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Abstract

Credit card banking has for a long time been one of the most profitable types of banking.
The largest cost for credit card companies is customers not paying their debt. Conse-
quently, to accurately model the risk a customer poses can provide large savings for credit
card companies.

This thesis aims to determine if it is possible to identify high risk credit card customers
within the first months of the customer relationship. Using a credit card dataset consisting
of customers’ first 18 months of data from between January 2013 and April 2017, machine
learning methods are used to develop classifiers that try to predict future delinquency.
Where previous work has incorporated many months of data to predict delinquency, we
use only data from the first and second month of the customer relationship to do the same.

Through a number of experiments, several models are developed. In addition to pre-
dicting delinquency, the models are used to analyze behavior driving delinquency and to
model credit risk.

We find that the models can not accurately identify high risk customers based on only a
few months of data. The models developed reveal that the factors driving delinquency are
mostly intuitive. Using the developed models to predict the probability of delinquencies,
we find a strong correlation between the predicted probabilities and realized frequencies
of delinquency.
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Sammendrag

Kredittkortvirksomhet har lenge vært en av de mest profitable typene bankvirksomhet.
Den største kostnaden for kredittkortselskaper er kunder som ikke tilbakebetaler gjelden
sin. Som følge av dette vil det å kunne presist modellere risikoen en kunde utgjør kunne
spare kredittkortselskaper for mye penger.

Denne oppgaven prøver å avgjøre om det er mulig å identifisere kredittkortkunder som
utgjør en høy riskiko i løpet av de første månedene av kundeforholdet. Vi tar i bruk et
kredittkort-datasett bestående av kunders 18 første måneder med data fra januar 2013 til
april 2017, og benytter maskinlæringsmetoder til å prediktere fremtidig mislighold. Der
tidligere arbeider har brukt mange måneder med data til å predikere mislighold, bruker vi
bare den første og andre måneden data fra kundeforholdet til å gjøre det samme.

I løpet av flere eksperimenter utvikler vi atskillige modeller. I tillegg til å predikere
mislighold er modellene brukt til å analysere atferd som medvirker til mislighold og til å
modellere kredittrisiko.

Vi finner ut at vi ikke kan presist identifisere høyrisikokunder basert på bare noen få
måneder med data. De utviklede modellene avslører at faktorene som i hovedsak med-
virker til mislighold er intuitive. Ved å bruke de utviklede modellene til å predikere
sannsynlighet for mislighold finner vi en sterk korrelasjon mellom predikerte sannsyn-
ligheter og reelle hyppigheter av mislighold.
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Chapter 1
Introduction

1.1 The Credit Card Business
In today’s consumer economy, credit cards has become a necessity for many consumers.
This has made credit card banking one of the most profitable types of banking.

Credit card companies primarily earn their money in three ways. They charge mer-
chants around 2% to 3% of every transaction made using their credit card. They charge
customers interest on unpaid balance carried from month to month. And they charge a
variety of fees, including annual and late fees. For these reasons, credit card companies
earn more money the more customers they have, and are always looking for more people
to use their services.

1.2 Risk
With the large potential profit in credit card banking also comes the risk of customers
not paying off their credit card balance. As credit card companies seek to expand, it is
important that they exercise good risk control. Although customers that carry a balance
from month to month expose credit card companies to bigger risk, they can render a larger
potential profit with the included interest and late fees. As such, good risk control can
provide credit card companies with large savings.

An example of risk control for a credit card company would be to cut or limit customers
that are likely to not pay their debt. Doing this they can avoid an increase in the balance
that is likely to not be repaid. At the same time, they run the risk of cutting off or limiting
customers that will eventually repay their balance, thereby potentially foregoing higher
profits in addition to alienating the affected customers. For this to be a viable option, the
predictions need to be reasonably accurate.

Due to the sheer amount of data and number of decision involved in the credit card
business, it is necessary to rely on algorithms for both decisions as the one above as well
as decisions like approving credit card applications.

1



Chapter 1. Introduction

It is common for credit card companies today to use algorithmic models to assess
potential customers creditworthiness to determine if their credit card application should be
approved or not. These models can base their decisions on data from the application form,
data on the customer the credit card company is already in possession of, data available
from credit bureaus, data from the customer’s tax records or any combination of these.

1.3 Motivation
SpareBank 1 Kredittkort utilizes a static model like this to determine if an applicant should
get a credit card or not. However, a lot of customers that pose a high risk are still approved
as evidenced by the many accounts that go to collections every month.

One of SpareBank 1 Kredittkort’s risk management strategies is to initially give cus-
tomers relatively low credit limits and rather increase the credit limits for customers that
show the need and ability to handle a larger credit limit. As such, a dynamic behavioral
credit risk model that can at an early stage identify customers that pose a higher risk of fu-
ture delinquency, could be a valuable tool for SpareBank 1 to reduce losses. It is in neither
the customers’ or SpareBank 1’s interest to have customers with a higher credit limit than
they can handle.

1.4 Approach
This thesis will address this problem by building predictive models to classify accounts as
either high risk or not. The models will be built using several different machine learning
algorithms trained on the historical credit card data from SpareBank 1’s customers.

More specifically, models are trained on only the first months of customers’ data trying
to predict delinquency within a specified number of months after.

Machine learning is a sub-field of computer science that has the ability to find patterns,
generalize and learn without being explicitly programmed. Machine learning techniques
are therefore highly suitable for a problem such as this, and are already often used for
building static credit scoring models (Li and Zhong, 2012).

1.5 Research Questions
To further formalize the goal of this thesis, three research questions are formed. The ex-
periments and results presented in this thesis are designed to help answer these questions.

• At what accuracy can a high risk credit card customer be identified within the first
months of the customer relationship?

• What early behavior best predicts a high risk customer?

• Can a predictive model be used as a dynamic behavioral model to make decisions
regarding existing customers?

2



1.6 Thesis Structure

1.6 Thesis Structure
This thesis is divided into a total of seven chapters.

• 1 Introduction introduces the problem tackled in this thesis, as well as the suggested
approach to solving it.

• 2 Literature Review is a literature review of highly relevant papers to the problem
in this thesis.

• 3 Dataset describes the dataset used.

• 4 Basic Theory goes over the theory behind methods used in this thesis.

• 5 Implementation describes how the dataset was prepared and how the machine
learning models were implemented.

• 6 Experiments presents the experiments and results.

• 7 Conclusion discusses the findings from chapter 6 and tries to answer the research
questions.

3
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Chapter 2
Literature Review

This chapter serves to highlight and review work relevant to this paper. In it we look at two
papers that are highly relevant to this thesis. Both use similar data and methods to predict
delinquency among credit card customers. As a result, they both serve as good baseline
approaches for this thesis.

This literature review is constrained to only two papers as there are few publications
in this domain. There are much literature on credit and risk scoring models, but very few
use machine learning methods or use credit card data. One explanation may be the lack of
credit card datasets, as such data can’t be published given its sensitive nature.

2.1 Risk and Risk Management in the Credit Card Indus-
try

In 2015, Butaru et al. (2016) applied machine-learning methods to credit-card data from
six major commercial U.S. banks, combined with credit-bureau and macroeconomic data
to predict delinquency. The paper comes from the largest economics research organization
in the United States, the National Bureau of Economic Research (NBER), an American,
private nonprofit research organization. After the financial crisis of 2007-2009, where the
lack of risk management from financial institutions was a big factor in the economic down-
turn, it became apparent that risk management was important. Still, years later, the risk
management policies of these financial institutions remains mostly unknown. The paper
tries to take a closer look at the practice of risk management at these institutions using
credit card data provided them and machine learning techniques. The paper argues that
the consumer-credit market is central to understanding risk management at large financial
institutions as their credit risk management is a reflection of their risk management as a
whole.

5



Chapter 2. Literature Review

2.1.1 Dataset

The dataset Butaru et al. (2016) are using is aggregated from account-level data from six
major U.S financial institutions and credit-bureau data from a large U.S credit bureau. In
total, the dataset is comprised of over 500 million records over a period of six years. The
account-level data consists of 106 raw data items, reported monthly. Examples of such
items are month-ending balance, credit limit, payment amount, account activity, delin-
quency, borrower income etc. The credit-bureau data consist of 80 raw data items, reported
quarterly. Examples here include items such as total credit limit, total outstanding balance
on all cards, number of delinquent accounts etc. In total, the dataset consists of 186 raw
items for each individual credit-card account. Because the account-level data is reported
monthly while the credit-bureau data is reported quarterly, when merging the two different
datasets, the credit-bureau data is repeated three times in the merged dataset.

In addition, Butaru et al. (2016) have augmented the credit card data with macroeco-
nomic variables on both county and state level using the accounts address data (ZIP codes).
These variables include statistics such as unemployment rate, average hourly wage, aver-
age weekly hours worked etc.

2.1.2 Attribute Selection

In the final models, a total of 87 attributes are used from the account-level, credit-bureau,
and macroeconomic data. As a baseline, Butaru et al. (2016) try to replicate as many
variables as possible from Glennon et al. (2008), a 2007 paper on credit scoring models,
trusting Glennon et al. (2008)’s industry experience and institutional knowledge. The
macroeconomic variables are then merged using the ZIP-code associated with the account.

2.1.3 Dependent Variable

Butaru et al. (2016) use the delinquency status of the account as the dependent variable.
They define delinquency as an account equal or greater than 90 days past due. The stan-
dard accounting rule in banks is to charge off an account 180 days or more past due, but
accounts are rarely recovered after being 90 days past due, so 90 days past due is often
used instead.

2.1.4 Models

Butaru et al. (2016) implemented and considered three different credit-card delinquency
models, - logic regression, decision tree models, and random-forest models. The open-
source software package Weka is used to implement the machine learning models. For
the decision three models, the C4.5 decision tree learner algorithm is used. The logis-
tic regression models use a quadratic penalty function. Random forests are an ensemble
learning method that constructs multiple decisions trees and outputs the class that is the
mode or mean of the classes the multiple decision trees output individually. The paper
used an ensemble of 20 trees in their implementation.

6
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2.1.5 Model Timing

The dataset contains data from January 2009 to December 2013. A separate model is
trained for every six months in that period. For every model, a 2-year rolling window is
used to train and test each model. Data from the most recent quarter is combined with the
data from the prior 12 months to make training samples. The training samples go that far
back in time because of the lag structure of some of the variables, for example some of the
macroeconomic variables only have yearly values. The forecast horizon, how far ahead
in time they look to see if an account become 90+ days delinquent, is either 6, 9 or 12
months. As a result, the rolling windows can incorporate up to 24 months of information.
To better understand the structure of these rolling windows, see figure 2.1.

Figure 2.1: A visual representation of a rolling window with a forecast horizon of 6 months. The
figure is reproduced from a presentation on the paper.

2.1.6 Measuring Performance

To measure the performance of the models, precision and recall are calculated to gauge
the number of false positives and false negatives, respectively. The precision and recall are
also combined to calculate the F-measure and kappa statistic, to further help evaluate the
performance of the models. The kappa statistic is an interesting metric that compares the
accuracy of the model with the expected accuracy of a guess, i.e. random chance.

A cost sensitive measure of performance is also introduced, by assigning costs to false
negatives and false positives, and approximating the potential savings if the model was
implemented. The savings can be approximated by looking at the run up in credit from
when the credit line of the bad account should have been cut, to when the account goes
into default. For the case of classifying good accounts as bad accounts, false positives, the
authors conservatively make the assumption that the customers will pay off their remain-
ing account balance and close their accounts, losing potential future revenue from those
customers.
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2.1.7 Results
The institutions included in the dataset has annual delinquency rates from 1.36% to 4.36%,
which suggest the institutions have different risk management strategies and models are
likely to perform differently between institutions. Individual models are trained and eval-
uated for each institution and forecast horizon. For the two quarter horizon forecast, the
average F-Measure per bank ranges from 64% to 82%. For the three quarter forecast from
47% to 63%, and for the four quarter forecast from 39% to 52%.

Using the cost sensitive measure of performance, the value added for each model, in-
stitution and horizon has been calculated, and is represented as the percentage cost savings
of each model versus passive risk management. For the two quarter horizon, the average
potential percentage cost savings for each institution ranges from 47% to 75%. For the
three quarter forecast between 10% and 46%, and for the four quarter forecast between
-61% and 32%. For the four quarter horizon there is a less data than the shorter horizons,
as well as a lot of uncertainty because of the long horizon.

The random forest and decision tree models perform about the same, both consistently
outperforming the logistic regression models.

2.1.8 Attribute Analysis
To get an idea of which attributes are the more important, Butaru et al. (2016) performed
attribute analysis using the learned C4.5 decision trees. From each attribute in a decision
tree, three metrics were constructed:

• Log of the number of instances classified. If an attribute I used multiple times, it
can be said to be more important.

• The minimum leaf number/highest node. The earlier/higher (the lower leaf number)
an attribute is used in a decision tree, the more important it is, usually.

• If the attribute was selected in the model or not.

These metrics were combined to a single ranking measure. This score was then cal-
culated for each combination of bank and forecast. Several interesting observations were
made. 78 out of the total 87 attributes were used at least one time in a model. The most im-
portant, top ranking, attributes were intuitive variables like days past due, behavioral score,
credit score etc., i.e. attributes one would think would be the most important. There wasn’t
much variation across the different time horizons in the rankings of the attributes, though
there was a notable variation in attribute rankings across different institutions, likely be-
cause of different risk management strategies.

Macroeconomic attributes were shown to not be the most important, but still relatively
high ranking, meaning they still can have significant impact on credit risk. The contribu-
tion of the macroeconomic attributes varied substantially across banks.

2.1.9 Closing Notes
Butaru et al. (2016) concludes that there is a substantial amount of money to be potentially
saved by better risk management by the credit card issuers. There is also notable hetero-
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geneity between banks in terms of risk factors, suggesting that models have to be fitted to
the banks. The paper finally claims to provide an illustration of the potential benefits of
big data, machine learning techniques and predictive analysis can bring to both consumers
and banks.

2.1.10 Relevance
This paper deals with the problem of identifying high risk accounts likely to become delin-
quent, a problem similar to that in this thesis, albeit with the purpose of looking at the risk
management strategies of different financial institutions. The dataset used share similari-
ties to the one studied in this thesis. It provides guidelines for attribute selection, length of
training window and length of forecast horizon. The paper uses the same data and methods
to predict delinquency for six different banks with different results and varying degree of
success for each bank. This suggest that the degree of success, using these methods, may
be dependent on the existing risk management practices at the bank. Still, it shows that
machine learning is viable approach to solving problems of this nature.

2.2 Consumer Credit Risk Models via Machine-Learning
Algorithms

In 2010 Khandani et al. (2010) constructed non-parametric, nonlinear forecasting models
for credit risk using machine learning techniques on data from a major commercial U.S
bank.

Due to the large number of decisions involved in the consumer lending business, finan-
cial institutions rely heavily on algorithms to make these decisions, as opposed to human
discretion. Models scoring customers on their creditworthiness are created using private
information about the borrowers. While these models perform reasonably well, the mea-
sures they produce does not change much over time and the measures are therefore rela-
tively insensitive to market condition changes. Consumer credit can deteriorate quickly, so
these measures should also be able to change quickly in order to catch consumers showing
signs of high-risk behavior.

2.2.1 Dataset
Khandani et al. (2010) use a dataset consisting of transaction-level, account-level and
credit-bureau level for costumers of a single, unidentified U.S bank. The data spans from
January 2005 to April 2009. The dataset is processed and time-aggregated to form at-
tributes on a monthly basis.

The transaction data gives, for each transaction, information about the amount, direc-
tion (inflow or outflow), channel and category. Channel is the medium through which
the transaction took place. Examples are automated teller machine (ATM), online bill
payment, credit card wire transfer etc. Category refers to what the money was spent on.
Examples here are restaurants, bars, grocery etc. The raw dataset had 138 different cate-
gories. The authors then further selected a subset of the 138 categories that should broadly
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represent the important aspects of the consumers’ expenditures. Several categories were
not used because of legal restrictions.

The credit bureau data provides credit score, former bankruptcies (if there are any)
and “trade lines”. Credit score is a number that represents a consumer’s creditworthi-
ness, usually used by lenders to evaluate the potential risk posed by lending to consumers.
Credit score is throughout the paper used as a benchmark against the performance of the
machine-learning models proposed in the paper. Trade lines refers to all credit and loan
facilities the consumer has across financial institutions. For example, if the consumer has
a mortgage with another bank, the trade lines data would contain the mortgage balance,
payment history, payment status and other relevant information. Also the type of trade
line. Examples here are mortgage, home loan, auto loan, credit card etc.

Finally, the transaction and credit-bureau data are matched with information about
savings and checking account balances the customer has with the bank.

The various data described above is aggravated and/or collected on a monthly basis
and used as input data for the models. The dependent variable is a binary value indicating
whether the account has become 90 or more days delinquent within the next 3, 6, or 12
months.

2.2.2 Models and Model Timing
The data is used to train a decision tree model, using the CART-algorithm. The CART
decision tree is used partly because it produces interpretable decision rules laid out as
a tree. In the banking industry, this kind of transparency is appreciated as “black-box”
models are viewed with skepticism and suspicion.

Khandani et al. (2010) trained and tested models in 10 consecutive periods spanning
from January 2008 to April 2009. Each model was trained using input data from the first
month in the period, and the delinquency data from the immediately following 3-month
window. The model was then applied to the input data for the month immediately follow-
ing the 3-month training window to produce forecasts of delinquencies for the following
3-month window. The forecasts were then compared against the data from the 3-month
window to evaluate the model. For example, the first model was trained using input data
from January 2008, and the delinquency data in the following 3-month window. Using
input data from April 2008, the model produced the forecast for the following 3 months,
from May 2008 to July 2008. The next period tested was then February 2008 to August
2008. This rolling-window approach was done 10 times. For the input data to model,
the most recent data for that month was used for all the data except the transaction data.
For the transaction data, the average values from the 6 months prior, or as many months
available, were used as input.

By only training the model on data that is available at the time of forecast, and evalu-
ating on a later time-period that is out of sample, the look-ahead-bias is minimized.

2.2.3 Results
The delinquency rate was between 2.0% to 2.5% for every period. The average predicted
probability of an account going 90+ days delinquent for each period was between 59.8%
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and 63.6% among customers actually going 90+ days delinquent, and between 0.6% and
1.0% among customers not going 90+ days delinquent.

The calibrated models score accounts on the probability of going 90+ days delinquent.
This score has multiple uses. The most obvious being credit-line risk management. Credit
lines may be increased and interest rates may be reduced for customers with a low delin-
quency probability. And the opposite may be true for customers with a high delinquency
probability.

To classify a customer as either “good” (low-risk) or “bad” (high-risk), Khandani et al.
(2010) convert a score to a binary decision by comparing it to a threshold. For example,
customers scoring under 10% are classified as good, while customers scoring over 10%
are classified as bad. Where to place this threshold involves a trade-off. Setting a low
threshold will most likely capture most of the high-risk customers, but will also classify a
lot of actual low-risk customers as high-risk. The other way around, using a high threshold,
may miss many high-risk customers. Balancing false positives and false negatives (Type-I
and Type-II errors) is a common problem in most, if not all, classification problems. For
this problem, the authors suggest balancing this trade-off based on a cost/benefit analysis
of false negatives vs. false positives, selecting a threshold that optimizes the benefit and
minimizes the cost. Doing this, they get prediction accuracy of around 0.99 for all periods.
Of course, since the data is heavily skewed this number does not mean much. Over the
different periods the precision ranges from 0.734 to 0.85, the recall ranges from 0.65 to
0.96, the F-measure ranges from 0.73 to 0.84, and the Kappa statistic ranges from 0.73 to
0.83. These numbers suggest that their model has strong predictive power.

2.2.4 ”Value Added”
Using a measure for “value added”, practically measuring the potential money saved,
Khandani et al. (2010) estimate the potential net saving to be between 6% and 25% of
total losses. This measure is estimated by summing the cost savings from credit reduc-
tions of customers likely to become 90+ days delinquent and the lost revenue from false
positives, customers that are misclassified as high-risk, but do not become 90+ days delin-
quent in reality. These potential cost savings and lost revenues are hard to quantify, so the
estimate is made under a conservative set of assumptions.

Khandani et al. (2010) also argue that the forecasts for the individual accounts can be
aggregated to generate macroeconomic forecasts of the credit risk in the lending business.
Further it can be used as an indicator of systemic risk for consumer lending. For this
purpose, it may be more appropriate to use a longer forecast horizon. Therefore, they
train a new model over 6 and 12-month forecast horizons. They find that the predicted
delinquencies are highly correlated with realized delinquencies.

2.2.5 Relevance
Khandani et al. (2010) tackle the problem of predicting delinquencies among credit-card-
holders, customers that are likely to not pay their credit debt, to develop better consumer
credit risk models. This is similar to the problem at hand in this thesis. Like the dataset
from Butaru et al. (2016)’ paper, Khandani et al. (2010)’s dataset combine account and
credit bureau level data, but has the difference that it also includes transaction data. This
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is of special interest as this thesis also uses a dataset that includes transaction data. Khan-
dani et al. (2010) therefore provide a guideline for engineering relevant features from the
transaction data.

Machine learning methods, specifically CART decision trees, are used and further
shows machine learning as a viable approach.

Khandani et al. (2010) chose to use a short window for training, which is relevant
and interesting to this thesis as the problem is early detection of high risk customers.
Obviously a shorter training window is preferred, if viable, to identify high risk customers
at the earliest.
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Chapter 3
Dataset

This chapter serves to describe the dataset used in this thesis. First, the reader is intro-
duced to the different kinds of data that is combined to form the complete dataset. The
definition of high risk behavior in the data is presented, explaining the dependent variable
used further in the thesis. Observations for high risk customers in the dataset are pointed
out. Problems related to the dataset will then be discussed. The chapter is completed by
comparing the initial credit score of the customers with the realized delinquencies in the
dataset.

3.1 The Data
This thesis is written in collaboration with SpareBank 1, a large Norwegian bank, which
has provided the dataset used in this thesis. The dataset consists of credit card data from
over 162,000 unique customers over a period of over 3 years. Over 11 million records in
total. The dataset combines account-level data, transaction-level data, and tax assessment
data for the first 18 months of each account. The data spans from November 2013 to April
2017.

All individual identifying information, such as names, addresses and social security
numbers, is stripped from dataset given the sensitive nature of credit card data.

3.1.1 Account Data
The main dataset consists of account-level observations for each individual credit card
account, and is reported monthly from November 2013. Each monthly report is made at
the end of each month, or for some of the variables, for the invoice that is due in the current
month. These observations include aggregated data for the month, flags for events during
the month, static data for the month, and static data for the entire 18 months.

Aggregated data includes observations such as closing balance, payment amounts, total
cash withdrawals amount, number of purchases, maximum and minimum balance during
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the month, and similar observations. Event flags include observations such as if the ac-
count becomes overdue during the month, if the account is over the credit limit during the
month, if there is a change in the credit limit during the month, and similar account status
changes. Static data for the month is data such as opening balance, credit limit, and months
since the account was created. Lastly, the static account data includes data such as the date
the account was created, date of first transaction, and credit score at creation. In addition,
the account-level dataset also includes the purchases and cash withdrawal amount for the
first 14 days of the account.

The raw account-level dataset has approximately 2.2 million records, with 99 features
each, across 162,000 individual accounts. This makes the account-level dataset the most
important of the three datasets that are combined, as it contains the most information, both
in number of accounts and features. Most importantly, the account-level dataset contains
information about the status of the account, i.e if the account is overdue payment, and if it
is, how much it is overdue. In section 3.2 we will use this information to define high risk
behavior for later use in supervised machine learning methods.

3.1.2 Transaction Data
The transaction-level dataset consists of almost 9 million transactions from over 123,000
individual customers. The transaction dates range from January 2014 to April 2017. The
discrepancy between the number of accounts in the account-level dataset and transaction-
level dataset is explained by inactive accounts, i.e. credit card customers not using their
credit card, therefore not creating any transactions for their account.

Out of the 33 features each transaction have, only a few of the features are interesting.
Besides the account identifier, the interesting features are transaction date, transaction
amount, transaction category. Each transaction has attached a category meant to broadly
capture the nature of the transaction. In total, there are 18 different categories. Examples
include Retail Stores, Service Providers, and Transportation.

It should be noted that some of the categories are quite a lot broader than some of the
other categories, making the transactions unevenly distributed across the different cate-
gories (see figure 3.1).

For example, the two most frequent categories for purchases are Retail Stores and Mis-
cellaneous Stores, both of which are very broad categories, while less frequent categories
such as Airlines and Mail Order/Telephone Order Providers are much narrower categories.
This is further discussed in section 3.3.2.

The number of transactions are varying for each customer every month. This makes
the transaction data infeasible to use as is, as input for the machine learning models used
in this thesis (see section 4.1). The machine learning models need the same number of
inputs for each sample, meaning the transactions for each account need to be aggregated
over a given time period to make samples of consistent size.

To form consistent samples from the transaction data, we use the same approach as
Khandani et al. (2010) in section 2.2.1. For each category, transactions are summed and
counted for every month to form a summary of activity for each month. The idea is that
the categories customers spend money on can be used as a pattern to identify high risk
customers.
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Figure 3.1: Frequency of transactions for every category. Some category names have been shortened
to fit the figure.

3.1.3 Tax Data
The account-level and transaction-level datasets are complemented with tax assessment
data for over 153,000 accounts. The discrepancy in number of accounts between the
account-level dataset and the tax assessment dataset is because accounts opened with the
assistance of a bank adviser, as opposed to through a sales channel, does not necessarily
require the customer’s tax assessment.

The tax dataset has 15 features per account. Examples are features such as net income,
mortgage amount, other debt amount, and employment type. In section 2.1.1, we saw
Butaru et al. (2016) augment their dataset with macroeconomic data to get a better under-
standing of each customer’s financial situation. Similarly, the tax assessment data provide
us with the same information, but is arguably better for that purpose, as it contains actual
individual financial information for each customer.

3.2 Defining High Risk Behavior
To use the dataset to identify high risk credit card customers, high risk behavior has to first
be defined in the dataset. A more precise description of high risk behavior is unwanted
behavior, identifying credit card customers that, in hindsight, shouldn’t have been granted
a credit card in the first place. Generally speaking, from the credit card issuers point
of view, unwanted behavior among credit card customers will be to not pay credit card
bills on time, i.e the account is to some degree past due. However, even though overdue
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accounts present a higher risk, they may still be profitable. The increased risk is offset by
the potential higher return when the accounts eventually pay off their debts because of the
added interest and late fees. This risk-return trade-off makes it difficult to set a definite
cut-off point for when a customer goes from ”good” to ”bad”, i.e when the risk outweighs
the potential return.

3.2.1 Dependent variable
In this thesis, two different definitions of unwanted behavior, ”bad” customers, are used.
One loose and one strict. The loose definition is a customer that has been sent to collection
inside a given time frame. When an account is sent to collection, it means that an debt
collection agency has been given the responsibility to collect the debt on behalf of the
bank. The strict definition is a customer that has been in collection for 3 consecutive
months. At that point the account is rarely recoverable, and the bank is very likely to never
see the money owed them. This is called to default, and the strict definition will be referred
to as this hereafter. This means the strict definition is contained in the loose definition, as
an account can’t default without having been sent to collection first. These two definitions
are used as dependent variables in the input for the machine learning models presented in
section 4.1.

In section 2.1.3 and 2.2.1, both Butaru et al. (2016) and Khandani et al. (2010) used
90 days or more past due as the cut-off point for when an account was considered ”bad”,
or unrecoverable. The definitions used in this paper are to some extent similar to those
definitions. When an account is 60 days past due, the customer will receive a debt collec-
tion notice before the account is sent to collection when it becomes 66 days past due. That
means, using the strict definition, an account becomes bad when it’s around 120 days or
more past due.

It should be noted that accounts will not necessarily be labeled ”bad” after the same
number of days. This is because customers themselves can choose their monthly credit
card bill due date, and the account-level dataset only provides information about the status
of the account at the end of the month, and if the account has been sent to collection during
the month.

3.2.2 High risk behavior observations
The problem this thesis explores is about identifying high risk customers early. One ques-
tion is, however, how early is necessary? Figure 3.2 shows the month the bad customers
first went to collection/defaulted. We see that a large number of accounts go directly
or nearly directly to collection, and of them almost half go on to default. The need is
definitively to identify these accounts as early as possible, optimally already after the first
month.

Another interesting observation about the bad customers, is how quick they are to take
use of their new credit card. Figure 3.3 shows how many days from the account is created
to first use for all customers. Figure 3.4 compares the relative frequency of number of days
from an account was created to first used for normal, collection and default accounts. The
plot clearly shows how bad customers are much quicker to make use of their new credit
cards compared to the normal customers.
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Figure 3.2: Plot showing the number of account to collection and default against the number of
months since the account was created. The orange line is accounts that went to collection, while the
blue line is accounts that defaulted.

Figure 3.3: Histogram showing number of days from account first created to first use.
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Figure 3.4: Plot comparing the normalized frequency of number of days from the account is created
to it is first used for normal, collection and default accounts.

3.3 Challenges
This section describes some of the challenges involved with working with this dataset.

3.3.1 Class imbalance
In the entire dataset of 162,000 unique accounts over their first 18 months, 3067 unique
accounts have defaulted, and 8360 unique accounts have been sent to collection at least
once. That is 1.89 % and 5.15 %, respectively. See table 3.1 for a quick overview. The
dataset is heavily skewed, imbalanced. The number of ”good” accounts vastly outnumber
the ”bad” accounts. Class imbalance is a major problem for machine learning methods for
classification (He and Garcia, 2009; Longadge and Dongre, 2013). The problem is that
the classifiers learn that outputting the majority class result in low loss and high accuracy,
meaning they do not learn to recognize the minority class. This is a reoccurring problem
throughout this thesis. How to address this issue is further explored in section 4.3.

3.3.2 Transaction category imbalance
As pointed out in section 3.1.2, and seen in figure 3.1, the distribution of transactions be-
tween the 19 different categories is skewed. The transaction-level dataset is included and
aggregated the way it is to extract a spending pattern for each customer. The problem
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Frequency Count Frequency %

Default 3,067 1.89

Collection 8,360 5.15

Normal 153,914 94.85

Out of a total of 162,274 accounts

Table 3.1: Table showing the frequency of normal, collection and default accounts.

is that the majority of purchase transactions fall within just three categories. Addition-
ally, the account-level dataset already contains total amount and count for purchases, cash
withdrawals, fund transfers and payments for each month. This means there is limited
information to be gained from the transaction-level dataset. As a comparison, Khandani
et al. (2010)’s raw transaction data had 138 different categories, where a subset of 40
categories was selected for the final dataset.

3.4 Credit Score
The account-level dataset includes the initial credit score for each customer. The credit
score is a number between 1 and 1000 denoting the probability of the account going to
collection, where a higher number means less likely to go to collection. For ordinary credit
card applications, SpareBank 1 uses a cut off point for credit score of 390. That means
applicants with a credit score below 390 are rejected. However, there are applications
with a credit score below 390 that are approved as well, either because the application was
manually approved by a bank adviser, the applicant was pre-approved, or the applicant
recently was granted a mortgage.

Figure 3.5 and 3.6 shows the distribution of credit scores for the three different classes
of accounts: collection accounts, defaulted accounts and normal accounts. Although the
set of defaulted accounts otherwise is a subset of the collection accounts, for these two
figures the defaulted accounts are not contained in the collection class, i.e they are distinct
sets. This is to better highlight any differences between the two classes.

The figures show that the credit score distribution difference between collection ac-
counts and defaulted accounts is small. However, there is a significant difference between
collection and defaulted accounts, and the normal accounts. The credit score median is
about 100 points larger, and the distribution is shifted much more heavily to the right.

Figure 3.7 shows the relationship between credit score and the realized frequency of
collection and default. A linear regression model is fitted to the data better visualize the
relationship. The plot indicates that the higher credit score, the lower the probability of
collection and/or default. We see that the correlation between the credit score and realized
collection/default frequency is stronger for collection suggesting there might be differ-
ences in factors that drive defaults and collections.
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Figure 3.5: Credit score distribution comparison using box plots and a overlaying distribution plot
for the three classes. The distribution plot is made using kernel density estimation.

Figure 3.6: Credit score distribution comparison between the three classes. For each class the credit
score histogram is combined with the estimated distribution.

20



3.4 Credit Score

Figure 3.7: Linear approximation for the relationship between credit score and realized collections
and defaults. The translucent band around each regression line is the 95% confidence interval for the
estimation of the regression.
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Chapter 4
Background Theory

This chapter provides the reader with an introduction to machine learning concepts, ma-
chine learning algorithms, evaluation metrics and data processing methods used through-
out this thesis. It does not go in depth, but serves to give the reader the insight required to
understand concepts presented in this thesis.

4.1 Machine Learning

A machine learning algorithm is a type of artificial intelligence algorithm that is able
to learn from data without being explicitly programmed. Machine learning algorithms
automatically detect patterns in data, and then use the uncovered patterns to predict future
data (Murphy, 2012).

4.1.1 Supervised learning

Machine learning is generally divided into two main types, supervised and unsupervised.
The supervised approach aim to map inputs to outputs given a labeled set of input-output
pairs. The input consist of a set of features or attributes, while the output is a desired
output value. Optimally, the input and output data forms a pattern that can be learned and
determine class labels from new unseen instances. To do so it has to be able to generalize,

The output value can in general be anything, but is usually either a categorical variable
from a finite set, or a real-valued scalar. If it is an categorical variable the problem is called
classification. In the real-valued scalar case, the problem is called regression.

It is called supervised learning because models are trained under supervision. We
already know the correct answers, the model iteratively makes predictions and is corrected
by making updates.
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4.1.2 Time series forecasting

Forecasting is about predicting the future as accurately as possible given past and present
data (Hyndman and Athanasopoulos, 2013). A time series is sequence of observable data
points observed at equal time intervals (Bontempi et al., 2013). Time series forecasting is
simply forecasting using time series data.

Time series forecasting can be framed as a supervised learning problem by using the
n previous time steps as input variables, and the next time step as the target output value.
This is called one-step forecasting as it only tries to predict the next time step. When
using machine learning methods to perform time series forecasting, some considerations
have be done. For example, the order of the input variables can not be randomized and it
is uncertain how many previous time steps the next time step is dependent on. However,
machine learning has shown to be viable approach to time series forecasting (Bontempi
et al., 2013; Ahmed et al., 2010).

4.1.3 Machine learning algorithms

Logistic regression

Logistic regression is a type of binary classifier that estimates the probability of a binary
dependent variable given a set of explanatory values, i.e the probability a given input be-
longs to a certain class (Murphy, 2012; McCullagh and Nelder, 1989). Logistic regression
uses the assumption that the input space can be separated by a linear boundary. As with
linear regression, logistic regression computes a linear combination of the inputs before
using the logistic function to produce a binary response. This makes logistic regression
fast, but it assumes the input data is linearly separable. It is often used as a baseline to
machine learning models.

Decision trees

A decision tree is a structure similar to flowcharts where each node represents a test on a
feature, each branch represents the outcome of a test and each leaf represents a class label.
See figure 4.1 for a visual example.

Creating these decision trees is called decision tree learning and is robust method for
approximating discrete-valued functions (Mitchell, 1997). Although there are several de-
cision tree algorithms, the general approach is to evaluate each instance attribute using a
statistical test to determine how well it separates the training examples. The best attribute
is selected as a node, and a new descendant of the node is created for every possible value
of this attribute. The entire process is repeated for each new descendant using the subset
of training samples associated with that descendant.

The two most common metrics to determine how well a attribute separates the training
examples is Gini impurity and information gain. Gini impurity measures the probability
of a random sample being classified correctly if the label is picked randomly according
to the distribution in a branch. Information gain, or entropy, measures the impurity of an
arbitrary collection of examples.
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Figure 4.1: A simple example of a decision tree to decide if customer should get a credit card or
not.

Ensemble methods

While ordinary machine learning approaches try to train one learner from training data, en-
semble methods train multiple learners to solve the same problem and try to combine them
(Zhou, 2012). The idea is that multiple learners combine their strengths and weaknesses
to yield better predictive power.

An ensemble is made up of multiple base learners. Base learners are generated from
training data using base learning methods such as decision trees, artificial neural networks
or similar. Each learner is trained separately and predictions are combined most often
by majority vote for classification and averaging for regression. Most ensemble methods
use the same base learning methods for all its base learners, producing what is called a
homogeneous ensemble. Base learners are often called weak learners because they indi-
vidually perform just slightly better than random guessing and do not generalize well. As
a contrast, the whole ensemble tend to generalize very well. An illustration of the general
ensemble architecture can be seen in figure 4.2.

A popular ensemble type is bootstrap aggregating, or bagging. Each learner in the
ensemble is trained on a subset of the training data obtained by sampling the training set
with replacements, also called bootstrap sampling. This is done in order to promote learner
variance. Bagging has a big variance reduction effect.

Another popular ensemble type is boosting. Boosting works by sequentially training
a set of learners to focus on correcting the mistakes the previous learners made. Boosting
primarily reduces bias, but does also reduce variance.
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Figure 4.2: An example of a common ensemble architecture.

Random forests

Random forests is an ensemble method for classification and regression. It creates multiple
decision trees and outputs the majority vote for classification, and the average for regres-
sion. It is an extension of bagging, where the main difference is that it uses randomized
feature selection (Zhou, 2012). That is selecting a random subset of the features at each
candidate split during the learning phase. The reason for this is that if one or few features
are strong predictors for the dependent variable, these features will be selected for many
of the trees causing the trees to become correlated.

Strengths of random forests are that it can deal with missing and imbalanced data,
while still being relatively fast. As an bagging approach, it minimizes variance. It is a
robust method that is not prone to overfitting.

Boosting

As mentioned in section 4.1.3, boosting is a powerful ensemble method. Two popular
boosting algorithms are AdaBoost and Gradient Boosting. Both train learners to em-
phasize samples the previous learners misclassified, but how they do it separates them.
AdaBoost emphasize misclassified training samples by, for each iteration in the training
process, re-weighting them to equal the current error for that sample (Zhou, 2012). Gra-
dient Boosting accounts for misclassified samples by fitting a new learner to the ensemble
residual, that is the difference between the target outputs and the current predictions of the
ensemble (Friedman, 2000).

Boosting approaches try to maximize the predictive power of the ensemble, i.e min-
imize the bias. The advantage of using a boosting approach is generally high predictive
power, but it comes with the cost of being slow to train as each new learner is trained
sequentially.
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4.2 Preprocessing Data for Machine Learning Applica-
tions

Real-world data is generally noisy, incomplete and inconsistent. Many factors affect the
success of using machine learning methods on a given problem, but the quality of the data
may be the most important one (Kotsiantis and et al., 2006). If the data is redundant, noisy,
irrelevant or unreliable, a machine learning model may not find patters during the training
phase. Data preprocessing attempts to minimize this problem. Data preprocessing includes
data cleaning, transformation, normalization, feature selection and more. The following
subsections will discuss a few different concepts in data preprocessing.

4.2.1 Missing values
Missing values are not uncommon in datasets. A missing value is simply a value for a
specific sample and feature that is missing, either because it was not recorded or was lost
at one stage. The problem with missing values is that improperly handling them may
introduce bias in the dataset (Garcı́a et al., 2015).

Some common approaches for dealing with missing features are (Kotsiantis and et al.,
2006):

• Discarding samples containing missing values in one or more features. This ap-
proach is, however, only practical if there are few samples with missing values.
Does not introduce bias into the dataset.

• For categorical features, treat missing values as a category of its own.

• Select the most common feature value.

• Select the most common feature value for the class the sample belongs to.

• Substitute the value with the mean of the feature values. Alternative with the mean
of the feature values for the class the sample belongs to. Median can also be used.

• Substitute the missing value with the value of the nearest neighbor.

• Develop a regression or classification model to predict the value of missing values
using the complete case data of a given feature as training data, and the feature with
missing values as the dependent variable.

4.2.2 Feature selection
Feature selection is the task of choosing an optimal subset of features. This means identi-
fying the important features while discarding redundant or irrelevant features (Garcı́a et al.,
2015). Reasons for feature selection are many. Improving model performance, reducing
storage requirements, reducing computational cost, reducing complexity etc.

Ideally, we would like to test each possible subset of features finding the one that
minimizes the error rate, but that is computationally intractable. Instead, there are three
main categories of feature selection algorithms: filter methods, wrapper methods, and
embedded methods.
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Filter methods

Filter methods, as the name suggest, filter out undesirable features before learning. They
use heuristics based on the characteristics of the data to select the best feature subsets. Ex-
amples of measures used include Pearson correlation, mutual information and significance
tests. Due to the relative simplicity of these methods, filter methods are able to handle big
data and have low time complexity.

Wrapper methods

Wrapper methods make use of a predictive model to evaluate subsets of features. Subsets
of features are used to train a model, and the model is then tested on a validation set. The
subset of features with the highest predictive power is selected.

Wrapper methods are computationally expensive, but they usually select the best fea-
ture subset for a particular model.

Embedded methods

Embedded methods integrate feature selection as a part of the training process of a model.
Similarly to the wrapper approach, embedded methods specifically select features for a
certain machine learning model.

4.2.3 Normalization
Within a feature, there is often a large difference between the minimum and maximum
value. Normalization is a feature transformation that scales down the values within a
feature to a narrower range of values (Kotsiantis and et al., 2006). This is an important
process for many machine learning methods such as neural networks and kNNs.

The two most common normalization methods are min-max normalization and z-score
normalization.

• Min-max normalization: Scales all the numerical values of a numerical feature to a
specified range.

X

norm

=
X �X

min

X

max

�X

min

(4.1)

This type of normalization is common for learners based on distance (Garcı́a et al.,
2015). Min-max normalization will in those cases stop features with large differ-
ences between their max and min value dominate the distance calculations.

• Z-score normalization (or standardization): Rescales the features so that they have
the properties of a standard normal distribution with mean(average) µ = 0 and
standard deviation from the mean � = 1. Z-scores of the samples are calculated as
follows:

z =
x� µ

�

(4.2)

This normalization makes it robust from outliers and is important if comparing mea-
surements with different scales.
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4.3 Learning From Imbalanced Data

A imbalanced dataset is, technically speaking, any dataset where the distribution of classes
is unequal (He and Garcia, 2009). More commonly, however, is it to say a dataset is
imbalanced if the dataset exhibits significant imbalances. Examples of orders of such
imbalances are 100:1, 1000:1, or even 10,000:1. More specifically, this kind of imbalance
is called between-class imbalance.

Examples of imbalance in real-world datasets are many. For example, in the medical
field lots of dataset exhibit significant imbalances as the number of healthy people is much
bigger than the number of sick people, for most sicknesses. The cost of misclassification
can also be especially large in the medical field.

The problem is that most standard machine learning algorithms consider balanced
datasets, which generate good cover for the majority class, but may discard the minor-
ity class (Lopez et al., 2013). There are several reason for this. The global performance
measures used to guide the learning process, such as accuracy, often favor the majority
class. Patterns that identify the minority class may be highly specialized, leading to low
coverage and being discarded in favor of more general patterns identifying the majority
class. Clusters of minority class samples may be interpreted as noise and be wrongly dis-
carded. Also, actual noise in the samples can make the identification of the minority class
harder, as it will have fewer samples to train on.

In the next few sections, methods for dealing with the challenge that is imbalanced
data will be presented. In addition to the methods discussed below, ensemble methods
from section 4.1.3 are viable approaches to this problem.

4.3.1 Sampling methods

Sampling methods for imbalanced learning applications typically means modifying the
dataset to provide a balanced class distribution. Although classifiers absolutely can learn
from imbalanced datasets, studies have shown that, for several base classifiers, balanced
datasets provide better overall performance (He and Garcia, 2009).

There are two categories of sampling methods: oversampling and undersampling.
Oversampling adds data to the dataset, while undersampling removes data from the dataset.
In addition, there are methods that combine the two.

Random oversampling

Random oversampling simply means randomly selecting minority examples, replicating
them and adding them to the dataset. This can be done as many times necessary to reach
the desired distribution. A problem with random oversampling is it may lead to overfitting
as classifiers may create to specific rules after seeing the same sample multiple times.
Although the training accuracy will be great, when tried on a test set, the classifier will fail
to generalize and the performance will generally be far worse.
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SMOTE

SMOTE, short for Synthetic Minority Over-sampling Technique, is an oversampling method
that adds synthetic data points to the dataset (Chawla et al., 2002). A synthetic data point
is created by taking a sample from the minority class, and then looking at its k nearest
neighbors in feature space. Take the vector between the sample and a randomly chosen
neighbor from the k nearest neighbors. Multiply this vector with a random number be-
tween 0 and 1, and add it to the feature vector (sample) under consideration. This creates
a new synthetic data point.

ADASYN

Adaptive Synthetic Sampling approach (ADASYN) is another oversampling method that
creates new synthetic data points (He et al., 2008). ADASYN weights minority class
samples according to the level of difficulty in learning. The idea is to generate more
synthetic data for minority class examples that are harder to learn compared to those that
are easier to learn. This improves learning by reducing the bias introduced by the class
imbalance and moving the classification decision boundary towards the samples that are
more difficult to learn. The data points themselves are created using the same method as
SMOTE.

Random undersampling

Random undersampling is randomly removing majority class samples until reaching the
desired class distribution. Although appearing functionally similar to random oversam-
pling, it is not, as it has different problems associated with it. The problem with random
undersampling is that removing random majority class samples may lead to the classifier
missing important concepts pertaining to the majority class, resulting in worse perfor-
mance.

Informed undersampling methods

The problems with information loss for random undersampling can be be overcome by us-
ing informed undersampling methods like EasyEnsemble and BalanceCascade (Liu et al.,
2009). EasyEnsemble builds an ensemble by independently sampling multiple subsets of
the majority class and combining it with the minority class, and then training multiple clas-
sifiers on each subset. While EasyEnsemble explores the majority class in an unsupervised
manner, BalanceCascade does so in an supervised manner. BalanceCascade develops an
ensemble of classifiers to systematically select which majority class samples to undersam-
ple. It first trains a classifier on a subset of the majority class samples and all the minority
class examples. Then it sees which majority class samples the classifier has correctly
classified, and then removes some of them, effectively undersampling the dataset.

Both EasyEnsemble and BalanceCascade use AdaBoost ensembles as classifier, which
means they create ensembles of ensembles.

Examples of other informed undersampling methods uses K-Nearest neighbor classi-
fiers to undersample (He and Garcia, 2009). An example is the NearMiss-1 method which
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chooses the majority samples which have the smallest average distance to the three closest
minority class samples.

Data cleaning methods

One problem with oversampling methods, especially synthetic ones, is that they may in-
troduce overlapping. Tomek-links, a data cleaning technique, can be applied to identify
and remove unwanted overlapping between classes (He and Garcia, 2009). A Tomek-link
is defined as a pair of minimally distanced neighbors of opposite classes. If two examples
form a Tomek-link it means that either one of them is noise or they are near a border. In
both cases they should be removed to establish well-defined class clusters.

4.3.2 Cost-sensitive methods
Cost-sensitive methods are an alternative to sampling methods. While sampling methods
alter the distribution of class samples in the dataset, cost-sensitive methods considers the
cost associated with misclassifying a sample (Longadge and Dongre, 2013). I does so
by creating cost-matrices associating cost to misclassifying any particular class sample.
Usually there’s no cost for correctly classifying samples, and the cost for misclassify-
ing minority samples is larger than the other way around. The goal of any cost-sensitive
method is to minimize the cost of misclassification. However, a problem with this method
is that it is difficult to quantify the cost of different kinds of misclassifications.

Examples of cost-sensitive methods are cost-sensitive decision trees and cost-sensitive
boosting methods, such as AdaC1, AdaC2, AdaC3, and AdaBoost.M1 (He and Garcia,
2009).

4.4 Evaluating Machine Learning Models
This section describes measures to evaluate performance in binary classification, that is
when there are only two classes, two possible outcomes.

4.4.1 Confusion matrix
Supervised machine learning classifiers have several evaluation metrics to choose from.
Many of them come from a confusion matrix which records correctly and incorrectly clas-
sified samples from both classes (Sokolova et al., 2006). Table 4.1 present a confusion
matrix. The metrics following will make use of the confusion matrix in the definitions.

Predicted
Class 0 1

Actual 0 True Negative False Positive
1 False Negative True Positive

Table 4.1: A confusion matrix.
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4.4.2 Accuracy
One of the most common metrics is accuracy, which gives the ratio of correctly classified
samples to misclassified samples. Accuracy does not take class distribution into account,
which makes it poor measure for evaluating performance on imbalanced data.

accuracy =
tp+ tn

tp+ tn+ fp+ fn

(4.3)

4.4.3 Precision, recall and F-measure
For many classification applications, one class is often of special interest. In these cases,
the class of special interest is often heavily outnumbered, the dataset is imbalanced. The
class of special interest is sometimes called the positive class. Examples of problems
where one class is of special interest are medical diagnoses, information retrieval, credit
card fraud and the problem in this thesis.

The accuracy score is not suited for such cases. Imagine a two class dataset where the
positive class is outnumbered 100:1, and the goal is to classify the samples. By simply
classifying all the samples as the majority class, the classifier will have an accuracy score
over 99%.

The measures below are suited for problems like these. The measures are calculated
using the positive class.

precision =
tp

tp+ fp

(4.4)

recall =
tp

tp+ fn

(4.5)

F �measure =
2 ⇤ precision ⇤ recall
precision+ recall

(4.6)

Precision is the fraction of correctly classified samples from the positive class among
all samples classified as the positive class. Recall is the fraction of correctly classified
samples from the positive class among all samples from the positive class. The F-Measure
is the harmonic mean between precision and recall.

4.4.4 Kappa statistic
Cohen’s kappa statistic is a measure which compares an observed accuracy to the expected
accuracy (Cohen, 1960). Using the confusion matrix we define it as follows:

kappa =
P

a

� P

e

1� P

e

(4.7)

where

P

a

=
tp+ tn

N

(4.8)
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P

e

= (
tp+ fn

N

) ⇤ ( tp+ fn

N

) (4.9)

and N is the total number of samples.

4.4.5 Receiver operating characteristic curve

A receiver operating characteristic (ROC) curve plot is a visualization of a classifiers per-
formance (Fawcett, 2006). Specifically, the plot is created by plotting the true positive rate
(recall) against the false positive rate at various threshold levels. A ROC curve shows the
trade-off between benefits (true positives) and costs (false positives). To plot a ROC curve,
the classifier need to be able to yield a probability distribution. By using a threshold, a
binary decision can be made. By varying the threshold for this decision, different points in
the ROC space will be generated and a curve can be plotted. Figure 4.3 shows an example
of a ROC curve plot.

Figure 4.3: An example of a ROC plot. The green, diagonally, dotted line represents guessing
randomly.

To compare classifiers using ROC curves, it would be attractive to have a single value
representing ROC performance. Usually the area under the curve (AUC) is used. The
AUC is a value between 0 and 1, though it should be noted that random guessing produces
an AUC value of 0.5.
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4.4.6 Precision-recall curve
Precision-recall curves (PRC) also visualizes the performance of a classifier. It is cre-
ated by plotting the precision against the recall at various threshold settings. Although
ROC is a popular measure to evaluate performance for binary classifiers, ROC plots can
be misleading when used with imbalanced datasets. Studies suggest PRC is much more
informative for evaluating performance of binary classifiers on imbalanced datasets (Saito
and Rehmsmeier, 2015). AUC can also be calculated for PRC to compare classifiers. See
figure 4.4 for an example of a PRC plot.

Figure 4.4: An example of a Precision-Recall curve plot.
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Chapter 5
Implementation

This chapter serves the purpose to describe the experimental setup for the experiments in
this thesis. The chapter describes the framework used to process the data, and build the
machine learning models. It describes the structure of the datasets, how the datasets was
prepossessed and how the problem in this thesis is defined as a supervised machine learn-
ing problem. Further it describes what machine learning algorithms were used, and how
the resulting models were tuned and validated. Finally, the limitations in the implementa-
tion of this thesis are discussed.

5.1 Framework

For implementation, the Python programming language was used. In addition, a number
of Python libraries were used for various tasks:

• All programming was done with Python 2.7.

• For machine learning and preprocessing, the Python machine learning library Scikit-
Learn was used (Pedregosa et al., 2011).

• For data manipulation, exploration and preprocessing, the Python library Pandas
was used (McKinney, 2010).

• To visualize data, the Python 2D plotting library Matplotlib was used (Hunter,
2007).

• Over- and undersampling was implemented using the Python library Imbalanced-
learn (Lemaı̂tre et al., 2017).
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5.2 Data Preparation
5.2.1 Data cleaning
One problem with the dataset was that a lot of accounts were inactive, meaning the card
was not in use, or it took a long time from the account was created to the first time the
card was used. In figure 3.3 we see histogram showing the amount of days customers took
before using their credit cards. It should be noted that the plot only shows the frequencies
for the first 100 days. Although most customers are contained in the plot, some customers
took upwards of 500 days before using their cards.

Obviously we are not interested in having data from inactive accounts as it does not
provide us with any information. This would only lead to worse model performance and
increased computational complexity. As a result, all accounts that had not used their card
within 31 days were removed. This decision almost halved the number of unique accounts
in the dataset, while simultaneously removing less than 10% of the ”bad” customers, using
the strict definition. The ”bad” costumers that were removed mostly became so relatively
late in the customer relationship and are not the ”bad” customers primarily targeted in
this thesis. What this thesis does, is focus on identifying high risk customers early in the
customer relationship, optimally already after the first month. Customers that generally
should not have been issued a credit card in the first place. For that reason, it made sense
to remove accounts that do not become active within the first month.

An alternative could be to define the first month in the customer relationship as the
the month where the card first becomes active. However, customers that took a while to
activate their card and only later defaulted, may show a behavior different from the bad
customers that are the primary target in this thesis, so removing them was decided to be
the better choice.

5.2.2 Selection
Selecting features for this problem was not an easy task as the dataset had well over 100
features for each month of data. Having little to no domain knowledge, the decision was
to leave most features in and hopefully find interesting features in the feature analysis.
The rationale was that too much data is better than to little data. However, using the
SpareBank 1’s domain knowledge, some features were discarded and some new features
were engineered. In addition, zero-variance features were discarded as they provide no
information. For a complete list of features, see the appendix.

There are a few potential problems with leaving in most features. It might lead to
overfitting when training models on the data. Redundant or irrelevant features might be
present, which might affect model accuracy or computational performance. Another prob-
lem is the curse of dimensionality (Keogh and Mueen, 2010).

5.2.3 Preprocessing
Missing values

Throughout the dataset there were some missing values for a few features. Specifically for
the features age and credit score. For simplicity, the missing values for these features were
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substituted with the feature median.
It may have been better to substitute the missing values with the class median, but the

simple solution was chosen.

Normalization

The credit card data is not entirely on the same scale as customers have different credit
card limits. Because of this, normalization of the dataset may be beneficial.

Z-score standardization was tried on the dataset on proved beneficial for some machine
learning algorithms. Specifically logistic regression. For ensemble approaches based on
decision trees, normalization did not seem to make a difference in performance.

An approach that was considered was scaling numerical features related to transactions
using a credit limit based transformation, to try to reach a common scale for all accounts.
Due to time constraints, this was not done.

5.2.4 Defined as a forecasting problem
Assumption

To pose the problem in this thesis as a time series forecasting problem, a large assumption
is made. We assume that the behavior patterns among high risk customers are similar for
the first months of the customer relationship independent on time of year and year they first
became customers. The idea is that while the underlying economic climate may change,
the behavior patterns of those that do not pay their credit card bill stay the same.

As stated in chapter 3, the dataset spans from 2013 to 2017. During this time there have
been some changes to the economic climate in Norway with the fall of oil prices across
the globe. How much this has affected Norwegian’s credit card use is difficult to say. Ac-
cording to the 2016 survey on Norwegian’s economic situation from the National Institute
for Consumer Research (SIFO), Norwegian’s average credit card debt has increased in the
period 2012-2016 (Torvald Tangeland, 2016). However, the percent of the population that
has credit card debt has remained almost constant during this time. There is also only
a slight increase in credit card use in this period. While difficult to say how this might
change behavior patterns among the high risk credit card customers from year to year, the
assumption is that this difference is small.

As for seasonal spending behavior, there’s usually an uptick in spending around Christ-
mas. Also tax season may affect spending. This can be a problem, for example, if a
customer applies for a card around Christmas with the intent of spending a lot during
the holidays and paying it back later. The behavior pattern might be the same as a bad
customer, but the customer will turn out to be profitable.

To account for potential flaws in this assumption, testing is done out of sample. This
will be further discussed in chapter 6.

Two class classification problem

Further, the problem is posed as a two class classification problem. The classes are good
and bad customers, where bad customers are labeled as such according to the definition.
This label is also associated with the month the customers fit the definition of bad customer.
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Training window

Training window refers to the amount of historic data used to make a prediction, the num-
ber of previous time steps used. In this thesis, the priority is to identify high risk customers
early. Looking at figure 3.2, we see that a large proportion of accounts that go to collec-
tion, do so within the first months. To identify these accounts early, the training window
will have to be short. In this thesis, the training window is one and two months, depending
on the dataset used.

Forecast horizon

The forecast horizon is the number of months ahead in time we look, after making the
prediction, to see if the customer turned out to be a bad customer or not. Choosing the
length of the forecast horizon is a balancing act between not leaving enough time for an
observed pattern to manifest itself as a bad customer, and choosing a too long horizon that
will include bad customers that didn’t exhibit high risk behavior before after the forecast
was made.

Combining knowledge from the literature review in chapter 2 and figure 3.2, a forecast
horizon of 6 months is chosen as a default in this thesis. Other horizon lengths are also
tested.

Figure 5.1 shows how the problem is modeled.

Figure 5.1: An illustration of a how a two-month training window and six-month forecast horizon
are connected.

5.3 The Algorithms
5.3.1 Models
Implemented using Scikit-learn, a total of five different machine learning algorithms were
tried. These were:

• Logistic regression.

• Decision trees.

• Random Forests
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• AdaBoost.

• Gradient Boosting.

Linear regression is chosen as a baseline approach to compare the other algorithms to.
Decision tree is a classic machine learning algorithm suitable for this type of problem. It
produces decision rules that can be used for attribute analysis, and it also serves as a good
comparison to the ensemble methods. Random forests, AdaBoost and gradient boosting
represent both the bagging and boosting approach, and are all powerful ensemble methods
that are often used on imbalanced datasets (Liu and Zhou, 2013). For those reason are these
methods chosen. AdaBoost is implemented with random forests as weak learners, which
have been shown to outperform other ensemble methods for some applications (Thongkam
et al., 2008).

5.3.2 Dealing with imbalanced data
As previously discussed, the dataset is heavily imbalanced. To account for this, both
sampling and cost-sensitive methods were used.

For the logistic regression, decision trees and random forest models, Scikit-learn of-
fers the option to weight classes differently. For these models the classes are weighted
proportionally to the inverse of their frequency.

Several over- and undersampling methods are tried for all models. Especially for
the boosting models. Methods tried include random over- and undersampling, SMOTE,
ADASYN, Tomek-links and Edited Nearest Neighbor. Of these methods, no method out-
performed the simple random oversampling approach. For that reason, random over-
sampling was used with gradient boosting and AdaBoost, and also tried with random
forests. A combination of informed undersamling and synthetic oversampling did perform
marginally better for some of the experiments.

5.3.3 Validating models
To tune hyperparameters, assess performance of sampling and cost-sensitive methods, and
pick the best models, stratified k-fold cross validation was used. Usually either 5-fold or
10-fold.

It should be noted that when validating oversampled models using cross validation, the
oversampling must be done inside the cross-validation loop. For each iteration in the cross
validation, the k � 1 subsamples get oversampled, while the single remaining validation
sample is left as is. If done improperly, the validation set is highly likely to contain training
data and not provide an unbiased performance measure.

5.3.4 Tuning parameters
To tune models a combination of random search, grid search and hand-tuning was used.
Random search was the most used, usually for a broad search over the countless hyperpa-
rameter combinations. Grid search was less used, but did see some use for exploring more
specific hyperparameter combinations. Lastly, hand-tuning was used to try to fine-tune
models.
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5.4 Limitations
There are several factors that affect how this thesis was conducted. This section describes
limitations in this thesis that must be taken into account.

5.4.1 Limited preprocessing
Data preparation is said to be the most time consuming part of any machine learning
project. Given the size of this dataset, both in terms of number of records and number of
features, this is was especially true for this thesis.

Selecting an optimal subset of features for this problem was not possible in the time
frame of this thesis. The number of features and combinations to consider were simply too
many. Also leaving most features in probably lead to having both redundant and irrelevant
features in the dataset.

With this many features to consider, we can assume that there are multiple hidden
feature interactions. That is where the predictive power is larger for a certain combination
of the features than the sum of the individual predictive power of each feature (Jakulin
and Bratko, 2002). Uncovering these and engineering new features from them would
require much more time and domain knowledge. There are probably also much insight
to be gained from engineering features from several months of data, when using more
than one month in the training window. For example, creating lagged features that track
changes in spending. In addition, the transaction data could probably be made better use
of, engineering better and more precise features from it than done in this thesis.

As mentioned earlier, another potential limitation is that relevant features were not
scaled based on credit limits. A bigger effort could have been used to put features on a
common scale.

5.4.2 Forecast horizon length
While the length of the forecast horizon wasn’t arbitrarily chosen, and multiple lengths
were tested, other horizon lengths might provide better predictions and could have been
explored further.

5.4.3 Machine learning models
Only five different machine learning algorithms were tried. Literature suggested that most
of them are very capable for the type of problem in this thesis, but there are also many
promising approaches for this type of problem that were not pursued.

5.4.4 Hyperparameter tuning
Hyperparameter tuning is a time consuming activity. Due to time constraints, not all mod-
els had their hyperparameters fine tuned. Besides a relatively broad random search, time
was only spent optimizing the best performing models.
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Experiments

This chapter first describes the test setup. It goes on to list the measures used to report
the results. Then each experiment with accompanying results are presented. An analysis
of the features used is done, describing the most important features. Lastly, the models
developed are evaluated as behavioral credit risk scoring models.

6.1 Test Setup
The final processed datasets consisted of roughly 60,000 accounts, created between Jan-
uary 2014 and November 2016. The main differences between the datasets used are the
dependent variable, training window length and forecast horizon lengths. The class bal-
ance is also different between the datasets because of the varying definition and window
sizes. Only the two month training window datasets included transaction data.

The dataset is split into a training and test set, where the training set constitute about
80% of the dataset, and the test set constitutes the remaining 20%. The training and test
set have roughly 48,000 and 12,000 samples each, respectively. The ratio between classes
is also maintained within a reasonable deviation.

The training set includes accounts created between January 2014 and April 2016, while
the test set includes accounts created between April 2016 and October 2016. This means
the test set is entirely out of sample. Out of sample means that there’s no samples from the
training set in the test set. Because we are doing a type of forecast, it also means that the
test samples are from a different, later time period than the training samples. This way the
classifiers are tested as closely as possible to how they would be used in production. That
the test set out of sample is very important to properly measure how well the classifiers
generalize, i.e the real performance of the classifier.

As stated in chapter 5, every model is validated using cross-validation. This means
that models are tuned, compared and selected using the result of cross-validation. To test
the selected model, the model is retrained using the whole training set this time and then
tested on the test set.

41



Chapter 6. Experiments

6.2 Evaluating results

To evaluate the results both during validation and testing, the following metrics are used:

• Precision

• Recall

• F-measure

• Kappa statistic

• ROC curve

• Precision-recall curve

It is difficult to choose a universal measure for this problem. Optimally we would have
a profit estimation function that we could optimize. In practice, the potential profit might
be estimated using a function of the precision and recall, where profit can be estimated as
a trade off between true positives (profit) and false positives (cost). For that case either
the F-measure or precision-recall AUC can be used as measurement to optimize. In this
thesis, F-measure is chosen as the measure to optimize and results for the models with the
highest F-measure are reported.

6.3 Results

This section reports the results of the experiments conducted in this thesis. A total of 6
experiments using different combinations of dependent variables, forecast horizon lengths
and training window lengths have been done. The results are reported for the unseen
test set performance using the best performing model for each machine learning method
tried. The best performing model was decided using stratified 10-fold cross validation.
Performance was evaluated with F-measure.

Every machine learning method is compared for the first four experiments. For the two
last experiments, only the top two performing methods from the previous experiments are
tried.

In addition to the evaluation metrics, each experiment has the ROC curve, precision-
recall curve and confusion matrix plotted for the top performing model. Precision and
recall is a trade-off. The precision-recall curve illustrates this and can be used to evaluate
the model at different threshold values.

This section is divided in subsections based on training window length and dependent
variable. The results are commented for each experiment, but any conclusions are left for
chapter 7.
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6.3.1 One month training window
Default as dependent variable

• Experiment 1: Train and compare 5 different machine learning models on a dataset
with a 1 month training window, 6 month forecast horizon using default as depen-
dent variable. Transaction data is not included.

Class Training Set % Test Set %

Good 47,584 98.72 11,889 98.66
Bad 618 1.28 162 1.34

Total 48,202 100.0 12,051 100.0

Table 6.1: Overview of the class balance in the dataset used in experiment 1.

Precision Recall F-Measure Kappa ROC AUC PR AUC

Logistic Regression 0.08 0.84 0.15 0.13 0.91 0.13
Decision Tree 0.09 0.65 0.16 0.14 0.83 0.11
AdaBoost 0.17 0.48 0.26 0.24 0.88 0.19
Gradient Boosting 0.24 0.42 0.31 0.29 0.86 0.17
Random Forest 0.24 0.41 0.31 0.29 0.91 0.25

Table 6.2: Results for experiment 1.

This was arguably the most difficult of the experiments as it uses the shortest training
window, horizon length and the default definition of high risk behavior. As we can see in
table 6.1 this dataset is the most imbalanced. This is reflected in the results. In table 6.2,
we see the logistic regression and decision tree achieve relatively high recall rates, but the
precision is unacceptably low. The kappa values also suggest there is not much agreement
(Viera and Garrett, 2005).

The ensemble methods perform better with F-measures above 0.30. Still not very good,
but the kappa statistic values suggest a fair agreement.

Gradient boosting was notoriously difficult to optimize for the datasets in these exper-
iments. Probably because of overfitting. As there was limited time available for hyper-
parameters optimization, and gradient boosting is a computationally costly algorithm that
can’t be parallelized, there was not always the case that a random search would find good
hyperparameters for it. Which is why the gradient boosting model performance varies
slightly for the first 4 experiments. For this experiment it did however find relatively good
hyperparameters and almost performed the best.
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Figure 6.1: Precision-recall and receiver operating characteristic curve for the random forests model
in experiment 1.

Figure 6.2: Normalized and regular confusion matrix for the random forests model in experiment 1.
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• Experiment 2: Train and compare 5 different machine learning models on a dataset
with a 1 month training window and 9 month forecast horizon using default as de-
pendent variable. Transaction data is not included.

Class Training Set % Test Set %

Good 47,075 98.72 11,814 98.66
Bad 1,127 2.34 237 1.97

Total 48,202 100.0 12,051 100.0

Table 6.3: Overview of the class balance in the dataset used in experiment 2.

Precision Recall F-Measure Kappa ROC AUC PR AUC

Logistic Regression 0.09 0.83 0.17 0.13 0.90 0.22
Decision Tree 0.17 0.48 0.25 0.23 0.77 0.27
AdaBoost 0.26 0.46 0.34 0.32 0.90 0.27
Gradient Boosting 0.26 0.33 0.29 0.27 0.81 0.20
Random Forest 0.28 0.39 0.33 0.31 0.90 0.27

Table 6.4: Results for experiment 2.

This experiment is different from experiment 1 in that it uses a longer 9 month forecast
horizon. As a result it includes more defaulted accounts as we can see in table 6.3. The
performance is overall a little bit better, but not significantly.

The decision tree did however perform significantly better than in experiment 1. This
can be explained by that the decision tree was not optimized in experiment 1. Overall,
not much time was spent optimizing the decision trees as they were very susceptible of
overfitting and did not generalize well.
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Figure 6.3: Precision-recall and receiver operating characteristic curve for the top performer in
experiment 2.

Figure 6.4: Normalized and regular confusion matrix for the top performer in experiment 2.
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Collection as dependent variable

• Experiment 3: Train and compare 5 different machine learning models on a dataset
with a 1 month training window, 6 month forecast horizon using collection as de-
pendent variable. Transaction data is not included.

Class Training Set % Test Set %

Good 45,834 95.09 11,475 95.22
Bad 2,368 4.91 576 4.78

Total 48,202 100.0 12,051 100.0

Table 6.5: Overview of the class balance in the dataset used in experiment 3.

Precision Recall F-Measure Kappa ROC AUC PR AUC

Logistic Regression 0.16 0.73 0.26 0.20 0.84 0.26
Decision Tree 0.16 0.56 0.25 0.19 0.78 0.26
AdaBoost 0.31 0.42 0.36 0.32 0.84 0.29
Gradient Boosting 0.24 0.47 0.32 0.27 0.80 0.24
Random Forest 0.32 0.38 0.35 0.32 0.84 0.29

Table 6.6: Results for experiment 3.

Figure 6.5: Precision-recall and receiver operating characteristic curve for the AdaBoost model in
experiment 3.
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Figure 6.6: Normalized and regular confusion matrix for the AdaBoost model in experiment 3.

Experiments 3 and 4 use collection as the dependent variable and are therefore less
imbalanced than experiment 1 and 2, as seen in table 6.5 and 6.7. Overall, the performance
is better than experiment 1 and 2, but it is not great. The kappa statistic still only indicates
a fair agreement.

As seen with experiment 1 and 2, the performance was slightly better for the longer 9
month forecast horizon.

• Experiment 4: Train and compare 5 different machine learning models on a dataset
with a 1 month training window, 9 month forecast horizon using collection as de-
pendent variable. Transaction data is not included.

Class Training Set % Test Set %

Good 44,726 92.23 11,313 93.88
Bad 3,476 7.77 738 6.12

Total 48,202 100.0 12,051 100.0

Table 6.7: Overview of the class balance in the dataset used in experiment 4.
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Precision Recall F-Measure Kappa ROC AUC PR AUC

Logistic Regression 0.18 0.72 0.29 0.22 0.83 0.29
Decision Tree 0.15 0.66 0.25 0.16 0.77 0.20
AdaBoost 0.27 0.53 0.36 0.31 0.83 0.32
Gradient Boosting 0.30 0.37 0.33 0.28 0.80 0.28
Random Forest 0.31 0.46 0.37 0.32 0.84 0.31

Table 6.8: Results for experiment 4.

Figure 6.7: Precision-recall and receiver operating characteristic curve for the random forests model
in experiment 4.

Figure 6.8: Normalized and regular confusion matrix for the random forests model in experiment 4.
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6.3.2 Two month training window

For the last two experiment we use a longer training window of 2 months. In addition, the
datasets also include the aggregated transaction data for both months.

From the results from the experiments in subsection 6.3.1 we have a good overview of
how well the different machine learning algorithms perform.

To save time, we chose to only use the two best algorithms for the remaining two
experiments. Overall, AdaBoost and random forests performed the best. In addition to
this, they were also much easier to tune compared to the gradient boosting models.

Default as dependent variable

• Experiment 5: Train and compare 2 different machine learning models on a dataset
with a 2 month training window, 6 month forecast horizon using default as depen-
dent variable. Transaction data is included.

Class Training Set % Test Set %

Good 46,246 98.61 11,575 98.72
Bad 651 1.39 150 1.28

Total 46,897 100.0 11,725 100.0

Table 6.9: Overview of the class balance in the dataset used in experiment 5.

Precision Recall F-Measure Kappa ROC AUC PR AUC

AdaBoost 0.39 0.33 0.36 0.35 0.93 0.29
Random Forest 0.33 0.36 0.34 0.33 0.93 0.29

Table 6.10: Results for experiment 5.

Looking at table 6.10, we see that having two months of data is better than having just
one, as the results are better. There are however not that much difference in performance.
Adding transaction data doesn’t seem to help much, as was previously feared. The ROC
AUC is very high despite the mediocre results for the other measures used. As mentioned
in chapter 3, ROC AUC can be misleading with heavily imbalanced datasets like this one.
This can be explained by looking at the ROC plot in figure 6.9 and the confusion matrices
in figure 6.10. We have relatively few false positives which makes the false positive rate
very small because of how many ’good’ samples there are compared to ’bad’ samples.
This makes the ROC AUC value misleadingly big.
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Figure 6.9: Precision-recall and receiver operating characteristic curve for the AdaBoost model in
experiment 5.

Figure 6.10: Normalized and regular confusion matrix for the AdaBoost model in experiment 5.
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Collection as dependent variable

• Experiment 6: Train and compare 2 different machine learning models on a dataset
with a 2 month training window, 6 month forecast horizon using collection as de-
pendent variable. Transaction data is included.

Class Training Set % Test Set %

Good 44,397 94.67 11,160 95.18
Bad 2500 5.33 565 4.82

Total 46,897 100.0 11,725 100.0

Table 6.11: Overview of the class balance in the dataset used in experiment 6.

Experiment 6 is the same as experiment 5, but using collection as dependent variable
this time. The performance is, as expected from seeing the results of the previous exper-
iments, better. The kappa statistic is on the border of going from a fair agreement to a
moderate agreement, using Viera and Garrett (2005) interpretation of kappa.

Precision Recall F-Measure Kappa ROC AUC PR AUC

AdaBoost 0.40 0.39 0.40 0.37 0.88 0.39
Random Forest 0.40 0.44 0.42 0.39 0.88 0.39

Table 6.12: Results for experiment 6.

Figure 6.11: Precision-recall and receiver operating characteristic curve for the random forests
model in experiment 6.
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Figure 6.12: Normalized and regular confusion matrix for the random forests model in experiment
6.

6.4 Feature Analysis
Many machine learning algorithms are essentially black boxes where it is difficult to un-
derstand how decisions are made and how to interpret the results. In this thesis, we would
like to know what behavior separates good and bad customers. To do this, we find the
most important features, i.e the features with the highest predictive power. If we know
these features, we can better understand behavior among bad customers, how to engineer
better features, and how to better collect data for this purpose.

A decision tree is not black box and outputs interpretable decision rules. This has
advantages. In a decision tree, features which contribute more to the decision are higher
up. So the depth of a feature used as a decision node can be used to assess the relative
importance of that feature. Or more precisely, the expected fraction of samples a decision
node contributes to can be used as a estimate of the importance of a feature.

To reduce the variance we average this fraction of samples contributed to over thou-
sands of randomized trees, i.e we use the random forest models to estimate feature impor-
tance.

Specifically, the feature importances are estimated using the top performing random
forests models for each experiment. Those random forest models are trained with 10,000
trees and the relative feature importances are extracted averaging those expected fractions
over all the trees. The feature importances are then averaged for experiments using default
as the dependent variable, and collection as dependent variable. Finally, an average is
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provided for all experiments. Feature importances for experiments using different training
window lengths are calculated separate as they are not directly comparable. The feature
importances are given as a value between 0 and 1, where 0 means the feature has no
predictive power, and 1 means the feature can perfectly predict the outcome alone.

Optimally, we would have liked to estimate the feature importances separately for each
class, but Scikit-learn does not support that.

Figure 6.13: Top 25 most important features for the one month training window. The importance is
a number between 0 and 1.

Figure 6.13 and 6.14 show the top 25 features for the one month and two month training
window experiments, respectively. See the appendix (figure 1 and 2) for the full list of
feature importances for both training window lengths.

Considering the models developed do not generalize very well, we have to exhibit some
caution when analyzing the results of the feature analysis. This is moderately reflected in
the feature importances as no feature importance has a value over 0.1, meaning no single
feature does a good job of discriminating.

For the one month training window, figure 6.13, we see that many of the top ranking
features, such as turn over at start, spending velocity, credit score (ScoreValueVedOpp-
start), are intuitive. It is also interesting to see that four of the engineered features, turn
over at start, spending velocity (turn over amount divided by credit limit), days from cre-
ated to first use, and fund transfer at start, are in the top 10 most interesting features. This
suggests that there might be many hidden feature interactions, and the dataset can benefit
from more feature engineering.

Must of the top ranking features have to do with spending, which is expected. Intu-
itively, features like over limit flag and overdraft flag should be important features, and
they are as they’re in the top 25, but one might expect them to be higher ranked.
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There are multiple highly correlated features, such as the tax features, included in the
top features. Earlier we mentioned how leaving in redundant features could lead to prob-
lems with overfitting and other problems. However, it should also be mentioned that better
class separation can be obtained by leaving in presumably redundant features (Guyon and
Elisseeff, 2003). It has also been shown that highly correlated features decrease the fea-
ture importance for those features (Gregorutti et al., 2013). This means that the correlated
features might be more important when included by themselves.

Figure 6.14: Top 25 most important features for the two month training window.

For the two month training window, figure 6.14, we see that features from the month
number two, the most recent data, dominates the top ranking features. This is of course
expected. Many of the same features from 6.13 are top ranked also here.

As for differences in feature importances between features predicting collection and
default, there seem to be not much. For most features, the difference is negligible or
within reasonable deviation.
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6.5 Behavioral Credit Risk Scoring Models
While the models built in section 6.3 can not accurately classify high risk customers, the
models might still be useful for dynamic behavioral credit risk scoring. The false positive
rates are relatively low and the ROC AUC values are high.

The models output a score between 0 and 1 denoting the probability of a sample being
a bad customer. In section 6.3 a threshold is used to classify samples as either good or bad,
where samples with probability less than 0.5 are classified as good customers, and samples
with probability over 0.5 are classified as bad. In this section we see if the probability
values can be suitable as a credit risk score.

Because we want the models to be employed as early as possible and the performance
was not that much better for models using a longer two month training window compared
to one month training window, we chose to only evaluate the top models from the first four
experiments. The models are also here evaluated using the test set.

Figure 6.15: Box plots showing the distribution of behavioral credit risk score for good and bad
customers for the top models from the first 4 experiments. 0 is the good customers, while 1 is the
bad customers. The red line is the median and the boxes span from the 25th to the 75th percentile.
The ends of the whiskers indicate the minimum and maximum value.

Figure 6.15 shows the distribution of probability values, from this point called scores,
for the four first experiments. The left side of each box plot shows the distribution of
scores for the good customers, and the right side for the bad customers.

The box plots seem to indicate a good separation between the classes, which is promis-
ing. We also see some interesting differences in the plots. The models using longer 9
month forecasts looks to give generally higher scores for the bad customers than the 6
month forecasts. From section 6.3 we already knew this, as the classification performance
was better for longer forecast. The distribution of scores for the good customers, however,
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show a higher variance for the longer 9 month forecast, something we could not make out
in section 6.3. Of course, this is intuitive as longer forecast involve more uncertainty.

We also see that the models predicting defaults generally give very low scores to good
customers. As the fraction of defaults is low, this is expected. Especially the 6 month
forecast for probability of default appears to be suitable as both the median and variance
are very low for good customers.

Figure 6.16, 6.17, 6.18 and 6.19 show the probability scores plotted against the actual
probability of either default or collection. The probability scores are binned to the nearest
two-decimal place and the average number of defaults/collections are calculated and plot-
ted for each bin. Which is why there are approximately 100 points in each plot instead of
over 12,000. A second-order polynomial regression line is fitted to the data to show the
relationship between the predicted probability and the actual probability. The translucent
bands around the regression line indicates the 90% confidence interval for the regression
estimate.

We see that there is a strong correlation between the predicted and actual probabil-
ities for all four models. Table 6.13 show the linear correlation between the predicted
probability and the actual probability, calculated with the Pearson correlation coefficient
formula. The coefficient values further suggest there is a strong relationship between the
predicted and actual probabilities. However, we can from the plots see that the relationship
is not strictly linear. Because of this we have to exercise some caution when using these
correlation values as the Pearson correlation coefficient can be misleading for nonlinear
relationships. To account for this, the Kendall rank correlation coefficient is also provided.
Kendall’s ⌧ may be a more suitable measure for the strength of the relationship consider-
ing it is non-parametric and also works with nonlinear relationships. The Kendall ⌧ values
suggest strong, positive dependence between the actual and predicted probabilities.

Looking at figure 6.16, 6.17, 6.18 and 6.19 again, we see that for all experiments the
actual probability is small until the predicted probability is between 0.2 and 0.4. From
there, the actual probability climbs relatively quickly. It is not optimal that the relation-
ships behaves as such. A more linear relationship would be better.

The models predicting default seem to give scores that have a stronger relationship to
the actual probabilities than the models predicting collection as can be seen in table 6.13
and from the steeper curves in figure 6.16 and 6.17, compared to the curves in figure 6.18
and 6.19. This may, however, be explained by the class distribution difference.

The differences between the 6 month and 9 month forecast models seem to be that the
former’s curve starts to climb a little earlier than the latter’s. From the scatter plots of the
the 9 month forecasts, the points seem to be more scattered than for the 6 month forecasts.
This is also evidenced by the apparent larger confidence interval for the regression esti-
mate. From the box plots in figure 6.15 this was expected as the variance was larger for
the 9 month forecasts, as pointed out earlier.

Figure 6.20, shows the distribution of the predicted probabilities for each experiment
using histograms. We see the models predicting accounts going to collection make more
use of the probability range.
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Pearson’s r Kendall’s ⌧

Experiment 1 0.68 0.55
Experiment 2 0.70 0.73
Experiment 3 0.63 0.62
Experiment 4 0.65 0.66

Table 6.13: The Pearson correlations and Kendall rank correlations between the predicted and actual
probabilities.

Figure 6.16: Relationship between the predicted and actual probability of default for the 6 month
forecast horizon.
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Figure 6.17: Relationship between the predicted and actual probability of default for the 9 month
forecast horizon.

Figure 6.18: Relationship between the predicted and actual probability of collection for the 6 month
forecast horizon.
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Figure 6.19: Relationship between the predicted and actual probability of collection for the 9 month
forecast horizon.

Figure 6.20: Distribution plots showing the distribution of behavioral credit risk scores for good
and bad customers for experiment 1-4. Good customers are showed in blue, bad customers in red.

60



Chapter 7
Conclusion

This chapter discusses and interprets the results, tries to answer the research questions
outlined in the introduction, points out the limitations of this thesis, and propose directions
for future research.

7.1 Discussion
This is a very difficult problem. The customers we are trying to classify are new, so we
have limited information about them. Within one to two months of the customer rela-
tionship, the aim is to accurately predict who will default months later. Without knowing
anything about the customers’ spending patterns, it is hard to separate customers that has
no intention of paying their debt from the customers that are simply taking advantage of
the credit and will pay back later. What constitutes a high risk customer is not a binary
decision, but a sliding scale. To do binary classification, a boundary had to be set. Conse-
quently, it is not an easy problem, and the results show that.

Butaru et al. (2016) and Khandani et al. (2010), which were reviewed in chapter 2,
achieved better results. They did however base their prediction on data that spanned over a
much longer time period. Butaru et al. (2016)’s training window, for example, incorporated
data from up to 12 months before the prediction, including lagged variables that captured
changes in the customers spending patterns. Another factor that can explain the differences
in performance, is that Butaru et al. (2016) and Khandani et al. (2010) incorporate accounts
that are already of different degrees delinquent. It is obviously easier to predict if an
account will default if it already is 60 days past due. This is evidenced by the fact that
days past due was found to be the by far most important feature in Butaru et al. (2016)’s
feature analysis.

What could also be learned from Butaru et al. (2016)’s paper, which used credit card
data from six different financial institutions, was that how well it was possible to predict
future delinquency did to some degree depend on the existing risk management practices
at the bank. They found it was harder to predict delinquency at banks where risk were
managed well and the rate of defaults were low.
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This may have contributed to the results not being better than they were. The default
rate for the whole 18 months of the dataset was 2.89%. For the first 6 months it was only
around 1.30%. However, this does not explain why the performance on the datasets using
collection as dependent variable were not better. An explanation here might be that the
behavioral patterns are weaker for this group, and therefore harder to recognize.

This imbalance in the datasets did make learning difficult for the machine learning
algorithms, which is a well known problem when working with imbalanced datasets. As
a result of this, one of the sub goals in this thesis became how to learn from imbalanced
datasets.

For the datasets in this thesis, random oversampling and cost-sensitive methods per-
formed the best overall with about the same performance. Without the use of these tech-
niques the machine learning models performed extremely poorly. For some of the exper-
iments a combination of cost-sensitive methods, informed undersampling and synthetic
oversampling performed slightly better than just cost-sensitive methods or random over-
sampling. The assumption is that by removing overlapping samples using informed un-
dersampling and creating new, synthetic minority class samples, the decision boundary is
made more clear. Cost-sensitive methods are used as the dataset is still imbalanced af-
ter the resampling methods, as creating too many synthetic data points proved to degrade
performance.

Ensemble methods proved to perform the best, as suggested by both Liu and Zhou
(2013) and Butaru et al. (2016). Having few samples from the minority class combined
with oversampling or cost-sensitive methods made overfitting a problem. Random forests
being a method that is robust against overfitting may be why it consistently was among the
top performers for all the experiments.

It is interesting that the performance somewhat correlates with class balance in each
dataset, where the performance improves as the percentage of minority class samples in-
creases. This is to some degree intuitive as more samples means more chances for the
algorithms to learn the patterns that separate the classes. At the same time, one would
think the performance decreases for longer forecasts as the uncertainty will be larger. This
was at least the case in Butaru et al. (2016)’s results, where the performance decreased
for the longer forecast horizons. For our results, this can suggest that the models recog-
nize more generalized patterns of customers that are likely to default, and not necessarily
patterns of customers that are soon going to default.

The longer two-month training window did overall lead to better predictions, but the
improvement was smaller than expected. It did not seem as the machine learning algorithm
managed to capture and take advantage of the increased amount of information contained
in the longer training window. A way to better capture this information, might be to
engineer features that model the changes from the first month to the next. For example if
the balance is increasing, or the payments are decreasing or similar.

Adding transaction data to the training set did not seem to make a significant differ-
ence. In 3.3.2 this concern was addressed. The feature analysis revealed that some of the
transaction features had some predictive power, but most of them were not particularly
useful. Classifying transactions into more descriptive categories might make transaction
data more usable.
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7.2 Research Questions
• At what accuracy can a high risk credit card customer be identified within the first

months of the customer relationship?

Depending on the definition of a high risk customer, the length of the training window
and the length of the forecast horizon, the models developed have a F-measure between
0.31 and 0.42. For experiment 1 where the F-measure is 0.31, for example, this means
that we identify 31% of the customers that will default with a precision of 31%. As said
before, this involves a trade-off. If we look at the precision-recall curve in figure 6.1,
we can shift the threshold value to identify 80% of defaults, but at the cost of having
only 10% precision. Which means that for every actual default identified, 9 customers are
misidentified as defaults. Or we can shift the threshold so we can identify 5% of customers
that will default with a precision of 90%.

To summarize, we can’t accurately identify high risk customers. That is not to say the
models do not have use. This will be further discussed for research question number three.

• What early behavior best predicts a high risk customer?

As the classification results are not very accurate, we have to keep in mind that the
feature analysis in 6.4 likely reveals more generalized behavioral patterns of high risk cus-
tomers, and not necessarily specialized patterns that are exclusive to high risk customers.

The most predictive behavior, using the feature importances, seem to be spending,
withdrawing and transferring large amounts right after receiving the credit card. Turnover-

AtStart, FundTransferAtStar, CashAtStart and PurchaseAtStart are all features that are
ranked in the top 20 most important features. These features refer to the different types of
spending the first 14 days after the account is created. Related to this behavior is taking
use of the card right away, which in addition to being identified as a important feature in
the feature analysis, was identified in section 3.2.2 and shown in figure 3.4.

Other intuitive behavioral patterns are general high spending patterns. Having a high
balance at the end of the month, large spending compared to the credit limit, high total
spending, large fund transfers, spending over the credit limit and to overdraft the credit
card. A similar factor is having to pay high fees, but that is generally a result of the
aforementioned spending patterns.

Predictors that are not behavioral, but can be indicators of high risk customers, are
low credit score, low income and having debt. Also, young men seem to be more likely
to be high risk customers. It is interesting that credit limit also seem to somewhat of an
indicator. This may be explained by customers in financial trouble asking for higher credit
limits, but it is far from a strong indicator, however.

For longer training windows, the same patterns are found, but the more recent obser-
vations are weighted more.

• Can a predictive model be used as a dynamic behavioral model to make decisions

regarding existing customers?

While the models devolved in this thesis are not accurate enough to make hard risk
management decisions like cutting the credit line of an account, the models may be used
for decisions more in line with the risk management strategy outlined in chapter 1.
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As said in the answer to research question one, most high risk accounts can be iden-
tified on account of many false positives. The number of false positives is however very
small compared to the total number of accounts. On the other side, some high risk accounts
can be identified with high confidence. This can be usable for scoring customers.

In 6.5 we used the model outputs as credit scores and saw that the predicted probabil-
ities of default and collection are relatively strongly correlated with the realized probabil-
ities of those events. The distribution of predicted probabilities also seemed to have good
separation. All of this makes the models to different degrees usable as credit risk scoring
models.

For example, the models could be used to split customers into groups of similar risk. If
we have three groups, customers could be split into a low risk group, an elevated risk group
and a high risk group. Different risk management actions could then be taken for different
groups. An example here could be that, if a customer wishes to have a higher credit limit,
low risk customers would get automatically granted, while the elevated risk group would
be reviewed or maybe denied, and the high risk group would get automatically denied or
even decreased instead.

7.3 Limitations
As limitations of the implementation was discussed in section 5.4, this section will point
out limitations regarding other aspects of this thesis.

It was decided from the start that this thesis would be limited to look at only the start
of the customer relationship, trying to identify high risk customers at an early stage. Thus
the models developed are limited to be used only after the first and second month of the
customer relationship.

The dataset used in this thesis is not entirely suitable for the problem in this thesis.
Because data is aggregated for the end of the month, and customers create their accounts
at any time during a month, customers are not necessarily on the same scale during the
first month. The transaction data could in theory have been used to address this problem,
but that would require much more time.

Estimation of potential profits if implementing the models developed would have been
a natural addition to this thesis. However, as the author does not have knowledge in this
domain, the estimation is therefore left for the bank to look at, and is thus a limitation of
this thesis.

7.4 Future Work
As noted in section 5.4, there are possibly many hidden feature interactions in the dataset
that can provide better class separation if found. Engineering better features and selecting
a more optimal subset of features may improve performance significantly. Related to this
is finding the best combination of training window size and forecast horizon length for
making the best possible credit scoring model.

As this thesis is limited to the start of the customer relationships, future works could
try to make a more dynamic model not limited by the when a credit card account was
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created. Similar to the works by Butaru et al. (2016) and Khandani et al. (2010), but
possibly shorter training window lengths while still trying to capture changes from month
to month.

Future work could also look at other machine learning algorithms for this type of prob-
lem. Artificial neural networks have shown promise for imbalanced dataset problems, for
instance. A recurrent neural network architecture called Long short-term memory (LSTM)
could be interesting to apply to this type of forecasting problem when using multiple
months for training. This type of network could also be used to develop more dynamic
models. A drawback with using neural networks, however, is that they are black boxes.
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Appendix

Feature Importances

Table 1: Feature importances for experiments using a one month training window. The table is
sorted on average importance and is descending.

Features Default Collection Average

TurnoverAtStart 0.08992 0.07836 0.08414
SpendingVelocity 0.06163 0.04389 0.05276
ScoreValueVedOppstart 0.0318 0.04981 0.04081
CustomerAge 0.03535 0.04493 0.04014
TurnoverDomAmt 0.0389 0.03759 0.03824
TotalFeeAmt 0.03947 0.03652 0.03799
TAX NET INCOME AMT 0.03602 0.03977 0.0379
DaysFromCreatedToFirstUse 0.03641 0.03655 0.03648
BALANCE AMT 0.03847 0.03342 0.03594
FundTransferAtStart 0.03516 0.03639 0.03577
TAX TOTAL TAX AMT 0.03306 0.03559 0.03432
APPL GROSS INCOME AMT 0.03038 0.03527 0.03282
TurnoverAmt 0.02997 0.026 0.02799
TAX GROSS INCOME AMT 0.02539 0.03016 0.02778
TAX WEALTH AMT 0.02279 0.02612 0.02445
CashAtStart 0.02439 0.01928 0.02183
TotalFeeNum 0.01754 0.01824 0.01789
PurchaseAtStart 0.01568 0.01952 0.0176
FundtransferAmt 0.01622 0.01667 0.01644
OverLimitFlag 0.02229 0.01058 0.01644
OverdraftFlag 0.02059 0.01034 0.01547
SalesProdCat Ordinær 0.01745 0.01294 0.01519
TurnoverDomNum 0.01423 0.01371 0.01397
CreditLimitAmt 0.01256 0.01498 0.01377
APPL OTHER DEBT AMT 0.01159 0.0119 0.01175
PurchaseAmt 0.00951 0.01238 0.01094
APPL MORTGAGES AMT 0.01079 0.01104 0.01091
FundtransferNum 0.01002 0.0109 0.01046
TurnoverNum 0.01036 0.01026 0.01031
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CashDomAmt 0.01007 0.0089 0.00949
Gender Mann 0.00737 0.01153 0.00945
PurchaseDomAmt 0.00789 0.00959 0.00874
SalesProdCat Kampanje 0.00992 0.00755 0.00874
PurchaseNum 0.00646 0.00822 0.00734
PaymentsAmt 0.00656 0.00701 0.00678
PurchaseDomNum 0.00633 0.00715 0.00674
CashDomNum 0.00653 0.00691 0.00672
CashAmt 0.00725 0.00609 0.00667
TurnoverIntAmt 0.00421 0.00665 0.00543
AppSalesCh Operatørkanal 0.0052 0.00549 0.00534
CHANNEL TYPE INTERNAL 0.00516 0.00544 0.0053
EMPLOYMENT TYPE Perm employee 0.0041 0.00527 0.00468
TAX CLASS 1E 0.00324 0.00584 0.00454
DIST SpareBank 1 Oslo Akershus 0.00547 0.00354 0.0045
PurchaseIntAmt 0.00333 0.00537 0.00435
TAX CLASS 1 0.00361 0.00489 0.00425
CHANNEL TYPE CREDITCARD BPM 0.00432 0.00374 0.00403
AppSalesCh Nettbank 0.00377 0.0038 0.00378
CashNum 0.0035 0.00331 0.0034
DormantFlag 0.00319 0.00346 0.00333
CHANNEL TYPE AUTH WEB 0.0051 0.00149 0.0033
DIST SpareBank 1 SR-Bank 0.00294 0.00365 0.00329
AppSalesCh Autentisert web 0.00503 0.00148 0.00326
FullpayerFlag 0.00308 0.00343 0.00325
DIST SpareBank 1 SMN 0.00294 0.00345 0.0032
TurnoverIntNum 0.00268 0.00359 0.00313
DIST SpareBank 1 Nord-Norge 0.00288 0.00336 0.00312
ElectronicPurchaseAmt 0.00248 0.00375 0.00312
PaymentsNum 0.00275 0.00345 0.0031
APPL STUDENT LOAN AMT 0.00279 0.00339 0.00309
AppSalesCh Responsside 0.00268 0.00319 0.00294
PROD SpareBank 1 MasterCard Gold 0.00217 0.0028 0.00249
PurchaseIntNum 0.00205 0.00283 0.00244
ActiveAccountFlag 0.0028 0.00194 0.00237
SumOf6ActiveTrxnFlags 0.00261 0.00186 0.00223
CHANNEL TYPE CRM LANDING PAGE 0.00191 0.00229 0.0021
ElectronicPurchaseIntAmt 0.0018 0.00239 0.0021
EMPLOYMENT TYPE Not set 0.00211 0.00207 0.00209
PROD SH GOLD MC 0.00171 0.0022 0.00196
DIST Sparebanken Hedmark 0.0017 0.00221 0.00196
SalesProdCat Boliglån 0.00195 0.00191 0.00193
CHANNEL TYPE -2 0.00171 0.00195 0.00183
ElectronicPurchaseNum 0.00165 0.00184 0.00175
EMPLOYMENT TYPE Temp employee 0.00171 0.00165 0.00168
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CashIntAmt 0.00141 0.00191 0.00166
EMPLOYMENT TYPE Student 0.00165 0.00166 0.00166
CHANNEL TYPE INTERNET BANK 0.00139 0.0016 0.0015
ElectronicPurchaseDomAmt 0.00122 0.00162 0.00142
TAX CLASS nan 0.00176 0.00105 0.00141
ElectronicPurchaseIntNum 0.00131 0.00128 0.00129
CashIntNum 0.00115 0.00142 0.00128
EMPLOYMENT TYPE Self-employed 0.00152 0.00097 0.00124
EMPLOYMENT TYPE Retired 0.00104 0.00132 0.00118
DIST SpareBank 1 Telemark 0.00094 0.00128 0.00111
HAS ESTATEMENT AGREEMENT IND 0.0005 0.00154 0.00102
EMPLOYMENT TYPE Disability benefit 0.00107 0.00094 0.00101
DIST SpareBank 1 Østfold Akershus 0.001 0.00101 0.001
DIST SpareBank 1 BV 0.0009 0.0008 0.00085
SalesProdCat Ung/Student 0.00103 0.00064 0.00083
PROD SpareBank 1 Visa Gold 0.0006 0.00073 0.00067
TAX CLASS 2F 0.00059 0.00067 0.00063
ElectronicPurchaseDomNum 0.00054 0.00067 0.00061
DIST SpareBank 1 Nordvest 0.0007 0.00049 0.0006
DIST SpareBank 1 Ringerike Hadeland 0.00044 0.0006 0.00052
DIST SpareBank 1 Søre Sunnmøre 0.00042 0.0003 0.00036
DIST SpareBank 1 Nøtterøy-Tønsberg 0.00043 0.00028 0.00036
TAX CLASS 2 0.00024 0.00034 0.00029
DIST SpareBank 1 Hallingdal Valdres 4e-05 0.00033 0.00018
CHANNEL TYPE OPEN WEB 0.00033 3e-05 0.00018
AppSalesCh Open web 0.00033 3e-05 0.00018
HasSupplementaryCard 6e-05 0.00025 0.00016
DIST SpareBank 1 Modum 7e-05 0.0002 0.00013
EMPLOYMENT TYPE Other 0.00011 0.00013 0.00012
DIST SpareBank 1 Gudbrandsdal 8e-05 0.00016 0.00012
CLOSING BALANCE AMT 0.00011 9e-05 0.0001
PROD Sparebank 1 Platinum MC 2e-05 0.00017 9e-05
SalesProdCat Platinum 2e-05 0.00016 9e-05
MINIMUM TO PAY AMT 0.00011 7e-05 9e-05
EMPLOYMENT TYPE Not working 7e-05 5e-05 6e-05
INTEREST EARNING LENDING AMT 6e-05 4e-05 5e-05
SalesProdCat nan 5e-05 2e-05 3e-05
HAS DIRECT DEBIT AGREEMENT IND 2e-05 5e-05 3e-05
DIST SpareBank 1 Lom og Skjåk 1e-05 4e-05 3e-05
RevolvingFlag 3e-05 2e-05 2e-05
TAX CLASS 0 0.0 0.0 0.0
PROD SB1 EXTRA MC 0.0 0.0 0.0
TOTAL PAYMENTS AMT 0.0 0.0 0.0
EMPLOYMENT TYPE Social security 0.0 0.0 0.0
EMPLOYMENT TYPE Unemployed 0.0 0.0 0.0
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TAX CLASS 2E 0.0 0.0 0.0
ClosedDuringPeriodFlag 0.0 0.0 0.0
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Table 2: Feature importances for the experiments that used a two month training window. The
numbers at the end of the feature names indicate month. Features without a number at the end are
static features. The table is sorted on average importance and is descending.

Features Default Collection Average

BALANCE AMT 2 0.04813 0.05295 0.05054
OverLimitFlag 2 0.05744 0.03742 0.04743
AvgBalanceAmt 2 0.03932 0.04484 0.04208
TotalFeeAmt 2 0.04276 0.03883 0.04079
Innbetalinger sum 0.03418 0.03578 0.03498
PaymentsAmt 2 0.02996 0.03199 0.03097
MaxBalanceAmt 2 0.02761 0.0276 0.0276
TotalFeeNum 2 0.02826 0.02497 0.02662
Innbetalinger count 0.02414 0.02528 0.02471
MinBalanceAmt 2 0.02549 0.02392 0.0247
TurnoverAtStart 0.02476 0.01988 0.02232
PaymentsNum 2 0.02204 0.02246 0.02225
INTEREST EARNING LENDING AMT 2 0.0214 0.02271 0.02205
SpendingVelocity 2 0.02061 0.02004 0.02033
OverdraftFlag 2 0.02328 0.01161 0.01744
SpendingVelocity 1 0.01868 0.01451 0.0166
CustomerAge 0.01351 0.01797 0.01574
Service Providers sum 0.01575 0.01564 0.0157
ScoreValueVedOppstart 0.0105 0.01834 0.01442
TAX NET INCOME AMT 0.0135 0.01508 0.01429
TotalFeeAmt 1 0.01435 0.01215 0.01325
TAX TOTAL TAX AMT 0.01253 0.01382 0.01317
TurnoverDomAmt 2 0.01163 0.01415 0.01289
BalanceChangeAmt 2 0.01145 0.01321 0.01233
DaysFromCreatedToFirstUse 0.01234 0.01176 0.01205
TurnoverDomAmt 1 0.01237 0.01138 0.01187
APPL GROSS INCOME AMT 0.01078 0.01191 0.01135
FundTransferAtStart 0.01156 0.00999 0.01078
TurnoverAmt 2 0.00975 0.01135 0.01055
TAX GROSS INCOME AMT 0.00947 0.0113 0.01038
BALANCE AMT 1 0.01093 0.00966 0.0103
Service Providers count 0.01003 0.01007 0.01005
CLOSING BALANCE AMT 2 0.00931 0.00912 0.00921
TurnoverAmt 1 0.0093 0.00813 0.00872
RevolvingFlag 2 0.00882 0.00822 0.00852
TurnoverDomNum 2 0.007 0.00917 0.00808
PurchaseAmt 2 0.00646 0.0095 0.00798
CashDomAmt 2 0.00923 0.00667 0.00795
MINIMUM TO PAY AMT 2 0.00874 0.00628 0.00751
TotalFeeNum 1 0.00744 0.00703 0.00723
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TurnoverNum 2 0.00612 0.00714 0.00663
CashDomNum 2 0.00808 0.0049 0.00649
FundtransferAmt 1 0.00668 0.0061 0.00639
FundtransferAmt 2 0.00627 0.00642 0.00634
CashAmt 2 0.00725 0.00534 0.0063
PurchaseDomAmt 2 0.00489 0.00715 0.00602
TAX WEALTH AMT 0.00561 0.00642 0.00602
CreditLimitAmt 2 0.00536 0.00578 0.00557
PurchaseNum 2 0.00489 0.00599 0.00544
CreditLimitAmt 1 0.00517 0.00564 0.00541
Retail Stores sum 0.00451 0.0062 0.00536
PurchaseDomNum 2 0.00454 0.00617 0.00535
TurnoverIntAmt 2 0.00396 0.00617 0.00507
Others sum 0.00335 0.00636 0.00485
Miscellaneous Stores sum 0.00368 0.00595 0.00481
TurnoverDomNum 1 0.00475 0.00473 0.00474
OVERDUE AMT 2 0.0053 0.0038 0.00455
PurchaseIntAmt 2 0.0032 0.00579 0.00449
FundtransferNum 1 0.00433 0.00422 0.00428
FundtransferNum 2 0.00447 0.00403 0.00425
PurchaseAtStart 0.00342 0.00483 0.00413
OverdueFlag 2 0.00451 0.0036 0.00406
PaymentOverDueFlag 2 0.0046 0.00341 0.00401
Renter sum 0.0049 0.00311 0.004
CashNum 2 0.00475 0.00313 0.00394
HAS ESTATEMENT AGREEMENT IND 2 0.00207 0.0056 0.00383
TurnoverNum 1 0.0037 0.00384 0.00377
Retail Stores count 0.00313 0.00427 0.0037
FullpayerFlag 2 0.00434 0.00289 0.00362
PurchaseAmt 1 0.00303 0.00378 0.0034
Others count 0.00256 0.00425 0.0034
CashAtStart 0.00401 0.00272 0.00337
OverLimitFlag 1 0.00429 0.00216 0.00323
APPL MORTGAGES AMT 0.00299 0.00341 0.0032
APPL OTHER DEBT AMT 0.00322 0.00306 0.00314
Miscellaneous Stores count 0.00286 0.0033 0.00308
TurnoverIntNum 2 0.00257 0.00354 0.00306
SalesProdCat Ordinær 0.00374 0.00236 0.00305
OverdraftFlag 1 0.0038 0.00208 0.00294
Clothing Stores sum 0.00214 0.00358 0.00286
PurchaseDomAmt 1 0.00241 0.00307 0.00274
PurchaseIntNum 2 0.00208 0.00311 0.0026
ElectronicPurchaseAmt 2 0.00177 0.00317 0.00247
PurchaseNum 1 0.00227 0.00243 0.00235
SalesProdCat Kampanje 0.00226 0.00219 0.00222
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Transportation sum 0.00168 0.00269 0.00218
PurchaseDomNum 1 0.0021 0.00226 0.00218
CashIntAmt 2 0.00236 0.00196 0.00216
CashDomAmt 1 0.00243 0.00188 0.00216
Gender Mann 0.00136 0.00253 0.00194
ACC STATUS NUM 2 0.00228 0.0016 0.00194
Renter count 0.00225 0.00132 0.00179
CashAmt 1 0.00195 0.00161 0.00178
TAX CLASS 1E 0.00123 0.00224 0.00174
ElectronicPurchaseIntAmt 2 0.00124 0.00212 0.00168
CHANNEL TYPE INTERNAL 0.0016 0.00165 0.00162
AppSalesCh Operatørkanal 0.00156 0.00165 0.00161
DormantFlag 1 0.00147 0.00171 0.00159
TAX CLASS 1 0.00103 0.00209 0.00156
Utilities sum 0.00237 0.00072 0.00155
CashDomNum 1 0.00177 0.00124 0.0015
Includes all lodging merchants sum 0.00123 0.00174 0.00149
Clothing Stores count 0.00112 0.00179 0.00146
FullpayerFlag 1 0.00134 0.00152 0.00143
TurnoverIntAmt 1 0.00108 0.00157 0.00133
ElectronicPurchaseNum 2 0.00121 0.00141 0.00131
CHANNEL TYPE CREDITCARD BPM 0.0014 0.00116 0.00128
EMPLOYMENT TYPE Perm employee 0.00109 0.00141 0.00125
AppSalesCh Nettbank 0.00116 0.00133 0.00125
CashIntNum 2 0.00126 0.0012 0.00123
Transportation count 0.00097 0.00134 0.00116
PurchaseIntAmt 1 0.00093 0.00133 0.00113
ElectronicPurchaseDomAmt 2 0.00086 0.00135 0.0011
PaymentsAmt 1 0.00111 0.00107 0.00109
CashNum 1 0.00116 0.00085 0.00101
ElectronicPurchaseIntNum 2 0.001 0.00098 0.00099
Business Services sum 0.00095 0.00098 0.00097
Utilities count 0.0015 0.00035 0.00093
ElectronicPurchaseAmt 1 0.00079 0.00102 0.0009
SumOf6ActiveTrxnFlags 1 0.00087 0.00079 0.00083
Airlines sum 0.00054 0.00111 0.00082
Amusement and Entertainment sum 0.00074 0.00091 0.00082
AppSalesCh Responsside 0.0007 0.0009 0.0008
TurnoverIntNum 1 0.00071 0.00084 0.00078
PROD SpareBank 1 MasterCard Gold 0.00065 0.0009 0.00078
SumOf6ActiveTrxnFlags 2 0.00076 0.00076 0.00076
EMPLOYMENT TYPE Not set 0.00078 0.00064 0.00071
PurchaseIntNum 1 0.00065 0.00073 0.00069
ElectronicPurchaseIntAmt 1 0.00061 0.00068 0.00065
PROD SH GOLD MC 0.00047 0.00076 0.00062
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ElectronicPurchaseNum 1 0.00066 0.00054 0.0006
Includes all lodging merchants count 0.00057 0.00062 0.00059
TOTAL PAYMENTS AMT 2 0.00058 0.00061 0.00059
CHANNEL TYPE -2 0.0006 0.00054 0.00057
CHANNEL TYPE INTERNET BANK 0.00067 0.00043 0.00055
SalesProdCat Boliglån 0.00046 0.00059 0.00053
Pro. Services and Organizations sum 0.00049 0.00056 0.00053
ElectronicPurchaseIntNum 1 0.00061 0.00042 0.00052
CHANNEL TYPE CRM LANDING PAGE 0.0004 0.00063 0.00051
ElectronicPurchaseDomNum 2 0.00046 0.00055 0.00051
APPL STUDENT LOAN AMT 0.00039 0.00061 0.0005
Business Services count 0.00048 0.00047 0.00048
TAX CLASS nan 0.00067 0.00026 0.00047
PaymentsNum 1 0.00039 0.00052 0.00046
HAS DIRECT DEBIT AGREEMENT IND 2 0.00036 0.00053 0.00045
Amusement and Entertainment count 0.0004 0.00046 0.00043
Airlines count 0.00036 0.00046 0.00041
ElectronicPurchaseDomAmt 1 0.00034 0.00043 0.00038
EMPLOYMENT TYPE Student 0.00038 0.00032 0.00035
CHANNEL TYPE AUTH WEB 0.00045 0.00022 0.00034
AppSalesCh Autentisert web 0.00046 0.00022 0.00034
EMPLOYMENT TYPE Disability benefit 0.00028 0.00031 0.00029
Pro Services and Organizations count 0.00031 0.00027 0.00029
EMPLOYMENT TYPE Temp employee 0.00034 0.00024 0.00029
EMPLOYMENT TYPE Retired 0.00025 0.0003 0.00027
DormantFlag 2 0.00019 0.00027 0.00023
CashIntAmt 1 0.00021 0.00025 0.00023
PROD SpareBank 1 Visa Gold 0.00026 0.0002 0.00023
EMPLOYMENT TYPE Self-employed 0.00017 0.00028 0.00022
Wholesale Distrubutors sum 0.00011 0.00033 0.00022
SalesProdCat Ung/Student 0.0002 0.00019 0.00019
Mail Order / Tlf Order Providers sum 0.0002 0.00015 0.00018
TAX CLASS 2F 0.0002 0.00013 0.00017
CashIntNum 1 0.00014 0.00019 0.00016
ElectronicPurchaseDomNum 1 0.00017 0.00016 0.00016
Contracted Services sum 0.00013 0.00016 0.00014
Wholesale Distrubutors count 7e-05 0.00021 0.00014
Repair Services sum 4e-05 0.00023 0.00014
Automobile / Vehicle Rental sum 0.0001 0.00016 0.00013
Annet sum 0.00018 5e-05 0.00012
Government Services sum 4e-05 0.00018 0.00011
HAS ESTATEMENT AGREEMENT IND 1 6e-05 0.00015 0.00011
Mail Order / Tlf Order Providers count 0.00012 9e-05 0.00011
Annet count 0.00015 3e-05 9e-05
Contracted Services count 8e-05 8e-05 8e-05
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TAX CLASS 2 8e-05 7e-05 8e-05
Automobile / Vehicle Rental count 7e-05 8e-05 8e-05
Repair Services count 3e-05 0.00012 8e-05
EMPLOYMENT TYPE Other 2e-05 0.00013 8e-05
HasSupplementaryCard 2e-05 0.00011 6e-05
CreditLimitChangeAmt 2 7e-05 3e-05 5e-05
Government Services count 3e-05 7e-05 5e-05
CreditLimitIncreaseFlag 2 7e-05 2e-05 5e-05
EMPLOYMENT TYPE Not working 8e-05 0.0 4e-05
OPENING BALANCE AMT 2 6e-05 2e-05 4e-05
CLOSING BALANCE AMT 1 5e-05 2e-05 3e-05
INTEREST EARNING LENDING AMT 1 5e-05 2e-05 3e-05
MINIMUM TO PAY AMT 1 5e-05 1e-05 3e-05
SalesProdCat Platinum 1e-05 5e-05 3e-05
PROD Sparebank 1 Platinum MC 1e-05 5e-05 3e-05
InterestPostedAmt 2 3e-05 2e-05 2e-05
SumOf6ActiveStmtFlags 2 3e-05 1e-05 2e-05
RevolvingFlag 1 3e-05 1e-05 2e-05
SumOf12ActiveStmtFlags 2 2e-05 1e-05 2e-05
CHANNEL TYPE OPEN WEB 2e-05 0.0 1e-05
SalesProdCat nan 0.0 1e-05 0.0
HAS DIRECT DEBIT AGREEMENT IND 1 0.0 1e-05 0.0
AppSalesCh Open web 1e-05 0.0 0.0
FirstDunningFlag 2 0.0 0.0 0.0
TOTAL PAYMENTS AMT 1 0.0 0.0 0.0
EMPLOYMENT TYPE Social security 0.0 0.0 0.0
CreditLimitDecreaseFlag 2 0.0 0.0 0.0
EMPLOYMENT TYPE Unemployed 0.0 0.0 0.0
TAX CLASS 0 0.0 0.0 0.0
PROD SB1 EXTRA MC 0.0 0.0 0.0
TAX CLASS 2E 0.0 0.0 0.0
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