
End-to-end steering angle prediction and
object detection using convolutional
neural networks

Øyvind Kjeldstad Grimnes

Master of Science in Computer Science

Supervisor: Frank Lindseth, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Abstract

Introduction Artificial neural networks have enabled a new generation of au-
tonomous vehicles. Public datasets can possibly be used to build networks
capable of predicting steering angles and detect objects for self-driving
vehicles.

Objectives The objective of this paper is to investigate whether steering angles
and object bounding boxes can be predicted from a single image input. A
novel architecture combining both models into a steering angle predictor
with incorporated object detection is also explored.

Method An object detection model was created based on modern bounding
box regression networks. It was trained to detect cars, trucks, traffic lights,
pedestrians, bikers, and traffic signs with data from German Traffic Sign
Detection Challenge and Udacity. A steering angle prediction network,
which was trained using driving data provided by Udacity, was created.
Both models shared pretrained layers from VGG16 for feature extraction.
The models were also combined into a single model that aimed to make the
steering angle predictor more robust by providing explicit object detections
as additional inputs.

Results The detector achieved a mean average precision of 44.02 on the validation
dataset, which was a combination of images from both the German Traffic

I

Sign Detection Challenge and Udacity datasets. Training the detector on
multiple datasets with similar input data, but different annotations reduced
the models performance. The steering angle predictor achieved a root mean
squared error of 0.0645. By incorporating object detection into the predictor
model, the error rose to 0.0653.

Conclusion It is possible use public datasets to build models that are capable
of predicting steering angles and detect objects from images. Incorporating
an object detector into the steering angle predictor did not improve its
performance.

II

Norsk Sammendrag

Introduksjon Kunstige nevrale nettverk har muliggjort en ny generasjon auto-
nome kjøretøy. Offentlige datasett kan potensielt brukes til å bygge nettverk
som kan predikere styringsvinkler og lokalisere objekter for selvkjørende
biler.

Mål Målet for denne oppgaven var å undersøke om man kan predikere styrings-
vinkler og objekt lokasjoner basert på bilder fra offentlige dataset. En ny
arkitektur som kombinerte styringsvinkelpredikatoren og objektlokalisereren
ble også testet.

Metode An modell som kunne detektere objekter ble konstruert basert på mo-
derne lokaliseringsmodeller. Den ble trent for å detektere biler, lastebiler,
trafikklys, fotgjengere, syklister og trafikkskilt med data fra German Traffic
Sign Detection Challenge og Udacity. En styringsvinkelpredikator, som ble
trent med data fra Udacity, ble også konstruert. Begge modellene delte for-
håndstrente lag fra VGG-16. Styringsvinkelpredikatoren ble også modifisert
til å bruke objektokalisererens prediksjoner som inndata i tillegg til bildet.

Resultater Objektlokaliseringsmodellen oppnådde en mean average precision på
44.02 på testdataene, som bestod av bilder fra både German Traffic Sign
Detection Challenge og Udacity. Ytelsen ble dårligere av å trene på flere
datasett med lignende bilder, men ulike annotasjoner. Styringsvinkelpre-

III

dikatoren oppnådde en root mean squared error på 0.0646. Med integrert
objektlokalisering økte feilen til 0.0653.

Konklusjon Det er mulig å bruke offentlige dataset til å bygge modeller som kan
predikere styringsvinkler og detektere objekter basert på bilder. Å integrere
objektlokalisering i modellen som predikerte styringsvinkler forbedret ikke
ytelsen.

IV

Preface

This report is the Master’s thesis of the author, and it concludes his study in
Computer Science at the Department of Computer Science (IDI) at the Norwegian
University of Science and Technology (NTNU). This report was written in the
spring of 2017, and was supervised by Frank Lindseth.

The thesis is related to the fields of artificial intelligence and visual object
localization. The reader is assumed to have basic knowledge of both computer
vision and artificial neural networks (ANNs).

Øyvind Grimnes
Trondheim, June, 2017

V

VI

Contents

Abstract . I
Norsk Sammendrag . III
Preface . V

1 Introduction 1
1.1 Research Motivation . 1
1.2 Research Topic and Questions . 2
1.3 Requirements . 3
1.4 Report Outline . 5

2 Background 7
2.1 Hardware . 7

2.1.1 Parallelized computations in graphics processing units (GPUs) 7
2.2 Software . 8

2.2.1 Compute Unified Device Architecture (CUDA) 8
2.2.2 Tensorflow and Keras . 8
2.2.3 Robot Operating System (ROS) 9

2.3 Data . 10
2.3.1 German Traffic Sign Detection Challenge (GTSDC) 10
2.3.2 Udacity . 11

2.4 Deep learning . 12
2.4.1 Activation . 12
2.4.2 Normalization . 14
2.4.3 Optimization . 14

2.5 Deep learning in computer vision 15
2.5.1 Object detection . 15

2.6 Steering angle prediction . 17
2.7 Transfer learning . 17

VII

3 Methodology 19
3.1 Experimental setup . 19

3.1.1 Implementation . 19
3.1.2 Evaluation . 19

3.2 Feature extractor . 20
3.2.1 Choosing a pretrained model 20
3.2.2 Choosing pretrained layers 22

3.3 The object detector . 25
3.3.1 Output structure . 26
3.3.2 Architecture . 28
3.3.3 Training . 31

3.4 The steering angle predictor . 35
3.4.1 Architecture . 35
3.4.2 Training . 37

3.5 Steering angle predictor with incorporated object detection 38
3.5.1 Architecture . 39
3.5.2 Training . 41

3.6 Summary . 41

4 Results and Discussion 43
4.1 Results . 43

4.1.1 The object detector . 43
4.1.2 The steering angle predictor 47
4.1.3 The steering angle predictor with incorporated object de-

tection . 49
4.2 Analysis . 50

4.2.1 The object detector . 50
4.2.2 The steering angle predictor 55
4.2.3 The steering angle predictor with incorporated object de-

tection . 56
4.3 Summary . 57

5 Conclusions and future work 59
5.1 Conclusions . 59
5.2 Future Work . 60

5.2.1 End-to-end driver . 60
5.2.2 Converting problems to a decision problems for pre-training 61
5.2.3 Adversarial training . 61
5.2.4 Working with time . 62

VIII

Bibliography 64

IX

X

List of Figures

1.1 A diagram showing the architecture of the system 5

2.1 The distribution of classes in the traffic sign detection datasets
from German Traffic Sign Detection Challenge (GTSDC). 11

2.2 The distribution of classes in the object detection Udacity datasets. 12
2.3 Rectified Linear Unit, Sigmoid, and tanh. The plot was created by

Vanessa Imiloa (https://imiloainf.wordpress.com/2013/11/06/rectifier-
nonlinearities/) . 13

3.1 The size, complexity and accuracy of popular ANN architectures . 21
3.2 The input image used to illustrate the internal activations in VGG-

16. 23
3.3 Internal activations in VGG-16 after the first block of two convolu-

tional layers and a pooling layer. 23
3.4 Internal activations in VGG-16 after the second block convolutional

and pooling layers. 24
3.5 Internal activations in VGG-16 after the third block of convolutional

and pooling layers. 24
3.6 Internal activations in VGG-16 after the fourth and fifth block of

convolutional and pooling layers respectively. 25
3.7 The detector anchor boxes used in this experiment 26
3.8 The 9x9 predictions for a 300x300 input image. 31
3.9 Augmented image brightness to improve the detector’s robustness

to different light conditions. 32
3.10 Augmented image saturation to improve the detector’s robustness

to color variations. 32
3.11 Shifted images to improve the dataset’s variance 33
3.12 Noisy images improves the model’s robustness to noise 33

XI

3.13 Multiple images generated from a single image by applying random
augmentations . 34

3.14 A diagram showing the architecture of the steering angle predictor
with integrated object detection 39

4.1 The system successfully detects the most vehicles in daylight . . . 44
4.2 The system fails to detect the silhouette of cars in direct sunlight 45
4.3 For groups of small objects, the system predicts an average bound-

ing box. 46
4.4 Predicted bounding boxes for traffic lights are inaccurate. 46
4.5 The detector needs traffic signs to be at a short distance to be

detected. 47
4.6 The training loss and validation loss of the steering angle predictor. 48
4.7 The training loss and validation loss of the steering angle predictor

with and without integrated object detection respectively. 49

XII

List of Tables

3.1 The architecture of the detector. The layers of both the bounding
box regressor and classifier are connected to the last shared layer. 30

3.2 The architecture of the steering angle predictor. 36
3.3 The architecture of the steering angle predictor with integrated

object detection. 40

XIII

XIV

Acronyms

ANN artificial neural network. 2, 3, 7–10, 12, 14, 15, 20, 21, V, XI, XIII

CNN convolutional neural network. 2, 15–17, 45, XIII

CPU central processing unit. 7–9, XIII

CUDA Compute Unified Device Architecture. 8, VII, XIII

FPS frames per second. 16, 43, 47, 49, 50, XIII

GPU graphics processing unit. 7–9, 15, 17, 19, 20, 43, 47, 49, 50, VII, XIII

GTSDC German Traffic Sign Detection Challenge. 10, 11, 31, 34, 35, 43, 52, I,
III, VII, XI, XIII

GTSRB German Traffic Sign Recognition Benchmark. XIII

GTSRC German Traffic Sign Recognition Challenge. XIII

IDI Department of Computer Science. V, XIII

ILSVRC14 ImageNet Large Scale Visual Recognition Competition 2014. 20–22,
56, XIII

IoU intersection over union. 26, 27, 34, 51, 53, XIII

LiDAR Light Detection And Ranging. 2, XIII

mAP mean average precision. 16, 19, 43, 50, I, III, XIII

XV

MLP Multilayer Perceptron. 12, 13, XIII

MSE mean squared error. 35, XIII

NiN Network in Network. 16, 29, XIII

NTNU Norwegian University of Science and Technology. V, XIII

R-CNN region proposal convolutional neural network. 15, 16, XIII

ReLU Rectified Linear Unit. 13, 14, 29, 30, 36, 40, XI, XIII

RMSE root mean squared error. 19, 35, 38, 41, 47, 49, 54, 55, 57, 58, II, IV,
XIII

RNN recurrent neural network. XIII

RoI region of interest. 16, XIII

ROS Robot Operating System. 9, VII, XIII

RPN region proposal network. 16, XIII

SSD Single Shot Detection. 16, 25, 26, 52, XIII

VOC Visual Object Challenge. 17, 50, XIII

YOLO9000 You Only Look Once 9000. 16, 17, 25, 26, 52, XIII

XVI

Chapter 1

Introduction

1.1 Research Motivation

The invention of the steam engine enabled human kind to undertake long journeys
and explorations with less effort than ever before. As the engines improved over
the ages, their power increased and their cost decreased. Today, vehicles with
powerful, highly advanced petrol and electrical motors are available for everyone,
and our society is based on the easily accessible transport for goods and people
they provide.

As our cars have become more powerful, there have been concerns about the
security of people and material inside and outside the car. Security measures
such as seat belts and air bags have reduced the number of fatalities in traffic
accidents. Reports show that the main cause of accidents are human errors [33].
We have already introduced functionality to our cars that partly override the
human driver to prevent potentially dangerous situations, such as anti-lock brakes
and traction control. In modern vehicles, systems such as adaptive cruise control
and emergency braking have aided the driver for many years already. Even
though these systems improves traffic safety, they are merely trying to mitigate

1

2 Chapter 1. Introduction Grimnes

the symptoms of the main problem. The person operating the vehicle.
Over the last decade, many large car manufacturers and technology companies

have invested heavily in artificial intelligence research, aiming to create an agent
able to operate a vehicle safely, without intervention from a human driver. A
familiar example is Tesla. The company was one of the first to deliver cars with an
advanced auto pilot. The commercial autonomous driving systems still require a
human to monitor the driving, but with the wast amount of driving data collected
from modern cars all around the world, a truly autonomous vehicle is no longer a
distant dream, but soon to be reality.

There are many ways to implement such a system. There is a jungle of available
sensors that can help the car read and interpret its environment, but every sensor
adds both cost and complexity to the system. Most modern autonomous vehicles
use a combination of cameras, Light Detection And Ranging (LiDAR), and other
sensors to create a robust, but expensive system. If a system using only regular,
inexpensive cameras managed to yield super human performance, the cost of
commercial autonomous driving systems, and the cost of further research, could
be reduced.

An important part of driving a car is to steer in the right direction. Computers
have been used to estimate the steering angle for many years, but they have
been based on multiple steps such as lane line analysis. This paper will present
an approach to make an end-to-end steering angle predictor using convolutional
neural networks (CNNs) with incorporated object detection.

1.2 Research Topic and Questions

The problems investigated in this thesis was to generate steering angles and detect
objects in images for autonomous driving. The research topic was

End-to-end steering angle prediction and object detection

The goal was to design and implement ANNs that were able to predict steering

Grimnes Chapter 1. Introduction 3

angles and object bounding boxes. The input was a single image from a camera
mounted on the front of the vehicle. The results were compared to ground truth
labels collected by humans.

The model was based on a single, highly generalized feature extractor for
image inputs. Both the object detection and steering angle predictor used the
output from one or more of the feature extractor’s layers to accomplish their tasks.
This reduced the training necessary for each component. This feature extractor
reuse is closely related to the field of transfer learning. The following research
questions were defined:

1. Can an artificial neural network learn to predict steering angles from images
using only public data?

2. Can an artificial neural network learn to detect and locate objects in images
using only public data?

3. Can steering angles predictions be improved by incorporating a pretrained
object detector into the prediction model?

1.3 Requirements

One of the goals of this project was to build a model that was able to successfully
predict the steering angle of a vehicle in a real world setting. The predictions
should only be based on images recorded from a single forward-facing camera.

The second goal, was to build a detector that could detect road users and
traffic signs. This can be used to provide detailed information about the vehicle’s
surroundings to the passengers, or enable further processing such as detecting
speed limits and avoiding pedestrians. In this paper, the information detected
should contain the location of other vehicles, pedestrians, traffic lights, and traffic
signs.

Both models must be able to process their inputs to provide predictions in
real-time. Although the system may benefit from more inputs, such as whether

4 Chapter 1. Introduction Grimnes

the road surface is wet, or the condition of the tires, only a single image input
was provided in this paper.

The system will consist of three main components (see figure 1.1):

Feature extractor To reduce the computational complexity, and the system’s
memory requirements, a single feature extractor will be responsible for extracting
useful information from the input images.

Road user and traffic sign detector The object detector should use the
output from layers of the feature extractor to detect important objects and
information in the input image.

Steering angle predictor The steering angle predictor should predict steering
angles based on the feature extractor’s outputs.

In addition to creating the steering angle prediction and road user detection
models, a novel architecture combining the two models will be explored. While
there is rarely a direct causality between the surrounding objects of a vehicle and
its desired steering angles, there are situations when this connection may improve
the predictions, such as:

• When overtaking a vehicle, the steering angle predictor must be certain that
there is no oncoming traffic

• When there is an obstacle on the road, the object detection can be used for
a more robust obstacle avoidance behaviour

• When a traffic sign restricts the expected steering angle predictions, such as
Right turn only.

Grimnes Chapter 1. Introduction 5

Figure 1.1: A diagram showing the architecture of the system

1.4 Report Outline

The report contains the following chapters:

Chapter 1 presents the problem of this thesis, the research motivation and
questions.

Chapter 2 further describes the problem and supplies general background infor-
mation on the subject.

Chapter 3 details how the problem is solved, and describes how the system is
tested and evaluated.

Chapter 4 presents and discusses the results of the complete system.

Chapter 5 summarizes the findings, and what has been achieved.

6 Chapter 1. Introduction Grimnes

Chapter 2

Background

This chapter will present some of the technologies used in the conducted experi-
ments, a short introduction to some of the techniques used to build the steering
angle predictor and object detector, and related work.

2.1 Hardware

In the in the 20th century, one of the main issues with ANNs was that it was
compuationally expensive to train the networks. It quickly became infeasible
to train larger models, and therefore, the domains in which ANNs could be
applied were limited. Since then, the hardware in modern computers have greatly
improved, adhering to Moore’s law [4]. Even more important than building more
powerful central processing units (CPUs), was the introduction of the GPU.

2.1.1 Parallelized computations in GPUs

The CPU was designed to be the main processing unit in a computer, which
means that it should be able to perform almost any operation sufficiently well.
For example reading from and writing to various layers of memory. They typically

7

8 Chapter 2. Background Grimnes

contain multiple cores, which help parallelize tasks. In contrast to the CPU, the
GPU is a highly specialized component. It is designed to be extremely efficient at
parallelizable computations. They may contain hundreds or thousands of cores
[22], which enable computation with large matrices while maintaining real-time
performance. This enables efficient optimization of ANNs even for very deep
architectures. This extraordinary computational power comes at a cost, most
noticeably is the speed of reading from and writing to its memory.

2.2 Software

In recent years, deep learning have become one of the most popular machine
learning techniques due to its ability to model highly complex domains. As it
has gained traction, both hardware and software tool kits have been developed to
make designing, training, and using deep models more efficient. This section will
briefly present some core technologies that have been central to the experiments
in this thesis.

2.2.1 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is a parallel computing platform
created by NVIDIA [21]. The software gives direct access to any CUDA-enabled
GPU. While it can be directly interacted with by researchers and developers, it
also provides a fixed interface for other tools to interact with the GPU. Thus
removing the need for such tools to implement custom interfaces for every model.
This have enabled the development of Tensorflow and Keras, which are presented
in subsection 2.2.2.

2.2.2 Tensorflow and Keras

Tensorflow was originally a machine learning library, but its versatile design have
made it a general numerical computation library [31]. It is based on building

Grimnes Chapter 2. Background 9

computation graphs where nodes are computations, and edges are multidimensional
arrays, or tensors. Any computation graph in Tensorflow can be computed on
both the CPU and the powerful GPU without any modifications. It was originally
developed by one of Google’s machine learning teams, but is now an open source
project.

The highly generalized design of Tensorflow makes it applicable to a wide
range of problems and domains, but it also makes the syntax for building a ANN
quite complex. Keras is a library based on Tensorflow [13], or a similar library
called Theano, which provides an interface specialized for ANNs that is more
compact, and more readable. This makes experimentation easier, and reduces the
time spent writing boilerplate code. Although the library appears simple, it can
be customized to be applicable to most problems by designing custom components
such as layers or loss functions. It can even be combined with regular Tensorflow
implementations as a compact interface for otherwise verbose operations, such as
weight and bias creation for layers.

2.2.3 Robot Operating System (ROS)

Robot Operating System (ROS) is a collection of tools, libraries and conventions
that aims to make the creation of robust behaviour in robots easier in a wide range
of robotic platforms. ROSbag was the most important part of ROS’s collection in
this thesis. A bag is a container format that stores ROS messages, such as sensory
inputs. All the messages are time-coded, which means that a bag of messages
can be used to simulate a robot operating in real-time by broadcasting messages
according to their time stamp. In this thesis, bags were used to read camera
images and steering angles from Udacity’s dataset with driving data. This will be
detailed in subsection 2.3.2.

10 Chapter 2. Background Grimnes

2.3 Data

The availability of data is one of the most important aspects to consider when
designing an ANN. Large amounts of data is necessary for a model to learn a
generalized representation of the problem domain. If a dataset is too small, the
model might overfit the available data, and therefore err when interpreting new
data. With the rise of big data, the availibility of large datasets have surged, and it
is now easier to aquire large datasets for optimizing your models. Many companies
and organizations have made their datasets publicly available to nurture growth
and research in their respective fields. The experiments in this thesis will use two
such datasets, as detailed in 2.3.1 and 2.3.2.

2.3.1 German Traffic Sign Detection Challenge (GTSDC)

GTSDC was an experiment used to create a benchmark for the current state-of-
the-art traffic sign detection algorithms [20]. Teams were encouraged to submit
their models, and the submissions were scored and compared. The dataset used
to train and test the implementations contained images of roads in Germany with
traffic signs. The goal was to locate and classify the traffic signs as precisely as
possible. All the data has been made publicly available, and it will be used to
teach the system developed in this thesis to detect traffic signs. The distribution
of classes in the dataset is illustrated in figure 2.1

Grimnes Chapter 2. Background 11

Figure 2.1: The distribution of classes in the traffic sign detection datasets from GTSDC.

2.3.2 Udacity

As a part of their open source self-driving car project, Udacity have released
multiple datasets containing annotations for road users and traffic lights, labels for
steering angles, throttle control, along with other metrics recorded while driving.

The dataset containing road user and traffic light annotations with bounding
boxes is provided in a basic folder structure containing images from a single
forward-facing camera, and labels defining the bounding boxes and classes for
objects in the images. The distribution of classes is illustrated in figure 2.2

The driving data is distributed in ROSbag format that was introduced in
subsection 2.2.3. The driving data contains time coded images from three forward-
facing cameras, steering angles, throttle values, fuel level, and many other metrics.
The three cameras can be used to simulate additional training data, as detailed
in 3.4.2.

12 Chapter 2. Background Grimnes

Figure 2.2: The distribution of classes in the object detection Udacity datasets.

2.4 Deep learning

Since the rebirth of ANNs in the late 1990’s, they have become popular since they
are highly applicable to wide range of real world problems, because computational
power has become less expensive and easily accessible, and because algorithms,
such as optimization algorithms [14, 32], have become more effective. This section
will introduce some of the techniques used in the experiments in this paper.

2.4.1 Activation

When ANNs, or Multilayer Perceptrons (MLPs), were first introduced, they were
a series of linear matrix multiplications with an input matrix and a weight matrix
for each layer. One of the main issues, as famously claimed by Minsky and Papert
[18], was the inability to train networks to solve nonlinear problems. With many
other factors, this was one of the reasons the funding and research was cut between
the late sixties and early eighties.

An important component of a modern ANN, is the activation function. The
output of each node is activated using some nonlinear function to transform the

Grimnes Chapter 2. Background 13

linear MLP into a general function approximator.

Figure 2.3: Rectified Linear Unit, Sigmoid, and tanh. The plot was created by Vanessa Imiloa

(https://imiloainf.wordpress.com/2013/11/06/rectifier-nonlinearities/)

ReLU Rectified Linear Unit (ReLU) [9] appear to be one of the most popular
activation functions in recent years. It is a nonlinear function composed of two
linear functions, as illustrated in figure 2.3. This means that the gradients used
during training will not diminish while being propagated through the network
during training. Because the activated output is zero for all negative values, it
also promotes sparse networks where few nodes are active at the same time. This
prevents the nodes from being dependent on each other.

Some issues with ReLU are that because its derivative is undefined for zero,
there are cases where it can be difficult to use, and because nodes are inactive
for negative outputs, they can potentially be inactive for all inputs. An activated
output of zero will result in a zero gradient, which means that a node that is

14 Chapter 2. Background Grimnes

inactive for all inputs can never become active again. Those neurons are called
dead neurons. To prevent neurons from dying, leaking versions of ReLU are also
popular, where negative values are assigned a small fraction of the output value.

Sigmoid Sigmoid was one of the earliest activation functions. It scales any
input value to the range from zero to one, saturating very small and large values,
as seen in figure 2.3. Saturated values results in small gradients, which results
in slow training. Therefore, sigmoid is now rarely used as activation function for
hidden layers, but still popular as activation function for the output layer if the
desired output is binary.

Tanh Tanh is also a common activation function. It is also bounded, but
can represent both positive and negative values, as illustrated in 2.3. This
can potentially make it more expressive compared to sigmoid. One of its main
advantages is that its derivative is well defined, which makes it applicable to
situations when the ReLU cannot be used.

2.4.2 Normalization

To help the model generalize from inputs, it may help to normalize the data.
Usually, the input to a network should have a mean value equal to zero, and with
a scale of one, depending on the internal design of the model.

Since Ioffe and Szegedy introduced batch normalization as an integrated layer
in ANNs [12], it has become a popular way to help models generalize their inputs,
and have improved the performance of both existing and new models.

2.4.3 Optimization

There have been designed many algorithms for optimizing neural networks. From
simple gradient descent, to more complex algorithms such as RMSprop and
Adamax [14, 32], they all have theirs strengths and weaknesses.

Grimnes Chapter 2. Background 15

Stochastic gradient descend Stochastic gradient descent is a simple algorithm
that updates a network’s internal parameters purely based on their approximated
gradient. This means that if the gradient is small, optimization will be slow.

Adamax Adamax [14] stores additional parameters to improve the optimization
performance. It maintains a history of moments and uses them to decide how fast
parameters should change. This means that a parameter with a small gradient
can still be trained efficiently. In addition, Adamax is claimed to be more stable
than other Adam algorithms, and it may be more suitable for sparsely updated
parameters.

2.5 Deep learning in computer vision

Since the introduction of convolutional layers [15] in ANN architectures, deep
learning have rapidly outperformed human designed algorithms and other machine
learning approaches in many domains [25]. The depth and complexity of CNNs
have rapidly increased [10, 15, 27, 29] as the computational power has increased,
especially by exploiting the highly optimized GPU, as discussed in 2.1.1. This
has enabled highly accurate classifiers [10, 29], object detectors [17, 23, 24, 26],
and image based regressors [1], often matching human performance, and in some
cases yielding super human performance [28].

2.5.1 Object detection

As the performance of object classifiers have increased, the goal of recognizing
objects in images have shifted from simply classifying an object in an image,
to both classify and locate multiple objects in larger images [5, 25]. Multiple
approaches have been explored, but the most popular architectures seems to be
region proposal convolutional neural network (R-CNN) [7, 24] and bounding box
regression networks [17, 23, 26].

16 Chapter 2. Background Grimnes

Region proposal convolutional neural network

R-CNN is a model based on two separate processes. Initially a region proposal
network (RPN) is used to generate regions of interest (RoIs). The generated
regions are then cropped and scaled before they are classified using a CNN [8].
While the authors demonstrate a highly accurate system, backed by comparisons
to previous state-of-the-art approaches, the architecture was very slow, taking
more than 50 seconds per image. Multiple articles have sought to reduce the
processing cost by modifying the process of extracting and classifying RoIs [7],
and sharing convolution layers between the two networks. Some of the more
recent contributions are Faster R-CNN and Mask R-CNN [11, 24], pushing the
performance to up to 5 frames per second (FPS) while achieving state-of-the-art
accuracy on PASCAL VOC 2007, 2012, and MS COCO.

While 5 FPS is much faster than 50 seconds per frame, it is still far from being
a real time object localization model. The front runners for real-time localization
at the time of writing, are bounding box regression networks.

Bounding box regression networks

Unlike R-CNNs, these models strive to both locate and classify objects in images
using a single CNN. Sermanet et al. presented Overfeat [26], the performance
of this family of architectures have increased in both accuracy and efficiency.
Overfeat exploited convolutional layer’s invariance to position, and the fact that
a convolutional layer with a 1x1 kernel is equivalent to a fully connected layer
to simultaneously locate and classify objects in the large images using a single
network. This was done without redundant computations in the feature extraction,
unlike in a naive sliding window approach or RPNs.

The technique has evolved, and by applying architectural patterns such as
Network in Network (NiN) [16], and extracting features from multiple layers,
Single Shot Detection (SSD) and You Only Look Once 9000 (YOLO9000) [17, 23]
have achieved more than 100 FPS combined with a state-of-the-art mean average

Grimnes Chapter 2. Background 17

precision (mAP) on the Visual Object Challenge (VOC) 2012 dataset.
YOLO9000 improved the versatility of the original YOLO architecture by

training the localization and classification separately. Localization was trained
using localization datasets, but the classes used in those datasets are usually higher
level synsets of the classes used in classification datasets. Therefore, Redmon and
Farhadi also trained the classification using ImageNet [3] and other classification
datasets. This enabled the classification to be more discriminative, classifying 9000
non-exclusive classes, while still being able to localize the objects. Connections
between different classes were mapped using WordNet [6].

2.6 Steering angle prediction

Using CNNs to map raw pixel data to actions are slowly gaining some traction
as hardware becomes more powerful. In 2016, NVIDIA released their paper on
end-to-end learning for self driving cars [1]. Their system used raw camera inputs
to produce steering angle predictions. They demonstrated a robust result where
the CNN was able to drive the car on both marked and unmarked roads. This
was achieved by at large team of NVIDIA employees with access to expensive
equipment such as a car equipped with multiple cameras and sensors for gathering
data. This paper will investigate what can be achieved by a single person using
only public datasets and limited resources.

2.7 Transfer learning

As the complexity of CNNs have increased, so has the time it takes to train them.
Training a good convolutional feature extractor may take sevral weeks [10, 23]
on multiple powerful GPUs, and demands huge datasets to avoid overfitting the
training data. To mitigate this large overhead when training a new model, transfer
learning has become increasingly popular. In deep learning, this entails that a
pre-trained model, such as the VGG-16, is reused by copying the architecture

18 Chapter 2. Background Grimnes

and trained weights into a new model. How many layers of the pre-trained model
should be included depend on many factors.

Yosinski et al. [34] show that a convolution layer close to the input layer
learns a more general representation than the layers close to the output. When
adapting a pretrained model to a new field, this means that the closer the new
field resembles the data the original model was trained on, the more layers can be
reused. Using VGG-16 as an example, if you were to classify ImageNet images,
you could use the complete model as the data used to train the model is the same
as you need to classify. On the other hand, if you want to classify one dimensional
strings of text, the data would not resemble VGG-16’s original training data, and
it would be difficult to apply the pre-trained model to the problem.

Appending a convolutional layer to the pretrained model may make adapting
to a new problem space easier, and can reduce the need to fine-tune the pretrained
weights. This is an advantage when limited data is available, which may cause
the pretrained layers to overfit the training data when fine-tuning their weights.

Chapter 3

Methodology

3.1 Experimental setup

3.1.1 Implementation

The system was implemented using a combination of Tensorflow and Keras. Keras
enabled the experimentation necessary to design the system, and Tensorflow
provided the performance necessary to optimize and use the models efficiently on
the GPU.

3.1.2 Evaluation

The detector and steering angle predictor was evaluated using two measures:

1. A quantitative measure, using mAP for bounding boxes and root mean
squared error (RMSE) for steering angles, calculated by predicting previously
unseen images from the datasets.

2. Qualitative measure by manually evaluating the performance of the compo-
nents on an unlabeled dataset collected on urban and suburban roads in

19

20 Chapter 3. Methodology Grimnes

Trondheim.

3.2 Feature extractor

Because the system should recognize traffic signs, other motorists, pedestrians,
animals, traffic lights and more, the core of the system needed to extract good
features for recognizing many different type of objects. Training a custom network
from scratch requires a lot of data, and a lot of time. Some of the state-of-the-art
deep learning architectures require multiple weeks on high-end GPUs, or even
clusters of GPUs. Because there would be little time for experimenting with
architectures if they all have to be trained from scratch, it was decided that
the core of the system should be based on an existing ANN architecture with
pretrained weights.

3.2.1 Choosing a pretrained model

In recent years, many accurate models have performed well in object recognition
challenges. Because the system should be able to control a car, it did not only
need to be accurate, but also efficient enough to provide real-time information.

VGG

VGG-19 [27] performed well in ImageNet Large Scale Visual Recognition Compe-
tition 2014 (ILSVRC14), but was outperformed by GoogLeNet [29]. It is consists
of five blocks of convolutional layers with 3x3 kernels followed by max pooling.
It was one of the first published architectures not to use kernels larger than 3x3,
based on the idea that multiple layers with smaller kernels can replicate a larger
kernel’s perceptual field. The embeddings from the last convolutional layer are
processed by three layers of fully connected layers with 4096, 4096, and 1000
nodes, respectively. This means that the complete model contains more than

Grimnes Chapter 3. Methodology 21

Figure 3.1: The size, complexity and accuracy of popular ANN architectures, as presented by

Canziani et al. in “An Analysis of Deep Neural Network Models for Practical Applications” [2]

130e6 parameters, making too demanding to run in real-time on most current
hardware. The relative size of the VGG models are shown in figure 3.1.

VGG-16 is a more efficient, but less accurate, version of the VGG-19 archi-
tecture. According to the authors, it still achieved 25.6 % top-1 error on the
ImageNet dataset. Most of the computational complexity is located in the last
fully connected layers of the model.

The simple architecture and relatively low complexity in the deeper layers
means it is possible to use the deeper layers of a VGG-16 as the pretrained core
of the system.

ResNet

Based on the experimental results showing that more layers generally performs
better than larger layers, He et al. designed a one of the deepest models to date.
They experimented with models as deep as 56 and 110 layers, and achieved state
of the art performance in ILSVRC14. Previously, deeper models had caused the

22 Chapter 3. Methodology Grimnes

output to saturate, reducing the models performance. The ResNet architecture
solved this issue by adding shortcut connection between layers which enabled the
gradients to be passed more effectively through the network during training, and
resulted in a more accurate model.

The shortcut connections adds neither extra parameters or computational
complexity [10, p. 2], leaving even the 110-layered network is more accurate,
smaller, and more efficient than all the VGG models, as illustrated in figure 3.1.
ResNet was not designed to work in real time, and the more complex architecture
can make it harder to reuse a small subset of the models layers. In addition, the
authors claim that the model should be at least 16 layers deep for the shortcut
connections to have a positive effect on the model.

Because the system to be built in this paper requires real-time performance,
using the number of layers required by residual learning is impractical. Therefore,
the deep residual learning model will not be used as the core model in the system.

3.2.2 Choosing pretrained layers

When transferring pretrained models from one domain to another, it is important
to consider how the pretrained model was trained. If a small dataset was used to
train the model, it has most likely overfitted the data to some degree, making it
hard to apply the same model in other domains. To avoid this, all the models
evaluated in this paper were trained on a subset of the ILSVRC14 dataset
containing more than one million images and a thousand unique classes.

It is also important to consider how close the new domain is to the models
original domain. If the domains are the same, the whole model can be reused, but
if not, one may need to use a deeper layer. The deeper layers are more generic, and
can therefore be applied to a wider range of domains. The following paragraphs
will illustrate this using the image in figure 3.2 as input.

Figure 3.3 illustrates a sample of the internal activation values of the first
pooling layer of VGG-16. It appears that the model initially builds features

Grimnes Chapter 3. Methodology 23

Figure 3.2: The input image used to illustrate the internal activations in VGG-16.

by detecting horizontal and vertical edges and blobs, similarly to many human
designed algorithms. Notice, for example, the high activation values for the
number plate in the upper right corner, and that there are still high activation
values for the bricks in the background.

Figure 3.3: Internal activations in VGG-16 after the first block of two convolutional layers and

a pooling layer.

After the second block of convolutional layers, the shape of the car is still
recognizable, but each filter have become more specialized. Instead of simply
detecting edges, it appears to identify larger features such as the car’s outline and
its wheels. For most of the filters, the activation values for the background have
become weaker. Figure 3.4 shows a sample of the internal activation values of the
second pooling layer of VGG-16.

24 Chapter 3. Methodology Grimnes

Figure 3.4: Internal activations in VGG-16 after the second block convolutional and pooling

layers.

Figure 3.5 contains images sampled from the third pooling layer. The filters
appear to ignore most of the sections of the image they consider to be background.
This means that if the objects in the new domain are considered to be background
by the model, for example classifying wall types, this layer may be too shallow
to be used in the new domain. Notice how more complex features, such as head
lights, have been given large activation values.

Figure 3.5: Internal activations in VGG-16 after the third block of convolutional and pooling

layers.

Grimnes Chapter 3. Methodology 25

Figure 3.6 shows the activation values of the fourth and fifth pooling layer.
These images contains quite specialized information and are difficult to recognize
for human beings. Only a small fraction of the fifth layers output is active. This
can indicate that then network is sparse, which may be a desirable property to
avoid overfitting.

Figure 3.6: Internal activations in VGG-16 after the fourth and fifth block of convolutional

and pooling layers respectively.

Choosing which layers to use will be based on experiments evaluating the
resulting models ability to successfully operate in the new domain.

3.3 The object detector

To successfully operate in a real world setting, the system must be able to detect
important information on the road. This may include objects such as traffic signs,
other vehicles, pedestrians, and traffic lights. To enable real-time performance,
the model will be based on bounding box regressor models such as YOLO9000
and SSD.

Unlike those architectures, the classifier output will be completely separated
from the bounding box regressor’s, making it easier to train the two components
individually. This may enable the two components to operate on different synset

26 Chapter 3. Methodology Grimnes

levels. For example allowing the bounding box regressor to learn high level synsets
such as person, car, traffic sign, and traffic light. At the same time, the classifier
can operate on more specialized concepts such as different traffic signs, detecting
red, green, and yellow light signals, and different types of cars.

3.3.1 Output structure

The output of the detector component is split into bounding box predictions, and
classifications.

Bounding box regressor

To improve the rate of learning, and possibly improve performance, the regressor
did not predict the coordinates of bounding boxes directly. Instead, a set of
predefined bounding boxes, hereafter called anchor boxes, were used as the basis
for the regressor’s predictions. The regressor’s predictions were used to translate
and scale the anchor boxes, similar to the approach of Liu et al. in their SSD model.
The anchor boxes were defined by clustering the bounding box of annotations in the
driving dataset released by Udacity containing traffic lights, vehicles, pedestrians
and cyclists, similar to how the boxes were selected in YOLO9000. The distance
measure used during clustering was 1 - the boxes’ intersection over union (IoU).
The anchor boxes used in this article are shown in figure 3.7.

Figure 3.7: The detector anchor boxes used in this experiment

For each bounding box, five values were predicted:

Grimnes Chapter 3. Methodology 27

Translation The two first values are used to translate the image along the x
and y axis from the active image fragment’s center coordinates. Because the
regressor operates using local information, it does not make sense that it should
be able to position boxes anywhere in the image. Therefore, the translations were
limited to a small radius around the center point of the observed image fragment.
In this implementation, that radius was defined as 24 pixels. This way also have
improved the model’s stability in the early stages of training.

Scaling The third and fourth value predicts the scale transformations to be
applied to the anchor box to match the object’s bounding box. To improve the
stability of the model, and better exploit the explicit information provided by the
anchor boxes, the scaling in both dimensions were limited to the range from 1 to
e.

Confidence When combining the first four values with an anchor box, they
define a bounding box, but they provide no indication of the models confidence in
the prediction. Because the detector and classifier are separated, we cannot use
the classifier’s confidence to threshold the predicted bounding boxes. The fifth
value remedies this by attempting to predict the transformed anchor box’ IoU
with any objects in the image. This is used to evaluate the models confidence in
the predicted box.

To enable the component to detect objects with different shapes and sizes,
multiple anchor boxes were be used. The model provided the five output values
described for each anchor box. In this implementation, five anchor boxes were
used, making the output of the model 25 values for each image fragment.

The formulas used to convert predictions and anchor boxes to the final bound-
ing boxes are shown in equations 3.1 through 3.4. The translation predictions were
scaled by the maximum offset radius to avoid the most saturated ranges of the
sigmoid function, as seen in equations 3.1 and 3.2. The detector should typically

28 Chapter 3. Methodology Grimnes

predict multiple boxes for each object. The number of boxes were reduced using
non-maximum suppression [19].

fx, fy = center point of the image fragment predicting the labels

aw, ah = size of the anchor box

px, py, pw, ph = predicted values

bx = fx+ �

�1(px)⇥ max offset radius (3.1)

by = fy + �

�1(py)⇥ max offset radius (3.2)

bw = aw ⇥ e

pw (3.3)

bh = ah⇥ e

ph (3.4)

Classifier

The classifier predicted the classes using a vector of confidence values for each class,
similar to a traditional classifier. Unlike most classifiers, the model produced
multiple such predictions for each image fragment. One for each predicted
bounding box.

3.3.2 Architecture

Shared layers

To reduce the training required, the deepest layers in the detector were the first
three blocks of convolutional layers in VGG-16. Those layers were not modified,
ensuring that the system’s core layers did not overfit the object detector’s domain.

Grimnes Chapter 3. Methodology 29

This was important as the same layers were also used in the steering angle
predictor.

Two blocks of convolutional layers were appended the VGG-16’s third max
pooling layer, as shown in table 3.1. The blocks were inspired by the NiN architec-
ture [16], all convolutional layers were activated using ReLU [9], and normalized
using batch normalization [12]. These blocks should adapt the extracted features
to the detector’s domain, and reduce the size of the output, enabling accurate
predictions and a reasonable number of predicted image fragments for both the
bounding box regressor and the classifier. Dropout and batch normalization were
used to help the model generalize.

A single shared convolutional layer with 512 filters and a 1x1 kernel was
appended to the last shared max pooling layer.

Bounding box regressor layers

The bounding box regressor’s output was created by appending a convolutional
layer with a 1x1 kernel and 25 filters, five for each anchor box, to the last shared
layer, acting like a traditional fully connected layer. The layer’s output was
activated using the sigmoid function.

Classifier layers

The classifier’s output was created by appending a convolutional layer with a 1x1
kernel and 30 filters, six for each anchor box, to the last shared layer, acting like
a traditional fully connected layer. The layer’s output was activated using the
sigmoid function.

Output

Because the system’s input size was 300x300, the model yielded 9x9 predictions,
where each prediction contained five bounding boxes with accompanying confidence

30 Chapter 3. Methodology Grimnes

Component Layer type Features Kernel Strides Activation

VGG-16

Conv2D 64 3x3 1x1 ReLU
Conv2D 64 3x3 1x1 ReLU
MaxPool2D 64 2x2 2x2 -
Conv2D 128 3x3 1x1 ReLU
Conv2D 128 3x3 1x1 ReLU
MaxPool2D 128 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
MaxPool2D 256 2x2 2x2 -

Shared

Dropout 256 - - -
Conv2D 512 3x3 1x1 ReLU
BatchNormalization 512 - - -
Conv2D 256 1x1 1x1 ReLU
BatchNormalization 256 - - -
Conv2D 512 3x3 1x1 ReLU
BatchNormalization 512 - - -
MaxPool2D 512 2x2 2x2 -
Dropout 512 - - -
Conv2D 1024 3x3 1x1 ReLU
BatchNormalization 1024 - - -
Conv2D 512 1x1 1x1 ReLU
BatchNormalization 512 - - -
Conv2D 1024 3x3 1x1 ReLU
BatchNormalization 1024 - - -
MaxPool2D 1024 2x2 2x2 -
Conv2D 512 1x1 1x1 ReLU

Regressor Conv2D 25 1x1 1x1 Sigmoid
Classifier Conv2D 36 1x1 1x1 Sigmoid

Table 3.1: The architecture of the detector. The layers of both the bounding box regressor

and classifier are connected to the last shared layer.

values and classifications. Figure 3.8 illustrates the output resolution. The actual
receptive field for each prediction is larger than the squares in the figure.

Grimnes Chapter 3. Methodology 31

Figure 3.8: The 9x9 predictions for a 300x300 input image.

3.3.3 Training

Data

The bounding box regressor was trained in a supervised fashion on a combination
of the GTSDC dataset and the annotated driving data made public by Udacity.
Both datasets are described in 2.3.

Data augmentation and preprocessing

Because the model was required to operate in a variety of weather and lighting
conditions, as encountered in the real world, aggressive augmentation was applied
to the input data. This also helped mitigate the model’s tendency to overfit the
relatively small collections of training data.

Brightness To simulate over exposed and under exposed images the brightness
of the input was modified. The image’s original brightness was multiplied by a
factor sampled from a normal distribution with mean equal to one, and a standard
deviation of 0.7, based on experimentation. This is illustrated in figure 3.9.

32 Chapter 3. Methodology Grimnes

Figure 3.9: Augmented image brightness to improve the detector’s robustness to different light

conditions.

Saturation To make the model more robust to variations in color, the saturation
of the input images was multiplied by a factor from a normal distribution with
mean equal to one, and a standard deviation of 0.8, based on experimentation.
This is illustrated in figure 3.10. This may have helped the model recognize
objects such as traffic signs with faded colors, and cars with similar color tones.

Figure 3.10: Augmented image saturation to improve the detector’s robustness to color

variations.

Shift To make the model more robust to minor translations, the input images
were shifted along both axes. The offset was sampled from a normal distribution
with mean equal to zero and a standard deviation of 20, based on experimentation.
The fill color was randomized. This is illustrated in figure 3.11.

Grimnes Chapter 3. Methodology 33

Figure 3.11: Shifted images to improve the dataset’s variance

Noise To increase the robustness of the model [30], and force it to learn better
features, a lot of noise was added to the input images. The noise was sampled
from the normal distribution and multiplied with the image’s pixel values. This
is illustrated in figure 3.12.

Figure 3.12: Noisy images improves the model’s robustness to noise

When randomly combining all the augmentations, the result can vary greatly
for a single input image. This effectively created a larger dataset from the provided
training data, and helped the model to become more robust. Some examples of
augmented images are illustrated in figure 3.13. Training samples were procedually
generated from the original training data during training, to save disk space. All
images were deallocated after they were processed by the models to save memory.

The input pixel values were centered by subtracting the mean values used in

34 Chapter 3. Methodology Grimnes

Figure 3.13: Multiple images generated from a single image by applying random augmentations

the original VGG paper, and converted to the BRG color space.

Optimization

When looking at images from the detection datasets, it is obvious that most
regions of an image do not contain any interesting objects, and some images
contain no interesting objects at all. This unbalance in the input data may have a
negative effect on the learning rate of the model. To remedy this, the error from
any prediction where the expected IoU is equal to zero was masked.

To enable the system to train on multiple datasets with different annotated
object classes, the error of predictions with low expected IoU for all ground truth
labels was masked to zero. In this paper, the training data was collected from two
datasets released by Udacity, that contained slightly different annotated classes,
in addition to the GTSDC dataset, which contained only annotations for traffic
signs. If the error was not masked to zero, the system may correctly predict the

Grimnes Chapter 3. Methodology 35

presence of a vehicle an image from GTSDC, but it would interpreted as an error
because GTSDC did not contain annotations for vehicles.

The detector was optimized with the Adamax optimizer, using the RMSE loss
function. RMSE is a reasonable choice for a regression task, such as predicting
bounding boxes, but not for classification tasks. RMSE is closely related to
the mean squared error (MSE) loss function, but will yield larger errors in this
instance. Because the output space and the target space of the model is between
zero and one, it will yield a maximum error of one, but usually smaller. This
can potentially reduce the model’s rate of learning. Because the square root of a
number smaller than one is larger than the number itself, the root can be used to
make any error larger, which potentially improves the learning rate. The Adamax
optimizer will also help improve the learning rate due to its parameterized learning
approach.

3.4 The steering angle predictor

This model should process a single input image to predict the vehicle’s steering
angles.

3.4.1 Architecture

The steering angle predictor used four blocks of convolutional layers from VGG-16
to help downsample the input size while maintaining a good collection of features.
A custom block of convolutional layers was appended to the fourth VGG-16
pooling layer to build more domain specific features, and then processed by two
additional convolutional layers. A convolutional layer with a 4x4 kernel was used
to pool the features to a vector. This enabled the network to learn the optimal
pooling strategy for predicting steering angles. For example, it may give the
values collected from the bottom half of the image a higher weight than the top
half because the sky rarely affects how a vehicle should turn. The steering angle

36 Chapter 3. Methodology Grimnes

prediction was calculated from the result of this pooling operation using a single
convolutional layer. This layer was activated with tanh to enable both positive
and negative angle predictions. Dropout and batch normalization were used to
help the model generalize. The complete model is illustrated in figure 3.2.

Component Layer type Features Kernel Strides Activation

VGG-16

Conv2D 64 3x3 1x1 ReLU
Conv2D 64 3x3 1x1 ReLU
MaxPool2D 64 2x2 2x2 -
Conv2D 128 3x3 1x1 ReLU
Conv2D 128 3x3 1x1 ReLU
MaxPool2D 128 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
MaxPool2D 256 2x2 2x2 -
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
MaxPool2D 512 2x2 2x2 -

Predictor

Dropout 512 - - -
Conv2D 256 3x3 1x1 ReLU
BatchNormalization 256 - - -
Conv2D 128 1x1 1x1 ReLU
BatchNormalization 128 - - -
Conv2D 256 3x3 1x1 ReLU
BatchNormalization 256 - - -
MaxPool2D 256 2x2 2x2 -
Conv2D 128 3x3 1x1 ReLU
BatchNormalization 128 - - -
MaxPool2D 128 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
BatchNormalization 256 - - -
Conv2D 512 4x4 1x1 ReLU
BatchNormalization 512 - - -
Conv2D 1 1x1 1x1 Tanh

Table 3.2: The architecture of the steering angle predictor.

Grimnes Chapter 3. Methodology 37

3.4.2 Training

Data

The steering angle predictor was trained using the driving data made public by
Udacity through their open source self-driving car project. The data contains
images and multiple labels, but only the steering angle labels were be used in this
experiment. The dataset was described in 2.3.2.

Dataset augmentation and preprocessing

To improve the data foundation used during training, the dataset was augmented
similarly to the detector, as described in subsection 3.3.3, but some approaches
were adapted to the new domain:

Shift Instead of shifting the image along both axes, the images were shifted
only along the x axis. This was used to simulate a situation where the car is not
centered in its lane, and should therefore try to move towards the center. This
was done by adding a small constant to the original images steering angle, based
on the direction if the translation.

Scale The images were also randomly scaled along the y axis to simulate sharper
and longer corners. The images were scaled by a factor sampled from a normal
distribution with mean one a standard deviation of 0.2, based on experimentation.
The original image’s steering angle was multiplied by the same factor to match
the manipulated image.

Horizontal flip To balance the training data, and imitate a larger dataset,
images were randomly flipped along the first axis, and the steering angle label
was inverted. This should prevent the model from preferring to turn either left or
right.

38 Chapter 3. Methodology Grimnes

Multiple cameras The driving data did not contain images from a single
camera, but from three individual cameras positioned on the left, right and center
of the car. The left and right cameras were used to simulate additional data where
the car was not centered in its lane. A small constant was added or subtracted
from the true steering angle to simulate a corrective maneuver.

The input pixel values were centered by subtracting the mean values used in
the original VGG paper, and converted to the BRG color space.

Optimization

The model was optimized with the Adamax optimizer using the RMSE loss
function of the same reasons as presented in subsection 3.3.3. It was trained using
data released by Udacity containing images and steering angles recorded with a
human driver. The feature extractor’s and detector’s weights were not updated
while training the steering angle predictor.

3.5 Steering angle predictor with incorporated ob-

ject detection

Similarly to the standard steering angle predictor, this model predicted steering
angles based on a single image input, but it also included the pretrained layers
of the road user detector. Because both models were already using VGG-16 as
a feature extractor, the only modification needed, was to connect the detector’s
output to the predictor’s input. This is illustrated in figure 3.14.

Grimnes Chapter 3. Methodology 39

Figure 3.14: A diagram showing the architecture of the steering angle predictor with integrated

object detection

3.5.1 Architecture

The architecture of the combined steering angle predictor was almost identical to
the standard predictor, but it concatenated the output of the road user detector
with the extracted image features, represented by the Concatenate layer in figure
3.3.

40 Chapter 3. Methodology Grimnes

Component Layer type Features Kernel Strides Activation

VGG-16

Conv2D 64 3x3 1x1 ReLU
Conv2D 64 3x3 1x1 ReLU
MaxPool2D 64 2x2 2x2 -
Conv2D 128 3x3 1x1 ReLU
Conv2D 128 3x3 1x1 ReLU
MaxPool2D 128 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
Conv2D 256 3x3 1x1 ReLU
MaxPool2D 256 2x2 2x2 -
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
Conv2D 512 3x3 1x1 ReLU
MaxPool2D 512 2x2 2x2 -

Predictor

Dropout 512 - - -
Conv2D 256 3x3 1x1 ReLU
BatchNormalization 256 - - -
Conv2D 128 1x1 1x1 ReLU
BatchNormalization 128 - - -
Conv2D 256 3x3 1x1 ReLU
BatchNormalization 256 - - -
MaxPool2D 256 2x2 2x2 -
Concatenate 256 + 25 + 30 - - -
Conv2D 128 3x3 1x1 ReLU
BatchNormalization 128 - - -
MaxPool2D 128 2x2 2x2 -
Conv2D 256 3x3 1x1 ReLU
BatchNormalization 256 - - -
Conv2D 512 4x4 1x1 ReLU
BatchNormalization 512 - - -
Conv2D 1 1x1 1x1 Tanh

Table 3.3: The architecture of the steering angle predictor with integrated object detection. The

concatenate layer merges the image features with bounding box predictions and classifications

from the detector.

Grimnes Chapter 3. Methodology 41

3.5.2 Training

The combined model was trained on the same data, with the same augmentations
as the standard steering angle predictor, which was described in section 3.4. It also
used the same Adamax optimizer and RMSE loss function. None of the pre-trained
feature extractor layers or detector layers were modified during training.

3.6 Summary

The experiment was divided into three parts:

1. An object detection model was be implemented using pretrained layers from
VGG-16, and it was be trained to detect other road users and traffic signs.

2. A steering angle predictor aimed to predict the correct steering angles from
images. It was also be based on pretrained layers from VGG-16.

3. A steering angle predictor with incorporated object detection was be imple-
mented, aiming to make the predictor more robust with explicit information
about nearby objects. This was achieved by combining the two other models.

The results of all experiments were evaluated using both a quantitative and
qualitative measure.

42 Chapter 3. Methodology Grimnes

Chapter 4

Results and Discussion

This chapter will present the results of the experiments described in chapter
3. The detector, steering angle predictor, and steering angle predictor with
object detection are reviewed separately. All three models will first be evaluated
quantitatively, then tested on data captured on the streets of Trondheim for a
qualitative evaluation.

4.1 Results

4.1.1 The object detector

The object detector was able to operate at a frame rate of 60 FPS on an NVIDIA
GTX 1080 GPU.

Quantitative measure

The detector was evaluated by calculating the mAP of the predicted bounding
boxes on all the test data. It achieved a mAP of 44.91 on the Udacity test data,
and 25.73 on the GTSDC test data, which resulted in a total mAP of 44.02.

43

44 Chapter 4. Results and Discussion Grimnes

Qualitative measure

An example recorded as the sun was setting in Trondheim can be seen by
visiting this link: https://youtu.be/iYsWsLdqtcU

An example recorded at night can be seen by visiting this link: https:

//youtu.be/XouMG3BwJnk

The generated bounding boxes are mostly matching the detected objects’
outline, but they seem to change noticeably between frames. This was not the
case when training on dataset with similar annotated classes.

The model did not detect all object types equally successfully. The following
paragraphs will describe the performance of the detector for every object in detail.

Vehicles The detector seems to successfully predict bounding boxes for most
vehicles in daylight, as shown in Figure 4.1, but it fails to recognize cars in some
under-exposed images, and it fails to recognize the silhouette of cars. This means
that when driving towards the sun, it will not detect cars in front of the camera
before they are a few meters away. An example of an image where the detector
failed to detect cars due to direct sunlight can be seen in Figure 4.2.

Figure 4.1: The system successfully detects the most vehicles in daylight

https://youtu.be/iYsWsLdqtcU
https://youtu.be/XouMG3BwJnk
https://youtu.be/XouMG3BwJnk

Grimnes Chapter 4. Results and Discussion 45

Figure 4.2: The system fails to detect the silhouette of cars in direct sunlight

It detects cars of most sizes, ranging from around 20 to 300 pixels in size, and
it appears to be robust to the angle of the car. As expected from the properties
of CNNs, it can easily detect multiple objects in the same image. The main issue
appears when there are multiple small objects grouped together. In that case the
detector often predicts a single box that appears to be an approximation of all the
objects instead of locating one or more individual objects, as illustrated in figure
4.3. This behaviour also appears when two objects cross paths. The predicted
box sometimes slides quickly from one object to the other just before and after
the objects overlap each other.

The detector appears to be robust to the relative speed of the objects, correctly
predicting bounding boxes for cars crossing the camera’s field of view. This could
potentially have been an issue as objects moving at high speeds may become
blurred when recorded.

Traffic lights The detector appears to recognize traffic lights in intersections,
but the generated bounding boxes are usually not centered on the object, rather
floating nearby. This is illustrated in figure 4.4. It appears to prefer traffic lights
approximately a couple of lane widths away, and does not detect traffic lights that
are facing away from the vehicle.

46 Chapter 4. Results and Discussion Grimnes

Figure 4.3: For groups of small objects, the system predicts an average bounding box. Notice

box number three from the left.

Figure 4.4: Predicted bounding boxes for traffic lights are inaccurate.

Pedestrians The detector generally fails to detect pedestrians. A bounding
box might appear for a frame or two, but never as a consistent indication of a
person.

Traffic signs The system does detect some traffic signs, but usually at a short
distance, as show in figure 4.5.

Grimnes Chapter 4. Results and Discussion 47

Figure 4.5: The detector needs traffic signs to be at a short distance to be detected. Notice

the bounding box for the sign on the left. The detector correctly recognizes that there is a sign

there, but fails to place the bounding box.

4.1.2 The steering angle predictor

The predictor was able to operate at a frame rate of 60 FPS on an NVIDIA GTX
1080 GPU, which may qualify for real-time performance.

Quantitative measure

The performance of the predicted steering angles were measured using RMSE. Fig-
ure 4.6 plots the training and validation error of the predictor. The training error
is larger than the validation error. This is probably caused by the augmentations
applied to the input and dropout layers.

The final RMSE of the steering angle predictor with object detection was
0.0645. In comparison, predicting zero for all inputs yields a RMSE of 0.32.

Qualitative measure

An example in daylight can be seen by visiting this link: https://youtu.
be/k_CMFqbeXqk

https://youtu.be/k_CMFqbeXqk
https://youtu.be/k_CMFqbeXqk

48 Chapter 4. Results and Discussion Grimnes

Figure 4.6: The training loss and validation loss of the steering angle predictor. The model

was optimized for 100 epochs with 200 batches of 16 samples. Multiple training sessions were

averaged to produce the data displayed in this graph.

An example recorded at night can be seen by visiting this link: https:

//youtu.be/tjOQuuq5q5s

The driver seems to recognize the curvature of the road. When the road
turns, it predicts steering angles that seem to correlate with the sharpness of the
turn. It appears to prefer to turn left as all predicted angles are centered on a
small negative angle, not on the zero angle. I appears to be relatively robust in
situations such as to overtaking cars, driving behind cars, and passing parked
cars, but sometimes it desires to steer into oncoming traffic seemingly without
any specific reason.

https://youtu.be/tjOQuuq5q5s
https://youtu.be/tjOQuuq5q5s

Grimnes Chapter 4. Results and Discussion 49

4.1.3 The steering angle predictor with incorporated ob-
ject detection

The object detecting predictor was able to operate at a frame rate of 50 FPS on
an NVIDIA GTX 1080 GPU, which may still qualify for real-time performance.

Quantitative measure

The performance of the predicted steering angles were measured using RMSE.
The final RMSE of the combined steering angle predictor with object detection
was 0.0653. The RMSE of the steering angle predictor without object detection
was 0.0645. Which means that it is likely that the object detection did not help
the model predict better steering angles.

Figure 4.7 plots the training and validation error of the both the steering
angle predictors. This illustrates how the the explicit object detection information
affected, or rather failed to affect, the system.

Figure 4.7: The training loss and validation loss of the steering angle predictor with and

without integrated object detection respectively. The models were optimized for 100 epochs

with 200 batches of 16 samples. The results for each graph were generated by averaging the

result of multiple iterations.

50 Chapter 4. Results and Discussion Grimnes

Qualitative measure

The behaviour was similar to the standard predictor, but the input from the
detector component appeared to confuse the system. When the car met oncoming
traffic, or there were cars parked on the side the road, the activations in the
detector’s output became stronger, and the predicted steering angles became more
unstable. When there was no oncoming traffic, and there were no cars parked on
the side of the road, the model seemed to perform similar to the standard steering
angle predictor.

4.2 Analysis

4.2.1 The object detector

The detector did achieve real-time performance at 60 FPS, even with the unnec-
essarily computationally intensive, pre-trained VGG-16 layers. A more powerful
GPU would probably yield even better performance. The model achieved a
mAP of 40.02 on the test data, which is not very high compared to the state-of-
the-art detectors on VOC. This subsection will discuss the result, and how the
implementation might can be improved.

Robustness

Brightness Even though the brightness of input images, among other properties,
was heavily augmented, the detector still failed to recognize objects in some dark
images, and when only the basic shapes, such as the silhouette, of the objects
were visible. All the training data was recorded in daylight, and in almost all
the images, the road is correctly exposed. In the test data, the auto exposure of
the camera sometimes failed to keep the road correctly exposed. This mismatch
between the training data and test data can have affected the performance of the
trained model. Using a camera with a high dynamic range might help mitigate

Grimnes Chapter 4. Results and Discussion 51

this issue.

Bounding boxes The generated bounding boxes’ size and position seemed
more unstable when training on both the Udacity and German datasets. This is
probably caused by the ambiguity introduced when training on multiple datasets,
as discussed in 4.2.1.

Detecting background Because any prediction with an IoU of zero for all
annotations were masked to zero, the model is never shown that it is possible for
an image fragment not to contain an object. This can have caused the predicted
confidence values to saturate, which can cause false positives to be predicted with
high confidence values.

Heat map Most false positives appear for a few frames. A heat map could be
used to silence any detections until a sufficient number of detections are reported in
an area. This adds little complexity, and may remove most of the false detections.

Detected object types

The detector clearly preferred to locate vehicles even though the training data
also contained pedestrians, traffic lights, traffic signs, and bicycles. The following
paragraphs will discuss why this happened.

Representation in datasets The detector did not detect pedestrians. The
object type was annotated in the Udacity datasets, but relatively few images
contained pedestrians. During training, the detector appeared to have specialized
in vehicle detection at the cost of more sparsely represented object types. This
could possibly be prevented by balancing the input data during training, or by
weighting the training samples according to their degree of representation in the
datasets, as discussed in paragraph 4.2.1

52 Chapter 4. Results and Discussion Grimnes

Inter-class variance The identifying features of a car are relatively simple:
a box with wheels, or a box with a light source on either side, depending on
the relative orientation of the car. These basic shapes are easy to identify. A
pedestrian may be dressed in black, standing still between dark tree trunks, or
next to a traffic light. Or he may be dressed in a huge pink jacket, running
accross the road, or sitting on a bench. The wide variety of shapes and colors of
a person is more difficult to learn than the shape of a car. Combined with the
under-representation of pedestrians in the training data, this may have made it
difficult for the model to recognize pedestrians.

Anchor boxes The over-representation of cars may have made most of the
anchor boxes adapt to cars, thus making detection of other object types more
challenging for the model. This could possibly be remedied by balancing the
annotations used during classification by sampling the same number of annotations
from every object type.

Architecture Given the relatively small datasets available, using a pretrained
model was a reasonable choice, but efficiency and accuracy could probably be
improved by greating a custom feature extractor more similar to those of SSD
or YOLO9000. The accuracy may also be improved if the system was allowed to
modify some of the pre-trained layers.

Training on multiple datasets

The accuracy of the detector was noticeably reduced when both the Udacity and
German traffic signs dataset were used to train it. Event though the model was
not directly punished for predicting objects that were not present in the dataset.
There could be many reasons for this, such as:

Ambiguity Some images contain cars and traffic signs located close to each
other. Given an image from the GTSDC dataset that contains both cars and

Grimnes Chapter 4. Results and Discussion 53

traffic signs, if an image fragment is located close enough to the traffic sign, it
will have an expected IoU greater than zero, so its error will not be masked. If
the car was located close to the image fragment, the model may still decide to
predict a bounding box for the car instead of the traffic sign. This would result in
a large error because the car was not annotated in the input image, even though
it would have been a correct prediction in the Udacity datasets. This ambiguity
may confuse the network making it less accurate.

This tendency could probably be mitigated if an object detector was trained
on the individual datasets, then used to create additional annotations for the
other datasets. The new annotations, combined with the annotations from the
dataset, would reduce the difference between the training datasets, and possibly
improving the performance of the final model.

Anchor boxes Because the five anchor boxes were created by clustering the
annotations in the training datasets, the anchor boxes may be too generalized to
efficiently represent the various objects in the real world. More data means more
generalized anchor boxes, which potentially reduce the models performance.

Optimization

The output of both the bounding box regressor and classifier were activated using
the sigmoid function. This saturates the output values, and can result in smaller
gradients and reduced learning rate. Although a parameterized optimizer will
help prevent this, using a better combination of output activation function and
loss function could improve the model. This is further explored in the following
paragraphs.

Output activation A sigmoid function saturates large positive and negative
input values. This means that the loss for a small error in a large box will be small.
The same error will yield a larger loss for a medium bounding box, because the
predicted values will be in a less saturated range. This is the desired behaviour.

54 Chapter 4. Results and Discussion Grimnes

Unfortunately, because negative values are also saturated, the model will produce
a small loss for small errors in small bounding boxes. This is not desired behaviour.
A small error is much larger relative to a small box than to a large box, which
should be reflected by the loss. This may be a reason for why the smaller boxes,
which indicates traffic lights and distant objects, are less accurate than the larger
boxes.

Using softmax for the classifier’s output was not an option because every
output vector contained predictions for multiple anchor boxes. Softmax would
have strengthened a single class for a single anchor box, and wakened all other
classes without considering that the classes were related to different anchor boxes.
An alternative would have been to create a custom softmax layer that applied
softmax to the different anchor boxes’ predictions individually. This would still
assume that all the classes for a single anchor box were mutually exclusive, which
they were in this experiment, but they may not be if more classes, such as vehicle,
are introduced.

Loss function Using a squared error based loss function is effective when
applied to regression tasks, such as predicting bounding boxes, but less effective
when used to classify objects. In the detector implementation, a single RMSE
loss function was used, and resulted in decent bounding boxes, but inaccurate
classifications.

A custom designed loss function could probably improve the model’s classifi-
cation accuracy. A simple approach would be to combine two existing functions,
applying RMSE to the bounding box parameters, but a function more fit for
classification tasks to the classifier’s output. The most common examples are
probably categorical and binary cross-entropy. The categorical version assumes
that the classes are mutually exclusive, which they were in this experiment, but
because a single output vector contained classification for multiple anchor boxes,
the loss function should accommodate multiple classes for each vector. Therefore,
the binary cross-entropy loss function would be a better choice. Combining it

Grimnes Chapter 4. Results and Discussion 55

with the RMSE would yield large errors for the output of both the bounding box
regressor and classifier.

Weighting samples The number objects contained in the detection datasets
was not balanced, as shown in figures 2.2 and 2.1. Therefore, the model was
better adapted to detecting the more common objects such as cars than the less
common pedestrians. A possible approach to counteract this tendency, without
holding back data during training to balance the training process, is to use
weighted training samples. The common objects, such as cars would get a smaller
weight than pedestrians, preventing the many gradients of car predictions from
overpowering the relatively few pedestrian gradients.

Masking errors Because the error from predictions not containing object were
masked, the model was never taught that a prediction might not contain any
objects. This may have caused it to report many false positives, which required a
high output confidence threshold. This may prevent the model from detecting
objects at a distance, or the silhouettes of cars, as previously identified as a
weakness. But, as it was the masking of errors that made training on multiple
datasets in this experiment, this effect was unavoidable.

4.2.2 The steering angle predictor

The steering angle predictor appeared to predict reasonable steering angles in
most cases.

Data

This section will discuss how the steering angle predictor may have been affected
by the data.

Unbalanced training data Road are mostly straight, this means that the
majority of the training data will represent steering angles close to zero. This may

56 Chapter 4. Results and Discussion Grimnes

bias the model towards driving straight. To avoid this, the training data should
probably be balanced by ignoring or weighting samples with a small ground truth
steering angle.

Preference for turning left The model appeared to prefer to steer left. This
was probably because the model was trained to keep the camera in the center
of its lane, but in the test videos, it was often located slightly to the right of
the center point. Therefore it continuously tried to make a correcting maneuver
towards the center.

Architecture

The predictions failed to match those of the NVIDIA team. There are many
reasons for this, but it may be an indication that the architecture itself was flawed.

Feature extractor The detector was connected to the pooling layer of the
fourth block of convolutional layers in the VGG-16 model, one block shallower
than the detector. It is possible that the features at that point were too specialized
to the ImageNet classifications. The model needed to detect features such as lane
lines and curbs, but those are features that may usually be considered background
in images from the ILSVRC14 dataset.

4.2.3 The steering angle predictor with incorporated ob-
ject detection

The combined predictor did not seem to be robust at all. Under certain conditions,
for example when the read was well lit, and there were no other cars, traffic signs,
or traffic lights nearby, it appeared to predict reasonable steering angles. The
model seemed to be more confused than aided by the extra information provided
by the object detector. In theory, it should have been able to achieve at least the

Grimnes Chapter 4. Results and Discussion 57

same performance as the steering angles predicted without the extra input from
the detector, but it did not.

In addition to the issues described for the standard predictor in subsection
4.2.2, the additional inputs may have caused more issues for the model.

Data

As discussed in subsection 1.3, the object detector would probably have little effect
on most steering angles. Most of the situations where the object detection may be
helpful, such as obstacle avoidance, were not present in either the training or the
test datasets. Thus, measuring a positive effect for the incorporated object detector
proved to be challenging. The result was that the object detecting steering angle
predictor performed worse than the original, possibly due to confusion caused by
the detector input values.

Architecture

Combining image features and detections The model was provided with
three convolutional layers to extract information from the image features and
detections with 128, 256, and 512 filters respectively. This may not be enough for
the wide variety of inputs possible. Especially considering that the concatenated
image features and detection results consisted of 211 features.

4.3 Summary

The object detector correctly located most vehicles except from a few edge cases.
It appeared to prefer cars, probably due to the overrepresentation of the car class
in the training data. Other objects were also detected, but the predicted bounding
boxes were less accurate.

The steering angle predictor yielded predictions which appeared to be correct
in most situations, and achieved a decent RMSE of 0.0645 on the test data.

58 Chapter 4. Results and Discussion Grimnes

The steering angle predictor with integrated object detection did not yield
better results than the standard predictor, but achieved an RMSE of 0.0653 on
the test data.

Chapter 5

Conclusions and future work

5.1 Conclusions

An object detection network was based a core of pretrained layers from VGG-16
was implemented. The detector’s layers were trained as a regular detector. The
detector appeared to be quite stable. It yielded a some false positives that were
introduced when the system was trained on multiple datasets with similar images,
but different annotations, at the same time. To reduce the effect this had on the
model, the errors of false predictions were masked to zero, which helped, but did
not make the model as stable as when training on either of the datasets alone.
The experiment shows that it should be possible to train a detector using only
public datasets.

A steering angle predictor used pretrained layers from VGG-16 for feature
extraction. It failed to deliver the stability and accuracy seen in NVIDIA’s system,
but it appeared to interpret the curvature of roads and predict steering angles
that seemed to be correct in most situations. While the experiment suggests that
it is possible to train a model to predict steering angles using only public data,
it would benefit from more data recorded in a wider range of environments and

59

60 Chapter 5. Conclusions and future work Grimnes

conditions.
A novel combination of the object detector and steering angle predictor was

implemented. Both components shared feature extraction layers, and the steering
angle predictor processed both the image features and the detector predictions
to predict steering angles. The model did not perform better than the standard
steering angle predictor. It appeared to be more confused than aided by the
more explicit information received from the integrated object detector, it was
challenging to train robustly, and failed to perform better than regular models
such as NVIDIA’s.

Multiple approaches for improving the performance of the models were dis-
cussed, including revised architectures, generating additional training data, and
improved data manipulation.

The approach taken by NVIDIA in their paper on end-to-end self driving cars
was proven to be quite effective, and it is probably a better approach than the
architectures suggested in this paper.

5.2 Future Work

5.2.1 End-to-end driver

The novel architecture for steering angle prediction and object detection presented
in this paper did not perform well. As described in the introduction, nearby
objects rarely affect the steering angles og a car, but they may be more important
for the acceleration and braking of a vehicle.

If the steering angle predictor with object detection was extended to also
predict throttle and brake controls, the object detection might have a positive
effect. For example braking when the car in front is braking, an stopping at stop
signs or red lights.

For such a system to work, the model would need to have some notion of
the current speed of the vehicle. This could be provided as a separate input,

Grimnes Chapter 5. Conclusions and future work 61

taught using recurrent layers, or indicated by applying optical flow on the input
images. Both the recurrent layers and the optical flow input would also provide
information about the speed of other road users, which may be important.

5.2.2 Converting problems to a decision problems for pre-
training

The amount of available labeled data can make a substantial impact on the
performance of a model, but correctly labeled data can be difficult to produce.
When predicting steering angles from images, sensors measuring the angle of the
steering wheel or tires are needed, and they must be synchronized with images
from a camera mounted on the car. This requires hardware that most people do
not have at home, making it difficult to gather reliable steering angle data. The
data used to train the model will be limited to what is publicly available.

Computational theory shows that while a problem can be hard to solve, such
as NP-complete problems, verifying a proposed solution may be considerably
easier. Therefore, training a model to verify a proposed prediction might be easier
than training a system to predict the actual steering angles. This approach would
also reduce the need of labeled data because only the true predictions would need
to be labeled correctly. Any false predictions can automatically be generated in
the range of the input data for any input image similar to images in the training
data.

When constructing a model to solve the original problem, robust, pre-trained
layers could be transfered. This approach may be applicable to a wide range of
problems.

5.2.3 Adversarial training

The same advantages as described in subsection 5.2.2 can also be achieved by not
using the decision problem model as pre-training, but rather as the steering angle
predictions adversary.

62 Chapter 5. Conclusions and future work Grimnes

The system would consist two separate networks where one, the predictor,
tries to predict the correct steering angle from an input image, and the other,
the validator, tries to tell if a provided steering angle if the ground truth, or a
prediction from the predictor for a given image.

The networks could be trained in an adversarial manner where:

• The validator attempts to decide whether the steering angle input is the
true steering angle for an image input, or one predicted by the predictor.

• The predictor predicts a steering angle for an input image. The prediction
error would be based on whether the validator believed it was a ground
truth label or not.

These models would be trainable using both labeled and unlabeled data, and
the approach may be applicable to a wide range of problems.

5.2.4 Working with time

When detecting objects, it is more likely that predicted bounding box is correct if
it has been detected in multiple frames. False positives will typically appear for
edge cases in individual frames. If the model knew that there was no prediction
in the area of a potential false negative in the previous frames, it may decide not
to give it a high confidence value. By maintaining a history, the model could also
produce smoother bounding boxes because it knows that objects rarely changes
shape, and therefore predicts boxes similar to those predicted in previous frames.
It would also enable detection of movement, which can be essential for obstacle
detection and avoidance.

Then predicting steering angles, the current steering angle may depend on the
steering angles at the previous time steps, and knowing the previous steering angles
would allow the model to predict more stable values. The model implemented
in this thesis yielded slightly varying angles for each frame, resulting in an

Grimnes Chapter 5. Conclusions and future work 63

uncomfortable journey, and maybe more importantly, reduced control of the
vehicle.

Adding some recurrent layers to the system may give it a notion of time and
make it more stable.

64 Chapter 5. Conclusions and future work Grimnes

Bibliography

[1] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In:
CoRR abs/1604.07316 (2016).

[2] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. “An Analysis
of Deep Neural Network Models for Practical Applications”. In: CoRR
abs/1605.07678 (2016).

[3] J. Deng et al. “ImageNet: A Large-Scale Hierarchical Image Database”. In:
CVPR09. 2009.

[4] The Editors of Encyclopædia Britannica. Moore’s law. 2017. url: https:
//www.britannica.com/topic/Moores-law (visited on 05/18/2017).

[5] M. Everingham et al. The PASCAL Visual Object Classes Challenge 2012
(VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html.

[6] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

[7] Ross B. Girshick. “Fast R-CNN”. In: CoRR abs/1504.08083 (2015).
[8] Ross B. Girshick et al. “Rich feature hierarchies for accurate object detection

and semantic segmentation”. In: CoRR abs/1311.2524 (2013).
[9] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier

Neural Networks”. In: Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (AISTATS-11). Ed. by Geoffrey J.
Gordon and David B. Dunson. Vol. 15. Journal of Machine Learning Research
- Workshop and Conference Proceedings, 2011, pp. 315–323.

[10] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
CoRR abs/1512.03385 (2015).

[11] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017).

65

https://www.britannica.com/topic/Moores-law
https://www.britannica.com/topic/Moores-law

66 Bibliography Grimnes

[12] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: CoRR
abs/1502.03167 (2015).

[13] Keras. Keras: Deep Learning library for Theano and TensorFlow. url:
https://keras.io/ (visited on 05/20/2017).

[14] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980 (2014).

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Asso-
ciates, Inc., 2012, pp. 1097–1105.

[16] Min Lin, Qiang Chen, and Shuicheng Yan. “Network In Network”. In: CoRR
abs/1312.4400 (2013).

[17] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325
(2015).

[18] M. Minsky and S. Papert. Perceptrons. Cambridge, MA: MIT Press, 1969.
[19] Alexander Neubeck and Luc Van Gool. “Efficient Non-Maximum Suppres-

sion”. In: Proceedings of the 18th International Conference on Pattern
Recognition - Volume 03. ICPR ’06. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 850–855.

[20] Institut Für Neuroinformatik. German Traffic Sign Recognition Challenge.
2011. url: http://benchmark.ini.rub.de/?section=gtsrb&subsection=
results (visited on 11/15/2016).

[21] NVIDIA. WHAT IS CUDA? url: http://www.nvidia.com/object/
cuda_home_new.html (visited on 05/20/2017).

[22] NVIDIA. What’s the Difference Between a CPU and a GPU? 2009. url:
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-
between-a-cpu-and-a-gpu/ (visited on 05/20/2017).

[23] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, Faster, Stronger”. In:
CoRR abs/1612.08242 (2016).

[24] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”. In: CoRR abs/1506.01497 (2015).

[25] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Chal-
lenge”. In: International Journal of Computer Vision (IJCV) 115.3 (2015),
pp. 211–252.

https://keras.io/
http://benchmark.ini.rub.de/?section=gtsrb&subsection=results
http://benchmark.ini.rub.de/?section=gtsrb&subsection=results
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

Grimnes Bibliography 67

[26] Pierre Sermanet et al. “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks”. In: CoRR abs/1312.6229 (2013).

[27] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: CoRR abs/1409.1556 (2014).

[28] J. Stallkamp et al. “Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition”. In: Neural Networks 0 (2012), pp. -.

[29] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR
abs/1409.4842 (2014).

[30] Christian Szegedy et al. “Intriguing properties of neural networks”. In: CoRR
abs/1312.6199 (2013).

[31] Tensorflow. About TensorFlow. url: https : / / www . tensorflow . org/
(visited on 05/20/2017).

[32] T. Tieleman and G. Hinton. “RMSprop Gradient Optimization”. In: ().
[33] Statens Vegvesen. “Dybdeanalyser av dødsulykker i vegtrafikken 2015”. In:

(2015).
[34] Jason Yosinski et al. “How transferable are features in deep neural networks?”

In: CoRR abs/1411.1792 (2014).

https://www.tensorflow.org/

	Abstract
	Norsk Sammendrag
	Preface
	Introduction
	Research Motivation
	Research Topic and Questions
	Requirements
	Report Outline

	Background
	Hardware
	Parallelized computations in GPU

	Software
	CUDA
	Tensorflow and Keras
	ROS

	Data
	GTSDC
	Udacity

	Deep learning
	Activation
	Normalization
	Optimization

	Deep learning in computer vision
	Object detection

	Steering angle prediction
	Transfer learning

	Methodology
	Experimental setup
	Implementation
	Evaluation

	Feature extractor
	Choosing a pretrained model
	Choosing pretrained layers

	The object detector
	Output structure
	Architecture
	Training

	The steering angle predictor
	Architecture
	Training

	Steering angle predictor with incorporated object detection
	Architecture
	Training

	Summary

	Results and Discussion
	Results
	The object detector
	The steering angle predictor
	The steering angle predictor with incorporated object detection

	Analysis
	The object detector
	The steering angle predictor
	The steering angle predictor with incorporated object detection

	Summary

	Conclusions and future work
	Conclusions
	Future Work
	End-to-end driver
	Converting problems to a decision problems for pre-training
	Adversarial training
	Working with time

	Bibliography

