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Abstract

This master thesis is about finding a suitable bus protocol to use on an ultra low

power IoT device. The bus protocols I2C, 1-Wire, SPI, and MBus is compared by dif-

ferent parameters and previous power measurement experiments. Both Mbus and

SPI uses substantially less power compared to the other interfaces. The SPI protocol

is suggested as a good communication solution, and for this reason an SPI master

design is made from scratch. The RTL code is written in VHDL and different energy

techniques is used to make it more suitable for ultra low power devices. The SPI mas-

ter design is implemented on an FPGA on the "Zedboard development kit" which is

connected to an external temperature sensor called "LM74". Then a custom test ap-

plication runs on the "Zedboard" to evaluate the functionality of the SPI master. The

data read from the sensor is outputted on a serial terminal to the computer. The SPI

master design functioned as expected and got the correct data from the temperature

sensor.

This thesis contains material that sometimes can be overlooked in the design pro-

cess, namely how the communication is done between integrated circuits. There are

several solutions that can do this, and some communication solutions is better suited

than others. A good communication solution can increase the battery life of an IoT

device. This is because the energy used for inter die communication is an important

contributor to power dissipation, which is important to keep as low as possible when

it comes to ultra low power systems.

This thesis is a collection of some of the most common bus protocols in serial com-

munication, and makes arguments why the SPI interface can be the most suitable for

your design. To further prove this argument an SPI master design is made and tested

on an FPGA with a temperature sensor to verify the functionality of the design.
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Sammendrag

(Abstract in Norwegian)

Denne masteroppgaven handler om å finne en egnet bus protokoll til bruk for en ul-

tra lav effekt IoT enhet. Bus protokollene I2C, 1-Wire, SPI og Mbus blir sammenlignet

med hverandre fra forskjellige parametre og tidligere effektmålings eksperiment. SPI

protokollen blir foreslått som en god kommunikasjons metode, og av den grunn blir

det designet en egen SPI master. RTL koden er skrevet i VHDL og forskjellige energis-

parende teknikker er brukt for å gjøre modulen tilpasset for en ultra lav effekt enhet.

SPI masteren blir implementert på en FPGA på "Zedboard development kit", som

er koblet til en ekstern temperatur sensor navngitt "LM74". Deretter testes funksjon-

aliteten av designet for SPI masteren med et eget test program, og temperaturen leses

fra sensoren og blir sendt til en seriell terminal på datamaskinen. Designet av SPI

masteren fungerte som forventet og ga ut riktig temperatur fra sensoren.

Denne masteroppgaven omhandler et tema som noen ganger kan bli oversett i de-

sign prosessen, nemlig hvordan kommunikasjonen burde gjøres mellom enhetene i

et system. Det er mange forskjellige måter å gjøre dette på, og noen løsninger er bedre

egnet enn andre. Forbedret kommunikasjon mellom enhetene kan for eksempel føre

til en lengre batterilevetid for en IoT enhet. Dette er fordi energien som er brukt i

kommunikasjonen mellom enheter er en viktig bidragsyter til energitap. Det er vik-

tig å holde energitapet så lavt som mulig når det kommer til ultra lave effekt systemer.

Denne masterenoppgaven er en samling av noen av de mest brukte bus protokol-

lene for seriell kommunikasjon, og gjør argumenter for at SPI grensesnittet kan være

den beste løsningen for ditt design. For å ytterlige prøve å bevise dette, blir en SPI

master laget og testet på en FPGA med en temperatur sensor.
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Chapter 1

Introduction

This chapter contains information about why bus communication is important for

ultra low power devices. It also contains the problem description and the objectives

of this master thesis as well the motivation for this research. At the end of the chapter

a thesis outline is listed.

1.1 Topic

The energy used for inter die communication is an important contributor to power

dissipation. This is important to keep as low as possible for ultra low power systems

to increase battery life if it’s used as a power supply. These systems could include

sensors which usually communicate with the host system over serial buses like 1-

Wire, I2C or SPI buses. Which bus you chose can have an impact on the overall power

dissipation. The interconnects between devices are generally responsible for a sub-

stantial fraction of the total power consumption [16]. The trend is that systems are

getting more complex with additional features, size requirements and power require-

ments. Therefore, the method of communication can have a great impact for power

savings and prolonged battery life. In the past, the serial bus you chose usually wasn’t

1



2 CHAPTER 1. INTRODUCTION

as much thought through, because of lower requirements for the system. They pri-

oritized the parts that where the most power hungry, not the parts where power dis-

sipation was relatively lower. Today, for ultra low power systems we have to optimize

everything to save as much power as possible, and serial buses has an impact in the

overall power dissipation.

1.2 Problem Description

The difference between the serial buses can have a respective impact on the power

dissipation for a system. We must identify what can be done to minimize the current

consumption for a bus master. Then we have to compare the most common serial

busses for several parameters e.g. difference between complexity, pins used and ro-

bustness. After that we use the most suited interface for an ultra low power system,

and design the master module for this interface. The serial communication design

solution is directed towards a System on Chip (SoC).

1.3 Objectives

The objectives for this master thesis is as follows:

• Identify solutions for low power serial communication

• Investigate tradeoffs and compare the identified solutions

• Select the best approach and design key building blocks for an ultra low bus

master
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1.4 Motivation

In the last few years the interest for devices connected to the Internet has rapidly

increased, under the term most known as the "Internet of Things" (IoT). We are sur-

rounded by small electronic devices everywhere which usually runs on battery as

their power supply. This trend of increasing numbers of IoT devices doesn’t seem

to stagnate. "Cisco Internet Business Solutions Group" predicted in 2010, that there

will be over 50 billion1 connected devices to the Internet in 2020 [11]. The Figure 1.1

shows the estimated growth of connected IoT devices. This relatively high estimate

can also be interpreted to create market efficiency by guiding companies to make

choices to for example invest and enter this new era of IoT.

Figure 1.1: Growth of IoT in the 2000s. Source: [11]

The energy required for operations from machines build around embedded systems

are increasing [14]. Systems are getting more complex and the energy requirements

increases. Reduction of energy consumption in core processors or controllers, pe-

ripherals and communication interfaces can increase the lifetime of a battery sub-

stantially [39]. This is why choosing the right bus protocol for your system is impor-

tant and has the potential of reducing the energy consumption considerably.

1This number has been reduced to around 20-30 billion by new estimates from Gartner, Ericsson
and others [24]
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1.5 Thesis Outline

The structure of this thesis is as follows:

Chapter 2 - Background Theory: This chapter presents relevant information be-

hind basic communication styles, bus communication and interconnects between

devices in a system. This chapter also include power saving techniques such as cod-

ing techniques, and ends with information about the I2C, 1-Wire, SPI and MBus pro-

tocols.

Chapter 3 - Comparing the Bus Protocols I2C, 1-Wire, SPI and MBus: This chapter

compares the different bus protocols, investigate tradeoffs and look at advantages

and disadvantages. This chapter also includes previous power measurement exper-

iments with a couple of the bus protocols. The chapter ends with a suggestion for a

suited bus interface for an ultra low power system.

Chapter 4 - Design Process of an SPI Master: This chapter will describe the design

process of an SPI bus master. The specifications, including port list, architecture,

Finite-State Machine (FSM), Addressing and simulation of the design are described.

The end of the chapter describes how the SPI master is implemented on a FPGA with

the AXI Lite interface and how the registers are set up.

Chapter 5 - Results for the SPI Experiment: This chapter contains the results of test-

ing the design with an LM74 sensor and power saving techniques results.

Chapter 6 - Discussion: This chapter contains the discussions of the results for the

experiment. It also includes what frequencies worked on the design and why. As well

as how the power saving techniques affected the design. The chapter ends with the

limitations of the findings.

Chapter 7 - Conclusion: This chapter is the conclusion of the whole thesis. It sum-

marizes why the SPI is a suitable protocol for an ultra low power device, as well as the

design process and testing. This chapter also includes some recommendations for

further work/investigation.



Chapter 2

Background Theory

This chapter will give a summary on how communication can be done in Integrated

Circuits, how this is done with buses, theory behind interconnects, some power sav-

ing techniques and information about the different bus protocols I2C, 1-Wire, SPI

and MBus.

2.1 Communication

Communication in Integrated Circuits (IC) are typically designed in serial or parallel,

and it can either be done with synchronous or asynchronous transfer.

Parallel communication are used in for example modern computers, and can have

eight data wires (+ ground wires/control wires) in parallel between two components.

Parallel communication is a method of transferring blocks e.g. one byte of data at

the same time. The Figure 2.1 shows an example on how the interface can look like.

These connections have a high throughput and are fast. However, they require more

lines which can lead to a high energy consumption and increased overall area cost.

They are impractical for longer distances and have a higher probability for "crosstalk"

between the lines. Crosstalk describes the circumstance when a transmitted signal

5
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creates an undesired effect in another circuit or wire. This can corrupt the transmis-

sion and the data has to be sent again.

Serial communication can have a single data (+ ground and/or control) wire, where

the bits are sent sequentially (one bit at a time). An example of how the interface can

look like is seen in Figure 2.2, where 1 byte (= 8 bits) of data is sent from one device to

another. This way of communication is more area cost effective and can therefore be

a more favourable choice of communication when it comes to IoT devices, because

these devices often need to be small-scaled and have few pins between the ICs.

Figure 2.1: Example of Parallel interface

Figure 2.2: Example of Serial interface

Synchronous communication uses a separate clock signal to synchronize transfers

between components. The clock is an oscillating signal that tells the receiver exactly

when to sample the bits on the data line. Asynchronous communication do not have

a separate clock signal line, instead it can use a handshake protocol to synchronize

transfer. This often leads to a larger overhead because many of the transmitted bits

are used only for control purposes.
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2.2 Bus Communication

Buses consist of one or several wires where signals are transmitted through for com-

municating between one or more ICs. The terminology for a bus is defined by [27]:

• Master - Initiate and controls data transfer

• Slave - Respond to data transfer requests from master

• Arbiter - Decides which master grants access to the bus

• Interface - Connection between component and bus1

• Bridge - Connection between buses

• Decoder - Decodes the address and selects the correct slave to receive data

The Figure 2.3 shows an example of a bus-based communication architecture with

two buses connected via a bridge. For Bus 1 the Processor is the master of the slave

devices Memory 1 and 2. It also contains a Direct Memory Access (DMA) which is

often used in systems to relieve the use of the CPU (master) to access the memory.

This gives the CPU opportunity to do other tasks or sleep. Bus 2 has a Digital Sig-

nal Processing (DSP) unit which works as the master. Bus 2 also contains the slave

device Memory 3. The components DMA and Memory controller have both master

and slave Interface (I/F), which mean they can act as both master and slave. There

is also logic components such as decoders, arbiters and bridges in this architecture

example. The decoder decodes the destination address of a data transfer initiated by

the master. The arbiter determines which master is granted access to the bus. The

bridge connects the two buses.

1buffers, wires, frequency converter etc.
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Figure 2.3: Example of bus-based communication architecture. Adapted from
source: [27]

Figure 2.4: An example of bidirectional bus lines. Adapted from Source: [27]

The Figure 2.4 shows the three common signal lines for a bidirectional bus. The lines

are:

• Address bus - Destination address for the transmitted data

• Data bus - Information to be transferred

• Control bus - Information about the data transfer (e.g. req/ack signals)
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The address signals transmits the address for the destination of the data transfer. The

data signals transmits the data values to their destination address. The control sig-

nals are used to transmit information about the data transfer. This is usually speci-

fied by the bus protocol and can be "request", "acknowledge", "data size indicator"

and/or "error" signals.

2.3 Interconnects

The trend seems to be that the physical dimensions of interconnects are frequently

getting reduced and the operating speed increased. The performance of intercon-

nects is progressively affected by their electrical parasitics, i.e. capacitance, induc-

tance and resistance. These parasitics may increase propagation delays for signals

traveling in interconnects or in signals distorted by noise. To transmit a signal in an

interconnect, the wire capacitances are charged and discharged, which consumes

energy. The energy dissipated in the interconnects can grow greatly due to higher

frequencies and the increased number of metal layers which seems to be a trend in

today’s technology. This increased aspect ratio of the wires and metal layers leads to

increased wire-to-wire capacitance, compared to wire-to-ground capacitance, which

increases the power consumption [29].

In the paper [17] over 50% of the overall dynamic power consumption of a micropro-

cessor was determined to be consumed by interconnect switching. This means that

there is a huge potential for reducing power dissipation in interconnects. To reduce

the total wire load, buses can be implemented using techniques such as bus splitting

[12].
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The simplest model of a wire is typically a microstrip. A microstrip can be described

simply as a metal strip on top of a ground plane. In Figure 2.5A we see a metal strip

on top of a ground plane.

These wires can be modelled through:

• c - Capacitance to ground per unit length

• r - Resistance per unit length

• l - Inductance per unit length

We can simplify the parasitics for very short interconnect lengths, so that the capac-

itance is sufficient enough as a model. As the length increases the resistance and

inductance becomes more important.

Figure 2.5: Single and multiple microstrip wire. Source: [29]

When wires are surrounded by several other wires, as shown in Figure 2.5B, we have

to consider capacitances to neighboring wires as well to the ground plane. They also

have a potential problem with crosstalk which can affect power consumption.

However, the power consumption occurs as in logic. The capacitance is charged by

the supply voltage and then discharged. Power consumption related to interconnects

is given by the Equation 2.1.

Pw = 1/2α fc Cw ∆V 2 (2.1)
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The symbol α is the signal activity which is the probability that the signal will switch

per clock cycle. The fc symbol represents the clock frequency, Cw is the total ca-

pacitance and ∆V is the signal voltage swing. The signal activity (α) in Equation 2.1

makes power predictions difficult when it comes to power optimization, because it

depends on data statistics, architectures and what applications run on the system.

Power consumption for a digital Complementary Metal–Oxide–Semiconductor (CMOS)

circuit is mainly contributed from three parts:

• Power consumed by leakage current (Leaking diodes and transistors)

• Short circuit current between supply rails during switching

• Charging-discharging capacitors (Dynamic power consumption)

Pav g = Pswi tchi ng +Pshor t−ci r cui t +Pleakag e

=α0→1CL ·V 2
dd · fclk + Isc ·Vdd + Ileakag e ·Vdd

(2.2)

This is represented in Equation 2.2. The first term represent the switching compo-

nent of power, where CL is the load capacitance, Vd d is the supply voltage, fclk is the

clock frequency and α0→1 is the node transition activity factor (average number of

times the node makes a power consuming transition) [7]. The second and third term

is not that interesting for the topic in this paper. The second term however is due to

the direct-path short circuit current (happens when both NMOS and PMOS transis-

tors are active simultaneously) and last term is leakage current that can arise from

substrate injection and subthreshold effects. The power consumption relevant to the

charging-discharging current is the dominant part in the total power consumption.
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2.3.1 Power Savings in Interconnects

There are several methods for reducing the power consumption in interconnects [29].

The most obvious one is to shorten the wire length to reduce the capacitance, resis-

tance and inductance. Another method is to reduce the signal voltage swing∆V via a

technique called "reduced voltage swing". However, this can lead to "delay penalty".

Unless you are making a high performance system this can be accepted. There is also

a method to reduce the product of data activity and capacitance by considering the

data activity during floorplanning and routing, which optimizes the power consump-

tion based on wire activity/length product.

Another way to reduce the power consumption is to reduce the data activity on buses,

which can be done through coding. These methods can be utilized for on-chip and

off-chip wires. The Figure 2.6 shows the idea behind the bus coding technique, which

is to generate an encoder and a decoder. This can be done by encoding the data

signals sent by reducing the switching activity on the bus line, and the decoder will

interpret the signals decode it back to the original message.

Figure 2.6: Using coding on a bus. Adapted from source: [29]
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2.4 Coding Techniques

The main reason for coding techniques are:

• Minimizing the power consumption on the bus

• Minimizing the crosstalk delay

Reducing power on bus transaction by lowering transition-switching activity on the

bit lines of a bus, will lead to significant reduction in the (dynamic) bus power con-

sumption. There are several coding schemes developed over the years to reduce the

logical activity in interconnects. It is also a promising method to avoid problematic

switching patterns for long buses. However, this is achieved with additional logic cir-

cuitry, which can be problematic for small size systems. One of the most popular

techniques to reduce the number of transitions on a bus is the "Bus Invert Coding

scheme" [33]. This is a suitable technique for a data bus with uncorrelated data pat-

terns. It is also a good method when you lack prior knowledge of the data statics. For

instruction address buses, "inc-xor code" [30], "Gray code" [34], "T0 code" [6] and

the "Beach code" [5] have been proposed. In the paper [32] more of these techniques

are listed and explored in depth.

2.5 Serial communication protocols

Buses have different properties, and one bus interface can be preferred over the other,

depending on what environment or requirements you may have. In this section the

serial communication protocols I2C , 1-Wire, SPI and MBus are listed.
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2.5.1 I2C

Inter-Integrated Circuit (I2C) bus requires only two bidirectional open-drain bus lines,

a Serial Data Line (SDA) and a Serial Clock Line (SCL) [25]. This protocol is widely

used and popular because of its simplicity. It was developed in the early 1980’s by

Phillips Semiconductors (now NXP Semiconductors) for easy communication be-

tween Integrated Circuits (IC) on the same circuit board. The bus is 8-bit oriented,

and has bidirectional data transfers up to 100 kbit/s in Standard-mode, up to 400

kbit/s in Fast-mode, up to 1 Mbit in Fast-mode plus or up to 3.4 Mbit/s in High-speed

mode. The unidirectional data transfers can come up to 5 Mbit/s in Ultra-Fast mode.

The protocol is a "multi-master", "multi-slave", "single-ended", serial computer bus

which includes collision detection and arbitration to prevent data corruption if two

or more masters tries to initiate data transfer simultaneously. The interface I2C has a

7-bit or a 10-bit address space depending on the devices used. The devices connected

to the bus is software addressable with an unique address. The master can operate

as master-transmitter or as master-receiver. The Figure 2.7 shows an example of the

interface with a microcontroller as master and a Digital to Analog Converter (DAC),

Analog to Digital Converter (ADC) and another microcontroller as slaves.

Figure 2.7: A simple I2C example. Adapted from source:[38]
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2.5.2 1-Wire

The 1-Wire bus uses only a single data line and a ground reference for communica-

tion [36]. This is accomplished by the bus system using a capacitor to store charge,

and power the devices when the data line is active. A network made of 1-Wire devices

are called "Microlans" and can be used in different sensor applications. This bus has

a rather low-speed data signaling, but then again benefits from the low pin count and

longer range than for example I2C.

The 1-Wire master can initiate and control the communication with one or more

slave devices on the bus. Each slave has a unique 64-bit Identification Number (ID),

which is factory programmed. This ID serves as the device address on the bus. A

subset of the 64-bit ID, (the 8-bit family code) identifies the device type and func-

tionality. The slave devices usually operates between the voltage range 2.8V(min) to

5.25V(max). The grand part of 1-Wire devices take their energy from the bus (para-

sitic supply), which means they do not need an extra pin for power supply. In Figure

2.8 we can see an example of a microcontroller as master with multiple temperature

sensor as slaves.

Figure 2.8: A microcontroller with multiple 1-Wire temperature sensors. Adapted
from source:[28]
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2.5.3 SPI

Serial to Peripheral interface (SPI) have a 4-wire synchronous serial interface devel-

oped by Motorola in the late 1980s [18]. The bus lines are namely:

• SCLK - Serial Data Clock:

Outputs the clock from the SPI master to the selected slave on this line to syn-

chronize transfer

• MOSI - Master Output, Slave Input :

Transmits data out from the SPI master to the selected slave on this line

• MISO - Master Input, Slave Output:

SPI master receives data from the selected slave on this line.

• CS/SS - Chip Select/Slave Select:

Outputs the slave select signal from the SPI master to a specific slave. The

transmission of the data starts with a falling edge of the SS and ends with the

rising edge. (The SS line is an input for the slave).

The SPI protocol is not a well defined protocol, and has numerous of versions on the

market today. This can be seen as an upside when it comes to the numerous options

and adaptation it can have, depending to the users needs. Unlike the protocol I2C,

SPI does not define which clock frequency to be used.

The pin count increases with the number of slaves because of the "slave select" lines,

this can be unfavorable to the area cost if the number of slaves are high. The SPI pro-

tocol is primarily used for short distance communication (like I2C) and it can com-

municate in full duplex mode, which means it can send and receive data at the same

time. The master selects which slave to transfer to or receive from, by the individual

"slave select" lines (SS). A simple SPI example with one master and several slaves is

shown in Figure 2.9.
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Figure 2.9: A simple SPI example. Adapted from source:[20]

When the SPI master wants to initiate communication, it configures the clock with

the frequency supported by the slave device. Then the master selects the slave it

wants to write/read from, by switching the SS from logic "1" to "0" for that specific

slave line. For example if the master from Figure 2.9 wants to communicate with

slave 2, it will switch the "SS2" from logic "1" to "0". The slave for that line will then

be listening to the bus and the master is free to transmit data. For each clock cycle a

full duplex transmission occurs. This means that data is transmitted and received si-

multaneously. Slaves devices that are not selected (have SS line high) do not interfere

with the SPI bus activities.

Table 2.1: The different SPI modes

Mode CPOL CPHA
0 0 0
1 1 0
2 0 1
3 1 1
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There are 4 different SPI bus standards modes with regards to the SCLK signal. The

modes are selected by one of four combinations of serial Clock Phase (CPHA) and

Clock Polarity (CPOL) signals. The different modes and combinations are listed in

Table 2.1 and represented in the timing diagram in Figure 2.10 and Figure 2.11. The

CPOL designates the default value (high or low) of the SCLK signal when the bus is

in the state "idle". If CPOL = 0, the SCLK starts out at logic "0" and raises to a "1". If

CPOL = 1, the default value of SCLK is a logic "1" (high) and falls to "0" when it starts

transmitting. When CPHA = 0, the data on the MISO and MOSI line is sampled on

the first SCLK transition (falling or rising edge) seen in Figure 2.10. This means that

CPHA determines which edge of the SCLK the data is sampled. When CPHA = 0, the

data is interpreted on the first change of the clock seen in Figure 2.10. When CHPA =

1, the data is interpreted on the second change of the clock seen in Figure 2.11.

Figure 2.10: Timing diagram of SPI modes 0 and 1

Figure 2.11: Timing diagram of SPI modes 2 and 3
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2.5.4 MBus

The MBus2 is described as an ultra-low power interconnect bus which is targeted for

microscale systems [26]. It is most known for being a key element for the Michigan

Micro Mote platform [37]. Other than that it is not broadly used like the other bus

interfaces. MBus is a 4 pin, 22.6pJ/bit/chip (on average) chip-to-chip interconnect.

The MBus system consist of a mediator node and one or more member nodes con-

nected in two "shoot-through" rings, CLK and DATA which is represented in Figure

2.12. The mediator node generates the MBus clock and resolves arbitration. It can be

a stand-alone component or attached to a core device like a microcontroller. MBus

delivers a superset of the features from SPI and I2C, but with fixed area, fixed pin

count and lower power. It also uses a fully synthesizable logic and minimal protocol

overhead. The big drawback from this protocol is that it is not commonly used, and

there are few products that have this protocol implemented. This causes problems

when you for example want a sensor for a project, since it is not yet in commercial

"off-the-shelf" products.

2They have released the MBus specification and a reference Verilog implementation for free at
http://mbus.io/.

http://mbus.io/
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Figure 2.12: MBus physical topology for stepped 3D stacking with wirebonding.
Source: [26]



Chapter 3

Comparing the Bus Protocols I2C,

1-Wire, SPI and MBus

In this chapter we look closer at the protocols I2C, 1-Wire, SPI and MBus. We will ex-

amine the advantages and disadvantages, and determine which protocol is the most

suited for an ultra low power interface.

3.1 Comparison of bus protocols

We are going to look at the difference between the bus protocols listed in Section

2.5 based on different parameters. In Table 3.1 we can see that SPI can potentially

have the highest data rate (70Mbit/s), and the 1-Wire the lowest (16Kbit/s). 1-Wire

however has the least number of wires, and SPI can have the most depending on

how many slaves are in the system. The SPI bus is the only protocol that can trans-

fer data in full duplex, which means it can send and receive data at the same time.

The other bus protocols can only communicate one way at the time. They all share

the master-to-slave communication model, and that they can have multiple slaves,

but only MBus and I2C can have multiple masters. A typical disadvantage for "mas-

21
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ter/slave" architectures is that the communications between slave devices must go

through the master. This again doubles the communication costs because the mes-

sages is sent twice and there is an extra energy cost of running the central controller.

The SPI uses the SS) lines to communicate with slaves, while the rest uses an address-

ing method. Out of all the parameters in Table 3.1 the MBus and SPI are arguably the

most favourable for an ultra low power interface.

Table 3.1: Comparison of the serial interfaces. Adapted from source: [26] and [21]

Parameters SPI I 2C 1-Wire MBus

Number of lines: 3 + 1 per slave 2 with pull-ups 1 with pull-ups 4
Data transfer: full duplex half duplex half duplex half duplex
Communication model: master-to-slave master-to-slave master-to-slave master-to-slave
Number of master devices: single multiple single multiple
Number of slave devices: multiple multiple a multiple multiple
Maximum data rate, Mbit/s: 70b 3.4c 16Kb/s 10d

Interface features:
Device identification mechanism: slave select address address address
Critical
I/O pads (n nodes) 3 + n 2/4e - 4
Standby power: Low Low Low Low
Active power: Low High Low Low
Synthesizable: Yes Yes Yes Yes
Globally unique addresses: - 128 248 224

Multi-master (interrupt): No Yes - Yes
Desirable
Broadcast messages: Option No Yes Yes
Data independent: Yes Yes - Yes
Bits overhead(n byte message): 2 10 + n - 19 or 43
Hardware acknowledgement: No Yes - Yes
Power aware: No No No Yes

The SPI bus do not suffer the same power challenges faced by "open-collectors" such

as I2C and 1-Wire. "Open-collectors" usually suffer from high power dissipation. The

SPI interface also has the advantage with little to no "protocol overhead". A poten-

tially disadvantage is that the SPI requires a "slave-select" (SS) line for every slave

a119 when using 7-bit addresses or 1024 when using 10-bit addresses
bAccording to [13]
caccording to [25]
dAccording to [31]
eWhen wirebonding, a shared bus requires two pads/chip
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device, which means it can be challenging when we think of small and more I/O con-

strained devices. For modular systems with a variable and unknown number of com-

ponents until design time, it can be difficult to choose the right amount of "slave

select" lines. This can lead to choosing too many lines which can violate the area

constrains, or insufficient lines which will disrupt the modularity.

3.2 Previous Power Measurement Experiments

There has been done experiments comparing different bus protocols by power con-

sumption. First of is the article [21]. It involves investigating and comparing three

digital serial interfaces (UART, I 2C and SPI) by their energy efficiency under a given

"test bed" build around PICKit 3 development boards [19]. The experiments was ex-

ecuted using one hardware platform PIC18F45K20 microcontroller. The Table 3.2

shows the results of the experiment. It is not representative for energy consumption

on a bus for SoC, but it shows the difference which can be propagated for a SoC. The

Table 3.2 show the power consumption for data transmissions over the interface im-

plemented in software vs. the same interface implementation using the inbuilt mi-

crocontroller hardware module. According to the Table 3.2 the SPI interface is seen

to be the lowest of the three interfaces, from the point of power consumption. The

conclusion for this paper was that the SPI has the lowest power consumption both

with inactive interface and during data exchange when all the interfaces were using

the same data rate. This applied for both implementation in hardware and in soft-

ware.

The second research paper done on the same topic is [23]. They compared the two

digital serial interfaces SPI and I2C on a PIC16F877 microcontroller. They constructed

the serial communication between two microcontrollers where one was master and
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Table 3.2: Energy consumption for evaluated serial interfaces [21]

UART SPI I 2C
Parameters RX selected RX unselected RX selected RX unselected

1 byte 9 bytes 1 byte 9 bytes 1 byte 9 bytes 1 byte 9 bytes 1 byte 9 bytes

Interface implementation in hardware
Power consumption with inactive interface, mW 6.06 6.06 4.66 4.66 4.66 4.66 6.13 6.13 6.13 6.13
Communication:
Required time, ms 0.68 5.78 0.52 4.6 0.52 4.6 1.26 5.91 1.26 5.91
Required energy, µ J 7.31 53.31 2.5 23.53 2.42 22.52 8.11 31.71 8.01 30.23

Interface implementation in software
Power consumption with inactive interface, mW 11.04 11.04 11.17 11.17 11.17 11.17 11.23 11.23 11.23 11.23
Communication:
Required time, ms 0.64 5.72 0.51 4.62 0.51 4.61 1.23 5.85 1.23 5.86
Required energy, µ J 9.00 80.06 7.26 65.25 7.26 65.25 17.45 82.84 17.44 83.6

the other one was a slave. They then transmitted one-byte data from master to slave

and displayed it in two 7-segment LEDs and observed. From their experiment with

transmitting one byte of data (0x30 in Hex) from master to slave with 5V supplied, the

energy consumed was:

• SPI - 9.325nJ

• I2C - 126.68mJ

The results from their experiment shows that the SPI interface consumes consider-

ably less energy than the I2C interface for sending one byte of data. The SPI interface

consumes approximately 1.36 · 107 less energy than I2C according to these results.

This is mainly due to the extra pull-up resistors the I2C interface needs, which are

power hungry. By looking at these two articles the SPI shows best promise out of the

known interfaces, regarding power/energy consumption.

3.3 Suggestion for solution

The I2C bus is a widely used communication protocol mainly because it only requires

two wires, independent of the number of connected devices. The big drawback from

both I2C and 1-Wire bus is that each wire requires an open-collector circuit which

needs pull-up resistors and they are not considered energy efficient.
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The SPI bus do not suffer the same power challenges faced by open-collectors (like

I2C and 1-Wire) and have little to no protocol overhead. The articles mentioned in

the previous Section 3.2 comes to the conclusion that SPI uses the least amount of

energy (compared to I2C ). However as mentioned, the SPI requires a "slave-select"

(SS) line for every slave device (represented in Figure 2.9), so this can be challenging

when we think of small and more I/O constrained devices.

In the paper [26] they "taped out" a chip that implemented the MBus into a temper-

ature sensor system where the power traces required 22.6pJ/bit/chip, which where

two orders of magnitude better than the standard I2C. The limitations with MBus is

that it does not guarantee fairness (nor does I2C). The intention behind the develop-

ment of MBus was to be used for ultra low power devices and micro scale systems. As

mentioned, it is not widely used like the other protocols, which causes problems to

get modules with MBus interface.

Figure 3.1: Bus overhead. Adapted from source: [26]
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In Figure 3.1 we can see the comparison of bits of overhead and message length in

bytes as they increase. We see that message overhead is independent for SPI and

MBus. For short addressed MBus messages it is 19 bits of overhead and for full ad-

dressed messages it is constant 43 bits of overhead. SPI holds the lowest constant of

overhead at 2 bits. This makes these buses scale efficiently to messages, while I2C

steadily increases the bits of overhead when the message length increases. For short-

addressed MBus messages we see that they become more efficient than I2C after 9

bytes.

Figure 3.2: Total Power Draw. Adapted from source: [26]

In Figure 3.2 we can see the different power draws when clock frequency and node

population increases for the I2C and MBus configurations [26]. We can see that for

both simulated and measured nodes, MBus outperforms the I2C.

The best approach for a communication solution for an ultra low power device would

either be the SPI or MBus protocol. They both consumes considerably less power

than the I2C based on the results seen in Section 3.2 and from the paper [26]. The

SPI is a widely used interface compared to MBus. There are many modules such as

sensors with implemented SPI interfaces, but minimal amount of modules with the
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MBus interface. This means it would be much cheaper and easier to built a system

with the SPI interface. Therefore it will be more beneficial for someone to design an

ultra low power system with the SPI interface. This is why I choose to design the SPI

master in the next chapter.



28 CHAPTER 3. COMPARING THE BUS PROTOCOLS I2C, 1-WIRE, SPI AND MBUS



Chapter 4

Design Process of an SPI Master

Specification

Design

Simulation

Synthesis

Implementation

Program and Debug

Export to SDK and make Software

Test on FPGA

Figure 4.1: Flowchart of the design process

This chapter contains the design pro-

cess of an SPI master. The design pro-

cess I am following for my design is seen

in Figure 4.1. The first section is to

provide the specification for the design,

then write the Register Transfer Level

(RTL) code for the master design, par-

allel with the "test bench" in "Xilinx Vi-

vado Design Suite"a. We will further run

a simulation based on the design file

and the "test bench". After that we do

the synthesis for the design and then the

implementation. When this is done, we

program and debug the code and export

it to "Xilinx Software Development Kit"

(SDK) to write an application software

ahttps://www.xilinx.com/products/design-tools/vivado.html
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program in "C". This is going to run on the design which will be implemented on the

FPGA on the "Zedboard development kit"b. The Zedboard uses the "Xilinx Zynq®-

7000 All Programmable System on Chip (SoC)". The last step is to test the design with

an external temperature sensor. The Appendix B shows how to connect the sensor

"LM74" (Appendix A) to the Zedboard.

4.1 SPI Specification

For any design it is important to have a detailed and complete specification, so that

it works as a foundation for the whole design.

4.1.1 Port List

The port list made for this SPI master design can be seen in the Table 4.1. This port

list is custom made by me for this design, but sections of the port list is typical for ev-

ery SPI master design [22]. This includes the external signals o_SPI_sclk, o_SPI_ss_n,

o_SPI_mosi and i_SPI_miso which is necessary for an SPI master to be valid [22]. The

rest of the signals are for the "user logic" and can be different from one SPI master to

another.

The signal g_divide_value is based on the Equation 4.1, and determines the frequency

of the SCLK signal sent to the slave, seen in the Figure 4.2. In Equation 4.1 the fsclk

represents the o_SPI_sclk signal and the fclock represents the i_clock signal. An ex-

ample on how to use the Equation 4.1 could be to set the g_divide_value = 1, and the

clock frequency (i_clock) to 50MHz. This would equal the SCLK frequency to 25MHz.

fscl k = fcl ock

2×g _d i v i d er _v al ue
(4.1)

bhttp://zedboard.org/product/zedboard

http://zedboard.org/product/zedboard
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Table 4.1: SPI signals in the design

Term used Definition InputOutput
g_data_bus_width Data bus Width Generic
g_num_of_slaves Number of slaves Generic
g_divide_value Divider value for sclk Generic
g_CPOL Clock Polarity Generic
g_CHPA Clock Phase Generic
i_clock System Clock Input
i_reset_n Reset (Active Low) Input
i_enable Initiates transfer Input
i_write_data Data to Transmit Input
o_done Signal the end of transfer Output
o_read_data Received data from Slave Output
i_addr Address for the Slave Input
o_SPI_sclk Serial Clock Line Output
o_SPI_ss_n Slave select (Active Low) Output
o_SPI_mosi Master out Slave In Output
i_SPI_miso Master In Slave Out Input

The SPI master can have several slaves for this design. This would also imply that the

number of wires would increase with the increased number of slaves. This can be

negative for a small scaled system.

4.1.2 SPI Architecture

The proposed architecture based on this SPI master module can be seen in the Figure

4.2. The inputs on the left side of the block is signals from the user logic and the

signals on the right side is for communication with the slave devices. In our example

we use only one slave, a Temperature sensor (Appendix A). This architecture is for

my SPI master design and is not a standard for other SPI master designs. Another

SPI Master design can be seen in [1] and has other signals and architecture than my

design.
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Figure 4.2: This is the architecture of the design
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4.1.3 SPI FSM

The Figure 4.3 shows how the Finite State Machine (FSM) of the design is constructed.

It starts of in the state IDLE and jumps to the next state when r_transmit_start sig-

nal goes high. In this state (s_transmission) the transmission happen (sending and

receiving data). When the signal w_counter_data goes high and either r_rise_sclk

or r_fall_sclk signal goes high (depending which mode you use) it jumps to the next

state. The next state is s_transmission_end and in this state the transmission stops

and goes to the next state when r_rise_sclk or r_fall_sclk signal goes high (depending

which mode you use).

Figure 4.3: This is the FSM of the SPI Master

In the SPI Master design we have three states for executing the transfer of data, seen

in Figure 4.3. The standard state machine encoding in Vivado is binary encoding. For

this design we use Gray encoding which is known for using lesser power. We should
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also note that State machine encoding in Gray eliminates any glitches/hazards on

combinational equations that depend on the state [2].

Table 4.2: Binary vs. Gray Encoding

Binary code Gray code
Sequence No. toggles Sequence No. toggles

00 1 00 2
01 1 01 1
10 2 11 1

The Table 4.2 represents Binary and Gray encoding for three states. We can see the

number of toggles per transition between the states in combination with the se-

quences of the bits.

type state is (s_idle, s_transmission, s_transmission_end);
signal present_state, next_state : state;
attribute enum_encoding: string;
-- Optional attribute IMPORTANT FOR OPTIMAL USAGE

attribute enum_encoding of state: type is "00 01 11";
-- Describes which encoding style used

Figure 4.4: FSM VHDL code

In Figure 4.4 we see how this is implemented in VHDL. We can see the three states

s_idle, s_transmission and s_transmission_end is declared in the first line. The last

line determines the encoding style, which in our case is Gray. This is retrieved from

Appendix D.1.
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4.1.4 SPI Addressing

The Table 4.3 show how the addressing works with 4 slaves for this design. If you

choose to address slave 3 you send 0x3 to the i_addr signal and the MSB of o_SPI_ss_n

goes low for slave 3. You can see this simulated in the Figure 4.5. If you want to com-

municate with slave 1 you can send 0x1 to i_addr and the o_SPI_ss_n goes low for

the LSB seen in Table 4.3. This can be seen simulated in the Figure 4.6.

Table 4.3: SPI Master addressing

i_addr
Name Hexadecimal Binary

o_SPI_ss_n

slave 0 0 0000 1110
slave 1 1 0001 1101
slave 2 2 0010 1011
slave 3 3 0011 0111

4.2 SPI Simulation

The RTL code for the SPI master logic can be found in Appendix D.1 and the code

for the "test bench" can be found in Appendix D.2. The behaviour simulation for this

design can be seen in Figure 4.5 and Figure 4.6. The Figure 4.5 represents the simu-

lation for the SPI in mode 2 (CPOL = 0 and CPHA =1) and Figure 4.6 represents the

simulation of the SPI in mode 3 (CPOL = 1 and CPHA = 1). The modes are explained

in Section 2.5.3, and the timing diagram for these modes are defined in Figure 2.11.

The purpose for the "test bench" is to test the behavior of the SPI master, and verify

that it functions correctly. We use the "test bench" to evaluate all the "user logic" sig-

nals and the standard SPI signals.

Note that the "test bench" code in Appendix D.2 have some parameters that may vary

from the simulations. The i_clock signal for these simulations runs at 50MHz which
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means the c_CLOCK_PERIOD from the "test bench" is set to 20ns. This will assign

the o_SPI_sclk signal to run at a frequency of 25MHz. The g_num_of_slaves are set

to "4" for these simulations. Also the line that addresses the slaves in Appendix D.2

(page 99) is set to slave 3 (0x03) in Figure 4.5 and to slave 1 (0x01) in Figure 4.6.

The difference between these two simulations are the SPI modes and the slave ad-

dressing. We can see the difference in the o_SPI_sclk signal behaving as low (logic

"0") when not used (IDLE state) in mode 2 (Figure 4.5), and high (logic "1") when not

used (IDLE state) for mode 3 (Figure 4.6). From Figure 4.5 the SPI master addresses

"slave 3" and in the Figure 4.6 the SPI master addresses "slave 1". This can be distin-

guished by the signal i_addr = 3 and the o_SPI_ss_n signal set to logic "0" for slave 3

(0111) seen in Figure 4.5.

From the Figure 4.5 we see the i_clock signal running at 50MHz and the i_reset_n

signal high (not enabled). The i_enable signal asserts at 164,2ns, which assert the

r_transmit_start register signal in the SPI master design. From Figure 4.3 we can see

that this register is responsible for the state jumping from "IDLE" to "s_transmission".

Now the transition can begin. From Figure 4.5 we see the o_SPI_ss_n signal go low

for the slave addressed as "3" seen by the i_addr signal being set to "3". This initi-

ates the communication between the master and the selected slave. The data sent

from the slave to master can be seen by that the i_SPI_miso signal is "0xC9" in Hex

("11001001" in binary). The first bit in i_SPI_miso is sampled on the second falling

edge of the o_SPI_sclk signal (because CPOL=1). The data from i_SPI_miso is sent

to the "user logic" signal o_read_date seen by value "4980" in Hex, (0100 1001 1000

000 in binary). This is "4980" in Hex because it reads i_SPI_miso from all the sixteen

cycles.



4.2. SPI SIMULATION 37

After eight clock cycles of the o_SPI_sclk signal, the first bit of the data in o_SPI_mosi

is sampled. The data that is sent from the master to the slave is seen by the "user

logic" signal i_write_data equal to "0x93" in Hex ("10010011" in binary). After the

full sixteen clock cycles the signal o_done is asserted, and the o_SPI_ss_n goes high

for the selected slave. This also includes the w_counter_data counter signal in the

SPI master seen in Figure 4.3, which means we jump to state "s_transmission_end".

This concludes that the transmission is finished and we end up in state "IDLE". The

signals that are not mentioned from the figures are for debug purposes and can be

overlooked.
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Figure 4.5: Simulation of the SPI Master (Mode 2)

Figure 4.6: Simulation of the SPI Master (Mode3)
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4.3 SPI Registers

There are two registers used for this design. Both have a width of 32 bits and one is

primarily for writing (input for the SPI master) and one is for reading (output from

the SPI master). In Figure 4.7 we can see how this is implemented in VHDL. The two

registers are named slv_reg0 and spi_to_ps.

Table 4.4: slv_reg0, D31 to D16

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
i_reset_n i_enable i_write_data

Table 4.5: slv_reg0, D15 to D0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
i_write_data X i_addr X X X X X X X X X X X X

The Table 4.4 shows what data is stored in the range bit 31 to bit 16 in the slv_reg0.

The Table 4.5 shows the data stored in register slv_reg0 from bit 15 to bit 0. The first

bit is i_reset_n which can be set to "0" to reset the SPI master. The second bit place

(D30) is reserved for the i_enable signal which is set to high to enable the transmis-

sion. The next places are for the i_write_data, which is the size of 16, which means

that it takes up 16 bits. This is customized and can also be selected to be the size

of 8, by changing the g_data_bus_width value to 8 instead of 16. This will affect the

register size automatically to only contain 8 bits of i_write_data. The i_addr in Ta-

ble 4.5 only takes up 1 bit because in our design we use one slave. If we want to use

more than one slave, we can increase the g_num_of_slaves value, and this will in turn

increase the space taken in the register slv_reg0.
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Table 4.6: spi_to_ps, D31 to D16

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16
o_done o_read_data

Table 4.7: spi_to_ps, D15 to D0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
o_read_data X X X X X X X X X X X X X X X

The Table 4.6 and Table 4.7 shows where the output signals takes place in the spi_to_ps

register. Table 4.6 shows what data is stored in the range bit 31 to bit 16, and Table

4.7 shows what data is stored in the range bit 15 to bit 0. In Table 4.6 we see that first

place is reserved to the o_done signal, which goes high when the transmission in the

SPI master design is finished. The next places are for o_read_data, which takes up 16

bits because of the g_data_bus_width = 16 in our design. If we change this down to 8

this will also automatically affect the spi_to_ps register so o_read_data only takes up

8 bits.

4.3.1 Implementing the Registers

To communicate with the design through the AXI interface we need to read and write

from registers. This is made custom for this design in the "port map" section in the

"my_spi_v1_0_S00_AXI.vhd" file. The whole code is listed in Appendix E.
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port map(

-- USER LOGIC -------------------------------------------------
i_clock => S_AXI_ACLK,
i_reset_n => slv_reg0(31),

----------------------------------------------------------------
i_enable => slv_reg0(30),
i_write_data => slv_reg0(29 downto (30 - g_data_bus_width)),
o_done => spi_to_ps(31),
o_read_data => spi_to_ps(30 downto (31 - g_data_bus_width)),
i_addr => slv_reg0(12 downto (13 - g_num_of_slaves)),

-- SPI MASTER INTERFACE ----------------------------------------
o_SPI_sclk => o_SPI_sclk,
o_SPI_ss_n => o_SPI_ss_n,
o_SPI_mosi => o_SPI_mosi,
i_SPI_miso => i_SPI_miso

);

Figure 4.7: VHDL code of the registers

In Figure 4.7 you can see the VHDL code for the "port map" where the registers are

appointed to the different signals. This is taken from the Appendix E.2. We use

only two of the four registers in the AXI lite interface for this design, slv_reg0 and

spi_to_ps. The slv_reg0 contains the inputs i_reset_n (at bit 31), i_enable (at bit 30),

i_write_data (at bit 29 down to a set size) and i_addr (at bit 12 down to a set size). The

size of the i_write_data depends on the size of the g_data_bus_width chosen for our

design. This is set at size 16 for our experiment, which means it takes the place bit 30

down to 15 in slv_reg0. The same goes for i_addr, it depends on g_num_of_slaves

which is set to value "1" for this experiment. This means our design can have a dif-

ferent number of slaves and data bus size depending on what we need it for.

The second register spi_to_ps is the outputs from our design. We have the signal
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o_done and o_read_data. The signal o_done goes high when the transaction is com-

plete and we can read this from the register and read out the data stored in the

spi_to_ps register bit 30 down to bit 14. This makes the design easier to program

an application for. The o_read_data also depends on the size of the data bus width.

4.3.2 AXI lite Connection

To implement the SPI master to the FPGA there are some additions we need work out.

In Appendix C there is a tutorial on how this can be executed. We have to implement

the AXI interface to be able to communicate between the Processor System (PS) and

the Programmable Logic (PL). We are using AXI lite for our implementation because

it is a "light-weight", single transaction memory mapped interface [9]. It includes the

necessary functionality to communicate between the PS and the SPI master.

The SPI master will be in the PL part, but we need the PS to operate it. In Figure

4.8 you can see the block design of my custom SPI master Intellectual Property (IP)

block with the Zynq processing IP block together with the AXI interconnects and the

external input/outputs.
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Figure 4.8: Block diagram of the AXI interconnects with the SPI Master and PS
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The Figure 4.9 shows a close up of the SPI Master IP block also seen in the top left

of the Figure 4.8. This IP block is called "my_spi_0" and contains the code from Ap-

pendix E. We use the i_SPI_miso as an external input which is addressed to the Pmod

"JA1" described in Appendix B. The same goes for the signals o_SPI_sclk, o_SPI_ss_n,

o_SPI_miso which is external outputs also connected to the Pmod "JA1". The input

and output "user logic" is sent through the S00_AXI input/output for the IP block.

The clock signal for the i_clock inside the SPI IP block is sent through the s00_axi_aclk

with the frequency 100MHz. For the full description of the addressing see Appendix

B.

Figure 4.9: Block diagram of the SPI master
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Results for the SPI Experiment

In this section we test the SPI master module on the Zedboard with the LM74 Tem-

perature sensor listed in Appendix A. A test program written in C (seen in Appendix

E) on Vivado’s SDK software runs a test application which sets different registers and

outputs to read data from the LM74 sensor to a serial terminal. The serial terminal

used for this experiment is called "GtkTerm". A short tutorial on how to use the serial

terminal can be found at [10]. The next section contains testing different encoding

techniques for the FSM on the SPI master and what this does for the utilization report

gathered from Vivado.

5.1 SPI with LM74

In Figure 5.1 you can see the setup for the testing environment using a standard

household temperature sensor to validate the temperature. For this experiment the

input clock for the system (i_clock) is set to 100MHz and the divider value (g_divide_value)

is set to 4. From the Equation 4.1 the serial clock (o_SPI_sclk) for the SPI master runs

at frequency 12.5MHz.

45



46 CHAPTER 5. RESULTS FOR THE SPI EXPERIMENT

Figure 5.1: Testing environment

In Figure 5.2 we can see the output from the serial terminal "GtkTerm" read from the

sensor when running the test application software. The first three lines in the Figure

5.2 is just for debug purposes to validate the correct value of the registers. The forth

line shows that the temperature sensor outputs 22.93◦C.

Figure 5.2: Read from terminal

The temperature read from the sensor through the design is validated by a household
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thermometer seen in Figure 5.3. In the Figure we can see that the thermometer shows

two different values; 23.1◦C from its outside sensor and 22.8◦C for its internal sensor.

Figure 5.3: Validating temperature

Figure 5.4: Temperature increasing

In Figure 5.4 we can see the output temperature after running the application soft-

ware again with me touching my finger on the LM74 sensor. The temperature outputs

25.62◦C in the serial terminal.
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5.2 Power Saving Techniques

In Section 4.1.3 the different encoding techniques "Gray code" and "Binary code" is

mentioned. The VHDL code implementation of this technique is also showed in Fig-

ure 4.4. When implementing the design in "Vivado" the software presents the utiliza-

tion report of the design. In Figure 5.5 we see the utilization report for using "Binary

encoding" exclusively for the SPI master design seen in Appendix D.1 (without AXI

lite and the PS). The Figure 5.6 shows the utilization report for the SPI master design

when using "Gray encoding".

Figure 5.5: Utilization Report of Binary Encoding

Figure 5.6: Utilization Report of Gray Encoding

The effect of switching from "Binary -" to "Gray encoding" in the FSM is marked with

the red square in Figure 5.5 and Figure 5.6. The number of Look Up Tables (LUT) goes

from 34 to 26, by switching to "Gray encoding". This is an improvement of 23,53% in

minimizing the LUTs.
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Discussion

6.1 Power Consumption

From Section 3.2 we found that the I2C interface used 1.361̇07 times more power than

SPI to transfer a byte of data. In the paper [26] they "taped out" a chip that imple-

mented the MBus into a temperature sensor system, where the power traces required

22.6pJ/bit/chip, which where two orders of magnitude better than the standard I2C.

The MBus is not a widely used interface, which is why the SPI master was chosen to

be designed instead of a MBus master.

6.2 SPI with LM74

The results seen in Figure 5.4 where I touched my finger on the "LM74" sensor, the

temperature increase was not as expected. The average temperature on hands lies

around 32◦C [4], but in my experiment the temperature showed 25.62◦C for my finger.

This may be caused by several factors. My hand might have been cold at the moment

of testing, or perhaps my finger was not long enough on the sensor. Another reason

might be that my finger did not cover the whole surface of the "LM74".

49



50 CHAPTER 6. DISCUSSION

Regarding the different frequencies we can have for the i_clock and o_SPI_sclk, the

highest frequency the SPI master could run without any faults was to run the i_clock

with 100MHz (input from the PS) and the o_SPI_sclk with 12.5MHz (g_divide_value

= 4). When running design with higher frequencies (by reducing the g_divide_value),

the serial terminal could not output any sensible data. I tried with 25MHz and 16.6MHz

for the o_SPI_sclk, but that caused incoherent data output on the serial terminal.

However, reducing the frequency worked without any difficulty. For example the

o_SPI_sclk could operate at 10MHz and function correctly. When I reduced the sys-

tem clock (i_clock) from 100MHz down to 50MHz, the design could not function cor-

rect with the o_SPI_sclk frequency over 6.25MHz. (i_clock = 50MHz and g_divide_value

= 4). This could be because of delay in the relatively long wires from the "Zedboard"

to the external sensor.

From the Equation 2.1 in Section 2.3 we see that the frequency has an effect on the

power consumption in interconnects. Usually we want a low frequency while still

managing to handle tasks. This lowers the dynamic power, but keeping the frequency

high might however be a tradeoff when it comes to the time of the transition of data. If

we can send the data fast and the system goes back to a "power saving mode" (IDLE)

this would be preferable to lingering in the "power hungry" transmission state longer

than it have to.

6.3 Power Saving Techniques

By switching from "Binary-" to "Gray encoding" the results show that it lowers the

LUT count which means it takes up less area. This again could lead to lower power

dissipation. It is an easy change and can have big improvement of the design, so it’s

always important to try different encoding techniques to see what improvements it
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might lead to. In this design we only have three states, but if we had more states other

encoding techniques could improve the utilization even more.

6.4 Limitations of the Findings

The limitations of this design is that it’s directed for a FPGA, and may therefore be-

have a little different than if implemented on an ASIC. However, this could be very

expensive to test this. It is also shown from the paper [15] that FPGAs are estimated

to be 3-4 times slower, 5-35 times larger and 7-14 times less energy efficient than

ASICs. This is dependent on the flexibility of the FPGA and the application on it. The

SPI design could therefore be assumed to have a better outcome if implemented on

an ASIC.

The SPI master design includes two modes, mode 2 and 3 seen in Figure 2.11, but

lacks mode 0 and 1 from Figure 2.10. This is a limitation of the SPI design because

it makes it less usable if a given slave requires one of the modes that this SPI master

lacks.

The software application (Appendix E.3) used to set and read registers is a simple

test program. This could be improved by being more structured, but it is sufficient

enough when testing the SPI master with an external sensor.
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Conclusion

In this thesis we have looked at different types of communication methods and what

can be done to decrease the power usage of such methods. We found out that SPI is

arguably the most suitable bus protocol for an ultra low power device. MBus is a good

competitor by being an ultra low power interface, but has yet to expand in the com-

mercial market, which makes it impractical to use. We have designed an SPI master

from the ground-up with some power saving techniques to make it more optimal for

ultra low power devices.

The SPI master got implemented and tested on a Zedboard with a temperature sen-

sor (LM74) as a slave. A test application program was made to read and write from

the registers and output it on a serial terminal on the computer. The experiment

showed that the SPI master design functioned in communicating with the external

sensor. It was fast, responsive and outputted the correct data validated by a house-

hold thermometer. It managed this with a max frequency of 12.5MHz for the SCLK.

We also got to see the effect by switching the "Binary" standard encoding on the FSM

to "Gray encoding". This minimized the LUTs used on the FPGA by 23.53% seen in

the utilization report.
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7.1 Recommendations for Further Work

A short term goal could be to get the other two SPI modes (mode 0 and mode 1) to

work with the design. No code is perfect, so it could also be beneficial for a more ex-

perienced digital designer to look at the code and maybe make some improvements.

The exact power consumption usage of the SPI master is also very hard to measure

when implemented on a FPGA. It would be interesting to research and compare dif-

ferent power saving techniques used in the VHDL code. It could also be interesting

to implement this SPI master on an ASIC and see how that would affect the overall

performance and efficiency.
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Appendix A

LM74 Temperature Sensor

This is appendix contains information about the Temperature sensor used with the

SPI Master design. Most of this information is sourced from the LM74 Specification

datasheet [35].

A.1 LM74

The LM74 is a temperature sensor (Figure A.1) by Texas Instruments, Delta-Sigma

analog-to-digital converter with an SPI and MICROWIRE compatible interface. The

LM74 provides resolution of up to 0.0625 degree Celsius and operates between -55

degree to -150 degree Celsius. It works as a slave in a system.

For my project I am going to use the SPI interface. The type used in this project is

a "Small Outline Integrated Circuit" (SOIC), which is a surface-mounted integrated

circuit package. This causes problems with easy connecting and testing of the sensor.

I got help at the electronic lab at NTNU to make a custom Printed Circuit Board (PCB)

that functions as a breakout board for the SOIC pins seen in Figure A.2. This makes

it compatible to mounting to a breadboard and simplifies the connection process to

the Zedboard.

61



62 APPENDIX A. LM74 TEMPERATURE SENSOR

Figure A.1: The LM74 chip
Figure A.2: The LM74 on a breakout board

Figure A.3: SOIC - Top View. Source [35]

A.2 Serial Bus Interface

The LM74 operates as a slave and is compatible with SPI and MICROWIRE bus speci-

fication. Data is clocked out on the falling edge of the serial clock (SCLK), while data is

clocked in on the rising edge of SCLK. The first 16 clocks comprise the transmit phase

of communication, while the second 16 clocks are the receive phase. This means that

a complete transmit/receive communication will consist of 32 serial clocks.
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A.3 Interfacing with 3-wire SPI

The SPI master module made in this project is a normal four signal, SCLK, CS/SS),

MISO and MOSI. The LM74 temperature sensor slave uses a 3-wire SPI interface, so

we have to connect the sensor in a different way.

Figure A.4 shows how the LM74 temperature sensor is connected to a microcon-

troller’s general purpose I/O. This is also how it is connected into the Zedboards

Pmod which is described in Appendix B. The Figure A.5 shows how the LM74 sen-

sor is connected to a basic breadboard with the all the signal wires.

Figure A.4: LM74 digital input control us-
ing µC’s GPIO. Source [35]

Figure A.5: The LM74 on a breakout board
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Appendix B

Connecting to the Zedboard

The Appendix B contains the details used to connect the temperature sensor LM74 to

a Pmod on the Zedboard. The Figure B.1 shows which Pmod (JA1) we are using, and

the connections of UART USB and JTAG USB. UART is used for transferring the data

from the Zedboard to a serial terminal on the computer. The JTAG is used to program

the Zedboard.

Figure B.1: The Zedboard Connections
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The Figure B.2 shows the physical female connection pins of the Pmod. We only need

to use the second row for our connections (marked with red). We connect the wires

following the Figure B.2 and the Table B.1 accordingly.

Figure B.2: The Zedboard Connections

The Table B.1 shows the signal name, what the Zynq pin is called and what we con-

nect from the LM74 sensor seen in Appendix A. The Zynq Pin names are used when

we write the I/O addresses for the external pins in Vivado. (Seen in Appendix C in

Figure C.25).

Table B.1: Pmod Connection. Adapted from source [3]

Pmod Signal Name Zynq pin from LM74
JA1 Y11
JA2 AA11
JA3 Y10
JA4 AA9
JA7 AB11 sclk
JA8 AB10 ss
JA9 AB9 Miso

JA1

JA10 AA8 Mosi
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The Figure B.3 is the schematic of the Pmod JA1.

Figure B.3: Pmod schematic. Source [8]
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Appendix C

Axi Lite core

In this appendix we will see the walkthrough of how to implement our design to the

ZEDBOARD (ZYNQ-7000). We are going to create an embedded system design using

Vivado and SDK, the objectives for this appendix is listed below.

• Configure the Processing System (PS)

• Add a custom IP in the Programmable Logic (PL) section

• Use SDK to build a software application and verify the hardware functionality

The AXI-Lite interface is a lightweight and low badwidth version of the AXI-Full pro-

tocol. It is suited for simple control logic between software and hardware, it allows

for communication between the PS and PL. For this tutorial VHDL is used and where

not specified, assume that you should click "finish" or "next" where applicable.
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Figure C.1: Create a new project

First of launch Vivado (Vivado 2016.3 WebPACK Edition for this example). Click Cre-

ate a New Project to make the new project. (Figure C.1)

Figure C.2: Pick a suitable project name

Give the project a appropriate name and chose a suitable location for saving the de-

sign. Click "next".(Figure C.2)
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Figure C.3: Choose RTL Project

Choose "RTL Project" and check the "Do not specify sources at this time". Click

"next". (Figure C.3)

Figure C.4: Select what platform you are using
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Select the board you are using. We are using the "Zedboard" so we select this one.

Click next and verify that the summary section is correct for your project and click

Finish. (Figure C.4)

Figure C.5: GUI of Vivado

This brings up the project manager in the Graphical user interface (GUI) of Vivado.

Look at the "Flow Navigator" at the left and select "create Block Design" under the

"IP Integrator" section. (Figure C.5)

Figure C.6: Creating a block design

Select an appropriate name for your block design and click "next". The Block Design
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page will open. (Figure C.6)

Figure C.7: Add a new IP

Click the button to add an new IP seen in Figure C.7.

Figure C.8: Find the Zynq IP

Search for "zynq" and double click the "ZYNQ7 Prosessing System" to add it to the

block design. (Figure C.8)

Figure C.9: Zynq added to design
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Your block design will look like the Figure C.9. Click "run block automation" at the

top to configure it to your board. When that is done double click the updated block

to "customize block".

Figure C.10: Re-Customize IP

A new window will pop up, namely the "Re-customize IP" seen in Figure C.10.

1. Click the "MIO Configuration" panel

2. Expand the "IO Peripherals on the right and uncheck "ENET 0, SD 0, USB 0 and

GPIO (GPIO IO)"

3. Keep the UART 1 selected. In the "MIO Configuration" panel expand "Applica-

tion Processor Unit" and uncheck the "Timer 0"

4. Click the "Clock Configuration panel" and expand the "PL Fabric Clocks"

5. Select "FCLK_CLK0" and choose what frequentcy you want the clock. For our

design we choose 100 MHz
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Figure C.11: PS-PL Configuration panel

Next click the "PS-PL Configuration" and expand the "GP Master AXI Interface" and

make sure "M Axi GP0 interface" is selected. Now you can click "ok" to close the

panel. (Figure C.11)

Figure C.12: Connect the wire highlighted in the block design

Now we have to connect the "FCLK_CLK0" output to "M_AXI_GPO_ACLK" input to

use it as our clock. To do this click one of the former and drag to the other one and a

wire will be traced just like in the Figure. (Figure C.12)
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C.1 Creating a new IP

Next we are going to create a custom IP. At the top panel select "Tools"-> "Create and

package new IP". Click next in the first window.

Figure C.13: Choose AXI4 peripheral

Then select "Create a New AXI4 peripheral shown in Figure C.13. Click "next". Add a

suitable name and check the "overwrite existing" box and then click "next".
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Figure C.14: Default settings for AXI Lite

Keep the default options just like the Figure C.14 and click "next". In the next section,

select "Edit IP" and click "finish". Now the peripheral has been generated by Vivado

and it is an AXI Lite slave with 4 x 32 bit read/write registers. Now we must modify it

to our needs.



78 APPENDIX C. AXI LITE CORE

Figure C.15: Choosing the SPImaster.vhd

From the Flow Navigator click "Add Sources" and add the file you want. For our ex-

ample we use the "SPI_master.vhd" seen in Figure C.15. Make sure that the two op-

tions down to the left is checked. Click "finish".

Next you have to edit the spimaster_v1_0.vhd and spimaster_v1_0_S00_AXI_inst.vhd.

You can see how I edited the code in Appendix E.
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Figure C.16: Package IP panel

When you have configured the code to your liking, you go back to the package IP

section and make sure everything is updated and looks correct. (Figure C.16)

1. Click the "File Groups" tab and click "merge changes from File Groups Wizard"

2. Then click "Customization Parameters" tab and click "Merge Changes from

Customization Parameters Wizard"

3. Go to the "Review and Package" tab and press "Re-Package IP" and the cus-

tomize IP project will close

Figure C.17: Add your custom IP

Then you go back to the block diagram and add a new IP, namely the IP you just
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created seen in Figure C.17.

Figure C.18: Updated block diagram

The block diagram will look like in Figure C.18.

Figure C.19: Block diagram after connection automation

Now click "run connection automation" at the top and the block diagram will look

like the Figure C.19.
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Figure C.20: Make inputs/outputs external

Right click on "i_SPI_miso" and click "Make external", do the same for "o_SPI_sclk",

"o_SPI_ss_n" and "o_SPI_mosi" seen in Figure C.20.

Figure C.21: Generate output products

Now you are going to generate the HDL design files.

1. Go to the "Project manager"

2. Under your design sources right click your design and click "Generate Output

Products"
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3. Click Generate seen in Figure C.21

4. Right click your design once again and click "Create HDL Wrapper"

5. Select "Let Vivado manage wrapper.." seen in Figure C.22 and click "ok".

Figure C.22: Creating HDL Wrapper

Next go to flow navigator and look at the last panel "program and Debug" and select

"Generate Bitstream". Click yes.

Figure C.23: Bitstream finished

This can take a while. When it is done with "synthesizing" and "implementation"

and" generating bitstream" the pop-up seen in Figure C.23 will display. Click "Open

Implementation Design" to configure the external i/o ports.
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Figure C.24: I/O planning section

Make sure you are in the I/O planning environment at the top seen in Figure C.24.

For our design we are using a Pmod to connect a temperature sensor (Appendix A)

so we need to port the input/outputs to the correct addresses. These are listed in Ap-

pendix B and can be seen in Figure C.25.

Figure C.25: I/O addressing

After you have edited the port planning, click save. A new window will pop-up asking

if you want to add this into a new constraint file. Choose a suitable name and click

"save".

Now we have to go to the panel "program and Debug" again and click generate bit-

stream" to include these new constraints.
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Figure C.26: Export Hardware

When this is done open block design from flow navigator and then click "File" at the

top bar and "Export hardware" seen in Figure C.26, and make sure you have selected

"include Bitstream". After that click File -> Launch SDK. Click "Ok" on the next pop-

up window. Now we are in SDK and now you click File -> New -> Application Project

Figure C.27: Make a New Project

seen in Figure C.27. Give the project a suitable name and click "next" and double

click the "hello World" template and then click "finish".
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Figure C.28: Src folder for the project

Open the "testspi" folder and go into the "src" folder seen in Figure C.28. Open the

"helloworld.c" source file. Replace this code with the code in Appendix E.3. Change

the name "helloworld.c" to "main.c".

Figure C.29: Copy "ps7_init.h" into your src folder

Copy the file "ps7_init.h" and add it into your source file seen in Figure C.29.

Figure C.30: Program FPGA

Turn on the Zedboard and connect one usb to JTAG and one to the UART port. Press

the "Program FPGA" seen in the Figure C.30. and press "program" button. Now the

FPGA is programmed.



86 APPENDIX C. AXI LITE CORE

Figure C.31: Select test file

Click Run -> Run Configurations and then double click "Xilinx C/C++ application

(GDB). Go to the application tab and select your project. Then press "apply" seen in

Figure C.31.

Figure C.32: Serial terminal port options

Now open a serial terminal to read out from UART. For this example I am using "Gtk-

Term". Select the correct port for the UART usb and the correct baud rate seen in

Figure C.32. Now you can go back to SDK and press run for the application.
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Figure C.33: Read data from UART

Now we get the outputs from our application program in the serial terminal seen in

Figure C.33. This is the end of this tutorial.
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Appendix D

SPI Master code

This is the VHDL code of the SPI master and the testbench for the SPI master.

D.1 SPI Master

This is the VHDL code for the SPI Master module.

----------------------------------------------------------------------------------

-- Company: NTNU

-- Engineer: Martin Lesund

--

-- Create Date: 03/23/2017 03:19:50 PM

-- Design Name:

-- Module Name: SPI_master - Behavioral

-- Project Name: Master thesis

-- Target Devices:

-- Tool Versions: vivado 2016.3

-- Description: This is the master file for the SPI

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

----------------------------------------------------------------------------------
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--PARAMETER description:

-- g_ = generic

-- i_ = input

-- o_ = output

-- r_ = register signal (has registered logic)

-- s_ = State Machine state

----------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity SPI_master is

generic (

g_data_bus_width : integer := 16; -- Data bus width

g_num_of_slaves : integer := 1 ; -- Number of SPI slaves

g_divide_value : integer := 4 ; --input o_SPI_sclk freq = i_clock/(2*g_divide_value)

-------CPOL and CPHA MODES -----------------------------

g_CPOL : std_logic := '1';

g_CPHA : std_logic := '1'

);

Port

(

-- USER LOGIC --------------------------------------------------------------------------

i_clock : in std_logic; -- System clock (50Mhz)

i_reset_n : in std_logic; -- Async reset (active high)

----------------------------------------------------------------------------------------

i_enable : in std_logic; -- Enable signal

i_write_data : in std_logic_vector(g_data_bus_width-1 downto 0); -- Transmitted Data to slaves

o_done : out std_logic; -- Transmission done signal

o_read_data : out std_logic_vector(g_data_bus_width-1 downto 0); -- Received data from slave

i_addr : in std_logic_vector(g_num_of_slaves-1 downto 0); -- Address of slave

-- SPI MASTER INTERFACE -----------------------------------------------------------------

o_SPI_sclk : out std_logic; -- SPI clock

o_SPI_ss_n : out std_logic_vector(g_num_of_slaves-1 downto 0); -- Slave select

o_SPI_mosi : out std_logic; -- SPI master out, slave in, serial data line

i_SPI_miso : in std_logic -- SPI master in, slave out, serial data line
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);

end SPI_master;

architecture logic of SPI_master is

type state is (s_idle, s_transmission, s_transmission_end);

signal present_state, next_state : state;

attribute enum_encoding: string;

-- Optional attribute IMPORTANT FOR OPTIMAL USAGE (sequential vs. Gray vs. One-Hot)

attribute enum_encoding of state: type is "00 01 11";

-- Describes which encoding style used

--Clock signals

signal r_rise_sclk : std_logic;

signal r_fall_sclk : std_logic;

signal r_counter_enable : std_logic;

signal r_counter : integer range 0 to g_divide_value*2;

signal r_counter_data : integer range 0 to g_data_bus_width;

signal w_counter_data : std_logic;

signal r_transmit_start : std_logic;

signal r_tx_data : std_logic_vector(g_data_bus_width-1 downto 0);

signal r_rx_data : std_logic_vector(g_data_bus_width-1 downto 0);

signal r_slave : integer := 0; -- slave selected for current transaction

begin

w_counter_data <= '0' when(r_counter_data>0) else '1';

-------------------------------------------------------------------------------

-- Counter Clock generator

--------------------------------------------------------------------------------

p_spi_clock_gen : process (i_clock, i_reset_n)

begin

if(i_reset_n = '0') then

r_rise_sclk <= '0';

r_fall_sclk <= '0';

r_counter <= 0;

elsif (rising_edge (i_clock)) then

if (r_counter_enable = '1' and g_CPOL = '1') then -- r_Mode11

if (r_counter = g_divide_value-1) then -- first edge = fall
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r_rise_sclk <= '0';

r_fall_sclk <= '1';

r_counter <= r_counter + 1;

elsif(r_counter = (g_divide_value*2)-1) then

r_rise_sclk <= '1';

r_fall_sclk <= '0';

r_counter <= 0;

else

r_rise_sclk <= '0';

r_fall_sclk <= '0';

r_counter <= r_counter+1;

end if;

elsif (r_counter_enable = '1' and g_CPOL = '0' ) then -- r_Mode01

if (r_counter = g_divide_value-1) then --first edge = rise

r_rise_sclk <= '1';

r_fall_sclk <= '0';

r_counter <= r_counter + 1;

elsif(r_counter = (g_divide_value*2)-1) then

r_rise_sclk <= '0';

r_fall_sclk <= '1';

r_counter <= 0;

else

r_rise_sclk <= '0';

r_fall_sclk <= '0';

r_counter <= r_counter+1;

end if;

else

r_rise_sclk <= '0';

r_fall_sclk <= '0';

r_counter <= 0;

end if;

end if;

end process p_spi_clock_gen;

----------------------------------------------------------------------------------

-- FSM

----------------------------------------------------------------------------------

------------ LOWER SECTION OF FSM: ------------ (Sequential Circuit)

p_fsm_present_state : process ( i_clock, i_reset_n)
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begin

if (i_reset_n = '0') then

present_state <= s_idle;

elsif(rising_edge(i_clock)) then

present_state <= next_state;

end if;

end process p_fsm_present_state;

------------ UPPER SECTION OF FSM: ------------ (Combinational Circuit)

p_fsm_next_state: process (present_state, r_rise_sclk, r_fall_sclk, r_transmit_start,w_counter_data)

begin

case present_state is

when s_transmission =>

if ((r_rise_sclk = '1' and g_CPOL = '1') or (r_fall_sclk ='1' and g_CPOL ='0')) and (w_counter_data = '1') then

next_state <= s_transmission_end;

else

next_state <= s_transmission;

end if;

when s_transmission_end =>

if (r_fall_sclk ='1' and g_CPOL = '1') or (r_rise_sclk = '1' and g_CPOL ='0') then

next_state <= s_idle;

else

next_state <= s_transmission_end;

end if;

when others => --s_IDLE

if r_transmit_start = '1' then

next_state <= s_transmission;

else

next_state <= s_idle;

end if;

end case;

end process p_fsm_next_state;

------------ OUTPUT SECTION: ------------

p_fsm_outputs : process (i_clock, i_reset_n)

begin

if(i_reset_n = '0') then

r_transmit_start <= '0';

r_tx_data <= (others => '0');

r_rx_data <= (others => '0');

o_done <= '0';
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o_read_data <= (others => '0');

r_counter_data <= g_data_bus_width -1;

r_counter_enable <= '0';

o_SPI_sclk <= g_CPOL; -- Clock polarity

o_SPI_ss_n <= (others => '1'); -- Set all slave select outputs high

o_SPI_mosi <= '1';

elsif (rising_edge(i_clock)) then

r_transmit_start <= i_enable;

case present_state is

when s_transmission =>

r_counter_enable <= '1';

o_done <= '0';

----------------------------------------------MODE11----------------------------------------------------

if(r_rise_sclk = '1' and g_CPOL = '1') then

o_SPI_sclk <= '1';

r_rx_data <= r_rx_data(g_data_bus_width-2 downto 0)&i_SPI_miso; --left shift

if(r_counter_data>0) then

r_counter_data <= r_counter_data -1;

end if;

elsif(r_fall_sclk = '1'and g_CPOL = '1')then

o_SPI_sclk <= '0' ;

o_SPI_mosi <= r_tx_data(g_data_bus_width-1);

r_tx_data <= r_tx_data(g_data_bus_width-2 downto 0)&'1';

----------------------------------------------MODE01----------------------------------------------------

elsif(r_fall_sclk = '1' and g_CPOL ='0')then

o_SPI_sclk <= '0' ;

r_rx_data <= r_rx_data(g_data_bus_width-2 downto 0)&i_SPI_miso; --left shift

if(r_counter_data>0) then

r_counter_data <= r_counter_data -1;

end if;

elsif(r_rise_sclk ='1' and g_CPOL ='0') then

o_SPI_sclk <= '1';

o_SPI_mosi <= r_tx_data(g_data_bus_width-1);

r_tx_data <= r_tx_data(g_data_bus_width-2 downto 0)&'1';
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end if;

o_SPI_ss_n(r_slave) <= '0';

when s_transmission_end =>

if (g_CPOL = '1' ) then

o_done <= r_fall_sclk;

o_SPI_ss_n(r_slave) <= '0';

o_read_data <= r_rx_data;

r_counter_data <= g_data_bus_width-1;

r_counter_enable <= '1';

elsif(g_CPOL = '0') then

o_done <= r_rise_sclk;

o_SPI_ss_n(r_slave) <= '0';

o_read_data <= r_rx_data;

r_counter_data <= g_data_bus_width-1;

r_counter_enable <= '1';

end if;

--s_idle

when others =>

o_SPI_sclk <= g_CPOL; --set spi clock polarity

o_SPI_ss_n<= (others => '1'); -- Set all slaves to '1'

o_SPI_mosi <= '1';

r_tx_data <= i_write_data;

o_done <= '0';

r_counter_data <= g_data_bus_width-1;

r_counter_enable <= '0';

if(to_integer(unsigned(i_addr)) < g_num_of_slaves) then

r_slave <= to_integer(unsigned(i_addr)); -- set current slave selection if valid

else

r_slave <= 0; -- set to first slave if not valid

end if;

end case ;

end if;

end process p_fsm_outputs;
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end logic;

D.2 Test bench

This is the VHDL code for the SPI Master test-bench.

----------------------------------------------------------------------------------

-- Company: NTNU

-- Engineer: Martin Lesund

--

-- Create Date: 03/28/2017 03:04:23 PM

-- Design Name:

-- Module Name: SPI_master_tb - Behavioral

-- Project Name:

-- Target Devices:

-- Tool Versions:

-- Description: This is the testbench for the SPI_master.vhd

--

-- Dependencies:

--

-- Revision:

-- Revision 0.01 - File Created

-- Additional Comments:

--

--------------------------------------------------------------------------------

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use ieee.numeric_std.all;

-------------------------------------------------------------------------------

-- entity remains blank for testbench

entity SPI_master_tb is

end SPI_master_tb;

-------------------------------------------------------------------------------

architecture Behavioral of SPI_master_tb is

--Component ports

constant c_CLOCK_PERIOD : time := 10ns; -- 10ns = 100MHz
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constant g_data_bus_width: integer := 16; --(16) number of bits to serialize

constant g_num_of_slaves : integer := 1; --Number of slaves

constant g_divide_value : integer := 1; --o_SPI_sclk freq = i_clock/(2*g_divide_value)

-------CPOL and CPHA MODES -----------------------------

constant g_CPOL : std_logic := '1';

constant g_CPHA : std_logic := '1';

signal i_clock : std_logic := '0';

signal i_reset_n : std_logic;

----------------------------------------------

signal i_enable : std_logic;

signal i_write_data : std_logic_vector(g_data_bus_width-1 downto 0);

signal o_done : std_logic;

signal o_read_data : std_logic_vector(g_data_bus_width-1 downto 0);

signal i_addr : std_logic_vector(g_num_of_slaves-1 downto 0);

----------------------------------------------

signal o_SPI_sclk : std_logic;

signal o_SPI_ss_n : std_logic_vector(g_num_of_slaves -1 downto 0);

signal o_SPI_mosi : std_logic;

signal i_SPI_miso : std_logic;

-----------------------------------------------------

signal COUNT_RISE : integer;

signal COUNT_FALL : integer;

signal TEST_MOSI : std_logic_vector(g_data_bus_width-1 downto 0); -- tx data

signal TEST_MISO : std_logic_vector(g_data_bus_width-1 downto 0); --rx data

signal r_addr : integer;

------------------------------------------------------

component SPI_master is

generic(

g_data_bus_width : integer := 8;

g_num_of_slaves : integer;

g_divide_value : integer;

g_CPOL : std_logic;

g_CPHA : std_logic

);

port(
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i_clock : in std_logic;

i_reset_n : in std_logic;

i_enable : in std_logic;

i_write_data : in std_logic_vector(g_data_bus_width-1 downto 0); -- Transmitted Data to slaves

o_done : out std_logic;

o_read_data : out std_logic_vector(g_data_bus_width-1 downto 0);

i_addr : in std_logic_vector(g_num_of_slaves-1 downto 0);

o_SPI_sclk : out std_logic;

o_SPI_ss_n : out std_logic_vector(g_num_of_slaves -1 downto 0);

o_SPI_mosi : out std_logic; -- SPI master out, slave in, serial data line

i_SPI_miso : in std_logic

);

end component SPI_master;

begin

--Component Instantiation

-- Instantiate the Unit Under Test (UUT)

UUT : SPI_master

generic map(

g_data_bus_width => g_data_bus_width,

g_divide_value => g_divide_value,

g_CPOL => g_CPOL,

g_CPHA => g_CPHA,

g_num_of_slaves => g_num_of_slaves

)

port map (

i_clock => i_clock,

i_reset_n => i_reset_n,

-------------------------------------------------------------------------------------------------

i_enable => i_enable,

i_write_data => i_write_data,

o_done => o_done,

o_read_data => o_read_data,

i_addr => i_addr,

-- i_cont => r_CONT,

-- SPI MASTER INTERFACE ----------------------------------------------------------------------------------

o_SPI_sclk => o_SPI_sclk,

o_SPI_ss_n => o_SPI_ss_n,

o_SPI_mosi => o_SPI_mosi,
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i_SPI_miso => i_SPI_miso

);

-- CLOCK Generation

p_CLK_GEN : process is

begin

i_clock <= '0';

wait for c_CLOCK_PERIOD/2;

i_clock <= '1';

wait for c_CLOCK_PERIOD/2;

end process p_CLK_GEN;

i_reset_n <= '0', '1' after 163ns;

i_addr <= std_logic_vector(to_unsigned(16#00#,g_num_of_slaves)); --Addressing slave

r_addr <= to_integer(unsigned(i_addr));

-- MAIN TESTING -----------------------

-- FSM

p_control : process(i_clock, i_reset_n)

variable v_CONTROL : unsigned(12 downto 0);

begin

if(i_reset_n = '0') then

v_CONTROL := (others => '0');

i_enable <= '0';

i_write_data <= std_logic_vector(to_unsigned(16#92#,g_data_bus_width));

elsif(rising_edge(i_clock)) then

v_CONTROL := v_CONTROL +1;

if(v_CONTROL = 10) then -- 10

i_enable <= '1';

else

i_enable <= '0';

end if;

if(o_done = '1') then

i_write_data <= std_logic_vector(unsigned(i_write_data)+1);

end if;

end if;
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end process p_control;

p_control_sclk : process(o_SPI_sclk)

begin

if(i_reset_n = '0') then

TEST_MISO <= std_logic_vector(to_unsigned(16#C9#,g_data_bus_width));

TEST_MOSI <= std_logic_vector(to_unsigned(16#00#,g_data_bus_width));

i_SPI_miso <= '0';

COUNT_RISE <= 0;

COUNT_FALL <= 0;

else

----------------------------------------------MODE11----------------------------------------------------

if (rising_edge(o_SPI_sclk) and g_CPOL= '1')then

if(o_SPI_ss_n(r_addr) = '0') then

TEST_MOSI <= TEST_MOSI(g_data_bus_width-2 downto 0)&o_SPI_mosi;

COUNT_RISE <= COUNT_RISE +1;

else

COUNT_RISE <= 0;

end if;

end if;

if (falling_edge(o_SPI_sclk) and g_CPOL= '1')then

if(o_SPI_ss_n(r_addr) = '0') then

TEST_MISO <= std_logic_vector(rotate_right(unsigned(TEST_MISO),1));

i_SPI_miso <= TEST_MISO(g_data_bus_width-1);

COUNT_FALL <= COUNT_FALL +1;

else

COUNT_FALL <= 0;

end if;

end if;

----------------------------------------------MODE01----------------------------------------------------

if (falling_edge(o_SPI_sclk) and g_CPOL = '0')then

if(o_SPI_ss_n(r_addr) = '0') then

TEST_MOSI <= TEST_MOSI(g_data_bus_width-2 downto 0)&o_SPI_mosi;

COUNT_FALL <= COUNT_FALL +1;

else

COUNT_FALL <= 0;

end if;

end if;

if (rising_edge(o_SPI_sclk) and g_CPOL = '0') then
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if(o_SPI_ss_n(r_addr) = '0') then

TEST_MISO <= std_logic_vector(rotate_right(unsigned(TEST_MISO),1));

i_SPI_miso <= TEST_MISO(g_data_bus_width-1);

COUNT_RISE <= COUNT_RISE +1;

else

COUNT_RISE <= 0;

end if;

end if;

end if;

end process p_control_sclk;

end Behavioral;
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Appendix E

AXI vhdl files

E.1 my_spi_v1_0.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_spi_v1_0 is

generic (

-- Users to add parameters here

g_num_of_slaves : integer := 1;

-- User parameters ends

-- Do not modify the parameters beyond this line

-- Parameters of Axi Slave Bus Interface S00_AXI

C_S00_AXI_DATA_WIDTH : integer := 32;

C_S00_AXI_ADDR_WIDTH : integer := 4

);

port (

-- Users to add ports here

o_SPI_sclk : out std_logic; -- SPI clock

o_SPI_ss_n : out std_logic_vector(g_num_of_slaves-1 downto 0);-- Slave select

o_SPI_mosi : out std_logic; -- SPI master out, slave in, serial data line

i_SPI_miso : in std_logic;

-- User ports ends

103
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-- Do not modify the ports beyond this line

-- Ports of Axi Slave Bus Interface S00_AXI

s00_axi_aclk : in std_logic;

s00_axi_aresetn : in std_logic;

s00_axi_awaddr : in std_logic_vector(C_S00_AXI_ADDR_WIDTH-1 downto 0);

s00_axi_awprot : in std_logic_vector(2 downto 0);

s00_axi_awvalid : in std_logic;

s00_axi_awready : out std_logic;

s00_axi_wdata : in std_logic_vector(C_S00_AXI_DATA_WIDTH-1 downto 0);

s00_axi_wstrb : in std_logic_vector((C_S00_AXI_DATA_WIDTH/8)-1 downto 0);

s00_axi_wvalid : in std_logic;

s00_axi_wready : out std_logic;

s00_axi_bresp : out std_logic_vector(1 downto 0);

s00_axi_bvalid : out std_logic;

s00_axi_bready : in std_logic;

s00_axi_araddr : in std_logic_vector(C_S00_AXI_ADDR_WIDTH-1 downto 0);

s00_axi_arprot : in std_logic_vector(2 downto 0);

s00_axi_arvalid : in std_logic;

s00_axi_arready : out std_logic;

s00_axi_rdata : out std_logic_vector(C_S00_AXI_DATA_WIDTH-1 downto 0);

s00_axi_rresp : out std_logic_vector(1 downto 0);

s00_axi_rvalid : out std_logic;

s00_axi_rready : in std_logic

);

end my_spi_v1_0;

architecture arch_imp of my_spi_v1_0 is

-- component declaration

component my_spi_v1_0_S00_AXI is

generic (

C_S_AXI_DATA_WIDTH : integer := 32;

C_S_AXI_ADDR_WIDTH : integer := 4

);

port (

S_AXI_ACLK : in std_logic;

S_AXI_ARESETN : in std_logic;

S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);

S_AXI_AWPROT : in std_logic_vector(2 downto 0);
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S_AXI_AWVALID : in std_logic;

S_AXI_AWREADY : out std_logic;

S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0);

S_AXI_WVALID : in std_logic;

S_AXI_WREADY : out std_logic;

S_AXI_BRESP : out std_logic_vector(1 downto 0);

S_AXI_BVALID : out std_logic;

S_AXI_BREADY : in std_logic;

S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);

S_AXI_ARPROT : in std_logic_vector(2 downto 0);

S_AXI_ARVALID : in std_logic;

S_AXI_ARREADY : out std_logic;

S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

S_AXI_RRESP : out std_logic_vector(1 downto 0);

S_AXI_RVALID : out std_logic;

S_AXI_RREADY : in std_logic;

---------------------- ADDED ------------------

o_SPI_sclk : out std_logic; -- SPI clock

o_SPI_ss_n : out std_logic_vector(g_num_of_slaves-1 downto 0); -- Slave select

o_SPI_mosi : out std_logic; -- SPI master out, slave in, serial data line

i_SPI_miso : in std_logic

);

end component my_spi_v1_0_S00_AXI;

begin

-- Instantiation of Axi Bus Interface S00_AXI

my_spi_v1_0_S00_AXI_inst : my_spi_v1_0_S00_AXI

generic map (

C_S_AXI_DATA_WIDTH => C_S00_AXI_DATA_WIDTH,

C_S_AXI_ADDR_WIDTH => C_S00_AXI_ADDR_WIDTH

)

port map (

S_AXI_ACLK => s00_axi_aclk,

S_AXI_ARESETN => s00_axi_aresetn,

S_AXI_AWADDR => s00_axi_awaddr,

S_AXI_AWPROT => s00_axi_awprot,

S_AXI_AWVALID => s00_axi_awvalid,

S_AXI_AWREADY => s00_axi_awready,
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S_AXI_WDATA => s00_axi_wdata,

S_AXI_WSTRB => s00_axi_wstrb,

S_AXI_WVALID => s00_axi_wvalid,

S_AXI_WREADY => s00_axi_wready,

S_AXI_BRESP => s00_axi_bresp,

S_AXI_BVALID => s00_axi_bvalid,

S_AXI_BREADY => s00_axi_bready,

S_AXI_ARADDR => s00_axi_araddr,

S_AXI_ARPROT => s00_axi_arprot,

S_AXI_ARVALID => s00_axi_arvalid,

S_AXI_ARREADY => s00_axi_arready,

S_AXI_RDATA => s00_axi_rdata,

S_AXI_RRESP => s00_axi_rresp,

S_AXI_RVALID => s00_axi_rvalid,

S_AXI_RREADY => s00_axi_rready,

---------------------------------------------

o_SPI_sclk => o_SPI_sclk,

o_SPI_ss_n => o_SPI_ss_n,

o_SPI_mosi => o_SPI_mosi,

i_SPI_miso => i_SPI_miso

);

end arch_imp;

E.2 my_spi_v1_0_S00_AXI.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity my_spi_v1_0_S00_AXI is

generic (

-- Users to add parameters here

g_data_bus_width : integer := 16; -- Data bus width

g_num_of_slaves : integer := 1 ; -- Number of SPI slaves

g_divide_value : integer := 4 ; -- input o_SPI_sclk freq = i_clock/(2*g_divide_value)
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-------CPOL and CPHA MODES -----------------------------

g_CPOL : std_logic := '1';

g_CPHA : std_logic := '1';

-- User parameters ends

-- Do not modify the parameters beyond this line

-- Width of S_AXI data bus

C_S_AXI_DATA_WIDTH : integer := 32;

-- Width of S_AXI address bus

C_S_AXI_ADDR_WIDTH : integer := 4

);

port (

-- Users to add ports here

o_SPI_sclk : out std_logic; -- SPI clock

o_SPI_ss_n : out std_logic_vector(g_num_of_slaves-1 downto 0); -- Slave select

o_SPI_mosi : out std_logic; -- SPI master out, slave in, serial data line

i_SPI_miso : in std_logic;

-- User ports ends

-- Do not modify the ports beyond this line

-- Global Clock Signal

S_AXI_ACLK : in std_logic;

-- Global Reset Signal. This Signal is Active LOW

S_AXI_ARESETN : in std_logic;

-- Write address (issued by master, acceped by Slave)

S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);

-- Write channel Protection type. This signal indicates the

-- privilege and security level of the transaction, and whether

-- the transaction is a data access or an instruction access.

S_AXI_AWPROT : in std_logic_vector(2 downto 0);

-- Write address valid. This signal indicates that the master signaling

-- valid write address and control information.

S_AXI_AWVALID : in std_logic;

-- Write address ready. This signal indicates that the slave is ready

-- to accept an address and associated control signals.

S_AXI_AWREADY : out std_logic;

-- Write data (issued by master, acceped by Slave)

S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

-- Write strobes. This signal indicates which byte lanes hold

-- valid data. There is one write strobe bit for each eight
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-- bits of the write data bus.

S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0);

-- Write valid. This signal indicates that valid write

-- data and strobes are available.

S_AXI_WVALID : in std_logic;

-- Write ready. This signal indicates that the slave

-- can accept the write data.

S_AXI_WREADY : out std_logic;

-- Write response. This signal indicates the status

-- of the write transaction.

S_AXI_BRESP : out std_logic_vector(1 downto 0);

-- Write response valid. This signal indicates that the channel

-- is signaling a valid write response.

S_AXI_BVALID : out std_logic;

-- Response ready. This signal indicates that the master

-- can accept a write response.

S_AXI_BREADY : in std_logic;

-- Read address (issued by master, acceped by Slave)

S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);

-- Protection type. This signal indicates the privilege

-- and security level of the transaction, and whether the

-- transaction is a data access or an instruction access.

S_AXI_ARPROT : in std_logic_vector(2 downto 0);

-- Read address valid. This signal indicates that the channel

-- is signaling valid read address and control information.

S_AXI_ARVALID : in std_logic;

-- Read address ready. This signal indicates that the slave is

-- ready to accept an address and associated control signals.

S_AXI_ARREADY : out std_logic;

-- Read data (issued by slave)

S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

-- Read response. This signal indicates the status of the

-- read transfer.

S_AXI_RRESP : out std_logic_vector(1 downto 0);

-- Read valid. This signal indicates that the channel is

-- signaling the required read data.

S_AXI_RVALID : out std_logic;

-- Read ready. This signal indicates that the master can

-- accept the read data and response information.

S_AXI_RREADY : in std_logic

);
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end my_spi_v1_0_S00_AXI;

architecture arch_imp of my_spi_v1_0_S00_AXI is

-- AXI4LITE signals

signal axi_awaddr : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);

signal axi_awready : std_logic;

signal axi_wready : std_logic;

signal axi_bresp : std_logic_vector(1 downto 0);

signal axi_bvalid : std_logic;

signal axi_araddr : std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);

signal axi_arready : std_logic;

signal axi_rdata : std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal axi_rresp : std_logic_vector(1 downto 0);

signal axi_rvalid : std_logic;

-- Example-specific design signals

-- local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH

-- ADDR_LSB is used for addressing 32/64 bit registers/memories

-- ADDR_LSB = 2 for 32 bits (n downto 2)

-- ADDR_LSB = 3 for 64 bits (n downto 3)

constant ADDR_LSB : integer := (C_S_AXI_DATA_WIDTH/32)+ 1;

constant OPT_MEM_ADDR_BITS : integer := 1;

------------------------------------------------

---- Signals for user logic register space example

--------------------------------------------------

---- Number of Slave Registers 4

signal slv_reg0 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg1 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg2 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg3 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal slv_reg_rden : std_logic;

signal slv_reg_wren : std_logic;

signal reg_data_out :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);

signal byte_index : integer;

------------------- ADDED ------------------------------------------

signal spi_to_ps: std_logic_vector(31 downto 0);

component SPI_master

generic (

g_data_bus_width : integer := 16; -- Data bus width
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g_num_of_slaves : integer := 1 ; -- Number of SPI slaves

g_divide_value : integer := 4 ; --input o_SPI_sclk freq = i_clock/(2*g_divide_value)

-------CPOL and CPHA MODES -----------------------------

g_CPOL : std_logic := '1';

g_CPHA : std_logic := '1'

);

port(

-- USER LOGIC ----------------------------------------------------------------------------------

i_clock : in std_logic; -- System clock (50Mhz)

i_reset_n : in std_logic; -- Async reset (active high)

-------------------------------------------------------------------------------------------------

i_enable : in std_logic;

i_write_data : in std_logic_vector(g_data_bus_width-1 downto 0); -- Transmitted Data to slaves

o_done : out std_logic;

o_read_data : out std_logic_vector(g_data_bus_width-1 downto 0);-- Received data from slave

i_addr : in std_logic_vector(g_num_of_slaves-1 downto 0); -- Address of slave

-- SPI MASTER INTERFACE -------------------------------------------------------------------------------

o_SPI_sclk : out std_logic; -- SPI clock

o_SPI_ss_n : out std_logic_vector(g_num_of_slaves-1 downto 0); -- Slave select

o_SPI_mosi : out std_logic; -- SPI master out, slave in, serial data line

i_SPI_miso : in std_logic -- SPI master in, slave out, serial data line

);

end component;

begin

-- I/O Connections assignments

S_AXI_AWREADY <= axi_awready;

S_AXI_WREADY <= axi_wready;

S_AXI_BRESP <= axi_bresp;

S_AXI_BVALID <= axi_bvalid;

S_AXI_ARREADY <= axi_arready;

S_AXI_RDATA <= axi_rdata;

S_AXI_RRESP <= axi_rresp;

S_AXI_RVALID <= axi_rvalid;

-- Implement axi_awready generation

-- axi_awready is asserted for one S_AXI_ACLK clock cycle when both

-- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is

-- de-asserted when reset is low.
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process (S_AXI_ACLK)

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

axi_awready <= '0';

else

if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1') then

-- slave is ready to accept write address when

-- there is a valid write address and write data

-- on the write address and data bus. This design

-- expects no outstanding transactions.

axi_awready <= '1';

else

axi_awready <= '0';

end if;

end if;

end if;

end process;

-- Implement axi_awaddr latching

-- This process is used to latch the address when both

-- S_AXI_AWVALID and S_AXI_WVALID are valid.

process (S_AXI_ACLK)

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

axi_awaddr <= (others => '0');

else

if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1') then

-- Write Address latching

axi_awaddr <= S_AXI_AWADDR;

end if;

end if;

end if;

end process;

-- Implement axi_wready generation

-- axi_wready is asserted for one S_AXI_ACLK clock cycle when both

-- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is

-- de-asserted when reset is low.
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process (S_AXI_ACLK)

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

axi_wready <= '0';

else

if (axi_wready = '0' and S_AXI_WVALID = '1' and S_AXI_AWVALID = '1') then

-- slave is ready to accept write data when

-- there is a valid write address and write data

-- on the write address and data bus. This design

-- expects no outstanding transactions.

axi_wready <= '1';

else

axi_wready <= '0';

end if;

end if;

end if;

end process;

-- Implement memory mapped register select and write logic generation

-- The write data is accepted and written to memory mapped registers when

-- axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to

-- select byte enables of slave registers while writing.

-- These registers are cleared when reset (active low) is applied.

-- Slave register write enable is asserted when valid address and data are available

-- and the slave is ready to accept the write address and write data.

slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID ;

process (S_AXI_ACLK)

variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

slv_reg0 <= (others => '0');

slv_reg1 <= (others => '0');

slv_reg2 <= (others => '0');

slv_reg3 <= (others => '0');

else

loc_addr := axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);

if (slv_reg_wren = '1') then
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case loc_addr is

when b"00" =>

for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop

if ( S_AXI_WSTRB(byte_index) = '1' ) then

-- Respective byte enables are asserted as per write strobes

-- slave registor 0

slv_reg0(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);

end if;

end loop;

when b"01" =>

for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop

if ( S_AXI_WSTRB(byte_index) = '1' ) then

-- Respective byte enables are asserted as per write strobes

-- slave registor 1

slv_reg1(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);

end if;

end loop;

when b"10" =>

for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop

if ( S_AXI_WSTRB(byte_index) = '1' ) then

-- Respective byte enables are asserted as per write strobes

-- slave registor 2

slv_reg2(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);

end if;

end loop;

when b"11" =>

for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop

if ( S_AXI_WSTRB(byte_index) = '1' ) then

-- Respective byte enables are asserted as per write strobes

-- slave registor 3

slv_reg3(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);

end if;

end loop;

when others =>

slv_reg0 <= slv_reg0;

slv_reg1 <= slv_reg1;

slv_reg2 <= slv_reg2;

slv_reg3 <= slv_reg3;

end case;

end if;

end if;
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end if;

end process;

-- Implement write response logic generation

-- The write response and response valid signals are asserted by the slave

-- when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.

-- This marks the acceptance of address and indicates the status of

-- write transaction.

process (S_AXI_ACLK)

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

axi_bvalid <= '0';

axi_bresp <= "00"; --need to work more on the responses

else

if (axi_awready = '1' and S_AXI_AWVALID = '1' and axi_wready = '1' and S_AXI_WVALID = '1' and axi_bvalid = '0' ) then

axi_bvalid <= '1';

axi_bresp <= "00";

elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then --check if bready is asserted while bvalid is high)

axi_bvalid <= '0'; -- (there is a possibility that bready is always asserted high)

end if;

end if;

end if;

end process;

-- Implement axi_arready generation

-- axi_arready is asserted for one S_AXI_ACLK clock cycle when

-- S_AXI_ARVALID is asserted. axi_awready is

-- de-asserted when reset (active low) is asserted.

-- The read address is also latched when S_AXI_ARVALID is

-- asserted. axi_araddr is reset to zero on reset assertion.

process (S_AXI_ACLK)

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

axi_arready <= '0';

axi_araddr <= (others => '1');

else

if (axi_arready = '0' and S_AXI_ARVALID = '1') then
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-- indicates that the slave has acceped the valid read address

axi_arready <= '1';

-- Read Address latching

axi_araddr <= S_AXI_ARADDR;

else

axi_arready <= '0';

end if;

end if;

end if;

end process;

-- Implement axi_arvalid generation

-- axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both

-- S_AXI_ARVALID and axi_arready are asserted. The slave registers

-- data are available on the axi_rdata bus at this instance. The

-- assertion of axi_rvalid marks the validity of read data on the

-- bus and axi_rresp indicates the status of read transaction.axi_rvalid

-- is deasserted on reset (active low). axi_rresp and axi_rdata are

-- cleared to zero on reset (active low).

process (S_AXI_ACLK)

begin

if rising_edge(S_AXI_ACLK) then

if S_AXI_ARESETN = '0' then

axi_rvalid <= '0';

axi_rresp <= "00";

else

if (axi_arready = '1' and S_AXI_ARVALID = '1' and axi_rvalid = '0') then

-- Valid read data is available at the read data bus

axi_rvalid <= '1';

axi_rresp <= "00"; -- 'OKAY' response

elsif (axi_rvalid = '1' and S_AXI_RREADY = '1') then

-- Read data is accepted by the master

axi_rvalid <= '0';

end if;

end if;

end if;

end process;

-- Implement memory mapped register select and read logic generation

-- Slave register read enable is asserted when valid address is available

-- and the slave is ready to accept the read address.
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slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not axi_rvalid) ;

process (slv_reg0, spi_to_ps, slv_reg2, slv_reg3, axi_araddr, S_AXI_ARESETN, slv_reg_rden)

variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);

begin

-- Address decoding for reading registers

loc_addr := axi_araddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);

case loc_addr is

when b"00" =>

reg_data_out <= slv_reg0;

when b"01" =>

reg_data_out <= spi_to_ps; --- Changed from slv_reg1 to spi_to_ps

when b"10" =>

reg_data_out <= slv_reg2;

when b"11" =>

reg_data_out <= slv_reg3;

when others =>

reg_data_out <= (others => '0');

end case;

end process;

-- Output register or memory read data

process( S_AXI_ACLK ) is

begin

if (rising_edge (S_AXI_ACLK)) then

if ( S_AXI_ARESETN = '0' ) then

axi_rdata <= (others => '0');

else

if (slv_reg_rden = '1') then

-- When there is a valid read address (S_AXI_ARVALID) with

-- acceptance of read address by the slave (axi_arready),

-- output the read dada

-- Read address mux

axi_rdata <= reg_data_out; -- register read data

end if;

end if;

end if;

end process;

-- Add user logic here
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SPI_master_0 : SPI_master

generic map(

g_data_bus_width => g_data_bus_width,

g_num_of_slaves => g_num_of_slaves,

g_divide_value => g_divide_value,

-------CPOL and CPHA MODES -----------------------------

g_CPOL => g_CPOL,

g_CPHA => g_CPHA

)

port map(

-- USER LOGIC -------------------------------------------------------------------------------

i_clock => S_AXI_ACLK,

i_reset_n => slv_reg0(31),

----------------------------------------------------------------------------------------------

i_enable => slv_reg0(30),

i_write_data => slv_reg0(29 downto (30 - g_data_bus_width)), -- When g_databus = 16

o_done => spi_to_ps(31),

o_read_data => spi_to_ps(30 downto (31 - g_data_bus_width)),

i_addr => slv_reg0(12 downto (13 - g_num_of_slaves)),

-- SPI MASTER INTERFACE ----------------------------------------------------------------------

o_SPI_sclk => o_SPI_sclk,

o_SPI_ss_n => o_SPI_ss_n,

o_SPI_mosi => o_SPI_mosi,

i_SPI_miso => i_SPI_miso

);

-- User logic ends

end arch_imp;

E.3 C Code Test Program

#include <stdio.h>

#include <stdlib.h>

#include "ps7_init.h"

#include "platform.h"

#include "xparameters.h"

#include "xil_printf.h"

#include "xil_io.h"
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// Macros

#define CUSTOM_IP_BASEADDR 0x43C00000

#define REGISTER_0_OFFSET 0x00

#define REGISTER_1_OFFSET 0x04

#define REGISTER_2_OFFSET 0x08 //Not in use

#define REGISTER_3_OFFSET 0x0C //Not in use

//Function prototypes

void set_custom_ip_register(int baseaddr, int offset, int value);

int get_custom_ip_register(int baseaddr, int offset);

//MAIN

int main()

{

init_platform();

xil_printf("--------Test Project --------\n\r");

int r_temp0;

int r_temp1;

r_temp1 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_1_OFFSET);

//set 1 to reset

set_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET, 0x80000000);

for(int i; i < 1000000; i++){}

r_temp0 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET);

for(int i; i < 1000000; i++){}

// set 0 to reset

set_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET, 0x00000000);

for(int i; i < 1000000; i++){}

r_temp0 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET);

for(int i; i < 1000000; i++){}

// Set 1 to reset and enable

set_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET, 0xC0000000);

r_temp0 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET);
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for(int i; i < 1000000; i++){}

r_temp1 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_1_OFFSET);

for(int i; i < 1000000; i++){}

//Read from register spi_to_ps

r_temp1 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_1_OFFSET);

xil_printf("slv_reg1 = 0x%02X\n\r", r_temp1);

set_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_0_OFFSET, 0x80000000);

r_temp1 = get_custom_ip_register(CUSTOM_IP_BASEADDR, REGISTER_1_OFFSET);

xil_printf("---slv_reg1 = 0x%02X\n\r", r_temp1);

xil_printf("---slv_reg1 (18) = 0x%02X\n\r", r_temp1>>18);

float e;

//Transform the data to celsius

e= (r_temp1>>18)* 0.0625;

printf("TEMPERATUR MÅLER = %.2f °C\n\r",e);

xil_printf("--------Test Project END--------\n\n\n\r");

cleanup_platform();

return 0;

}

// Setting register function

void set_custom_ip_register(int baseaddr, int offset, int value)

{

Xil_Out32(baseaddr + offset, value);

}

// Reading register function

int get_custom_ip_register(int baseaddr, int offset)

{

int temp = 0;

temp = Xil_In32(baseaddr + offset);

return(temp);

}
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