ideal; from the
small example in the right figure the discharge is off by more than 5 m3/s.

We had some struggles with this process because we used the precipitation’s
position in time tn as basis for the next ∆t seconds. This made the hydrographs lag a
distance ∆t/2 behind our reference solution (∆t = 1), which is shown in Figure 6.11.
When we use the rainfall’s position in time tn as basis for the interval [tn, tn+1], the
hydrographs will only agree with the reference solution in time tn. A better solution
is to instead use the storm front’s position in time tn+ 1

2
to estimate the rainfall. This

way the hydrographs follows the reference solution much more closely.

We want to increase the time step ∆t to something that still qualitatively gives
the same hydrograph, as this will optimize our running time. We want to figure out
the error we make when we discretize the precipitation and consider it piecewise

1Website at met.no.

met.no

85

0 2 4 6

Time (s) ×10
5

0

20

40

60

80

100

120

140

160

180

D
is

c
h

a
rg

e
(m

3
/s

)

1

60

600

3600

3.9 3.905 3.91 3.915 3.92 3.925

Time (s) ×10
5

18

19

20

21

22

23

24

25

26

27

28

D
is

c
h
a
rg

e
(m

3
/s

)

1

60

600

3600

Figure 6.9: Front movement towards the north at a speed of v = 1 m/s. The left
figure shows the resulting hydrographs if the precipitation stands still for ∆t = 1,
60 and 600 seconds. The precipitation in time ∆t/2 contributes a constant discharge
in the time interval [0,∆t]. In the right figure we see the discontinuities in the
hydrographs.

0 2 4 6

Time (s) ×10
5

0

20

40

60

80

100

120

140

160

180

D
is

c
h

a
rg

e
(m

3
/s

)

1

60

600

3600

3.9 3.905 3.91 3.915 3.92 3.925

Time (s) ×10
5

18

19

20

21

22

23

24

25

26

27

28

D
is

c
h
a
rg

e
(m

3
/s

)

1

60

600

3600

Figure 6.10: If we let the precipitation be constant for ∆t seconds before we move it,
the discharge from each cell will be constant for the same duration. We can smooth
the resulting hydrograph by averaging the discharge over every ∆t seconds, and
plot the discharge in time tn+ 1

2
. The left figure shows the result after smoothing the

data. We can compare the right figure with the right figure in Figure 6.9 to see how
it was before the smoothing.

Optimization of hydrograph calculations 86

0 2 4 6

Time (s) ×10
5

0

20

40

60

80

100

120

140

160

180
D

is
c
h

a
rg

e
(m

3
/s

)
1

600

3600

6.56 6.58 6.6 6.62 6.64

Time (s) ×10
5

4

6

8

10

12

14

16

D
is

c
h
a
rg

e
(m

3
/s

)

1

600

3600

Figure 6.11: Initially we used the storm front’s position in time tn as basis for
the time interval [tn, tn+1]. This means that the precipitation only agrees with the
reference solution in time tn, which leads to a lag in the hydrographs by ∆t/2. If we
instead use the storm front’s position in time tn+ 1

2
, we avoid this effect.

constant. We expect the error to be O(∆t) from

P (t,T (x)) ≈ P (tc) + P ′(tc)(t − tc) = P (tc) +O(tc),

where tc is

tc = tn+ 1
2

=
(
n+

1
2

)
∆t.

To show this, we calculate the norm of the error e(t) = h(t)− h∆t, where h(t) is
the function in Equation (5.1). The approximate hydrograph h∆t is the resulting
hydrograph from a piecewise constant precipitation, where the discharge is averaged
over each ∆t-interval. We define a norm of the error we make globally as

E2 =
‖e(t)‖L2

‖h(t)‖L2
, (6.1)

where ‖e(t)‖L2 is a discretized version of the L2-norm:

‖e(t)‖L2 =

√∫ tmax

0
|h(t)− h∆t(t)|2 dt =

√∑
n

∫ tn+1

tn

|h(t)− h∆t(t)|2 dt

≈
√∑

n

∣∣∣∣h(tn+ 1
2
)− h∆t(tn+ 1

2
)
∣∣∣∣2∆t =

√
∆t

√∑
n

∣∣∣∣h(tn+ 1
2
)− h∆t(tn+ 1

2
)
∣∣∣∣2. (6.2)

87

10
1

∆t(s)

10
-1

10
0

E
2

Figure 6.12: The plot shows the E2-norm from Equation (6.1), which is the global
error we make when we use a piecewise constant precipitation in ∆t-intervals. The
error scales by O(∆t).

The norm of our reference solution is discretized in a similar manner. We want to
confirm that E2 scales by O(∆t). The example watershed wb from Chapter 4 is used
to show this. In Example 27 we let a storm front cross wb in a northern direction.
It is important to use ∆t-values such that the rainfall does not jump over cells, i.e.,
v∆t < w+ c, which we can write as

∆t <
w+ c
v

, (6.3)

where w is the front width, c the width of a cell, and v the velocity of the front. If
our choice of ∆t does not satisfy (6.3), we will entirely jump over cells, and get a
poor hydrograph approximation.

Example 27. We consider h∆t=1(t) our reference solution, which we will compare to
h∆t(t). We use the ∆t-values {2,4,8,16}. In this example the velocity of the storm
front is v = 1 m/s, and the front width is w = 25 m wide. Based on Equation (6.3)
we could also have included ∆t = 32, but because it is so close to the threshold, we
will omit it. In all cases A = 10 mm/hour and φ = 0.1 for trap cells. If we plot the
error E2 in Figure 6.12, we see that it scales by O(∆t).

We will now visually inspect which ∆t-values that are appropriate at different
velocities v for the Tyrifjorden watershed wT , if a storm front of width w = 10 km
with a Gaussian distribution crosses the watershed in a northernly fashion. In all
cases we have used φ = 10−7 for trap cells to calculate the time-of-flight, and a

Optimization of hydrograph calculations 88

3.8 3.9 4 4.1

Time (s) ×10
5

12

14

16

18

20

22

24

26

28
D

is
c
h
a
rg

e
(m

3
/s

)
1

60

120

240

480

960

1920

3840

3.895 3.896 3.897 3.898 3.899 3.9 3.901

Time (s) ×10
5

27.35

27.4

27.45

27.5

27.55

27.6

D
is

c
h

a
rg

e
(m

3
/s

)

1

60

120

240

480

960

1920

3840

Figure 6.13: We will compare the hydrographs if we move the precipitation in every
second (∆t = 1 s), to if we move it every ∆t seconds. In the left figure we show a
section of the hydrograph where it is easy to see that some of the ∆t-values fail
to give a good approximation of the reference hydrograph, in this case especially
∆t = 3840 seconds. In the right figure we zoom in even more and see that e.g.,
∆t-values of 60 and 120 result in very close fits to the reference solution.

precipitation intensity maximum of A = 10 mm/hour. We first check the case v = 1
m/s, and we use the ∆t-values {60,120,240,480,960,1920,3840} seconds, which all
satisfy Equation 6.3. Just like in the left figure in Figure 6.10 they look similar from
afar, so we will zoom in to look at the differences. In the left figure in Figure 6.13 we
can see that especially ∆t = 3840 performs poorly compared to the other ∆t-values.
If we zoom further in we get a closer look at the hydrographs the other ∆t-values
produce. At this level the discharges are not far from the reference solution in terms
of discharge.

Criteria for∆t-selection
Because we need to calculate hydrographs for different velocities v, we need some
criteria to base our selection of ∆t on. The first one we will use is a threshold on the
error E2, which acts as an estimate for global error. This will ensure an overall good
fit with our reference solution. The second criterion is a threshold on the supremum
norm, which we call E∞, and is given as

E∞ = ‖e‖L∞ = sup
t∈[0, tmax]

|h(t)− h∆t(t)|. (6.4)

In order to get hydrographs where the discharge peaks closely resemble each other,
we need to know if there are any local points where the error is extra large. Some-
times it is very important that the maximum discharge is correct, one example being

89

6.395 6.4 6.405 6.41 6.415 6.42

Time (s) ×10
4

7

8

9

10

11

12

13

14

15

16

17

D
is

c
h
a
rg

e
(m

3
/s

)

1

60

120

240

480

960

1920

3840

Figure 6.14: Discontinuity in the hydrograph of the reference solution. The leap
occurs because the initial position of the storm front is halfway onto the watershed,
which includes a section of Tyrifjorden. Because the entire fjord has a time-of-flight
of 64107 seconds, the water will arrive simultaneously at the outlet. This results in
a large error for small ∆t-values.

the design flood estimations we mentioned briefly in Section 2.4. If we know that
a structure is only capable to withstand a discharge of 200 m3/s, it is important
that we get the maximum discharge correct. Thus, our third criterion is that the
difference between the maximum discharge in the reference solution and for our
approximated solution is below a threshold.

We will start by looking at the error E2 for the different ∆t-values. After we
calculated the norm for the different ∆t-values, we noticed that small ∆t-values
performed surprisingly poorly. Upon closer inspection we found a discontinuity in
the hydrograph of the reference solution, which occurs because the storm front’s
initial position is halfway onto the watershed. The storm front contains a part
of Tyrifjorden, which has a time-of-flight value of 64 107 seconds. This fits well
with the discontinuity shown in Figure 6.14. As we can see from the figure, the
discontinuity causes the hydrographs for e.g., ∆t = 60 and ∆t = 120 to have a
larger error than the hydrograph for ∆t = 240. To get more accurate estimations
of the norm, we instead calculate the norm based on the discharge values after the
discontinuity.

We will now show an example where we select a ∆t for a velocity of v = 1 m/s.
We explain the reasoning behind the choice we make of ∆t in Example 28. The

Hydrographs 90

thresholds we present in the example are the same ones that we will use for different
velocities.

Example 28. The first criterion we check is the E2-norm. To ensure a low global
error we set a threshold of 0.01. For a speed of v = 1 m/s, the only ∆t-values that
yield a E2-value below the threshold are 60, 120, 240 and 480 seconds; these ∆t-
values give hydrographs that come very close to the reference solution in the right
figure in Figure 6.13. Next we look at E∞, where we set a threshold of 2 m3/s. This
means that we do not allow a local error in the discharge of more than 2 m3/s. All
∆t-values beside 1920 and 3840 are below this threshold, which means that we keep
all ∆t-values that passed the first criterion.

In the final criterion, we compare the difference in maximum discharge for the
hydrographs, and we will allow a difference of maximum 2 m3/s. Only the two
largest ∆t-values fail this test. This means that based on our three criteria, we
can choose ∆t-values of either 60, 120, 240 or 480 seconds. To get an accurate
hydrograph, but at the same time a low computation time, we choose the largest
feasible ∆t, which in this case is ∆t = 480 seconds. This shows that we can use a
stepwise constant function, where each step is eight minutes long, and still get a
sufficiently good hydrograph.

If we use the three criteria for the velocities v = 5.6 m/s and v = 12.5 m/s, we
obtain maximum ∆t-values of 240 seconds, and 120 seconds, respectively. This
shows that rainfalls moving at a higher speed, requires more data to obtain an
accurate hydrograph, which is not surprising. In the following we will use a ∆t-
value of 480 seconds for v = 1 m/s, ∆t = 240 for v = 5.6 m/s, and ∆t = 120 for
v = 12.5 m/s. The chosen speeds are not random, but represent warm (v = 5.6
m/s) and cold (v = 12.5 m/s) storm fronts. Based on these results, we hope that
The Norwegian Metereological Institute only uses a ∆t = 7.5 minutes for their
visualizations, and not their calculations.

It is also possible to use the accumulated flow as an extra criterion. In Figure
6.15 we have plotted the accumulated flow for the three velocities v = 1 m/s, v = 5.6
m/s and v = 12.5 m/s, from left to right. The plot shows how the highest ∆t-values
completely fall through in terms of estimating the total discharge when the speed
increases. Thus we must reduce ∆t if v is high to get accurate precipitation data.
We can also see that the maximum accumulated flow decreases when the velocity
of the storm front v increases. This is natural as the storm front moves over the
landscape quicker, so it sheds less water. To obtain accumulated flow we use linear
interpolation between the points of the h∆t(t)-functions, which gives us discharge
values for every second.

6.5 Hydrographs
The optimization we looked at in Secion 6.4 do not apply to the scenarios with
uniform precipitation in the entire watershed. Rather, we use it in scenarios where

91

0 2 4 6

Time (s) ×10
5

0

2

4

6

8

10

12

14
A

c
c
u

m
u

la
te

d
 f

lo
w

(m
3
)

×10
6

1

60

120

240

480

960

1920

3840

0 2 4 6

Time (s) ×10
5

0

0.5

1

1.5

2

2.5

3

A
c
c
u

m
u

la
te

d
 f

lo
w

(m
3
)

×10
6

1

60

120

240

480

960

1920

3840

0 2 4 6

Time (s) ×10
5

0

2

4

6

8

10

12

14

16

A
c
c
u

m
u

la
te

d
 f

lo
w

(m
3
)

×10
5

1

60

120

240

480

960

1920

3840

Figure 6.15: Accumulated flow over time when the rainfall contributes to the
discharge. In the left figure the velocity of the stormfront is v = 1 m/s, in the middle
one v = 5.6 m/s, and the right one is v = 12.5 m/s. When v increases, we must
decrease ∆t to capture the required information. We can also see that the total
rainfall decreases when the speed increases.

the precipitation takes the form of a storm front or a disk, which moves at a constant
speed. In Figure 6.16 we look at two hydrographs after a uniform rainfall of
P = 10 mm/hour in the entire watershed. If the duration of the rainfall is one
hour (left figure), Tyrifjorden will contribute with a very large discharge peak after
approximately 20 hours, but the effect of regions that simultaneously contribute
discharge is much more noticeable if the duration of the rainfall increases. A
duration of ten hours (right figure) gives a higher maximum discharge, as well as an
increase in the overall discharge at the outlet. Because of the large rainfall in the
entire watershed, the outlet will experience a much larger discharge compared to
non-stationary rainfalls which affect only parts of the watershed.

A uniform precipitation scenario in an entire landscape is something that do not
happen very often, so we will look at scenarios where the precipitation varies in
shape, intensity and location, just like we did in Chapter 5. We will now take a look
at storm fronts that move across wT . In all examples we use a storm front of width
w = 10 km, and a precipitation intensity that varies in the storm front according to
Equation (5.6), where A = 10 mm/hour and R = w/2. In the following we will vary
both the direction of travel and the speed at which it travels.

We begin with a comparison of the hydrographs for a storm front that travels in
the directions north, south, west and east. When the storm front starts its movement
further away from the watershed outlet, we expect peaks to come earlier, and be
somewhat larger, because the movement of the rainfall, and the flow of the water, are
in the same direction; this is an effect we noticed in our hydrographs in Section 5.3.
In Figure 6.17 we notice this effect as well. The top left figure shows the northern
movement, while the top right shows the southern movement, and we can see that
the latter has a larger maximum peak. Likewise, the maximum peak of a western
movement (bottom left) is larger than the eastern movement (bottom right). Besides

Hydrographs 92

0 20 40 60 80 100 120 140 160 180 200

Time (hours)

0

100

200

300

400

500

600

700

800

900

1000
D

is
c
h
a
rg

e
(m

3
/s

)

0 20 40 60 80 100 120 140 160 180 200

Time (hours)

0

100

200

300

400

500

600

700

800

900

1000

D
is

c
h
a
rg

e
(m

3
/s

)

Figure 6.16: A uniform precipitation of P = 10 mm/hour in the entire watershed
lasts for one hour (left figure) and ten hours (right figure). In both cases the
contribution from Tyrifjorden creates the largest discharge peak, but when the
rainfall only lasts for an hour, there will not be much overlap between the discharge
from different regions. In the right figure this is much more noticeable; both peak
discharge and the overall discharge at the outlet will increase because more water
arrive simultaneously.

these effects, the hydrographs look very similar, most likely because the storm front
crosses wT relatively fast compared to the time-of-flights.

The various peaks in the hydrographs usually come from large lakes (where all
cells in the lake has the same time-of-flight T). If we look at the five largest traps
in the area, the Tyrifjorden trap has a time-of-flight of 17.8 hours, and is over 26
times larger than the second trap on the list. This explains the huge difference in
peak heights. The other four traps have time-of-flight values (in hours) of T = 97.5,
T = 175.0, T = 57.4 and T = 21.9, where the largest trap is listed first. In all four
figures we can make out the contribution from the first, second and third largest
lakes. The fourth is also quite visible, while the fifth is somewhat masked by the
Tyrifjorden trap.

In Section 5.3 we saw that a slower moving storm front resulted in taller dis-
charge peaks, a consequence of increased overlap between discharge contributions
from different regions. The total volume of rain will also increase, as the cells are
exposed to precipitation for longer periods. We will compare three velocities for
a storm front that moves towards the west. The first one, v = 1 m/s is more of a
reference solution, while the other two represent typical velocities for cold and

93

0 20 40 60 80 100 120 140 160 180 200

Time (hours)

0

20

40

60

80

100

120

140

160

180

D
is

c
h

a
rg

e
(m

3
/s

)

0 20 40 60 80 100 120 140 160 180 200

Time (hours)

0

20

40

60

80

100

120

140

160

180

D
is

c
h

a
rg

e
(m

3
/s

)

0 20 40 60 80 100 120 140 160 180 200

Time (hours)

0

20

40

60

80

100

120

140

160

180

D
is

c
h

a
rg

e
(m

3
/s

)

0 20 40 60 80 100 120 140 160 180 200

Time (hours)

0

20

40

60

80

100

120

140

160

180

D
is

c
h

a
rg

e
(m

3
/s

)

Figure 6.17: A storm front sweeps across the watershed at a speed of v = 1 m/s.
When the storm front comes from different directions, the hydrographs will differ
from each other. Here we show a storm front that moves northwards (top left),
southwards (top right), eastwards (bottom left) and westwards (bottom right). In
each scenario the storm front starts with half the front at the inside of the watershed,
and the storm has passed when the entire front has left the watershed.

Hydrographs 94

0 50 100 150 200

Time (hours)

0

20

40

60

80

100

120

140

160
D

is
c
h

a
rg

e
(m

3
/s

)

(a) v = 1 m/s

0 50 100 150 200

Time (hours)

0

20

40

60

80

100

120

140

160

D
is

c
h

a
rg

e
(m

3
/s

)
(b) Warm front v = 5.6 m/s

0 50 100 150 200

Time (hours)

0

20

40

60

80

100

120

140

160

D
is

c
h

a
rg

e
(m

3
/s

)

(c) Cold front v = 12.5 m/s

Figure 6.18: Resulting hydrographs for a storm front that crosses wT from the east
(western movement) at different velocities.

warm weather fronts2. To represent a warm weather front we use v = 5.6 m/s, and
v = 12.5 m/s for a cold weather front. In Figure 6.18 we compare the three speeds.

In Chapter 5 we also modeled the precipitation as a moving disk. Perhaps the
most interesting aspect of this was the question about the impact of a disk shaped
storm with a large radius, but low maximum intensity versus a storm with relatively
small radius, but larger maximum intensity. We will study this for wT as well. In
Figure 6.19 we compare the hydrographs of disk-shaped rainfalls where we vary
radius and maximum intensity. We use the radii 5000 m, 3000 m and 1000 m.
If we assume a maximum intensity A = 10 mm/hour in the largest disk, we get
a maximum intensity of A = 250 mm/hour for the smallest disk, which is not so
realistic, and very extreme. However, to keep the total volume of rainfall for all
three disks equal, we will still use it.

The plots have some differences. It is especially interesting to see that the
maximum discharge increases when the radius grows smaller. This is expected
as it increases the chance that an area with approximately the same time-of-flight
receives a lot of precipitation simultaneously. If this happens in a narrow valley,
this can have large consequences for flow at the watershed outlet. We have only
looked at the hydrograph for the entire watershed outlet in wT , but if we had also
looked at the discharge for the said valley, the impact of this local rainfall would be
much larger.

If an area with similar time-of-flights receive large amounts of precipitation
simultaneously, this can result in a large discharge peak. We saw an example of
this effect in Figure 6.19, where the maximum discharge increased when the area of
the rainfall decreased (constant volume). One type of precipitation that can have a

2In an article from yr.no called ’Hvor fort går egentlig været?’, they discuss typical speeds of
weather fronts, and estimate cold weather fronts to have a speed between 30-80 km/h, and warm
weather fronts a speed around 20 km/h.

yr.no

95

0 50 100 150

Time (hours)

0

10

20

30

40

50
D

is
c
h
a
rg

e
(m

3
/s

)

0 50 100 150

Time (hours)

0

10

20

30

40

50

D
is

c
h
a
rg

e
(m

3
/s

)

0 50 100 150

Time (hours)

0

10

20

30

40

50

D
is

c
h
a
rg

e
(m

3
/s

)

Figure 6.19: The hydrographs after three disk-shaped rainfalls cross watershed wT
at a speed of v = 1 m/s. The volume of water contributed to wT is equal in all
three cases. The left figure shows a disk with radius R = 5000 m, and maximum
intensity of A = 10 mm/hour. When the radius grows smaller (left and right figure),
the intensity in the disk center increases. The middle figure shows the resulting
hydrograph from a rainfall of radius R = 3000 m and maximum intensity A = 27.8
mm/hour, while the same data for the right figure is R = 1000 m and A = 250
mm/hour.

very large impact on the terrain is the convectional rainfall3, which is very local and
often quite intense. When it occurs in cities, it often results in floods because of the
many inpermeable surfaces. In Example 29 we look at an event where convectional
precipitation in the Oslo area flooded parts of the city.

Example 29. In August 2016 convectional precipitation caused parts of Oslo to
flood. It was reported that 54.7 mm rain fell in the course of two hours4. Based on
the article’s table of precipitation in different parts of the city, the rainfall intensity
varies greatly in the different parts of the city. We want to simulate the rainfall by
using a small disk of radius R = 1000 m, and a maximum intensity of A = 27.35
mm/hour. The rainfall will last for two hours.

In Figure 6.20 we compare the hydrographs for a uniform and a Gaussian
distributed rainfall in the disk. We have used the same location for the disc center
as in the right figure in Figure 6.19. The two different distributions will change the
intensity the different cells experience, which will change the hydrographs. Because
the rainfall is so intense and concentrated around an area, it is possible that the
discharge is closer to the hydrograph obtained from a uniform distribution, than
the one we obtained with a Gaussian distribution.

3Convectional rainfalls do not last long, but are often very intense. The sun heats up the landscape,
which causes warm, moist air to rise. The air is then cooled high up in the atmosphere, so the water
condenses and forms clouds.

4This is reported in the article from yr.no titled ’Meteorolog etter ekstremregn:- Vi varsler ikke
godt nok’ from August 2016.

yr.no

Hydrographs 96

0 20 40 60

Time (hours)

0

0.5

1

1.5

2

2.5

3

3.5

4

D
is

c
h
a
rg

e
(m

3
/s

)

Gaussian

Uniform

Figure 6.20: If we compare a stationary Gaussian distributed disk of rainfall, to one
with a uniform distribution, we obtain different hydrographs. The intensity in the
affected cells will change the shapes of the hydrographs.

Obviously the impact in a city will be larger than in our landscape, as the
dimensions of infrastructure can not compete with the dimensions of rivers in the
landscape. There are also much more permeable surfaces in the terrain, and more
vegetation, but we have not accounted for this yet, as we view our landscape as
impermeable.

The rainfall-runoff model that we have developed in this Master’s thesis can be
very useful when paired with data from weather forecasts, as it lets us predict future
river discharge. If the river has an upper limit to how much water it can handle
(before it floods), we can check if this threshold will be surpassed by the discharge
from the forecasted rainfall.

97 Conclusion and future work

7 Conclusion and futurework
A rainfall-runoff model has been developed to provide runoff estimates for fore-
casted precipitation. The model can be used to predict floods in rivers that present
a danger to human lives, buildings or infrastructure.

To delineate the river’s watershed, an algorithm for automatic delineation of
watersheds has been outlined, in which flow directions are calculated using the
D8 Algorithm. By storing upslope and downslope neighbors for each cell, we can
delineate the watershed of any location in a digital elevation model. Based on the
same flow information, we can also calculate the flow accumulation in the area, in
which areas of large flow accumulation show rivers, lakes, dams etc.

A distributed rainfall-runoff model has been developed to exploit the steady
increase of computation power, high quality remote satellite data, and accurate
weather forecasts. It is based on a distributed version of the time-area method,
which traditionally divides the watershed into large areas of approximately equal
travel time. We do this on a much finer scale, using cells the size of our DEM’s
resolution. To estimate the velocity field, we simulate flow as creeping flow, and
obtain travel times by solving the so-called time-of-flight equation. The hardest
part was to obtain travel times for all cells; the conversion from eight possible flow
directions to four, and the trap cell optimization, resulted in entire regions without
valid travel times. After careful examination, we observed several special cases
we had to deal with. Our implemented framework also allows for heterogeneous
properties to be included in the velocity field.

Usually all rainfall-runoff models must be calibrated before reliable runoff
estimates can be provided. This is outside the scope in this thesis, and because the
heterogeneous properties are a part of this calibration, our velocity field is only
based on topography. We want our model to be capable of predicting runoff for
gauged and ungauged watersheds, alike, given a calibration based on historical
input-output data from a gauged watershed. Because the model has the potential to
account for all heterogeneous properties (which represent physical parameters), it
only needs to be calibrated once.

To test our rainfall-runoff model we use synthetic rainfalls in our watershed.
The hydrograph response is then studied, and we look at both stationary and dy-
namic rainfalls. We compare durations, intensities, directions, shapes and speeds.
To decrease running time for hydrograph calculations, we only compute the pre-
cipitation’s affected cells every ∆t seconds. To optimize, we choose the largest ∆t,
which qualitatively gives the same hydrograph based on some requirements. This
optimization works well, but the faster the storm moves, the lower we must set ∆t.
One example is a 10 km wide storm front that moves at a speed of 1 m/s, for which
we can use a ∆t of 480 seconds. If we increase the speed to 5.6 m/s, our chosen ∆t
decreases to 240 seconds.

Hydrographs 98

A simplification we have done, is to let all precipitation become runoff, which
means the hydrograph shows all newly fallen precipitation. The rainfall-runoff
model works well, given its limitations; it enables us to estimate the discharge for a
river, given a forecasted rainfall, which is a major part of flood predictions.

Future work
Now that we have developed a framework for a distributed rainfall-runoff model,
there are many improvements, possible expansions and opportunities. We will
mention some of the ideas we have for the model.

The equation we used to create our velocity field, Equation (4.8), made it possible
to include heterogeneous properties to adjust the velocity field based on local
variations in the landscape. Examples of this include type of soil, vegetation, snow
cover etc. If these effects are included, the permeability κ is changed. New flow
directions can be calculated on the basis of this, so that both the velocity field’s
magnitudes and directions are changed. The permeability κ can be continuously
expanded to account for more and more effects, which will improve the travel time
estimates.

Because we consider our flow as creeping flow, our approximation of speed
in rivers is not a good model, as the speed tend to be higher in these regions.
Instead, a combination of shallow water equations for rivers (e.g., cells where flow
accumulation is large), and porous media flow elsewhere, is an alternative which
could have offered more accurate travel time estimates.

A simple model where we allow storage of water in the terrain can be imple-
mented. This means varying elevations of lakes, dams and ponds. An improved
model for inflow and outflow of these water accumulations would also be needed.

Something we did not focus much on in this thesis, was the comparison of our
flow accumulation plots to river maps. It is suspected that the artifacts of the D8
Algorithm gives some mismatching, but overall a good fit. A comparison of these
could be interesting to look more into.

99 Data set and tools

A Data set and tools
A.1 The data set
To automatically delineate watersheds, we have used high resolution elevation
data in a raster format. The topographic surface of the terrain is represented by a
two-dimensional grid, where each grid point is assigned the measured elevation of
the topography. In this work the resolution of the grid is 10 x 10 meters, and the
accuracy of the elevataion data is ±5 m1.

The Norwegian Mapping Authority (NMA) has made DEM data for all of Norway
publically available. The landscape has been divided into zones that cover 50 x
50 km, and each of the zones have some overlap to the adjacent zones. Figure A.1
shows the zones for the southern part of Norway. We have used a 40 x 40 km section
of the zone with the blue color2. The area surrounds the large lake Tyrifjorden,
which is located to the northwest of Oslo.

The chosen grid resolution of 10 x 10 meters should be sufficient to obtain an
accurate delineation of the watersheds in the area. A resolution of 1 x 1 meters
is available, but the gain in accuracy would probably not make the substantial
additional computation cost worth it, as it would increase the size of the grid from
4000 x 4000 to 40 000 x 40 000.

A.2 Languages and packages used
Our work can be divided into two parts. In the first part we make the landscape
depressionless, and calculate the watersheds and the flow accumulation for the
landscape. In the second part we use the watershed we obtain to estimate the
travel times from each cell in the watershed to the outlet. We use this to create
hydrographs for different precipitation scenarios.

In the first part we primarily rely on Python3, which is a high-level language
that is well suited for scientific programming. Because there are many packages
available, and since it is open-source, it is a good choice for the implementation
of the algorithm. Numpy4 has been used in the manipulations and calculations
performed using one- or multidimensional arrays. When the matrices were sparse,
the Scipy5 library was useful. In the problems that could be solved using graph

1In the metadata for our dataset, NMA states that the accuracy for the elevations will vary for
different areas, depending on the availability of data. In some areas the accuracy is ±2−3 m, while
other areas have an accuracy of ±4− 6 m.

2The DEM from NMA is called ’Digital terrengmodell 10 m, UTM 33’.
3We used Python 2.7 [22].
4Numpy can be downloaded from http://www.numpy.org/.
5Scipy is a collection of open-source software that can be found at https://www.scipy.org/.

http://www.numpy.org/
https://www.scipy.org/

Languages and packages used 100

Figure A.1: The different sections in the DEM data of Norway. The Tyrifjorden
landscape is a section of the blue area.

algorithms, NetworkX6 worked well given that the number of vertices was not
too large7. To test the implemented methods, the tool Pytest8 was used. The
implemented algorithm turned out to be very suitable for unit testing, which made
it a lot easier to rewrite and improve code.

To calculate the hydrographs and the travel time, we use Matlab R2016a9. Unfor-
tunately Matlab is not open-source as the other software we have mentioned, but is
very popular among scientists and engineers. Matlab is paired with the open-source
Matlab Reservoir Simulation Toolbox (MRST) [21] used primarily for oil reservoir
simulations. It should be noted that at least parts of MRST is also available in
Octave, but we have not tested this ourselves.

6The graph package is available at https://networkx.github.io/.
7It worked well for around 100 000 cells, but did not work if all 16 000 000 cells were used as

vertices.
8The pytest testing tool can be found at http://doc.pytest.org/.
9The documentation is found at: https://www.mathworks.com/help/matlab/

https://networkx.github.io/
http://doc.pytest.org/
https://www.mathworks.com/help/matlab/

101 Drawbacks with the D8 Algorithm

B Drawbacks with the D8Algorithm
There are a plethora of choices for flow determination algorithms, and they all have
some disadvantages. Here we will outline some of the disadvantages with the one
that we have implemented — the D8 Algorithm.

Because of the limited number of flow directions from a cell in the D8 Algorithm,
the pathways in the drainage network tend to flow in parallel lines along directions
that are multiples of 45° [10]. In Figure 6.3 the plots visualize this effect quite well,
especially the right figure. We will now show a worst-case scenario of this effect in
Example 30, where water flows on an angled plane.

Example 30. In this example we will show how the performance of the D8 Algo-
rithm is dependent on grid orienation. We will compare two tilted planes repre-
sented by grids with different orientations. The actual flow direction is 22.5° east of
the southern direction, which is indicated by blue arrows in in Figure B.1.

The two grid orientations we will compare are one where the grid is aligned with
the direction of steepest descent (right figure), and one where the grid is shifted
22.5° away from the direction of steepest descent. In both cases, the chosen flow
direction should ideally be parallel to the actual flow direction of the plane for every
point on the grid. We will see that a combination of a low number of acceptable
flow directions and bad luck with the grid orientation1 can produce a worst-case
scenario where the flow direction is consistently off by 22.5°.

We will start In both cases we will look at the flow from location a. If we examine
the left figure first, we see that the direction of steepest descent will be none of the
eight directions. In fact, the slope is the same to both b and g. Because the method
is deterministic, one of the two alternatives are chosen in all similar cases. If we
assume the southern direction is chosen, the water flows to b. From b, the same
choice has to be made, which results in flow to c. After the flow has visited both d,
it stops in e. The error is quite significant after only four steps. If the grid is aligned
with the direction of steepest descent, as shown in the right figure in Figure B.1,
there will be no error, and it makes the correct choice in every step.

Parallel lines are a problem for most algorithms with a discrete set of directions,
but the effect is less pronounced for rugged terrain.

B.1 Difference betweenD8 andD4
The time-of-flight solver in MRST uses a finite volume scheme which considers flow
over the four faces of the cell. This means that diagonal flow can be represented as

1The difference in two computational results, which is caused by differences in grid orientation, is
called grid orientation effects.

Difference betweenD8 andD4 102

Figure B.1: A tilted plane with a steepest descent in a direction 22.5° east of south
(indicated by blue arrows). The left figure shows the worst-case scenario for the D8
Algorithm. The flow starts in a, and because the slope is the same to both b and g
(orange arrows), it is the same which one is chosen. However, because the algorithm
is deterministic, the same direction will be chosen every time (south or southeast).
No matter if the flow moves south or southeast, the flow direction will be off by
22.5°, which over time accumulates to a large error. In the right figure the grid
orienation is changed, which yields no error with the D8 Algorithm. The example
shows that if you are unlucky with the grid orientation, the error can potentially get
quite big.

flow to the two faces that are adjacent to the diagonal. To remedy this, one idea is to
use the D4 Algorithm, which uses only four flow directions in the calculations of
the watershed. Unfortunately, this is not a good solution either, as the watersheds
the D4 Algorithm yields do not look very realistic. This is because the D4 Algorithm
only allows flow in the cardinal directions, which handles diagonal flow poorly. So
even though the D8 Algorithm is far from perfect, the alternative is worse. This
can be seen in Figure B.2, which shows the watershed of the cell colored black. The
green dots show the intersection between the two algorithms, whereas the blue dots
are the cells only present in the D4 Algorithm’s watershed. Lastly, the red dots
show the cells that are exclusive to the D8 Algorithm. We see that the D8 Algorithm
delineates a more natural looking watershed.

103

Figure B.2: The watershed of a cell (colored black) delineated by the D8 and the D4
Algorithm. The intersecting cells are colored green, while the cells that are exclusive
to the D4 and the D8 Algorithm are colored blue and red, respectively.

105 Bibliography

Bibliography
[1] A. Ammann et al. Method for the comparative evaluation of nontidal wetlands in

New Hampshire. New Hampshire Dept. of Environmental Services, Jan. 1991.

[2] K. Beven. Rainfall-Runoff Modelling: The Primer. Wiley-Blackwell, 2012. isbn:
047071459X.

[3] K. Beven and M. Kirkby. “A physically based, variable contributing area
model of basin hydrology / Un modèle à base physique de zone d'appel
variable de l'hydrologie du bassin versant”. In: Hydrological Sciences Bul-
letin 24.1 (Mar. 1979), pp. 43–69. url: https : / / doi . org / 10 . 1080 %
2F02626667909491834.

[4] R. Burnash et al. A Generalized Streamflow Simulation System: Conceptual
Modeling for Digital Computers. U.S. Department of Commerce, National
Weather Service, and State of California, Department of Water Resources,
1973.

[5] National Weather Service: National Operational Hydrologic Remote

Sensing Center. A Time-Area Instantaneous Unit Hydrograph. Implementation
Plan for the Development of Synthetic Unit Hydrographs.

[6] V. Chow, D. Maidment, and L. Mays. Applied Hydrology. McGraw-Hill Sci-
ence/Engineering/Math, 1988. isbn: 0070108102.

[7] C. Clark. “Storage and the unit hydrograph”. In: Transactions of the American
Society of Civil Engineers 110.2261 (1945), pp. 1419–1446.

[8] N. Crawford. The Synthesis of Continuous Streamflow Hydrographs on a Digital
Computer. Stanford University. Dept. of Civil Engineering. Technical report,
no. 12. Department of Civil Engineering, Stanford University, 1962.

[9] A. El-Nasr et al. “Modelling the hydrology of a catchment using a distributed
and a semi-distributed model”. In: Hydrological Processes 19.3 (2005), pp. 573–
587. url: https://doi.org/10.1002%2Fhyp.5610.

[10] J. Fairfield and P. Leymarie. “Drainage networks from grid digital elevation
models”. In: Water Resources Research 27.5 (May 1991), pp. 709–717. url:
http://dx.doi.org/10.1029/90WR02658.

[11] Task Committee on GIS Modules and Distributed Models. GIS Modules and
Distributed Models of the Watershed. American Society of Civil Engineers, 1999.
isbn: 9780784474730.

[12] J. Garbrecht et al. “GIS and Distributed Watershed Models. I: Data Cov-
erages and Sources”. In: Journal of Hydrologic Engineering 6.6 (Dec. 2001),
pp. 506–514. url: https://doi.org/10.1061%2F%28asce%291084-0699%
282001%296%3A6%28506%29.

https://doi.org/10.1080%2F02626667909491834
https://doi.org/10.1080%2F02626667909491834
https://doi.org/10.1002%2Fhyp.5610
http://dx.doi.org/10.1029/90WR02658
https://doi.org/10.1061%2F%28asce%291084-0699%282001%296%3A6%28506%29
https://doi.org/10.1061%2F%28asce%291084-0699%282001%296%3A6%28506%29

Bibliography 106

[13] The Federal Interagency Stream Restoration Working Group. Stream
Corridor Restoration: Principles, Processes, Practices. Natl Technical Information,
Oct. 1998.

[14] M. Hrachowitz et al. “A decade of Predictions in Ungauged Basins (PUB)—a
review”. In: Hydrological Sciences Journal 58.6 (June 2013), pp. 1198–1255.
url: https://doi.org/10.1080%2F02626667.2013.803183.

[15] A. Jain et al. “Rainfall runoff modelling using neural networks: State-of-
the-art and future research needs”. In: ISH Journal of Hydraulic Engineering
15.sup1 (Jan. 2009), pp. 52–74. url: https://doi.org/10.1080%2F09715010.
2009.10514968.

[16] S. Jenson and J. Domingue. “Extracting topographic structure from digital el-
evation data for geographic information system analysis”. In: Photogrammetric
Engineering and Remote Sensing 54 (Nov. 1988), pp. 1593–1600.

[17] M. King and A. Datta-Gupta. “Streamline simulation: A current perspective”.
In: In Situ 22.1 (1998), pp. 91–140.

[18] H. Kling and H. Gupta. “On the development of regionalization relation-
ships for lumped watershed models: The impact of ignoring sub-basin scale
variability”. In: Journal of Hydrology 373.3-4 (July 2009), pp. 337–351. url:
https://doi.org/10.1016%2Fj.jhydrol.2009.04.031.

[19] N. Lea. “An aspect-driven kinematic routing algorithm”. In: Overland Flow:
Hydraulics And Erosion Mechanics. 1992, pp. 374–388.

[20] H. Li, Y. Zhang, and X. Zhou. “Predicting Surface Runoff from Catchment
to Large Region”. In: Advances in Meteorology 2015 (2015), pp. 1–13. url:
https://doi.org/10.1155%2F2015%2F720967.

[21] K. Lie. “An Introduction to Reservoir Simulation Using MATLAB: User guide
for the Matlab Reservoir Simulation Toolbox (MRST)”. Dec. 2016.

[22] M. Lutz. Programming Python: Powerful Object-Oriented Programming. O’Reilly
Media, 2010.

[23] S. Margulis. “Introduction To Hydrology”. Used as textbook in C&EE 150:
Introduction to Hydrology" undergraduate course at UCLA. Aug. 2015.

[24] I. Muzik. “Flood modelling with GIS-derived distributed unit hydrographs”.
In: Hydrological Processes 10.10 (1996), pp. 1401–1409. issn: 1099-1085. url:
http://dx.doi.org/10.1002/(SICI)1099-1085(199610)10:10<1401::

AID-HYP469>3.0.CO;2-3.

[25] S. Nelson. River Flooding. Note about River Flooding in course EENS 3050 at
Tulane University. Oct. 2015.

[26] J. O’Callaghan and D. Mark. “The extraction of drainage networks from
digital elevation data”. In: Computer Vision, Graphics, and Image Processing
28.3 (Dec. 1984), pp. 323–344. doi: http://dx.doi.org/10.1016/S0734-
189X(84)80011-0.

https://doi.org/10.1080%2F02626667.2013.803183
https://doi.org/10.1080%2F09715010.2009.10514968
https://doi.org/10.1080%2F09715010.2009.10514968
https://doi.org/10.1016%2Fj.jhydrol.2009.04.031
https://doi.org/10.1155%2F2015%2F720967
http://dx.doi.org/10.1002/(SICI)1099-1085(199610)10:10<1401::AID-HYP469>3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1099-1085(199610)10:10<1401::AID-HYP469>3.0.CO;2-3
http://dx.doi.org/http://dx.doi.org/10.1016/S0734-189X(84)80011-0
http://dx.doi.org/http://dx.doi.org/10.1016/S0734-189X(84)80011-0

107 Bibliography

[27] R. Pachauri et al. Climate Change 2014: Synthesis Report. Contribution of Work-
ing Groups I, II and III to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change. IPCC, 2014.

[28] K. Paik. “Global search algorithm for nondispersive flow path extraction”. In:
Journal of Geophysical Research 113.F4 (Oct. 2008). url: http://dx.doi.org/
10.1029/2007JF000964.

[29] P. Pilesjö. “An Integrated Raster-TIN Surface Flow Algorithm”. In: Advances
in Digital Terrain Analysis. 2008, pp. 237–255. url: http://dx.doi.org/10.
1007/978-3-540-77800-4.

[30] V. Ponce. Engineering Hydrology, Principles and Practices. Second edition of
the book published by Prentice Hall in 1989. 2014.

[31] J. Refsgaard. “Parameterisation, calibration and validation of distributed
hydrological models”. In: Journal of hydrology 198.1 (1997), pp. 69–97.

[32] J. Refsgaard and B. Storm. “Mike she”. In: Computer models of watershed
hydrology 1 (1995), pp. 809–846.

[33] V. Rumynin. “Overland Flow Dynamics and Solute Transport”. In: Theory and
Applications of Transport in Porous Media 26 (Oct. 2015). url: http://dx.doi.
org/10.1007/978-3-319-21801-4.

[34] B. Saghafian, P. Julien, and H. Rajaie. “Runoff hydrograph simulation based
on time variable isochrone technique”. In: Journal of Hydrology 261.1-4 (Apr.
2002), pp. 193–203. url: https://doi.org/10.1016/s0022- 1694(02)
00007-0.

[35] M. Schäfer. Computational Engineering — Introduction to Numerical Methods.
Springer Nature, 2006, pp. 77–103. url: https://doi.org/10.1007%2F3-
540-30686-2.

[36] A. Tribe. “Automated recognition of valley lines and drainage networks from
grid digital elevation models: a review and a new method”. In: Journal of
Hydrology 139.1 (1992), pp. 263–293. url: http://dx.doi.org/10.1016/
0022-1694(92)90206-B.

[37] J. Vaze et al. “Guidelines for rainfall-runoff modelling”. In: Australian Gov-
ernment Department of Innovation, Industry, science and Research (2012).

[38] A. Voldsund. Implementation of watershed delineation, time-of-flight func-
tionality and hydrograph calculations. 2017. url: https://github.com/
avoldsund/watershed-v2.

[39] A. Voldsund. “Automatic Delineation and Analysis of Watersheds”. The work
in my specialization project at NTNU. Precursor to Master’s thesis. 2016.

[40] B. Zhang and R. Govindaraju. “Prediction of watershed runoff using Bayesian
concepts and modular neural networks”. In: Water Resources Research 36.3
(Mar. 2000), pp. 753–762. url: https://doi.org/10.1029%2F1999wr900264.

http://dx.doi.org/10.1029/2007JF000964
http://dx.doi.org/10.1029/2007JF000964
http://dx.doi.org/10.1007/978-3-540-77800-4
http://dx.doi.org/10.1007/978-3-540-77800-4
http://dx.doi.org/10.1007/978-3-319-21801-4
http://dx.doi.org/10.1007/978-3-319-21801-4
https://doi.org/10.1016/s0022-1694(02)00007-0
https://doi.org/10.1016/s0022-1694(02)00007-0
https://doi.org/10.1007%2F3-540-30686-2
https://doi.org/10.1007%2F3-540-30686-2
http://dx.doi.org/10.1016/0022-1694(92)90206-B
http://dx.doi.org/10.1016/0022-1694(92)90206-B
https://github.com/avoldsund/watershed-v2
https://github.com/avoldsund/watershed-v2
https://doi.org/10.1029%2F1999wr900264

	Titlepage
	Abstract
	Preface
	Contents
	Introduction
	Important concepts in hydrology
	The watershed
	The hydrologic cycle
	River hydrographs
	Rainfall-runoff models
	How can we predict floods?

	Delineate watershed
	Fill single-cell depressions
	Compute flow paths
	Combine local watersheds
	Compute spill pairs for all watersheds
	Identify traps and raise elevations
	Create cell connectivity matrix
	Calculate flow accumulation
	Get watershed of outlet

	Travel time estimation
	Finite-volume discretization
	MRST grid structure
	Create grid
	Calculate face fluxes
	Set -values
	Run time-of-flight

	Calculate hydrographs
	Uniform storm
	Precipitation with varying intensity
	Moving storm front
	Moving disk
	Conservation of water
	Grid cell size 'convergence'

	Results for real landscape data
	Flow accumulation
	Coarse grid from delineated watershed
	Time-of-flight for landscape
	Optimization of hydrograph calculations
	Hydrographs

	Conclusion and future work
	Data set and tools
	The data set
	Languages and packages used

	Drawbacks with the D8 Algorithm
	Difference between D8 and D4

	Bibliography

