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We consider the Josephson effect through a thin spin-orbit coupled layer in the presence of an exchange field
h, and discover a set of supercurrent vortices appearing in the system which can be controllably moved around
in the system by varying either the direction of h, the strength |h|, the spin-orbit coupling magnitude α via a
gate voltage, or the phase difference. We refer to this phenomenon as a supercurrent vortex pinball effect and
show that its origin is the spin polarization of the triplet Cooper pairs induced in the system. The supercurrent
vortices are shown to arise from what resembles a Cooper pair-induced inverse Edelstein effect.

I. INTRODUCTION

The proximity effect endows otherwise non-
superconducting materials with superconducting properties,
and thus offers an interesting arena to explore how quantum
coherence is manifested in unusual physical environments.
One of the most actively pursued setups includes so-called
Josephson junctions where a material is able to sustain a
supercurrent via proximity to two host superconductors. In
the presence of a magnetic exchange field h, the Cooper
pairs that leak from the superconductors oscillate between
the conventional singlet spin state and the opposite-spin
triplet state1. If the exchange field is spatially varying, or
the system contains spin-orbit coupling, the triplet Cooper
pairs may rotate between different triplet states where the
electron spins are parallel, making tunable superconducting
spin transport possible2–4. In light of this discovery, the effect
of spin-orbit coupling on proximitized materials has recently
been investigated in several works5–21.

In this paper, we consider a spin-orbit coupled supercon-
ducting hybrid which is found to display novel, inherently
two-dimensional, physical phenomena which are hidden in
effective one-dimensional models. Specifically, we examine
a thin film of a non-superconducting material with spin-orbit
coupling sandwiched between two superconductors and dis-
cover a set of supercurrent vortices appearing in the system
which can be controllably moved around by varying either the
direction of h, the strength |h|, the spin-orbit coupling mag-
nitude α via a gate voltage or the phase difference. We re-
fer to this phenomenon as a supercurrent vortex pinball effect
and show that its origin is the spin polarization of the triplet
Cooper pairs induced in the system. The supercurrent vor-
tices arise from what is reminiscent of a Cooper pair-induced
inverse Edelstein effect.

II. THEORY AND MODEL

A top view sketch of the geometry is given in Fig. 1.
The film can for instance be a two-dimensional electron gas
(GaAs), which has the advantage of a readily tunable Rashba
spin-orbit coupling strength α and a high g-factor providing
a strong Zeeman effect. The central region is quadratic with

lengths L = 2ξ where ξ is the superconducting coherence
length and considered to be in the diffusive regime of trans-
port. A magnetic field is applied in the xy-plane, in a direc-
tion denoted by an angle θ relative to the transverse direction
(y-axis), creating an exchange field h through the Zeeman ef-
fect. We assume that the film is sufficiently thin [O(nm)] for
the orbital effect to be completely negligible. In the diffusive
transport regime, the Usadel equation22 is valid:

D∇̄ĝ∇̄ĝ + ı [ερ̂3 + σ̂ · h, ĝ] = 0 (1)

where D is the diffusion constant, ε is the quasiparticle en-
ergy, ρ̂3 = diag(+1,+1,−1,−1), and σ̂ = diag(σ,σ∗)
where σ is a vector of Pauli matrices. Furthermore, ĝ =
ĝ(x, y, ε) is the retarded, quasiclassical 4 × 4 Green function
matrix, defined as

ĝ =

(
g f

−f̃ −g̃

)
(2)

where the ˜. . . operation means complex conjugation and ε→
(−ε). The 2 × 2-matrix g is the conventional Green func-
tion, which includes the spin degree of freedom, whereas the
anomalous Green function f takes into account the presence
of superconducting correlations. Spin-orbit coupling is intro-
duced via the covariant derivative ∇̄ĝ = ∇ĝ − ı

[
Â, ĝ

]
, with

S S
FIG. 1. A top view sketch of the 2D Josephson junction, which is ori-
ented in the xy-plane. The green region reprsents the normal metal,
which is quadratic with lengths L = 2ξ. The exchange field h is ap-
plied in the plane of the junction. The presence of spin-orbit coupling
creates vortices in the current density.
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Â = diag(A,−A∗). Here, we consider Rashba spin-orbit
coupling, as generated by a symmetry breaking in the thick-
ness direction (z-axis), for which one gets

A = −α (σyex − σxey) (3)

where α is the strength of the spin-orbit coupling, and ej is
a unit vector in direction j. We consider low-transparancy
interfaces, which are described by the Kupriyanov-Lukichev
boundary conditions23

eN · ∇̄ĝ =
1

ζL
[ĝR, ĝL] (4)

The phenomenological constant ζ is a measure of the interface
resistance (we use ζ = 3 in what follows, corresponding to a
realistic low-transparency interface), and the indices {L,R}
refer to Green functions on the left and right side of the in-
terface, respectively. Inelastic scattering is accounted for by
letting ε → ε + ıδ where δ/∆ = 0.01. The superconduc-
tors are assumed to be large enough to be approximated as
bulk, and therefore appear only in the boundary conditions
at x = ±L/2. For the transversal interfaces to vacuum, the
boundary conditions reduce to ∇̄ĝ = 0.

To demonstrate the inverse Edelstein effect originating
from the triplet Cooper pairs, we first consider the charge cur-
rent density which in equilibrium is defined as:

J = J0

∫
dε ReTr

{
ρ̂3ĝ∇̄ĝ

}
tanh

βε

2
(5)

with J0 = N0eD/2, where the constant N0 is the density of
states at the Fermi level and β = 1/kBT . The temperature T
is constant and equal to 1 ‰ of the critical temperature of the
superconductors. By inserting the above expression for ĝ into
Eq. 5, it is seen that the current density only depends on the
anomalous Green function f . Furthermore, f can be split into
a contribution from the singlet component fs and the triplet
component ft = (fx, fy, fz) by inserting the parameteriza-
tion

f = (fsI + ft · σ) ıσy (6)

where I is the 2 × 2 identity matrix. The current density can
then be written as

J = JI + Jtt (7)

with JI = Js − Jx − Jy − Jz being the conventional cur-
rent contribution from the individual singlet and triplet com-
ponents, which in turn are given as

Jk = 4J0

∫ ∞
0

dε Re
{
f̃k∇fk − fk∇f̃k

}
tanh

βε

2
(8)

for k ∈ {s, x, y, z}. The current JI is present also in the ab-
sence of spin-orbit coupling. With spin-orbit coupling, how-
ever, one gets an additional contribution from Jtt, which we
find to be:

Jtt = 16J0αez ×
∫ ∞
0

dε Re
{
f̃t × ft

}
tanh

βε

2
(9)

It is observed that while JI is a linear combination of cur-
rents from each of the four components of f , Jtt is generated
by interference between the triplet components. Importantly,
the cross product in Eq. 9 determines the spin polarization
direction of a general triplet Cooper pair state, as is well-
known from the d-vector formalism used in early works on
liquid 3He24,25. In other words we find that, due to spin-orbit
coupling, the existence of a finite triplet Cooper pair spin ex-
pectation value directly produces a charge current, which we
interpret as a triplet Cooper pair induced inverse Edelstein ef-
fect. This is a key result in this paper. We note that another
type of Edelstein effect in superconducting hybrid structures
has recently been reported in Ref.10, where a spontaneous su-
percurrent induced by magnetization in a Josephson junction
with spin-orbit coupling was found. Here, we have presented
a different inverse Edelstein effect, in that the spin density
responsible for the current is solely generated by the triplet
Cooper pairs. This is in contrast to the induced magnetization
which requires a non-zero singlet contribution. Recently, the
nonequilibrium Edelstein effect and magnetoelectric Andreev
transport was discussed in the context of helical metals18.

III. RESULTS AND DISCUSSION

For the system shown in Fig. 1, we solve the full Usadel
equation, given in Eq. 1, by using the finite element method,
as thoroughly explained in Ref.26. In the results presented
herein we apply a phase difference between the superconduc-
tors of φ = π

2 unless otherwise stated. The first thing to note
is that the current density has a non-trivial transversal distri-
bution, and even changes sign in certain areas. In the regions
where a sign change occurs, supercurrent vortices are gener-
ated, i.e. positions around which the current density circu-
lates. Vortices in the current density have been reported in
proximitized materials in the presence of an external magnetic
flux26–29, whereas no such flux is required in the present work.
These flux-induced vortices are associated with a suppression
of superconducting correlations at precisely the location of the
vortices in addition to a phase-winding of the superconduct-
ing phase, analogously to Abrikosov vortices. In the results
presented here, we do not find any such suppression, and so
the spin-orbit induced supercurrent vortices are therefore of a
different nature.

The effect is clearly seen in Fig. 2a, in which the exchange
field is pointing in the x-direction. Here, the current density
flows in the positive x-direction near the center of the junc-
tion, and in the opposite direction by the edges. This cre-
ates a circulation around two oblong vortices at approximately
y = ±0.4L within which the current density is suppressed.
Such a current distribution may be measured experimentally
using magneto-optic imaging30.

Fig. 2b shows the transverse distribution of the current flow-
ing across the junction. Specifically, it shows the different
contributions in Eq. 7 to the total current. It is seen that the
transverse distribution of the individual components Jk—the
components not explicitly dependent on α—almost perfectly
cancel, rendering their sum JI constant. It is therefore clear
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(a) (b)

FIG. 2. The current density distribution for an exchange field h/∆ =
1.0 in the x-direction. (a) Streamline plot showing vortices. (b)
Transversal distribution of the x-component of the different currents
in the middle of the junction (x = 0). All current densities are scaled
by J0∆/L.

FIG. 3. The total current I passing between the superconductors
(found by integrating the current density J over the cross section)
as a function of the exchange field strength h = |h|, applied at an
angle θ = 45◦ relative to the y-axis. The normalized strength of the
spin-orbit coupling is αL = 1. Pink regions indicate presence of
vortices in the current density. The insets show the current density
distribution for selected points.

that the main contribution to the transverse distribution stems
from Jtt, the term responsible for the inverse Edelstein effect
induced by the triplet Cooper pair spins.

A key point is that the existence of the vortices are found to
depend on the strength h = |h| of the exchange field. When
examining the current passing between the superconductors
for increasing exchange field, a decaying oscillatory pattern
is found where, for certain values of h, the current flows in
the opposite direction. This is known as a π-junction33, ow-
ing to the fact that the ground state of the Josephson junction
has a phase difference of π rather than zero1. We find that the
vortices are harbingers of a 0-π transition, being present only
when the total current is significantly reduced. The reason for
this is that the transversal distribution of the current density
is much less influenced by the strength of the exchange field

than the current itself. For increasing h, the curvature of Jtt
in Fig. 2b is more or less retained, while the total current—
that is, the average of the current density—is reduced upon
approaching a 0-π transition. Close enough to the transition,
the minimas of the current density will cross zero and become
negative. Evidently, a current density redistribution is less en-
ergetically favorable than vortex generation.

It turns out that for an in-plane exchange field, the current
is reduced rapidly enough with increasing h for vortices to re-
main present once they first appear. This can be seen in Fig. 3,
which shows the total current I , found by integrating the cur-
rent density J over the cross section. The exchange field is
applied at an angle θ = 45◦ with respect to the y-axis. In
the pink region there are vortices in the current density, and
it is observed that the modulation of the curve hinders a reen-
try into the green region, where vortices are not present. For
an out-of-plane exchange field this is not necessarily the case,
and away from the transition points, the current may become
large enough for the vortices to disappear.

Interestingly, the location of the vortices also changes as
the exchange field is increased. The insets of Fig. 3 show the
current density distribution for selected points along the cur-
rent curve. The vortices first appear at the vacuum edges, on
opposite sides of the junction, near the superconducting in-
terfaces. As h is increased, they translate vertically and pass
the x-axis at precisely the 0-π transition. At this stage, the
current density distribution is symmetric about both the x and
the y axis, with no net current passing between the supercon-
ductors. Further increase of h causes further translation of the
vortices. However, since they must cross the x-axis every 0-π
transition due to the symmetry requirements, a turning point
must be reached, and the motion of the vortices may best be
described as resembling a damped harmonic oscillator.

In the study of a 1D Josephson junction with spin-orbit
coupling, it was recently discovered that the critical current
varies greatly with the direction of an applied exchange field,
even creating 0-π transitions8,13. It is therefore reasonable to
presume that the current density distribution becomes non-
trivial. We find that this is indeed the case. With an exchange
field of strength h/∆ = 1.0 pointing in the transversal direc-
tion (θ = 0◦), no vortices are found. Rotating h increases
the transversal variation of the current density, and at around
θ = 30◦ vortices appear, as shown in Fig. 4a. Further rotation
translates the vortices vertically towards the x-axis, as seen in
Fig. 4b for θ = 60◦, before translating towards y-axis, and
ending up like Fig. 2a for θ = 90◦.

We also determine how the strength of the spin-orbit cou-
pling affects the vortices. Tuning of the Rashba parameter α
can be achieved experimentally in a 2DEG by means of a gate
voltage34–36. For small spin-orbit coupling strength, so too is
the contribution from Jtt, as can be seen from the explicit de-
pendence on α in Eq. 9. With increasing α, the inverse Cooper
pair Edelstein effect predicted here increases both in terms of
the curvature and the amplitude of Jtt, making the existence
of supercurrent vortices possible. Since varying α changes
the topography of Jtt, it is reasonable that the vortex locations
also changes. This can be seen in Figs. 4c and 4d, which show
the current density distribution for αL = 1.2 and αL = 1.6,
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(a) θ = 30◦ (b) θ = 60◦

(c) αL = 1.2 (d) αL = 1.6

(e) φ = π
5 (f) φ = 4π

5

FIG. 4. Streamlines of the current density for: (a)-(b) Different ex-
change field directions θ with spin-orbit coupling strength αL = 1.0
and phase difference φ = π

2
. (c)-(d) Different αL with θ = 45◦

and φ = π
2

. (e)-(f) Different φ with αL = 1.0 and θ = 45◦. The
strength of the exchange field is h/∆ = 1.0, which is a realistic
magnitude of order ' meV accessible via an external magnetic field.
All current densities are scaled by J0∆/L.

respectively. It is noted that for large enough Rashba parame-
ter α, no 0-π transition will take place8, and vortices will only
appear for large exchange fields where the conventional con-
tribution to the current, JI , is sufficiently suppressed relative
to Jtt.

Finally, we investigate the effect of varying the phase dif-
ference φ between the superconducting leads. In Figs. 4e and
4f is shown the current density distribution for select values
of φ for an exchange field of strength h/∆ = 1.0 applied
at an angle of θ = 45◦ and a spin-orbit coupling strength of
αL = 1.0. It can be seen that the phase difference provides
yet another means of enacting control over the vortices, with
both their presence and location influenced. The two vortices
translate vertically in opposite directions as the phase differ-
ence is increased. It is noted that the total current has a typical

sinusoidal behavior, and that the current is zero for φ = 0.
Due to the complexity of the numerical problem, we have

here focused on a particular system with a specific set of
parameters which we believe to be experimentally relevant.
However, the results can be generalized based on the current
findings. For larger exchange fields (but not so large as to
destroy the superconducting proximity effect) one can expect
that the presence of vortices becomes more common, as the
total current is gradually suppressed. Increasing the distance
between the superconductors is also known to generate 0-π
transitions, around which one may expect vortices. The pres-
ence and location of the vortices may also be influenced by the
width of the system, as is the case for flux induced vortices26.
In other words, the results presented herein are not specific to
the model considered.

In an experimental setup, a slight misalignment in the orien-
tation of an in-plane field will introduce an out-of-plane com-
ponent which in turn generates an orbital effect that cannot
in general be neglected. To investigate the degree to which
this effect influences the current distribution, we have solved
the system with an applied external flux A. This produces an
additional current contribution, given as

JA = 16
J0A

~2

∫
dε Im(fsf̃s − ft · f̃t) tanh

βε

2
(10)

We use the Coulomb gauge, and define the vector potential
as A = −B⊥yex, where ex is a unit vector pointing in the
x-direction andB⊥ is the out-of-plane component of the mag-
netic field. The flux passing through the system is then given
by Φ = B⊥L

2. In Figure 5 we show the current density dis-
tribution for various flux levels, with θ = 45◦ and h/∆ = 1.0.
The strength of the spin-orbit coupling is αL = 1.0. For
Φ < Φ0, where Φ0 = h

2e is the flux quantum, there are no
flux induced vortices, and we see from Figs. 5a and 5b that the
effect of the external flux is to translate the spin-orbit vortices
towards the left, with the left-most vortex disappearing from
the system. The right-most vortex eventually becomes trapped
in the center of the junction for Φ ' Φ0. For Φ > 1.2Φ0, the
vortex splits in two and aligns along the y-axis, as shown in
Figs. 5c and 5d, which is typical for flux-induced vortices27.
At this point the spin-orbit induced vortices are indistinguish-
able from flux induced vortices.

To investigate whether spin-orbit vortices will be com-
pletely obscured by a small deviation from the in-plane ori-
entation of the magnetic field in an experimental setting,
we estimate an effective magnetic field from the exchange
field via the Zeeman effect; Beff = 2~

µBg
h, where µB is

the Bohr magneton. We assume that the superconductors
are niobium, for which the superconducting energy gap is
given as ∆ ' 1.5 meV, and the diffusive coherence length is
ξ ' 15 nm. For a normal metal, where the g-factor is given
as g ' 2, an exchange field strength of |h| = ∆ is produced
by a magnetic field of Beff ' 26 T. This magnitude is not in-
tended as an experimentally feasible field, but is used here to
show that even for huge external fields, the supercurrent vor-
tex pattern predicted here remains robust toward an accidental
out-of-plane field component. In some doped semiconduc-
tors, which are more relevant as candidate materials for the
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(a) Φ/Φ0 = 0 (b) Φ/Φ0 = 0.4

(c) Φ/Φ0 = 1.2 (d) Φ/Φ0 = 1.6

FIG. 5. Streamlines of the charge current density J for increasing
external flux Φ passing through the system in the z-direction. The
exchange field strength is h/∆ = 1.0, applied in an in-plane direc-
tion of θ = 45◦, and the spin-orbit coupling strength is αL = 1.0.

spin-orbit coupled region in the present study, the g-factor can

be significantly higher, bringing the required field down to a
more tractable level of order ∼ 1-2 T31. To estimate the out-
of-plane component we use an angle equal to a realistic orien-
tational uncertainty32 of ψ = 1◦ , so that B⊥ = Beff sinψ '
0.45 T. This amounts to a flux of Φ ' 0.2Φ0, which means
that while the out-of-plane component will change the current
distribution, it is small enough for the spin-orbit induced vor-
tices to remain visible.

IV. CONCLUSION

We have investigated two dimensional Josephson junctions
with spin-orbit coupling, and find that vortices appear in the
current density. The presence and location of these vortices
may be tuned by varying either the exchange field strength, its
direction, the strength of the spin-orbit coupling, or the phase
difference. This ”supercurrent vortex pinball effect” has its
origin in the spin polarization of the triplet Cooper pairs in-
duced in the system, and thus arises from what may be inter-
preted as a Cooper pair-induced inverse Edelstein effect.
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