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ABSTRACT 
 

Objective: Four putative single nucleotide polymorphism (SNP) risk variants at the preeclampsia 

susceptibility locus on chromosome 2q22; rs2322659 (LCT), rs35821928 (LRP1B), rs115015150 

(RND3) and rs17783344 (GCA), were recently shown to associate with known cardiovascular 

risk factors in a Mexican American cohort. This study aimed to further evaluate the pleiotropic 

effects of these preeclampsia risk variants in an independent Australian population-based cohort.  

Methods: The four SNPs were genotyped in the Western Australian Pregnancy Cohort (Raine) 

Study that included DNA, clinical and biochemical data from 1,246 mothers and 1,404 of their 

now adolescent offspring. Genotype association analyses were undertaken using the SOLAR 

software. 

Results: Nominal associations (P < 0.05) with cardiovascular risk factors were detected for all 

four SNPs. The LCT SNP was associated with decreased maternal height (P = 0.005) and 

decreased blood glucose levels in adolescents (P = 0.022). The LRP1B SNP was associated with 

increased maternal height (P = 0.026) and decreased maternal weight (P = 0.044). The RND3 

SNP was associated with decreased triglycerides in adolescents (P = 0.001). The GCA SNP was 

associated with lower risk in adolescents to be born of a preeclamptic pregnancy (P = 0.003) and 

having a mother with prior preeclamptic pregnancy (P = 0.033).   

Conclusions: Our collective findings support the hypothesis that genetic mechanisms for 

preeclampsia and CVD are, at least in part, shared, but need to be interpreted with some caution 

as a Bonferroni correction for multiple testing adjusted the statistical significance threshold 

(adjusted P < 0.001). 
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Introduction 

Women with a history of preeclampsia and offspring exposed to preeclampsia in utero are 

at increased risk of cardiovascular disease (CVD) later in life [1-3]. A large review and meta-

analysis found that women with a history of preeclampsia have approximately four-fold increased 

risk of chronic hypertension, and two-fold increased risk of coronary artery disease and stroke 

10-15 years after pregnancy [1]. The offspring of women with preeclampsia have higher mean 

systolic and diastolic blood pressure in childhood and early adult life in both genders, including 

those with normal birth weight [4-6]. Furthermore, they have almost a two-fold greater risk of 

stroke in adulthood [3]. Preeclampsia is now widely viewed as an early screening criterion for 

CVD in women. Pregnancy is a unique opportunity to identify both women and offspring at 

increased risk of premature CVD [7], and clinical risk assessments and preventive programmes 

are under development [8].  

Preeclampsia and CVD share several constitutional risk factors (e.g. hypertension and 

obesity) [9], pathological features (e.g. endothelial dysfunction and inflammation) [10, 11], and 

tend to occur in the same families [12]. These common antecedents have drawn attention to the 

likelihood of shared genetic susceptibility [13, 14]. Supporting this notion are several 

cardiovascular risk factors present years before a preeclamptic pregnancy, including increased 

blood pressure, higher levels of serum cholesterol, higher levels of low density lipoprotein 

(LDL)-cholesterol and higher levels of triglycerides [15]. Moreover, the positive association 

between preeclampsia and CVD is more dependent on these shared pre-pregnancy risk factors 

than the influence of the hypertensive disorder in the pregnancy itself [16]. This has encouraged 

the search for genetic determinants common to both disorders. However, to date only a few 

shared genetic risk factors have been identified [17-20].  

Recently, our genetic dissection of the 2q22 preeclampsia susceptibility locus identified 

four independent single nucleotide polymorphism (SNP) risk variants, residing within four genes, 

to associate with preeclampsia in an Australian family cohort [19]: lactase (LCT, rs2322659), low 

density lipoprotein receptor-related protein 1B (LRP1B, rs35821928), rho family GTPase 3 

(RND3, rs115015150) and grancalcin (GCA, rs17783344). Furthermore, these same four SNPs 

were associated with cardiovascular risk factors in an independent cohort of Mexican American 

families, suggesting pleiotropic effects for these SNPs [19]. The aim of this study was to 

determine whether these four SNPs exhibited pleiotropic characteristics with preeclampsia 



	

susceptibility and cardiovascular risk factors in an independent Australian population-based 

cohort consisting of mothers and their adolescents. Identifying common genetic factors 

influencing preeclampsia and CVD may provide insight into pathophysiological mechanisms 

relevant to both disorders. 

 

 

Materials and methods 

Study population 

The Western Australian Pregnancy Cohort (Raine) Study is a pregnancy cohort where 

women were recruited prior to 18 weeks’ gestation from the public antenatal clinic at King 

Edward Memorial Hospital or surrounding private clinics in Perth, Western Australia. The study 

has been described in detail elsewhere [21]. Pregnant women (n = 2,900) were enrolled between 

August 1989 and April 1992, and they gave birth to 2,868 live babies. From the original cohort of 

women, their children have been followed up over the last two decades with detailed assessments 

performed every 2-3 years. In the current study, data from the pregnant women, the neonates, and 

the 8-, 14- and 17-year cohort follow-ups were assessed, as shown in Fig. 1. Only subjects that 

had two Caucasian parents, were biologically unrelated, and who had no congenital deformities, 

were included in the current study.  

Informed written consent was obtained at recruitment and at each follow-up from the 

mother or legal guardian as well as from the adolescent during the 14- and 17-year cohort follow-

ups. Ethical approval was obtained for all protocols from the Human Ethics Committees of King 

Edward Memorial Hospital, Princess Margaret Hospital Ethics Committee, Perth, Western 

Australia and The University of Western Australia. 

 

Antenatal information 

At recruitment the mothers completed self-administrated questionnaires concerning their 

pregnancies and demographic information. The presence of preeclampsia and history of 

preeclampsia were collected from the mother at antenatal visits at the delivery units and later 

assessed from the medical records. The medical records were reviewed by obstetricians and 

research midwives to confirm a standardised diagnosis of preeclampsia as a pregnancy-induced 

increase in systolic blood pressure ³140 mmHg and/or a diastolic blood pressure ³90 mmHg in 



	

women who were normotensive before the 24th week of pregnancy, combined with significant 

new onset proteinuria (³ 0.3 g/l in a 24-hour specimen) [22].  

 

Blood pressure, anthropometry and blood samples 

Detailed information on measures of blood pressure, anthropometry and biochemistry, is 

given in detail elsewhere [23, 24]. Briefly, blood pressure was measured with an automatic 

device (Dinamap Vital Signs Monitor 8100, Dinamap XL Vital Signs Monitor or Dinamap 

ProCare 100; GE Healthcare) after 5 minutes rest and using the appropriate cuff size. Six 

readings were recorded, and the average value was calculated after excluding the first reading. 

Height and weight were measured with light clothing and without shoes. Height was measured 

with Holtain Infantometer and Stadiometer (to the nearest 0.1 cm), and weight was measured on 

Wedderburn Scales (to the nearest 100 g). Fasting venous blood samples were drawn for DNA 

and biochemical analyses. Serum insulin, glucose, total cholesterol, high density lipoprotein 

(HDL)-cholesterol, LDL-cholesterol and triglycerides were measured in the PathWest Laboratory 

at Royal Perth Hospital as described previously [23, 24].  

 

Cardiovascular risk factors 

Cardiovascular risk factors assessed included resting systolic and diastolic blood pressure, 

height, weight, waist-hip ratio, abdominal skinfold, and fasting insulin, glucose, total cholesterol, 

HDL-cholesterol, LDL-cholesterol and triglycerides. Maternal data was obtained from an 

examination and blood sample taken when their children attended the 8-year cohort follow-up 

and included 1,685 mothers. Adolescent data was obtained during the 14- and 17-year cohort 

follow-ups and included 1,293 [23] and 1,053 [24] participants, respectively.  

 

DNA extraction and SNP genotyping 

DNA was extracted from blood samples taken from mothers and adolescents at the 14- or 

17-year cohort follow-ups as described elsewhere [25]. Briefly, DNA was extracted from 4 mL 

ethylenediaminetetraacetic acid (EDTA) anticoagulated blood using Qiagen PureGene chemistry 

(Qiagen, Hilden, Germany). Four independent SNPs in four genes, rs2322659 (LCT), rs35821928 

(LRP1B), rs115015150 (RND3) and rs17783344 (GCA), were genotyped for mothers and 

adolescents. For the mothers de novo genotyping of the four SNPs was performed. For the 



	

adolescents de novo genotyping was performed for rs35821928 and rs115015150. The rs2322659 

and rs17783344 SNPs had already been genotyped in a previously performed genome wide 

association study (GWAS) [26]. De novo genotyping was commercially performed by 

KBioscience (KBioscience, Hertfordshire, UK), with the use of their proprietary fluorescence-

based competitive allele-specific PCR genotyping assay, KASP™. Genotyping and quality 

control of GWAS data have been described in detail elsewhere [26]. Briefly, the Raine adolescent 

samples were genotyped on the Illumina Human 660W-Quad SNP Chip (Illumina Inc., San 

Diego, CA, USA) at the Centre for Applied Genomics (Toronto, Ontario, Canada). Individual 

samples were checked (and excluded accordingly) for gender inconsistencies, levels of 

heterozygosity and inter-sample relatedness.  

 

Statistical analysis 

The software package R (www.r-project.org) was used to compute descriptive statistics, 

means and 95% confidence intervals (CI). Phenotypes of interest included cardiovascular risk 

factor measurements and maternal pregnancy characteristics.  

 

SNP association analysis 

Measured genotype association analyses were undertaken for all phenotypes applying 

variance-component methods as implemented in SOLAR [27]. Because variance-component 

methods are sensitive to kurtosis, all quantitative phenotypes were transformed using SOLAR’s 

inverse normalization procedure. Genetic association was tested for each SNP under an additive 

genetic model allowing mean phenotype value to vary by minor allele. This model was compared 

with the null model of no difference in mean phenotype value by SNP genotype using a 

likelihood ratio test. Twice the difference in log-likelihoods of these models was distributed as a 

χ2 random variable with 1 degree of freedom. Concordance with Hardy-Weinberg proportions 

was tested using c2 goodness-of-fit statistic. A threshold of a = 0.05 was set for statistical 

significance of all computed analyses. Adjustment for multiple hypothesis testing was performed 

using Bonferroni corrections (a/(total number of SNPs x total number of phenotypic traits)).  

 Cardiovascular risk factors including height, weight, blood pressure, and cholesterol, have 

consistently been demonstrated to correlate between relatives. This could reflect genetic- and/or 

shared life style effects [28]. Therefore we performed genetic association analysis to examine the 



	

association between total maternal genotype and total adolescent phenotype, and vice versa. We 

did not look specifically at mother-offspring pairs. In addition, we performed separate association 

analyses for girls and boys for all cardiovascular risk factors aiming to detect differences in 

genetic risk profiles between the adolescent’s genders. 

  

 

Results 

Clinical characterisation 

At the 14-year follow-up 629 (48.6%) girls and 664 (51.3%) boys participated, whereas at 

the 17-year follow-up 509 (48.3%) girls and 544 (51.7%) boys participated. Of the enrolled 

women (mothers of the adolescents) with accessible DNA for genotyping, 40 (3.2%) were 

diagnosed with preeclampsia in the index pregnancy, and 31 (2.5%) had previously experienced a 

preeclamptic pregnancy. The mean age for the index pregnancy was 28.2 years. Clinical and 

biochemical characteristics of mothers and adolescents are presented in Table 1. 

 

SNP genotyping and association analysis 

De novo DNA data was available for 1,246 of the mothers. De novo DNA data was 

available for 1,461 of the adolescents and GWAS DNA data was available for 1,494 adolescents. 

After exclusion of children with congenital deformities, siblings and non-Caucasians, DNA from 

1,246 mothers and 1,404 adolescents were included in the final analysis. We observed a high 

genotyping success rate for all four SNPs (>97%). Allele frequencies for mothers and adolescents 

are presented in Table 2, and are consistent with frequencies observed by Johnson et al. [19]. 

Except for the LCT (rs2322659) SNP for mothers, all SNPs confirmed to Hardy-Weinberg 

proportions (P > 0.05).  

Measured genotype association results were undertaken for all phenotypes and adjusted 

for sex and maternal age (raw P < 0.05). The results are presented in Table 3 and 4 for mothers 

and adolescents respectively. Carrying the A allele of LCT rs2322659 was associated with 

decreased levels of the adolescent’s blood glucose in both mothers and adolescents (P = 0.003 

and P = 0.022, respectively) and decreased maternal height (P = 0.005) in mothers. Carrying the 

T allele of LRP1B rs35821928 was associated with increased maternal height in both mothers and 

adolescents (P = 0.026 and P = 0.013, respectively) and decreased maternal weight (P = 0.044) in 



	

mothers. An association between the A allele of RND3 rs115015150 and decreased adolescent’s 

waist-hip ratio (P = 0.030) was observed in mothers, whereas this SNP was associated with 

decreased level of adolescent’s triglycerides (P = 0.001) in adolescents. In mothers, carrying the 

C allele of GCA rs17783344 was associated with increased adolescent’s height (P = 0.045), 

whereas in adolescents carrying the C allele was associated with lower risk to be born of a 

preeclamptic pregnancy (P = 0.003) and lower risk to have a mother who previously had 

experienced a preeclamptic pregnancy (P = 0.033). The two latter associations were related to 

male gender (P = 0.009 and P = 0.0372, respectively). However, after accounting for the four 

SNPs tested across the 14 phenotypes, none of the association results satisfy our Bonferroni-

adjusted statistical significance threshold (adjusted P < 0.001).  

 

Discussion 

The basis for this study was the recently reported shared genetic mechanisms putatively 

influencing preeclampsia and cardiovascular risk factors [19]. We have now assessed these 

independent putative pleiotropic variants representing four genes; rs2322659 (LCT), rs35821928 

(LRP1B), rs115015150 (RND3) and rs17783344 (GCA), in an independent Australian population-

based pregnancy cohort. We observed shared genetic associations between specific SNPs and 

known cardiovascular risk factors, for mothers and their offspring. However, we were unable to 

replicate many of the genetic associations previously reported by Johnson et al. [19]. To our 

knowledge, this is the first published study that has assessed possible shared genetic risk factors 

for preeclampsia and CVD in both mothers and their offspring.  

Johnson et al. found the A allele of the LCT SNP protective for preeclampsia, and 

nominally associated with oxidative stress indicators, inflammatory- and diabetic biomarkers 

[19]. Supportive of protective pleiotropic effects on preeclampsia and cardiovascular risk factors, 

we found the A allele of the LCT SNP to be nominally associated with decreased glucose levels 

in the adolescents. To date, there is limited evidence of the association between exposure to 

preeclampsia in utero and the offspring’s fasting glucose metabolism later in life [5, 6]. The LCT 

SNP was out of Hardy-Weinberg equilibrium for mothers, the same observation made by 

Johnson et al. in their Australian preeclampsia case-control cohort [19]. This could possibly be 

explained by locus-specific population stratification, and has been thoroughly discussed 

elsewhere [19, 29].  



	

LRP1B, a member of the LDL receptor gene superfamily, has recently been shown to be 

involved in cell migration and invasion in vitro [30], central elements in the development of 

preeclampsia. Further, SNPs in the LRP1B gene were associated with body mass index (BMI) in 

a large GWAS [31], and insulin resistance in a follow-up study [32], suggesting that this gene 

may be involved in body weight regulation. Johnson et al. found the T allele of the LRP1B SNP 

protective for preeclampsia [19]. We observed the T allele of the LRP1B SNP to be associated 

with decreased weight, and increased height. The possibility of LRP1B harbouring genetic 

variants influencing preeclampsia and CVD is possible, as obesity and short stature are risk 

factors for both preeclampsia and coronary heart disease [9, 33, 34]. A review and meta-analysis 

including >3 million individuals showed that short stature is associated with increased risk of 

CVD, and the findings apply to both genders [33]. No clear understanding of the relationship 

between height and CVD exists, but shared genetic factors have been proposed [35]. Short stature 

is also a risk factor for preeclampsia, especially in the cases of severe phenotypes [34]. 

RND3 (RhoE) plays a role in human cytotrophoblast fusion, suggesting an important role 

in the regulation of trophoblast fusion in pregnancy [36]. RND3 inhibits the biological activity of 

a downstream effector protein, Rho-associated protein kinase (ROCK) [37]. ROCK proteins have 

important roles in abnormal vascular tone, endothelial dysfunction, inflammation, oxidative 

stress and vascular re-modelling, all of which are influential factors in preeclampsia and CVD 

pathogenesis. Johnson et al. found the A allele of the RND3 SNP associated with higher 

preeclampsia risk and nominally associated with increased adiponectin levels [19], a protein 

which is inversely correlated with body fat percentage in adults. In accordance with the latter, we 

found reduced levels of triglycerides and reduced waist-hip ratio for the A allele of the RND3 

SNP. Hence, these data add to the possibility of RND3 harbouring genetic variants that may have 

a role in obesity-related pathology.  

Grancalcin (GCA), a calcium binding protein, is specifically expressed in neutrophils and 

monocytes/macrophages, and displays calcium-dependent translocation to the granules and 

plasma membrane upon activation of these innate immune responders [38]. Neutrophil activation 

leads to the release of toxic factors (e.g. myeloperoxidase) promoting an inflammatory response, 

oxidative stress and vascular dysfunction [39]. While grancalcin deficiency does not adversely 

affect neutrophil function, it does however, impact their adhesive properties to fibronectin [40]. 

Plasma cellular fibronectin, a marker for endothelial and vascular injury, has been reported in 



	

several studies to be elevated in preeclampsia [41, 42]. Furthermore, neutrophil adhesion to 

fibronectin promotes cytokines such as IL-8 to exert their chemotactic effects, which may explain 

the pronounced abundance of neutrophils in the maternal systemic vasculature of both 

preeclamptic [39] and obese [43] women. We observed that the C allele of the GCA SNP was 

associated with lower risk to be born of a preeclamptic pregnancy and lower risk to have a 

mother who previously had experienced preeclampsia. These results showed association to male 

gender, and were not associated with preeclampsia in the mothers. This could possibly indicate a 

paternally inherited role for this SNP. However, Johnson et al. [19] assessed the maternal 

genotype, and we cannot exclude our association results to preeclampsia as false positives.  

There was only a partial replication between the results of Johnson et al. [19] and our 

study. This could be explained by differences between the studies including constitution of study 

populations (e.g. ethnicity, sex and age), sampling procedures and the undertaken biochemical 

measurements. A limitation to our study is that the number of women with preeclampsia is 

limited, which reduces the power to detect significant associations and making subgroups 

analysis assessing severe preeclampsia (e.g. early versus late onset) impossible. Severe 

preeclampsia may be associated with an even greater risk of CVD later in life [1]. However, this 

relationship was not confirmed in a recently published large review and meta-analysis [2]. 

Another limitation of our study is that we did not access paternal data due to insufficient 

information on paternal cardiovascular risk factors. On the other hand, there is no clear evidence 

of association between preeclampsia and paternal cardiovascular risk factors [44, 45], suggesting 

that influence of paternal genes for increasing preeclampsia risk differs to the influence of genes 

increasing cardiovascular risk [45]. Further, the investigated SNPs could be in linkage 

disequilibrium (LD) with other as yet unidentified causal variants, and this will be a focus of 

future studies using efficient next-generation sequencing strategies. Strengths of our study 

include a large homogeneous study population, assessment of both maternal and adolescent data, 

a relatively high attendance at cohort follow-ups, inclusion of fasting blood samples, standardized 

endpoint measurements and an accurate diagnosis of preeclampsia [21].  

 In conclusion, our study has demonstrated in an independent population that all four 

genetic variants tested (rs2322659 (LCT), rs35821928 (LRP1B), rs115015150 (RND3) and 

rs17783344 (GCA)) were nominally associated with known cardiovascular risk factors including 

height, weight, waist-hip ratio, blood glucose and triglycerides. The GCA SNP was associated 



	

with lower risk to be born of a preeclamptic pregnancy and lower risk to have a mother who 

previously had experienced a preeclamptic pregnancy, increasing the putative role for this gene 

locus in preeclampsia susceptibility. Our findings support the hypothesis that underlying genetic 

mechanisms for preeclampsia and CVD are, at least in part, shared. These results warrant further 

investigation to determine the potential roles of these variants in preeclampsia and CVD. The 

complex etiology of these disorders are striking, and targeted analyses and more comprehensive 

investigation strategies made possible by new technologies will be important in further revealing 

the genetic susceptibility to preeclampsia and CVD.  
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Fig. 1. Diagram showing numbers of mothers and offspring at the cohort follow-ups 
which were included in the analysis for the current study.  
	



Table 1 
Clinical and biochemical characteristics of mothers at their children’s 8-year follow-up, and adolescents 
at the 14- and 17-year follow-ups.  

Trait description Mothersab Adolescents 14 yra Adolescents 17 yra 
Systolic blood pressure (mmHg) 118.8 (118.0, 119.6) 111.5 (110.9, 112.1) 118.1 (114.3, 121.9) 

Diastolic blood pressure (mmHg) 69.5 (68.9, 70.0) 58.7 (58.4, 59.1) 63.7 (59.7, 67.8) 

Height (cm) 163.9 (163.5, 164.3) 165.1 (164.6, 165.5) 174.3 (172.1, 176.4) 

Weight (kg) 70.6 (69.6, 71.5) 58.7 (57.9, 59.5) 71.5 (68.3, 74.6) 

Waist-hip ratio  - 0.83 (0.83, 0.84) 0.81 (0.80, 0.81) 

Abdominal skinfold (cm) - - 26.8 (25.3, 28.3) 

Insulin (mU/liter) 3.56 (3.45, 3.67) 12.58 (11.85, 13.31) 9.49 (8.83, 10.15) 

Glucose (mmol/liter) 4.81 (4.72, 4.90) 4.81 (4.78, 4.84) 4.77 (4.73, 4.80) 

Total cholesterol (mmol/liter) 5.07 (4.99, 5.16) 4.17 (4.13, 4.22) 4.12 (4.07, 4.17) 

HDL-cholesterol (mmol/liter) 1.51 (1.48, 1.55) 1.39 (1.37, 1.41) 1.30 (1.28, 1.32) 

LDL-cholesterol (mmol/liter) 3.10 (3.02, 3.18) 2.32 (2.28, 2.35) 2.34 (2.30, 2.38) 

Triglycerides (mmol/liter) 1.02 (0.96, 1.08) 1.02 (0.98, 1.05) 1.06 (1.02, 1.09) 
aData are expressed as mean (95% CI). 
bClinical and biochemical characteristics were obtained when their children attended the 8-year follow-
up. 
	



Table 2 
Distribution of alleles for mothers (n = 1,246) and adolescents (n = 1,404) in the Raine Study. 

Gene SNP Mothers   Adolescents   

  
Major allele  Minor allele  Major allele  Minor allele 

    n (proportion of total) n (proportion of total) n (proportion of total) n (proportion of total) 

LCT rs2322659 G 1684 (0.76) A 522 (0.24) G 2138 (0.77) A 656 (0.23) 

LRP1B rs35821928 C 2072 (0.94) T 142 (0.06) C 2272 (0.94) T 156 (0.06) 

RND3 rs115015150 G 2171 (0.98) A 37 (0.02) G 2392 (0.98) A 42 (0.02) 

GCA rs17783344 A 1914 (0.86) C 300 (0.14) A 2398 (0.85) C 410 (0.15) 
 

	



Table 3 
SNPs nominally associated (P < 0.05) with cardiovascular risk factors for the 
mothers. 
 
Gene 

 
SNP 

 
Function Trait description n P valuea 

Direction of  
associationb 

LCT rs2322659 Missense Blood glucose* 875 0.003 ¯ 
   Height 900 0.005 ¯ 
LRP1B rs35821928 Synonymous Height 902 0.026  
   Weight 863 0.044 ¯ 
RND3 rs115015150 UTR-3 Waist-hip ratio* 739 0.030 ¯ 
GCA rs17783344 Missense Height* 830 0.045  
*Associated with the adolescent phenotype. 
aObserved measured genotype P value. 
bDirection of association, for the minor allele.  
 
 
 
 
 
 



Table 4 
SNPs nominally associated (P < 0.05) with cardiovascular risk factors for the adolescents. 
 
Gene 

 
SNP 

 
Function Trait description n P valuea 

Direction of  
associationb 

LCT rs2322659 Missense Blood glucose 969 0.022 ¯ 
LRP1B rs35821928 Synonymous Height* 960 0.013  
RND3 rs115015150 UTR-3 Triglycerides 935 0.001 ¯ 
GCA rs17783344 Missense Born of a preeclamptic pregnancy 1404 0.003 ¯ 
   Mother with prior preeclampsia 1403 0.033 ¯ 
*Associated with the maternal phenotype. 
aObserved measured genotype P value. 
bDirection of association, for the minor allele.  
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