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Abstract

Image segmentation is an important tool in several fields. One is medical image computing
where the images are divided into regions based on tissue type and organ, which can fur-
ther be used for visualization and diagnosis. Due to the large amount of data produced by
modern imaging modalities such as CT and MRI, the process of manual or semi-automatic
segmentation is time consuming, tedious and introduces bias by clinical experts. Recent
advances in the field of deep learning has given rise to several fully automatic methods for
robust segmentation on a large variety of segmentation tasks. In this thesis the use of a
3D convolutional neural network architecture is used on three different segmentation tasks
is explored. These tasks are coronary artery segmentation, brain tumor segmentation and
digital rock segmentation.

Coronary artery disease is the leading cause of death in Europe. Diagnosis of the disease
is today done by invasive methods, but research on using computational fluid dynamics to
model the blood flow based on non-invasive imaging show great promise. In this thesis
a method for fully automatic segmentation of the coronary arteries based on deep learn-
ing is proposed, implemented and evaluated on a dataset provided by St. Olavs Hospital.
The dataset contains manual segmentations performed by a clinical expert. The proposed
method uses two neural networks trained on aorta segmentation and coronary segmenta-
tion respectively and is able to segment the complete coronary artery tree in some test
images, but fails to segment all branches in the rest of the images.

For the brain tumor segmentation task a network is trained and evaluated on a dataset
provided by the Norwegian National Advisory Unit for Ultrasound and Image Guided
Therapy (USIGT). The results show that the deep learning method is able to produce good
segmentations fully automatically. These segmentations do however inlcude some spuri-
ous responses.

Digital Rocks technology is based on using high resolution 3D microscopy imaging to
create models describing reservoir rock. A network was trained and evaluated on a digital
rock dataset provided by FEI. The results show that the network is able to produce good
segmentations fully automatically.
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Sammendrag

Bildesegmentering er et viktig verktøy innenfor flere felt. Et av disse er medical image
computing, hvor bilder er delt inn i regioner basert på vevstype og organer, som kan videre
bli brukt for visualisering eller diagnosering. På grunn av den store mengden data som blir
produsert av moderne avbildningsmetoder som CT og MRI er prosessen for manuell og
semi-automatisk segmentering tidkrevende, langtekkelig og introduserer bias fra kliniske
eksperter. Nylige fremskritt innenfor feltet dyp læring har gitt opphav til flere helautoma-
tiske metoder for robust segmentering på en rekke segmenteringsoppgaver. I denne opp-
gaven er bruk av en 3D convolutional nevralt nettverk arkitektur på tre ulike segmentering-
soppgaver utforsket. Disse oppgavene er segmentering av koronar arterier, segmentering
av hjernesvulst og segmentering av digital rock.

Koronararteriesykdom er den ledende dødsårsaken i Europa. Diagnose av sykdommen er
i dag gjennomført ved bruk av invasive metoder, men forskning på bruk av numerisk flu-
iddynamikk for å modellere blodstømningen basert på ikke-invasive avbildningsmetoder
viser lovende resultat. I denne oppgaven er en metode for helautomatisk segmentering
av koronararteriene basert på dyp læring foreslått, implementert og evaluert på dataset
gitt av St. Olavs Hospital. Datasettet inneholder manuelle segmenteringer utført av en
klinisk ekspert. Den foreslåtte metoden bruker to nevrale nettverk trent på henholdsvis
aorta segmentering og koronararterie segmentering og er i stand til å segmentere hele ko-
ronararterietreet i noen av bildene, men feiler å segmentere alle grenene i resten av bildene.

For segmentering av hjernesvulst er et nettverk trent og evaluert på et dataset fra nasjonal
kompetansetjeneste for ultralyd of bildeveiledet behandling (USIGT). Resultatene viser at
metoden basert på dyp læring greier å produsere gode segmenteringer. Segmenteringene
inneholder allikevel noen falske responser.

Digital Rocks teknologi er basert på bruk av høyoppløselig 3D mikroskopi for å lage mod-
eller som beskriver reservoarberg. Et nevralt nettverk er trent og evaluert på et digital rock
dataset fra FEI. Resultatene viser at nettverket gir gode segmenteringer helautomatisk.
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Chapter 1
Introduction

Image segmentation is process of dividing an image into smaller partitions based on some
meaningful characteristics of the pixels in the image. In terms of medical imaging, an
image can be divided into regions which can be certain tissue types, organs or other rele-
vant structures (45). The segmentations are used for quantitative analysis and diagnosis.
The gold standard in medical image segmentation is manual segmentations performed by
clinical experts. This is a time consuming task as modern medical imaging modalities,
such as CT and MRI, are able to produce a large amount of data in the form of 3D image
volumes. The manual segmentations are also subject to bias and human error. Several
semi-automatic methods have been used to speed up the segmentation process but still
requires a clinical expert to initialize and/or guide the segmentation. The importance of
fully automatic segmentation methods increases with the increasing amount of data avail-
able, both individually for each patient and for all patients as a whole. Fully automatic
segmentation is also important in domains other than medical imaging, such as indus-
trial applications where imaging is used for analysis and validation. In this thesis three
segmentation tasks are explored: coronary artery segmentation, brain tumor segmentation
and digital rocks segmentation.

Coronary artery disease (CAD) is the leading cause of death among both men and women
in Europe (36). Diagnosis of the disease is today done by invasive methods. Research in
computational fluid dynamics shows promising results on modelling the coronary arteries
from non-invasive imaging. However, the process of obtaining these models needs to be
done either manually or in a semi-automatic fashion by experts and is time consuming. A
fully automatic method for extracting the coronary arteries is therefore highly desirable.

In this thesis, a method for automatic segmentation of the coronary arteries using deep
learning is proposed. The method uses the DeepMedic architecture by Kamnitsas et al.
(21) as a component. To improve the output of the deep learning method, a combination
of multiple networks trained on aorta segmentation and coronary artery segmentation are
used to further refine the result, inspired by related work on coronary artery segmentation.

1



Chapter 1. Introduction

The networks are trained on data provided by the Rotterdam Coronary Artery Algorithm
Evaluation Framework (41; 22). To evaluate the proposed method, it is tested on a dataset
provided by St. Olavs Hospital that has been manually segmented by a clinical expert.

The DeepMedic architecture was originally used for brain lesion and tumor segmenta-
tion. With the purpose of seeing how well the network performed on a similar task, the
method was trained and validated on a brain tumor datset provided by USIGT (12). This
dataset contains manual segmentations of glioblastoma, a type of brain tumor, performed
by two clinical experts. A fully automatic segmentation method is desireable as the man-
ual segmentation is a time consuming process and requires clinical experts.

The DeepMedic architecture was further evaluated on a third segmentation task which
was segmentation of rock samples from micro-CT volumes. The dataset was provided by
FEI (1). By segmenting different parts of the rock volumes, such as pore and grain, it is
possible to use the segmentation output to calculate macroscopic properties of the rock.

1.1 Research Questions
The overall goal of this thesis is to explore the use of deep learning for image segmentation
performed on 3D image volumes and implement a method for fully automatic segmenta-
tion of the coronary arteries. This gives the following research questions:

1. Can deep learning be used to create a fully automatic segmentation method for coro-
nary segmentation?

2. Is it possible to use the same type of deep learning method to perform fully automatic
segmentation of brain tumors from MRI volumes?

3. Can the same deep learning method be trained perform segmentation on digital
rocks.

1.2 Structure
In this section an overview of the structure of this thesis is presented.

1.2.1 Introduction
In this chapter the introduction and motivation for the thesis are presented.

1.2.2 Background
This chapter provides the basic theory for the methods used in this thesis and a literature
review of related work. The basic theory first provides a summary of the application
domains used in this thesis, which are coronary arteries, brain tumors and digital rocks.
This is followed by the theory behind the different imaging modalities used, which are CT

2



1.2 Structure

and MRI. A brief explanation of the basic theory behind deep learning using convolutional
neural networks is then given. For the literature review the previous work related to this
thesis is presented and discussed. Methods related to coronary artery segmentation are
first presented. This is followed by a review of methods for medical image segmentation
using deep learning. Lastly, deep learning methods used for coronary artery segmentation
and brain tumor segmentation are reviewed.

1.2.3 Method
In this chapter the chosen method is presented. The chosen deep learning method is ex-
plained, followed by a summary of the different datasets that are used in this thesis. A
section is used to describe the preprocessing steps applied to the datasets. The different
experiments that were set up are then explained, first experiments for coronary artery seg-
mentation, then brain tumor segmentation and segmentation on the digital rocks dataset.
Finally the metrics used to evaluate the methods are presented.

1.2.4 Results
The results of the experiments are presented and compared. Qualitative results are based
on visual comparisons of input data, corresponding ground truth data and the output of the
methods. Quantitative results are presented in the form of evaluation on different metrics
as well as results from the evaluation frameworks.

1.2.5 Discussion
In this chapter the results are discussed. The strengths and weaknesses of the chosen
method are discussed based on the results on coronary artery segmentation, brain tumor
segmentation and segmentation on the rock dataset.

1.2.6 Conclusion and future work
A conclusion is made from the results, the following discussion and the initial research
questions. Future work based on the discussion in the previous chapter is then presented.
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Chapter 2
Background

This chapter provides the basic theory behind the methods used in this thesis and a litera-
ture review of related work.

2.1 Basic Theory
The basic theory first provides a summary of the application domains used in this thesis,
which are coronary arteries, brain tumors and digital rocks. This is followed by the theory
behind the different imaging modalities used, which are CT and MRI. A brief explana-
tion of the basic theory behind deep learning using convolutional neural networks is then
presented.

2.1.1 Application domains
In this thesis segmentation tasks on several domains are presented. These are coronary
arteries, brain tumors and digital rocks.

Coronary Artery Disease

The coronary arteries are the blood vessels located around the heart providing the my-
ocardium with blood (9). The right coronary artery (RCA) and left coronary artery (LCA)
originate from the aorta just above where it exits the left ventricular chamber. The LCA
further branches into the left circumflex coronary artery (LCX) and the left anterior de-
scending coronary artery (LAD). Figure 2.1 shows an overview over where the coronary
arteries are located in relation to the heart.

Coronary artery disease (CAD), also called Ischemic heart disease (IHD), is a disease
that can lead to angina (chest pain), myocardial infarction (heart attack) and cardiac arrest
(35). CAD is the leading cause of death globally. CAD is caused by plaque building up
over time. The plaque is made up of fatty lipid deposits, cholesterol, calcium and other
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Figure 2.1: Diagram of the coronary arteries, By Coronary.pdf: Patrick J. Lynch, medical illustra-
torderivative work: Fred the Oyster (talk)adaption and further labeling: Mikael Häggström - Coro-
nary.pdf, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9967381

substances found in the bloodstream. These deposits causes the arteries to narrow and
harden, also known as atherosclerosis. Figure 2.2 illustrates this. The narrowing causes
the heart to not receive enough oxygen-rich blood, which leads to angina and myocardial
infarction. Severly narrowed parts (stenoses) can cause blood clots which can lead to car-
diac arrest do to sudden lack of oxygen provided to the heart muscle (35). Risk factors
include genetics, diabetes, smoking, obesity, lack of exercise and stress.
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Figure 2.2: Coronary artery disease caused by buildup of plaque. Blausen.com staff (2014). ‘Medi-
cal gallery of Blausen Medical 2014’. WikiJournal of Medicine 1 (2). DOI:10.15347/wjm/2014.010.
ISSN 2002-4436. [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Com-
mons

Diagnosis can be performed in several ways (3). Echocardiogram is based on using
ultrasound to monitor the heartbeats. If irregular heart motion is observed it could be a
symptom that the heart is not getting enough blood caused by CAD. Another method is
the use of Computed Tomography Angiogram (CTA). This can also be used in a combina-
tion with invasive coronary angiogram, where a catheter is inserted into the proximal parts
of the coronary arteries and contrast fluid is then injected from the catheter. By doing this
the coronary arteries are easier to observe and it makes it possible to observe the blood
flow to easier detect narrowed vessels.

Treatment includes lifestyle changes, medication and in some cases angioplasty and by-
pass surgeries (3). In angioplasty a small catheter with a balloon-like stent is inserted
into into the stenosed region to remove the plaque. With bypass surgeries a new artery is
extended from the aorta and surgically inserted past the blocked passage.

Brain tumors

There exists several types of brain tumors, where glioblastoma is one of these types. Also
called glioblastoma multiforme (GBM), it makes up 15% of all brain tumor cases and is
regarded as the most agressive type of cancer beginning in the brain (53; 5). Symptoms are
similar to that of a stroke. Genetic disorders can lead to increased risk of suffering from
glioblastoma, but in most of the cases the direct cause is unknown (13). Diagnosis is usu-
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ally performed by a neurological exam followed by a MRI scan and/or tissue biopsy (53).
Common treatment consists of surgery with removal of the tumor, followed by radiation
therapy and chemotherapy (13). Typical life expectancy after diagnosis is between 12 and
15 months (13). Figure 2.3 show how glioblastoma can look on a T1 weighted MRI scan.
The image is a slice of the first volume in the dataset provided by the Norwegian National
Advisory Unit for Ultrasound and Image Guided Therapy (USIGT) (12).

Digital Rocks

Digital Rocks technology is based on using high resolution 3D microscopy imaging to
create models describing reservoir rock (1). By using these models together with simula-
tion tools, macroscopic rock properties can be obtained. The quality of these models relies
on accurate segmentations, obtained by performing image processing on the 3D volumes.
Each voxel in the segmented result is labelled based on their phase, grain, micro-phase or
pore.

Figure 2.3: Example of globlastoma, here shown as a non uniform region with a bright border
towards the lower right of the image.

2.1.2 Imaging modalities
Data obtained from several different imaging modalities are used in this thesis. The data
used for coronary artery segmentation is in the form of CT scans. The brain tumor dataset
consists of MRI volumes. The digital rock dataset uses a form of X-Ray tomography for
3D microscopy.

CT

Rubin et al.(40) provides a thorough review of the application of computed tomography
(CT) angiography for diagnosis of CAD. The most common form of CT scans are based on
X-ray imaging. X-rays are produced by firing an electron beam at a heavy metal, usually
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tungsten. When the electrons hit the atoms of the metal, they can either be slowed down
or they can cause electrons to jump to a higher energy state. When these electrons go back
to their original energy state, they release energy in form of photons (40). By adjusting
the energy of the electron beam it is possible to make this process generate x-rays. The
x-ray producer is then aimed at a silver halide film. The patient is then placed between the
x-ray generator and the film. Different tissues found in the body will attenuate the x-rays
differently. Air will attenuate the least, soft tissue will attenuate some of the x-rays, while
bone and teeth will attenuate everything. When the x-rays hit the silver halide, it darkens
the film, which is why the lungs will show up as nearly black on x-ray images and bone
will be almost completely white. The imaging is not without risk, as x-rays can damage
cells and DNA, which can lead to development of cancer (40).

The problem with common X-ray imaging is that they are a planar projection of a 3D
volume, which means we get occlusions caused by bones and it is generally hard to ob-
serve the depth. CT imaging solves this issue by taking images from multiple angles
(40). For each angle, a one dimensional image will be stored which is obtained by using a
fan-shaped X-ray beam going through the patient. By taking enough of these fan-shaped
images, it is possible to use tomography to reconstruct the original cross section. This
is usually done by filtered forward-back-projection, where each ray from the one dimen-
sional images are filtered and projected back onto a plane at the given angle. After all the
rays has been projected back, the image is normalized and the reconstructed tomography
is obtained. By combining several slices it is possible to reconstruct a 3D volume of the
patient.

MRI

Magnetic resonance imaging (MRI) is a technique that does not use x-rays. To generate
an image strong magnetic fields and radio waves are used. The technology is based on
nuclear magnetic resonance. When put under a strong magnetic field, the nuclear spin
of the hydrogen atoms found in the body (water, fat) will align with the field (20). By
sending a pulse sequence of radio waves it is possible to excite the nuclear spin into a
different energy state. When the pulse is turned off the atoms will go back to their original
aligned state, releasing radio waves in the process that are received by antennas. Hydro-
gen atoms in different tissues will have different relaxation properties. By using different
pulse sequences it is possible to differentiate between the different tissues. To localize
the response a magnetic field gradient in three dimensions is used. The advantages over
CT images is that MRI can essentially observe the tissue type at any position without de-
grading the quality from attenuation of bones and other dense tissues. Another advantage
is that there are no health risks similar to the effect of ionizing x-rays produced by CT
scanners. Compared to obtaining a CT scan, MRI is a much slower process and requires
the patient to stay still for a long period of time. This also makes it more expensive to
use MRI imaging. Due to using a strong magnetic field, people with implants made of
magnetic material, such as pacemakers, will be unable to use MRI imaging (20).
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2.1.3 Deep Learning

Deep learning is a form of machine learning dealing with artificial neural networks (ANN)
containing mutliple layers. The Deep Learning Book (14) contains a thorough explanation
of deep learning methods. In this section the basics of ANN are explained, starting with
the building blocks and concepts and leading up to convolutional neural networks (CNN)
performed on images.

Artificial neural network

An ANN is a method that takes a number of inputs, such as pixel values in an image, and
produces some output, for example a prediction of which organ can be seen in the image.
Figure 2.4 shows a highly simplified overview of using a network to classify an image as
a certain type of organ.

Figure 2.4: Example usecase of an artificial neural network. Here a network has been trained to
classify the input image.

A more detailed explanation of ANN is that they consist of two or more layers that
are connected together, where each connection has a learnable weight parameter. Figure
2.5 shows a simple feed-forward network with one input layer, two hidden layers and an
output layer. Each layer consists of multiple neurons that receive input from all neurons
in the previous layer and sends output to all the neurons in the next layer. This is called a
fully connected layer. The ANN can have any number of hidden layers and each layer can
have any number of neurons.

Neuron

The input for a neuron in layer l is the sum of the outputs yl−1 of the previous layer
multiplied by the weights wi

l , where i is the index of the neuron. To obtain the output a
bias bil is added and a non-linear activation function is used on the result to produce the
output yil . Figure 2.6 illustrates the process. This can be represented by equation 2.1,
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Figure 2.5: Example of a simple fully connected neural network consisting of an input layer, two
hidden layers and an output layer.

where Nl is the number of neurons in layer l.

yil = σ

Nl−1∑
j=1

yjl−1w
j,i
l + bil

 (2.1)

The summation in equation 2.1 can also be represented as the dot product of the vector
yl−1 and wi

l , giving equation 2.2.

yil = σ
(
(yl−1)

T wi
l + bil

)
(2.2)

The output vector of layer l can then be represented by equation 2.3, where Wl is a
Nl−1, Nl matrix.

yl = σ
(
(yl−1)

T Wl + bl

)
(2.3)

Figure 2.6: Example of a neuron.
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Activation function

Possible choices for the activation function σ includes sigmoid, tanh, ReLU and others.
Most modern architectures use some variation of the Rectifying linear unit (ReLU) activa-
tion function. The ReLU is defined by equation 2.4.

σ(x) =

{
0 : x < 0
x : x ≥ 0

(2.4)

A version of the ReLU is the PReLU (17), which instead of outputting 0 for negative input
values uses a learnable parameter a to create a linear slope. This parameter is usually
limited to small values to maintain the properties of the ReLU activation function. The
PReLU is defined by equation 2.5.

σ(xi) =

{
aixi : xi < 0
xi : x ≥ 0

(2.5)

Softmax

The softmax function is used to scale the outputs yl of the final layer between 0 and 1,
where the sum of all outputs is 1. This can be interpreted as a pseudo probability. The
softmax function is defined by equation 2.6.

softmax(yl) =
exp(yl)∑Nl

i=1 exp(y
i
l)

(2.6)

2.1.4 Loss function

To evaluate how well the network predicts the data a loss function is used to calculate the
difference between the final predictions and the provided ground truth (14).

Training

The network is trained iteratively on batches of input. For each iteration the network is
evaluated on m inputs x(1), ..., x(m) and corresponding ground truth z(1), ..., z(m). An loss
metric is calculated between the predicted and expected outputs. The weights are then
updated to minimize the loss. Different optimizers can be used to minimize the loss. One
of these is stochastic gradient descent (14).

Let f
(
x(i);θ

)
be the output of the network with parameters θ (weights, biases and other

learnable parameters) and x(i) as input. Let L
(
f
(
x(i);θ

)
, z(i)

)
be some loss function,

such as cross entropy or a quadratic loss function. The gradient estimate of the parameters
θ is then calculated by equation 2.7.

ĝk =
1

m
∇θ

m∑
i=1

L
(
f
(

x(i);θ
)
, z(i)

)
(2.7)
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The parameters are then updated by a learning rate εk multiplied with the gradients added
to the previous parameters, θk ← θk−1 − εkĝk, where k is the iteration number. The
gradient of the parameters are obtained using backpropagation (14), which uses the chain
rule to propagate the loss from the final layer backwards through all layers.

The learning rate εk determines how fast the network learns. Using a constant learning rate
during the whole training can lead to slow convergence or lack of convergence. Learning
rate schedules are used to alter the learning rate during training based on number of epochs
and/or training scores. This makes it possible to use a relatively larger initial learning rate
for faster convergence and lowering the learning rate towards the end of the training to
get more fine-grained updates of the parameters. A momentum can be used to update the
gradients based on a form of average of gradients computed for a number of consecutive
optimization steps, instead of applying the gradients directly each optimization step. This
has shown to make the training more robust against local minimas (49).

Convolutional neural networks

Convolutional neural networks (CNNs) introduce the convolutional layer and are similar to
the fully connected neural networks previously presented. They both consists of neurons,
learnable weights, use loss function and can be trained using the same concepts. They
differ in how the weights and outputs are constructed, where convolutional layers are able
to exploit the spatial information found in images. A typical CNN is made up of several
sequential layers connected by weights acting as convolutional filter kernels. Each layer
l ∈ [1, L] contains Cl feature maps (FMs) (21). In 2D CNNs each FM is a 2D grid of
neurons that is used to detect features in the FM of the previous layer.

Let km,n
l , called a kernel, be a matrix of learned weights Wm,n

l from the the n-th FM
in the previous layer to the m-th FM in layer l. The activations of the m-th FM in the l-th
layer can then be represented by equation 2.8 (21), where ? is the convolution operator.

yml = σ

Cl−1∑
n=1

km,n
l ? yn

l−1 + bml

 (2.8)

This can be seen as convolving each FM of the previous layer by a 2D kernel filter and
summing the result. Figure 2.7 shows this operation. To obtain all the activations the
kernels are slided across the FMs, meaning that all neurons in the m-th FM of the l-th
layer will share the same weights Wm,n

l , n ∈ [1, Cl−1]. All FMs in a layer has the same
dimensions and all kernels km,n

l ,m ∈ [1, Cl],n ∈ [1, Cl−1] have equal size. Let Kl be the
number of weights of a kernel in the l-th layer. A 2D 3x3 kernel will require K = 32 = 9
weights. The total amount of weights between two layers is then given by Cl−1ClK.
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Figure 2.7: 2D Convolutional layer with a 3x3 kernel size and 5 FMs in each layer. Each line
represents 9 weights but has been simplified for the illustration.

This shows the concept of 2D convolutional layers, but this can be easily extended to
3D. The 2D kernels are changed to 3D kernels and the 2D FMs are replaced by 3D FMs.
This is illustrated by figure 2.8.

Figure 2.8: 3D Convolutional layer with 3D kernels. Each line represents a K weights. The dots
represents multiple 3D FMs.

2.2 Literature Review

In this section relevant literature to the project is presented. Literature on coronary artery
segmentation is presented first, divided into methods for general vessel segmentation,
coronary artery centerline extraction and coronary artery lumen segmentation. This is
followed by relevant literature on existing deep learning approaches for coronary artery
segmentation as well as brain tumor segmentation.

14



2.2 Literature Review

2.2.1 Related work for coronary artery segmentation

Segmentation of the coronary arteries is an important step for improving visualization and
quantification of the vessels. There has already been done a substantial amount of research
on the segmentation of the coronary arteries as a result of this. Lesage et al.(25) provides
an extensive review of algorithms for 3D vessel segmentation in general. A review of algo-
rithms specifically for the problem of coronary artery segmentation is given by Dehkordi
et al. (7). Most of these methods have been evaluated on the Rotterdam Coronary Artery
Algorithm Evaluation Framework for Centerline Extraction (41). In this framework the
algorithms are evaluated on three challenges: automatic, minimal user interaction and in-
teractive extraction. A score is assigned to each method based on an overlap measure and
an accuracy measure. The scores of the methods are published and ranked against each
other, making it possible to perform quantitative comparisons of the algorithms.

The highest ranked method of all the challenges is presented by Friman et al. (11). This
method uses a combination of multiple hypothesis tracking of vessels, minimal paths and
user interaction in the form of adding points to guide the algorithm. By considering several
hypothetical paths and bridging gaps based on minimal paths, the method is able to extract
difficult sections. To obtain good results with the method, a user is required to manually
add points to guide the extraction. This requires a user with knowledge about the coronary
arteries and the task of manually adding points can be time consuming. Several fully auto-
matic methods for centerline extraction has been proposed in order to avoid these issues.

Fully Automatic Centerline Extraction

The fully automatic methods can be divided into two categories, model-driven and data-
driven. A tracking-based method is proposed by Tek et al. (47). The first step of this
method is to detect the aorta, which is then used as a mask for finding ostia (the positions
on the aorta where the coronary arteries originates from). The centerline is then extracted
by tracking with a multi-scale medialness algorithm to the end of all branches. To perform
the actual centerline extraction, a graph based optimization method is used. Kitslaar et
al. (24) proposed a method of first segmenting the heart and aorta and using connected
component analysis to find candidate coronary regions. Starting from the aorta, a variant
of region growing is used to segment the complete tree. Zambal et al. (54) proposed a
method using a model-driven method to first segment the complete heart. The model is
then used to generate candidate positions for the coronary arteries. Depth first search is
then used together with small cylinder shaped models to extract the complete coronary
tree.

A data-driven approach is proposed by Yang et al. (52). This method uses an improved
vesselness filter based on Frangi et al.(10) by using ray-casting to mitigate issues at bi-
furcations where the arteries branch. The vesselness filter generates responses across the
entire volume, giving stronger responses for structures that have a tubular structure. The
responses are thresholded and candidate centerlines are obtained through skeletonization.
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Hough circle transform is used to segment the aorta partially, which is then used to find the
starting points of the centerlines. Centerlines are then grown from the ostium using branch
searching. In the last step, the contour of the lumen walls in multi-planar reconstructions
are detected and used to refine the centerline.

Bauer et al.(4) proposes a data-driven method based on eigenvalue analysis of the Hes-
sian matrix and coronary tree reconstruction. It performs a tube detection filter to detect
tubular structures in the image and use a ridge traversal algorithm to obtain candidate cen-
terlines. The tube detection filter used is based on Frangi et al.(10). In order to use this
filter to detect tubular structures with a larger diameter, the method uses gradient vector
flow(51). As the tube detection filter used in this method assumes that vessels have a cir-
cular cross section, the filter will fail to detect junctions and heavily calcified parts. The
method introduces a tree reconstruction algorithm which tries to create a minimum span-
ning tree of the candidate centerlines based on a cost function. The coronary arteries are
then selected as the longest connected structure.

Zheng et al.(56) is based on combining model-driven and data-driven approaches. The
method uses exploits anatomical knowledge about the coronary arteries by utilizing seg-
mented heart chambers to detect initial positions for centerlines and constrain them. A
pre-learned shape model is then used to refine the centerlines. To extend the centerlines a
data-driven method is used. Compared to other methods evaluated using the centerline ex-
traction evaluation framework(41), it outperforms all other methods in terms of accuracy
measure. For the overlap measure it ranks second among the fully automatic methods.

All the fully automatic methods presented in this section, with the exception of the method
proposed by Bauer et al. (4), includes a step for segmenting the aorta and/or heart to ini-
tialize or restrict the centerline extraction.

Coronary lumen segmentation algorithms

Segmentation of the coronary arteries is an important step for improving visualization
and quantification of the vessels. As a result, a large amount of algorithms for coro-
nary artery segmentation has already been proposed. Lesage et al.(25) provides a review
of 3D vessel segmentation algorithms. For this project we will look at fully automatic
segmentation methods that has been evaluated using the previously mentioned evaluation
framework(22; 41). The top ranking fully automatic lumen segmentation methods can be
separated into two categories, graph-cut based and level-set based.

One of the methods that is evaluated using the framework from the second challenge is
Lugauer et al.(30). In this method an algorithm for lumen segmentation based on Markov
Random Field and learning-based boundary detection is presented. A Min-cut algorithm
is then used to obtain the optimal surface generation. This method is fully automatic and
is shown to perform better than the human observers. A similar method is proposed in Lu-
gauer et al.(29), which is also uses a learning-based boundary detection using cascades. In
this method the calcifications are explicitly removed in the boundary detection step. The
method then uses a surface optimization scheme as proposed by Li et al.(26). Kitamura et
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al.(23) uses a method based on multi-label graph cuts. Higher order potentials are used as
shape priors. Candidate shapes are detected using Hessian analysis and using knowledge
about healthy lumen being mostly tubular.

Mohr et al.(34) uses an unsupervised classification technique based on Bayesian Infor-
mation Criterion to segment calcifications. Then the tissue is classified with probabilities
of being part of the lumen or vessel wall. For the segmentation of the lumen, a level-set
approach is used based on the result of the tissue and calcification classifications. Wang et
al.(50) proposes a method using an implicit 3D model of an already extracted centerline.
A level-set method is then used to propagate the growth of the model. New centerlines are
computed and the diameter of the vessels are re-estimated. This is done iteratively until
convergence.

Antiga (2) presents a framework for modelling vessels and blood flow based on medi-
cal images of larger arteries. A semi-automatic method based on level-sets is used to
segment the vessels. Marching cubes is used on the segmentation result to create a surface
model of the vessel. The models are then further processed, emphasizing the importance
of having good models before they can be converted to meshes used for computational
fluid dynamics.

2.2.2 Deep Learning for medical image segmentation
In the last years there has been a large increase in papers on deep learning for medical
imaging. Litjens et al. presents a survey paper reviewing over recent 300 papers, of which
240 were published in 2016 and 2017. The survey paper presents different types of deep
learning, such as deep belief networks (DBN), stacked auto encoders (SAE) and convo-
lutional neural networks (CNN). The papers are then categorized based on different types
of tasks. These tasks include classification, where a network takes one or more images as
input and outputs a small amount of variables used for diagnostics. A variable can as an
example be as simple as outputting if a disease is present or not. Another task is detec-
tion, where a network takes images as input and the output is used to localize organs and
landmarks. The result can be positions, bounding boxes and other variables describing the
location and orientation of anatomical structures in the images. For the task of performing
registration of multiple images, neural networks has been used both to output a similarity
metric between the two images, as well outputting the direct transformation that need to
be performed on the images. Another task is segmentation, where a network takes images
as input and classifies each pixel/voxel as output.

The methods proposed for segmentation are further categorized based on their approaches.
One of the approaches is to use a small patch of the image as input to the network. To seg-
ment the whole image, patches are extracted in a sliding-window manner and evaluated
by the network. this does however lead to a large amount of extra computations where
the image patches overlap due to valid convolutions. Long et al. (28) proposes a fully
convolutional neural network (fCNN) by representing fully connected layers as convolu-
tions. This makes it possible to use larger images as input than the network was trained
on. The output is however smaller than the input image due to downsampling in the form
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of max-pool layers. To fix this Long et al. (28) proposes a method of shifting the im-
age one pixel in each dimension and performing segmentation. This is repeated the same
number of times as the scaling factor and the outputs are then interlaced together to ob-
tain the full resolution result. Ronneberger et al. (39) presents a network named U-net,
which solves the problem of resolution by using an equal amount of upsampling layers
as downsampling layers. The architecture consists of a contractive part and an expansive
part. The network uses skip-connections between before and after the downsampling and
upsampling to the same level. The architecture is extended to 3D by Cicek et al. (6) by
replacing the 2D convolutional layers with 3D convolutional layers. Milletari et al. (32)
proposes a similar 3D architecture based on U-net and introduces a Dice-loss layer. The
downsampling and upsampling allows these architectures to work on the full image. This
means that large intermediate featuremaps needs to be stored at each layer. For 3D images
the memory requirements increases drastically and the methods proposed by Cicek et al.
(6) and Milletari et al. (32) describes using 1 and 2 volumes respectively each training
batch. To compensate for this, a large momentum is used while training. For both meth-
ods, the training data is augmented on-the-fly by performing elastic deformation on both
the input and the ground truth.

To avoid the large memory requirements that are present in the methods previously men-
tioned, other methods have used a multi-stream architecture. These are used mainly for
two purposes. The first is to perform 2.5D segmentation. Instead of using 3D convolu-
tional layers on the full input volume, Setio et al. (42) uses multiple distinct streams of 2D
convolutional layers operating on differently angled slices. The streams are then merged
towards the end of the network. The other purpose of multiple streams are to provide seg-
mentation on multiple scales. Kamnitsas et al. (21) proposes a method using two streams
which they call a dual pathway. One stream operates on local information from a small
patch, while the other stream works on a downscaled version of a larger section around
the small patch. Having two distinct streams working on different scales makes it possi-
ble for the network to detailed local information together with information about larger
surrounding structures without severely increasing the number of parameters or the size
of the featuremaps. This also makes it possible to train the network on smaller patches
and use larger patches when running, which in turn allows the network to have a larger
batch size compared to the methods working on the full image (28; 39; 6; 32). Since these
methods are training on the whole image class balance becomes an issue. To compensate
for this a weighted loss function together with a weight map is introduced (39). Since the
dual pathway based methods (21) can work on smaller patches, a non-uniform sampling
scheme is used to alleviate issues related to class imbalance.

Litjens et al. (27) discusses a challenge that is common to the segmentation methods
mentioned, which is that the methods will often create spurios responses in the output.
Some methods use a post-processing step on the prediction maps that the networks gener-
ate. Shakeri et al. (43) presents a method that uses a 2D fCNN to to segment structures
in MR scans of the brain. The segmentation is further improved by using Markov Ran-
dom Field on the prediction map output of the CNN. Kamnitsas et al. (21) uses a similar
method of improving the segmentation, but with a 3D Conditional Random Field instead.
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Deep learning methods for coronary artery segmentation

When it comes to using deep learning for coronary artery segmentation there have been
several proposed methods. Gulsun et al. (15) presents a fully automatic method for ex-
tracting the centerlines of the coronary arteries. This method uses a computed flow field to
find optimal centerline paths. After several centerline proposals has been made, a multi-
channel 1D CNN is trained and used to classify centerlines leaking into other non-coronary
vessels so that they can be pruned. The input consists of multiple profiles sampled along
the centerline, where each channel is a profile such as image intensity, vesselness, curva-
ture and gradient statistics among others. Moeskops et al. (33) presents a method of using
a multi-stream CNN working on inputs of three orthogonal 2D slices. In this paper the
CNNs ability to automatically learn features from one type of images, such as brain MRI
images, and applying these when classifying images of a different type, in this work breast
MRI and cardiac CTA. This is done by training the CNN on multiple types of images at the
same time. For the cardiac CTA dataset the task is segmentation of the coronary arteries.

Deep learning methods for brain tumor segmentation

Litjens et al. (27) mentions several deep learning methods used for brain tumor segmen-
tation. Havaei et al. (16) proposes a method of using a multistream 2D CNN, where
each stream uses a different MR modality as input. The streams are merged together in
an abstraction layer and further processing is done by subsequent layers. The network is
trained to handle missing input for some of the modalities at inference time. Pereira et al.
(37) used a 2D CNN with different MR modalities represented as separate channels in the
input. Zhao et al. (55) presents a multistream 2D CNN with three pathways. The input of
the pathways are 2D patches at three separate scales. Another method for brain tumor seg-
mentation is presented by Kamnitsas et al. (21), using 3D convolutions on patches of two
separate scales in a mutlistream CNN and was the winner of the ISLES 2015 challenge
(31).
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Chapter 3
Method

In this chapter the chosen method is presented. The chosen deep learning method is ex-
plained, followed by a summary of the different datasets that are used in this thesis. A
section is used to describe the preprocessing steps applied to the datasets. The different
experiments that were set up are then explained, first experiments for coronary artery seg-
mentation, then brain tumor segmentation and segmentation on the digital rocks dataset.
Finally the metrics used to evaluate the methods are presented.

3.1 Deep learning framework

Based on the literature review the deep learning framework presented by Kamnitsas et al.
(21) was chosen. The original paper introduces a network architecture named DeepMedic,
which is a 3D CNN using a dual pathway of two different scales. The DeepMedic con-
figuration has since been updated by the original authors based on new discoveries of
architecture choices and training hyperparameters that work well on brain tumor segmen-
tation. The method proposed in the original paper (21) uses a conditional random field
(CRF) to refine the output of the network. In order to give a stronger emphasis on the
network learning the correct segmentations, the CRF was not used.

3.1.1 Architecture

The full architecture of the DeepMedic network is shown in figure 3.1. The network con-
sists of two streams with separately learned weights. One of the streams works on the
normal resolution while the other stream downscales the input 3 times before performing
convolutions. Outside of this, both pathways are identical in terms of the number of con-
volutional layers and FMs per layer. The network uses residual connections as defined by
He et al. (18). The input for the 3rd convolutional layer is added to the outputs of the 4th
layer. These are added together after the convolution of the 4th layer, but before applying
the non-linearity σ. Residual connections are also used for the 6th and 8th layers. These

21



Chapter 3. Method

are represented by connections with a ⊕ symbol. Each convolutional layer in both path-
ways performs only valid convolutions, meaning that the dimensions are reduced by 2 for
each 33 convolution. After 8 convolutional layers the FMs of the two pathways are con-
catenated and a 33 kernel with padding is used to maintain the size of the FM. Two fully
connected layers with 13 convolutions are then used, where the last layer has a number
of FMs equal to the number of output classes the network should be able to predict. The
DeepMedic architecture and software framework are used for all networks that are trained
in this thesis.
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3.1 Deep learning framework

Figure 3.1: Overview of the architecture used. The architecture uses two identical path-
ways working on different scales of input. The architecture is 11 layers deep and uses resid-
ual connections, represented by connections with ⊕. The FM descriptions are on the form
(number of FMs)x(size of FM)3. Networks classifying 3 classes will have 3 FMs in the
classification layer.
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3.1.2 Training hyperparameters

Since the network architecture does not use any downsampling or upsampling layers, the
size of each voxels receptive field is small. This means that only a small patch equal to the
size of the receptive field of each voxel is necessary to train the network. Using 13 con-
volutions for the fully connected layer makes it possible to train on multiple voxels each
inference step. Kamnisas et al. (21) uses this to provide a hybrid training scheme, where
the network is trained on small image patches, but is able to perform inference on larger
image segments. It is however limited by memory as the size of the FMs will increase with
increased input size. The weights are not effected by this.

The network samples patches for training randomly from the entire volume. To allevi-
ate issues with class imbalance the network selects the patches with an equal probability
of the central predicted voxel being centered on a specific class.

The network is trained for 35 epochs, where each epoch is made up of 20 subepochs.
For each subepoch, 1000 training patches are extracted equally from the provided training
volumes. A batch size of 10 is used. After all samples in the training batch has been pro-
cessed, one optimization step is performed.

Dropout is used on the last two fully connected convolutional layers. For both layers,
each weight has a 50% chance of being temporarily removed each optimization step.

The weights are initialized by sampling from the normal distribution N (0,
√
2/ninl ),

where ninl is the number of weights a neuron on layer l is connected to from the input
of the layer, given by equation 3.1. This is done to better preserve the signals in the first
training steps (17).

ninl = Cl−1
∏

i={x,y,z} k(i)
l (3.1)

Batch normalization is used for each hidden layer to relieve the effects of the internal
covariate shift (19). The batches are normalized after each hidden layer based on the aver-
age and standard deviation of all patches in the batch, but when performing inference the
network must be able to handle a single patch. A rolling average over 60 batches are used
to obtain the average and standard deviation used for inference.

Training is performed with the RMSProp optimizer (49) with nesterov momentum (46).
The RMSProp parameters that are used are ρRMS = 0.9 and εRMS = 1e− 4. A momen-
tum value of 0.6 is used for the nesterov momentum.

L1 regularization is used with a value of 0.000001. L2 regularization is used with a value
of 0.0001.

The initial learning rate is 0.001 and a learning rate schedule based on dividing the learn-
ing rate by 2 at predefined epochs is used. The predefined epochs are epochs: 12, 16, 19,
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22, 25, 28, 31 and 34.

3.2 Datasets
The main focus of this thesis is to explore the use of deep learning on automatic segmen-
tation of the coronary arteries. For this task, three different datasets has been used for both
training and evaluating the networks. The first dataset is provided by the Rotterdam Coro-
nary Artery Algorithm Evaluation Framework for centerline extraction (41). It consists of
32 CT-volumes of which 8 is used for training and 24 is used for testing. A list of points
describing the position and radius of the centerlines for four selected vessels are provided
for each of the training volumes.

The second dataset is provided by the Rotterdam Coronary Stenoses Detection and Quan-
tification Evaluation Framework (22). It consists of 48 CT-volumes, 18 for training and
30 for testing. Ground truth data for stenoses position and quantification are provided for
the training volumes. Positions of the centerlines for all volumes are provided but lacks
information about the radius of the vessels. In addition to this, 3D models for different
parts of the heart, including the aorta, are provided for visualization.

The third dataset that has been used in this thesis is provided by the Coronary FFR project
pilot project. It consists of 8 CT-volumes. A 3D model of the lumen surface for a part
of the coronary tree has been manually segmented by a clinical expert for 3 of the CT-
volumes.

The DeepMedic architecture has been verified by training and testing it on a dataset
provided by USIGT (12). It consists of 20 MR-volumes with manual segmentations of
glioblastoma performed by two clinical experts.

The rock dataset is provided bu FEI (1). It consists of 3D microscopy volumes of 3 differ-
ent types of rock. For each dataset a labelled volume has been created by a semi-automatic
method.

The distinction between training and testing data is made clear in the two first datasets
provided by the evaluation frameworks. For the three other datasets the distinction has to
be done manually to ensure that the network has enough data to train on and at the same
time is validated against a diverse set of testing data that it has not been trained on to en-
sure that the network is able to handle new data. A summary of the datasets is shown in
table 3.1.

3.3 Data Preprocessing
The medical datasets have been acquired by different machines and settings. This leads
to a large variation in both intensity values and resolution. The CT volumes are made up
of axial slices, where each slice has a resolution of 512x512 pixels. The number of slices
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Dataset # Training # Testing Modality Dimensions Ground truth
Centerlines 8 24 CT 512x512xDepth Centerline position and radius

Stenoses 18 30 CT 512x512xDepth Stenoses position and quantifica-
tion. Centerline position. 3D model
of aorta.

Pilot Project 0 3 CT 512x512xDepth 3D model of lumen surface
Glioblastoma 13 4 MR 200x200xDepth Labelled ground truth volume

Rock - - CT 1000x1000x2499 Labelled ground truth volume

Table 3.1: Summary of datasets used in this thesis

differs for each volume, ranging from 260 slices to 600 slices. The volumes also have
different pixel spacing and distance between slices. Although smaller pixel spacing leads
to greater detail in the image, it can cause trouble when training the neural networks. The
neural networks do not use information about pixel spacing in any way. If we have two
volumes where the second volume has half the slice spacing but twice the number of slices
as the first, the structures in the second volume will be twice as long when seen by the
neural network. The solution to this is to resample all the volumes to have the same pixel
spacing and spacing between slices, as recommended by Kamnitsas et al. (21).

3.3.1 Resampling

Let s be the scaling factor defined by equation 3.2, where spacing x, spacing y, spacing z
is the spacing in mm between the voxels in the x, y and z directions respectively.

s =

spacing xoriginal/spacing xtargetspacing yoriginal/spacing ytarget
spacing zoriginal/spacing ztarget

 (3.2)

Let d be a vector that represents the size of a volume in number of voxels as described by
equation 3.3.

d =

width
height
depth

 (3.3)

The target size is defined by equation 3.4, where � represents a component-wise multipli-
cation between the original size and the scaling factor. The elements are rounded down to
the nearest integer to ensure the number of voxels to be discrete.

dtarget = bdoriginal � sc (3.4)

Let Iresampled be the resampled image with size defined by dtarget. Let v be an arbitrary
position in the resampled image. We can represent the normalized position vt as shown in
equation 3.5. The corresponding position in the original volume is given by vs as shown
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in equation 3.6.

vt =

xtyt
zt

 = v� 1

dtarget
(3.5)

vs =

xsys
zs

 = vt � doriginal (3.6)

The value for a voxel in the resampled image is then performed with trilinear interpolation,
as shown by equations 3.7, 3.8, 3.9 and 3.10.

C000 = Ioriginal((bxsc, bysc, bzsc)T )
C001 = Ioriginal((dxse, bysc, bzsc)T )
C010 = Ioriginal((bxsc, dyse, bzsc)T )
C011 = Ioriginal((dxse, dyse, bzsc)T )
C100 = Ioriginal((bxsc, bysc, dzse)T )
C101 = Ioriginal((dxse, bysc, dzse)T )
C110 = Ioriginal((bxsc, dyse, dzse)T )
C111 = Ioriginal((dxse, dyse, dzse)T )

(3.7)

C00 = (1− xt)C000 + xtC001

C01 = (1− xt)C010 + xtC011

C10 = (1− xt)C100 + xtC101

C11 = (1− xt)C110 + xtC111

(3.8)

C0 = (1− yt)C00 + ytC01

C1 = (1− yt)C10 + ytC11
(3.9)

Iresampled(v) = (1− zt)C0 + ztC1 (3.10)

The ground truth labeled volume is similarly resampled, except the trilinear interpolation
step is replaced by nearest neighbor as shown in equation 3.11.

Gresampled(v) = Goriginal((round(xs), round(ys), round(zs))
T ) (3.11)

3.3.2 Normalization
After resampling, the volume is normalized to have intensity values between 0 and 1. This
is done by dividing all intensity values in the volume by the highest intensity value as
shown in equation 3.12.

Inorm(v) =
Iresampled(v)

maxv Iresampled(v)
(3.12)

The intensities are then centered around zero by subtracting the mean value and divided
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by the standard deviation as suggested by Kamnitsas et al. (21). Equation 3.13 gives the
final prerpocessed volume, where mean gives the mean intensity of Inorm and std give
the standard deviation.

Ipreprocessed =
Inorm(v)−mean(Inorm(v))

std(Inorm(v))
(3.13)

3.4 Coronary artery segmentation
To train the neural network to segment the coronary arteries we need to provide training
data. The stenoses dataset provides some ground truth about the lumen surface in the form
of models of cross sections at 4 locations in each of the training datasets. It is however
hard to convert these cross-sectional planes into a labeled volume, which is required by
the neural network. The dataset also provides the positions of the centerlines, but lacks
any information about the radius. The centerline dataset does however provide both the
centerline position and radius and was chosen as training data.

3.4.1 Generating training data
To use the use the centerline data to train the neural network it first needs to be converted
to a labeled volume. For each volume in the training set, a new labeled volume with the
same dimensions as the training volume is created and initialized to only have background
labels. Each point on the centerline contains a position and a radius. For each point a
sphere with the corresponding radius is drawn in the labeled volume and marked as part of
the coronary arteries. The end result is an approximation of the lumen, assuming a close
to uniform tubular shape. This is illustrated by figure 3.2.

Figure 3.2: Simplified illustration of how a ground truth volume can be generated from overlap-
ping spheres based on position and radius of centerline. The distance between the spheres are for
illustration purposes as they are much closer in the real centerline data.

3.4.2 Training the network
After generating labels for the 8 training volumes, the volumes are preprocessed by re-
sampling and normalization as described in Section 3.3. Two different settings of voxel
spacing has been chosen for resampling. The first is 0.40mm in all dimensions, which is
close to the original images. This is the baseline volume. For the second setting the voxel
spacing has been doubled to 0.80mm, essentially downscaling the volumes by a factor of
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2. This is done to test the effects of different resolutions on the neural network. It is also a
way to increase the receptive field of the neural network without introducing more weights.

While training the neural network it is preferrable to perform validation while training
to observe how well the network is able to generalize. Since there are only 8 training vol-
umes with ground truth labels, 7 are used to train the network while the remaining volume
is used for validation.

Due to the limited amount of volumes with ground truth, an experiment with data aug-
mentation during training was performed. The data augmentation consists of randomly
mirroring the input patches around all three axises. This essentially increases the available
data by 8 times.

The coronary arteries makes up only a small part of the entire CT volume, which means
that the patches extracted from the background will have a larger variation than the patches
centered on the coronary arteries. There are also other side branches of the coronary arter-
ies that are not labelled in the ground truth. An experiment was performed by providing
a region of interest (ROI) around the coronary arteries in the ground truth. The same data
augmentation as the previous experiment is used due to smaller amount of possible sam-
ples caused by the ROI. Figure 3.3 illustrates the concept. The training patches are only
sampled from within the ROI of 12 voxel radius around the labelled arteries.

The networks trained in the experiments are named CoronaryCNN(experiment) and are
summarized by table 3.2.

Experiment Description
CoronaryCNN Baseline
CoronaryCNN0.80mm Resampled to 0.80mm voxel spacing
CoronaryCNNflip Data augmentation by randomly mirroring

(flipping) in all directions each sample
CoronaryCNNROI ROI of 12 voxels, data augmentation like

CoronaryCNNflip

Table 3.2: The experiments used for training the CoronaryCNN

3.4.3 Extracting the coronary arteries

Ideally the neural network should be able to take an input volume and output a labelled
volume of the vessels. However, the networks has a tendency to produce a large amount
of responses that are not part of the coronary arteries. An assumption is made that the
networks segmenting the coronary arteries manages to segment the vessels as connected
structures. This means that if the starting point of each part of the coronary tree is given,
it is possible to use information about connected components to extract only the coronary
arteries.
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Figure 3.3: Region of interest around labelled coronary arteries.

In this thesis, a new method for refining the segmentation output to only include the coro-
nary arteries is proposed. The proposed method use two separately trained networks. One
network is trained on aorta segmentation and the other is trained on coronary artery seg-
mentation. After obtaining a segmentation from the network trained on coronary arteries,
the aorta segmentation is used to find the intersection between the aorta and the coronary
arteries. This intersection is then used as start positions to select the coronary arteries and
discarding spurious responses. The process is illustrated by figure 3.4, where AortaCNN
and CoronaryCNN are trained networks for aorta and coronary artery segmentation respec-
tively. The postprocessing of the aorta consists of finding the largest connected component
and discarding the other responses.
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Figure 3.4: Method for extracting the coronary arteries and removing spurious responses in the
CNN output segmentation.

3.4.4 Aorta segmentation
The dataused to train a network to segment the aorta is provided by the Rotterdam Eval-
uation framework for stenoses detection. The data is provided in the form of 3D models,
which is then sampled to a label volume using functionality in 3D Slicer (38). The images
and ground truth are then preprocessed. The target spacing to resample the volumes to has
been chosen to be the same as the spacing used for the coronary artery extraction network,
which are 0.40mm and 0.80mm. The experiments are summarized in table 3.3.

Experiment Description
AortaCNN0.40mm Volumes are resampled to 0.40mm voxel spacing.
AortaCNN0.80mm Volumes are resampled to 0.80mm voxel spacing.

Table 3.3: Summary of experiments for aorta segmentation

3.4.5 Testing on Pilot Project dataset
The pilot project at St. Olavs Hospital provides 8 CT volumes, of which 3 has been
manually labelled by a clinical expert. The manual segmentation consists of one model
containing the aorta and the coronary artery tree for each volume. The models are con-
verted to binary volumes using 3D Slicer (38). The CT volumes are resampled to 0.40mm
and 0.80mm and preprocessed. To evaluate on the pilot dataset, the outputs of the pro-
posed method for extracting the coronary arteries (aorta and coronary segmentation) are
combined into one binary volume.

3.5 Brain tumor segmentation
The brain tumor dataset consists of manual segmentations performed twice by two clinical
experts using three different programs. A network based on the DeepMedic architecture is
trained and validated using the second manual segmentations by A.L.S using slicer (12).
The manual segmentations were performed on the T1 weighted MRI volumes. The dataset
also contains FLAIR volumes, but these were not used for training as not all of them were
co-registered to the T1 weighted volumes. Due to missing manual segmentation for three
of the MRI volumes, the network was trained on 13 volumes and validated on 4. All MRI
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volumes are preprocessed and resampled to 1mm voxel spacing. The network trained for
brain tumor segmentation is referred to BrainTumorCNN in this thesis.

3.6 Digital rock segmentation
The rock dataset consists of three volumes of different types of rock. All three volumes
are too large to fit in memory and has been divided into non-overlapping subvolumes.
Each subvolume has a size of 175x175x175 voxels. For each of the three volumes 150
subvolumes are extracted, of which 40 are used for training and 10 are used for validation.
The three types of rock are:

• Type 1: Bentheimer sandstone (BT)

• Type 2: Berea sandstone (BR)

• Type 3: Carbonate (CA)

In the first experiment the baseline network is trained on different amounts of training
data of bentheimer sandstone. By doing this it is possible to observe the effect of lim-
ited amount of data compared to a larger amount. The networks trained in the different
experiments are described in table 3.4.

Experiment # Training subvolumes # Testing subvolumes
RockCNN1 1 10
RockCNN10 10 10
RockCNN40 40 10

Table 3.4: Experiments with different number of training subvolumes of the Bentheimer volume.

The second set of experiments are used to observe how well a network trained on one
type performs on a type it has not seen before. RockCNNBT (which is the same network
asRockCNN40) is first tested on the other two datasets. Then a second network is trained
on two types and tested on all three. Lastly a network is both trained and tested on all three
types. Table 3.5 shows the details of the three experiments.

# Training # Testing
Experiment BT BR CA BT BR CA
RockCNNBT 40 0 0 10 10 10
RockCNNBT+BR 40 40 0 10 10 10
RockCNNBT+BR+CA 40 40 40 10 10 10

Table 3.5: Experiments with training on different types of rock.

3.7 Implementation details
Kamnitsas et al. (21) provides the source code of the deepmedic framework, which is used
for everything related to neural networks for the methods in this thesis. The framework
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is programmed in Python and uses Theano (48) as neural network library. Configuration
files are used to modify the hyperparameters of the network and alter the settings used for
training. Tools for plotting the training and validation metrics are provided by the frame-
work.

The ground truth data generation from centerlines was programmed in FAST (44) us-
ing C++ and OpenCL. 3D Slicer (38) was used to convert between 3D models and binary
labelled volumes. All other methods described in this chapter were programmed using
Matlab.

The training and evaluation of the networks were performed on machines with NVIDIA
GTX 1080 graphical processing units (GPUs).

3.8 Evaluation metrics
To evaluate how well the methods perform segmentation there are several metrics that can
be used. For each input volume the network predicts a class for each voxel. This is then
compared against the ground truth, which is a volume of the same size as the input volume
where each voxel has the label of their true class. There are four possible outcomes for
each voxel when comparing the predicted class to the ground truth of that class. For class
ci these are:

• True positive (TP): The network predicts that the voxel is part of class ci. The voxel
is labelled ci in the ground truth.

• False positive (FP): The network predicts that the voxel is part of class ci. The voxel
is not labelled ci in the ground truth.

• True negative (TN): The network predicts that the voxel is not part of class ci. The
voxel is not labelled ci in the ground truth.

• False negative (FN): The network predicts that the voxel is not part of class ci. The
voxel is labelled ci in the ground truth.

These are used to create metrics to evaluate the segmentations. Accuracy is a metric that
can be seen as how much of the whole input volume was predicted correctly and is defined
by equation 3.14. Where TP, TN, FP, FN represents the sum of voxels for each combina-
tion.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.14)

Sensitivity is a metric that only looks at how many voxels were correctly labelled as part of
a class ci, disregarding the voxels that are not. The sensitivity metric is given by equation
3.15.

Sensitivity =
TP

TP + FN
(3.15)

Specificity is a metric that only looks at the voxels in the ground truth not labelled class
ci and how well the network predicts these negatives. The specificity metric is defined by
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equation 3.16.

Specifivity =
TN

TN + FP
(3.16)

These metrics are however not always useful for comparing 3D segmentations. An exam-
ple is coronary artery segmentation, where the amount of voxels that are labelled as arteries
in the ground truth only makes up 2% of the volume. This means that predicting all voxels
as background will give an accuracy score of 0.98. The sensitivity and specificity metrics
does not penalize false positives and false negatives respectively, which means that a net-
work prediction containing a large amount spurious responses for arteries will not make
any change in the sensitivity metric, and only a small change in specificity as the amount
of true negatives are much larger than false positives. A metric that is better suited for
this task is the Dice similarity coefficient (DSC) (8), which looks at the true positives and
penalizes for false positives and false negatives. This metric is given by equation 3.17.

DSC =
2TP

2TP + FP + FN
(3.17)
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In this chapter the results of the proposed methods are presented. The results related to
coronary artery segmentation are first presented, followed by results from brain tumor
segmentation. Lastly, the results from the digital rocks segmentation are presented. All
training and validation DSC plots were created by using plotting functionality provided by
the DeepMedic software framework (21). All 3D models were created and visualized with
3D Slicer (38).

4.1 Coronary Arteries

In this section the results of the coronary artery segmentation, aorta segmentation and the
evaluation on clinical data is presented.

4.1.1 Coronary artery segmentation

Table 4.1 shows the DSC for training and validation of the network trained on coronary
artery segmentation. The training and validation DSC for each epoch during training is
shown by the plot in figure 4.1. Figures 4.2-4.6 shows 3D models of the generated ground
truth as well as the segmentation results from CoronaryCNN , CoronaryCNN0.80mm,
CoronaryCNNflip and CoronaryCNNROI .

Experiment DSC Training DSC Validation
CoronaryCNN 0.9761 0.5812
CoronaryCNN0.80mm 0.9996 0.5975
CoronaryCNNflip 0.9347 0.4758
CoronaryCNNROI 0.9365 0.1453

Table 4.1: Results of training and validation on the coronary artery segmentation experiments.
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(a) Training (b) Validation

Figure 4.1: Plots of DSC of training and validation of the coronary segmentation experiments.
CoronaryCNN is shown in red, CoronaryCNN0.80mm is shown in blue, CoronaryCNNflip

is shown in green and CoronaryCNNROI is shown in cyan. The DSC on training for
CoronaryCNNflip and CoronaryCNNROI are overlapping.

(a) (b)

Figure 4.2: 3D models of the coronary artery ground truth generated from reference centerlines
provided by the Rotterdam evaluation framework (41). The left and right images show the same
model from two different angles.
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(a) (b)

Figure 4.3: 3D model of the coronary artery segmentation output of CoronaryCNN . The left and
right images show the same model from two different angles. The network is able to segment parts
of the coronary artery but leaves large gaps in the segmentation.

(a) (b)

Figure 4.4: 3D model of the coronary artery segmentation output of CoronaryCNN0.80mm. The
left and right images show the same model from two different angles. The network is able to segment
parts of the coronary artery but leaves large gaps in the segmentation.
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(a) (b)

Figure 4.5: 3D model of the coronary artery segmentation output of CoronaryCNNflip. The left
and right images show the same model from two different angles. The ntwork produces less gaps
but also introduces more spurious responses.

(a) (b)

Figure 4.6: 3D model of the coronary artery segmentation output of CoronaryCNNROI . The left
and right images show the same model from two different angles. The network segments a large
amount of spurious responses (mostly tubular structures) in addition to the coronary arteries.

4.1.2 Aorta segmentation
Table 4.2 shows the training and validation DSC for the networks trained to segment the
aorta from CT images. The training and validation DSC for each epoch during training is
shown by the plots in figure 4.7. Figure 4.8 shows 3D models created from the segmen-
tation output of both AortaCNN0.40mm and AortaCNN0.80mm for all four validation
volumes. The ground truth for each validation volume is also shown in the figure.
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Experiment DSC Training DSC Validation
AortaCNN0.40mm 0.9796 0.6901
AortaCNN0.80mm 0.9912 0.9579

Table 4.2: Results of training and validation on aorta segmentation experiments.

(a) Training (b) Validation

Figure 4.7: Plot of training and validation DSC for AortaCNN0.40mm shown in red and
AortaCNN0.80mm shown in green.
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(a) Subject 18, ground truth (b) AortaCNN0.40mm (c) AortaCNN0.80mm

(d) Subject 19, ground truth (e) AortaCNN0.40mm (f) AortaCNN0.80mm

(g) Subject 20, ground truth (h) AortaCNN0.40mm (i) AortaCNN0.80mm

(j) Subject 21, ground truth (k) AortaCNN0.40mm (l) AortaCNN0.80mm

Figure 4.8: Results of aorta segmentation. Left column shows the ground truth for each subject.
Middle column shows the segmentation result of experiment AortaCNN0.40mm: resampling to
0.40mm voxel spacing. These images show large amount of oversegmentation. Right column shows
the result of experiment AortaCNN0.80mm: resampling to 0.80mm voxel spacing. These images
show only a few spurious responses.
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4.1.3 Evaluation on pilot dataset
The pilot dataset provided by St. Olavs Hospital includes three CT volumes with manual
segmentations performed by a clinical expert. The manual segmentations contain both
the aorta and the coronary arteries. Both the aorta and coronary arteries are extracted and
refined using the method proposed for extracting the coronary arteries. The aorta and coro-
nary artery results are then combined into one volume and evaluated against the ground
truth. Three versions of the proposed method are created by using CoronartyCNN ,
CoronaryCNNflip and CoronaryCNNROI to segment the coronary arteries.
AortaCNN0.80mm is used to segment the aorta for all the tests, meaning that all tests on
each pilot volume will share the same aorta segmentation. The test DSC from evaluation
using CoronaryCNN , CoronaryCNNflip and CoronaryCNNROI is shown in table
4.3.

3D models of the ground truth for the pilot volumes and the segmentation produced by
the tests are shown in figure 4.9.

Test volume CoronaryCNN CoronaryCNNflip CoronaryCNNROI

Pilot 1 0.8434 0.8550 0.8551
Pilot 2 0.5820 0.6394 0.6529
Pilot 2 0.8280 0.8405 0.8382

Mean DSC 0.7512 0.7783 0.7820

Table 4.3: Test DSC of three versions of the proposed method for extracting coronary arteries evalu-
ated on the pilot dataset provided by St. Olavs Hospital. The coronary artery and aorta segmentation
results are combined into one volume before evaluation. AortaCNN0.80mm is used to segment the
aorta in all tests.
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(a) Pilot 1 ground truth (b) Pilot 2 ground truth (c) Pilot 3 ground truth

(d) CoronaryCNN (e) CoronaryCNN (f) CoronaryCNN

(g) CoronaryCNNflip (h) CoronaryCNNflip (i) CoronaryCNNflip

(j) CoronaryCNNROI (k) CoronaryCNNROI (l) CoronaryCNNROI

Figure 4.9: Evaluation on pilot dataset. The left, middle and right column show the ground truth
and segmentation results of pilot 1, pilot 2 and pilot 3 CT volumes respectively. The first row show
the manual segmentations performed by a clinical expert. The next rows show segmentation results
of CoronaryCNN , CoronaryCNNflip and CoronaryCNNROI refined by using connected
component analysis to discard responses not connected to the aorta. AortaCNN0.80mm was used
to segment the aorta in each volume.
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4.2 Brain tumor segmentation
Figure 4.10 shows plots of the DSC for training and validation for BrainTumorCNN. After
15 epochs it can be observed that the validation DSC starts to decrease while the training
DSC still increases, most likely due to overfitting. A technique known as early stopping
is used by treating the trained model at 15 epochs as the final model and discarding the
subsequent models. Table 4.4 shows the validation DSC and inference time on the four
validation volumes. Qualitative results of the segmentation are shown in the form of slices
in figure 4.11. Figures 4.12-4.15 show 3D models of the segmentation results and corre-
sponding ground truth.

(a) Training (b) Validation

Figure 4.10: Plot of training and validation DSC for glioblastoma segmentation.

Subject Validation DSC
k229 0.9249
k230 0.8301
k231 0.9265
k232 0.8872

Mean DSC 0.8922

Table 4.4: Validation DSC and inference time for the four validation volumes.
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(a) k229 T1 (b) k229 Ground truth (c) k229 Segmentation

(d) k230 T1 (e) k230 Ground truth (f) k230 Segmentation

(g) k231 T1 (h) k231 Ground truth (i) k231 Segmentation

(j) k232 T1 (k) k232 Ground truth (l) k232 Segmentation

Figure 4.11: Slices showing the result of the model trained on brain tumor segmentation for subjects
k229, k230, k231 and k232. The segmentation is able to large parts of the tumors, but contains some
spurious responses.
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(a) Ground truth (b) Segmentation

Figure 4.12: 3D models of brain tumor on subject k229. The segmentation is missing some parts
found in the ground truth.

(a) Ground truth (b) Segmentation

Figure 4.13: 3D models of brain tumor on subject k230. The segmentation is missing some parts
found in the ground truth.
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(a) Ground truth (b) Segmentation

Figure 4.14: 3D models of brain tumor on subject k231. The segmentation segments most of the
tumor but also contains spurious responses.

(a) Ground truth (b) Segmentation

Figure 4.15: 3D models of brain tumor on subject k232. The segmentation segments most of the
tumor but also contains spurious responses.
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4.3 Digital rock segmentation
Figures 4.16-4.18 show plots of the training and validation DSC on pore, multi phase and
grain segmentation using the networks RockCNN1, RockCNN10 and RockCNN40.
These networks were trained on different amount of subvolumes from the bentheimer
sandstone volume. Figures 4.19-4.19 show the same type of plots but withRockCNNBT ,
RockCNNBT+BR andRockCNNBT+BR+CA instead. The training and validation DSC
for all networks are summarized in table 4.5. The results for RockCNNBT are left out as
these are the same as the results of RockCNN40.

The test DSC for experiments on training and testing on different types of rock are shown
in tables 4.6-4.9.

Figure 4.22 show a slice of a bentheimer sandstone subvolume, corresponding ground truth
and segmentation results of RockCNN1, RockCNN10 and RockCNN40. A similar
comparison of segmentation results and ground truth forRockCNNBT ,RockCNNBT+BR

and RockCNNBT+BR+CA is given by figure 4.23.
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(a) Training (b) Validation

Figure 4.16: Training and validation plots for pore segmentation experiments RockCNN1 shown
in red, RockCNN10 shown in green and RockCNN40 shown in blue.

(a) Training (b) Validation

Figure 4.17: Training and validation plots for multi phase segmentation experiments RockCNN1

shown in red, RockCNN10 shown in green and RockCNN40 shown in blue.
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(a) Training (b) Validation

Figure 4.18: Training and validation plots for grain segmentation experiments RockCNN1 shown
in red, RockCNN10 shown in green and RockCNN40 shown in blue.

(a) Training (b) Validation

Figure 4.19: Training and validation plots for pore segmentation experiments RockCNNBT

shown in red, RockCNNBT+BR shown in green and RockCNNBT+BR+CA shown in blue.
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(a) Training (b) Validation

Figure 4.20: Training and validation plots for multi phase segmentation experiments
RockCNNBT shown in red, RockCNNBT+BR shown in green and RockCNNBT+BR+CA

shown in blue.

(a) Training (b) Validation

Figure 4.21: Training and validation plots for grain segmentation experiments RockCNNBT

shown in red, RockCNNBT+BR shown in green and RockCNNBT+BR+CA shown in blue.
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DSC Training DSC Validation
Experiment Pore Multi phase Grain Pore Multi phase Grain
RockCNN1 0.9933 0.9273 0.9933 0.9693 0.2907 0.9915
RockCNN10 0.9809 0.7935 0.9839 0.9860 0.4731 0.9928
RockCNN40 0.9828 0.7624 0.9872 0.9940 0.6387 0.9952
RockCNNBT - - - - - -
RockCNNBT+BR 0.9843 0.8018 0.9849 0.9939 0.7745 0.9919
RockCNNBT+BR+CA 0.9835 0.8724 0.9564 0.9924 0.8173 0.9257

Table 4.5: Training and validation results.

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9946 0.6922 0.9956
RockCNNBT+BR 0.9935 0.6434 0.9954
RockCNNBT+BR+CA 0.9921 0.5889 0.9949

Table 4.6: Test DSC scores for type 1, bentheimer sandstone

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9789 0.4060 0.9751
RockCNNBT+BR 0.9942 0.8558 0.9888
RockCNNBT+BR+CA 0.9937 0.8467 0.9880

Table 4.7: Test DSC scores for type 2, berea sandstone

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9866 0.1229 0.5048
RockCNNBT+BR 0.9895 0.2146 0.5164
RockCNNBT+BR+CA 0.9940 0.9117 0.8260

Table 4.8: Test DSC scores for type 1, carbonate

Experiment DSC Pore DSC Multi phase DSC Grain
RockCNNBT 0.9867 0.4070 0.8252
RockCNNBT+BR 0.9924 0.5713 0.8335
RockCNNBT+BR+CA 0.9933 0.7824 0.9363

Table 4.9: Mean DSC across all three types.
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(a) Bentheimer sandstone (b) Ground truth

(c) RockCNN1 (d) RockCNN10 (e) RockCNN40

Figure 4.22: Results from experiments RockCNN1, RockCNN10 and RockCNN40. For the
ground truth and segmentation results, pore is represented as black, multi phase as gray and grain as
white.
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4.3 Digital rock segmentation

(a) Bentheimer sandstone (b) Berea sandstone (c) Carbonate

(d) Ground truth (e) Ground truth (f) Ground truth

(g) RockCNNBT (h) RockCNNBT (i) RockCNNBT

(j) RockCNNBT+BR (k) RockCNNBT+BR (l) RockCNNBT+BR

(m) RockCNNBT+BR+CA (n) RockCNNBT+BR+CA (o) RockCNNBT+BR+CA

Figure 4.23: Comparison of the segmentations by the networks. For the ground truth and segmen-
tation results, pore is represented as black, multi phase as gray and grain as white.
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4.4 Timing
The training and inference times of the different networks are presented in table 4.10.

Experiment Training time Mean inference time per volume
CoronaryCNN 71254s ≈ 20h 285s ≈ 5m
CoronaryCNN0.80mm 28691s ≈ 8h 40s
CoronaryCNNflip 69714s ≈ 19h 289s ≈ 5m
CoronaryCNNROI 70332s ≈ 20h 290s ≈ 5m
AortaCNN0.40mm 67865s ≈ 19h 285s ≈ 5m
AortaCNN0.80mm 28721s ≈ 8h 41s
BrainTumorCNN 28356s ≈ 8h 55s
RockCNN1 28504s ≈ 8h 30s
RockCNN10 28986s ≈ 8h 28s
RockCNN40 28599s ≈ 8h 28s
RockCNNBT+BR 28794s ≈ 8h 26s
RockCNNBT+BR+CA 28668s ≈ 8h 30s

Table 4.10: Training and mean inference times for the networks trained in this thesis. The inference
time of the networks used for aorta and coronary artery segmentation were obtained by evaluating
them on the pilot dataset. The table shows that networks trained on smaller volumes have similar
training and inference times. Networks trained on larger volumes use on average 11 to 12 hours
more for training.
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In this chapter the results are discussed. The strengths and weaknesses of the chosen
method are discussed based on the results on coronary artery segmentation, brain tumor
segmentation and segmentation on the rock dataset.

5.1 Coronary Artery Segmentation
In this section the results of the networks trained on aorta segmentation and coronary
segmentation are discussed, followed by a discussion of the proposed method for refining
the segmentation.

5.1.1 Results of network trained on coronary arteries
The output segmentation of the networks CoronaryCNN , CoronaryCNN0.80mm,
CoronaryCNNflip and CoronaryCNNROI shows that the network is able to segment
parts of the coronary arteries. The first experiment, only using preprocessing and resam-
pling to 0.40mm voxel spacing, gives a training DSC of 0.9761 and a validation DSC of
0.5812 as shown in table 4.1. This means that the network performs much better on the
samples it has been trained on, indicating that the model is being overfitted on the training
data.

The network CoronaryCNN0.80mm, trained with volumes resampled to 0.80mm voxel
spacing, shows clearer signs of overfitting. The validation DSC is similar to the valida-
tion DSC for CoronaryCNN , but the training DSC rises to 0.996, meaning that it is
able to segment the training samples almost perfectly. When resampling to 0.80mm voxel
spacing, the input volume is essentially downscaled by a factor of 2 in each dimension
compared to the volumes with 0.40mm voxel spacing. This leads to available amount of
voxels in the training data is reduced by a factor of 8. Due to large amount of weights in the
3D CNN architecture it is possible for the network to learn a direct mapping between the
input samples and the corresponding correct output segmentation, which performs poorly
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at generalizing as shown by the validation DSC.

To try to reduce the amount of overfitting, data augmentation was used for the networks
CoronaryCNNflip and CoronaryCNNROI . The data was augmented by mirroring the
sampled patches across each axis randomly with an equal probability. This will essentially
increase the amount of unique data that the network will see during training by 8 times.
The plot of the training DSC and the validation DSC shown in figure 4.1 shows that both
training and validation DSC for CoronaryCNNflip are lower than CoronaryCNN and
CoronaryCNN0.80mm. This means that the network has more difficulty in correctly seg-
menting the training samples. The decrease in validation DSC for CoronaryCNNflip in
comparison to CoronaryCNN and CoronaryCNN0.80mm can be explained by their
segmentations shown in figure 4.3 and 4.5. The segmentation produced by
CoronaryCNNflip contains more of the coronary tree than the segmentation produced
by CoronaryCNN when comparing against the ground truth in figure 4.2. However
the segmentation by CoronaryCNNflip contains a larger amount of spurious responses
while the segmentation byCoronaryCNN contains far less. This shows that the spurious
responses has a larger effect on the DSC than the correct predictions.
While CoronaryCNNflip is able to segment more of the coronary tree it still leaves gaps
in the output segmentation seen in figure 4.5.

For CoronaryCNNROI , a region of interest around the coronary artery vessels were
created and used for training. The experiment also utilizes the same data augmentation
as CoronaryCNNflip. As seen in figure 4.1 the training DSC of CoronaryCNNROI

overlaps with the training DSC of CoronaryCNNflip. The training DSC is based on the
samples only. The samples for CoronaryCNNflip are selected with a 50% probability
of being centered on a coronary artery voxel or being centered on a background voxel
found anywhere in the volume. With CoronaryCNNROI the voxels are still selected
with a 50% probability, but the background voxels are only selected from a small area
around the coronary arteries. This means that the a larger variation in negative samples
(CoronaryCNNflip) has little impact on the training DSC. During validation the ROI is
not used and the whole volume is segmented by the network, leading to a severe decrease
in validation DSC compared to CoronaryCNNflip. Figure 4.6 shows the segmentation
result of CoronaryCNNROI . The segmentation contains a lot more responses than the
segmentation from CoronaryCNNflip. The oversegmentation is not completely random
and it is biased to segment mostly tubular structures. This also means that the networks
in the other experiments has learned to extract tubular structures in only a specific area
around the heart.

The experiments gives some insight into the behaviour of the trained networks, but due
to small amounts of training data more cross validation needs to be performed to see how
well the network will generalize on new data. A possibility exist that the validation vol-
ume that is used is an easier or harder case than the other volumes. The cross validation
consists of training several networks with the same configurations but changing which vol-
umes are used for training and which volume is used for validation. The scores from cross
validation are then averaged to obtain a statistically better metric.
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5.1.2 Result on aorta segmentation

For aorta segmentation two experiments were carried out to observe the effect of different
scales of input data. The experiments with AortaCNN0.40mm and AortaCNN0.80mm

are equal, with the difference being that they are resampled to 0.40mm and 0.80mm voxel
spacing respectively. The DSC scores for training and validation of the networks are
given by table 4.2 and shows that AortaCNN0.80mm outperforms AortaCNN0.40mm

in both training and validation DSC. Looking at the training and validation DSC plots for
AortaCNN0.40mm shown in figure 4.7, it can be seen that the validation DSC seems to
be still increasing after 35 epochs. The network could be trained further to see if the val-
idation DSC would still increase, but was stopped at 35 epochs for comparison purposes.
The training DSC shows that the trained network performs well on the training samples
and is able to learn the appearance of the aorta. The lower validation is most likely caused
by the network segmenting more than just the aorta as shown in figure 4.8. The network
manages to segment the aorta, but also segments other large regions not part of the aorta.
The size and connectivity of these regions makes it harder to extract only the aorta from
the segmentation output.

AortaCNN0.40mm is outperformed by AortaCNN0.80mm, which achieves a valida-
tion DSC of 0.9579. Figure 4.7 shows that the network is able to converge after only
15 epochs, which is faster compared to AortaCNN0.40mm. The segmentation output
of AortaCNN0.80mm shown in figure 4.8 contains fewer responses than the results of
AortaCNN0.40mm. This means that it is possible to label the separate connected re-
sponses and select the connected component containing the largest amount of voxels to
obtain the aorta.

The results of AortaCNN0.40mm and AortaCNN0.80mm shows that the same network
architecture with same hyperparameters performs better on a smaller volume with larger
voxel spacing for aorta segmentation. The effect of resampling to 0.80mm compared to
0.40mm is that the former will increase the receptive field in mm3 by 8 times, essentially
giving the network more spatial information to work with. It is also faster to perform
training and inference when resampling to 0.80mm voxel spacing, as the amount of data
is reduced 8 times compared to resampling to 0.40mm voxel spacing. An experiment con-
sisting of keeping the 0.40mm voxel spacing but instead increasing the size of the patch
used for the downsampled pathway can be tested. The downsampling factor would have to
be increased to maintain the input size of the network. This could lead to better segmenta-
tion due to working on a larger part of the image while still keeping a small and accurate
normal resolution pathway. However the aorta segmentation in this thesis is only used as
a step to extract the coronary arteries, where voxel-perfect segmentation of the complete
aorta is not necessary.

5.1.3 Results on the pilot dataset

The proposed method for refining the coronary artery segmentation works by using two
separately trained networks (aorta and coronary artery segmentation) as shown in figure
3.4. The method selects only the responses in the intermediate coronary segmentation that
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are connected to the segmented aorta and discards other spurious responses. Since the
ground truth segmentation for the pilot dataset consists of both the aorta and the coronary
arteries, the aorta and coronary artery results from the proposed method are combined
into one volume for evaluation. Three versions of the proposed method are evaluated,
with CoronaryCNN , CoronaryCNNflip and CoronaryCNNROI used for coronary
artery segmentation. AortaCNN0.80 is used for all tests. Table 4.3 shows the test DSC of
the different versions. Figure 4.9 shows 3D models of the ground truth and segmentations
of the three pilot volumes by the three versions of the method.

The test DSC for the different versions are similar in value. This is mainly due to all
versions using the same network for aorta segmentation and the aorta being a large part
of the ground truth voxels. An example is the DSC of the version using CoronaryCNN
tested on the pilot 2 volume. The network fails to extract any coronary arteries as shown
in figure 4.9e, but still achieves a DSC of 0.5820. The same figure also shows that the
network is segmenting a larger part of the aorta than what is provided by the manual seg-
mentation. The versions using CoronaryCNNflip and CoronaryCNNROI evaluated
on the pilot 2 volume are able to extract more of the coronary arteries and achieves higher
DSC of 0.6394 and 0.6529 respectively. The low DSC compared to evaluations on the
other pilot volumes is mainly due to the difference between the aorta segmentation pro-
duced by the method and the ground truth. The ground truth segmentations for the pilot 1
and pilot 2 volumes does not contain accurate segmentations of the aorta, shown in figures
4.9a and 4.9c, which means that comparison with the aorta segmentation of the proposed
method will not be optimal.

Comparing the extracted coronary arteries of the three versions of the method, the ver-
sion using CoronaryCNN gives the lowest DSC for all pilot volumes. This can also be
seen in figures 4.9d, 4.9e and 4.9f, where the method only manages to extract small parts
of the coronary artery tree or nothing at all, as shown in figure 4.9e. The versions us-
ing CoronaryCNNflip and CoronaryCNNROI performs similarly, with the one using
CoronaryCNNROI having the highest mean DSC. The version usingCoronaryCNNROI

performs better than the one using CoronaryCNNflip on the pilot 2 volume. This can
be seen in figure 4.9k where the version using CoronaryCNNROI manages to segment
more of the coronary artery tree than the version using CoronaryCNNfig (figure 4.9h).
The opposite case is true for evaluation on the pilot 3 volume. On this volume, the version
using CoronaryCNNflip performs better than the one using CoronaryCNNROI . As
shown in figure 4.9i, the version using CoronaryCNNflip is able to extract even more
than the coronary tree shown by the ground truth in figure 4.9c, while the version using
CoronaryCNNROI is missing some vessels.

When comparing the three versions some observations can be made. The version us-
ing CoronaryCNN fails to segment large parts of the coronary artery, mainly due to
the CoronaryCNN producing gaps in the segmentation. Since the proposed method for
extracting coronary arteries uses connected component analysis, gaps in the segmentation
will lead to discarding responses that are part of the coronary arteries but not connected to
the aorta. The version using CoronaryCNNflip manages to segment more of the coro-
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nary artery tree, but also has some responses that are not part of the ground truth. Due to
being trained on patches that are randomly flipped in all three axises, the network is less
likely to overfit on the dataset it was trained on. The version using CoronaryCNNROI

is able to segment large parts of the coronary artery tree and has minimal oversegmenta-
tion. CoronaryCNNROI is also trained on randomly flipped patches, but the samples
only come from a small region of interest around the coronary artery. This might lead the
network to better learn the boundaries of the coronary arteries.

The results show that there is a large difference in the result of the proposed method from
volume to volume. The method is highly sensitive to gaps in the segmentation and re-
sponses close to the coronary arteries. The method is not robust, but is in some cases
able to give very good results as shown in figure 4.9i. The versions that use a network
trained with data augmentation achieves better results. Using a larger training dataset or
using more data augmentation to produce more data will most likely improve the networks
performance, which will improve the performance of the proposed method. Due to the sen-
sitivity to oversegmentation, the use of a weighting on the surface of the vessels should be
investigated as this has been shown to give good results on other domains as discussed by
Ronneberger et al. (39).

The results show that it is possible to create a fully automatic segmentation method using
deep learning, answering the first research question. The proposed method shows good
results on some datasets, but is highly sensitive to gaps in the segmentation which makes
the method less robust. The network should be further evaluated on lumen segmentation
challenge on the Rotterdam Coronary Artery Evaluation Framework for Stenoses detection
and Quantification (22) to obtain more accurate metrics on how the method performs.

5.2 Brain tumor Segmentation
The results of the experiment on brain tumor segmentation is summarized in table 4.4
where the trained network after 15 epochs achieves a validation DSC of 0.8922. The
network is able to achieve good segmentation results but is prone to over segmentation
as shown in figure 4.10. After 15 epochs the training DSC continues to rise while the
validation DSC decreases drastically. This means that the network is starting to learn fea-
tures that works for the training volumes but not on the validation volumes. Figure 4.11
shows that the trained network is able segment most of the tumors, containing only a small
amount of holes and spurious responses.

The figures 4.12b-4.15b show a 3D visualization of the segmentation. In these figures
small amounts of spurious results can be observed. As discussed in related work, other
methods use a postprocessing step to clean up the spurious responses in segmentation
results. Examples of posprocessing steps include using Markov random field (43) or con-
ditional random field (21)

The DeepMedic architecture was originally used for brain tumor and lesion segmenta-
tion (21) and the results on the data provided by USIGT (12) shows that the architecture
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performs well at problems with large inter-patient variability.

The results show that it is possible to use the same architecture and training parameters as
the networks used for aorta and coronary segmentation to train a network on brain tumor
segmentation, thus answering the second research question. Due to training on 13 vol-
umes and performing validation on only 4, it is possible that the network is overfitted on
the validation data and might not generalize as well to new data. Cross validation needs to
be performed to achieve a better DSC metric, by training several networks with different
combinations of 13 training and validation volumes and averaging the results.

5.3 Digital rock Segmentation

In this section the results of the digital rock experiments are discussed.

5.3.1 Experiments with different amounts of training data

In the experiments with RockCNN1, RockCNN10 and RockCNN40 the effects of dif-
ferent amounts of training data was investigated. The training and validation DSC pre-
sented in table 4.5 show a clear trend that the performance on the network increases with
the amount of training data. This can also be seen from the plots in figures 4.16-4.18. Fig-
ure 4.16 shows the training and validation DSC plot on pore segmentation. RockCNN1

shows signs of overfitting, as the training DSC is much higher than the validation DSC.
Since RockCNN1 is only trained on one 1753 subvolume, it is possible that the network
manages to learn some special cases that only applies to this volume and does not gener-
alize to the validation volumes. The plot of RockCNN10, which has been trained on 10
volumes, show that the validation DSC decreases after 15 epochs, which is likely do to
overfitting. Experiment RockCNN40 performs better on the validation volumes than on
the training volumes. This is due to the samples being selected with equal probability of
being centered on a specific class during training. On the validation over the full volumes
there is a larger amount of voxels that belong to the pore class, which in turn can increase
the validation DSC. The training and validation DSC plots for multi phase (Figure 4.17)
shows the same issues. RockCNN1 performs better thanRockCNN10 andRockCNN40

on training, but performs worse on validation. The validation DSC of RockCNN10 de-
creases after 15 epochs for the multi phase segmentation as well. Meanwhile the the
training and validation DSC of experimentRockCNN40 on multi phase are closer to each
other. The same also applies for RockCNN1, RockCNN10 and RockCNN40 used on
grain segmentation, shown in figure 4.18. When the training and validation DSC becomes
similar it means that the network is able to generalize and performs more equally on the
training and validation subvolumes. Figure 4.22 shows a comparison of a slice of the
input, ground truth and the segmentation results. The figure shows that the segmentation
results gets progressively more more similar to the ground truth with each step of increased
amount of training data.

60



5.3 Digital rock Segmentation

5.3.2 Experiments with different types of rock

In the experiments with RockCNNBT , RockCNNBT+BR and RockCNNBT+BR+CA

the effects on training on different types of rock was investigated. The training and vali-
dation DSC presented in table 4.5 for RockCNNBT , RockCNNBT+BR and
RockCNNBT+BR+CA as well as the plots in figures 4.19-4.19 are used to make sure that
the networks converges and are not overfitting. The networks are validated on the types of
rock they are trained on, which means that direct comparison of the different experiments
is not meaningful based on the validation plots alone. Instead the test DSC is shown in
tables 4.6-4.9 is used to compare the different networks.

Table 4.6 shows the test DSC for pore, multi phase and grain segmentation on ben-
theimer sandstone. The network that performs best on this type of rock is RockCNNBT ,
which was trained exclusively on subvolumes of bentheimer sandstone. The second best
isRockCNNBT+BR, which was trained on equal amounts of bentheimer and berea sand-
stone. RockCNNBT+BR+CA, trained on all three types of rock performs worst on the
test DSC across pore, multi phase and grain segmentation.

The test DSC for segmentation on berea sandstone is given by table 4.7. RockCNNBT

performs poorly at the berea volumes, a type of rock that it has not been trained on, com-
pared to RockCNNBT+BR and RockCNNBT+BR+CA. It is still able to achieve a test
DSC of 0.9789 and 0.9751 for pore and grain segmentation respectively, while DSC for
multi phase is 0.4060. This shows that the network is able to learn features from the ben-
theimer volumes that are useful for berea segmentation. RockCNNBT is outperformed
by RockCNNBT+BR and RockCNNBT+BR+CA, both of which has been trained par-
tially on the berea volumes. RockCNNBT+BR+CA produces a test DSC that is slightly
worse thanRockCNNBT+BR, which is similar to the behaviour observed on the test DSC
for bentheimer sandstone.

Table 4.8 shows the test DSC for segmentation on the carbonate volumes. Comparing
the test DSC of RockCNNBT on berea (Table 4.7) and carbonate shows that the network
performs better on pore segmentation in carbonate than on berea volumes. It does how-
ever perform much worse for multi phase and grain DSC on carbonate than on berea. This
shows that it is much harder for the network to apply the features learned from the ben-
theimer volumes on the carbonate volumes than on the berea volumes. The test DSC result
of RockCNNBT+BR shows a slight increase in performance, but still struggles to pro-
duce good segmentations for multi phase and grain. This shows that features learned from
a combination of both bentheimer and berea volumes perform better on segmenting car-
bonate volumes than features learned from bentheimer volumes alone. RockCNNBT and
RockCNNBT+BR are both outperformed by RockCNNBT+BR+CA, which is trained
on all three types of rock.

By taking the average test DSC over the three different types of rock, shown in table 4.9,
a trend can be observed. When testing a network on multiple types of rock, the network
that has been trained on samples from all types gives the best performance on average.
This means that if testing is performed on rock volumes of unknown type it would be
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better to use a network that has been trained on a combination of expected rock types.
The tables 4.6 and 4.7 show that a network trained on additional types of rocks performs
worse than the networks trained only on the type of rock that is being tested. For training
the networks there are 23 − 1 = 7 different combinations of types used for training, 3 of
which has been investigated in experiments with RockCNNBT , RockCNNBT+BR and
RockCNNBT+BR+CA. Experiments with the remaining 4 permutations should be per-
formed to observe if the best performing networks being the ones trained exclusively on
one type of rock is a general result or a special case of the experiments withRockCNNBT ,
RockCNNBT+BR and RockCNNBT+BR+CA.

The networks has been tested on different types of rock and the results of this has been
discussed. There is however another type of experiments that should be performed. All
subvolumes of each type used for training and testing comes from the same larger vol-
umes. By testing on subvolumes sampled from different scans of the same type of rock, it
will be possible to investigate how well the networks will perform on new data.

The results show that it is possible to use the same architecture and training parameters as
the networks used for aorta and coronary segmentation to train a network on brain tumor
segmentation, thus answering the second research question.

5.4 Deep learning framework
In this section the choice of deep learning method is discussed, based on hyperparameter
settings, architecture and training time.

5.4.1 Hyperparameters
The choice of hyperparameters for training are highly dependent on the chosen architec-
ture. In this thesis the hyperparameters for both the architecture and training has not been
explored other than some data augmentation. Finding an optimal combination of hyper-
parameters is a challenging task and requires large amount of testing (14). In this thesis a
broader approach has been chosen, to use the same configuration and observe the effects
on several different types of data. The DeepMedic framework (21) allows for testing dif-
ferent sets of hyperparameters in an easy manner, meaning that it is possible to go deeper
into the details of tuning the hyperparameters for one of the segmentation tasks. This will
require large amount of time, as one test of a set of hyperparameters can take as long as 8
hours on a modern GPU. By utilizing several machines with GPUs it is possible to paral-
lelize the hyperparameter search.

As discussed, the network has problems with overfitting when working on small amounts
of data. One of the reason behind this could be that the network has too many weights,
giving too many degrees of freedom (14). The trained networks that overfit usually have
a high training DSC, which means that it is likely has enough weights to map the input
samples to the corresponding output segmentations internally. Experiments lowering the
amount of weights could be performed. The fully connected layers use dropout for regu-
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larization. This can be increased to try to force the network to generalize, but will most
likely lead to slower convergence of the network (14). The most straightforward way to
limit overfitting is to increase the amount of training data. If proper data is provided, this
will give the network a larger variance in training samples. This is however not always
possible, such as limited amount of training data for certain medical image sets as dis-
cussed by Litjens et al. (27). Another way to increase the amount of data is to use data
augmentation.

5.4.2 Data augmentation

As shown in the results for coronary artery segmentation, data augmentation has a positive
impact on decreasing the amount of overfitting. This leads to the networks segmenting
more of the coronary arteries, but at the same time more spurious responses, with the net
effect being a lower DSC compared to not using data augmentation. Several methods
discussed in related work uses only a small amount of datasets, such as Cicek et al. (6)
which trained on only two volumes and managed to generalize well on a third volume.
Both Cicek et al. (6) and Milletari et al. (32) use a large amount of data augmentation.
This is performed by deforming the input volumes randomly with elastic deformation each
optimization step. The same concept could be tried on the coronary artery segmentation
task to generate more data.

5.4.3 Other architectures

In this thesis a single architecture has been chosen and used for all segmentation experi-
ments. The architecture works on small image segments and uses two pathways to increase
the spatial area that the network is able to use as information. From the results it can be
seen that the chosen architecture performs much better on aorta segmentation, brain tumor
segmentation and digital rock segmentation, compared to coronary artery segmentation.
For the brain tumor segmentation task the tumors have a large variance in both shape and
position and does not require spatial information relative to the brain. The same concept
applies to the digital rock segmentation task, where information about the position relative
to the whole image might be less relevant. The results for aorta segmentation shows that
the network performs much better on volumes resampled to 0.80mm voxel spacing than
on volumes resampled to 0.40mm. A reason for this could be that the network trained
on 0.40mm voxel spacing does not receive enough spatial information to determine if the
voxels should be classified as part of the aorta or not. For coronary artery segmenta-
tion the experiment with resampling to 0.80mm voxel spacing does not improve the DSC
significantly. A reason for this is that the coronary arteries are already represented by a
small amount of voxels in the 0.40mm voxel spacing volumes, leading to loss of infor-
mation when resampling to 0.80mm. Compared to the other segmentation tasks, the aorta
and coronary arteries will almost always be in the same regions in the image relative to
the heart. Several methods discussed in related work uses statistical models to guide the
search for coronary arteries (56). Other architectures working on whole images (6; 32) can
be tried for coronary artery extraction to see if the architectures are able to learn where the
vessels are in relation to the heart. There are however issues with training these types of
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networks, as they all require large FMs in early and late layers to be able to work on the
complete image.

5.4.4 Training time
Table 4.10 shows the training and inference times for the networks used in this thesis. The
table shows that the training times are divided into two groups, one using 19 to 20 hours
and the other using approximately 8 hours. The common factor of the networks using 19
to 20 hours is that they work on larger volumes due to being resampled to 0.40mm. The
mean size is approximately 500x500x300. The size of the volumes resampled to 0.80mm
voxel spacing are 8 times smaller, but still has approximately 8 hours training time. The
volumes used for brain tumor segmentation are approximately 200x200x150, while the
rock subvolumes are 175x175x175, both of which gives approximately 8 hours training
time.

During training of the network, all networks will be trained on the same number of equally
sized 3D patches. This should mean that the training time should be approximately the
same for all datasets. However for the larger volumes, a large amount of time is spent
on reading the volumes from the disk and extracting patches. For the smaller volumes
the software manages to extract the patches for the next subepoch in parallel while train-
ing and validating. The volumes used for coronary artery segmentation can not be split
into subvolumes, as this might introduce class imbalance between the subvolumes. Large
speedups for training can be made by caching a large amount of image patches instead of
extracting them for each subepoch.

The table 4.10 shows that the inference time for the different networks mainly depends
on the size of the input volume. For the coronary artery segmentation task, the inference
times could be sped up by only performing inference inside a region of interest of the
heart. This does however require a method to first segment the heart, similarly to the aorta
segmentation network.
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6.1 Conclusion

In this thesis a method for fully coronary artery segmentation using deep learning has been
proposed, implemented and evaluated on a dataset that has been manually segmented by
clinical experts at St. Olavs Hospital. The results of the method varies from being able to
extract the full coronary tree on some images, while missing some branches in others. The
method uses two networks trained on aorta and coronary artery segmentation respectively.
The result of the proposed method is highly depending of the quality of the segmentations
produced by these networks. It is not robust against small gaps in the segmentation, which
lead to parts of the coronary artery tree being mistakenly discarded. The results are how-
ever promising seeing that a network trained on only 6 volumes is able to generalize on a
new dataset. This answers the first research question of this thesis.

The second research question asked if it was possible to use the same type of deep learning
method to perform fully automatic segmentation of brain tumors from MRI volumes? In
this thesis the same architecture and training parameters as the ones used for aorta and
coronary artery segmentation have been used to train a network to perform fully automatic
segmentation of brain tumors. The dataset that was used for training and validation of
the network was provided by USIGT (12). The results show that the network is able to
achieve high validation scores. The method does however produce a substantial amount
of spurious responses for some of the MRI volumes. The method shows promising results
and has potential to obtain better results by providing more training data and fine-tuning
the hyperparameters of the network, thus answering the second research question.

The last research question asked if the same deep learning method can be trained perform
digital rock segmentation. In this thesis the same architecture and training parameters as
the ones used for aorta and coronary artery segmentation have been used to train a network
to perform fully automatic segmentation of digital rock. The dataset used for training and
testing was provided by FEI (1). In this thesis the chosen method is trained and tested on
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the dataset and produced good results, both quantitatively and qualitatively. Experiments
with different amount of data shows that the deep learning method performs better and is
less likely to overfit with larger amounts of training data.

6.2 Future work

In this section the future work is discussed. The future work for coronary artery segmen-
tation is first presented, followed by future work on brain tumor segmentation and digital
rock segmentation. Lastly future work for the deep learning framework used in this thesis
is discussed.

6.2.1 Coronary Artery Segmentation

The proposed method is able to segment large parts of the coronary tree but is not robust
against small gaps in the segmentation. Ideally the network segmenting the coronary ar-
teries should not produce gaps. To improve the performance of the network for coronary
artery segmentation the best solution would be to train it on more data. This makes it less
likely for the trained network to overfit on a small sample of training volumes and will
help generalize on new datasets. As discussed in the discussion chapter, training the net-
work on a small region of interest around the coronary arteries has the effect of producing
a network that segments a large amount of tubular structures. This is shown to work better
in combination with the proposed method than the networks trained on a larger amount
of negative samples during training. The results also show that data augmentation has a
positive impact on the segmentation result. In this thesis the only form of data augmenta-
tion was randomly flipping the training patches along all three axises. More sophisticated
data augmentation methods, such as random elastic deformation should be tested on the
coronary artery segmentation task. Since the method is sensitive to oversegmentation, the
use of a weighting on the vessel boundary during training should be explored.

The pilot dataset used to evaluate the proposed method in this thesis does not provide
an accurate evaluation, mostly due to the aorta and coronary arteries ground truth being
one model. Proper evaluation of the proposed method should be performed by using the
lumen segmentation challenge on the Rotterdam Coronary Artery Algorithm Evaluation
Framework for Stenoses Detection and Quantification (22).

6.2.2 Brain tumor segmentation

The results of the network trained to perform fully automatic segmentation of brain tu-
mors are promising. The segmentation output manages to achieve a high DSC score,
however the network shows signs of overfitting. Fine-tuning the hyperparameters of the
network and training or using data augmentation could decrease the chance of overfitting
and improve the segmentation result. Another issue is the segmentation of spurious re-
sponses. Methods for refining the output segmentation should be looked into, similarly
to the method used by Kamnitsas et al. (21). The experiments presented in this thesis
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for brain tumor segmentation should be cross validated by training the network multiple
times, but with different combinations of training and validation volumes.

6.2.3 Digital rock segmentation
The results of the networks trained to perform fully automatic segmentation on digital
rocks show good performance of the networks. The amount of subvolumes used for train-
ing the networks should be increased until an increase in validation DSC can no longer
be observed, to find how many subvolumes are needed to obtain good results. Further
fine-tuning of the architecture and training hyperparameters should also be tested. When
training networks on different types of rocks there are several combinations that were
not tested. These permutations should be tested to see if there are some types rock seg-
mentation that benefits from being trained on multiple types. Another test that should be
performed is to evaluate a network trained on subvolumes from one scan on subvolumes
from a different scan of the same type of rock.

6.2.4 Deep learning framework
The timing results show that the software framework used in this thesis (21) has long train-
ing times for large volumes. It is not possible to split the coronary artery dataset volumes
into smaller subvolumes as this will introduce class imbalance. Instead of extracting the
training patches each sub epoch, it would be possible to cache a larger amount of patches to
reduce the I/O time of the framework. Modifying the framework to handle larger volumes
should be investigated. If the training time on large volumes can be reduced from 20 to 8
hours, it means that it will be possible to train more versions of the networks in the same
amount of time, making it easier to fine-tune the architecture and training hyperparameters.

In thesis the deep learning architecture uses small patches of the volume as input. Other ar-
chitectures that are able to use information the whole volume at once such as the methods
proposed by Cicek et al. (6) and Milletari et al. (32) should be explored.
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