
FPGA implementation of a Convolutional
Neural Network for "Wake up word"
detection

Ole Martin Skafså

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IES
Co-supervisor: Florian Bochud, Cisco Systems Norway AS

Department of Electronic Systems

Submission date: June 2017

Norwegian University of Science and Technology

i

Project Assignment

Candidate name: Ole Martin Skafså

Assignment title: FPGA implementation of a Convolutional Neural
Network for “Wake up word” detection

Machine Learning has increased dramatically in popularity the last years and is
now being used in various applications like web search, speech recognition, object
detection, face recognition, etc.

Huge set of data are used to train a neural network (Learn), before the network
can be used stand-alone to classify new patterns (inference).

Today’s most common Machine Learning architecture is deep neural networks,
which can be seen as layers of matrix multiplication. The network can have typically
many layers with many weights (up to several 100k). Therefore, inference requires
heavy processing resources, usually run on a GPU.

FPGA would be a natural device to implement that kind of processing, since
it provides several thousand multiplications blocks that all can be run in paral-
lel.

This master thesis will explore a “Wake up word” Convolutional Neural Network
(CNN) implementation on FPGAs. This CNN detects a specific wake-up word and
gives a single bit as an output.

To achieve that, the student to work on the following tasks:

– Setup an infrastructure to test various neural network. The CNN will be
implemented on an Altera SOC dev kit. The infrastructure should provide
an easy way to feed pattern into the network and retrieve back the result.

– Neural network with increasing complexity should be implemented and tested.
The “wake up word” implementation, due to its size and complexity, would
be implemented last.

– Ideally the implementation should be generalized to any type of CNN applic-
ation.

– The result should be compared with a GPU implementation in terms of
latency, power and cost.

In addition using High-level synthesis tool is required (Altera I++ or OpenCL).

Responsible professor: Kjetil Svarstad, IET

Supervisor: Florian Bochud, Cisco

ii

Abstract

The popularity of machine learning has increased dramatically in the last years and
the possible applications varies from web search, speech recognition, object detec-
tion, etc. A big part of this development is due to the use of Convolutional Neural
Networks (CNNs), where high performance Graphics Processing Units (GPUs) has
been the most popular device.

This thesis explores the use of a Field-Programmable Gate Array (FPGA), specific-
ally an Arria 10 GX FPGA, to implement a "wake up word" CNN. The High-Level
Synthesis (HLS) tool Intel FPGA SDK for OpenCL was used. During the project
various neural networks has been implemented and tested on the FPGA with dif-
ferent attributes to understand their effect. An infrastructure to test various neural
networks was made and used to implement the wake up word CNN. A solution to
test the CNN in a setup with live recording was also made.

The final implementation of the wake up word CNN achieved a classification time
of 3.6 ms and 0.54 Gmac/s, where a mac is the multiply-accumulate operation.
Comparing to a CNN runnning on a NVIDIA Tegra X1 GPU, the GPU was 22.2
times faster with 11.99 Gmac/s. Although the classification time of 3.6 ms is
acceptable for this application, future work should attempt to keep as much of the
computation and memory transfers on the FPGA chip and with minimal interaction
with the host machine to improve performance.

iii

Sammendrag

Populariteten til maskinlæring har økt dramatisk de siste årene og de mulige ap-
plikasjonene varierer fra web søk, talegjenkjenning objektdeteksjon, osv. En viktig
grunn for denne utviklingen er bruken av konvolusjonsnettverk, hvor grafikkpro-
sessorer (GPUer) har vært den mest populære prosesseringsenheten.

Denne avhandlingen utforsker bruken av Field-Programmable Gate Array (FPGA),
og da spesifikt en Arria 10 GX FPGA, for å implementere et konvolusjonsnettverk
som kjenner igjen et "oppvåkningsord". For å utføre oppgaven har høy-nivå syntese
(HLS) verktøyet Intel FPGA SDK for OpenCL blitt brukt. I løpet av prosjektet har
forskjellige nevrale nettverk blitt implementert og testet på FPGAen med forskjel-
lige attributter for å teste effekten de har. En infrastruktur for å teste forskjellige
nevrale nettverk ble lagd og den ble brukt til å implementere konvolusjonsnett-
verket for "oppvåkningsordet". En løsning for å teste konvolusjonsnettverket med
direkte opptak ble også laget.

Den endelige implementasjonen av konvolusjonsnettverket oppnådde en klassifika-
sjonstid på 3,6 ms og 0,54 Gmac/s, der en mac er multipliser-akkumuler operasjo-
nen. Dette ble sammenlignet med et konvolusjonsnettverk kjørende på en Tegra X1
GPU, GPUen var 22,2 ganger raskere med 11,99 Gmac/s. Selv om en klassifika-
sjonstid på 3,6 ms er akseptabelt for denne applikasjonen, så bør fremtidig arbeid
forsøke å beholde så mye som mulig av utregninger og dataoverføringer på FPGAen
og med minimal interaksjon med værtsmaskinen for å øke ytelsen.

iv

Preface

This report is the result of the Master’s thesis conducted during the spring of 2017.
It concludes a Master of Science degree in Electronics, with a specialization in
Design of Digital Systems. The report is submitted to the Department of Electronic
Systems at the Norwegian University of Science and Technology

The project FPGA implementation of a Convolutional Neural Network for “Wake
up word” detection was proposed by Cisco. Cisco also provided the FPGA used in
the project as well as other helpful support. During the work on the thesis I have
learned a lot about OpenCL, Convolutional Neural Networks and FPGAs. I also
did a project about High-Level Synthesis for FPGA in the autumn of 2016, which
was also for Cisco and the same supervisors.

I would like to thank my supervisors Florian Bochud at Cisco and professor Kjetil
Svarstad at NTNU, for valuable support, guidance and feedback through the pro-
ject. I also want to thank my family and friends for their support and encourage-
ment during this project and through the whole degree.

Ole Martin Skafså

Trondheim, 19th June 2017

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contributions . 1
1.3 Thesis overview . 2

2 Background Theory 3
2.1 Machine learning . 3

2.1.1 Neural networks . 4
2.1.2 Network training . 5
2.1.3 Convolutional neural network 6
2.1.4 Layers . 7

2.2 OpenCL . 9
2.2.1 Intel FPGA SDK for OpenCL 11

2.3 Speech signal preprocessing . 12

3 Related Work 15
3.1 An OpenCL™Deep Learning Accelerator on Arria 10 15
3.2 PipeCNN . 16
3.3 FINN . 17

4 Neural Networks Implementation 19
4.1 Linear classifier for the MNIST dataset 19

4.1.1 Training . 20
4.1.2 OpenCL Implementation . 20

4.2 One hidden layer neural network . 23
4.2.1 Two hidden layer neural network 26

5 CNN Implementation 27
5.1 Architecture . 27
5.2 OpenCl implementation . 29

v

vi CONTENTS

5.2.1 Getting it live . 33

6 Results and Evaluation 37
6.1 Experimental setup . 37
6.2 Compiling and retrieving results . 38
6.3 Resource utilization . 39

6.3.1 Neural nets . 40
6.3.2 CNN . 42

6.4 Performance . 43
6.4.1 Neural nets . 43
6.4.2 CNN . 45

6.5 Comparison . 46

7 Discussion 47
7.1 Project tasks . 47
7.2 Results and improvements discussion 48

8 Conclusion 51
8.1 Future Work . 52

References 53

Appendix 57
A.1 Source code . 57

A.1.1 Linear classifier . 57
A.1.2 One hidden layer neural network 58
A.1.3 Two hidden layers neural network 61
A.1.4 CNN . 77
A.1.5 Live setup code . 101

A.2 Reports . 105

List of Figures

2.1 Perceptron model and equation [26] 4
2.2 Activation functions [31] . 5
2.3 Example of a CNN architecture, the LeNet-5. Each plane is a feature

map [22]. 7
2.4 Convolution and pooling layer illustration [10]. 9
2.5 OpenCL platform model [20]. 10
2.6 NDRange index space example [24]. 11
2.7 OpenCL-to-FPGA framework [12]. 12
2.8 Mel-spaced filter bank for generating MFCCs [13]. 13

3.1 Overall DLA architecture. 16
3.2 PipeCNN architecture. 16
3.3 Generating an FPGA accelerator from a trained BNN [34]. 17

4.1 Example neural network [26]. 24

5.1 Topology of implemented wake up word CNN. 28
5.2 WAV format [2]. 35

6.1 Arria 10 GX FPGA Development Kit [15]. 38

vii

viii LIST OF FIGURES

List of Tables

6.1 Arria 10 GX resources [16] . 39
6.2 Linear classifier resource utilization 40
6.3 One hidden layer NN resource utilization 40
6.4 Two hidden layer NN resource utilization 41
6.5 CNN resource utilization . 42
6.6 Total resource utilization for NDRange conv 4 CUs 43
6.7 Neural networks performance . 44
6.8 CNN performance . 45

ix

x LIST OF TABLES

Acronyms

ALM Adaptive Logic Module.

ALUT Adaptive LUT.

AOC Altera Offline Compiler.

API Application Programming Interface.

BNN Binarized Neural Network.

BRAM Block RAM.

BSP Board Support Package.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

CU Compute Unit.

DCT Discrete Cosine Transform.

DFT Discrete Fourier Transform.

DMA Direct Memory Access.

DNN Deep Neural Network.

DSP Digital Signal Processing.

FLOPS Floating point operations per second.

FPGA Field-Programmable Gate Array.

GPGPU General Purpose Graphics Processing Unit.

xi

xii Acronyms

GPU Graphics Processing Unit.

HLS High-Level Synthesis.

LE Logic Element.

LUT Look-Up Table.

mac multiply–accumulate operation.

MFCC Mel-frequency cepstrum coeffisients.

MLAB Memory Logic Array Block.

MNIST Modified National Institute of Standards and Technology database.

OpenCL Open Computing Language.

OPS Operations per second.

PCIe Peripheral Component Interconnect Express.

PE Processing Element.

SDK Software Development Kit.

SIMD Single Instruction Multiple Data.

SW Software.

WAV Waveform Audio File Format.

Chapter 1
Introduction

1.1 Background and Motivation

The popularity of machine learning has increased dramatically in the last years, a
big part of this development is due to the use of Convolutional Neural Networks
(CNNs). Also the use of Graphics Processing Units (GPUs) as General Purpose
Graphics Processing Units (GPGPUs), together with the rapid growth of the inter-
net and easily available data has helped to boost the performance of CNNs. The
possible uses of machine learning and Convolutional Neural Networks are many,
some examples are: object detection, playing games or speech recognition, which
will be explored in this report.

There are huge amounts of data being processed in Convolutional Neural Networks,
where the computations often are solved with matrix-multiplications. This project
will explore the use of an Field-Programmable Gate Array (FPGA) to implement
a CNN for "wake up word" recognition. The inherent parallelism of FPGAs makes
them natural to consider for this kind of processing.

In order to implement the CNN a High-Level Synthesis (HLS) tool from Intel will
be used. Both the Intel FPGA SDK for OpenCL and Intel HLS Compiler are
possible options. However, the Intel FPGA SDK for OpenCL was deemed most
appropriate for this project due to the time available.

1.2 Contributions

The goal of this thesis have been to explore the implementation of CNNs on FPGAs,
specifically to detect a "wake up word". An important part has also been to use

1

2 CHAPTER 1. INTRODUCTION

OpenCL and the Intel FPGA SDK for OpenCL to do the implementations.

A summary of the contributions made in this projects is listed below:

– Different neural networks with various complexity has been implemented and
tested with different attributes to understand their effect.

– An infrastructure to test various neural networks consisting of the implemen-
ted convolution and fully connected layers has been made.

– With this infrastructure a CNN used to recognize a "wake up word" has been
implemented.

– In order to test the wake up word CNN in a live setup, a way to record
audio and perform preprocessing on the audio was necessary. Cisco provided
a program for the preprocessing, while the recording was implemented using
PortAudio library.

– Results from the implementations has been presented and evaluated based
on resource utilization and performance. The CNN results are also compared
against an GPU implementation.

1.3 Thesis overview

The thesis is divided into 8 chapters including this introductory chapter. Chapter
2 introduces some necessary background regarding machine learning and neural
networks, some info on OpenCL and the Intel FPGA SDK for OpenCL, and also
relevant theory for speech signal preprocessing. Chapter 3 presents some recent
related work on the field. In Chapter 4, the implementation of three initial neural
networks with increasing complexity is described, while Chapter 5 explains the
implementation of the "wake up word" CNN, including some work to be able to
test it with live speech. In Chapter 6 the implemented neural networks’ results are
presented and evaluated based on resource utilization and performance. A com-
parison between the FPGA implementation of the CNN, and a CNN implemented
on a GPU is also included. Chapter 7 discusses the presented solution and its
results with regards to the project tasks and the related work. Finally the thesis is
concluded in Chapter 8, and proposes some thoughts and possible routes for future
work. An Appendix is also included, it contains listings of the source code and
summary reports for the final design.

Chapter 2
Background Theory

In this chapter some background and theory necessary to understand this subject
is presented. First machine learning and neural networks are introduced, including
some theory on training the networks. Then CNNs and its layers are presented.
Some info on OpenCL and the Intel FPGA SDK for OpenCL is also included. The
last section presents theory on speechh signal preprocessing relevant to the "wake
up word" CNN.

2.1 Machine learning

Machine learning stems from computer science and is a field of study that gives
computers the ability to learn without being explicitly programmed as originally
defined by Arthur L. Samuel in 1959 [30]. Another newer and more formal definition
was made by Tom M. Mitchell in [23] is:

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E.

One example that shows this is a computer program learning to recognize hand-
writing. Then the task T will be to recognize and classify handwritten words within
images, the performance measure P is the percent of words correctly classified, and
training experience E a database of words with known classifications.

Machine learning has many applications including image classification, object de-
tection, speech recognition, even learning to play games, etc.

A subset of machine learning are neural networks, also called Deep Neural Networks
(DNNs) when the network consists of multiple layers. These networks are the focus

3

4 CHAPTER 2. BACKGROUND THEORY

in this thesis, and specifically on Convolutional Neural Networks (CNNs)

2.1.1 Neural networks

Neural networks is one type of machine learning model which has had great prac-
tical value in the field of pattern recognition. The term neural network has its
origin in attempts to find mathematical representations of information processing
in biological systems, where the perceptron was one of the big influential outcomes
of this research [10]. The perceptron is an artificial neuron developed by Frank
Rosenblatt in the 1950s and 1960s, it takes several binary inputs, x1, x2, ..., and
produces a single binary output. This is shown in Figure 2.1 along with its math-
ematical description.

output =
{

0 if
∑
j wjxj ≤ threshold

1 if
∑
j wjxj > threshold

(2.1)

Figure 2.1: Perceptron model and equation [26]

Rosenblatt introduced weights, w1, w2, ..., and the threshold value, which are all
real numbers and parameters of the perceptron. Based on these parameters the
perceptron will either output 1 or 0, depending on the input, as shown in the figure
above.

The current models of neurons are similar to Rosenblatts perceptron in many ways.
Instead of the threshold value, the bias, b is introduced and is defined as b ≡
−threshold. In addition an activation function is introduced, its purpose is to allow
small changes in the weights or bias to only cause a small change on the output, this
property is helpful when training training a network. For the perceptron neuron
such small changes could cause the output to flip, e.g. from 0 to 1. The new model
and definition of a neuron is shown in the equation below:

y = f(w · x + b) = f(
∑
j

wjxj + b) (2.2)

Where the output y, is given by the dot product the vector w, containing the neur-
ons weights, and the input vector x, plus the bias. f(·) is the nonlinear activation
function, in Figure 2.2 three of the most commonly used activation functions are
displayed along with their equations.

A neural network consists of many neurons usually organized into multiple layers.
The first layer of a neural network is the input layer, it is followed by one or more
hidden layers. They are called hidden layers since the neurons in these layers are
neither inputs nor outputs. After the last hidden layer, the output layer follows.

2.1. MACHINE LEARNING 5

σ(z) = 1
1 + e−z

(2.3)

(a) Sigmoid

tanh(z) = ez − e−z

ez + e−z
(2.4)

(b) tanh

RelU(z) = max(0, z) (2.5)

(c) RelU

Figure 2.2: Activation functions [31]

The number of neurons in the output layer depends on the depends on the task.
For example to classify handwritten digits, it would be natural to use 10 output
neurons, one for each digit. An example neural network with one hidden layer
is shown in Figure 4.1. Neural networks where all the inputs to a layers neurons
stems from the previous layer is called a feedforward neural network. If connections
between neurons can form a directed cycle in the network, it would be called a
recurrent neural network [26]. The focus here however will be on feedforward
networks.

2.1.2 Network training

The process of training or learning a network involves a way to optimize the weights
and biases of the network. As training of the networks are outside the scope
of this project, only a general introduction of network training will be explained
here.

In order to train a network a set of input vectors {xn}, where n = 1, ..., N , together

6 CHAPTER 2. BACKGROUND THEORY

with a corresponding set of target vectors {xn}, is necessary. A cost function,
C(w, b), is introduced, and the goal is to minimize this function to get better
classification results:

C(w, b) = 1
2N

N∑
n=1
||y(xn)− tn||2 (2.6)

Here, w and b denotes the collection of all the weights and biases in the network. To
minimize the cost function an algorithm known as gradient decent is used. The idea
with gradient descent is to alter the values of the weights and biases by updating
them with small steps in the direction of the negative gradient. This update for
each weight component wk and bl is given by:

wk → w′k = wk − η
∂C(w, b)
∂wk

(2.7)

bl → b′l = bl − η
∂C(w, b)
∂bl

(2.8)

These updates are performed many times so the cost function converges towards
a local or global minimum. The parameter η, is called the learning rate, and it
decides how fast the cost function converges. Choosing too large η may cause the
cost function to increase and thus not converge. Parameters such as η are called
hyperparameters, they are not trained like the weights and biases, but must still
be chosen appropriately and possibly be fine tuned [31].

Depending on the number of training inputs, the training time can be very long.
A solution to speed up the process is called stochastic gradient descent, instead of
using all N training inputs, a small number of samples are randomly chosen from
the training set. This way each update operation from Equations 2.7 and 2.8 is
performed faster.

An algorithm called the backpropagation algorithm is one of the most important
approaches to train neural networks today since it provides a fast way to compute
the gradient of the cost function. It will not be explained in detail here, but the idea
is to first do a forward pass with an input vector xn in order to find the activations
of all the neurons. Next error values on the outputs are propagated backwards
through the network, which then are used to calculate the gradients and perform
the updates [26][10].

2.1.3 Convolutional neural network

The Convolutional Neural Network (CNN) is a feedforward neural network, mean-
ing there can be no loops in the network. CNNs are very similar to ordinary neural
networks, they are still made up of neurons that have learnable weights and biases.

2.1. MACHINE LEARNING 7

The main difference between an ordinary neural network and a CNN is that besides
the fully connected layers, there are two additional main layers used in CNN ar-
chitectures: convolutional layer and pooling layer. These layers are stacked several
times to form a CNN [31].

Figure 2.3 shows an example of a CNN, which consists of 7 layers (excluding the
input). The first four layers are pairs of a convolutional layer followed by a pooling
or subsampling layer. The fifth layer C5, is also a convolutional layer, however since
S4’s feature maps are 5x5, same as the filter sizes in C5, the layer is equivalent to
a fully connected layer. The last two layers are a fully connected layer and the
output layer.

Figure 2.3: Example of a CNN architecture, the LeNet-5. Each plane is a feature map
[22].

The next subsection will explain the main layers in a CNN, and they will show
that CNNs use three basic ideas: local receptive fields, shared weights and biases
and pooling.

2.1.4 Layers

Convolutional layer The convolutional layer is the core building block of a
CNN. In the regular neural networks considered earlier, which are the same as a
fully connected layer, the input is a vector, meaning 2D images are stretched into a
vector. This means that a key property of images are ignored, which is that nearby
pixels are more strongly correlated than more distant pixels. In a convolutional
layer the input keeps its original shape in order to exploit this correlation between
the pixels, and by using local receptive fields or small subregions in the input image,
the convolutional layer is able to extract local features. The extraction is done by
performing a convolution operation on the input image, using a kernel that acts
like a filter. This can be thought of as sliding the filter across the entire image,
and for each subregion in the input that the filter covers, a dot product operation
is done between the weight values in the filter and the region, and the result is a
value in what is called a feature map. The idea of weight sharing means that all
the units of a feature map are constrained to share the same weight values, the
filter. Using several filters in the convolution layer will yield several feature maps
on the output, meaning more features can be extracted. After the dot product is

8 CHAPTER 2. BACKGROUND THEORY

performed, a bias is added to every element in the output feature map, the bias
is also shared across the entire feature map. By training the network the filter
weights can be configured to extract the features needed to recognize the desired
classes.

As an example consider layer C3 in the LeNet-5 architecture shown in Figure 2.3.
This is the second convolution layer and gets 6, 14x14 feature maps from the
previous layer, these are then convoluted with 16 filters which leads to 16 output
feature maps. In general the filters has the same depth as the number of input
feature maps, and typical widths and heights of the filters are 3x3 and 5x5, but
this varies.

The filters spatial extent, i.e. width and height are hyperparameters, there are in
total 4 hyperparameters required in a convolutional layer [31]:

• Number of filters K.

• Their spatial extent F, width and height of filters, can be different.

• The stride S, how many pixels the sliding filter moves.

• The amount of zero padding P, is used to control the spatial size of the
output.

The values of these hyperparameters are used to decide the properties of a con-
volutional layer. Equation 2.9 is used to calculate the size of the output feature
maps. W is the width, but the calculation is the same for the height H.

Wout = Win − F + 2P
S

+ 1 (2.9)

Pooling layer The convolutional layers are often paired with pooling layers, also
called sub-sampling layers. These layers take the output feature maps from the
convolutional layers, and its function is to reduce the size of the input feature maps
to reduce the amount of parameters in the network, hence reducing the amount
of computation needed and controls overfitting. Overfitting is a problem that may
occur when a network fits the noise in the data. The pooling operation is applied
separately on each feature map, meaning it is the same number of feature maps
on both the input and output of the pooling layer. The pooling layer works in a
similar way to the convolutional layer since it operates on a subregion on the input
feature maps and performs a filter operation. However the filter operation is most
commonly a MAX operation, working on 2x2 subregion and a stride of 2. This
causes the width and height of the output to be halved.

The pooling layer requires two hyperparameters:

• Their spatial extent F.

• The stride S.

2.2. OPENCL 9

Similarly to the convolution layer the size of the output feature maps can be cal-
culated with Equation 2.10:

Wout = Win − F
S

+ 1 (2.10)

There are two commonly seen variations of the hyperparameters in the pooling
layer: The most common one is F = 2 and S = 2 as mentioned before, but another
variant called overlapping pooling is F = 3 and S = 2. And also, though the
most common form of pooling operation is max pooling, the pooling layer can also
perform average pooling or L2-norm pooling. Average pooling has been the most
popular historically, but max pooling has been shown to work better in practice
[31].

Figure 2.4: Convolution and pooling layer illustration [10].

Figure 2.4 shows how various receptive fields in the input image corresponds to
one neuron on the output of the convolutional layer. It also shows how the pooling
layer or sub-sampling layer reduces the size of the convolutional layer.

2.2 OpenCL

OpenCL is an industry standard framework for programming heterogeneous com-
puter systems. These systems may contain a combination of CPUs, GPUs, and
other devices with processing capabilities, like an FPGA used in this project
[24].

10 CHAPTER 2. BACKGROUND THEORY

OpenCL is a relatively new technology, it was first released in December of 2008
with some early products available in the fall of 2009. It was developed to stand-
ardize the method of parallel computation using GPGPUs. The current release of
OpenCL is version 2.2 [19].

An OpenCL application consists of a single host and up to several kernels. The
host interacts with the external environment to the OpenCL program, and it per-
forms the necessary setup of the application, including: Discovering the devices
of the system, probe the characteristics of the devices, create the kernels, set up
and manipulate necessary memory objects, execute the kernels and collect the res-
ults. The kernels execute on the OpenCL devices and are functions written in the
OpenCL C programming language. Figure 2.5 shows the OpenCL platform model,
it shows the host connected to one or more OpenCL devices. The devices are fur-
ther split into one or more Compute Units (CUs), and then Processing Elements
(PEs) within the CUs.

Figure 2.5: OpenCL platform model [20].

When a kernel is launched from the host program, it launches one or more instances
of itself, each instance is called a work-item. In order to launch the kernel one of the
two OpenCL Application Programming Interface (API) calls below are used:

• clEnqueueNDRangeKernel

• clEnqueueTask

The first execution call, clEnqueueNDRangeKernel creates a collection of work-
items, where the number of work-items is defined by what is called the NDRange
index space. The NDRange index space is an N-dimensional range of values, hence
the name. The NDRange is also divided into work-groups which holds a subset
of the work-items, each work-item in a work-group execute concurrently on the
processing elements of a single compute unit. All work-items has a local ID within
a work-group and a global ID within the NDRange, these ID’s may be queried from
the kernel with the function calls: get_global_id(uint dimindx) and get_local_-
id(uint dimindx), where dimindx is the specific dimension. Other kinds of info can
also be acquired, e.g. the number of work-groups or the number of dimensions
[20]. The second execution call clEnqueueTask launches a kernel using a single

2.2. OPENCL 11

work-item. Figure 2.6 shows an example NDRange index space of 2 dimensions
with 3x3 work-groups and 4x4 work-items in each work-group, that means there is
a total of 144 work-items.

Figure 2.6: NDRange index space example [24].

It is also worth noting OpenCL’s memory model, it defines five distinct memory
regions:

• Host memory: is only visible to the host.

• Global memory: permits read/write access to all work-items. May be
cached depending on capabilities of the device.

• Constant memory: is a region of the global memory that remains constant
during execution of a kernel.

• Local memory: is local to a work-group and therefore shared by all work-
items in that work-group.

• Private memory: is private to a work-item and are not visible to any of
the other work-items.

2.2.1 Intel FPGA SDK for OpenCL

In this project a HLS tool called Intel FPGA SDK for OpenCL will be used. It is
a framework that gives OpenCL support for use with Intel FPGAs. The tool was
first released as Altera OpenCL SDK in 2013 [36]. To compile OpenCL kernels
for the FPGA, the Altera Offline Compiler (AOC) is used. AOC supports version
1.0 of the OpenCL specification, and some newer features from version 2.0 has
preliminary support, such as Shared Virtual Memory (SVM) and pipes. Intel has
also added an extension called channels, which is similar to pipes.

A Compute Unit (CU) in Intel FPGA for OpenCL terms is a pipelined circuit
designed to execute a potentially large number of work-items concurrently [12]

12 CHAPTER 2. BACKGROUND THEORY

[12]. Figure 2.7 displays the compilation flow for the AOC, the inputs are a set
of OpenCL kernels, and the output is a .aocx file containing the FPGA image.
The full compilation may take up to several hours, hence the functionality of the
OpenCL code can be tested by calling the AOC with the -march=emulator option
[4].

Figure 2.7: OpenCL-to-FPGA framework [12].

For OpenCL devices such as CPUs and GPUs, the kernels can be built during
runtime when the clBuildProgram function is called. Since the compilation time
for FPGA is so long, the kernels must be compiled in advance. However, the
clBuildProgram function must still be called from the host in order to program the
Field-Programmable Gate Array with the .aocx file.

2.3 Speech signal preprocessing

Instead of using the speech signals directly in a speech recognition application like
the "wake up word" CNN that will be implemented here, it is common to extract a
set of features from each speech signal to use as inputs in the neural network. These
features should eliminate unnecessary information with regards to phonetic analysis
and enhance the aspects of a signal that helps to detect phonetic differences.

One of the most commonly used methods to extract such features for a CNN is
to convert the speech signals to Mel-frequency cepstrum coeffisients (MFCC). This
and similar techniques use low level spectral information which conveys vocal tract
characteristics. The spectral information is extracted from short time intervals

2.3. SPEECH SIGNAL PREPROCESSING 13

usually of 20-30ms of the speech signal and using the Discrete Fourier Transform
(DFT) on it. Since the vocal tract is a slowly varying system, the speech signal
is considered to be nearly stationary over this short time interval. The DFT is
defined as follows:

X(k) =
Ns∑
n=1

x(n)e−j2πkn/Ms 1 ≤ k ≤Ms (2.11)

Where Ns is the number of samples in the signal window and Ms is the length of
the DFT. Then, the energy spectrum is given as:

|X(k)|2 =

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πkn/N
∣∣∣∣∣
2

(2.12)

The next step to compute the MFCCs is to pass the energy spectrum through
a bank of Q Mel-spaced triangular filters shown in Figure 2.8, this results in a
set of filter bank energies e(i)|Qi=1. The Mel-scale is linear below 1000Hz and
logarithmic above 1000Hz. The number of filters Q in Figure 2.8 varies. Finally, the
Discrete Cosine Transform (DCT) is applied to the log of the filter bank energies
log[e(i)]|Qi=1, and the final MFCCs Cm can be written as :

Cm =
√

2
Q

Q−1∑
l=0

log[e(l + 1)] ∗ cos
[
m ∗

(
2l − 1

2

)
π

Q

]
(2.13)

Where, 0 ≤ m ≤ R−1, and R is the desired number of cepstral features [11].

Figure 2.8: Mel-spaced filter bank for generating MFCCs [13].

14 CHAPTER 2. BACKGROUND THEORY

Chapter 3
Related Work

This chapter will present some recent work that also uses FPGAs to accelerate
inference of neural networks. The first two papers also uses the Intel FPGA SDK
to implement CNNs, while the third paper takes another approach by using Vivado
HLS to implement Binarized Neural Networks (BNNs).

3.1 An OpenCL™Deep Learning Accelerator on
Arria 10

In [8], Intel presents their Deep Learning Accelerator (DLA) on Arria 10. They use
the Intel FPGA SDK for OpenCL to create the DLA, which is able to implement all
of the layers of AlexNet on the FPGA. Previous approaches to use FPGAs for CNNs
have often been memory bound due to the limitied external memory bandwidth on
the FPGA device, but the DLA architecture is compute bound due to significant
reductions in memory bandwidth. They point out that in most CNN topologies,
the total amount of computation is dominated by the convolution layers, in AlexNet
the convolutions equate to 92% of the total floating point operations. Hence their
DLA architecture focuses on optimizing the throughput of the convolution layers.
Figure 3.1 shows the overall DLA architecture. The DLA uses several control
signals, which are generated by the Sequencer unit. In order to implement different
CNNs, it is enough to change the configuration of the Sequencer. All of the units in
the architecture are OpenCL kernels that executes independently and concurrently.
To connect the kernels, the channel extension from the SDK is used.

The results they achieved with Intel’s Arria 10 were 1020img/s, or 23img/s/W
when running the AlexNet CNN benchmark. This is the same as 1,382 GFLOPS
and is 10x faster with 8.4x more GFLOPS and 5.8x better efficiency than the

15

16 CHAPTER 3. RELATED WORK

Figure 3.1: Overall DLA architecture.

state-of-the-art on FPGAs. And the 23img/s/W competes with the best publicly
known implementation of AlexNet on NVIDIA’s Titan X GPU. This paper was
from January 2017.

3.2 PipeCNN

PipeCNN [35] is an open-source implementation of a CNN accelerator also using
the Intel FPGA SDK for OpenCL. The main contributions from this work are:
an efficient structure of pipelined kernels for large-scale CNNs. The proposed
architecture was explored on Stratix-V A7 FPGA, and two large-scale CNN models,
AlexNet and VGG, were implemented and tested.

Figure 3.2: PipeCNN architecture.

3.3. FINN 17

The architecture of PipeCNN shown in Figure 3.2, includes two data-mover kernels,
MemRD and MemWR which handles the transferring of data and weights between
global memory and the FPGA. To transfer data from the MemRD kernel to the
Conv. kernel, the Pooling kernel and to the MemWR kernel, the channel extension
is used, and it allows the transfers between the kernels to stay on chip. The Local
Response Normalization (LRN) kernel is kept separate from the others since it may
require multiple memory access patterns.

The paper reports their shortest classification time achieved to be 43ms for AlexNet
and 718ms for VGG-16. Also they get 33.9 GOPS while using 162 Digital Signal
Processing (DSP) blocks.

3.3 FINN

Another related work is FINN: A Framework for Fast, Scalable Binarized Neural
Network Inference [34]. While the previously mentioned work has focused on stand-
ard float32 precision, FINN implements BNNs. To do this they used Vivado HLS,
which is a HLS tool from Xilinx [37]. The Vivado HLS tool is more similar to the
Intel HLS Compiler, which was an option to use here.

Figure 3.3 illustrates how their framework uses a trained BNN and its topology, to
create a C++ description of a heterogeneous streaming architecture.

Figure 3.3: Generating an FPGA accelerator from a trained BNN [34].

With a ZC706 embedded FPGA platform drawing less than 25 W total system
power, they achieved up to 12.3 million image classifications per second with 0.31
µs latency on the MNIST dataset with 95.8% accuracy. For the CIFAR-10 and
SVHN datasets, they achieved accuracies of respectively 80.1% and 94.9%, with
21906 image classifications per second and 283 µs latency.

18 CHAPTER 3. RELATED WORK

Chapter 4
Neural Networks
Implementation

This chapter describes the implementation of three different neural networks with
increasing complexity. The sections are divided into these three networks, explain-
ing the differences in their implementations.

4.1 Linear classifier for the MNIST dataset

A natural network to start with when learning about machine learning and neural
networks is a linear classifier. In addition the Modified National Institute of Stand-
ards and Technology database (MNIST) database [21] is very suitable for such a
classifier. The MNIST dataset consists of 28x28 images of handwritten digits, it
contains 60, 000 training examples and 10, 000 test examples. The digits range from
0-9, which means that in order to classify the results there has to be ten output
values. The operation that the classifier will do is shown in Equation 4.1. The
input data x is flattened into a single [784 × 1] column vector, thus the weight
matrix W, needs to be of the dimensions [10× 784]. The bias b and output y are
both column vectors of size [10× 1].

y = Wx + b (4.1)

A simplification can be done to make Equation 4.1 easier to implement, by increas-
ing the number of columns in W by one and extending x with a constant 1, the
problem is reduced to a single matrix multiplication:

19

20 CHAPTER 4. NEURAL NETWORKS IMPLEMENTATION

y = Wx (4.2)

4.1.1 Training

In order to train this linear classifier, a modified version of TensorFlows [32] tutorial
file for the MNIST dataset were used. The only changes done were combining W
and b as explained earlier. The training performs gradient descent on batches of
100 random training examples for each training step with a learning rate of 0.5, and
this is done 1000 times. Ideally each step should include all the training data, but
using 100 random training examples for each step is cheap and sufficient. This is
the same as stochastic gradient descent as explained in Section 2.1.2. The trained
weights were extracted to a header file to make it easy to use for the OpenCL
implementation of the linear classifier.

4.1.2 OpenCL Implementation

As explained in Section 2.2, OpenCL programs is divided into a host file and
different kernels which can run on various devices, in this case an FPGA. As a
starting point a matrix multiplication example design provided on Intel FPGA’s
webpages [18] was used.

The linear classifier is implemented with one kernel which performs the matrix
multiplication in Equation 4.2.

Host file The host program is the part of the application that handles initial-
ization and execution of the kernels. Here, the host program is divided into five
functions: read_mnist, init_opencl(), run(), verify() and cleanup().

The first function read_mnist() prepares the image data by reading from binary
files containing the MNIST data. The image data was downloaded from [1], which
is derived from the original database, but is separated into ten binary files, one
for each class 0 to 9. The image values in these files range from 0-255, while
the network expects values between 0-1, hence they also had to be normalized.
The function stores each image in input_x which is initialized as: float* input_-
x[NUM_IMAGES]. NUM_IMAGES is the total number of images to read from
the binary files, and 64 byte aligned memory allocation is used. Without 64 byte
aligned memory allocation, a warning is returned which states that Direct Memory
Access (DMA) is not used due to the lack of alignment. A consequence of not using
DMA to transfer the data is that unnecessary CPU resources may be used.

The necessary initializations is performed in init_opencl(). First it calls findPlat-
form("Altera") to check if the FPGA device is available. The function is not a
standard OpenCL API call but is provided in the common utility functions men-
tioned earlier. Since the version of Intel FPGA SDK for OpenCL used here is

4.1. LINEAR CLASSIFIER FOR THE MNIST DATASET 21

version 16.0.2 Build 222, the platform is Altera. For newer versions of the SDK,
the platform name is Intel(R) FPGA OpenCL. Next the context is created using
the API call clCreateContext(), it consists of the number of Altera devices found
in the system, which in this case is an Arria 10 FPGA. Another function from
the common utilities, createProgramFromBinary() is used to create the program
object, it reads a .aocx file that is generated when compiling the kernel file, and
then the program is built using clBuildProgram(). Next the command queue for
the device and a kernel object is created. And finally buffer objects are created for
all the inputs and outputs: input_x_buf[NUM_IMAGES and output_buf[NUM_-
IMAGES]. All of the inputs are also written to the input buffers at this stage,
clEnqueueWriteBuffer() does this.

When the initialization is done the run() function is called. It starts by setting
the arguments of the kernel using clSetKernelArg() inside the loop launching the
kernels. Listing 4.1. There are two arguments that need to be set, and they
correspond to the arguments shown for the kernel in Listing 4.2. The arguments
are changed for each kernel execution since a new input is needed, input_x_buf[i]
and output_buf[i], represents the host side of the arguments. When the arguments
are set, the kernel is launched with an NDRange of 10 global work-items.

1 const size_t global_work_size[1] = {10};
2 const size_t local_work_size[1] = {10};
3
4 for(unsigned i = 0; i < NUM_IMAGES; i++) {
5 // Set correct output buffer for argument
6 status = clSetKernelArg(kernel[0], 0, sizeof(cl_mem), &

output_buf[i]);
7 checkError(status, "Failed to set argument %d", 0);
8
9 // Set correct input buffer

10 status = clSetKernelArg(kernel[0], 1, sizeof(cl_mem), &
input_x_buf[i]);

11 checkError(status, "Failed to set argument %d", 1);
12
13 // Execute the kernel
14 status = clEnqueueNDRangeKernel(queue[0], kernel[0], 1,

NULL,
15 global_work_size, local_work_size, 0, NULL, &

kernel_event[0]);
16 checkError(status, "Failed to launch kernel");
17 }
18
19 // Wait for all kernels to finish.
20 clWaitForEvents(num_devices, kernel_event);

Listing 4.1: Execution loop in run() function

22 CHAPTER 4. NEURAL NETWORKS IMPLEMENTATION

The output arrays contains 10 elements which corresponds to each digit, the verify()
function reads all the outputs from the output buffers using clEnqueueReadBuffer(),
and verifies that the highest value in each output array is correct, and then cal-
culates the accuracy. The final part is to clean up, for this linear classifier this
includes releasing the kernel, the queue, the buffers, the program and the context.
And also freeing up input_x which holds the image data.

A challenge faced here was to figure out how to run the kernel several times in
order to process all the images. The optimal solution would be to continuously
stream the data into the kernel, however a way to do this was not found and does
not seem to be possible at this point. Hence a more straightforward solution was to
write new input to the buffer and execute the kernel each loop iteration. Another
possible solution could be to change the kernel to handle an input of several images
in one execution, this would probably increase the throughput since the overhead
of writing to the buffer and executing the kernel would be smaller. It was also not
clear at once when the kernels are executed, it does not happen when the kernels are
queued up, instead it happens when a flushing of the command queue is performed.
In this case the flush is performed implicitly when calling clWaitForEvents()

Kernel For this linear classifier only a single kernel is necessary, its task is to
calculate the matrix multiplication shown in 4.2. Due to the bias b being merged
with the weights W, the dimensions of the matrices are: [10 × 785] for W and
[785 × 1] for x. The focus when implementing this kernel was to get a simple
kernel, not to create a highly optimized kernel. The main goal is to end up with a
functioning CNN.

A standard way to implement a matrix multiplication in software would be to use
three for-loops to iterate the matrices. However since the input x is a column vector,
a good simplification was to reduce the kernel to perform only a dot product and
execute it with an NDRange of one dimension and 10 work-items. 10 work-items
is used because of the number of elements in the output y.

The linear classifier kernel code is presented in Listing 4.2. The kernel takes two
arguments, namely Y and X, which corresponds to y and x. Both arguments use
the __global identifier, which means each access will be to the global memory
region, this is off-chip memory. The restrict keyword informs the compiler that
there is no overlap between the two pointers Y and X [4]. Instead of passing the
weight matrix W as an argument, it is defined in the weights_linear_classifier.h
header file as global memory and then included in the kernel file. The kernels are
launched with only one work-group consisting of 10 work-items, this means that a
call to get_global_id(0) is identical to a get_local_id(0) call.

1 #include "../host/inc/linear_classifier.h"
2 #include "../host/inc/weights_linear_classifier.h"
3
4 #ifndef SIMD_WORK_ITEMS
5 #define SIMD_WORK_ITEMS 2

4.2. ONE HIDDEN LAYER NEURAL NETWORK 23

6 #endif
7 #ifndef NUM_COMPUTE_UNITS
8 #define NUM_COMPUTE_UNITS 2
9 #endif

10
11 __kernel
12 __attribute((reqd_work_group_size(10,1,1)))
13 //__attribute((max_work_group_size(10)))
14 __attribute((num_simd_work_items(SIMD_WORK_ITEMS)))
15 //__attribute((num_compute_units(NUM_COMPUTE_UNITS)))
16 void linear_classifier(
17 // Input and output matrices
18 __global float *restrict Y,
19 __global float *restrict X)
20 {
21 // Global ID index
22 int global_id = get_global_id(0);
23
24 float running_sum = 0.0f;
25
26 for (int k = 0; k < W_x; ++k) {
27 running_sum += W[global_id][k] * X[k];
28 }
29 barrier(CLK_LOCAL_MEM_FENCE);
30
31 // Store result
32 Y[global_id] = running_sum;
33 }

Listing 4.2: Linear classifier kernel code

4.2 One hidden layer neural network

The second network to be implemented was a neural network with one hidden
layer, and each neuron in the hidden layer and the output layer uses sigmoid as
its activation function. The sigmoid function was presented earlier and shown in
Figure 2.2. Same as the linear classifier this network also has ten outputs since it
is the same classification problem, however the hidden layer has 25 neurons. The
input vector is also slightly different from the linear classifier due to the MNIST
images being scaled down to 20x20 here, this is because the network and training
was based on a Coursera course [25]. Similar to the linear_classifier, stochastic
gradient descent was used with 200 iterations.

Figure 4.1 below shows an example of a neural network that is similar to the one
being implemented here. The differences are that the input layer consists of 20x20

24 CHAPTER 4. NEURAL NETWORKS IMPLEMENTATION

= 400 neurons, and the hidden layer 25 neurons. The linear classifier also has the
neurons connected the same way (fully connected), but the input layer is directly
connected to the output layer, and no activation function is used.

Figure 4.1: Example neural network [26].

Host The host program here is very similar to the linear classifier’s version, it is
divided the same way with the same types of functions. However there are some
differences since the image data here is scaled coming from the Coursera course,
also there are two fully connected layers to be executed for each image.

The difference in the image data is that in addition to the size being 20x20, it does
not need normalizing, but otherwise read_mnist() does the same as before.

The context for this neural network with one hidden layer comprises the FPGA
device, a program object, two kernels and three buffers. The linear classifier had
one kernel and two buffers in comparison. A single kernel could also have been
used here, but that would require a small change in the kernel code which will be
explained in the next paragraph. The extra buffer here is a temporary buffer used
to store intermediate results from the hidden layer, and is then used as an input
for the output layer.

Between the two layers or kernel executions it was first considered necessary to

4.2. ONE HIDDEN LAYER NEURAL NETWORK 25

use clEnqueueReadBuffer() and clEnqueueWriteBuffer() to store the intermediate
results, fortunately this is not necessary as the results stays in the buffer. Instead
both the kernels are simply added to the queue. For the linear classifier the number
of work-items was 10, for this neural network two kernels are launched with a
different amount of work-items. The first kernel, representing the hidden layer of
the network need 25 work-items, this corresponds to the 25 neurons in this layer.
Similarly the second kernel requires 10 work-items for the output neurons.

Kernels The two kernels in this neural network is essentially the same as the
linear classifier, but since this is a neural network an activation function has to be
applied to the output. A sigmoid activation is used here and Listing 4.3 shows how
it is defined in the code.

1 #define SIGMOID(x) (1.0f / (1 + exp(-x)))

Listing 4.3: sigmoid activation function in the kernel file

The kernels are split into one kernel for each layer, this has to be done when using
the attributes in Listing 4.4. These attributes specifies the required amount of
work-items in a work-group for the kernel, and they allow the compiler to optimize
the generated hardware. For this neural network the required number of work-
items are 25 and 10 and the NDRange is of only one dimension. If the kernels
is executed with a different NDRange from the host, it would result in an error.
There is also a max_work_group_size(N) attribute which works in a similar way,
but only specifies themaximum number of work-items in a work-group. Note that
this attribute only requires one parameter while reqd_work_group_size(X,Y,Z)
requires the size in each dimension of the work-group. This attribute could be
used here to avoid defining two separate kernels by setting max_work_group_-
size(25) instead.

1 __attribute((reqd_work_group_size(25,1,1)))
2 __attribute((reqd_work_group_size(10,1,1)))

Listing 4.4: Attributes used with neural network kernels

In addition to reqd_work_group_size(X,Y,Z) and max_work_group_size(N), two
attributes shown in Listing 4.2 can be used to control vectorization and CU rep-
lication of the kernels. The num_simd_work_items(SIMD_WORK_ITEMS) can
be used to vectorize the kernel, to use this it is also necessary to specify the re-
quired work-group size which must be divisible with the number SIMD_WORK_-
ITEMS, the number must also be a power of two. The attribute num_compute_-
units(NUM_COMPUTE_UNITS) is used to replicate the compute units. This
attribute must be used with the maximum work group size attribute. Some vari-
ations of these attributes will be tested to see the impact on resource usage and
performance in Chapter 6

26 CHAPTER 4. NEURAL NETWORKS IMPLEMENTATION

4.2.1 Two hidden layer neural network

A neural network with two hidden layers was also implemented to test how the
resource usage varies with increasing neural net sizes. This also used the MNIST
dataset from Coursera and was trained the same way. This network also uses sig-
moid as its activation function, and it uses the same reqd_work_group_size(X,Y,Z)
attribute for the kernels, which means there are three kernels here: two for the hid-
den layers, and one for the output layer. The first hidden layer has 100 neurons,
corresponding to 100 work-items, the next hidden layer has 25 neurons and finally
the output layer has 10 neurons as it is still the same classification problem. A
difference in the kernel here is that the weight matrix is included in the arguments
to the kernel functions. This means that the host has to create buffer objects for
the weights and add the extra argument. However, since the weights are constant,
the arguments can be set outside the execution loop.

Since these neural networks are so similar, only the host code for this neural network
with two hidden layers is added to the Appendix A.1, all the kernels and headers
are added.

Chapter 5
CNN Implementation

While the last chapter focused on implementing neural networks with increasing
complexity, this chapter will present the implementation of a "Wake up word"
CNN. The first part of the chapter describes the architecture of the CNN, and the
latter part discusses the implementation in OpenCL. The live setup code is also
explained. Some source code is listed here, but the rest of the code is in Appendix
A.1.4

5.1 Architecture

The CNN implements a trained network able to recognize a so-called "wake up
word", where the phrase to be recognized is "hey spark". Cisco provided the archi-
tecture and performed the training for this network, and the topology of the CNN
is shown in Figure 5.1. As shown in the figure the network consists of three con-
volutional layers and three fully connected layers. The fully connected layers are
called ip1, ip2 and ip3 in the figure, where ip is the inner product and is the same
as a fully connected layer. In the text the layers will be called FC1, FC2 and FC3
instead. There are no pooling layers in this network, instead the hyperparameter
values of the convolutional layers decides the spatial reduction.

The input to this network is no longer images, fortunately it is still of two di-
mensions similar to an image, in the form of Mel-frequency cepstrum coeffisients
(MFCC), which was explained in Section 2.3. One such input has the size [90×40],
note that while the input data for the networks in the last chapter were flattened
into a column vector, here the data is still treated in its original form. As mentioned
Cisco trained the network, and to do it they used a machine learning framework
called Caffe [9], as a standard way of describing the dimensions of a data object
they use the format: number N x channel C x height H x width W or (N, C, H, W).

27

28 CHAPTER 5. CNN IMPLEMENTATION

Figure 5.1: Topology of implemented wake up word CNN.

N may for instance be the number of filters. C is the depth or number of channels,
for instance in an RGB image C would be 3 due to the three color channels, while
H and W would be the height and width of the image. This format will be used
from now on to describe the various weights and data objects in the network. With
this format the input size is (1, 1, 90, 40).

The CNNs layers will now be described with more detail in this list:

• Layer 1, convolution, C1: Takes an input of size (1, 1, 90, 40), and creates
16 output feature maps with a total size of (1, 16, 25, 17). The 16 filters are
of size (16, 1, 16, 8) and the stride height direction stride_h is 3, and along
the width stride_w is 2.

• Layer 2, convolution, C2: The input here is the output feature maps from

5.2. OPENCL IMPLEMENTATION 29

the last layer of size (1, 16, 25, 17). There is 32 filters in this layer of size
(32, 16, 8, 4) which results in an output of size (1, 32, 6, 7). The strides are
the same as the last layer.

• Layer 3, convolution, C3: The third layer also takes the output from the
previous layer as input. This layer uses 64 filters of size (64, 32, 3, 3). Here
the strides are 1 in each direction, hence the output size is (1, 64, 4, 5).

• Layer 4, fully connected, FC1: This layer is the first fully connected layer
and it takes a flattened version of the output from the previous layer, which
results in a 65 × 4 × 5 = 1280 long vector. The layer has 32 neurons, hence
the weight matrix is of size (1, 1, 32, 1280) and bias (1, 1, 32, 1).

• Layer 5, fully connected, FC2: This layer has 128 neurons, which then
has a weight matrix of size (1, 1, 128, 32) and bias (1, 1, 128, 1).

• Layer 6, fully connected, FC3: The last layer has 2 output neurons which
tells if the correct phrase was spoken. The weight matrix is of size (1, 1, 2,
128) and the bias (1, 1, 2, 1).

Each of the layers, except FC1 and FC3, uses the RelU activation function on every
neuron in the layer. The activation functions are often presented as a separate
layer in architecture overviews, but in the OpenCL implementation they are added
directly in the kernel of a convolutional or fully connected layer. FC1 does not use
any activation function, while FC3 appends a softmax layer on the output, which
is represented as the prob layer in the figure. The softmax layer uses a softmax
function to normalize the set of outputs, so they add up to 1. This way their
values represent probabilities. In addition to the softmax layer, drop-out layers
(drop layers in the figure) was used during training of the network, the drop-out
layer is used to prevent overfitting. However these layers are not necessary during
inference of the network, and are therefore not mentioned in the list above or
implemented.

5.2 OpenCl implementation

This section will explain the implementation of the wake up word CNN and the
infrastructure making it easy to configure the networks architecture.

Host Since host files generally does the same tasks, which mainly includes initial-
izing and execution of kernels, the overall structure of this host program is similar
to those described earlier.

The first task performed is preparation of the data objects, this is done in the
function prepare(). It is similar to read_mnist(), but in addition to reading input
data, it also reads weights and biases, and a golden reference for verification. All
this information is stored in binary files of the numpy format since the training was

30 CHAPTER 5. CNN IMPLEMENTATION

done with Caffe in python. In order to read these files a library called cnpy [29]
was used. The included method npy_load(filename) returns a struct containing
shape information and the data of the numpy array. The data part of these structs
are copied into 64 byte aligned memory objects using memcpy(). In addition to
the data, information about the sizes of the various arrays are also stored for use
later in the program.

The next part of the host is initialization, this is still done in a function called
init_opencl(). The memory objects created here are: input and output buffers as
usual, there are also a weight and bias buffer for each layer, and lastly between the
layers two temporary buffers are used. The temporary buffers will hold varying
amount of data, hence a TMP_BUF_SIZE constant is used, and it needs to be
set to the maximum buffer size needed. For this architecture it is 6800, which is
the total size of the output from the first layer. Two kernel objects are created, one
for each kernel type, that is the convolution kernel and the fully connected kernel.
There are also separate command queues for each kernel.

The idea of the application is to run constantly and listen for the phrase "hey spark"
to get live wake up word detection, hence the main part of the run() function is
placed inside an infinite while loop. The current version of this live setup is not
optimal however since it requires one to speak at certain times in order to record the
voice. A new voice input is read at the beginning of each iteration of the while loop,
more details on how this is done is described in Section 5.2.1. Further each layer
is executed in a loop with num_layers iterations, where the first part of the loop
body involves setting the arguments of the current layer. If it is the first layer the
input is written to input_buf, then for the convolution layers the taskconv kernel is
executed with cLEnqueueTask() since it is a single work-item kernel. The ndrconv
kernel is executed as an NDRange kernel as earlier. And for the fully connected
layers, the kernels are executed in the same way as the neural networks with the
appropriate number of work-items. Weights and biases are now arguments to the
kernels, while the weights were included as headers in the neural networks. They
must therefore also be written to the kernels. After the execution of each layer
in the CNN, the output buffer is read, and if the second output element is higher
than the first element, then the network considers the recorded phrase to be the
wake up word. There is also a verification function, but it is only necessary when
using test input to test against the golden reference.

To ease the readability and generalization of the code, an enum called config_-
item and an array called layer_config are introduced, inspired by PipeCNN [35]
mentioned in Section 3.2. The array contains information about each layer, e.g. the
type of the current layer or the dimensions of the data. Listing 5.2 shows a part of
the layer_config array with the values for the first convolution layer. These values
are used in various parts of the host file and as arguments for the kernels. The
config_item enum shown in Listing 5.1 gives names to the indices of the layer_-
config array, which makes the code easier to read. Also this implementation makes
it easy to try various CNN architectures or to test separate layers in order to verify
correct behaviour.

5.2. OPENCL IMPLEMENTATION 31

1 enum config_item{
2 layer_type,
3 type_num,
4 data_h, data_w, //data_n,
5 weight_n, weight_c, weight_h, weight_w,
6 conv_h, conv_w, conv_stride_h, conv_stride_w,
7 relu_on,
8 memrd_src,
9 memwr_dst

10 };

Listing 5.1: Layer config enum

1 unsigned int layer_config[][15] = {
2 { // C1
3 0,
4 1,
5 90, 40,
6 16, 1, 16, 8,
7 25, 17, 3, 2,
8 1,
9 0,

10 2
11 }
12 };

Listing 5.2: Layer config example showing configuration for first layer

Kernels The CNN is implemented using two kernels, one kernel is the fully con-
nected kernel, which is almost the same as the kernel used in the neural networks,
but there are some differences. First of all the activation function used here is
RelU instead of sigmoid, Listing 5.3 shows its definition in code. Since not all of
the layers require RelU, an argument relu_on is used to control this, in addition
to this argument W_width is passed to set the loop limit. Input, output, weights
and bias are also arguments in the fully connected kernel as well as the convolution
kernel. The convolution kernel also has several arguments that controls the layers
stride, filter size, input and output sizes, etc.

1 #define RELU(x) (x > 0 ? x : 0)

Listing 5.3: RelU activation function in the kernel file

Listing 5.4 below shows the convolution kernels code. The kernel performs the
convolution with the use of six loops, where the multiply accumulate operation of
the dot product is performed in the inner loop. The bias is added and RelU applied
in the third loop since the three first loops iterates the output neurons. Since the
data is transferred as 1D arrays the indexing gets somewhat complicated.

32 CHAPTER 5. CNN IMPLEMENTATION

This is not an optimal solution since it does not utilize any parallelism and the
data is not buffered, but it was necessary to implement a basic convolution kernel
achieve a functional CNN. This kernel does not support padding since it would be
difficult to test without having a CNN that requires padding.

1 __kernel
2 __attribute__((task))
3 void taskconv(
4 // Params Ports
5 unsigned in_h,
6 unsigned in_w,
7 unsigned out_c,
8 unsigned in_c,
9 unsigned K_h,

10 unsigned K_w,
11 unsigned out_h,
12 unsigned out_w,
13 unsigned S_h,
14 unsigned S_w,
15 unsigned relu_on,
16
17 // Data Ports
18 __global float *restrict output,
19 __global float *restrict input,
20 __global float *restrict weights,
21 __global float *restrict bias
22)
23 {
24 unsigned filter_size_2d = K_h * K_w;
25 unsigned filter_size_3d = filter_size_2d*N;
26
27 unsigned ifm_size = in_h*in_w;
28 unsigned ofm_size = out_h*out_w;
29
30 float running_sum = 0.0f;
31
32 for (unsigned row = 0; row < out_h; row++) { // output

rows
33 for (unsigned col = 0; col < out_w; col++) { // output

cols
34 for (unsigned to = 0; to < out_c; to++) { // output

feature maps
35 for (unsigned ti = 0; ti < in_c; ti++) { // input

feature maps
36 for (unsigned i = 0; i < K_h; i++) { // filter

height

5.2. OPENCL IMPLEMENTATION 33

37 for (unsigned j = 0; j < K_w; j++) { // filter
width

38 running_sum += weights[to*filter_size_3d + ti

*filter_size_2d + i*K_w + j] * input[ti*
ifm_size + (S_h*row + i)*in_w + (S_w*col +
j)];

39 } // j
40 } // i
41 } // ti
42 running_sum += bias[to];
43 if (relu_on)
44 output[to*ofm_size + row*out_w + col] = RELU(

running_sum);
45 else
46 output[to*ofm_size + row*out_w + col] =

running_sum;
47 running_sum = 0.0f;
48 } // to
49 } // col
50 } // row
51 }

Listing 5.4: Convolution kernel

In addition to the taskconv kernel, a ndrconv kernel was also attempted. Its code is
not listed here, but its implementation is similar to fully connected layers with only
one loop. While the taskconv kernel is a task, the ndrconv is a NDRange kernel
that allows kernel replication and vectorization.

5.2.1 Getting it live

In order to test the wake up word implementation in a realistic setting, it was
desirable to run with live recording. This gives both an easy way to test the
network with various inputs, and it shows how responsive the implementation is.
To implement this requires a way to record the voice of a speaker and then do some
preprocessing on the recorded audio input.

Preprocessing The preprocessing is covered first since the recording part de-
pends on it. Fortunately Cisco provided an executable file that performs the pre-
processing, it takes a 48 kHz Waveform Audio File Format (WAV) file as input
where each sample is a 32-bit float. The exexutable will generate a binary file con-
taining 40 MFCCs for each 10ms frame, this means that a WAV file that is 900ms
long yields the desired [90× 40] input for the CNN. In code, the executable is run
as shown in Listing 5.5:

34 CHAPTER 5. CNN IMPLEMENTATION

1 system("./mfcc_preprocess --input voice_rec.wav --output
voice_rec_mfcc");

Listing 5.5: Execute preprocessing file

Recording To record audio a library called PortAudio [28] was used. PortAudio
is free, cross-platform and open-source, which make it suitable for use on both
CentOS 7, which is used here and other operating systems. A function record_-
audio(float* recorded_samples) was made to be called from the host file when a
new input is required. The function utilizes PortAudio’s blocking read function
presented in Listing 5.6 below:

1 PaError Pa_ReadStream(PaStream* stream,
2 void* recorded_samples,
3 unsigned long total_frames
4)

Listing 5.6: PortAudio blocking read function

Prior to this function call it is necessary to call Pa_OpenStream() that opens a
stream with the desired behaviour, in this case: blocking read, a sample rate of 48
kHz, 1 audio channel and float32 data type. Next Pa_StartStream() commences
audio processing on the opened stream object. After these two functions are called
the Pa_ReadStream() function is called with total_frames = 0.9s × 48kHz, the
samples will be stored in the recorded_samples array and is ready to be written to
a WAV file. Finally the stream is closed with Pa_CloseStream().

Write to WAV Since the preprocessing executable requires a WAV file as input,
it was necessary to find a way to do this. There probably exists good libraries
to achieve this, but doing it without a library was probably just as easy. Figure
5.2 shows the format of a simple WAV file, some extensions with more sub-chunks
exists, but they were not necessary here. A function write_wav() was created
and is called from the host application when the recorded audio data is ready to
be written. Each field in the header part of the WAV format from Figure 5.2
(everything except the data) is declared in a struct. Then in the write_wav()
function each field of the struct is given the appropriate value for this application.
After the header fields are set, the WAV file is simply created by first writing the
header to a binary file and then the recorded audio samples to the same file.

The code for the write_wav() function and the read_audio() function is included
in Appendix A.1.5.

5.2. OPENCL IMPLEMENTATION 35

Figure 5.2: WAV format [2].

36 CHAPTER 5. CNN IMPLEMENTATION

Chapter 6
Results and Evaluation

This chapter will present and evaluate the results achieved with regards to resource
usage and performance. However, first the experimental setup is described and how
the results were retrieved is explained. A comparison with a GPU implementation
is also included.

6.1 Experimental setup

The FPGA used to test the OpenCL kernels is an Arria 10 GX FPGA Development
Kit ES3 from Intel, it is depicted in Figure 6.1. As stated earlier the Intel FPGA
SDK for OpenCL is necessary to develop OpenCL applications for the FPGA, along
with the SDK, Quartus Prime Pro is also necessary since it is used as a part of
the compilation process. Due to the FPGA used, the newest version of the SW
possible to use was 16.0.2.222.

The Arria 10 is the latest FPGA in the Arria series and is built on 20 nm technology,
which is considered to be the mid-range series from Intel FPGA. Table 6.1 shows
the resources available on the FPGA.

The Adaptive Logic Module (ALM) is the basic building block of the FPGAs lo-
gic fabric, it uses an 8-input Adaptive Look-Up Table (ALUT) together with four
registers and two adders to implement various logic. The 8-input ALUT can be
configured to implement different functions, e.g. two independent 4-input func-
tions, or a 5-input and 3-input function, and thus has the flexibility to implement
up to 2.5 Logic Elements (LEs), [16] and [3]. In addition to the ALM and its
registers and LEs, the other relevant resources are the memory blocks M20K and
Memory Logic Array Block (MLAB), and the DSPs.

37

38 CHAPTER 6. RESULTS AND EVALUATION

Figure 6.1: Arria 10 GX FPGA Development Kit [15].

The Arria 10 device has a Peripheral Component Interconnect Express (PCIe) 3.0
x8 connector which is used as the interface to the host computer. Since PCIe 3.0
or Gen3 is backwards compatible it supports speeds from 20 Gbps full-duplex for
Gen1, and up to 64 Gbps full-duplex for Gen3 [5]. In order to fully utilize the
maximum transfer speed, the host computer must also support PCIe 3.0.

One of the main advantages of using the Intel FPGA SDK for OpenCL compared
to other HLS solutions such as Intel HLS Compiler, is that the logic necessary
to communicate with the host computer is already implemented in the form of a
Board Support Package (BSP).

The performance of the OpenCL implementation is compared with a GPU imple-
mentation of a CNN. The GPU used for this was a NVIDIA Tegra X1 which is a 20
nm mobile processor with 256 GPU cores based on NVIDIAs Maxwell architecture
[27].

6.2 Compiling and retrieving results

To compile a set of OpenCL kernels the command in Listing 6.1 is used, this creates
the .aocx file that the host loads and uses to program the FPGA. Compiling with
the -g option gives a detailed area breakdown by source line in the resulting area
report. The host program is compiled with g++ since it is an ordinary C++
program

1 $ aoc -v -g --report --board a10gx_es3 device/kernels.cl -o
bin/kernels.aocx

Listing 6.1: Compilation command

When a project is compiled it is possible to get a utilization report with estimated
values for the kernels, this is done with the command below in Listing 17. It is

6.3. RESOURCE UTILIZATION 39

Resource #
Logic Elements (LE) (K) 1,150
ALM 427,200
Register 1,708,800

Memory (Kb) M20K 54,260
MLAB 12,984

Variable-precision DSP Block 1,518
18 x 19 Multiplier 3,036

PLL Fractional Synthesis 32
I/O 16

17.4 Gbps Transceiver 96
GPIO 768
LVDS Pair 384
PCIe Hard IP Block 4
Hard Memory Controller 16

Table 6.1: Arria 10 GX resources [16]

this report that shows the detailed area breakdown when compiling with the -g op-
tion. In addition to this report the standard reports from Quartus is also available
after the .aocx file has been generated. These reports are called top.fit.place.rpt
and top.fit.summary. Resources taken up by the BSP is found in a file called
base.fit.summary.

1 $ aocl analyze-area bin/cnn.aocx

Listing 6.2: Analyze area command

6.3 Resource utilization

This section presents the resource utilization results from the different implemented
networks. As mentioned in the last section the resource utilization was found
mainly in the top.fit.place.rpt, while the detailed estimated reports was helpful to
evaluate the results. It should be noted that the resource results presented here
only shows the utilization for the kernels, the total resources used are much higher
since that includes the BSPs usage and extra resources required. Table 6.6 shows
the total resource usage for the biggest design.

As previously stated the synthesized resource results also includes other necessary
logic on the board, such as the BSP. Hence the results in Table 6.2 is much higher
than those from the previous table.

40 CHAPTER 6. RESULTS AND EVALUATION

6.3.1 Neural nets

Each design was compiled with some variations of the attributes mentioned in
Section 4.2.

Linear classifier The linear classifiers resource utilization is presented in Table
6.2. The table shows the resources used for the various attributes, in the SIMD2
column the kernel uses num_simd_work_items(2) in order to execute two work-
items in parallel and in the same CU. The 2 CU column on the other hand
uses num_compute_units(2) to generate two separate CUs. Both should increase
throughput but at the expense of more resources being utilized.

The resource utilization of the linear classifier shows that the standard implementa-
tion and SIMD2 uses a similar amount of resources, however one expected difference
is that the amount of DSPs is doubled, due to the amount of parallelization. This is
the same for the 2 CUs implementation. A big portion of the BRAM and memory
bits used is due to a 2048 kilobit cache being generated. This cache is generated
when a global load operation is performed [4], which happens at line 27 in Listing
4.2. The amount of BRAM is doubled for the 2 CUs implementation, and the
resource utilization overall is basically doubled, this is logical since the extra CU
requires the same amount resources as the original CU.

Version ALM Register BRAM DSP Memory bits
Standard 2,195 4,501 45 2 319,488
SIMD2 2,624 4,775 45 4 540,672
2 CUs 4,620 9,110 90 6 638,976

Table 6.2: Linear classifier resource utilization

One hidden layer The resources for the implementation of a neural network
with one hidden layer is presented in Table 6.3. The table divides the resources
between the two layers in the network, namely the hidden layer and the output
layer, which implements 25 and 10 neurons respectively.

Version Layer type ALM Register BRAM DSP Memory
bits

Standard Hidden 2,703 5,607 65 15 596,480
Output 2,710 5,573 36 15 95,488

SIMD2 Hidden 2,773 5,604 65 15 596,480
Output 3,652 7,190 24 30 107,648

2 CUs Hidden 5,438 11,296 130 32 1,192,960
Output 5,516 11,256 72 30 190,976

Table 6.3: One hidden layer NN resource utilization

6.3. RESOURCE UTILIZATION 41

The same tendencies as for the linear classifier can be seen here, for instance when
using the num_compute_units(2) attribute, all the resources are approximately
doubled, and the output layer in the SIMD2 version shows some increase in re-
sources and a doubling of the DSPs. However since the hidden layer for this net-
work has 25 neurons it cannot be vectorized with num_simd_work_items(2), thus
the resources used by this layer is the same as the standard implementation. The
biggest change in this network is the addition of the sigmoid activation function, it
causes the amount of DSPs to increase from 2 to 15 in the linear classifier. This is
well within the total number of DSPs on this Arria 10 FPGA (see Table 6.1), but
when optimizing a neural network it may be desirable to increase the parallelism
more than tested here, which could quickly consume a big part of the available
DSPs.

Another thing to note is that the BRAM and memory bits usage is lower in the
output layer than the hidden layer, this is caused by the loop limits being defined
at compile time for this neural network and the linear classifier, which means that
the global load operation requires a smaller cache.

Two hidden layers Table 6.4 shows the resource utilization for the third imple-
mented neural network, which has three layers, two hidden and an output layer.
The layers implements 100, 25, and 10 neurons in that order.

Version Layer type ALM Register BRAM DSP Memory
bits

Standard
Hidden1 4,481 7,510 154 17 2,167,808
Hidden2 4,301 7,432 153 17 2,164,736
Output 4,425 7,333 153 17 2,164,224

SIMD
max

Hidden1 10,240 17,338 366 68 5,622,912
Hidden2 4,453 7,435 153 17 2,164,736
Output 6,353 10,657 210 34 3,238,272

2 CUs
Hidden1 8,082 14,716 204 34 2,191,616
Hidden2 7,967 14,673 200 34 2,180,096
Output 8,024 14,514 200 34 2,180,096

Table 6.4: Two hidden layer NN resource utilization

The kernels implementing the layers here has some differences compared to the last
two networks, here both the weights and the loop limit are passed as arguments
instead of being defined in a header. Due to this change the weight array must
be indexed as a 1-dimensional array which requires an extra multiplication and an
extra DSP some probably some extra logic. Also since the loop limit is no longer
known at compile time, extra resources is used to accommodate a variable limit.
The table shows a significant increase for all the categories except the DSPs which
only increased by 2, however this was expected due to the indexing of the weight
array.

42 CHAPTER 6. RESULTS AND EVALUATION

Since the first hidden layer has 100 neurons it was possible to use a vectorization
factor of 4 instead of 2. The second layer has 25 neurons and can not be vectorized,
and the output layer has 10 neurons which allows a vectorization factor of 2. The
SIMD max row shows a very high increase in resources for the vectorized layers,
the DSP amount is expected, but the usage of ALMs and registers seems strangely
high. However by reviewing the detailed estimation report, it seems most of the
resource increase is caused by the extra logic surrounding the global loads, and for
increased vectorization it is obviously necessary with more loads.

The extra CU gives an expected doubling of resources as shown on the 2 CU
row.

6.3.2 CNN

The implemented CNN consists of 6 layers, 3 convolution layers and 3 fully connec-
ted layers. Figure 5.1 shows the CNNs architecture. In the previously considered
neural networks each layer had its own OpenCL kernel, although it was not neces-
sary to implement the networks this way, instead the same kernel could have been
used for each layer. For the CNN it was desirable to have a generalized implementa-
tion, which can be used for CNNs with different architectures, hence the two kernel
types does not use reqd_work_group_size(x,y,z) or max_work_group_size(n) to
limit the number of work-items. This also means that num_simd_work_items(n)
can not be used to vectorize the kernels.

Table 6.5 shows the resource utilization of the CNN with some variations. The
first version in the table uses the convolution layer implemented as a task or single
work-item kernel, and can therefore not be vectorized or replicated. The other
versions uses the convolution layer implemented as an NDRange kernel, since the
convolution layer does most of the computation, it is the only layer tested with
varying number of CUs. The fully connected, FC layers were not changed across
the versions, this is shown in the table as the FC layers resources are almost
identical.

Version Layer
type ALM Register BRAM DSP Memory

bits

Task conv FC 3,964 7,069 117 5 1,463,808
CONV 11,658 25,581 110 23 1,523,456

NDRange
conv

FC 3,968 7,083 117 5 1,463,808
CONV 7,010 13,534 140 23 2,162,176

NDRange
conv 2 CUs

FC 3,974 7,083 117 5 1,463,808
CONV 13,293 25,256 280 46 4,324,352

NDRange
conv 4 CUs

FC 4,000 7,082 117 5 1,463,808
CONV 26,181 48,795 560 92 8,648,704

Table 6.5: CNN resource utilization

6.4. PERFORMANCE 43

In the previously mentioned neural networks the sigmoid activation function was
used, this resulted in an increase of DSP usage compared to the linear classifier. For
this network the activation function is RelU, and it does not require DSPs as it only
performs a comparison, this is reflected in the number of DSPs used here. Instead,
most of the DSP usage comes from the complicated indexing, some variables that
are calculated and the dot product calculation. Interestingly both the task based
convolution kernel and the NDrange convolution kernel use the same amount of
DSPs, however despite the difference in implementation, they use almost the same
variables and the dot product is similarly calculated.

The table shows that the task based convolution kernel uses more ALMs and re-
gisters than the NDRange version without replication. A lot of the resource usage
for both kernels seems to come from the global load operation, which then includes
the necessary indexing logic. In addition all the loops with variable limits in the
task based version is most likely the reason to the extra logic resources used. The
BRAM and memory bits usage is somewhat higher for the NDRange kernel, but
it is not clear why. The other two versions with 2 and 4 CUs of the NDRange
convolution kernel gives the expected increase in resource utilization.

Table 6.6 shows the total resource utilization and the percentages of the total
available resources on the Arria 10 FPGA board used. The total resources consists
of resources the kernels use and extra logic surrounding the kernels. The BSP usage
is also included and amounts to a relatively large portion of the total usage.

ALM Register BRAM DSP Memory
bits

Total 123,589 (29%) 206,342 (12%) 1,140 (42%) 99 (7%) 13,823,124
(25%)

Table 6.6: Total resource utilization for NDRange conv 4 CUs

6.4 Performance

This section shows the performance of the different neural networks and discusses
the impact of the different attributes that were tested.

6.4.1 Neural nets

As before, the initial neural networks and the linear classifier is considered first.
When testing the performance of these networks it was found that the num_-
simd_work_items(n) and num_compute_units(n) attributes had no effect, and
the extra CUs even made the performance worse depending on the work-group
size. It is hard to know exactly why the increased parallelism did not help, but

44 CHAPTER 6. RESULTS AND EVALUATION

since the amount of processing done by each work-item and the number of work-
items in the layers is quite low, it is likely that these attributes only creates more
overhead. Especially when using several CUs, which requires a hardware scheduler
in the FPGA to dispatch the work-groups [4], a low amount of work-items and thus
small work-groups gives a lot of unnecessary overhead.

Since these attributes gave no improvements Table 6.7 displays the results from
the standard implementation, which then represents the best results for each net-
work. Each of the networks tests 500 images from the MNIST dataset, however
as explained in Chapter 4 the linear classifier takes 28x28 input images and the
other two networks uses a scaled down version of the images with size 20x20 as
input.

Layer num Linear
classifier

One
hidden
layer

Two
hidden
layers

Avg. kernel times
1 0.055ms 0.0473ms 0.169ms
2 - 0.0128ms 0.0416ms
3 - - 0.0196ms

Total kernel time 27.5ms 30ms 111ms
Total wall time 36ms 62ms 180ms

macs 3,920,000 5,125,000 21,375,000
Mmac/s 108.9 82.7 118.9

Table 6.7: Neural networks performance

The total wall time in the table represents the time it takes for the host to start
executing the kernels and wait until they are finished. The total kernel time on
the other hand is the total execution time of the kernels, which is retrieved using
the clGetEventProfilingInfo() API call. The separate kernels or layers average
execution time also uses this method. The performance is also measured in mac/s,
where a mac is the multiply–accumulate operation. The number of mac operations
per layer in the networks is calculated by Equation ??:

mac_per_layer = input_size ∗ output_size ∗NUM_IMAGES (6.1)

The total number of macs and the performance in Mmac/s is shown in the table.
The performance is highest for the network with two hidden layers, this is probably
because the first layer is allowed to do the highest amount of processing per kernel
invocation, thus reducing the overhead. By looking at the difference between the
total kernel times and total wall times, it is apparent that each kernel execution
causes a significant overhead. The total kernel time for the linear classifier and one
hidden layer network, shows that they perform a similar amount of computation,
but the total wall time is much higher for the one hidden layer network which has
two layers.

6.4. PERFORMANCE 45

6.4.2 CNN

Table 6.8 shows the performance of the CNN implementation with the two different
convolution layer types and extra CUs for the NDRange version. For these networks
only a single test were run to measure the performance.

The task based version has the worst performance, which was expected due to
its implementation. The first NDRconv version was also expected to have similar
results since both versions use a single CU, but there is a difference of 5ms, which is
a considerable time here. However, the NDRange convolution kernel has a simpler
implementation which is also reflected in the resource utilization presented earlier,
hence it is probably easier for the compiler to create a kernel requiring less cycles
per mac. Increasing the number of CUs for the previous networks had no impact
and even made the performance worse. For the NDRange convolution kernel on
the other hand, doubling the amount of CUs almost halved the total kernel time.
Increasing to 4 CUs almost halved the total kernel time again, but for the total
wall time, the overhead of executing kernels becomes a bigger part of the execution
time. These observations fits well with the reasoning made in the last section, for
those networks there were probably too few work-items and work-groups to utilize
the parallelism, in the convolution layers used here however, there are a lot more
work-items and data to process.

Layer num Task conv NDRconv 2 CUs 4 CUs

Kernel
times

CONV1 4.35ms 3.33ms 1.62ms 0.874ms
CONV2 4.51ms 2.62ms 1.33ms 0.691ms
CONV3 4.19ms 1.48ms 0.757ms 0.4ms
FC1 0.202ms 0.204ms 0.196ms 0.237ms
FC2 0.035ms 0.0399ms 0.0319ms 0.0531ms
FC3 0.0387ms 0.0343ms 0.0283ms 0.0592ms

Total kernel time 13.3ms 7.71ms 3.96ms 2.31ms
Total wall time 14.9ms 9.34ms 5.46ms 3.66ms

macs 1,972,480
Mmac/s 132.4 211.2 361.3 538.9

Table 6.8: CNN performance

The number of macs for the fully connected layers are calculated with Equation
6.1, for the convolution layers Equation 6.2 is used:

mac_per_layer = out_h∗out_w∗filter_h∗filter_w∗channels_in∗channels_out
(6.2)

46 CHAPTER 6. RESULTS AND EVALUATION

6.5 Comparison

Since GPUs has been the go-to device for implementation of CNNs recent years,
it is natural to compare the FPGA implementation with a GPU implmementa-
tion.

Performance To do this Cisco ran a bigger CNN on a NVIDIA Tegra X1 GPU.
One classification for this network takes 26.38M macs, and the Tegra X1 chip
performed this in about 2.2 ms. This results in 11.99 Gmac/s, while the best
performing FPGA implementation made here reached about 0.54 Gmac/s. That
means the GPU implementation is 22.2 times faster. It should also be noted that
since the networks are so fast, the times may vary somewhat. Hence, using a bigger
network when testing, especially on the GPU, gives more accurate results.

Cost Comparing the cost between using FPGAs or GPUs is difficult due to sev-
eral reasons. First of all, both devices come in many different types, from low end
to high end devices. The Tegra X1 for example is a high end mobile processor
with a GPU, but since it is a mobile processor it is a relatively low end GPU com-
pared to a NVIDIA Tesla P40 for instance. The Tesla P40 is a high end maximum
throughput GPU from NVIDIA, especially designed for deep learning inference,
the price for this GPU is around 5700$ according to this site [33]. On this site [7]
the Tegra X1 module price is 400$. On the FPGA side, the smallest Arria 10 GX
160 has a price of 320$ according to [6]. Although it is possible to find some prices,
these prices may vary for companies ordering large quanta, they do however, give
an indication of the devices cost.

The solution from this project is far from an optimized solution which also makes
it hard to do a performance/cost comparison it with the GPU implementation.
Some points to note though is that the available resources of an Arria 10 GX 160,
which seems to be at a similar price point as the Tegra X1, is a lot less than the
one used in this project, Arria 10 GX 1150. While the Arria 10 used here has 2713
M20K memory blocks available, the GX 160 only has 440 [14], this is less than
the 4 CU version the CNN design uses, which is 677 just for the OpenCL kernels.
In addition to this a more optimized design will likely use even more resources to
achieve competing performance with GPUs. Therefore bigger and more expensive
FPGAs than the GX 160 will be necessary.

Power It was also desirable to include a comparison of power usage between
the GPU and the FPGA. Intel provides a program called Board Test System [15]
which includes a power monitor, unfortunately due to problems with this program,
a power measurement from the Arria 10 was not performed.

Chapter 7
Discussion

This chapter discusses the achieved solution and the project tasks. The results are
also discussed with thoughts on improvements.

7.1 Project tasks

The main goal of this project was to implement an infrastructure to test various
neural networks and then finally a CNN that is used to recognize a "wake up word".
And also ideally it should be generalized to any CNN application or architecture. In
order to have the implementation adaptable for various neural networks, the CNN
host file uses the layer_config array explained in Section 5.2 to set the properties
for a network. This setup can be used to implement networks containing convo-
lution layers and fully connected layers with different variations. Specifically for
the convolution layer, parameters such as filter size and strides can be controlled.
These layers and their parameters was able to implement the wake up word CNN
architecture provided by Cisco, however some other architectures may require other
layers and properties. Hence the solution is not fully generalized.

To make the solution more generalized, one feature that should be added to the
convolution layer is padding, this allows the spatial size of the input to be preserved
on the output. There is also the pooling layer, which is not implemented here, but
is used in some CNNs to reduce the size of the output feature maps. According
to [31] there are many that thinks the pooling layer is not really necessary since
convolution layers with larger strides can also be used to reduce the size, but for a
generalized CNN framework a pooling layer should be available.

There was also a point to provide an easy way to feed patterns to the network.
For the live wake up word implementation inputs are simply fed into the network

47

48 CHAPTER 7. DISCUSSION

from a recording microphone. If not using it live and instead using test inputs, the
name of the input file must be set in the host file source code. With regards to the
networks’ weights, they are read from .npy files containing numpy arrays, this is
a practical format since many machine learning frameworks that are used to train
neural networks use Python and numpy. Weights for other networks should follow
the same naming scheme as used here, this makes it easy to control each layers
weights and initialize them in the host application. Although there are probably
other good ways to do this. Presenting or using the results is very application spe-
cific, hence the results are read and verified for test inputs with a golden reference.
For the live wake up word version there are only two outputs which is used to check
whether the correct wake up word was recorded or not.

7.2 Results and improvements discussion

The results presented in the last chapter showed that the CNN implementation was
able to classify one input in about 3.66 ms. When comparing this against a GPU
implementation, it was found that the GPU was 22 times faster. Also considering
the total amount of resources used shown in Table 6.6, it is apparent that there is
room for improvements, both by optimizing the resources used and better utilizing
the available resources on the FPGA.

For the live wake up word version, the total time after the word has been said takes
around 14 ms. This extra time comes from the preprocessing part when reading
a new input, and equals about 10 ms since the CNN uses around 3.66 ms. Since
this wake up word implementation is a practical application that should interact
with a person, it is natural to consider how 14 ms is perceived by humans. A
good comparison for this delay is the time between frames on a standard computer
monitor, which is 1/60 Hz = 16.67 ms and thus is higher than the CNNs delay.
That means the result from the wake up word CNN should be available on the next
frame. 60 Hz is a relatively high refresh rate, hence a somewhat slower classification
time should also be acceptable.

Although one can evaluate the speed of this network to be adequate as a wake up
word application and probably other applications, improving the implementation
is desirable. Chapter 3 presented some related work where for example Intel’s DLA
[8] was able to achieve 1,382 GFLOPS on an Arria 10 device. Their architecture,
shown in Figure 3.1, is able to compute all the layers of a CNN without having
to execute the kernels multiple times, this is done with the help of the Sequencer
kernel and using the Intel FPGA channel extension to keep data on the chip.

The PipeCNN [35] architecture also used the Intel FPGA channel extension to
communicate feature data and weights between the 4 main kernels. However in
comparison to Intel’s solution, PipeCNN needs to read and write back data between
each convolution layer and fully connected layer. And then also re-execute the ker-
nels for each layer, same as it is done here. Anyway keeping as much as possible of

7.2. RESULTS AND IMPROVEMENTS DISCUSSION 49

the computation and data on chip and without host interaction is an improvement
that should be considered for this implementation.

For a GPU it is normal to store batches of samples before processing it, due to time
demanding context switches, this helps to minimize memory accesses and executing
its tasks as fast as possible. The downside of this batching is that it adds latency
since it has to wait for samples. An FPGA on the other hand can process incoming
samples as soon as it is ready, this difference makes the FPGA more suitable for
low latency applications. The implementation does however need to utilize this
advantage. The implementation done here as well as PipeCNN, needs to execute
the kernels for each layer and also for new inputs, which means that a new input is
processed as soon as the prior is finished, but each execution call adds extra delay.
Tables 6.7 and 6.8 shows this delay. As mentioned the classification time for the
wake up word CNN is about 3.66 ms, which is less than the preprocessing time at
around 10ms. The current input will therefore be finished processing before a new
input is ready, meaning the execution delay is acceptable for this application.

The FINN [34] framework took a different approach by implementing BNNs in-
stead of traditional CNNs with 32 bit floats. Advantages of using BNNs is higher
classification speeds, less resource usage and since weights are binary they require
less storage capacity. Instead of using Intel FPGA SDK for OpenCL, they used
Vivado HLS to make the framework. Vivado HLS has the ability to define new
data types with arbitrary precision [38], which is useful for applications such as a
BNN, and to save FPGA resources. The Intel FPGA SDK for OpenCL version
used here (16.0.2.222), supports data types down to 8 bits. It is also possible to
use bit masking and then let AOC disregard the unnecessary bits [4], whether this
is suitable to implement a BNN is unknown. Fortunately in version 17.0 support
is added for arbitrary precision integers [17]. The FINN paper points to research
that shows neural networks can accurately classify with reduced precision weights
and activations. For many applications somewhat reduced accuracy may be ac-
ceptable, hence using a similar approach as FINN might be a good direction to
improve performance.

50 CHAPTER 7. DISCUSSION

Chapter 8
Conclusion

The work presented in this thesis has resulted in an infrastructure that is capable
of testing various neural networks. Different network architectures can be easily
configured in a header file by setting parameters such as sizes and number of layers.
The two most important types of layers for a CNN were implemented, namely the
convolution and fully connected layers. The Intel FPGA SDK for OpenCL was used
to implement the OpenCL kernels and host code, and to perform full compilation
of the code to a final FPGA image. An Arria 10 GX FPGA was used to test the
implemented neural networks.

The "wake up word" CNN that was implemented gave correct results for two
provided test inputs. In addition a way to record audio and perform the necessary
preprocessing was added, with this it was possible to test the implementation in
a live setup, running the CNN on the FPGA and speaking directly to it. This
made testing with different inputs easier and further verified correct behaviour of
the CNN. The addition of live testing was not a main goal of the project, so more
can be done to make it work more optimally alongside the CNN. It was however
useful to test the network in a more realistic setup to see the extra delay from the
preprocessing.

Before the CNN was implemented, three smaller networks was created as a mean to
find out how to properly do several layers and try the impact of some optimization
techniques. It was found that since these networks processed a small amount
of data per execution, the attributes increasing the parallelism had zero impact
on performance, or even made it worse. For the CNN on the other hand, extra
parallelism increased the performance in mac/s from 211.2 Mmac/s with 1 CU to
538 Mmac/s with 4 CUs. This resulted in the best classification time of about 3.6
ms. Comparing it to a CNN running on the NVIDIA Tegra X1 GPU, the GPU was
22.2 times faster with 11.99 Gmac/s. The live wake up word version used about
14 ms with preprocessing and classification. This time is considered acceptable for

51

52 CHAPTER 8. CONCLUSION

this application.

A comparison between the prices of GPUs and FPGAs was also discussed. However,
it is difficult to find out what the normal price points are for these devices, espe-
cially considering prices are usually lower when ordering in large quanta. Some
prices found along with the resources used, may indicate that bigger and more
expensive FPGAs will be necessary to create highly optimized CNNs. Due to
difficulties measuring power usage on the FPGA a power comparison was not per-
formed.

8.1 Future Work

A natural way forward will be to improve the performance of the CNN, to do this
the most impactful layer in a CNN, the convolution layer, should be the main focus.
As discussed earlier, keeping as much of the computation and data movement on
chip will be important. Intel FPGA’s channel extension is one way to move data
between kernels. The OpenCL standard provides pipes that also may be used,
an advantage of these are that they can be used for other platforms as well. In
addition buffering of data should also be implemented. Although some parallelism
was used, there were still available resources on the Arria 10, hence utilizing more
of these resources by for example increasing the parallelism of the kernels should
be explored.

The solution should be generalized further by implementing a kernel for pooling
layers and also adding support for padding in the convolution layers. Layers for
normalization and softmax can also be considered.

Another route, but still relevant to the previously mentioned improvements, is to
explore the use of fixed point data types with reduced precision, for example 8 or
16 bit fixed point instead of 32 bit floating point used here. Or possibly looking
into BNNs, especially if version 17.0 of the Intel FPGA SDK for OpenCL can be
used, which introduces arbitrary precision data types.

References

[1] Handwritten digit database. Derived from original MNIST,
http://cis.jhu.edu/ sachin/digit/digit.html, Accessed May, 2017.

[2] WAVE PCM soundfile format. http://soundfile.sapp.org/doc/WaveFormat/,
Accessed May, 2017.

[3] Altera. FPGA Architecture White Paper. WP-01003-1.0, July 2006.

[4] Altera. Altera SDK for OpenCL Best Practices Guide UG-OCL003, Quartus
Prime Design Suite: 16.0 edition, December 2016.

[5] Altera. Arria 10 FPGA Development Kit User Guide UG-20007, February
2016.

[6] Arrow. Arria 10 GX 160. https://www.arrow.com/en/products/10ax016c4u19e3sg/alteraintel-
programmable-solutions, Accessed June, 2017.

[7] Arrow. NVIDIA Tegra X1 module. https://www.arrow.com/en/products/900-
82180-0001-000/nvidia, Accessed June, 2017.

[8] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu. An
OpenCL(TM) Deep Learning Accelerator on Arria 10. CoRR, abs/1701.03534,
2017.

[9] Berkeley Artificial Intelligence Research (BAIR). Caffe.
http://caffe.berkeleyvision.org/, Accessed May, 2017.

[10] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[11] S. Chakroborty and G. Saha. Feature selection using singular value decompos-
ition and QR factorization with column pivoting for text-independent speaker
identification. Speech Communication, 52(9):693–709, 2010.

[12] T. S. Czajkowski, D. Neto, M. Kinsner, U. Aydonat, J. Wong, D. Denisenko,
P. Yiannacouras, and J. Freeman. OpenCL for FPGAs: Prototyping a Com-
piler. Int’l Conf. Reconfigurable Systems and Algorithms, ERSA’12, 2012.

53

54 REFERENCES

[13] S. B. Davis and P. Mermelstein. Comparison of Parametric Representations
for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE
Trans ASSP, 28(4):357–366, 1980.

[14] Intel. Arria 10 Features. https://www.altera.com/products/fpga/arria-
series/arria-10/features.html, Accessed June, 2017.

[15] Intel. Arria 10 GX FPGA Development Kit. ht-
tps://www.altera.com/products/boards_and_kits/dev-kits/altera/kit-
a10-gx-fpga.html, Accessed May, 2017.

[16] Intel. Arria 10 Device Overview, 2016.10.31 edition, October 2016.

[17] Intel. Intel FPGA SDK for OpenCL Programming Guide UG-OCL002,
Quartus Prime Design Suite: 17.0 edition, May 2017.

[18] Intel FPGA. SDK for OpenCL Developer Zone.
https://www.altera.com/products/design-software/embedded-software-
developers/opencl/developer-zone.html, Accessed May, 2017.

[19] Khronos Group. OpenCL. https://www.khronos.org/opencl/, Accessed May,
2017.

[20] Khronos OpenCL Working Group. The OpenCL Specification, Version 1.0,
2009. Available: https://www.khronos.org/registry/OpenCL/specs/opencl-
1.0.pdf, Accessed May, 2017.

[21] Y. LeCun. The mnist database of handwritten digits. MNIST,
http://yann.lecun.com/exdb/mnist/, Accessed May, 2017.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov 1998.

[23] T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math,
March 1997.

[24] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg. OpenCL
Programming Guide. Addison-Wesley, July 2011.

[25] A. Ng. Machine learning. Coursera, https://www.coursera.org/learn/machine-
learning/, Accessed Feb, 2017.

[26] M. Nielsen. Neural Networks and Deep Learning.
http://neuralnetworksanddeeplearning.com/index.html, Online book, Ac-
cessed May, 2017.

[27] NVIDIA. NVIDIA Tegra X1. http://www.nvidia.com/object/tegra-x1-
processor.html, Accessed June, 2017.

[28] PortAudio. PortAudio Portable Cross-platform Audio I/O.
http://www.portaudio.com/, Accessed May, 2017.

REFERENCES 55

[29] C. Rogers. Cnpy. https://github.com/rogersce/cnpy, Accessed May, 2017.

[30] A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers.
IBM Journal of Research and Development , 3(3):210–229, 1959.

[31] Stanford. CS231n Convolutional Neural Networks for Visual Recognition.
http://cs231n.github.io, Accessed May, 2017.

[32] TensorFlow. Mnist for ml beginners. https://www.tensorflow.org/get_star-
ted/mnist/beginners, Accessed May, 2017.

[33] Thinkmate. NVIDIA Tesla P40. http://www.thinkmate.com/product/nvidia/900-
2g610-0000-000, Accessed June, 2017.

[34] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong,
M. Jahre, and K. A. Vissers. FINN: A framework for fast, scalable binar-
ized neural network inference. CoRR, abs/1612.07119, 2016.

[35] D. Wang, J. An, and K. Xu. PipeCNN: An OpenCL-Based FPGA Accelerator
for Large-Scale Convolution Neuron Networks. CoRR, abs/1611.02450, 2016.

[36] S. Windh, X. Ma, R. J. Halstead, P. Budhkar, Z. Luna, O. Hussaini, and
W. A. Najjar. High-Level Language Tools for Reconfigurable Computing.
Proceedings of the IEEE, 103(3):390–408, 3 2015.

[37] Xilinx. Vivado High-Level Synthesis. https://www.xilinx.com/products/design-
tools/vivado/integration/esl-design.html, Accessed June, 2017.

[38] Xilinx. Vivado Design Suite User Guide, High-Level Synthesis UG902, v2016.2
edition, June 2016.

56 REFERENCES

Appendix

A.1 Source code

For the three initial neural networks, only the two layer neural networks’ host
code is added due to their similarities. Hovewer, everything is included in the
attachements.

A.1.1 Linear classifier

1 #ifndef LINEAR_CLASSIFIER_H
2 #define LINEAR_CLASSIFIER_H
3
4 // Dimensions
5 #define W_y 10
6 #define W_x 785 // 28x28 + 1 for bias
7
8 #define X_y 785 // 28x28 + 1 for bias
9 #define X_x 1

10
11 #define Y_y 10
12 #define Y_x 1
13
14
15
16 #endif // LINEAR_CLASSIFIER_H

Listing 1: linear_classifier.h

1 #include "../host/inc/linear_classifier.h"
2 #include "../host/inc/weights_linear_classifier.h"
3
4 #ifndef SIMD_WORK_ITEMS
5 #define SIMD_WORK_ITEMS 2 // must be a power of two, and

divisible with number of kernels

57

58 APPENDIX

6 #endif
7
8 #ifndef NUM_COMPUTE_UNITS
9 #define NUM_COMPUTE_UNITS 2

10 #endif
11
12 __kernel
13 __attribute((reqd_work_group_size(10,1,1)))
14 //__attribute((max_work_group_size(10)))
15 __attribute((num_simd_work_items(SIMD_WORK_ITEMS)))
16 //__attribute((num_compute_units(NUM_COMPUTE_UNITS)))
17 void linear_classifier(
18 // Input and output matrices
19 __global float *restrict Y,
20 __global float *restrict X)
21 {
22 // Global ID index (offset within the NDRange)
23 //int global_id = get_global_id(0);
24
25 // Local ID index (offset within work group)
26 int local_id = get_local_id(0);
27
28 float running_sum = 0.0f;
29
30 for (int k = 0; k < W_x; ++k)
31 {
32 running_sum += W[local_id][k] * X[k];
33 }
34 barrier(CLK_LOCAL_MEM_FENCE); // try remove this
35
36 // Store result in matrix Y
37 Y[local_id] = running_sum;
38 }

Listing 2: linear_classifier.cl

A.1.2 One hidden layer neural network

1 #ifndef ONE_LAYER_NN_H
2 #define ONE_LAYER_NN_H
3
4 #define IMG_SIZE 20*20
5
6 // Dimensions
7 // Input
8 #define X_y 401 // 20x20 + 1 for bias

A.1. SOURCE CODE 59

9 #define X_x 1
10
11 // Output
12 #define Y_y 10
13 #define Y_x 1
14
15 // Theta1
16 #define theta1_y 25
17 #define theta1_x 401 // 20x20 + 1 for bias
18
19 // Theta2
20 #define theta2_y 10
21 #define theta2_x 26
22
23
24 #endif // ONE_LAYER_NN_H

Listing 3: one_layer_nn.h

1 #include "../host/inc/one_layer_nn.h"
2 #include "../host/inc/theta1_weights.h"
3 #include "../host/inc/theta2_weights.h"
4
5 #ifndef SIMD_WORK_ITEMS
6 #define SIMD_WORK_ITEMS 2 // must be a power of two, and

divisible with number of kernels
7 #endif
8
9 #ifndef NUM_COMPUTE_UNITS

10 #define NUM_COMPUTE_UNITS 2
11 #endif
12
13 #define SIGMOID(x) (1.0f / (1 + exp(-x)))
14
15 __kernel
16 //__attribute((reqd_work_group_size(25,1,1)))
17 __attribute((max_work_group_size(25)))
18 //__attribute((num_simd_work_items(SIMD_WORK_ITEMS))) //

Not possible here since work group size must be
divisible and a power of 2

19 __attribute((num_compute_units(NUM_COMPUTE_UNITS)))
20 void one_layer_nn_hidden_layer(
21 // Input and output matrices
22 __global float *restrict Y,
23 __global float *restrict X)
24 {

60 APPENDIX

25 // Global ID index (offset within the NDRange)
26 int global_id = get_global_id(0);
27
28 // Local ID index (offset within a work group)
29 //int local_id = get_local_id(0);
30
31 float running_sum = 0.0f;
32
33 for (int k = 0; k < theta1_x; ++k)
34 {
35 running_sum += Theta1[global_id][k] * X[k];
36 }
37 barrier(CLK_LOCAL_MEM_FENCE);
38
39 // Store result in matrix Y
40 Y[global_id] = SIGMOID(running_sum);
41 }
42
43 __kernel
44 //__attribute((reqd_work_group_size(10,1,1)))
45 __attribute((max_work_group_size(10)))
46 //__attribute((num_simd_work_items(SIMD_WORK_ITEMS)))
47 __attribute((num_compute_units(NUM_COMPUTE_UNITS)))
48 void one_layer_nn_output_layer(
49 // Input and output matrices
50 __global float *restrict Y,
51 __global float *restrict X)
52 {
53 // Global ID index (offset within the NDRange)
54 int global_id = get_global_id(0);
55
56 // Local ID index (offset within a work group)
57 //int local_id = get_local_id(0);
58
59 float running_sum = 0.0f;
60
61 running_sum += Theta2[global_id][0];
62
63 for (int k = 1; k < theta2_x; ++k)
64 {
65 running_sum += Theta2[global_id][k] * X[k-1];
66 }
67 barrier(CLK_LOCAL_MEM_FENCE);
68
69 // Store result in matrix Y

A.1. SOURCE CODE 61

70 Y[global_id] = SIGMOID(running_sum);
71 }

Listing 4: one_layer_nn.cl

A.1.3 Two hidden layers neural network

1 #ifndef TWO_LAYERS_NN_H
2 #define TWO_LAYERS_NN_H
3
4 #define IMG_SIZE 20*20
5
6 // Dimensions
7 // Input
8 #define X_y 400 // 20x20
9 #define X_x 1

10
11 // Output
12 #define Y_y 10
13 #define Y_x 1
14
15 // Theta1
16 #define theta1_y 100
17 #define theta1_x 401 // 20x20 + 1 for bias
18
19 // Theta1
20 #define theta2_y 25
21 #define theta2_x 101 // 20x20 + 1 for bias
22
23 // Theta3
24 #define theta3_y 10
25 #define theta3_x 26
26
27
28 #endif // TWO_LAYERS_NN_H

Listing 5: two_layers_nn.h

1 #include "../host/inc/two_layers_nn.h"
2
3 #ifndef SIMD_WORK_ITEMS
4 #define SIMD_WORK_ITEMS 2 // must be a power of two, and

divisible with number of kernels
5 #endif
6
7 #ifndef NUM_COMPUTE_UNITS
8 #define NUM_COMPUTE_UNITS 2

62 APPENDIX

9 #endif
10
11 #define SIGMOID(x) (1.0f / (1 + exp(-x)))
12
13 __kernel
14 __attribute((reqd_work_group_size(100,1,1)))
15 //__attribute((max_work_group_size(100)))
16 __attribute((num_simd_work_items(4)))
17 //__attribute((num_compute_units(NUM_COMPUTE_UNITS)))
18 void hidden_layer_nn_100(
19 // Input, weights and output matrices
20 __global float *restrict Y,
21 __global const float *restrict W,
22 __global float *restrict X,
23 // Widths of matrices.
24 int W_width)
25 {
26 // Global ID index (offset within the NDRange)
27 //int global_id = get_global_id(0);
28
29 // Local ID index (offset within a work group)
30 int local_id = get_local_id(0);
31
32 float running_sum = 0.0f;
33
34 running_sum += W[local_id*W_width];
35
36 for (int k = 1; k < W_width; ++k)
37 {
38 running_sum += W[local_id*W_width + k] * X[k-1];
39 }
40 barrier(CLK_LOCAL_MEM_FENCE);
41
42 // Store result in matrix Y
43 Y[local_id] = SIGMOID(running_sum);
44 }
45
46 __kernel
47 //__attribute((reqd_work_group_size(25,1,1)))
48 __attribute((max_work_group_size(25)))
49 //__attribute((num_simd_work_items(SIMD_WORK_ITEMS))) //

Not possible here since work group size must be
divisible and a power of 2

50 __attribute((num_compute_units(NUM_COMPUTE_UNITS)))
51 void hidden_layer_nn_25(

A.1. SOURCE CODE 63

52 // Input, weights and output matrices
53 __global float *restrict Y,
54 __global const float *restrict W,
55 __global float *restrict X,
56 // Widths of matrices.
57 int W_width)
58 {
59 // Global ID index (offset within the NDRange)
60 int global_id = get_global_id(0);
61
62 // Local ID index (offset within a work group)
63 //int local_id = get_local_id(0);
64
65 float running_sum = 0.0f;
66
67 running_sum += W[global_id*W_width];
68
69 for (int k = 1; k < W_width; ++k)
70 {
71 running_sum += W[global_id*W_width + k] * X[k-1];
72 }
73 barrier(CLK_LOCAL_MEM_FENCE);
74
75 // Store result in matrix Y
76 Y[global_id] = SIGMOID(running_sum);
77 }
78
79 __kernel
80 __attribute((reqd_work_group_size(10,1,1)))
81 //__attribute((max_work_group_size(10)))
82 __attribute((num_simd_work_items(SIMD_WORK_ITEMS)))
83 //__attribute((num_compute_units(NUM_COMPUTE_UNITS)))
84 void hidden_layer_nn_10(
85 // Input and output matrices
86 __global float *restrict Y,
87 __global const float *restrict W,
88 __global float *restrict X,
89 // Widths of matrices.
90 int W_width) //int X_width)
91 {
92 // Global ID index (offset within the NDRange)
93 //int global_id = get_global_id(0);
94
95 // Local ID index (offset within a work group)
96 int local_id = get_local_id(0);

64 APPENDIX

97
98 float running_sum = 0.0f;
99
100 running_sum += W[local_id*W_width];
101
102 for (int k = 1; k < W_width; ++k)
103 {
104 running_sum += W[local_id*W_width + k] * X[k-1];
105 }
106 barrier(CLK_LOCAL_MEM_FENCE);
107
108 // Store result in matrix Y
109 Y[local_id] = SIGMOID(running_sum);
110 }

Listing 6: two_layers_nn.cl

1 #include <sys/stat.h>
2 #include <iostream>
3 #include <fstream>
4 #include <iomanip>
5 #include <math.h>
6 #include "CL/opencl.h"
7 #include "AOCLUtils/aocl_utils.h"
8 #include "two_layers_nn.h"
9 #include "../inc/theta1_weights_2h_1d.h"

10 #include "../inc/theta2_weights_2h_1d.h"
11 #include "../inc/theta3_weights_2h_1d.h"
12
13 using namespace aocl_utils;
14
15 #define NUM_IMAGES 500
16 #define TEST_NUM 3
17
18 // Kernels.
19 enum Kernel {
20 KERNEL_H1_LAYER = 0,
21 KERNEL_H2_LAYER,
22 KERNEL_OUTPUT_LAYER,
23
24 NUM_KERNELS
25 };
26
27 unsigned int correct_count = 0;
28
29 // OpenCL runtime configuration

A.1. SOURCE CODE 65

30 cl_platform_id platform = NULL;
31 unsigned num_devices = 0;
32 scoped_array<cl_device_id> device; // num_devices elements
33 cl_context context = NULL;
34 scoped_array<cl_command_queue> queue; // num_devices

elements
35 cl_program program = NULL;
36 scoped_array<cl_kernel> kernel; // num_devices elements/

num_kernels
37
38 scoped_array<cl_mem> weights_buf;
39 scoped_array<cl_mem> input_x_buf;
40 scoped_array<cl_mem> z1_buf;
41 scoped_array<cl_mem> z2_buf;
42 scoped_array<cl_mem> output_buf;
43
44 float* input_x[NUM_IMAGES];
45 float* output;
46 float* weights[NUM_KERNELS];
47
48 // Problem data
49 unsigned X_height = X_y;
50 unsigned X_width = X_x;
51 unsigned Y_height = Y_y;
52 unsigned Y_width = Y_x;
53
54 unsigned theta1_width = theta1_x;
55 unsigned theta2_width = theta2_x;
56 unsigned theta3_width = theta3_x;
57
58 // Open MNIST dataset file
59 std::ifstream file("../../mnist_dataset/coursera/data3",

std::ios::in | std::ios::binary);
60
61 // Open time log file
62 std::ofstream log_file("logs/time_log_std_tmp.log");
63
64 // Tot time
65 cl_ulong tot_kernel_time_ns_h1 = 0;
66 cl_ulong tot_kernel_time_ns_h2 = 0;
67 cl_ulong tot_kernel_time_ns_output = 0;
68 double total_time;
69
70 // Function prototypes
71 void read_mnist();

66 APPENDIX

72 bool init_opencl();
73 void run();
74 void verify();
75 void cleanup();
76
77 int main(void) {
78 // Read the MNIST data
79 read_mnist();
80
81 // Initialize OpenCL.
82 if (!init_opencl()) {
83 return -1;
84 }
85
86 // Run the kernel
87 run();
88
89 // Free the resources allocated
90 cleanup();
91
92 // Calculate accuracy
93 float accuracy = ((float)correct_count/NUM_IMAGES)*100;
94 printf("Accuracy: %f\n", accuracy);
95 return 0;
96 }
97
98 /////////// HELPER FUNCTIONS //////////
99
100 void read_mnist() {
101 for (int i = 0; i < NUM_IMAGES; i++) {
102 float buffer[IMG_SIZE];
103
104 if (file.is_open()){
105 file.read((char*)(buffer), sizeof(float)*IMG_SIZE);

// values are floats here
106 } else {
107 printf("Could not read file\n");
108 file.close();
109 }
110
111 // 64 byte aligned malloc for DMA
112 input_x[i] = (float*)alignedMalloc(sizeof(float)*

IMG_SIZE);
113 memcpy(input_x[i], buffer, sizeof(float)*IMG_SIZE);
114 }

A.1. SOURCE CODE 67

115
116 // 64 byte aligned malloc for DMA
117 output = (float*)alignedMalloc(sizeof(float)*Y_y);
118
119 weights[KERNEL_H1_LAYER] = (float*)alignedMalloc(sizeof(

float)*theta1_y*theta1_x);
120 weights[KERNEL_H2_LAYER] = (float*)alignedMalloc(sizeof(

float)*theta2_y*theta2_x);
121 weights[KERNEL_OUTPUT_LAYER] = (float*)alignedMalloc(

sizeof(float)*theta3_y*theta3_x);
122
123 memcpy(weights[KERNEL_H1_LAYER], Theta1, sizeof(float)*

theta1_y*theta1_x);
124 memcpy(weights[KERNEL_H2_LAYER], Theta2, sizeof(float)*

theta2_y*theta2_x);
125 memcpy(weights[KERNEL_OUTPUT_LAYER], Theta3, sizeof(float

)*theta3_y*theta3_x);
126 }
127
128 // Initializes the OpenCL objects
129 bool init_opencl() {
130 cl_int status;
131
132 printf("Initializing OpenCL\n");
133
134 if (!setCwdToExeDir()) {
135 return false;
136 }
137
138 // Get the OpenCL platform
139 platform = findPlatform("Altera");
140 if (platform == NULL) {
141 printf("ERROR: Unable to find Altera OpenCL platform.\n

");
142 }
143
144 // Query the available OpenCL device.
145 device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &

num_devices));
146 printf("Platform: %s\n", getPlatformName(platform).c_str

());
147 printf("Using %d device(s)\n", num_devices);
148 for (unsigned i = 0; i < num_devices; ++i) {
149 printf(" %s\n", getDeviceName(device[i]).c_str());
150 }

68 APPENDIX

151
152 // Create the context
153 context = clCreateContext(NULL, num_devices, device, &

oclContextCallback, NULL, &status);
154 checkError(status, "Failed to create context");
155
156 // Create the program for all device. Use the first

device as the
157 // representative device (assuming all device are of the

same type)
158 std::string binary_file = getBoardBinaryFile("

two_layers_nn_simd_max", device[0]);
159 printf("Using AOCX: %s\n", binary_file.c_str());
160 program = createProgramFromBinary(context, binary_file.

c_str(), device , num_devices);
161
162 // Build the program that was just created
163 status = clBuildProgram(program, 0, NULL, "", NULL, NULL)

;
164 checkError(status, "Failed to build program");
165
166 // Create per-device objects
167 queue.reset(num_devices);
168 kernel.reset(NUM_KERNELS);
169 weights_buf.reset(num_devices*NUM_KERNELS);
170 input_x_buf.reset(num_devices*NUM_IMAGES);
171 z1_buf.reset(num_devices);
172 z2_buf.reset(num_devices);
173 output_buf.reset(num_devices*NUM_IMAGES);
174
175 const unsigned num_block_rows = Y_height; // Y ?? /

BLOCK_SIZE;
176
177 // Command queue
178 queue[0] = clCreateCommandQueue(context, device[0],

CL_QUEUE_PROFILING_ENABLE, &status);
179 checkError(status, "Failed to create command queue");
180
181
182 const char *kernel_name_100 = "hidden_layer_nn_100";
183 kernel[KERNEL_H1_LAYER] = clCreateKernel(program,

kernel_name_100, &status);
184 checkError(status, "Failed to create kernel, layer: %d",

KERNEL_H1_LAYER);
185

A.1. SOURCE CODE 69

186 const char *kernel_name_25 = "hidden_layer_nn_25";
187 kernel[KERNEL_H2_LAYER] = clCreateKernel(program,

kernel_name_25, &status);
188 checkError(status, "Failed to create kernel, layer: %d",

KERNEL_H2_LAYER);
189
190 const char *kernel_name_10 = "hidden_layer_nn_10";
191 kernel[KERNEL_OUTPUT_LAYER] = clCreateKernel(program,

kernel_name_10, &status);
192 checkError(status, "Failed to create kernel, layer: %d",

KERNEL_OUTPUT_LAYER);
193
194 // Create weight buffers
195 weights_buf[KERNEL_H1_LAYER] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_BANK_1_ALTERA,
196 theta1_y * theta1_x * sizeof(float), NULL, &status);
197 checkError(status, "Failed to create buffer for weights

Theta1");
198
199 weights_buf[KERNEL_H2_LAYER] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_BANK_1_ALTERA,
200 theta2_y * theta2_x * sizeof(float), NULL, &status);
201 checkError(status, "Failed to create buffer for weights

Theta2");
202
203 weights_buf[KERNEL_OUTPUT_LAYER] = clCreateBuffer(context

, CL_MEM_READ_ONLY | CL_MEM_BANK_1_ALTERA,
204 theta3_y * theta3_x * sizeof(float), NULL, &status);
205 checkError(status, "Failed to create buffer for weights

Theta3");
206
207 // Write weight values to the weight buffers.
208 // Can be done here since the weight values does not

change.
209 status = clEnqueueWriteBuffer(queue[0], weights_buf[

KERNEL_H1_LAYER], CL_TRUE, // CL_FALSE
210 0, theta1_y * theta1_x * sizeof(float), weights[

KERNEL_H1_LAYER], 0, NULL, NULL);
211 checkError(status, "Failed to transfer input X");
212
213 status = clEnqueueWriteBuffer(queue[0], weights_buf[

KERNEL_H2_LAYER], CL_TRUE, // CL_FALSE
214 0, theta2_y * theta2_x * sizeof(float), weights[

KERNEL_H2_LAYER], 0, NULL, NULL);
215 checkError(status, "Failed to transfer input X");

70 APPENDIX

216
217 status = clEnqueueWriteBuffer(queue[0], weights_buf[

KERNEL_OUTPUT_LAYER], CL_TRUE, // CL_FALSE
218 0, theta3_y * theta3_x * sizeof(float), weights[

KERNEL_OUTPUT_LAYER], 0, NULL, NULL);
219 checkError(status, "Failed to transfer input X");
220
221 for (unsigned i = 0; i < NUM_IMAGES; i++) {
222 // Create input and output buffers
223 input_x_buf[i] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_BANK_2_ALTERA,
224 X_height * X_width * sizeof(float), NULL, &status);
225 checkError(status, "Failed to create buffer for input")

;
226
227 output_buf[i] = clCreateBuffer(context,

CL_MEM_WRITE_ONLY | CL_MEM_BANK_1_ALTERA,
228 Y_height * Y_width * sizeof(float), NULL, &status);
229 checkError(status, "Failed to create buffer for output"

);
230
231 // Fill input with all input images
232 status = clEnqueueWriteBuffer(queue[0], input_x_buf[i],

CL_TRUE, // CL_FALSE
233 0, X_width * X_height * sizeof(float), input_x[i], 0,

NULL, NULL);
234 checkError(status, "Failed to transfer input X");
235 }
236
237 // Create temporary buffers
238 z1_buf[0] = clCreateBuffer(context, CL_MEM_READ_WRITE |

CL_MEM_BANK_2_ALTERA,
239 theta1_y * sizeof(float), NULL, &status);
240 checkError(status, "Failed to create buffer for z");
241
242 z2_buf[0] = clCreateBuffer(context, CL_MEM_READ_WRITE |

CL_MEM_BANK_2_ALTERA,
243 theta2_y * sizeof(float), NULL, &status);
244 checkError(status, "Failed to create buffer for z");
245
246 return true;
247 }
248
249 void run() {
250 cl_int status;

A.1. SOURCE CODE 71

251
252 // Launch kernels.
253 // This is the portion of time that we’ll be measuring

for throughput
254 // benchmarking.
255 scoped_array<cl_event> kernel_h1_event(num_devices);
256 scoped_array<cl_event> kernel_h2_event(num_devices);
257 scoped_array<cl_event> kernel_output_event(num_devices);
258
259 const double start_time = getCurrentTimestamp();
260
261 // Set kernel arguments.
262 // Hidden layer 1 kernel
263 unsigned argi = 0;
264
265 status = clSetKernelArg(kernel[KERNEL_H1_LAYER], argi++,

sizeof(cl_mem), &z1_buf[0]); // output
266 checkError(status, "Failed to set argument %d", argi - 1)

;
267
268 status = clSetKernelArg(kernel[KERNEL_H1_LAYER], argi++,

sizeof(cl_mem), &weights_buf[0]); //
269 checkError(status, "Failed to set argument %d", argi - 1)

;
270
271 argi++; // input argument set in the execution loop below
272
273 status = clSetKernelArg(kernel[KERNEL_H1_LAYER], argi++,

sizeof(theta1_width), &theta1_width);
274 checkError(status, "Failed to set argument %d", argi - 1)

;
275
276 // Hidden layer 2 kernel
277 argi = 0;
278
279 status = clSetKernelArg(kernel[KERNEL_H2_LAYER], argi++,

sizeof(cl_mem), &z2_buf[0]); // output
280 checkError(status, "Failed to set argument %d", argi - 1)

;
281
282 status = clSetKernelArg(kernel[KERNEL_H2_LAYER], argi++,

sizeof(cl_mem), &weights_buf[1]); //
283 checkError(status, "Failed to set argument %d", argi - 1)

;
284

72 APPENDIX

285 status = clSetKernelArg(kernel[KERNEL_H2_LAYER], argi++,
sizeof(cl_mem), &z1_buf[0]); // input

286 checkError(status, "Failed to set argument %d", argi - 1)
;

287
288 status = clSetKernelArg(kernel[KERNEL_H2_LAYER], argi++,

sizeof(theta2_width), &theta2_width);
289 checkError(status, "Failed to set argument %d", argi - 1)

;
290
291 // Output layer kernel
292 argi = 0;
293
294 argi++; // output argument set in the execution loop

below;
295
296 status = clSetKernelArg(kernel[KERNEL_OUTPUT_LAYER], argi

++, sizeof(cl_mem), &weights_buf[2]); //
297 checkError(status, "Failed to set argument %d", argi - 1)

;
298
299 status = clSetKernelArg(kernel[KERNEL_OUTPUT_LAYER], argi

++, sizeof(cl_mem), &z2_buf[0]); // input
300 checkError(status, "Failed to set argument %d", argi - 1)

;
301
302 status = clSetKernelArg(kernel[KERNEL_OUTPUT_LAYER], argi

++, sizeof(theta3_width), &theta3_width);
303 checkError(status, "Failed to set argument %d", argi - 1)

;
304
305
306 // Enqueue kernel.
307 // Use a global work size corresponding to the size of

the output matrix.
308 // Each work-item computes the result for one value of

the output matrix,
309 // so the global work size has the same dimensions as the

output matrix.
310 //
311 // Events are used to ensure that the kernel is not

launched until
312 // the writes to the input buffers have completed.
313 const size_t global_work_size_h1[1] = {theta1_y}; // 100
314 const size_t local_work_size_h1[1] = {theta1_y};

A.1. SOURCE CODE 73

315
316 const size_t global_work_size_h2[1] = {theta2_y}; // 25
317 const size_t local_work_size_h2[1] = {theta2_y};
318
319 const size_t global_work_size_output[1] = {theta3_y}; //

10
320 const size_t local_work_size_output[1] = {theta3_y};
321
322 printf("Launching for device %d (global sizes:\nh1: %zd)\

nh2: %zd)\noutput: %zd)\n",
323 0, global_work_size_h1[0], global_work_size_h2

[0], global_work_size_output[0]);
324
325 for(unsigned i = 0; i < NUM_IMAGES; i++) {
326 // Set remaining arguments
327 status = clSetKernelArg(kernel[KERNEL_H1_LAYER], 2,

sizeof(cl_mem), &input_x_buf[i]); // input
328 checkError(status, "Failed to set argument %d", 2);
329
330 status = clSetKernelArg(kernel[KERNEL_OUTPUT_LAYER], 0,

sizeof(cl_mem), &output_buf[i]); // output
331 checkError(status, "Failed to set argument %d", 0);
332
333 /****************** Hidden layer 1 ********************

*/
334 status = clEnqueueNDRangeKernel(queue[0], kernel[

KERNEL_H1_LAYER], 1, NULL,
335 global_work_size_h1, local_work_size_h1, 0, NULL, &

kernel_h1_event[0]);
336 checkError(status, "Failed to launch kernel");
337
338 /****************** Hidden layer 2 ********************

*/
339 status = clEnqueueNDRangeKernel(queue[0], kernel[

KERNEL_H2_LAYER], 1, NULL,
340 global_work_size_h2, local_work_size_h2, 0, NULL, &

kernel_h2_event[0]);
341 checkError(status, "Failed to launch kernel");
342
343
344 /******************* Output layer *********************

*/
345 status = clEnqueueNDRangeKernel(queue[0], kernel[

KERNEL_OUTPUT_LAYER], 1, NULL,
346 global_work_size_output, local_work_size_output, 0,

74 APPENDIX

NULL, &kernel_output_event[0]);
347 checkError(status, "Failed to launch kernel");
348
349 }
350
351 // Wait for all kernels to finish.
352 clWaitForEvents(num_devices, kernel_output_event);
353
354 cl_ulong time_ns_h1 = getStartEndTime(kernel_h1_event[0])

;
355 //printf("Hidden layer kernel time (device %d): %0.3f ms\

n", 0, double(time_ns_h1) * 1e-6);
356 tot_kernel_time_ns_h1 += time_ns_h1;
357 cl_ulong time_ns_h2 = getStartEndTime(kernel_h2_event[0])

;
358 //printf("Hidden layer kernel time (device %d): %0.3f ms\

n", 0, double(time_ns_h2) * 1e-6);
359 tot_kernel_time_ns_h2 += time_ns_h2;
360 cl_ulong time_ns_output = getStartEndTime(

kernel_output_event[0]);
361 //printf("Output layer kernel time (device %d): %0.3f ms\

n", 0, double(time_ns_output) * 1e-6);
362 tot_kernel_time_ns_output += time_ns_output;
363
364 const double end_time = getCurrentTimestamp();
365 const double total_time = end_time - start_time;
366 cl_ulong tot_kernel_time_ns = tot_kernel_time_ns_h1 +

tot_kernel_time_ns_h2 + tot_kernel_time_ns_output;
367
368 // Wall-clock time taken.
369 printf("\nTime: %0.3f ms\n", total_time * 1e3);
370
371 // Write to timing log file
372 log_file << "Total time: " << std::setprecision(3) <<

total_time * 1e3 << "ms\n";
373 log_file << "\nTotal kernel time: " << std::setprecision

(3) << tot_kernel_time_ns*NUM_IMAGES * 1e-6 << "ms\n"
;

374 log_file << "\nKernel time: " << std::setprecision(3) <<
tot_kernel_time_ns * 1e-6 << "ms\n";

375 log_file << "\nHidden layer 1 kernel time: " << std::
setprecision(3) << tot_kernel_time_ns_h1 * 1e-6 << "
ms\n";

376 log_file << "\nHidden layer 2 kernel time: " << std::
setprecision(3) << tot_kernel_time_ns_h2 * 1e-6 << "

A.1. SOURCE CODE 75

ms\n";
377 log_file << "\nOutput layer kernel time: " << std::

setprecision(3) << tot_kernel_time_ns_output * 1e-6
<< "ms\n";

378 log_file.close();
379
380 // Compute the throughput (GFLOPS).
381 // There are Y_width * Y_height output values, with each

value
382 // computed using W_width multiplies and adds.
383 const float flops = (float)(2.0f * Y_width * Y_height *

X_height * NUM_IMAGES/ total_time); // not correct
384 printf("\nThroughput: %0.2f GFLOPS\n\n", flops * 1e-9);
385
386 // Release kernel events.
387 clReleaseEvent(kernel_h1_event[0]);
388 clReleaseEvent(kernel_h2_event[0]);
389 clReleaseEvent(kernel_output_event[0]);
390
391 // Verify results.
392 verify();
393
394 file.close();
395 if (!file.is_open())
396 printf("Successfully closed file\n");
397 }
398
399 void verify() {
400 printf("Verifying\n");
401
402 for (unsigned i = 0; i < NUM_IMAGES; i++) {
403 int max_idx = 0;
404 // Read the result.
405 cl_int status = clEnqueueReadBuffer(queue[0],

output_buf[i], CL_TRUE,
406 0, Y_height * Y_width * sizeof(float), output, 0,

NULL, NULL);
407 checkError(status, "Failed to read output matrix");
408
409 for (int j=1; j < Y_y; j++){
410 float tmp;
411 if (output[max_idx] < output[j])
412 max_idx = j;
413 }
414

76 APPENDIX

415 if (max_idx == TEST_NUM-1){
416 correct_count++;
417 //printf("The linear classifier reads CORRECTLY a %d\

n", TEST_NUM);
418 } else if (max_idx == 9) { // idx 9 is 0 here
419 correct_count++;
420 //printf("The linear classifier reads CORRECTLY a %d\

n", TEST_NUM);
421 } else {
422 printf("The linear classifier reads it WRONG, it read

a %d\n", max_idx+1);
423 }
424 }
425 }
426
427 // Free the resources allocated during initialization
428 void cleanup() {
429 for(unsigned i = 0; i < NUM_KERNELS; ++i) {
430 if(kernel && kernel[i]) {
431 clReleaseKernel(kernel[i]);
432 }
433 }
434 if(queue && queue[0]) {
435 clReleaseCommandQueue(queue[0]);
436 }
437 if(weights_buf[KERNEL_H1_LAYER]) {
438 clReleaseMemObject(weights_buf[KERNEL_H1_LAYER]);
439 }
440 if(weights_buf[KERNEL_H2_LAYER]) {
441 clReleaseMemObject(weights_buf[KERNEL_H2_LAYER]);
442 }
443 if(weights_buf[KERNEL_OUTPUT_LAYER]) {
444 clReleaseMemObject(weights_buf[KERNEL_OUTPUT_LAYER]);
445 }
446 if(z1_buf[0]) {
447 clReleaseMemObject(z1_buf[0]);
448 }
449 if(z2_buf[0]) {
450 clReleaseMemObject(z2_buf[0]);
451 }
452 for (unsigned i = 0; i < NUM_IMAGES; i++) {
453 if(input_x_buf[i]) {
454 clReleaseMemObject(input_x_buf[i]);
455 }
456 if(output_buf) {

A.1. SOURCE CODE 77

457 clReleaseMemObject(output_buf[i]);
458 }
459 }
460
461 if(program) {
462 clReleaseProgram(program);
463 }
464 if(context) {
465 clReleaseContext(context);
466 }
467
468 for (int i = 0; i < NUM_IMAGES; i++) {
469 alignedFree(input_x[i]);
470 }
471 }

Listing 7: main.cpp

A.1.4 CNN

1 #ifndef CNN_H
2 #define CNN_H
3
4 #define INPUT_W 40
5 #define INPUT_H 90
6 #define INPUT_SIZE INPUT_W*INPUT_H
7
8 #define OUTPUT_SIZE 2
9

10 // Layer output sizes, uncomment to test other layers
11 //#define OUTPUT_SIZE 6800 // 16*25*17
12 //#define OUTPUT_SIZE 1344 // 32*6*7
13 //#define OUTPUT_SIZE 1280 // 64*4*5
14 //#define OUTPUT_SIZE 32
15 //#define OUTPUT_SIZE 128
16 //#define OUTPUT_SIZE 2
17
18 #endif // CNN_H

Listing 8: cnn.h

1
2 const unsigned int num_layers = 6; // mby use #define
3
4 unsigned int layer_config[][15] = {
5 { // conv1

78 APPENDIX

6 0, // "0" -> conv, "1" -> fc (only conv,
conv with pool, fc, ??)

7 1, // type_num for conv1 -> 1 for conv2 ->
2

8 90, 40, // h, w input data
9 16, 1, 16, 8, //16 // n, c, h, w, b -

weights and bias
10 25, 17, 3, 2, // h, w, s_h, s_w - Conv

parameters
11 1, // relu_on
12 0, // read from data "0"-> input_buf "1"->

output_buf "2"->"tmp_1_buffer" "3"->"
tmp_2_buffer"

13 2 // output buffer "0"-> input_buf "1"->
output_buf "2"->"tmp_1_buffer" "3"->"
tmp_2_buffer"

14 },
15 { // conv2
16 0,
17 2,
18 25, 17,
19 32, 16, 8, 4,
20 6, 7, 3, 2,
21 1,
22 2,
23 3
24 },
25 { // conv3
26 0,
27 3,
28 6, 7,
29 64, 32, 3, 3,
30 4, 5, 1, 1,
31 1,
32 3,
33 2
34 },
35 { // fc1/ip1
36 1,
37 1,
38 1280, 1,
39 1, 1, 32, 1280, // 64*4*5 = 1280
40 1, 32, 1, 1,
41 0, // relu should not be on in this layer
42 2,

A.1. SOURCE CODE 79

43 3,
44 },
45 { // fc2/ip2
46 1,
47 2,
48 32, 1,
49 1, 1, 128, 32,
50 1, 128, 1, 1,
51 1,
52 3,
53 2
54 },
55 { //fc3/ip3
56 1,
57 3,
58 128, 1,
59 1, 1, 2, 128,
60 1, 2, 1, 1,
61 0,
62 2,
63 1
64 }
65 };

Listing 9: layer_config.h

1 #include "../host/inc/cnn.h"
2
3 #ifndef SIMD_WORK_ITEMS
4 #define SIMD_WORK_ITEMS 2
5 #endif
6
7 #ifndef NUM_COMPUTE_UNITS
8 #define NUM_COMPUTE_UNITS 4
9 #endif

10
11 #define SIGMOID(x) (1.0f / (1 + exp(-x)))
12 #define RELU(x) (x > 0 ? x : 0)
13
14 __kernel
15 __attribute__((task))
16 void taskconv(
17 // Params Ports
18 unsigned in_h,
19 unsigned in_w,
20 unsigned out_c,

80 APPENDIX

21 unsigned in_c,
22 unsigned K_h,
23 unsigned K_w,
24 unsigned out_h,
25 unsigned out_w,
26 unsigned S_h,
27 unsigned S_w,
28 unsigned relu_on,
29
30 // Data Ports
31 __global float *restrict output, // top
32 __global float *restrict input, //bottom,
33 __global float *restrict weights,
34 __global float *restrict bias
35)
36 {
37 unsigned M = out_c;
38 unsigned N = in_c;
39
40 unsigned filter_size_2d = K_h * K_w;
41 unsigned filter_size_3d = filter_size_2d*N;
42
43 unsigned ifm_size = in_h*in_w;
44 unsigned ofm_size = out_h*out_w; // input argument?
45
46 float running_sum = 0.0f;
47
48 printf("IN_H: %d, IN_W: %d, R: %d, C: %d, M: %d, N: %d,

K_h: %d, K_w: %d, S_h: %d, S_w: %d, ifm_size: %d \n",
in_h, in_w, out_h, out_w, M, N, K_h, K_w, S_h, S_w,
ifm_size);

49
50 for (unsigned row = 0; row < out_h; row++) { // output

rows
51 for (unsigned col = 0; col < out_w; col++) { // output

cols
52 for (unsigned to = 0; to < M; to++) { // M output

feature maps
53 for (unsigned ti = 0; ti < N; ti++) { // N input

feature maps
54 for (unsigned i = 0; i < K_h; i++) { // filter

height
55 for (unsigned j = 0; j < K_w; j++) { // filter

width
56 running_sum += weights[to*filter_size_3d + ti

A.1. SOURCE CODE 81

*filter_size_2d + i*K_w + j] * input[ti*
ifm_size + (S_h*row + i)*in_w + (S_w*col +
j)];

57 } // j
58 } // i
59 } // ti
60 running_sum += bias[to];
61 if (relu_on)
62 output[to*ofm_size + row*out_w + col] = RELU(

running_sum);
63 else
64 output[to*ofm_size + row*out_w + col] =

running_sum;
65 running_sum = 0.0f;
66 } // to
67 } // col
68 } // row
69 }
70
71 __kernel
72 //__attribute((reqd_work_group_size(100,1,1))) // May need

to compile several times for different work group sizez
73 //__attribute((num_simd_work_items(SIMD_WORK_ITEMS))) //

This is not supported when using channels
74 __attribute((num_compute_units(NUM_COMPUTE_UNITS)))
75 void ndrconv(// Params Ports
76 unsigned in_h,
77 unsigned in_w,
78 unsigned out_c,
79 unsigned in_c,
80 unsigned K_h,
81 unsigned K_w,
82 unsigned out_h,
83 unsigned out_w,
84 unsigned S_h,
85 unsigned S_w,
86 unsigned relu_on,
87
88 // Data Ports
89 __global float *restrict output, // top
90 __global float *restrict input, //bottom,
91 __global float *restrict weights,
92 __global float *restrict bias
93)
94 {

82 APPENDIX

95 // Local ID index (offset within a block)
96 int local_id_x = get_local_id(0);
97 int local_id_y = get_local_id(1);
98 int local_id_z = get_local_id(2);
99
100 // Global ID index (offset within the NDRange)
101 int global_id_x = get_global_id(0);
102 int global_id_y = get_global_id(1);
103 int global_id_z = get_global_id(2);
104
105 unsigned weight_size_2d = K_h*K_w;
106 unsigned weight_size_3d = weight_size_2d*in_c;
107 unsigned ifm_size = in_h*in_w;
108 unsigned ofm_size = out_h*out_w;
109
110 unsigned ifm_idx = 0;
111 unsigned row_idx = 0;
112 unsigned cnt_ifm = 1;
113 unsigned cnt_row = 1;
114
115 float running_sum = 0.0f;
116
117 for (int k = 0; k < weight_size_3d; ++k) {
118 running_sum += weights[weight_size_3d*global_id_z +

k] * input[ifm_size*ifm_idx + (S_h*local_id_y +
row_idx)*in_w + (S_w*local_id_x + cnt_row-1)];

119
120 if (cnt_ifm == weight_size_2d) {
121 row_idx = 0;
122 ifm_idx++;
123 cnt_ifm = 1;
124 cnt_row = 1;
125 }
126 else if (cnt_row == K_w) {
127 row_idx++;
128 cnt_row = 1;
129 cnt_ifm++;
130 }
131 else {
132 cnt_row++;
133 cnt_ifm++;
134 }
135 }
136
137 running_sum += bias[global_id_z];

A.1. SOURCE CODE 83

138
139 // Store result in output
140 if (relu_on)
141 output[ofm_size*global_id_z + local_id_y*out_w +

local_id_x] = RELU(running_sum);
142 else
143 output[ofm_size*global_id_z + local_id_y*out_w +

local_id_x] = running_sum;
144 }
145
146 __kernel
147 //__attribute((reqd_work_group_size(100,1,1))) // May need

to compile several times for different work group sizez
148 //__attribute((num_simd_work_items(SIMD_WORK_ITEMS))) //

This is not supported when using channels
149 void fully_connected(// Input and output matrices
150 // Weight weight
151 unsigned W_width, // mby save locally
152 unsigned relu_on,
153
154 // Data ports
155 __global float *restrict output,
156 __global float *restrict input,
157 __global float *restrict weights,
158 __global float *restrict bias
159)
160 {
161 // Local storage for a block of input matrices W and X
162 //__local float W_local[W_y][W_x]; //[W_y][W_x];
163 //__local float X_local[X_y];
164
165 // Block index
166 int block_id = get_group_id(0);
167 //int block_y = get_group_id(1);
168
169 // Local ID index (offset within a block)
170 int local_id = get_local_id(0);
171 int global_id = get_global_id(0);
172 //printf("LID: %d GID: %d\n", local_id, global_id);
173 //int local_y = get_local_id(1);
174
175 float running_sum = 0.0f;
176
177 //running_sum += weights[local_id*W_width];
178

84 APPENDIX

179 //#pragma unroll
180 for (int k = 0; k < W_width; ++k) // fix bias -> add

bias
181 {
182 //float t1_k = Theta1[local_id][k]; // W[local_id*

W_x + k];
183 //float x_k = X[k];
184 running_sum += weights[local_id*W_width + k] *

input[k];
185 //printf("LID: %d running_sum = %f\n", local_id,

running_sum);
186 }
187
188 running_sum += bias[local_id];
189
190 barrier(CLK_LOCAL_MEM_FENCE);
191 // Store result in matrix C
192 if (relu_on)
193 output[get_global_id(0)] = RELU(running_sum);
194 else
195 output[get_global_id(0)] = running_sum;
196 }

Listing 10: cnn.cl

1 #include <string.h>
2 #include <sys/stat.h>
3 #include <iostream>
4 #include <fstream>
5 #include <iomanip>
6 #include <math.h>
7 #include "CL/opencl.h"
8 #include "AOCLUtils/aocl_utils.h"
9 #include "wav_utils/record_voice.h"

10 #include "wav_utils/write_wav.h"
11 #include "cnn.h"
12 #include "cnpy.h"
13
14 #include "layer_config.h"
15
16 using namespace aocl_utils;
17
18 #define NUM_TESTS 500
19 #define LAYER_NUM 6
20 #define MAX_LAYER_NUM 16
21 #define TMP_BUF_SIZE 6800 // should at least be the maximum

A.1. SOURCE CODE 85

buffer size needed
22
23 // Configuration file instructions
24 enum config_item{
25 layer_type, // "0" -> conv, "1" -> fc
26
27 type_num, // for conv1 -> 1 for conv2 -> 2 etc.
28
29 data_h, data_w,
30
31 weight_n, weight_c, weight_h, weight_w,
32
33 conv_h, conv_w, conv_stride_h, conv_stride_w, //Conv

Parameters
34
35 relu_on,
36
37 memrd_src, //"0"-> input_buf "1"-> output_buf "2"->"

tmp_1_buffer" "3"->"tmp_2_buffer"
38
39 memwr_dst//"0"-> input_buf "1"-> output_buf "2"->"

tmp_1_buffer" "3"->"tmp_2_buffer"
40
41 };
42
43 // Define the kernel names used
44 const char *knl_name_mem_rd = "mem_read";
45 const char *knl_name_conv = "ndrconv"; // "taskconv"
46 const char *knl_name_pool = "max_pool";
47 const char *knl_name_mem_wr = "mem_write";
48 const char *knl_name_fc = "fully_connected";
49
50 // OpenCL runtime configuration
51 unsigned num_devices = 0;
52 cl_platform_id platform = NULL;
53 cl_context context = NULL;
54 cl_program program = NULL;
55 scoped_array<cl_device_id> device; // num_devices elements
56
57 scoped_array<cl_kernel> knl_conv;
58 scoped_array<cl_kernel> knl_fc;
59
60 scoped_array<cl_command_queue> queue_conv;
61 scoped_array<cl_command_queue> queue_fc;
62

86 APPENDIX

63 scoped_array<cl_mem> input_buf; // or data_buf?
64 scoped_array<cl_mem> output_buf;
65 scoped_array<cl_mem> weights_buf;
66 scoped_array<cl_mem> bias_buf;
67 scoped_array<cl_mem> tmp_1_buf;
68 scoped_array<cl_mem> tmp_2_buf;
69
70 float* input;
71 float* weights[num_layers];
72 float* bias[num_layers];
73 float* output;
74 float* golden_ref;
75
76 int weight_sizes[num_layers];
77 int bias_sizes[num_layers];
78
79 // Tot time
80 cl_ulong tot_kernel_time = 0;
81 double start_time;
82 double end_time;
83 double total_time;
84
85 // Weight files info
86 const char* weights_path = "../fpga/weights/";
87
88 // Input file name
89 const char* input_file_name = "../input/test_input_1"; //

voice_rec_live";
90
91 // Open time log file
92 std::ofstream log_file("logs/time_log_cu4.log");
93
94 // Function prototypes
95 void read_new_input();
96 void prepare();
97 bool init_opencl();
98 void run();
99 void verify();
100 void cleanup();
101
102 int main(void) {
103 // Prepare data
104 prepare();
105
106 // Initialize OpenCL.

A.1. SOURCE CODE 87

107 if (!init_opencl()) {
108 return -1;
109 }
110
111 // Run the kernel
112 run();
113
114 // Free the resources allocated
115 cleanup();
116
117 }
118
119 /////////// HELPER FUNCTIONS //////////
120
121 // Read/record new input
122 void read_new_input() {
123 // record new input
124 int num_bytes = NUM_SECONDS * SAMPLE_RATE * NUM_CHANNELS

* sizeof(float);
125 float* recorded_samples = (float*)malloc(num_bytes);
126 record_voice(recorded_samples);
127 printf("num_bytes = %d\n", num_bytes);
128
129 // Set start time before preprocessing, after voice done

recording
130 start_time = getCurrentTimestamp();
131
132 // Write the recorded samples to a wave file
133 write_wav("../input/voice_rec_live.wav", recorded_samples

, num_bytes, NUM_CHANNELS, SAMPLE_RATE, 32);
134
135 // Execute preprocess program
136 system("./../input/mfcc_preprocess --input ../input/

voice_rec_live.wav --output ../input/voice_rec_live");
137
138 // Read mfcc preprocessed input file
139 std::ifstream input_file(input_file_name, std::ios::in |

std::ios::binary);
140 if (input_file.is_open()){
141 input_file.read((char*)(input), sizeof(float)*

INPUT_SIZE); // sizeof() should return IMG_SIZE*4
bytes

142 input_file.close();
143 }
144 else{

88 APPENDIX

145 printf("Could not read input_file\n");
146 input_file.close();
147 }
148
149 free(recorded_samples);
150 }
151
152 // Prepare weights and biases
153 void prepare(){
154 // could mby have these as only one buffer
155 char conv_filename[sizeof(weights_path)+11]; // should do

this another way
156 char conv_bias_filename[sizeof(weights_path)+11];
157 char fc_filename[sizeof(weights_path)+9];
158 char fc_bias_filename[sizeof(weights_path)+9];
159
160 for (int i = 0; i < num_layers; i++) {
161 // NpyArray objects
162 cnpy::NpyArray weight_npy;
163 cnpy::NpyArray bias_npy;
164
165 // Load weight or bias into NpyArray
166 if (layer_config[i][layer_type] == 0) { // conv layer
167 sprintf(conv_filename, "../fpga/weights/W_conv%d.npy"

, layer_config[i][type_num]);
168 sprintf(conv_bias_filename, "../fpga/weights/b_conv%d

.npy", layer_config[i][type_num]);
169 weight_npy = cnpy::npy_load(conv_filename);
170 bias_npy = cnpy::npy_load(conv_bias_filename);
171 } else if (layer_config[i][layer_type] == 1) { // fc

layer
172 sprintf(fc_filename, "../fpga/weights/W_ip%d.npy",

layer_config[i][type_num]);
173 sprintf(fc_bias_filename, "../fpga/weights/b_ip%d.npy

", layer_config[i][type_num]);
174 weight_npy = cnpy::npy_load(fc_filename);
175 bias_npy = cnpy::npy_load(fc_bias_filename);
176 }
177
178 // Store sizes for later use
179 bias_sizes[i] = bias_npy.shape[0];
180 weight_sizes[i] = 1;
181 for (int j = 0; j < weight_npy.shape.size(); j++)
182 weight_sizes[i] *= weight_npy.shape[j];
183

A.1. SOURCE CODE 89

184 // 64 byte aligned malloc for DMA
185 weights[i] = (float*)alignedMalloc(sizeof(float)*

weight_sizes[i]);
186 bias[i] = (float*)alignedMalloc(sizeof(float)*

bias_sizes[i]);
187
188 memcpy(weights[i], weight_npy.data, sizeof(float)*

weight_sizes[i]);
189 memcpy(bias[i], bias_npy.data, sizeof(float)*bias_sizes

[i]);
190
191 // Destroy the NpyArray objects
192 weight_npy.destruct();
193 bias_npy.destruct();
194 }
195
196 //cnpy::NpyArray input_npy = cnpy::npy_load("../fpga/

per_layer/unit_tests/input_1_data.npy"); // Test input
197 cnpy::NpyArray golden_ref_npy = cnpy::npy_load("../fpga/

per_layer/unit_tests/input_1_ip3.npy");
198
199 // Allocate aligned memory for DMA transfer
200 input = (float*)alignedMalloc(sizeof(float)*

INPUT_SIZE); // input
201 output = (float*)alignedMalloc(sizeof(float)*

OUTPUT_SIZE); // output_c1
202 golden_ref = (float*)alignedMalloc(sizeof(float)*

OUTPUT_SIZE); // golden_ref
203
204 //memcpy(input, input_npy.data, sizeof(float)*INPUT_SIZE)

; // Test input
205 memcpy(golden_ref, golden_ref_npy.data, sizeof(float)*

OUTPUT_SIZE);
206
207 // Destruct
208 //input_npy.destruct(); // Test input
209 golden_ref_npy.destruct();
210 }
211
212 // Initializes the OpenCL objects
213 bool init_opencl() {
214
215 cl_int status;
216
217 printf("Initializing OpenCL\n");

90 APPENDIX

218
219 if (!setCwdToExeDir()) {
220 return false;
221 }
222
223 // Get the OpenCL platform
224 platform = findPlatform("Altera");
225 if (platform == NULL) {
226 printf("ERROR: Unable to find Altera OpenCL platform.\n

");
227 }
228
229 // Query the available OpenCL device.
230 device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &

num_devices));
231 printf("Platform: %s\n", getPlatformName(platform).c_str

());
232 printf("Using %d device(s)\n", num_devices);
233 for (unsigned i = 0; i < num_devices; ++i) {
234 printf(" %s\n", getDeviceName(device[i]).c_str());
235 }
236
237 // Create the context
238 context = clCreateContext(NULL, num_devices, device, &

oclContextCallback, NULL, &status);
239 checkError(status, "Failed to create context");
240 // Create the program for all device. Use the first

device as the
241 // representative device (assuming all device are of the

same type)
242 std::string binary_file = getBoardBinaryFile("

cnn_ndrconv_cu4", device[0]); // "cnn_ndrconv_cu4"
243 printf("Using AOCX: %s\n", binary_file.c_str());
244 program = createProgramFromBinary(context, binary_file.

c_str(), device , num_devices);
245
246 // Build the program that was just created
247 status = clBuildProgram(program, 0, NULL, "", NULL, NULL)

;
248 checkError(status, "Failed to build program");
249
250 // Create per-device objects
251 queue_conv.reset(num_devices);
252 queue_fc.reset(num_devices);
253 knl_conv.reset(num_devices);

A.1. SOURCE CODE 91

254 knl_fc.reset(num_devices);
255 weights_buf.reset(num_devices*num_layers);
256 bias_buf.reset(num_devices*num_layers);
257 input_buf.reset(num_devices);
258 output_buf.reset(num_devices);
259 tmp_1_buf.reset(num_devices);
260 tmp_2_buf.reset(num_devices);
261
262 // Command queue
263 queue_conv[0] = clCreateCommandQueue(context, device[0],

CL_QUEUE_PROFILING_ENABLE, &status);
264 checkError(status, "Failed to create command queue conv")

;
265 queue_fc[0] = clCreateCommandQueue(context, device[0],

CL_QUEUE_PROFILING_ENABLE, &status);
266 checkError(status, "Failed to create command queue fc");
267
268 knl_conv[0] = clCreateKernel(program, knl_name_conv, &

status);
269 checkError(status, "Failed to create conv kernel");
270
271 knl_fc[0] = clCreateKernel(program, knl_name_fc, &status)

;
272 checkError(status, "Failed to create fc kernel");
273
274 // Buffers.
275 for (int i = 0; i < num_layers; i++){
276 weights_buf[i] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_BANK_1_ALTERA,
277 weight_sizes[i] * sizeof(float), NULL, &status);
278 checkError(status, "Failed to create buffer for weights

layer = %d", i);
279
280 bias_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY

| CL_MEM_BANK_1_ALTERA,
281 bias_sizes[i] * sizeof(float), NULL, &status);
282 checkError(status, "Failed to create buffer for bias");
283 }
284
285 input_buf[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_BANK_2_ALTERA,
286 INPUT_SIZE * sizeof(float), NULL, &status);
287 checkError(status, "Failed to create buffer for input");
288
289 output_buf[0] = clCreateBuffer(context, CL_MEM_WRITE_ONLY

92 APPENDIX

| CL_MEM_BANK_1_ALTERA,
290 OUTPUT_SIZE * sizeof(float), NULL, &status);
291 checkError(status, "Failed to create buffer for output");
292
293 // Allocate fc buffers
294 tmp_1_buf[0] = clCreateBuffer(context, CL_MEM_READ_WRITE

,
295 TMP_BUF_SIZE * sizeof(float), NULL, &status);
296 checkError(status, "Failed to create buffer tmp 1");
297
298 tmp_2_buf[0] = clCreateBuffer(context, CL_MEM_READ_WRITE

,
299 TMP_BUF_SIZE * sizeof(float), NULL, &status);
300 checkError(status, "Failed to create buffer tmp 2");
301
302 return true;
303 }
304
305 void run() {
306 printf("Running\n");
307
308 cl_int status;
309
310 // Launch kernels.
311 // This is the portion of time that we’ll be measuring

for throughput
312 // benchmarking.
313 scoped_array<cl_event> conv_event(num_devices);
314 scoped_array<cl_event> fc_event(num_devices);
315
316 // Set kernel arguments.
317 // Hidden layer 1 kernel
318 while(1) {
319 tot_kernel_time = 0; // reset tot kernel time
320 read_new_input();
321 for (int i = 0; i < num_layers; i++) {
322 if (layer_config[i][layer_type] == 0) { // conv layer
323 int argi;
324 for (argi = data_h; argi < relu_on+1; argi++) {
325 status = clSetKernelArg(knl_conv[0], argi-2,

sizeof(unsigned), &layer_config[i][argi]);//
&out_h);

326 checkError(status, "Failed to set argument %d",
argi - 2);

327 }

A.1. SOURCE CODE 93

328
329 argi = argi - 2;
330 // Data ports
331
332 // Output port
333 if (layer_config[i][memwr_dst] == 1) {
334 status = clSetKernelArg(knl_conv[0], argi++,

sizeof(cl_mem), &output_buf[0]);
335 checkError(status, "Failed to set argument %d",

argi - 1);
336 }
337 else if (layer_config[i][memwr_dst] == 2) {
338 status = clSetKernelArg(knl_conv[0], argi++,

sizeof(cl_mem), &tmp_1_buf[0]);
339 checkError(status, "Failed to set argument %d",

argi - 1);
340 }
341 else if (layer_config[i][memwr_dst] == 3) { // else

?
342 status = clSetKernelArg(knl_conv[0], argi++,

sizeof(cl_mem), &tmp_2_buf[0]);
343 checkError(status, "Failed to set argument %d",

argi - 1);
344 }
345
346 // Input port
347 if (layer_config[i][memrd_src] == 0) {
348 status = clSetKernelArg(knl_conv[0], argi++,

sizeof(cl_mem), &input_buf[0]);
349 checkError(status, "Failed to set argument %d",

argi - 1);
350 }
351 else if (layer_config[i][memrd_src] == 2) {
352 status = clSetKernelArg(knl_conv[0], argi++,

sizeof(cl_mem), &tmp_1_buf[0]);
353 checkError(status, "Failed to set argument %d",

argi - 1);
354 }
355 else if (layer_config[i][memrd_src] == 3) { // else

?
356 status = clSetKernelArg(knl_conv[0], argi++,

sizeof(cl_mem), &tmp_2_buf[0]);
357 checkError(status, "Failed to set argument %d",

argi - 1);
358 }

94 APPENDIX

359
360
361 status = clSetKernelArg(knl_conv[0], argi++, sizeof

(cl_mem), &weights_buf[i]);
362 checkError(status, "Failed to set argument %d",

argi - 1);
363
364 status = clSetKernelArg(knl_conv[0], argi++, sizeof

(cl_mem), &bias_buf[i]);
365 checkError(status, "Failed to set argument %d",

argi - 1);
366
367 } else if (layer_config[i][layer_type] == 1) { // fc

layer
368 int argi = 0;
369
370 status = clSetKernelArg(knl_fc[0], argi++, sizeof(

unsigned), &layer_config[i][weight_w]);
371 checkError(status, "Failed to set argument %d",

argi - 1);
372
373 status = clSetKernelArg(knl_fc[0], argi++, sizeof(

unsigned), &layer_config[i][relu_on]);
374 checkError(status, "Failed to set argument %d",

argi - 1);
375
376 // Data ports
377
378 // Output port
379 if (layer_config[i][memwr_dst] == 1) {
380 status = clSetKernelArg(knl_fc[0], argi++, sizeof

(cl_mem), &output_buf[0]);
381 checkError(status, "Failed to set argument %d",

argi - 1);
382 }
383 else if (layer_config[i][memwr_dst] == 2) {
384 status = clSetKernelArg(knl_fc[0], argi++, sizeof

(cl_mem), &tmp_1_buf[0]);
385 checkError(status, "Failed to set argument %d",

argi - 1);
386 }
387 else if (layer_config[i][memwr_dst] == 3) { //

else?
388 status = clSetKernelArg(knl_fc[0], argi++, sizeof

(cl_mem), &tmp_2_buf[0]);

A.1. SOURCE CODE 95

389 checkError(status, "Failed to set argument %d",
argi - 1);

390 }
391
392 // Input port
393 if (layer_config[i][memrd_src] == 0) {
394 status = clSetKernelArg(knl_fc[0], argi++, sizeof

(cl_mem), &input_buf[0]);
395 checkError(status, "Failed to set argument %d",

argi - 1);
396 }
397 else if (layer_config[i][memrd_src] == 2) {
398 status = clSetKernelArg(knl_fc[0], argi++, sizeof

(cl_mem), &tmp_1_buf[0]);
399 checkError(status, "Failed to set argument %d",

argi - 1);
400 }
401 else if (layer_config[i][memrd_src] == 3) { // else

?
402 status = clSetKernelArg(knl_fc[0], argi++, sizeof

(cl_mem), &tmp_2_buf[0]);
403 checkError(status, "Failed to set argument %d",

argi - 1);
404 }
405
406 status = clSetKernelArg(knl_fc[0], argi++, sizeof(

cl_mem), &weights_buf[i]);
407 checkError(status, "Failed to set argument %d",

argi - 1);
408
409 status = clSetKernelArg(knl_fc[0], argi++, sizeof(

cl_mem), &bias_buf[i]);
410 checkError(status, "Failed to set argument %d",

argi - 1);
411 }
412
413 // Enqueue kernel.
414 // Use a global work size corresponding to the size

of the output matrix.
415 // Each work-item computes the result for one value

of the output matrix,
416 // so the global work size has the same dimensions as

the output matrix.
417 //
418 // Events are used to ensure that the kernel is not

96 APPENDIX

launched until
419 // the writes to the input buffers have completed.
420 const size_t global_work_size_conv[3] = {layer_config

[i][conv_w], layer_config[i][conv_h], layer_config
[i][weight_n]};

421 const size_t local_work_size_conv[3] = {layer_config
[i][conv_w], layer_config[i][conv_h], 1};

422
423 const size_t global_work_size_fc[1] = {layer_config[i

][weight_h]};
424 const size_t local_work_size_fc[1] = {layer_config[i

][weight_h]};
425
426 if (i == 0) { // first layer
427 status = clEnqueueWriteBuffer(queue_conv[0],

input_buf[0], CL_FALSE,
428 0, INPUT_SIZE * sizeof(float), input, 0, NULL,

NULL);
429 checkError(status, "Failed to transfer input");
430 }
431
432 if (layer_config[i][layer_type] == 0) { // conv layer
433 status = clEnqueueWriteBuffer(queue_conv[0],

weights_buf[i], CL_FALSE,
434 0, weight_sizes[i] * sizeof(float), weights[i],

0, NULL, NULL);
435 checkError(status, "Failed to transfer weights");
436
437 status = clEnqueueWriteBuffer(queue_conv[0],

bias_buf[i], CL_FALSE,
438 0, bias_sizes[i] * sizeof(float), bias[i], 0,

NULL, NULL);
439 checkError(status, "Failed to transfer bias");
440
441 if (clFinish(queue_conv[0]) == CL_SUCCESS)
442 printf("cl_finish == success\n");
443
444 //// kernel taskconv
445 //status = clEnqueueTask(queue_conv[0], knl_conv

[0], 0, NULL, &conv_event[0]);
446 //checkError(status, "Failed to launch simple_conv

kernel");
447
448 // kernel ndrconv
449 status = clEnqueueNDRangeKernel(queue_conv[0],

A.1. SOURCE CODE 97

knl_conv[0], 3, NULL,
450 global_work_size_conv, local_work_size_conv, 0,

NULL, &conv_event[0]);
451 checkError(status, "Failed to launch kernel");
452
453 // Wait for all kernels to finish.
454 clWaitForEvents(num_devices, conv_event);
455
456 // Get kernel times using the OpenCL event

profiling API.
457 cl_ulong conv_time_ns = getStartEndTime(conv_event

[0]);
458 printf("Conv layer kernel time (device %d): %0.3f

ms\n", 0, double(conv_time_ns) * 1e-6);
459 log_file << "Conv layer " << i << " kernel time: "

<< std::setprecision(3) << conv_time_ns * 1e-6
<< "ms\n";

460
461 tot_kernel_time += conv_time_ns;
462 }
463 else if (layer_config[i][layer_type] == 1) { // fc

layer
464 status = clEnqueueWriteBuffer(queue_fc[0],

weights_buf[i], CL_FALSE, // use blocking
CL_TRUE?

465 0, weight_sizes[i] * sizeof(float), weights[i],
0, NULL, NULL);

466 checkError(status, "Failed to transfer weights");
467
468 status = clEnqueueWriteBuffer(queue_fc[0], bias_buf

[i], CL_FALSE, // use blocking CL_TRUE?
469 0, bias_sizes[i] * sizeof(float), bias[i], 0,

NULL, NULL);
470 checkError(status, "Failed to transfer bias");
471
472 if (clFinish(queue_fc[0]) == CL_SUCCESS) //test
473 printf("cl_finish == success\n");
474
475 status = clEnqueueNDRangeKernel(queue_fc[0], knl_fc

[0], 1, NULL,
476 global_work_size_fc, local_work_size_fc, 0, NULL,

&fc_event[0]);
477 checkError(status, "Failed to launch kernel");
478
479 // Wait for all kernels to finish.

98 APPENDIX

480 clWaitForEvents(num_devices, fc_event);
481
482 cl_ulong fc_time_ns = getStartEndTime(fc_event[0]);
483 printf("FC layer kernel time (device %d): %0.3f ms\

n", 0, double(fc_time_ns) * 1e-6);
484 log_file << "FC layer " << i << " kernel time: " <<

std::setprecision(3) << fc_time_ns * 1e-6 << "
ms\n";

485
486 tot_kernel_time += fc_time_ns;
487 }
488 } // end layer iteration
489
490 // Read the result.
491 if (layer_config[num_layers-1][layer_type] == 0) { //

conv layer
492 status = clEnqueueReadBuffer(queue_conv[0],

output_buf[0], CL_TRUE,
493 0, OUTPUT_SIZE * sizeof(float), output, 0, NULL,

NULL);
494 checkError(status, "Failed to read output matrix");
495 }
496 else if (layer_config[num_layers-1][layer_type] == 1) {

// fc layer
497 status = clEnqueueReadBuffer(queue_fc[0], output_buf

[0], CL_TRUE,
498 0, OUTPUT_SIZE * sizeof(float), output, 0, NULL,

NULL);
499 checkError(status, "Failed to read output matrix");
500 }
501
502 if (output[1] > output[0]) {
503 printf("\nYou said HEY SPARK!\n\n");
504 printf(" %f < %f\n\n", output[0], output[1]);
505 break;
506 }
507 else {
508 printf("\nWrong word\n");
509 printf(" %f > %f\n\n", output[0], output[1]);
510 }
511 } // end while
512
513 //const double end_time = getCurrentTimestamp();
514 end_time = getCurrentTimestamp();
515 total_time = end_time - start_time;

A.1. SOURCE CODE 99

516
517 // Wall-clock time taken.
518 printf("\nTotal time: %0.3f ms\n", total_time * 1e3);
519 printf("\nTotal kernel time: %0.3f ms\n", tot_kernel_time

* 1e-6);
520
521 // Total time log
522 log_file << "\nTotal time: " << std::setprecision(3) <<

total_time * 1e3 << "ms\n";
523 log_file << "\nTotal kernel time: " << std::setprecision

(3) << tot_kernel_time * 1e-6 << "ms\n";
524 log_file.close();
525
526 // Release kernel events.
527 clReleaseEvent(conv_event[0]);
528 clReleaseEvent(fc_event[0]);
529
530 // Read the result.
531 if (layer_config[num_layers-1][layer_type] == 0) { //

conv layer
532 status = clEnqueueReadBuffer(queue_conv[0], output_buf

[0], CL_TRUE,
533 0, OUTPUT_SIZE * sizeof(float), output, 0, NULL, NULL

);
534 checkError(status, "Failed to read output matrix");
535 }
536 else if (layer_config[num_layers-1][layer_type] == 1) {

// fc layer
537 status = clEnqueueReadBuffer(queue_fc[0], output_buf

[0], CL_TRUE,
538 0, OUTPUT_SIZE * sizeof(float), output, 0, NULL, NULL

);
539 checkError(status, "Failed to read output matrix");
540 }
541
542 // Verify results.
543 verify();
544 }
545
546
547 void verify() { // need to account for some rounding

differences
548 printf("Verifying\n");
549
550 bool success = 1; // mby err_cnt aswell

100 APPENDIX

551
552 for (unsigned i = 0; i < OUTPUT_SIZE; i++) { // mby also

check difference
553 printf("output[%d] = %f\ngolden_ref[%d] = %f\n\n",

i, output[i], i, golden_ref[i]);
554 if (output[i] != golden_ref[i])
555 success = 0;
556 }
557
558 if (success)
559 printf("The convolution is CORRECT\n");
560 else
561 printf("The convolution is WRONG\n");
562 }
563
564 // Free the resources allocated during initialization
565 void cleanup() {
566
567 if(knl_conv && knl_conv[0]) {
568 clReleaseKernel(knl_conv[0]);
569 }
570 if(knl_fc && knl_fc[0]) {
571 clReleaseKernel(knl_fc[0]);
572 }
573 if(queue_conv && queue_conv[0]) {
574 clReleaseCommandQueue(queue_conv[0]);
575 }
576 if(queue_fc && queue_fc[0]) {
577 clReleaseCommandQueue(queue_fc[0]);
578 }
579 if(input_buf && input_buf[0]) {
580 clReleaseMemObject(input_buf[0]);
581 }
582 if(output_buf && output_buf[0]) {
583 clReleaseMemObject(output_buf[0]);
584 }
585 if(weights_buf && weights_buf[0]) {
586 clReleaseMemObject(weights_buf[0]);
587 }
588 if(bias_buf && bias_buf[0]) {
589 clReleaseMemObject(bias_buf[0]);
590 }
591 if(tmp_1_buf && tmp_1_buf[0]) {
592 clReleaseMemObject(tmp_1_buf[0]);
593 }

A.1. SOURCE CODE 101

594 if(tmp_2_buf && tmp_2_buf[0]) {
595 clReleaseMemObject(tmp_2_buf[0]);
596 }
597 if(program) {
598 clReleaseProgram(program);
599 }
600 if(context) {
601 clReleaseContext(context);
602 }
603
604 for (int i = 0; i < num_layers; i++) {
605 alignedFree(weights[i]);
606 alignedFree(bias[i]);
607 }
608 alignedFree(input);
609 alignedFree(output);
610 alignedFree(golden_ref);
611 }

Listing 11: main.cpp

A.1.5 Live setup code

1 #ifndef RECORD_VOICE_H
2 #define RECORD_VOICE_H
3
4 #define SAMPLE_RATE 48000
5 #define FRAMES_PER_BUFFER 1024
6 #define NUM_SECONDS 0.9
7 #define NUM_CHANNELS 1
8
9 #define PA_SAMPLE_TYPE paFloat32

10 #define SAMPLE_SILENCE 0.0f
11
12 void record_voice(float* recorded_samples);
13
14
15 #endif // RECORD_VOICE_H

Listing 12: record_voice.h

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "portaudio.h"
4 #include "wav_utils/record_voice.h"
5
6 void record_voice(float* recorded_samples) {

102 APPENDIX

7
8 PaStreamParameters input_parameters;
9 PaStream* stream;

10 PaError err;
11 //float* recorded_samples;
12 int total_frames;
13 int num_samples;
14 int num_bytes;
15 float max, average, val;
16
17 total_frames = NUM_SECONDS * SAMPLE_RATE;
18 num_samples = total_frames * NUM_CHANNELS;
19 num_bytes = num_samples * sizeof(float);
20
21 //recorded_samples = (float*)malloc(num_bytes);
22 if (recorded_samples == NULL){
23 printf("Could not allocate record array.\n");
24 exit(1);
25 }
26
27 for (int i = 0; i < num_samples; i++)
28 recorded_samples[i] = 0;
29
30 err = Pa_Initialize();
31 if (err != paNoError)
32 goto error;
33
34 input_parameters.device = Pa_GetDefaultInputDevice();
35 if (input_parameters.device == paNoDevice) {
36 fprintf(stderr, "Error: No default input device.\n");
37 goto error;
38 }
39 input_parameters.channelCount = NUM_CHANNELS;
40 input_parameters.sampleFormat = PA_SAMPLE_TYPE;
41 input_parameters.suggestedLatency = Pa_GetDeviceInfo(

input_parameters.device)->defaultLowInputLatency;
42 input_parameters.hostApiSpecificStreamInfo = NULL;
43
44 err = Pa_OpenStream(&stream,
45 &input_parameters,
46 NULL, // &

output_parameters
47 SAMPLE_RATE,
48 FRAMES_PER_BUFFER,
49 paClipOff, // we won’t

A.1. SOURCE CODE 103

output out of range samples so don
’t bother clipping them

50 NULL, // no callback,
use blocking api

51 NULL); // no callback,
so no callback userData

52 if (err != paNoError)
53 goto error;
54
55 err = Pa_StartStream(stream);
56 if (err != paNoError)
57 goto error;
58 printf("\n------NOW RECORDING!!------\n\n"); // fflush(

stdout);
59
60 err = Pa_ReadStream(stream, recorded_samples,

total_frames);
61 if (err != paNoError)
62 goto error;
63
64 err = Pa_CloseStream(stream);
65 if (err != paNoError)
66 goto error;
67
68 //free(recorded_samples);
69
70 Pa_Terminate();
71
72 return;
73
74 error:
75 Pa_Terminate();
76 fprintf(stderr, "An error occured while using the

portaudio stream\n");
77 fprintf(stderr, "Error number: %d\n", err);
78 fprintf(stderr, "Error message: %s\n", Pa_GetErrorText(

err));
79 return;
80 }

Listing 13: record_voice.cpp

1 #ifndef WRITE_WAV_H
2 #define WRITE_WAV_H
3
4 typedef struct wav_header_t {

104 APPENDIX

5 // RIFF wave header
6 char chunk_id[4];
7 int chunk_size;
8 char format[4];
9

10 // Format subchunk
11 char subchunk1_id[4];
12 int subchunk1_size;
13 short audio_format; // short int
14 short num_channels;
15 int sample_rate;
16 int byte_rate;
17 short block_align;
18 short bits_per_sample;
19
20 // Data subchunk
21 char subchunk2_id[4];
22 int subchunk2_size;
23 } wav_header_t;
24
25 void write_wav(const char* file_name, float* audio_data,

int num_bytes, short num_channels, int sample_rate,
short bits_per_sample);

26
27 #endif // WRITE_WAV_H

Listing 14: write_wav.h

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <fstream>
4
5 #include "wav_utils/write_wav.h"
6
7
8
9 void write_wav(const char* file_name, float* audio_data,

int num_bytes, short num_channels, int sample_rate,
short bits_per_sample) {

10 wav_header_t header;
11 // RIFF wave header
12 header.chunk_id[0] = ’R’;
13 header.chunk_id[1] = ’I’;
14 header.chunk_id[2] = ’F’;
15 header.chunk_id[3] = ’F’;
16 header.chunk_size = 36 + num_bytes;

A.2. REPORTS 105

17 header.format[0] = ’W’;
18 header.format[1] = ’A’;
19 header.format[2] = ’V’;
20 header.format[3] = ’E’;
21
22 // Format subchunk
23 header.subchunk1_id[0] = ’f’;
24 header.subchunk1_id[1] = ’m’;
25 header.subchunk1_id[2] = ’t’;
26 header.subchunk1_id[3] = ’ ’;
27 header.subchunk1_size = 16; // 16 for PCM, size for rest

of subchunk
28 header.audio_format = 3; // 1 for PCM, 3 for float it

seems
29 header.num_channels = num_channels;
30 header.sample_rate = sample_rate;
31 header.bits_per_sample = bits_per_sample;
32 header.byte_rate = header.sample_rate * header.

num_channels * header.bits_per_sample/8;
33 header.block_align = header.num_channels * header.

bits_per_sample/8;
34
35 // Data subchunk
36 header.subchunk2_id[0] = ’d’;
37 header.subchunk2_id[1] = ’a’;
38 header.subchunk2_id[2] = ’t’;
39 header.subchunk2_id[3] = ’a’;
40 header.subchunk2_size = num_bytes;
41
42 // Write
43 std::ofstream file(file_name, std::ios::binary); // std::

ios::out
44 file.write((char*)&header, sizeof(header));
45 file.write((char*)audio_data, num_bytes);
46 file.close();
47
48 }

Listing 15: write_wav.cpp

A.2 Reports

All the reports are included included in the attachements. In this section only the
top.fit.summary report and base.fit.summary report for the best performing CNN
is included.

106 APPENDIX

1 Fitter Status : Successful - Sat Jun 3 01:48:39 2017
2 Quartus Prime Version : 16.0.2 Build 222 07/20/2016 SJ Pro

Edition
3 Revision Name : top
4 Top-level Entity Name : top
5 Family : Arria 10
6 Device : 10AX115S3F45E2SGE3
7 Timing Models : Preliminary
8 Logic utilization (in ALMs) : 66,204 / 427,200 (15 %)
9 Total registers : 119130

10 Total pins : 173 / 960 (18 %)
11 Total virtual pins : 0
12 Total block memory bits : 11,677,962 / 55,562,240 (21 %)
13 Total RAM Blocks : 832 / 2,713 (31 %)
14 Total DSP Blocks : 97 / 1,518 (6 %)
15 Total HSSI RX channels : 8 / 72 (11 %)
16 Total HSSI TX channels : 8 / 72 (11 %)
17 Total PLLs : 14 / 144 (10 %)

Listing 16: CNN NDRconv 4 CUs top.fit.summary

1 Fitter Status : Successful - Sat Jun 3 00:32:48 2017
2 Quartus Prime Version : 16.0.2 Build 222 07/20/2016 SJ Pro

Edition
3 Revision Name : base
4 Top-level Entity Name : top
5 Family : Arria 10
6 Device : 10AX115S3F45E2SGE3
7 Timing Models : Preliminary
8 Logic utilization (in ALMs) : 57,385 / 427,200 (13 %)
9 Total registers : 87212

10 Total pins : 173 / 960 (18 %)
11 Total virtual pins : 0
12 Total block memory bits : 2,145,162 / 55,562,240 (4 %)
13 Total RAM Blocks : 308 / 2,713 (11 %)
14 Total DSP Blocks : 2 / 1,518 (< 1 %)
15 Total HSSI RX channels : 8 / 72 (11 %)
16 Total HSSI TX channels : 8 / 72 (11 %)
17 Total PLLs : 14 / 144 (10 %)

Listing 17: CNN NDRconv 4 CUs base.fit.summary

	Introduction
	Background and Motivation
	Contributions
	Thesis overview

	Background Theory
	Machine learning
	Neural networks
	Network training
	Convolutional neural network
	Layers

	OpenCL
	Intel FPGA SDK for OpenCL

	Speech signal preprocessing

	Related Work
	An OpenCL™Deep Learning Accelerator on Arria 10
	PipeCNN
	FINN

	Neural Networks Implementation
	Linear classifier for the MNIST dataset
	Training
	OpenCL Implementation

	One hidden layer neural network
	Two hidden layer neural network

	CNN Implementation
	Architecture
	OpenCl implementation
	Getting it live

	Results and Evaluation
	Experimental setup
	Compiling and retrieving results
	Resource utilization
	Neural nets
	CNN

	Performance
	Neural nets
	CNN

	Comparison

	Discussion
	Project tasks
	Results and improvements discussion

	Conclusion
	Future Work

	References
	Appendix
	Source code
	Linear classifier
	One hidden layer neural network
	Two hidden layers neural network
	CNN
	Live setup code

	Reports

