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Abstract

We present an isogeometric collocation formulation for the Reissner-Mindlin shell problem.

After recalling the necessary basics on differential geometry and the shell governing equa-

tions, we show that the standard approach of expressing the equilibrium equations in terms

of the primal variables is not a suitable way for shells due to the complexity of the underly-

ing equations. We then propose an alternative approach, based on a stepwise formulation,

and show its numerical implementation within an isogeometric collocation framework. The

formulation is tested successfully on a set of benchmark examples, which comprise impor-

tant aspects like locking and boundary layers. These test show that locking effects can be

conveniently avoided by using high polynomial degrees. An accompanying study on the

computational time also confirms that high polynomial degrees are preferable in terms of

computational efficiency.
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1. Introduction1

The motivation of Isogeometric Analysis (IGA) is to bridge the gap between Computer2

Aided Design (CAD) and Finite Element Analysis (FEA) by adopting Non-Uniform Ra-3

tional B-Splines (NURBS), commonly used for geometry representation in CAD, as basis4

functions for analysis [1]. Moreover, IGA has gained enormous popularity as a numerical5

analysis method since it exhibits increased accuracy and robustness properties on a per-6
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degree-of-freedom basis compared to standard FEA, which is attributed to the higher order7

and continuity properties inherent in the basis functions [2–5]. A field where IGA had an8

especially high impact is shell analysis. The smoothness of the basis functions allows for9

efficient implementations of rotation-free Kirchhoff-Love shell models [6–14] as well as novel10

approaches like hierarchic shells [15] and rotation-free shear deformable shells [16]. But also11

for Reissner-Mindlin shells [17–20] and solid-shells [21–25], the continuity properties of the12

basis functions and the exact geometry description turn out to be very advantageous in13

comparison to standard FEA. An interesting feature of IGA in the context of shell analysis14

is also that locking problems can easily be avoided by simply raising the polynomial degree.15

However, this comes at the price of increased computational cost during assembly, since the16

typically used quadrature rules, which are optimal for C0-continuous elements, are subop-17

timal for elements with smooth basis functions. Different improved quadrature rules have18

been proposed [26–29], but the development of general and efficient integration rules is still19

an open problem in IGA.20

The lack of efficient integration rules in IGA has recently led to the development of isoge-21

ometric collocation (IGA-C) methods [30], where the high continuity of the basis functions22

is exploited to solve the governing partial differential equations in strong form. In such an23

approach, no integrals have to be evaluated and only one evaluation point per degree of24

freedom is needed (which approximately means one point per element), independently of the25

polynomial degree. This results in a drastically reduced computational cost compared to26

Galerkin-based IGA, especially for high polynomial degrees. A comprehensive study of the27

computational costs comparing standard FEA, IGA, and IGA-C can be found in [31], con-28

sistency and convergence properties of IGA-C are discussed in [32]. Despite being very new,29

isogeometric collocation has already been applied successfully to various problems including30

elastostatics and explicit dynamics [33], structural mechanics of beams [34, 35], spatial rods31

[36–39], and plates [40, 41], large deformation elasticity [42], contact [42, 43], phase-field32

modeling [44], and fracture [45]. Clearly, the advantages of IGA-C take the most effect for33

problems where the total computational cost is governed by the formation of the system34

matrices, as in the case of explicit dynamics. In fact, an important target of IGA-C is the35

application to explicit structural dynamics, like crash worthiness simulations. An important36
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step towards this goal is the development of appropriate structural formulations, in par-37

ticular for shells. This paper presents the first approach to derive isogeometric collocation38

formulations for shell analysis. In particular, we present a displacement-based formulation39

for the Reissner-Mindlin shell problem. We show that the standard approach in IGA-C,40

where the equilibrium equations are directly written in terms of the primal variables and41

then collocated, is not a suitable option for shells due to the complexity of the underlying42

equations. Instead, we propose a stepwise formulation, which drastically decreases the com-43

plexity of the equations to be implemented as well as the computational effort. We present44

the details of the formulation and its implementation, and demonstrate its performance on45

a series of numerical benchmark examples.46

The paper is outlined as follows. In Section 1, we present the basics of differential47

geometry of surfaces, which are necessary to formulate the shell problem. Section 2 presents48

the governing equations of the Reissner-Mindlin shell. In Section 3, we present a stepwise49

formulation of the problem and its implementation in an IGA-C approach. In Section 4, we50

test the formulation on a set of benchmark examples, and in Section 5, we draw conclusions.51

2. Differential geometry of surfaces52

In this section, we briefly review the basics of differential geometry, restricting ourselves53

to what is needed in the following. We use index notation with Greek indices taking on values54

{1, 2} and Latin indices taking on values {1, 2, 3}, and summation over repeated indices is55

assumed. Subscript indices indicate covariant quantities, while superscript indices refer to56

contravariant quantities.57

A shell is represented by its midsurface and a thickness h, which we assume constant over

the whole shell. A point on the shell midsurface is indicated by r = r(θ1, θ2) with (θ1, θ2)

as the natural curvilinear surface coordinates of the midsurface. Furthermore, we have the

thickness coordinate (θ3) in the direction orthogonal to the midsurface. Partial derivatives

with respect to these natural coordinates are indicated by comma (·),i = ∂(·)/∂θi. At each

point of the midsurface, a covariant basis is formed by the tangent vectors

aα = r,α, (1)
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and the unit normal vector

a3 =
a1 × a2

|a1 × a2|
. (2)

Contravariant base vectors are defined by

ai · aj = δij, (3)

where δij is the Kronecker delta. Covariant metric coefficients are obtained by the first

fundamental form of surfaces

aαβ = aα · aβ, (4)

and contravariant metric coefficients are obtained analogously by

aαβ = aα · aβ, (5)

with

aαλa
λβ = δβα. (6)

Co- and contravariant metric coefficients can be conveniently used to switch between co- and

contravariant base vectors

aα = aαβaβ, (7)

aα = aαβa
β. (8)

Furthermore, we note that a3 = a3. The second fundamental form of surfaces provides the

covariant curvature coefficients

bαβ = aα,β · a3. (9)

Mixed and contravariant curvature coefficients, which will be also needed, can be obtained

via the index raising property of the contravariant metric coefficients

bαβ = aαλbλβ, (10)

bαβ = aαλaβµbλµ. (11)
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It should be noted that bαβ do not provide an objective measure for the curvature but depend

on the parametrization. The physical curvatures in directions of a1,a2 are given by

1

R1

=
b11
a11

,
1

R2

=
b22
a22

, (12)

with R1, R2 being the curvature radii. At each point, there exist two directions for which

the curvatures have extreme values 1/Rmax, 1/Rmin. The Gaussian curvature is defined as

K =
1

Rmin

1

Rmax

=
|bαβ|
|aαβ|

, (13)

with |(·)| indicating the determinant. The Gaussian curvature is a surface invariant and58

can be used to classify surfaces pointwise into the categories elliptic (K > 0), parabolic59

(K = 0), and hyperbolic (K < 0). For many important shell geometries, this condition60

(K > 0, K = 0, K < 0) is constant for the entire surface, and the categories elliptic, parabolic,61

and hyperbolic are then also used as global attributes. This classification plays an important62

role in shell analysis since the structural behavior is very different for the different categories,63

especially if the shell thickness is small [46, 47].64

For computing covariant derivatives, we need to introduce the Christoffel symbols, which

are defined as

Γλαβ = aα,β · aλ. (14)

Covariant derivatives are indicated by (·)|α and are defined for vectors (i.e., first order ten-

sors) by

Aα|β = Aα,β − AλΓλαβ, (15)

Aα|β = Aα,β + AλΓαλβ, (16)

for second order tensors by

Aαβ|γ = Aαβ,γ − AλβΓλαγ − AαλΓλβγ, (17)

Aαβ|γ = Aαβ,γ + AλβΓαγλ − AαλΓλβγ, (18)

Aαβ|γ = Aαβ,γ + AλβΓαγλ + AαλΓβγλ, (19)
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while for scalars they are identical to the parametric derivative

A|α = A,α . (20)

Using the fact that the covariant derivatives of metric coefficients vanish, aαβ|γ = aαβ|γ = 0,

we can compute the covariant derivatives of contravariant or mixed components alternatively

as

Aα|γ = aαλAλ|γ, (21)

Aαβ|γ = aαλAλβ|γ, (22)

Aαβ|γ = aαλaβµAλµ|γ, (23)

which can be very useful if the covariant derivatives of the covariant components (Aα|β, Aαβ|γ)

have already been computed. The second covariant derivative of a vector can be computed

with the rule for the first covariant derivative of a tensor (17)

Aα|βγ = (Aα|β)|γ

= (Aα|β),γ −Aλ|βΓλαγ − Aα|λΓλβγ

= Aα,βγ − Aλ,γΓλαβ − AλΓλαβ,γ −Aλ|βΓλαγ − Aα|λΓλβγ, (24)

while the second covariant derivative of a scalar can be computed like the first covariant

derivative of a vector (15)

A|αβ = (A|α)|β = (A,α )|β = A,αβ − A,λΓλαβ. (25)

The parametric derivative of the Christoffel symbol Γλαβ,γ, which appears in (24), can be

developed from (14) as

Γλαβ,γ = aα,βγ · aλ + aα,β · aλ,γ, (26)

with

aα,β = −Γαλβa
λ + bαβa3. (27)

Furthermore, we will need covariant derivatives of the curvature coefficients bαβ|γ and bαβ |γ,

which can be obtained by applying (17) and (22)

bαβ|γ = bαβ,γ − bλβΓλαγ − bαλΓλβγ (28)
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with

bαβ,γ = aα,βγ · a3 + aα,β · a3,γ, (29)

a3,α = −bλαaλ, (30)

and, finally,

bαβ |γ = aαλbλβ|γ. (31)

3. Shell governing equations65

For describing the shell equations, we closely follow the work of Başar and Krätzig [48, 49]66

and adopt the notation therein. The deformation of a shell is described by a displacement67

vector v of the midsurface and a difference vector w = ā3 − a3, where ā3 refers to the68

deformed configuration. The displacement vector is represented by two in-plane components69

and an out-of-plane component, v = vα a
α + v3 a

3, while the difference vector is assumed to70

be tangential (w ·a3 = 0) and, thus, is represented by in-plane components only, w = wα a
α.71

The strain state of the shell is described by the membrane or stretching strain tensor

ααβ, the bending strain tensor βαβ, and the shear strain vector γα, which are defined as

ααβ =
1

2
(vα|β + vβ|α − 2bαβv3) , (32)

βαβ =
1

2

(
wα|β + wβ|α − bλαvλ|β − bλβvλ|α + 2bλαbλβv3

)
, (33)

γα = wα + v3,α + bλαvλ. (34)

Stresses are represented by the membrane force tensor nαβ, the moment tensor mαβ and the

shear force vector qα. As described in [48, 49], nαβ is not symmetric in general, and the

symmetric pseudo force tensor ñαβ is introduced

ñαβ = nαβ + bβλm
αλ. (35)

Assuming linear elastic material, the stress tensors are obtained from the strain tensors as

ñαβ = hHαβλµ αλµ, (36)

mαβ =
h3

12
Hαβλµ βλµ, (37)

qα = Ghaαλγλ, (38)
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where h is the shell thickness, G =
E

2(1 + ν)
is the shear modulus, E, ν are the Young’s

modulus and Poisson’s ratio, respectively, and Hαβλµ is the elastic material tensor defined

as

Hαβλµ =
E

2(1 + ν)

(
aαλaβµ + aαµaβλ +

2ν

1− ν
aαβaλµ

)
. (39)

Considering a shell subjected to distributed loads pα, p3 and distributed moments cα, the

equilibrium equations read as

ñαλ|λ − bαµ|λmλµ − bαµmλµ|λ − bαλqλ + pα = 0, (40)

bλµñ
λµ − bµρbλµmλρ + qλ|λ + p3 = 0, (41)

mαλ|λ − qα + cα = 0 . (42)

Eq. (40) represents two equations (corresponding to the free index α) for the equilibrium of72

in-plane forces, (41) represents the equilibrium of transversal forces, while (42) are the two73

equations (free index α) of rotational equilibrium. So, we have five equilibrium equations for74

the five unknowns v1, v2, v3, w1, w2.75

At the boundary, we consider a triad of unit vectors (u, t,a3), where u is the outward

normal vector and t is the tangent vector. The boundary equilibrium equations can then be

written as

nαβuαuβ = (ñαβ − bβλm
αλ)uαuβ = n̄u (43)

nαβuαtβ = (ñαβ − bβλm
αλ)uαtβ = n̄t (44)

qαuα = n̄3 (45)

mαβuαuβ = m̄u (46)

mαβuαtβ = m̄t (47)

with n̄u, n̄t, n̄3, m̄u, m̄t as the prescribed boundary values. We note that the boundary equi-76

librium needs to be satisfied for the real forces nαβ, which, however, can be expressed in77

terms of the pseudo stresses ñαβ using (35).78
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4. Displacement-based formulation and isogeometric collocation method79

The general approach for a displacement-based collocation method is to express the equi-80

librium equations in terms of the primal variables, which can be obtained by substituting81

the kinematic and constitutive equations into the equilibrium equations. However, such an82

approach is not practical for shells due to the complexity of the underlying equations. For83

some specific classes of shells, as for example cylindrical shells, the governing equations can84

be simplified and closed form equations can be found in the literature, but to the best of85

our knowledge, such closed forms are not available for the general shell problem. In an86

attempt to derive these equations one finds that the expanded terms become extremely87

long, complex, and nearly impossible to track manually. We have also used the computer88

algebra system Mathematica [50] with a specific tensor operation package [51] for deriving89

these expanded equations symbolically. The resulting equations span several pages and are90

not suited for being reported here. In Appendix A, we report exemplarily a part of these91

equations which makes clear that this approach is not a suitable basis for implementation.92

Besides the difficulty to implement such a formulation, it is computationally very inefficient.93

Therefore, we propose an alternative approach, where the kinematic, constitutive, and94

equilibrium equations are evaluated in sequential order, computing intermediate variables95

which are then used for the subsequent equations. We refer to this approach as stepwise96

formulation and use it as the basis for the numerical method. This means that after dis-97

cretizing the primal variables, we compute discretized versions of the intermediate variables98

and use them to collocate the equilibrium equations, as will be shown in detail in Section99

4.2.100

4.1. Stepwise formulation of the problem101

The stepwise formulation of the problem is basically given by the kinematic, constitutive,102

and equilibrium equations. However, in order to have the equations in a form which can be103

implemented, we need to explicitly write all the terms stemming from covariant derivatives.104

We will not explicitly write all the index summation terms, since these summations can be105

easily performed in the computer program. In particular, we need to compute first and106

second covariant derivatives of the primal variables, and first covariant derivatives of the107

9



strain and stress variables.108

We start with the first and second derivatives for the displacement variables according

to Eqs. (15), (20), (24), (25)

vα|β = vα,β − vλΓλαβ, (48)

v3|β = v3,β, (49)

vα|βγ = vα,βγ − vλ,γΓλαβ − vλΓλαβ,γ −vλ|βΓλαγ − vα|λΓλβγ, (50)

v3|αβ = v3,αβ − v3,λΓλαβ. (51)

Obviously, the formulas for vα|β, vα|βγ hold equally for wα|β, wα|βγ and are therefore not109

repeated here. It should also be noted that for v3 the derivation rules for scalars hold.110

With (48)-(51) at hand, we can derive the covariant derivatives of the strain variables

(32)-(34)

ααβ|γ =
1

2
(vα|βγ + vβ|αγ − 2bαβ|γv3 − 2bαβv3|γ) , (52)

βαβ|γ =
1

2

(
wα|βγ + wβ|αγ − bλα|γvλ|β − bλαvλ|βγ − bλβ|γvλ|α − bλβvλ|αγ

+2bλα|γbλβv3 + 2bλαbλβ|γv3 + 2bλαbλβv3|γ
)
, (53)

γα|β =wα|β + v3|αβ + bλα|βvλ + bλαvλ|β. (54)

Note that in (52)-(54), covariant derivatives of the curvature coefficients appear, bαβ|γ, bαβ |γ,

which are computed according to (28)-(31). Using the fact that covariant derivatives of the

material tensor vanish, Hαβγδ|ε = 0, the covariant derivatives of the stress resultants are

simply obtained from (36)-(38) as

ñαβ|γ = hHαβλµαλµ|γ, (55)

mαβ|γ =
h3

12
Hαβλµβλµ|γ, (56)

qα|β = Ghaαλγλ|β. (57)

With (55)-(57) and the formulas for the curvatures and their covariant derivatives, we have111

all terms we need in order to collocate the equilibrium equations (40)-(42). In the same112

manner, we can compute all terms in order to collocate the boundary equilibrium equations113

(43)-(47).114
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4.2. Isogeometric discretization and collocation115

In this section we present the isogeometric collocation method following the stepwise116

formulation presented above, providing also some implementation details. The basics of117

B-splines, NURBS, and their use in isogeometric methods have been presented in many118

papers, so we do not repeat them here but refer to [52–54] for an introduction to B-splines119

and NURBS, and to [1, 55] for the basics of isogeometric analysis. In the following, we briefly120

review the concept of isogeometric collocation, for more details and a general introduction121

and overview to the topic, we refer to [30, 56]. The general idea of isogeometric collocation122

is to discretize the geometry and the solution variables by NURBS (or other isogeometric123

basis functions) and to collocate the discretized strong form equations at a set of suitable124

points, such that a square system of equations is obtained. Several sets of collocation points125

have been proposed so far, as for example the Greville abscissae [30], the Demko abscissae126

[30], Cauchy-Galerkin points [57] and their estimates, i.e., superconvergent points [57–59],127

and the search for optimal collocation points is still an active field of research [59]. In this128

work, we adopt the Greville abscissae as collocation points, which up to date is the standard129

approach.130

In the following, we use capital Latin indices for indices whose range is governed by the131

discretization, as for example, I = 1 . . . Ncp, J = 1 . . . Ndof , with Ncp as the number of control132

points (or shape functions) and Ndof as the number of degrees of freedom. The summation133

convention is also applied to these indices. Assuming a knot vector {ξ1, ..., ξNcp+p+1}, with p134

being the polynomial degree, the Greville abscissae are defined by135

ξI =
ξI+1 + ξI+2 + . . .+ ξI+p

p
, for I = 1, . . . , Ncp. (58)

For bivariate B-splines and NURBS, the Greville abscissae are simply obtained by the tensor136

product of (58) in two parametric directions.137

An important advantage of the isogeometric concept especially for shell analysis is that

for a wide range of typical shell geometries we obtain an exact geometric description, which

means that all the quantities from Section 2 can be computed exactly and in a straightforward

way. The NURBS description of the geometry is given by

r = NI(ξ
1, ξ2) x̂I (59)
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where NI(ξ
1, ξ2) are the bivariate NURBS functions and x̂I are the control point coordinates.

Note that we use single index numbering I = 1 . . . Ncp, with Ncp = Ncp1 × Ncp2 as the

total number of control points, and Ncp1, Ncp2 as the numbers of control points in the

two parametric directions. The NURBS parametrization naturally provides a curvilinear

coordinate system which can be interpreted as the natural shell coordinate system, (ξ1, ξ2) =

(θ1, θ2). Accordingly, tangent base vectors are obtained as

aα = NI,α(ξ1, ξ2) x̂I (60)

where NI,α(ξ1, ξ2) = ∂NI(ξ
1, ξ2)/∂ξα are simply the natural NURBS derivatives. For the

ease of notation, the dependency on (ξ1, ξ2) will be skipped in the following. The derivatives

of the tangent base vectors are then obtained as

aα,β = NI,αβ x̂I (61)

aα,βγ = NI,αβγ x̂I (62)

Since third derivatives appear in (62), cubic or higher NURBS need to be used. Having138

computed (60)-(62), all other geometric quantities can be computed according to equations139

(2)-(31) in a straightforward manner. It should be noted that the NURBS parametriza-140

tion does not coincide, in general, with classical parametrizations using, e.g., cylindrical or141

spherical coordinates. A consequence of this is that, e.g., in a NURBS representation of a142

cylinder, the metric and curvature coefficients aαβ, bαβ are not constant and the Christoffel143

symbols Γγαβ do not vanish, as it would be expected with cylindrical coordinates.144

Following the isoparametric concept, we use NURBS also to approximate the unknown

variables. For a compact notation, it is useful to consider also generalized displacements

(u1, u2, u3, u4, u5) = (v1, v2, v3, w1, w2). Let us denote by ûJ = ûIK (J = 1 . . . Ndof , I =

1 . . . Ncp, K = 1 . . . 5) the Jth global degree of freedom, corresponding to the K-th degree

of freedom at control point I. The displacement variables are then approximated as follows

(with a slight abuse of notation we use the same symbols for the approximated variables as

for the exact ones)

vα = NIδ
K
α û

I
K = NIδ

K
α ûJ , (63)
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v3 = NIδ
K
3 û

I
K = NIδ

K
3 ûJ , (64)

wα = NIδ
(K−3)
α ûIK = NIδ

(K−3)
α ûJ . (65)

For the sake of implementation, it is also useful to report Eqs. (63)-(65) in matrix form. As-

suming the standard ordering of global degrees of freedom by control points, û = (û11 û
1
2 û

1
3 û

1
4

û15 û
2
1 û

2
2 û

2
3 û

2
4 û

2
5 . . .)

T , the matrix form is given by

vα =

 N1 0 0 0 0 N2 0 0 0 0 . . .

0 N1 0 0 0 0 N2 0 0 0 . . .

 û, (66)

v3 =
(

0 0 N1 0 0 0 0 N2 0 0 . . .
)
û, (67)

wα =

 0 0 0 N1 0 0 0 0 N2 0 . . .

0 0 0 0 N1 0 0 0 0 N2 . . .

 û. (68)

An interesting alternative is to order the global degrees of freedom by variable, û = (û11 û
2
1 . . .

û12 û
2
2 . . . û13 û

2
3 . . . û14 û

2
4 . . . û15 û

2
5 . . .)T . In this case, the matrices can be constructed

conveniently as

vα =

 N 0 0 0 0

0 N 0 0 0

 û, (69)

v3 =
(

0 0 N 0 0
)
û, (70)

wα =

 0 0 0 N 0

0 0 0 0 N

 û, (71)

with the row vectors N = (N1 N2 . . .) and 0 = (0 0 . . .), which both are of length Ncp.145

We note that both (66)-(68) and (69)-(71) are suitable for implementation and both can be146

obtained from the general form (63)-(65) through the specific relation between the indices147

I, J,K. For (66)-(68), this relation is given as J = (I − 1)5 + K, while for (69)-(71), it is148

J = (K − 1)Ncp + I.149
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In the following, we will introduce so-called discretized variables corresponding to the

variables presented in the previous section, which can be directly used for implementation.

These discretized variables are multidimensional arrays which can be presented in compact

form using the indices I, J,K. We begin with the discretized displacement variables defined

as

v(J, α) = NIδ
K
α , (72)

v3(J) = NIδ
K
3 , (73)

w(J, α) = NIδ
(K−3)
α . (74)

Clearly, v(J, α), v3(J),w(J, α) simply represent the shape function matrices in (66)-(71).

However, the interpretation as discretized variables is useful for the stepwise formulation,

since it allows us to introduce such discretized versions also for the derivatives and for the

strain and stress variables, which can no longer be represented as matrices. The discretized

partial derivatives of the displacements are obtained as

dv(J, α, β) = NI,β δ
K
α , (75)

dv3(J, α) = NI,α δ
K
3 , (76)

dw(J, α, β) = NI,β δ
(K−3)
α . (77)

Similarly, we obtain the discretized second partial derivatives as

d2v(J, α, β, γ) = NI,βγ δ
K
α , (78)

d2v3(J, α, β) = NI,αβ δ
K
3 , (79)

d2w(J, α, β, γ) = NI,βγ δ
(K−3)
α . (80)

Now we can compute discretized covariant derivatives of the displacements, indicated by a

preceding D

Dv(J, α, β) = dv(J, α, β)− v(J, λ)Γλαβ, (81)

Dv3(J, α) = dv3(J, α), (82)

Dw(J, α, β) = dw(J, α, β)− w(J, λ)Γλαβ, (83)

14



as well as their second covariant derivatives

D2v(J, α, β, γ) = d2v(J, α, β, γ)− dv(J, λ, γ)Γλαβ − v(J, λ)Γλαβ,γ

−Dv(J, λ, β)Γλαγ −Dv(J, α, λ)Γλβγ, (84)

D2v3(J, α, β) = d2v3(J, α, β)− dv3(J, λ)Γλαβ, (85)

D2w(J, α, β, γ) = d2w(J, α, β, γ)− dw(J, λ, γ)Γλαβ − w(J, λ)Γλαβ,γ

−Dw(J, λ, β)Γλαγ −Dw(J, α, λ)Γλβγ. (86)

With the discretized covariant derivatives, we can compute discretized strain variables (32)-

(34)

alpha(J, α, β) =
1

2
(Dv(J, α, β) + Dv(J, β, α)− 2bαβv3(J)) , (87)

beta(J, α, β) =
1

2
(Dw(J, α, β) + Dw(J, β, α)

−bλαDv(J, λ, β)− bλβDv(J, λ, α) + 2bλαbλβv3(J)
)
, (88)

gamma(J, α) = w(J, α) + dv3(J, α)− bλαv(J, λ), (89)

and their covariant derivatives (52)-(54)

Dalpha(J, α, β, γ) =
1

2
(D2v(J, α, β, γ) + D2v(J, β, α, γ)− 2bαβ|γv3(J)− 2bαβDv3(J, γ)) ,

(90)

Dbeta(J, α, β, γ) =
1

2

(
D2w(J, α, β, γ) + D2w(J, β, α, γ)− bλα|γDv(J, λ, β)

−bλαD2v(J, λ, β, γ)− bλβ|γDv(J, λ, α)− bλβD2v(J, λ, α, γ)

+2bλα|γbλβv3(J) + 2bλαbλβ|γv3(J) + 2bλαbλβDv3(J, γ)
)
, (91)

Dgamma(J, α, β) = Dw(J, α, β) + D2v3(J, α, β) + bλα|βv(J, λ) + bλαDv(J, λ, β). (92)

Subsequently, we compute discretized stress resultants (36)-(38)

nt(J, α, β) = hHαβλµ alpha(J, λ, µ), (93)

m(J, α, β) =
h3

12
Hαβλµ beta(J, λ, µ), (94)

q(J, α) = Ghaαλ gamma(J, λ), (95)
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and their covariant derivatives (55)-(57)

Dnt(J, α, β, γ) = hHαβλµ Dalpha(J, λ, µ, γ), (96)

Dm(J, α, β, γ) =
h3

12
Hαβλµ Dbeta(J, λ, µ, γ), (97)

Dq(J, α, β) = Ghaαλ Dgamma(J, λ, β). (98)

Finally, we can collocate the equilibrium equations (40)-(42) as

Dnt(J, α, λ, λ)− bαµ|λm(J, λ, µ)− bαµDm(J, λ, µ, λ)− bαλq(J, λ) = −pα, (99)

bλµñ(J, λ, µ)− bµρbλµm(J, λ, ρ) + Dq(J, λ, λ) = −p3, (100)

Dm(J, α, λ, λ)− q(J, α) = −cα . (101)

Equations (72)-(101) represent the detailed computer implementation of our approach. Sum-150

mation over repeated indices can be conveniently done by loops, however, symmetries of sev-151

eral variables may be exploited for the sake of computational efficiency. It should be noted152

that also the geometric quantities like Γλαβ, bαβ in these equations represent multidimensional153

arrays in the implementation. However, we kept them in symbolic notation for better read-154

ability of the equations. The left hand sides of Eqs. (99)-(101) represent five rows of the155

stiffness matrix, collocated at each collocation point, with the free index J corresponding to156

the columns.157

In the same way, we also derive the discretized versions of the boundary equilibrium158

equations, which are collocated at Neumann boundaries. It should be noted that Eqs. (43)-159

(47) assume smooth boundaries, while practical problems typically exhibit also sharp corners,160

where the boundary tangent and normal vectors t,u are not uniquely defined. According161

to [33], the tangent and normal vectors at these locations are taken as the average of the162

respective vectors from the two edges meeting at the corner.163

5. Numerical tests164

In this section we test the proposed formulation on a set of well-known benchmark ex-165

amples, consisting of the Scordelis-Lo roof from [60], the clamped hemispherical cap and the166

partly clamped hyperbolic paraboloid from [46, 61], and the cylindrical shell strip from [15].167
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Figure 1: Scordelis-Lo roof. Geometry and boundary conditions.

All examples consist of geometries that can be modeled exactly by NURBS and, further-168

more, they cover the three different classes of parabolic, elliptic, and hyperbolic surfaces.169

Since all examples involve rather thin shells and a standard displacement-based formulation170

is employed, locking is to be expected. In the following, we perform convergence studies171

for different polynomial degrees ranging from p = 3 to p = 8 with maximum inter-element172

continuity Cp−1. Furthermore, two of the examples exhibit boundary layers. As demon-173

strated in [62], the size of the boundary layers typically scales with
√
l · h, where h is the174

shell thickness, and l is a characteristic length, typically chosen as the length or radius of175

a shell. In order to properly resolve the boundary layers, we will use graded meshes, which176

are more refined on the boundaries, as shown in detail in the respective examples.177

5.1. Scordelis-Lo roof178

The Scordelis-Lo roof is one of the problems of the so-called shell obstacle course [60].179

It consists of a cylindrical (K = 0) section with radius R = 25, opening angle φ = 80◦,180

length L = 50, and thickness h = 0.25, as depicted in Figure 1. The curved edges are181

supported by rigid diaphragms, while the straight edges are free, and the shell is subjected182

to self-weight with pz = 90 per unit area. The material parameters are given by the Young’s183

modulus E = 4.32 · 108 and Poisson’s ratio ν = 0.0. As reference solution, the vertical184

displacement at the midpoint of the free edges is given as vz = −0.3024 [60]. First, we perform185

uniform mesh refinement with [4, 8, 16, 32, 64]2 elements, and the results are displayed in186
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Figure 2: Scordelis-Lo roof. Convergence study with uniform refinement. In the right figure, the y−axis has

been rescaled for a close-up view.

Figure 3: Scordelis-Lo roof. Uniform and boundary refined meshes, displayed on the deformed geometry

(deformation scaled for visualization by a factor of 20).
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Figure 4: Scordelis-Lo roof. Convergence study with boundary refinement. In the right figure, the y−axis

has been rescaled for a close-up view.
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Figure 5: Scordelis-Lo roof, membrane forces. (a)-(c) show results from the presented collocation approach,

(d)-(f) are obtained with isogeometric Kirchhoff-Love shell analysis for comparison.
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Figure 6: Scordelis-Lo roof, bending and twisting moments. (a)-(c) show results from the presented colloca-

tion approach, (d)-(f) are obtained with isogeometric Kirchhoff-Love shell analysis for comparison.
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Figure 2. As expected, strong locking can be observed for p = 3, with the results being187

far from the reference solution even for the finest mesh. For p = 4 to p = 8, the results188

are significantly better, however, they converge very slowly, even for the highest degrees. In189

the right plot in Figure 2, the y−axis is rescaled such that this effect can clearly be seen.190

This behavior is due to boundary layers, which are not resolved properly by the uniform191

mesh refinement. Therefore, we adopt a graded mesh refinement, where we first insert192

additional knots at
√
L · h from the boundaries and then perform uniform mesh refinement193

of the existing elements. In Figure 3, examples for uniform and boundary refined meshes are194

depicted. Figure 4 shows the convergence curves obtained with boundary refinement. The195

results of p = 3 are still far away from convergence and also p = 4 is not fully converged as196

can be seen in the close-up view in the right figure. However, very good results are obtained197

for p ≥ 5, with convergence after few steps for p ≥ 6. It should be noted that on the x-axis,198

the total number of elements Nel per side is displayed, which means that for the same Nel199

the mesh is much coarser in the interior for the boundary refined cases, as can be seen also in200

Figure 3. The converged solution is obtained as vz = −0.3020, which is slightly lower than201

the reference value. Furthermore, we investigate the quality of stress resultants obtained202

with this method. Since no reference values for stresses or stress resultants are provided in203

[60], we solve the problem via isogeometric Kirchhoff-Love shell analysis [6] for comparison.204

In Figure 5, the membrane force components n11, n22, n12 are depicted, with the indices 1 and205

2 corresponding to the circumferential and longitudinal directions, respectively. Subfigures206

(a)-(c) show the results obtained with the presented collocation approach on the finest mesh207

and p = 8, while (d)-(f) are the results for comparison, obtained with isogeometric Kirchhoff-208

Love shell analysis on a 64 × 64 mesh with p = 5. Very good agreement in the results can209

be observed. Figure 6 depicts the corresponding results for the moments m11, m22, m12, and210

also here, very good agreement can be observed.211

5.2. Clamped hemispherical cap212

The second example is taken from [61] and consists of a clamped hemispherical cap213

(K > 0) under a sinusoidal external pressure loading. We model only one quarter of the214

geometry imposing symmetry conditions on the respective boundaries, as depicted in Figure215
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Figure 7: Clamped hemispherical cap. Geometry and boundary conditions. A quarter of the problem with

symmetry conditions is modeled.

Figure 8: Clamped hemispherical cap. Deformation (scaled for visualization by a factor of 3 · 104).
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Figure 9: Clamped hemispherical cap. Convergence study. In the right figure, the y−axis has been rescaled

for a close-up view.

7. The geometric and material properties are given as R = 1, h = 0.01, E = 2 · 1011, and216

ν = 0.3. The pressure load is given as a function of the polar angle, p3(ϕ) = p0h cos(2ϕ),217

with p0 = 106. As reference solution, the vertical displacement at the pole is given as218

vz = −7.73688 · 10−6 [61].219

Special consideration has to be given to the imposition of boundary conditions at the pole

for avoiding numerical problems due to the geometric singularity. While we have Dirichlet

conditions for v1 = v2 = w1 = w2 = 0, the deformation in v3 is free and the corresponding

Neumann condition needs to be imposed. Considering θ1 as the azimuth direction and θ2

as the polar direction, we need to impose the Neumann condition q2 = 0 at the pole, which

means on all collocation points of this collapsed edge. Due to the singularity, we obtain

a11 = b11 = 0 there, while a22 and b22 are still finite and non-zero. Using that we further

have a12 = b12 = 0, the formula for the boundary shear force can be significantly simplified

and finally reads as

q2 =
Gh

a22

(
w2 + v3,2 +

b22
a22

v2

)
, (102)

which we collocate on all collocations points coinciding in the pole.220

For this example we did not find any influence of boundary layers and the best results221

were obtained with uniform mesh refinement. Figure 8 depicts the deformed configuration222

and Figure 9 shows the results of the convergence study. The converged solution is obtained223
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Figure 10: Partly clamped hyperbolic paraboloid (isolines are plotted for visualization but do not represent

an analysis mesh).

Figure 11: Partly clamped hyperbolic paraboloid. Undeformed (light shading) and deformed (dark shading)

configurations with boundary refinement. The deformation has been scaled for visualization by a factor of

1.5 · 103.

as vz = −7.74513 · 10−6, which is slightly higher than the reference value from [61]. Again,224

we observe strong locking for p = 3, which does not reach the converged value within the225

meshes considered, while all other degrees perform quite well, especially for p ≥ 6.226

5.3. Partly clamped hyperbolic paraboloid227

This example is also taken from [61]. It has a hyperbolic geometry (K < 0), which is228

described by z = x2 − y2, (x, y) ∈ [−L/2, L/2]2, as depicted in Figure 10. The geometric229

and material parameters are given as L = 1, h = 0.01, E = 2 · 1011, ν = 0.3. The230

shell is clamped along the side x = −L/2 and subjected to self-weight loading given as231

pz = −8000 · h. As reference solution, the vertical displacement at point A (x = L/2,232
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Figure 12: Partly clamped hyperbolic paraboloid. Convergence study. In the right figure, the y−axis has

been rescaled for a close-up view.

y = 0) is given as vz = −9.3355 ·10−5 [61]. This problem exhibits significant boundary layers233

and we adopt again a graded refinement scheme as described in Section 5.1, with higher234

refinement in a width of
√
L · h from the edges. Figure 11 shows a boundary refined mesh235

on the undeformed and deformed configurations. In Figure 12, the convergence curves are236

depicted. The converged solution is obtained as vz = −9.3533 · 10−5, which is slightly higher237

than the reference value. Similar to the previous examples, p = 3 performs very badly, but238

also p = 4 and p = 5 do not reach convergence within the considered range of meshes. For239

p ≥ 6, however, very good convergence can be observed again.240

5.4. Cylindrical shell strip241

The final example is taken from [15]. It consists of a cylindrical shell strip, which is242

clamped on one side and subjected to a constant line load in radial direction on the opposite243

free edge, see Figure 13. The geometric and material parameters are given as R = 10,244

W = 1, E = 103, ν = 0. The applied load is scaled with the shell thickness F = 0.1 · h3 and245

different thickness values ranging from thick to very thin shells are considered. As reference246

solution, the radial displacement under the load has been computed in [15] according to247

Euler-Bernoulli beam theory as approximately vr = 0.942. This example is often used to248

study membrane locking, but it should be noted that both membrane and shear locking are249

present. We solve the problem for various thickness values with the slenderness R/h ranging250
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Figure 13: Cylindrical shell strip. Problem setup.
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Figure 14: Cylindrical shell strip. Slenderness study. In the right figure, the y−axis has been rescaled for a

close-up view.
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Figure 15: Clamped hemispherical cap. Study on the computational time for assembly, normalized by the

result for the coarsest mesh. Left: Results gathered by polynomial degree. Right: Results gathered by mesh

size.

from 10 to 1000. The mesh is chosen such that the number of collocation points in the long251

direction is 30 for all polynomial degrees, i.e., 30 − p elements are used. In Figure 14, the252

convergence curves are depicted. It can be seen that p = 3 performs very badly over the253

whole range of slenderness, p = 4 and p = 5 are accurate until a slenderness of 100 but254

deviate from the reference solution for higher values, while the results for p ≥ 6 are very255

good even for the very slender cases.256

5.5. A short discussion on locking, polynomial degree, and computational efficiency257

It is a general feature of IGA-C that primal formulations may suffer from the same locking258

problems as corresponding Galerkin formulations, which has been observed already in the259

context of shear-deformable beams, rods, and plates [34, 36–40]. Corresponding locking-free260

collocation methods can be obtained, e.g., by adopting mixed formulations [34, 36, 38–40],261

similar to mixed Galerkin methods. In this context it is also worth noting that while the262

source of locking in IGA-C is the same as in Galerkin methods, namely the unbalance of the263

discrete approximation spaces, the effects can be different. In contrast to Galerkin methods,264

the displacements affected by locking in IGA-C do not necessarily tend towards zero in the265

thin limit, but can also behave rather oscillatory, as can be seen in the results for p = 3266

in Figure 14. Obviously, the term locking is somewhat inappropriate for this behavior from267

a phenomenological point of view, but it is kept due to the analogy to locking in Galerkin268
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Figure 16: Clamped hemispherical cap. Study on the total computational time, normalized by the result for

the coarsest mesh. Left: Results gathered by polynomial degree. Right: Results gathered by mesh size.

methods.269

As in Galerkin methods, the effects of locking in IGA-C decrease with increasing polyno-270

mial degree. For the presented shell formulation, the numerical tests indicate that polynomial271

degrees p > 5 are necessary to obtain good results without excessively fine meshes. How-272

ever, the important difference between IGA-C and Galerkin methods is that for the latter,273

the computational effort for the assembly increases exponentially with p due to numerical274

quadrature, while in IGA-C only one collocation point per degree of freedom (which is ap-275

proximately one point per element) is needed, independently of the polynomial degree. For276

problems affected by locking, like the presented shell formulation, this makes the use of high277

polynomial degrees a simple and efficient way of avoiding locking.278

In the following, we perform a study on the computational time spent on the assembly279

of the system matrices for different polynomial degrees and meshes. Figure 15 shows exem-280

plarily the results for the hemisphere problem. In the left figure, the curves represent the281

different polynomial degrees with the number of elements per side on the x-axis, while in282

the right figure the curves represent the different meshes with the polynomial degree on the283

x-axis. It can be seen that with mesh refinement, the computational cost increases expo-284

nentially, while increasing the polynomial degree has a rather small impact, especially for285

the coarser meshes. But even for the finest mesh, going from p = 3 up to p = 8 increases286
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the computational time by a factor of less than two. Since the total computational cost,287

including the time for solving the equation system, depends not only on the number of col-288

location points but also on factors like the bandwidth, which, in turn, depend on p, we also289

measure the total computational time, comprising both assembly and solving. The results290

are depicted in Figure 16 and support what has been observed in Figure 15, namely, that the291

computational cost depends mainly on the mesh size rather than on the polynomial degree.292

These results confirm that high polynomial degrees are preferable in IGA-C, in particular293

for the presented case of a primal formulation for Reissner-Mindlin shells.294

6. Conclusions295

In this paper, we applied the concept of isogeometric collocation to the Reissner-Mindlin296

shell problem. We started by recalling the necessary background on differential geometry and297

the governing equations of shear-deformable shells. We showed that the classical approach of298

expressing the equilibrium equations in terms of primal kinematic variables is not suitable in299

the case of shells due to the cumbersome form that the expanded equations assume. There-300

fore, we derived the formulation in a stepwise approach by creating step-by-step discretized301

objects that can be efficiently used to construct the discretized forms of the governing equa-302

tions by following closely their expressions in the continuous form. In comparison with the303

traditional approach, the stepwise formulation offers enormous benefits in terms of both im-304

plementation difficulty and computational efficiency. As collocation points, we adopted the305

standard Greville abscissae. Convergence studies have been performed on different bench-306

mark problems which cover the three different classes of parabolic, elliptic, and hyperbolic307

shells, and which include important effects like locking and boundary layers. Similar to what308

has been observed in [40] for Reissner-Mindlin plates, boundary layers significantly affect the309

convergence behavior if uniform meshes are used, but results can easily be improved by us-310

ing graded meshes, which are more refined at the boundaries. The results are also strongly311

affected by locking for lower polynomial degrees, but these effects become insignificant for312

high polynomial degrees. In our numerical tests, very good results were obtained for p > 5.313

Furthermore, we presented an indicative study on the computational costs, which suggests314

the use of high polynomial degrees for both accuracy and computational efficiency. In light of315
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these results we believe that the proposed displacement-based formulation with sufficiently316

high polynomial degrees presents an efficient and accurate method for a wide range of shell317

problems. Nevertheless, the development of a locking-free method, e.g. by using a mixed318

formulation, is of interest as well, and is planned as future research.319
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Appendix A. Direct displacement-based approach325

In this appendix, we present an exemplary part of the equations which are obtained with326

the direct approach, where the equilibrium equations are expressed directly in terms of the327

primal variables. The equations have been derived with the help of Mathematica by Wolfram328

[50] together with EinS [51], a specific Mathematica package able to manage indexed objects329

with the Einstein summation convention. Since the full equations span several pages, we330

only present here the first component of the first term of Eq. (40), i.e., ñ1λ|λ.331

The fully expanded form reduced to the first and second fundamental forms as well as332

to the Christoffel symbols and their derivatives is given is given in Eq. (A.1). It should be333

observed that the selected term involves only the stretching strain tensor ααβ, therefore only334

three primal kinematic variables appear1. Moreover, the kinematic variables appearing in335

such a large number of terms still need to be discretized. We have coded all the required336

functions in order to obtain the full system of collocated equations symbolically, but the337

computational time became too high making this approach completely impractical.338

1Note that in Eq. (A.1) a slightly different notation for the partial derivatives is used, where ∂vαβ and

∂2vαβγ correspond to vα,β and vα,βγ , respectively. The same applies to v3, Γαβγ and bαβ .
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