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Abstract

As computer systems and networks grow in size and complexity, traditional top-down en-
gineering techniques are quickly beckoming inadequate for achieving the desired results.
Designing such systems that are robust and resilient, are able to adapt and self-regulate,
can self-reproduce and learn autonomously is a tremendously hard task. These features
are however present in many biological organisms, wherein they emerge through evolu-
tion and development. In the fields of unconventional and biologically inspired computing,
these techniques are used to create computing systems with the same type of complexity
as that found in biological systems. Cellular Automata (CAs) are an example of a biolog-
ically inspired computing system that can achieve complex, global computation through
local interaction between simple cells at a vast scale.

While the computational capabilities of CAs have been researched extensively, they have
not seen mainstream adaption as a computational paradigm. Programmability and encod-
ing/decoding of input/output are two major challenges facing cellular computing systems.
Manually specifying the functionality of each cell in such a way that the desired emergent
global behavior of the CA as a whole is achieved, is infeasible for non-trivial systems.
Problem input is usually encoded in the initial state of the system, and output is decoded
from the state after the system has been simulated some amount of time.

The Cellular Automata Research Platform (CARP) is an FPGA-based implementation of
a developmental cellular architecture, aiming to facilitate research into use of artificial
development and evolution to create cellular computing systems. At an abstract level,
it implements a dynamical system with dynamical structure (DS)2, a system for which
both behavior and structure are emerging properties. Behavior influences further structural
development and vice versa.

In this thesis, the platform is extended to incorporate the developmental CA into a reser-
voir computing architecture. Reservoir computing (RC) is a novel approach to machine
learning in which temporal input is imposed as perturbations on a dynamic reservoir and
output is read out by performing a linear classification of the reservoir state some time af-
ter the initial perturbation. By combining RC and developmental CAs, the CARP system
solves many of the issues relating to programming of and I/O encoding/decoding with cel-
lular computing systems. It also opens up new possibilities for the developed organisms
to adapt and learn based on their environment. The CARP platform has been extended
with a reconfigurable readout layer implemented as a spiking neural network (SNN) that
classifies the dynamics of the reservoir, the developmental CA. An SNN is chosen to allow
the system operate entirely in the spiking domain, as input data and the dynamic behavior
of the reservoir is already spiking in nature.

The extended platform has been verified through extensive testing, both in simulation and
end-to-end on actual hardware.
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Sammendrag

Etter hvert som datasystemer og nettverk vokser i størrelse og kompleksitet, er tradis-
jonelle topp-ned teknikker raskt blitt utilstrekkelige for å oppnå de ønskede resultatene. Å
designe robuste systemer som er i stand til å tilpasse seg og selvregulere, som kan selvre-
produsere og lære autonomt er en utrolig vanskelig oppgave. Disse egenskapene er imi-
dlertid tilstede i mange biologiske organismer, hvor de fremkommer gjennom evolusjon
og utvikling. I forskningsområdene ukonvensjonell og biologisk inspirert databehandling
brukes disse teknikkene til å lage beregningsarkitekturer med samme type kompleksitet
som det som finnes i biologiske systemer. Cellulære Automata (CA) er et eksempel på
et biologisk inspirert datasystem som kan oppnå komplisert, global beregning gjennom
lokalt samspill mellom enkle celler i stor skala.

Mens beregningsevnen til CAer har blitt forsket på over lengre tid, har de ikke blitt
tatt i bruk som et beregningsmessig paradigme i stor skala. Programmerbarhet og kod-
ing/dekoding av data inn og ut er to store utfordringer for cellulære datasystemer. Manuell
spesifisering av funksjonaliteten til hver celle på en slik måte at den ønskede fremtre-
dende globale oppførselen til CAen som helhet oppnås, er praktisk ugjennomførbart for
ikke-trivielle systemer. Input data til problemet er vanligvis kodet i systemets innledende
tilstand, og data ut dekodes fra tilstanden etter at systemet har blitt simulert over tid.

Cellular Automata Research Platform (CARP) er en FPGA-basert implementasjon av en
cellulær arkitektur, med sikte på å fasilitere forskning på bruk av kunstig utvikling og
evolusjon for å skape cellulære datasystemer. På et abstrakt nivå implementerer plattfor-
ment et dynamisk system med dynamisk struktur (DS)2, et system hvor både oppførsel
og struktur er fremvoksende egenskaper. Atferd påvirker videre strukturell utvikling og
omvendt.

I denne oppgaven blir plattformen utvidet til å inkorporere kunstig utviklede CAer i en
reservoir computing arkitektur. Reservoir Computing (RC) er en ny tilnærming til maskin-
læring hvor temporal inndata påføres som forstyrrelser på et dynamisk reservoar, og data
leses ut ved å utføre en lineær klassifisering av reservoar-tilstanden en stund etter den
første forstyrrelsen. Ved å kombinere RC og utviklings-CA, løser CARP-systemet mange
av problemene knyttet til programmering av og I/O enkoding/dekoding av cellulare bereg-
ningsarkitekturer. Det åpner også nye muligheter for de utviklede strukturene til å tilpasse
seg og lære basert på deres miljø. CARP-plattformen er utvidet med et rekonfigurerbart
avlesingslag implementert som et spiking neural network (SNN) som klassifiserer dy-
namikken i reservoaret, en cellulær struktur under utvikling. En SNN er valgt for å tillate at
systemet opererer helt i spiking-domenet, ettersom data inn og den dynamiske oppførelsen
av reservoaret allerede er spikes.

Den utvidede plattformen har blitt verifisert gjennom omfattende testing, både i simulering
og ende-til-ende på faktisk maskinvare.
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Chapter 1
Introduction

In recent years, research into computation using non-traditional physical mediums and
paradigms, so called unconventional computing, has seen increased interest. With chal-
lenges currently facing traditional architectures, such as the von Neumann bottleneck and
ensuring continued scalability and reliability, unconventional computating presents pos-
sible solutions from a new perspective. Biologically inspired computing is one approach
to unconventional computating. It seeks to apply evolution, developement and other bio-
logical processes onto the design of both computer architectures and artificial intelligence
systems. A common trait for many biological systems is that complex behaviour emerges
from local interactions between simple units, whereas traditional computer architectures
have been designed in a top-down fashion, composing complex modules and directing
how information should flow between them. Alongside complex emergent behavior, bio-
logical systems often exhibit abilities such as self-reproduction, self-regulation and strong
adaptability. These are desireable properties in computing systems, but they are hard to
implement.

Cellular computing, introduced by Sipper in [34], is one example of a paradigm utilizing
a bottom-up design methodology. Consisting of three core principles; simplicity, vast
parallelism and locality, cellular computing seeks to harness the emergence of complex
global behaviour from local interaction between simple cells at a large scale. One of the
central problems with the paradigm is how one should go about designing/programming
cellular systems. Specifying the functionality and potentially the connectivity of each
cell manually while ensuring that the desired behaviour is achieved at a global level, is
infeasible, so a different approach is needed. A potential solution is to automate the design
through artificial evolution [35].

The POE-model, introduced by Sanchez et al [33], is a taxonomy commonly used to de-
scribe bio-inspired design methodologies using three categories: phylogeny, ontogeny and
epigenesis. Phylogenesis relates to evolution, ontogeny encompasses systems that mimic
biological development and epigenetic systems adapt to environmental change. These cat-
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egories are not mutually exclusive. The use of artificial evolution to program a cellular
computing system is an example of an phylogenetic system.

In artificial evolution, an individual represents a potential solution to some problem. In the
case of using evolution to design cellular computing systems, the individual, or genome,
has to encode both the behavior of each cell as well as the system, or organism, as a whole
in order to represent a complete solution. This means that the size of the genome grows
linearly with the size of the organism. In natural evolution, the genome has a different role.
It serves as a set of rules governing the growth and development of cells at a local level,
based on the types of surrounding cells and environmental feedback. This can be incor-
porated into the cellular computing paradigm as an ontogenetic aspect [41]. By evolving
the developmental rules instead of the system as a whole, arbitrarily large and complex
organisms can develop from a single cell based on a genome of fixed size. Systems that
separate growth and behavior in this manner are called dynamical systems with dynamical
structure (DS2) [42].

The Cellular Automata Research Platform (CARP) is a long-running project at NTNU,
dedicated to developing hardware that facilitates research into artificial evolution and de-
velopment of cellular computing architectures. Based on the Virtual SBlock architecture
presented by Haddow and Tufte [13], the system consists of programmable cells laid out
in a regular one-, two- or three-dimensional grid, where each cell is connected to the cells
in the von Neumann neighborhood around it. Cells can be in one of two states, either alive
or dead. Based on their type, cells are programmed with a look-up-table (LUT) govern-
ing the transition between states based on the states of neighboring cells and the state of
the cell itself. All cells are updated synchronously in discrete time steps. Development
is simulated as a separate process, wherein cells transition between types using a LUT of
development rules, taking both states and types of neighboring cells as input. This process
also happens synchronously and in descrete development steps.

The CARP system is implemented on reconfigurable hardware, an FPGA, and is controlled
by a program running on a host computer. Typically, the host program will implement the
phylogenetic aspect of the system by evolving a population wherein each individual is
a set of developmental rules. The CARP hardware is used to assess the fitness of each
individual through development and simulation of the cellular organism.

Reservoir Computing (RC) is an exciting, new field of research within machine learning
and intelligent systems. RC-systems work by imposing input data as perturbations on
a dynamic system (the reservoir), and performing a linear classification of the reservoir
state some time after the initial perturbation. Feedback from the classifier is routed back
into the reservoir to allow it to regulate and adapt based on its own performance. In the
specialization project leading up to this thesis, a proof of concept of a cellular reservoir
and a readout layer implemented as a spiking neural network was simulated in software,
with positive results. A common problem with cellular computing systems is that due
to their very nature, it is often hard to formulate problems correctly and to interpret the
dynamics of the system as answers to those problems. Combining the developmental,
cellular architectures of the CARP system with the abstract computational concept of the
RC paradigm will yield a more consistent framework for applying cellular computing to
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real-world problems.

In this thesis, the CARP system has been extended to include epigenetic aspects into
the design and development of cellular architectures. This is done by adding a trainable
readout-module based on spiking neural networks which processes the dynamic behavior
of cells in real-time and feeding its output back into the cellular reservoir. The system has
also been ported to run on new hardware and the codebase has been partially ported to
Chisel, a hardware definition domain specific language implemented in Scala.

1.1 Outline

This thesis is organized in the following chapters:

• Chapter 2 - Background: An overview of theoretical concepts on which the work
presented in this thesis is built upon. Also gives an introduction to FPGA technology
as well as an overview of some related work.

• Chapter 3 - Previous Work: A review of the history of the CARP project.

• Chapter 4 - Platform: Information regarding the physical hardware used to run the
platform and the toolchains used to develop the project.

• Chapter 5 - Implementation: An overview of the implemented system and its
constituent parts.

• Chapter 6 - Verification: Descriptions of tests used to verify system functionality.

• Chapter 7 - Discussion: A review of challenges with the system implemented in
this thesis and possible future work.

• Chapter 8 - Conclusion: Conluding remarks.

• Appendices

3
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Chapter 2
Background

2.1 Evolution

In nature, evolution is the process governing change and preservation of hereditary traits in
populations of biological organisms. It allows species to adapt to their environment over
generations through reproduction, variation and survival of the fittest [6].

Artificial evolution seeks to harness the powerful adaptive capabilities of natural evolution
and apply them to general problem solving and learning. While research on the subject
has branched into many different sub-areas, the general concept of optimizing a population
of individuals with respect to some fitness function using mechanisms inspired by natural
evolution, is referred to using the umbrella term Evolutionary Computation (EC) [2].

One of the greatest strengths of EC is how universally applicable it is. Evolutionary algo-
rithms have successfully been applied to many different problem domains, such as robotics
[10], bioinformatics [18], medicine [9] and many more.

2.1.1 Genetic Algorithm

The most common type of EA is the Genetic Algorithm (GA) [12]. GAs use, as shown
in 2.1, genetic operators such as mutation, crossover and selection to evolve a population
of potential solutions to a problem, subject to some fitness function. The fitness function
deems how fit an individual is, and thereby how likely it is to be selected for reproduction.
It is a measure of how well the indivual performs as a solution to the problem at hand.
The algorithm continues until an individual with a fitness higher than some predetermined
threshold is found. Individuals are represented as genomes, commonly with a genotype
encoded as a bitstring which serves as a blueprint to create the solution, the phenotype.
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Figure 2.1: Genetic Algorithm process.

2.1.2 Genetic Programming

Genetic Programming (GP), introduced by John Koza [19], is a technique attempting to
automate the programming of computers. This is done by evolving a population of pro-
grams whose fitness is evaluated by executing them and comparing to the desired results.
Programs are encoded in genotypes as tree structures, as opposed to as binary strings. This
allows crossover and mutation operators to be implemented in such away that the resulting
programs are structurally sound.

2.2 Development

Biological development is the natural process that allows complex multi-cellular organ-
isms to be built starting from a single cell using instructions encoded in the DNA of the
organism. The most easily recognizable example is the development of humans from a sin-
gle cell, the zygote, containing the combined genetic material of the parents, through cell
division and differentiation. The human genome does not contain an exhaustive descrip-
tion and blueprint of each individual human. Rather, it consists of instructions governing
how cells should divide and differentiate based on their surrounding cells and feedback
from the environment.

Developmental processes in nature have many properties that make them desireable to
mimic through artificial development. For instance, the number of cells in the human
body is orders of magnitudes larger than the amount of information encoded in our DNA
[3]. In general, the performance of GAs and GP implementations decline as the size of the
genome increases, as mutations are more likely to be detrimental with regards to fitness.
By introducing development as an indirect mapping between genotype and phenotype,
programs and structures that scale to arbitrary dimensions can be produced while still
maintaining a search space that the EA method in question can efficiently explore. Systems
that combine evolution and development in this way are often referred to as EvoDevo
systems [14].

Where evolution allows a species to adapt over the span of generations, development is an
ongoing process throughout the lifetime of each individual, allowing for adaption based
on changes to the environment [40]. This makes EvoDevo particularily well suited in the
design of robust and adaptive artificial intelligence agents.
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2.3 Cellular Computing

Most computing devices in use today have been developed on the foundation of the von
Neumann architecture [44], a single complex processor performing one complex task at a
time. Recently, the field of cellular computing has seen growing interest. Cellular comput-
ing, as described by Sipper in [34], is built on three principles: simplicity, vast parallelism
and locality. It seeks to exploit emergent computational capabilities between large num-
bers of locally connected simple cells. Sipper presents cellular computing as an abstract
framework, within which many variations of the paradigm can exist based on a number of
properties. These include cell type (which types of values a cell can take; discrete or con-
tinuous), cell definition (how the behavior of cells is specified), cell mobility (wether or
not cells can move within their environment), cell connectivity (how cells are connected
to eachother; regular grid, (un)directed graph), topology of underlying environment (if
any), connection lines (what information to transmit between connected cells), temporal
dynamics (asynchronous vs. synchronous updating schemes), uniformity (in cell type and
connectivity) and determinism. Some well known examples of paradigms that fit within
the framework of cellular computing are Random Boolean Networks (RBNs) and Cellular
Automata (CAs).

2.3.1 Cellular Automata

The most well known example of cellular computing is the Cellular Automaton (CA).
Consisting of cells connected in a regular grid that transition between discrete states based
on the states of the cells in their neighborhood 1. While each cell is not capable of much on
their own, the behavior emerging from interactions between cells can give rise to complex
dynamics. Figure 2.2 shows the behavior over eight timesteps of a simple, 1-dimensional,
uniform CA starting from a single cell, with each time-step shown on a new line. The rule
governing state transitions is shown in the boxes to the right in the figure. Each box gives
the neighborhood conditions on the top row and the resulting state on the bottom.

Figure 2.2: Eight timesteps for a uniform 1-dimensional CA. The boxes to the right show the rule
with which the cells are configured, Rule 90.

Research into the computational capabilities of CAs can be said to have started in the
1940s, with John von Neumann and Stanislaw Ulam designing a 2D CA capable of self-
reproduction [34]. Moving forward, the dynamics and behavior of specific CA rules was

1The von Neumann-neighborhood, consisting of cells directly north, east, south and west of a cell, is a
common choice.
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examined in detail. For instance, the rule used in Game of Life, introduced by mathe-
matician John Conway in 1982, was proven to be capable of universal computation [5].
Stephen Wolfram shifted focus from studying specific rules, to investigating characteristics
of groups of rules, resulting in his classification of the CA rulespace:

1. Rules leading to homogenous state for all cells. Regardless of the initial configura-
tion of the cells, they all converge to the same state after a transient period.

2. Rules leading to stable or periodic structures.

3. Rules leading to chaotic patterns.

4. Rules leading to complex, long-lived structures. This is the only class that contains
non-trivial automata.

Wolfram proposed that the rules capable of universal computation, such as Game of Life,
reside in Class 4.

λ = 1− q

tot
(2.1)

Like Wolfram, Christopher Langton has performed quantitative and qualitative studies
of the CA rulespace [20]. He hypothesized that it is more likely to find rules capable
of complex computational behavior in regions of the rulespace where there is a phase
transition between ordered and chaotic dynamics. He introduced the λ-parameter as a
measure of heterogeneity for a rule. It is calculated, as shown in 2.1, where q is the number
of transitions in a rule that lead to a chosen quiescent, or dead, state, and tot is the total
number of transitions. For a CA with N possible states and a neighborhood-size of K, the
total number of transitions is KN . A λ-value of 0 indicates an entirely homogenous rule,
where all possible neighborhood configurations result in a transition to the quiescent state.
Maximally heterogenous rules will have a λ of 1−1/N . Figure 2.3 shows how Wolframs 4
classes map onto Langtons λ-space, with Class 4 coinciding with phase transition between
ordered and chaos behavior, the so called Edge of Chaos.

Figure 2.3: Wolframs rule classes mapped onto Langtons λ-space.
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2.3.2 Developmental Cellular Architectures

One of the major challenges faced by cellular computing systems is how to program one.
Manually programming the functionality and connectivity of each cell to achieve the de-
sired emergent properties is both exceptionally time-consuming and hard to do when the
problem to be solved involves global coordination. Sipper proposes to automate the pro-
gramming of cellular systems through an adaptive process such as an EA. In [27], Mitchell
et al. use a GA to evolve CA rules for solving problems requiring global coordination.
Each individual is a bitstring representing the next-states for all possible neighborhood
configurations. With a neighborhood size of 7, each genome is 27 = 128 bits long yield-
ing a search space size of 2128. The authors are able to successfully evolve CAs that solve
the problems for which they where created.

A different approach is taken by Sipper [35] in order to evolve non-uniform CAs. Where
Mitchell et al. evolve a population of rules, doing this for a non-uniform CA would require
an exceptionally large genome in order to specify the rule for each cell, increasing the
search space exponentially, making it infeasible to search through using a standard GA.
Sipper instead works with a single CA initialized with a random rule in each cell. The
fitness of each cell is accumulated over some number of simulations of the CA starting
from different initial state configurations, after which evolutionary mechanisms are applied
in a local manner, between connected cells. Through this method, Sipper is able to evolve
non-uniform CAs that outperform the uniform ones evolved by Mitchell et al. on the same
tasks.

DS 0 DS 1

SS 0 SS 1 SS N SS 0 SS 1 SS N

DS 2

. . . . . .

Time

Figure 2.4: Development starting from a single green cell using the growth rule in Figure 2.5.

A third approach to the design of cellular computing systems is presented by Haddow and
Tufte in [41]. The authors use a developmental model to allow complex non-uniform CAs
to grow from a single cell, as shown in Figure 2.4. Development occurs in discrete time
steps, so called development steps (DS). Between each DS, a number of state steps (SS)
occur, simulating the behavior of the organism developed so far as a CA. The rules govern-
ing the development process, the genome, take both cell type and state into consideration
when deciding how to proceed. This means that the behavioral dynamics of the organ-
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Figure 2.5: Growth rules for a cellular developmental system where cells are either empty or of the
green type.

ism being developed regulates the developmental process. This type of coevolution of
both structure and functionality is often referred to as dynamical systems with dynamical
structure (DS)2 [37].

While the three approaches to programming of cellular computating systems outlined
above achieve positive results, the task is still hard. In the case with the developmental
approach taken by Tufte, creating developmental rules is as difficult as manually specify-
ing type and functionality for each cell. Combining development with evolution is possible
[29], but the genome size needed to express all regulatory possibilities in the genome is so
large that the resulting size of the search space makes it hard for the EA to reliably con-
verge. There is in other words still a ways to go before programming of cellular computing
systems can be considered a solved problem.

Another challenge faced by such systems is how to formulate problems and encode/decode
their inputs and outputs. In the works by Sipper and Mitchell, problem input is encoded
as the initial state of the CA, and the output is interpreted from the state of cells after a
number of state steps. This approach takes away from the generality of cellular systems,
as an evolved/developed system will only be able to work specifically for the problem
and encoding scheme it was initially designed around. Adapting a system to apply to
different problems or to slight variations in input encoding will almost always require it to
be developed from scratch.

2.4 Reservoir Computing

Artificial Neural Networks (ANNs) are a commonly used computational model in machine
learning and bio-inspired computing. Simple, feed forward ANNs lend themselves well
to problems were data can be spatially correlated, such as classification. Many real world
problems however, are temporal in nature. Recurrent neural networks (RNNs) have been
shown to be powerful tools for solving temporal problems such as stock market predic-
tion [21], learning context free/sensitive languages [11] and speech synthesis [45]. Train-
ing RNNs is computationally expensive and often requires application specific adaptions
of generalized training algorithms in order to reliably converge [15]. Several techniques
have been proposed that circumvent problems related to training, such as Echo State Net-
works [16] (ESNs), Liquid State Machines [24] (LSMs) and Backpropagation Decorre-
lation learning [38]. These all share the common feature of only training weights of the
output layer of the network, while leaving the hidden layers of the network untrained or
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simply subject to weight scaling. In [43], Verstraeten et al. propose that systems based on
this idea should be unified under the term reservoir computing (RC).

In general, reservoir computing as a term describes any computational system where a
dynamic reservoir is excited by input data and output is generated by performing clas-
sification/regression over reservoir state. Figure 2.6 shows the basic architecture of any
reservoir computing system. With its origins in research on various types of recurrent
neural networks and training thereof, the reservoir in RC systems is often represented as
an RNN [43]. However, any dynamic system capable of eventually forgetting past per-
turbations and of responding distinctly to different perturbations, can in principle be used.
Snyder et al. [36] investigate using Random Boolean Networks, Yilmaz uses Cellular Au-
tomata [46] and Fernando et al. use a bucket of water [8].

Input Reservoir Readout

f(x)

Output

Figure 2.6: Basic overview of an RC system.

As outlined in Section 2.3 cellular computing systems are capable of complex, vast par-
allell computing. Combined with artificial development they are also highly adaptive. In
this thesis we combine reservoir computing and developmental cellular automata in an at-
tempt to provide a framework allowing for easier use and development of cellular systems.
Figure 2.7 shows how input data perturbs the behavioral part of the reservoir, the emerging
CA, and output is extracted by using the readout layer to classify the dynamics in the CA.
RC systems provide a layer of abstraction between I/O encoding/decoding and the com-
putation occurring in the CA. With this approach the goal of development and evolution
is not to create a CA configuration that is able to solve a specific problem under specific
I/O conditions, but rather to develop CAs with strong general computation capabilities and
strong ability to adapt to different input perturbations. A CA that is general enough, could
be used in many different contexts simply by swapping out the readout layer.

Figure 2.7: RC system with developmental cellular reservoir.
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2.4.1 Spiking Neural Networks as Readout Layers

Artificial neural networks can be grouped into three generations, based on the charac-
teristics of their base computational unit, the neuron. The first generation, based on
McCulloch-Pitts neurons [26], simple threshold gates, allows for universal computation
on digital input/output values. In the second generation, neurons apply a non-linear, con-
tinuous activation function on the weighted sum of their inputs.

The third generation of networks bases itself on spiking neurons, which model the inter-
action between biological neurons more closely. In this model, a neuron v fires when its
potential Pv exceeds a threshold θv . The potential is, at any time, the sum of the post-
synaptic potentials, resulting from firing of presynaptic neurons. The contribution of a
spike from presynaptic neuron u at time s to the potential Pv of postsynaptic neuron v
is given by wu,v · εu,v(t − s), where wu,v is a weight representing the strength of the
synapse connecting u and v, and εu,v(t− s) models the response of the spike as a function
of time passed since the spike occurred. A synapse can be both excitatory and inhibitory,
meaning that its contribution to the total potential Pv can be both positive and negative. A
biologically plausible response function is shown in figure 2.8. From a machine learning
perspective, the trainable part of a spiking neural network, is the weight wu,v , determining
to what degree spikes from a neuron u influences the potential of neuron v.

Figure 2.8: Common spike response function shape, figure taken from [23].

Spiking Neural Networks (SNNs) are of particular interest in the context of a cellular RC
system, where the reservoir dynamics are spiking in nature (i.e. a cell can be either alive
or dead). By using a spiking neural network as a readout layer, data can flow through
the RC-system as spikes from end to end. In the specialization project leading up to this
thesis, experiments to examine the viability of SNNs as readout layers in RC system were
carried out with successful results (see Appendix C).

2.5 Related Work

2.5.1 IBM Truenorth

The IBM Truenorth is a modular, non-von Neumann, ultra-low power computer simulat-
ing a massive network of biologically plausible spiking neurons 2. It consists of 4096

2http://www.research.ibm.com/articles/brain-chip.shtml
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neurosynaptic cores, each simulating 256 neurons and 256 × 256 synapses, resulting in a
total of 1 million neurons being simulated. The cores are connected using an on-chip mesh
network, allowing the core-count to be scaled without adding extra circuitry. During op-
eration the platform consumes < 100 mW and is capable of 46 billion synaptic operations
per second, per watt.

Figure 2.9: Conceptual architecture of a neurosynaptic core used in the TrueNorth chip. Reprint
from [30].

IBM has implemented an ecosystem of algorithms, libraries, simulators, a programming
language and an integrated development environment to support the platform. Several
applications for the chip has also been developed, such as a multi-object detection and
classification system operating on 240 × 400 pixel, 3-color video input at 30 frames per
second.

2.5.2 Tensor Processing Unit

To accelerate training and utilization of machine learning models implemented using their
TensorFlow3, Google have designed an Application Specific Integrated Circuit (ASIC),
the Tensor Processing Unit (TPU)[17]. Designed to provide exceptionally fast matrix
mutliplication, the TPU is built around a Matrix Multiply Unit (MMU) capable of 216

8-bit multiply-and-add operations on signed/unsigned integers per cycle. The rest of the
logic on the chip is dedicated to moving and organising data in such a way that the MMU
is maximally utilized.

When compared with its contemporary CPU and GPU competitors, the TPU operates
approximately 15-30x faster, and with 30-80x higher TeraOps/Watt.

3https://www.tensorflow.org/
4https://cloudplatform.googleblog.com
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Figure 2.10: The Google Tensor Processing Unit. Reprinted from 4
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Chapter 3
Previous Work

The work presented in this thesis extends the Cellular Automata Research Platform (CARP),
an FPGA-based system implemented specifically to support and accelerate research into
growth and evolution of developmental systems based on cellular automata. The original
implementation was done by Djupdal in 2003. Over the years, the system has been ex-
tended as well as optimized to run on newer hardware through a series of master theses.
The following sections provide an overview of the evolution of the system.

Figure 3.1 shows the original overall design of the system, indicating how the host program
is responsible for evolving genotypes, while developing genotypes into phenotypes and
simulating their behaviour in the CA is implemented on the FPGA.

GA

CA

Rules

Fitness

Dev

FPGA

Host

Figure 3.1: General system design. Figure reprinted from [22].

3.1 Djupdal

The original design of the CARP system was made by Djupdal in 2003 [7], to support fur-
ther research into elvolvable hardware based on the SBlock-architecture proposed by Tufte
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and Haddow [13]. The system was implemented on a NallaTech BenERA FPGA-board
communicating over a Parallell Component Interconnect (PCI) bus with a CompactPCI
host-computer.

Figure 3.2 shows the overall architecture of the resulting hardware platform. It consists
of the SBlock Matrix (SBM), Block RAM (BRAM) for storing the state and type of each
cell, a development unit, control logic, and a PCI communication unit.

Figure 3.2: High-level block diagram of the hardware platform as implemented by Djupdal. Figure
taken from [22].

A host computer, running a genetic algorithm exploring the space of possible development
rules, controls the system. Each genotype is transferred to the system and developed into
its phenotype before the SBM is stepped some number of times. New states and types can
then be transferred back to the host to calculate a fitness score.

A genotype consists of a set of initial cell states and types, development rules and LUTs
corresponding to the cell types possible. Upon initializing the system with a new genotype,
states and types are written to BRAM A, while development rules and LUTs have their
own separate BRAMs. During development, cells are read from BRAM A, tested against
development rules and written back to BRAM B, now possibly changed as a result of
“hitting” a rule. The development unit tests 8 rules on 2 cells each cycle in raster order.
This means that for sets of rules larger than 8, several sweeps over the cells is necessary.
For these additional sweeps, cells are read from BRAM B so as not to overwrite the result
of a rule hit in a previous sweep if no rules hit in the later ones. The two BRAMs can
be swapped logically, avoiding having to transfer between the two in order to start a new
development step.

Based on the cell types stored in BRAM A, the SBM can be configured. Each cell type
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corresponds to a LUT stored in the LUT storage BRAM, with which the SBlocks corre-
sponding to cells of that type is configured. State steps can then be performed either one
at a time, writing each new set of states back to BRAM B, or in batches, writing only the
final set of states back.

3.2 Aamodt

In Djupdal’s design it was necessary to transfer cell states to the host to calculate fitness.
To avoid this bottleneck, Aamodt extended the system with an on-board fitness module
in 2005 [1]. Additionally, to gain further insight into the development process, he added
logging-modules for the development unit.

Figure 3.3 shows the overall system as implemented by Aamodt. The modules added are
as follows; a Run-Step Function (RSF) that calculates the number of live cells, a BRAM
module to buffer these numbers, a fitness function and the two logging modules from the
development unit.

Figure 3.3: High-level block diagram of the hardware platform after Aamodt’s work. Additions are
highlighted in green. Figure taken from [22].

The two BRAMs added to the development module logs information regarding the devel-
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opment process. The Development Step BRAM stores which rules were triggered for all
cells during the most recent development step, while the Rule Vector BRAM stores which
rules were triggered overall for the last 256 development steps. The RSF is a large adder
tree, calculating the total number of live cells in the SBlock matrix after each state step.
These totals are buffered in the RunStep BRAM before being processed by the fitness
function.

3.3 Støvneng

In 2014, the system was further extended and optimized by Støvneng [39], in expectation
of new FPGAs aquired by NTNU. In addition to rewriting existing modules to better utilize
the resources available on the new chips, he also modified the SBlock matrix to allow for
3D CAs and implemented an on-chip Discrete Fourier Transform (DFT) for processing
the cell count from the RSF-module into the frequency domain.

Figure 3.4: High-level block diagram of the hardware platform after Støvneng’s work. Additions
are highlighted in green, and optimizations and 3D modifications in orange. Figure taken from [22].

Figure 3.4 shows how the DFT module is added to the overall design, as well as which
modules have been optimized and rewritten to support 3D CAs. Overall, the optimizations
made to the system yielded a 4x speedup for most operations. The design as a whole was
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also made more parameterized and portable by removing many hard coded constants and
rewriting modules relying on features specific to the old FPGA.

As the new hardware did not arrive in time, Støvneng was unable to test his changes on
the actual FPGA, but the design in its entirety was verified through simulation.

3.4 Lundal

After Støvneng finished his work, it became clear that the new hardware would be delayed
yet again. To allow for further development and testing of the platform on actual hardware,
a development board with a similar FPGA as the one in the anticipated new hardware was
ordered. As this newer line of FPGAs has removed support for PCI in favor of PCIe,
both the communication module on the hardware platform and the software side driver
had to be updated. While testing the new communication module, several issues with the
current implementation were uncovered, such as commands not functioning according to
specification and extensive use of outdated FPGA features. This led to the decision of
rewriting the platform from scratch, a job undertaken by Lundal in 2015 [22].

Control

Development

Cellular
AutomatonFitness

Cell
BRAM A

Cell
BRAM BCom

Fetch Decode

Figure 3.5: Overview of the reorganized hardware platform as implemented by Lundal. Figure
taken from [22].

Through his work, Lundal focused on making the hardware platform more modular, easier
to configure and coherently structured. All dependencies on specific hardware features
were removed in favor of letting the synthesizer infer based on which resources are avail-
able on the targeted chipset. Support for both 2D and 3D SBMs was implemented by
Aamodt as two separate designs. Lundal unified this into one design, utilizing the fact
that all 2D CAs can be implemented as one-high 3D CAs. The software API was also
made more complete and user-friendly, by implementing abstractions that allow the end
user to focus more on the code related to the experiment being performed and less on the
technicalities necessary to operate the hardware platform.
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Since Djupdal’s original design, the development module has remained largely unchanged,
implementing a developmental model based on research by Haddow and Tufte [41]. In this
model two types of developmental rules are considered; growth-rules indicating how an
organism develops spatially, and change rules describing how existing cells can change
their type. Both rule types consist of a condition and a result. Conditions take into account
the types of the cells in the von Neumann neighborhood around the target cell and the type
of the target cell itself. The result of a growth rule is the direction in which the target cell
should grow. For a change rule, the result is the new type of the target cell. Change rules
can only affect cells that have already been grown into and growth rules can only grow
into cells that are empty.

Lundal implemented a simpler development module based on Tufte and Nicheles research
[28]. Here, all rules are effectively change rules and all rules are evaluated for all cells.
The functionality of growth rules in the old design can still be implemented within this
scheme. Where the differentiation of growth and change in the old design is closer to
the type of cell development that happens in biological systems, the new system is more
applicable to generic dynamical systems.

Lundal verified the reimplemented CARP platform both through simulation and end-to-
end integration tests with the synthesized design .
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Chapter 4
Platform

In 2016, the long anticipated new hardware was finally installed and was ready to be used
for the CARP project. The new machine contains four Convey Wolverine Application Ac-
celerators, coprocessors aimed at accelerating key parts of algorithms in high-performance
computing through reconfigurable hardware. Each accelerator is equipped with a state-of-
the-art Xilinx FPGA and large, high-bandwidth on-chip memory.

The following sections describe the Wolverine accelerator architecture, the toolchain used
to synthesize the hardware design and finally the toolchain used for the software API.

4.1 Convey Wolverine WX-2000 Application Accelerator

The Convey Wolverine WX-2000 is a PCIe-mounted coprocessor equipped with a Xilinx
Virtex-7 XC7V2000T FPGA and four DDR3 SO-DIMM slots allowing for up to 64 GB
of on-chip memory. Figure 4.1 shows how a Wolverine coprocessor is organized at a high
level. The host computer communicates with the card over a Peripheral Component Inter-
connect Express (PCIe) bus at a max bandwidth of 8 GB/s. On the coprocessor, the Host
Interface controller (HIX) is responsible for decoding the data sent from the host. Data
can either be stored in the on-board memory, or passed directly to the FPGA. The FPGA
is divided logically into Application Engines, the number of which can be configured be-
fore synthesis. This is the entrypoint into which a custom FPGA design is inserted. The
Convey Personality Development Kit (PDK) provides each AE with interfaces to the HIX,
the AEs memory controller and the other AEs.

With 2 million logic cells, 46 MB of BRAM and up to 2.8 Tb/s serial bandwidth, the
XC7V2000T is one of Xilinx’ higher end FPGAs. Earlier, FPGAs have been scaled
monolithically following Moore’s Law, in the same way conventional processors have
been scaled. With the XC7V2000T however, Xilinx has opted to combine 4 separate dies
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into one large virtual FPGA with their Stacked Silicon Interconnect (SSI) technology [32].
Each die, or Super Logic Region (SLR), has its own clocking and configuration circuitry.
For monolithic designs, these signals would have to be routed throughout the entire die in
complex ways to avoid critical paths that are too long. With this circuitry replicated in each
SLR, the resources required for routing clocking and configuration signals is significantly
lower, opening up the possibility to use these resources to interconnect the SLRs instead.
This, along with advances in manifacturing techniques has allowed Xilinx to scale their
FPGAs even further and opening up new use cases for them. Programming FPGAs using
SSI is no different from any other FPGA. The Xilinx design flow toolchain distributes
designs across multiple SLRs if needed.

Figure 4.1: High level overview of the Convey Wolverine Accelerator architecture.

4.2 Hardware Toolchain

All previous iterations of the CARP hardware platform have been implemented entirely in
VHDL. At the start of this project, the decision was made to start porting the codebase to
Chisel, a hardware construction DSL implemented in the Scala programming language.

4.2.1 Chisel

Chisel1 is an open-source hardware construction language developed at UC Berkeley.
Where many other hardware design tools implemented in high-level programming lan-
guages are of the “C-to-gates” variety, tools that try to automagically infer hardware based
on a description of the desired computation, Chisel is based upon using the computational
tools in Scala to describe how a circuit should be wired. Leveraging Scalas typesystem
and functional programming tools, Chisel encourages code reuse, genericity and design-
ing systems that are highly parameterizable.

1https://chisel.eecs.berkeley.edu/
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import chisel._

class Sample(w: Int) extends Module {
val io = new Bundle {
val a = UInt(INPUT, width=w)
val b = UInt(INPUT, width=w)
val sel = Bool(INPUT)
val out = UInt(OUTPUT, width=w)

}
val stored = Reg(init=UInt(0))
val sum = io.a + io.b

when (sel) {
io.out := stored

}.otherwise {
stored := sum
io.out := sum

}
}

(a) Chisel source

(b) Circuit

Figure 4.2: Chisel source and corresponding circuit.

Listing 4.2a shows how to implement the circuit in Figure 4.2b. The io bundle defines the
inputs and outputs of the module. In this case a boolean input signal and three unsigned in-
teger signals, two inputs and an output, all of whose bitwidth is determined by the w param-
eter passed to the module when it is instantiated. val s = Module(new Sample(32))
will create an instance of the Sample module with 32-bit wide UInts.

When executed, a Chisel program creates a internal graph representation of the circuit
described by the program. Depending on the parameters given to the program, the program
will output either Verilog or a C++ simulator of the circuit. To create a fully functional
FPGA-image the Verilog output can be incorporated into an FPGA design flow.

To avoid having to start entirely from scratch, it was decided that porting the CARP hard-
ware platform to Chisel would be done in a top-down fashion. That is, starting by in-
stantiating Lundal’s toplevel module as a blackbox in the Chisel design and implement
downward in the module hierarchy as needed when extending the functionality of the plat-
form. Figure 4.3 gives an overview of the build process. All parameterization is gathered
in the Chisel part of the design and passed on into the VHDL modules when they are
instantiated in the resulting Verilog.

For further details regarding the development setup for the hardware part of the CARP
project, see Appendix D.
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Figure 4.3: Build process overview.

4.3 Software Toolchain

The software API is written in C, compiled on CentOS 6.5, Linux kernel version 2.6.32-
431 with GCC version 4.4.7. Outside of the C standard library, the API has only one
dependency; the Convey Personality Development Kit. It is included via the wmd user.h
header and provides functions and routines related to communicating with the Convey
coprocessor.
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Chapter 5
Implementation

Figure 5.1 shows a high level overview of the CARP hardware platform extended with a
readout module. While the system has been extended with new functionality and partially
ported to Chisel, the overall architecture of the system has been largely preserved. In
Figure 5.2, a more detailed view of the system is shown. Modules are annotated with
either a C(hisel) or a V(HDL) in the upper right corner to indicate their porting status. The
top level logic and wiring gluing all the modules together is all done in Chisel.

Figure 5.1: Block diagram of the CARP hardware architecture extended with a readout layer.
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5.1 General overview

The CARP hardware system executes instructions in a a Fetch, Decode, Execute loop.
Instructions transferred from the host program controlling the coprocessor are placed in
the Receive Buffer. The Fetch module reads instructions one at a time from the Receive
buffer and either stores them for later use in the Instruction BRAM, or passes them on to
the Decode module. The Decode module is responsible for parsing instructions, extracting
parameters and orchestrating control signals throughout the rest of the system. In the
Execute phase, different modules perform work depending on the type of instruction. The
major players in the Execute phase are the Development, Cellular Automaton and Readout
modules.

The system operates in a pipelined fashion, with Fetch, Decode and Execute being sep-
arated stages. Since few of the modules in each stage complete in the same number of
clock cycles, modules are interlocked to ensure consistency and to avoid hazards. At the
top level, this is implemented using two signals, Run and Done. Each module receives the
Run signal as an input, indicating wether or not it is safe to execute. When a module is
completes its work, it sets its Done signal high. To interlock a group of modules, the run
signal is determined by the logical And operation of the done signals of all the modules.

Cell types and states are stored in the Cell Storage BRAMs, ready to be used either in
development, where they are used to determine further growth and change to the organism
they constitute, or in the cellular automaton, which simulates the behavior of the organism.

The following sections describe the additions and changes made to the system to add
support for a reconfigurable Readout module based on a spiking neural network.

5.2 Communication

As outlined in section 4.1, the FPGA on the Convey coprocessor is logically divided into
Application Engines within which any custom logic can be implemented. Each AE can
communicate with the host, the on-board memory and other AEs through various inter-
faces implemented by the Convey PDK, shown in Figure 5.3. To be able to run the
CARP hardware platform on the coprocessor, the communication module has been reim-
plemented to utilize these interfaces for data transfer.

Figure 5.4 shows how the CARP hardware is implemented within the Convey AE archi-
tecture. The communication module has been moved out of the main CARP module and
rewritten from scratch. In an effort to decouple the CARP platform from the underlying
hardware and its communication interfaces, the new module exposes two very generic in-
terfaces facing “outward,” an Advanced Peripheral Bus (APB) 1 and a memory bus, as
shown in Figure 5.5. These are specified fully in Appendix A. Using generic interfaces
with established conventions that are easy to connect to other communication interfaces

1http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0024c/
index.html (Requires registration)
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Figure 5.3: Overview of the Convey Application Engine architecture.

makes it easy to move the system to a different platform, should the Convey coprocessors
become obsolete or defunct.

Figure 5.4: Implementation of the CARP platform within the AE architecture.

To avoid having to rewrite the Fetch and Send Buffer Mux modules inside CARP, the
new communication module provides the same interface towards them as the old one did;
two data buffers, transmit and receive, buffer count signals and read/write enable signals.
Both data buffers are implemented as FIFO-queues with counter registers and ready-valid
access interfaces.

Figure 5.6 shows the state machine controlling the operation of the communication mod-
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Figure 5.5: The communication module interfaces with the CARP platform through two buffers,
transmit and receive. Outwards, the communication module exposes two buses, an APB bus and a
generic memory interface.

Figure 5.6: State machine controlling the communication module.

ule. From the idle state, a transition to either the Write or Read states can be triggered by
asserting the PSEL signal on the APB bus. Depending on wether or not the PWRITE sig-
nal is asserted, the state machine will transition into the corresponding state. In this case,
write refers to writing data from the host to the receive buffer, and read refers to reading
data from the transmit buffer to the host. In the Write state, three bits in the PADDR signal
is used to further determine what is to happen. The possible actions are as follows:

1. Write PWDATA to Receive Buffer. Transition to Idle state.

2. Set starting address register to PWDATA. Transition to Idle state.

3. Set end address register to PWDATA. Transition to Idle state.

4. Prepare to start transferring data from memory to Receive Buffer. Transition to
Write Memory state.

In the Write Memory state, read requests are generated on the MemPort bus and received
data is stored into the Receive Buffer. The Read and Read Memory states have similar
functionality, but writes data from the Transmit Buffer either directly to the APB bus or
to memory. In general, transfers of five 32-bit words or less are done via the APB, while
larger transfers go via memory. This is however something that is specified in the SDK,
not implemented in hardware. That means that the system can be implemented to run on
platforms without on-board memory, as the MemPort interface can simply be tied off in
that case.

The ConveyApbBridge-module serves, as the name implies, as a bridge between the in-
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terfaces provided by the Convey PDK and the Communication module. The Dispatch
interface drives the APB bus, while the Memory Controller interface is wired against the
MemPort.

5.3 Readout

The Readout module extends the CARP platform with a reconfigurable Spiking Neural
Network operating in a data-driven fashion, synchronized to the clock of state steps per-
formed in the Cellular Automaton. Each layer of the network is implemented as a stage
in a pipeline. With every step of the CA, new input is fed to the input layer and its output
is fed as input to the next layer and so on throughout the network. In other words, the
number of state steps it takes for data to propagate through the readout module as a whole
is equal to the number of layers in the network. The output from the final layer is routed
back into the CA. It is also stored in the Readout Buffer, from where it can be read back to
the host.

Figure 5.7: Logical overview of the Readout module.

Figure 5.7 shows, at a high level of abstraction, how the Readout module is connected to
the CARP system as whole. A subset of cell states are routed out of the CA and into the
Readout module as input to the first layer of the network, the input layer. Within each
layer, a number of neurons process the input to the layer, as shown in Figure 5.8. Based
on this input, they update their activation values, which again are fed to the next layer to
be used as input to those neurons in the next step.

The activation value of a neuron can be either 0 or 1, based on a very simple calculation,
as shown in Figure 5.9. For each of its incoming edges, a neuron has a pair of registers,
the edge weight and a counter. The counter keeps track of how many spikes the neuron has
received via the corresponding edge, and the weight is a threshold, indicating how many
spikes must arrive via the edge before the neuron can fire. When all counters values are
equal to or greater than their weights, the neuron fires and the counters are reset.

To reduce the amount of resources required for the implementation, some restrictions apply
with regards to which network topologies are possible to implement. All networks must
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Figure 5.8: Logical overiew of one network layer in the Readout module.

be entirely feed-forward, that is they can not contain any recurrent connections, the total
number of neurons can not exceed 216 − 1 and the final layer must contain only a single
neuron. The topology of a network is given as a parameter to the module at synthesis time,
and can not be reconfigured while the system is running. It describes how many layers the
network consists of and how many neurons each of them consist of. Networks are also
implemented fully connected, all neurons in a layer are connected to all neurons in the
previous layer.

The module can be in one of two states, the default Processing state and the Configuration
state. In the Processing state, data flows through the network in the manner described
above. As mentioned, the topology of the network is defined at synthesis time. The
weights however, can be reconfigured while the system is running. This allows for rapid
exploration of networks with different characteristics. The transition to the Configuration
state is triggered when the Readout module receives a WriteWeight instruction from the
Decode module. Accompanying the instruction is a payload consisting of a 16-bit address
and an 8-bit weight value. Figure 5.10 shows an example of how edges and their corre-
sponding weight registers are addressed, starting from address 0 in the top left, increasing
top to bottom between the CA output and the first layer, then continuing from the top in
the next.

A WeightWrite instruction completes the same clock cycle it is received, returning the
module to the Processing state in the subsequent cycle. This is done by wiring the weight
bus directly into each neuron and decoding the address value using entirely combinatorial
logic to decide which weight should be updated. At the top level, the address is used to
decide into which layer the weight should be written. That layer then receives a high write
enable signal and the address of the weight within the layer. Similarily, the targeted layer,
uses this address to find the neuron to which the targeted weight belongs and passes the
write enable signal into it along with the address of the weight within that neuron. The
neuron asserts write enable for the targeted register which will then contain the new weight
value the subsequent clock cycle.
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Figure 5.9: Logical overview of a single neuron in the Readout module.

Figure 5.10: Example of how edges/weights are addressed counting from left to right, top to bottom.

With the configuration in Figure 5.10 as an example; a WriteWeight instruction arrives
with the address 7 in the payload. At the top level, the module knows that addresses in
the range [6, 7] belong to Layer 1. The address of the targeted weight within that layer is
found by subtracting the total number edges between all previous layers from the global
address, i.e. 7 − 6 = 1. Inside that layer, the correct neuron is found by utilizing the
fully connected nature and calculating Addr div NeuronsPreviousLayer. The address
of the weight within that neuron is calculated withAddr mod NeuronsPreviousLayer.
In this example, the only neuron in the layer receives the weight address 1 and updates the
correct weight accordingly.

32



5.4 Cellular Automaton

Alongside the Development and Readout modules, the Cellular Automaton module forms
the core of the CARP system. It is responsible for simulating the dynamic behavior of
and interaction between cells. The CA module has been partially ported to Scala and
modified to support routing live cell states out of the SBlock Matrix and feedback from the
Readout Module back in. To achieve this, the top-level logic responsible for orchestrating
configuration of the SBlock Matrix and the matrix itself have been reimplemented from
scratch in Chisel, while the Live Count related modules remain unchanged and are still
implemented in VHDL.

Figure 5.11: The Cellular Automaton module and surrounding modules.

As shown in Figure 5.11, the central part of the CA module is the SBlock Matrix, a 2D/3D
matrix of modules connected in a regular grid. The modules can be either an SBlock or a
FeedbackCell. An SBlock uses the states of the the cells in its von Neumann neighborhood
as input to a configurable Look-Up-Table (LUT) and updates its own state, stored in a Flip-
flop (FF), with the output from the LUT. A FeedbackCell on the other hand, receives only
the output from the Readout module as input and updates its state with this value. Both
are shown in Figure 5.12. State updates happen synchronously throughout the matrix, all
cells march in step so to speak. At synthesis time, the SBlock Matrix utilizes two lists
of coordinates, one indicating which cells should be FeedbackCells, and one indicating
which cells’ states should be routed out of the module to be wired as input to the Readout
module. All cells not in the FeedbackCells list will be instantiated as SBlocks.

The state machine in Figure 5.13 controls the operation of the CA module. Starting from
the Idle state, the module can transition into one of three states based on instructions re-
ceived from the Decode module. In the Configuration state, the SBlocks in the SBlock Ma-
trix are configured one row at a time. LUTs are configured with different values depending
on the cell type of the cell the SBlock simulates. FeedbackCells are not configurable and
can not develop into a different cell type, so they are simply ignored with regards to LUT
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(a) SBlock (b) FeedbackCell

Figure 5.12: Detailed view of the SBlock and FeedbackCell modules used in the SBlock Matrix.

configuration. The state of each cell is also read from Cell Storage and configured into
FFs.

In the Readback state, the state of each cell is read back to the Cell Storage. Similar to
configuration, this happens row by row.

The Step state is the core functionality of the CA module. Here, all cells/SBlocks syn-
chronously update their states. The instruction also includes a 16-bit number in its pay-
load, indicating how many steps to perform in bulk. When a step has completed, a signal
is sent to the Readout module indicating that it should perform one step of its pipeline, and
start processing the new cell states it has received.

Figure 5.13: State machine controlling the operation of the CA module.

While the Live Count and Fourier Transform modules implemented by Lundal have not
been used in the work presented in this thesis, they have been left unchanged and functional
for possible future use.
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5.5 Miscelaneous Modules

In addition to the major additions and changes to the system outlined in the previous
sections, several smaller changes have been made throughout the system to accomodate
the new functionality.

5.5.1 Readout Sender

The Readout Sender is a small module added to facilitate transferring Readout output data
from the Readout Buffer to the host. It receives instructions from the Decode module and
places data in the Transfer Buffer of the Communication module via the Send Buffer Mux.
A single ReadReadout instruction causes 32 words to be transferred.

Figure 5.14: The readout sender orchestrates transfers of readout-data to the host.

5.5.2 Decode

The Decode module is responsible for parsing instructions, setting control signals and
passing instruction parameters to modules. It has been extended to support the two new
instructions. For the ReadReadout instruction, it signals the Readout Sender to initialize
a transfer, as well as setting the necessary control signals to the Send Buffer Mux to al-
low data from the Readout Sender to pass through to the Transfer Buffer. In the case of
a WriteWeight instruction, the address and weight value parameters are extracted from
the instruction payload passed on to the Readout module along with the control signals
indicating that a weight should be updated.

5.5.3 Information Sender

Parameterization has been used extensively throughout the CARP hardware system to al-
low for as much flexibility as possible. To avoid having to update the software API every
time the system is synthesized with new parameters, Lundal introduced the Information
Sender, a module that allows the API to query the hardware for information. When a Read-
Information instruction is issued, it places a number of system parameters into Transfer
Buffer; CA size, wether or not wrapping is enabled, number of bits per cell state and type,
control flow counter sizes, maximum number of development rules and information about
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the fitness module. The module has been extended to also include information relating to
the Readout module. The added parameters are; number of network layers in the Readout
topology, number of output cells from the CA, and the number of neurons in each network
layer. Since the system can be synthesized with any number of network layers, the total
size of the payload generated by the Information Sender will depend on this number.

5.6 Parameterization

Many aspects of the CARP hardware platform are parameterized. With the introduction
of the Readout module, a few new parameters have been added. Readout Buffer size,
Readout Weight Bits and Readout Address Bits are integer values controlling bus widths
and buffer sizes. The CA Output Cells and CA Feedback Cells parameters are lists of (z,
y, x) coordinate triplets indicating the location of output and Feedback cells respectively.
The Readout Topology parameter determines the number of network layers and number
of neurons in each. For instance, Readout Topology value of (10, 5, 3, 2, 1) will result in
a 5 layer network with 10 neurons in layer 0, 5 in layer 1, 3 in layer 2, 2 in layer 3 and 1
neuron in the output layer. A full list of parameters is given in Table 5.1.

To leverage the strengths of Chisel and the Object-Oriented aspects of the underlying
Scala, parameters have been organized into an interface (or trait in Scala jargon), CarpParameters.
This allows for more flexibility in expressing the more complicated parameters such as CA
Output Cells and CA Feedback Cells.

5.7 Software API

The CARP software API provides a clean and structured interface into controlling and uti-
lizing the functionality implemented in the hardware part of the system. Figure 5.15 shows
how the API is structured. The main part, indicated in green, provides functions for con-
necting to, resetting, sending instructions to and receiving data from the platform. The two
optional modules, Print and PostScript, provide utilities for visualizing the datastructures
used in the API.

In this thesis, the communication API module has been reimplemented to utilize the Con-
vey SDK for communication with the coprocessor. Support for new functionality related
to the Readout module has also been added.
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Parameter Values Note
Tx/Rx Buffer Address Bits [1,∞] Determines size of Rx/Tx Buffers
ProgramCounter Bits [1, 16] Restricted by ISA/Decode
Matrix Width [2, 256] Restricted by ISA/Decode
Matrix Height [2, 256] Restricted by ISA/Decode
Matrix Depth [1, 256] Restricted by ISA/Decode
Matrix Wrap True, False
Cell Type Bits [1, 32] Restricted by ISA/Decode
Jump Counter Amount [1, 256] Restricted by ISA/Fetch
Jump Counter Bits [1, 32] Restricted by ISA/Fetch
LUT Configuration Bits 1, 2, 4, 8 Restricted by SBlocks
Rule Amount [1,∞]
Rules Tested in Parallell [1,∞]
Rule Vector Buffer Size [1,∞]
Fitness Buffer Size [1,∞]
Readout Buffer Size [1,∞]
Readout Weight Bits [1, 8] Restricted by ISA/Decode
Readout Address Bits [1, 16] Restricted by ISA/Decode
Readout Topology N/A List of positive integers
CA Output Cells N/A List of (z, y, x) coordinates
CA Feedback Cells N/A List of (z, y, x) coordinates

Table 5.1: List of parameters for the CARP hardware

Figure 5.15: Structure of the CARP API. The main API is colored green, optional utilities blue,
internal dependencies yellow and external dependencies red. Modified reprint from [22].

5.7.1 Communication

The Convey SDK provides functions for implementing a commuication flow between host
and coprocessor as an abstraction above direct communication via PCIe. Figure 5.16
shows the general sequence of actions required to establish connection with the CARP
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hardware system. The communication module in the software API has been updated to
support this flow as well as the protocol implemented in the hardware Communication
module, described in Section 5.2.

5.7.2 Readout

With the addition of the Readout module, the CARP hardware system supports two new
instructions, ReadReadout and WriteWeight. Support for both of these have been added to
the CARP API. Additionally, a data structure for working with Spiking Neural Networks
has been implemented alongside helper/utility functions for batched updates of weights in
the Readout module, initialization and printing of networks.
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Figure 5.16: Diagram illustrating the flow of communication between host and a Convey coproces-
sor.
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Chapter 6
Verification

The functionality of the extended CARP platform has been verified through extensive
testing, both through simulations and using the synthesised design running on the Convey
coprocessor.

6.1 Tests

6.1.1 Unit Tests

In addition to generating Verilog, Chisel is also capable of producing cycle-accurate sim-
ulations of circuits in C++. The framework also provides tools necessary for writing
module-level unit tests that target these simulations. To verify functionality and ensure
interoperability with surrounding modules, tests have been written for all modules im-
plemented entirely in Chisel. These include the InformationSender, Readout, SNNLayer,
Neuron, ReadoutSender and LUTWriter modules. Modules that blackbox VHDL mod-
ules, such as the new CA module, can not be simulated in this way, as the C++ simulator
does not support mixed-language simulation yet.

6.1.2 Functional Tests

To verify the integrity of the platform as a whole, Lundal wrote a series of functional
tests interacting with the hardware platform via the C API. These have been updated and
extended to ensure compatibility with changed functionality. New tests have also been
written to verify new functionality, focusing especially on the interaction between the
Readout and Cellular Automaton modules.
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Tests have been ran for multiple configurations of the system, including for SBlock Matri-
ces of different dimensions and Spiking Neural Networks with different topologies.

6.2 Example

To showcase the functionality added to the system, the example organism in Figure 6.3 has
been created. It uses 10 cell types and 19 development rules, and regulates its own growth
through feedback from the readout layer.

As shown in Figure 6.1, the platform is configured with an 8x8 matrix of cells. Feedback-
Cells are placed at coordinates (1, 1), (1, 5), (5, 1) and (5, 5), with the cells surrounding
(1, 1) as output cells. The developmental rules are created to have the organism grow in
spirals around the FeedbackCells. All cell types are associated with a LUT that sets their
state to 1 regardless of the state of neighbors. Between each development step, two state
steps are performed. One to let the Readout module process the recently updated states,
and one to update the state of the FeedbackCells update their state based on the output
from the Readout module. As shown in Figure 6.2, the Readout module is configured with
a single neuron that will fire once it has received spikes along all input edges. When all
cells around the FeedbackCells are grown into, the Readout module fires a spike. The de-
velopment rules interpret this spike as a sign of overpopulation and kills the cells directly
above, below, left and right of the FeedbackCells. The cells adjacent to these then die of
starvation the next development step.

This example shows how the Readout module can be used to classify the behavioral dy-
namics of a cellular organism, and how that classification can be used to regulate further
growth and development.

Figure 6.1: CA configuration used in creating a self-regulating organism. Green cells are Feed-
backCells, to which Readout output is routed, and blue cells are output cells, regular SBlocks whose
output state is routed as input to the Readout module.
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Figure 6.2: Configuration of the Readout module used in the example self-regulating organism
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(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

(j) Step 9 (k) Step 10 (l) Step 11
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(a) Step 12 (b) Step 13 (c) Step 14

(d) Step 15 (e) Step 16 (f) Step 17

(g) Step 18 (h) Step 19 (i) Step 20

Figure 6.3: Development steps of a self-regulating cellular organism simulated on the CARP plat-
form. At steps 9 and 19, the Readout module classifies the organism as overpopulated. The next
development step, the organism reacts to this by killing off cells. The growth cycle subsequently
restarts.
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Chapter 7
Discussion

The proof of concept experiment in Section 6.2 gives a small glimpse into the possibilities
opened up by adding the Readout module to the CARP system. While the example only
showcases how processing the dynamics of the CA allows for adaption in the developmen-
tal process, more complex configurations would, hopefully, allow for cellular organisms
that not only are capable of advanced computations, but that are able to adapt and learn
from environmental feedback in ways not previously possible.

7.1 Resource Usage

As shown in Table 7.1, the Virtex-7 FPGA on the Convey coprocessor gives the CARP
system quite a bit of room to grow. A design with an SBlock Matrix with dimensions
96× 96 = 9216 cells uses ∼ 20% of LUTs and ∼ 24% of BRAMs available. In terms of
flat quantities, the number of LUTs used has increased significantly in the new design. By
comparing designs with similar SBlock Matrices, it becomes apparent that this is due to
the added overhead of the Convey PDK Application Engine design into which the CARP
design is placed.

7.2 Challenges

During testing, it was discovered that the Xilinx FPGA flow crashes during synthesis of
large SBlock Matrices. A 96× 96 large design completes without problems, a 128× 128
design however stalls while synthesising SBlocks and receives a segmentation fault after
a few hours. Due to time constraints and the fact that this issue did not hinder the imple-
mentation of new functionality, it has not been investigated thoroughly. To fully utilize the
resources available on the Convey coprocessor it will have to be resolved however.
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Cell
Count

LUTs To-
tal

LUTs % Registers
Total

Registers
%

BRAMs
Total

BRAMs
%

8× 8 194624 15.93 208690 8.54 227.5 18.91
64× 64 224442 18.37 221061 9.05 280.0 23.28
72× 72 230094 18.84 223355 9.14 286.5 23.82
96× 96 251219 20.56 231616 9.48 308.5 25.64
4× 4× 4 195360 15.99 209171 8.56 232.5 19.33
16×16×
16

249320 20.41 218109 8.93 261 21.70

Table 7.1: FPGA Resource usage of the CARP system

The modules that remain implemented in VHDL use custom types extensively. This makes
it difficult to simulate the CARP hardware system as a whole, as no available simulation
tools support mixed-language Verilog/VHDL simulation of designs using non-standard
types. Being unable to simulate the system end-to-end means that a full synthesis of the
system is required in order to test even the smallest of changes. A full synthesis takes
upwards of two hours, even for small matrix dimensions, resulting in a very long feedback
cycle. The optimal way to resolve this, would be to port the remaining modules to Chisel,
and implement end-to-end test utilizing the C++ simulator generated by the framework.
A second strategy would be to implement custom simulation modules for all modules
blackboxed by Chisel. This would also allow for end-to-end tests in the Chisel simulator,
but in terms of workload required be comparable to actually porting the system completely.
A third solution would be to remove all custom types from the VHDL parts of the design.
This would certainly be quicker than a full port, but having a fragmented codebase is
definitely less desirable in the long term.

7.3 Future Work

To further extend the platform along the epigenetic axis, it is necessary to allow for other
inputs and perturbartions to the CA than the feedback from the Readout module. A possi-
ble solution would be to implement a generic type of InputCell that, similar to the Feed-
backCell used in this thesis, has state determined entirely by an outside source. That out-
side source could potentially be a bitstream stored on the on-board memory on the Convey
coprocessor.

In the example presented in Section 6.2, configuring the SNN in the Readout module was
trivial to do by hand in order to illustrate the potential capabilities. In order to effectively
utilize the Readout module in more advanced experiments, an efficient training algorithm
will have to be implemented. In general, training spiking neural networks is a hard task. In
the specialization project report in Appendix C, an evolutionary algorithm is used to guide
a search through the space of possible network configurations. This technique is both
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slow and it does not converge reliably. A more efficient solution would be to implement a
version of the SpikeProp algorithm [4] adapted to the simplified spiking neural networks
modeled in the Readout module. Another possible approach is fully on-line training based
on spike-timing-dependent plasticity [25]. Here, weight tuning happens locally inside
each neuron, based on the timing of incoming spikes relative to when the neuron fires.
This approach is used in IBMs Truenorth computer [31], discussed in Section 2.5.1.
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Chapter 8
Conclusion

In this thesis, a physical realisation of a developmental, cellular automata-based dynamical
system with dynamical structure (DS)2 has been explored in a reservoir computing (RC)
context. A system implemented with information encoded temporally as spiketrains from
end to end has been implemented and tested. This is based on inspiration from biology
and nature, wherein systems such as the human nervous system operates entirely within
the spiking domain.

To achieve this, the Cellular Automata Research Platform (CARP) has been augmented
with new functionality. A flexible, reconfigurable Readout module has been added to the
system, designed to perform real-time classification of temporal behavior in a dynamical
system with dynamical structure (DS)2. The Readout module serves as an efficient way to
allow the behavior of cellular computing systems to be interpreted as output. The output
from the Readout module is also fed back into the dynamical system being simulated, as
a form of environmental feedback that both the behavior and structure of the system can
utilize to self-regulate.

With this new functionality, the CARP systems is opened up to being used for research
that encompasses all three axis of the POE-ontology. Systems develop and adapt over
time (Ontogeny) based on evolved developmental rules (Phylogenesis) and feedback from
the environment (Epigenesis).

The platform has also been ported to run on new state-of-the-art hardware. It has also been
partially ported to a more modern implementation language, Chisel. The new platform has
been extensively tested through both unit tests of simulated modules and functional tests of
the entire system end-to-end. The new hardware should allow the current implementation
to scale up to ∼ 192× 192 CA cells in 2D configurations and ∼ 24× 24× 24 in 3D.

All in all, this thesis provides a flexible and powerful framework for research into artificial
development and evolution, artificial life and bio-inspired (DS)2 RC systems.
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Appendix A
Interface Specifications

A.1 Advanced Peripheral Bus (APB)

APB is a bus specification by ARM designed for low bandwidth communication between
register interfaces. Table A.1 lists its constituent buses and signals.
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Signal Source Description
PCLK Clock Source Clock. The rising edge of PCLK times all

transfers on the APB.
PRESETn System bus

equivalent
Reset. The APB reset signal is active LOW.
This signal is normally connected directly to
the system bus reset signal.

PADDR APB bridge Address. This is the APB address bus. It can
be up to 32 bits wide and is driven by the
peripheral bus bridge unit.

PPROT APB bridge Protection type. This signal indicates the nor-
mal, privileged, or secure protection level of
the transaction and whether the transaction is
a data access or an instruction access.

PSELx APB bridge Select. The APB bridge unit generates this
signal to each peripheral bus slave. It indi-
cates that the slave device is selected and that
a data transfer is required. There is a PSELx
signal for each slave.

PENABLE APB bridge Enable. This signal indicates the second and
subsequent cycles of an APB transfer.

PWRITE APB bridge Direction. This signal indicates an APB
write access when HIGH and an APB read
access when LOW.

PWDATA APB bridge Write data. This bus is driven by the periph-
eral bus bridge unit during write cycles when
PWRITE is HIGH. This bus can be up to 32
bits wide.

PSTRB APB bridge Write strobes. This signal indicates which
byte lanes to update during a write trans-
fer. There is one write strobe for each
eight bits of the write data bus. Therefore,
PSTRB[n] corresponds to PWDATA[(8n +
7):(8n)]. Write strobes must not be active
during a read transfer.

PREADY Slave interface Ready. The slave uses this signal to extend
an APB transfer.

PRDATA Slave interface Read Data. The selected slave drives this bus
during read cycles when PWRITE is LOW.
This bus can be up to 32-bits wide.

PSLVERR Slave interface This signal indicates a transfer failure. APB
peripherals are not required to support the
PSLVERR pin. This is true for both existing
and new APB peripheral designs. Where a
peripheral does not include this pin then the
appropriate input to the APB bridge is tied
LOW.

Table A.1: Signals and buses in the Advanced Peripheral Bus protocol.58



A.2 MemPort Bus

The MemPort Bus is a generic memory interface with a request/response style protocol. It
consists of two MemBuses wrapped in ready-valid interfaces, one for requests and one for
responses. A MemBus has data, address and write enable fields. A full list of signals is
given in table A.2.

Signal Source Description
req addr Requester Request address.
req data Requester Request data. Only used for write requests.
req write Requester Request type. High for write, low for read.
req ready Responder Responder ready. Asserted by responder

when it is ready to receive a new request.
req valid Requester Request valid. Asserted by requester when a

new request is dispatched.
resp addr Responder Response Address.
resp data Responder Response data.
resp write Responder Response type.
resp ready Requester Requester ready. Asserted by requester when

it is ready to receive a new response.
resp valid Responder Responder valid. Asserted by responder

when a new response is dispatched.
flush Requester Flush memory.
flush complete Responder Flush complete.

Table A.2: Signals and buses in the MemPort protocol.
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ISA 1 INTRODUCTION

1 Introduction

This document is a complete specification of the instruction set for the Cellular Au-
tomata Research Platform. It documents all effects and possible side effects of every
instruction.
Unless otherwise stated, an instruction completes in one cycle. However, keep in mind
that multi-word instructions require multiple cycles to send over PCI Express.
When a bit vector is broken into multiple words, the least significant part is always listed
first.
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1 INTRODUCTION CARP

Instructions

Each instruction is 256 bits and consists of a 5-bit operation code, a 3-bit length field
and up to 248 bits of parameters.
The operation code specifies what kind of instruction it is, and how the parameters
should be parsed.
The length field is used to improve communication speed by only transmitting the nec-
essary parts of an instruction; It is zero-extended back to 256 bits by the fetch module.
The field directly specifies the number of words after the first that are sent.
The parameters are of different types and lengths for each instruction. Please see the
individual instruction pages.

Instruction Format
012345678910111213141516171819202122232425262728293031

Parameters (low) Length OpCode
012345678910111213141516171819202122232425262728293031

Parameters (higher)

...
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Rules

Rules consists of conditions for each cell in the neighborhood and a result that will be
applied to the cell if the conditions match.
Each condition contains a type, a state and a bit for each that marks if it should be
checked. The result format is identical except for that the check bits are exchanged with
change bits that mark which parts of the cell should change if all conditions match.
In the formats below, [type bits] is assumed to be 5 and [states bits] 1 for the purpose
of having everything nicely align to bytes.

Rule Format
012345678910111213141516171819202122232425262728293031

Condition X– Condition X+ Condition Self Result
012345678910111213141516171819202122232425262728293031

Condition Z– Condition Z+ Condition Y– Condition Y+

Condition Format
01234567

Type Check T State Check S

Result Format
01234567

Type Change T State Change S

Notes

For a rule to be counted as a hit, all conditions must match and at least one change bit
must be set.
Conditions for Z are ignored when [matrix depth] is 1.
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LUTs

The indexing for the look-up tables is (Z–,Z+,Y–,Y+,X–,X+,Self). For each of these
indexes, the next cell state is specified. The least significant index is written first (to the
right).
In the format below, [state bits] is assumed to be 1 since it is the only value currently
supported. This allows the entries for (Y–,Y+,X–,X+,Self) to fit exactly within one
word.

LUT Format
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 00
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 01
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 10
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 11

Notes

The Z parts are ignored when [matrix depth] is 1.
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2 General Instructions

This section covers instructions that are not used directly or do not fit into any of the
other categories.
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No Operation
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0

Format

nop()

Purpose

To do nothing for one cycle.

Description

Nothing is done for one cycle.
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Read Information
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 1

Format

read_information()

Purpose

To retrieve information about the system.

Description

The following words are put into the Send Buffer.
012345678910111213141516171819202122232425262728293031

[matrix depth] [matrix height] [matrix width] [matrix wrap]
012345678910111213141516171819202122232425262728293031

[counter bits] [counter amount] [type bits] [state bits]
012345678910111213141516171819202122232425262728293031

[rule amount]
012345678910111213141516171819202122232425262728293031

[fitness parameters] [fitness words] [fitness id]
012345678910111213141516171819202122232425262728293031

[readout layer count] [ca output cell count]
012345678910111213141516171819202122232425262728293031

neuron count layer 1 neuron count layer 0
...

012345678910111213141516171819202122232425262728293031

neuron count layer [readout layer count]-1 neuron count layer [readout layer count]-2

Notes

This instruction takes 5 + d [readoutlayercount]
2 e cycles.
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Read Fitness
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 1 0

Format

read_fitness()

Purpose

To retrieve a fitness value.

Description

[fitness words] words are transfered from the Fitness Buffer to the Send Buffer.

Notes

This instruction takes [fitness words] cycles.
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Read Readout
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 1 1

Format

read_readout()

Purpose

To retrieve readout values.

Description

32 words are transfered from the Readout Buffer to the Send Buffer.

Notes

This instruction takes 32 cycles.
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Write Weight
012345678910111213141516171819202122232425262728293031

ADDRESS WEIGHT 0 0 0 1 1 0 0 0

Format

write_weight(ADDR, WEIGHT)

Purpose

To configure the value of a weight in the spiking neural network in the readout mod-
ule.

Description

Weight at address ADDR is configured with the WEIGHT value.
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Swap Cell Storage
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 0 0

Format

swap_cell_storage()

Purpose

To swap the contents of the two brams within the cell storage.

Description

Cell BRAM A and Cell BRAM B are remapped so that the contents appear to have been
swapped.
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Reset Buffers
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 0 1

Format

reset_buffers()

Purpose

To clear the Rule Vector, Live Count and Fitness Buffers.

Description

The read and write pointers of the circular FIFO buffers are set to 0. This makes them
appear to be empty.

Notes

If the Fitness module is processing data, the contents of the Live Count and Fitness
Buffers may become undefined.
If the Fitness buffer is full, this incruction should be called an additional time after any
pending data from Fitness has been transfered.
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3 Development Instructions

This section covers all instructions affecting the development module. This includes
writing rules, setting active rules, running development and reading data for which rules
have triggered.

13
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Read Rule Vectors
012345678910111213141516171819202122232425262728293031

N 0 0 0 0 0 0 1 0

Format

read_rule_vectors(N)

Purpose

To retrieve N rule vectors.

Description

N rule vectors are placed into the Send Buffer. Each consists of [rule amount] bits,
where the first bit (rule zero) is always 1. The Send Buffer is word-aligned after each
rule vector by padding with 0.

Example

Assume a system with [rule amount] set to 48, where rules 13 and 47 have triggered.
read_rule_vectors(1) will put the following words into the Send Buffer.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes

This instruction takes [words per rule vector] * N cycles.
When there are no rule vectors available and less than N have been sent, this instruction
waits.
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Read Rule Numbers
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 1 1

Format

read_rule_numbers()

Purpose

To retrieve the last rule that triggered for each cell during the previous development
step.

Description

Rule numbers for the entire matrix is put into the Send Buffer. Each consists of log2[rule
amount] bits, sent in raster order (first X, then Y, then Z). A value of 0 means that no
rules triggered. The Send Buffer is word-aligned after each row by padding with 0. If a
rule number would be split across two words, it is instead aligned to the next word.

Example

Assume a system with [matrix depth] set to 1, [matrix height] set to 2, [matrix width]
set to 3 and [rule amount] set to 256. If rule 2 triggered for all cells in the fist row and
rule 8 for all in the second, read_rule_numbers() will put the following words into the
Send Buffer.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [matrix width] (MX) and [rule amount] (RA).

T = MZMY

⌈
MX

max
(⌊

32
dlog2 RAe

⌋
, MX

)
⌉

+ 1
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Write Rule
012345678910111213141516171819202122232425262728293031

? 0 1 0 0 1
012345678910111213141516171819202122232425262728293031

INDEX
012345678910111213141516171819202122232425262728293031

RULE

Format

write_rule(RULE, INDEX)

Purpose

To write a development rule.

Description

RULE is written to Rule BRAM at address INDEX. The length of RULE varies depending
on [matrix depth], [type bits] and [state bits]. It is sent as one continuous piece spanning
multiple words. The instruction length field is adjusted accordingly.

Notes

INDEX is cropped to the number of bits in [rule amount].
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Set Active Rules
012345678910111213141516171819202122232425262728293031

N (low) 0 0 1 0 1 0 1 0
012345678910111213141516171819202122232425262728293031

N (high)

Format

set_rules_active(N)

Purpose

To set the number of rules that are currently active, so others can be skipped to reduce
development time.

Description

Rules 1 to N is set to active (rule 0 is reserved). If N is 0, no rules will be set to
active.

Notes

N is cropped to the number of bits in [rule amount]. If this is 16 or less, the second
word can be discarded (and instruction length field set to 0).

17
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Develop
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 0 0

Format

develop()

Purpose

To perform development on all cells.

Description

The cells in Cell BRAM A are fetched and tested against all active rules. If a rule
matches a cell, the state and/or type of the cell is changed based on the rule. Rules of
higher index override those of lower index. The developed cells are then stored in Cell
BRAM B.
The lastly matched rule of each cell is stored in Rule Number BRAM, and a list of all
rules with a match is stored to the Rule Vector Buffer.

Notes

An overridden rule will be listed as having a match, but all its effects are discarded.
The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [rules active] (RA) and [rules tested in parallel] (RT IP ).

T3D = MZMY max
(

RA + 1
RT IP

, 7
)

+ 6

T2D = MY max
(

RA + 1
RT IP

, 5
)

+ 4
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4 Cell Storage Instructions

This section covers all instructions for writing and reading states and types to/from the
cell storage.
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Read One State
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 0 0 0 0 0 4

Format

read_state(Z, Y, X)

Purpose

To retrieve the state of the cell at (Z, Y, X).

Description

The state of cell (Z, Y, X) is put into the Send Buffer. The Send Buffer is then word-
aligned by padding with 0. Accessing cells outside the matrix dimensions yields undefined
states.
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Read All States
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 5

Format

read_states()

Purpose

To retrieve the state of all cells.

Description

The states of all cells are put into the Send Buffer in raster order (first X, then Y, then
Z). The Send Buffer is word-aligned after each row by padding with 0. If a state would
be split across two words, it is instead aligned to the next word.

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [matrix width] (MX) and [state bits] (BS).

T = MZMY

⌈
MX

max
(⌊

32
BS

⌋
, MX

)
⌉

+ 1
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Read One Type
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 0 0 0 0 0 6

Format

read_type(Z, Y, X)

Purpose

To retrieve the type of the cell at (Z, Y, X).

Description

The type of cell (Z, Y, X) is put into the Send Buffer. The Send Buffer is then word-
aligned by padding with 0. Accessing cells outside the matrix dimensions yields undefined
types.
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Read All Types
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 7

Format

read_types()

Purpose

To retrieve the types of all cells.

Description

The types of all cells are put into the Send Buffer in raster order (first X, then Y, then
Z). The Send Buffer is word-aligned after each row by padding with 0. If a type would
be split across two words, it is instead aligned to the next word.

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ), [matrix width] (MX) and [type bits] (BT ).

T = MZMY

⌈
MX

max
(⌊

32
BT

⌋
, MX

)
⌉

+ 1
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4 CELL STORAGE INSTRUCTIONS CARP

Write One State
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 1 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

STATE

Format

write_state(Z, Y, X, STATE)

Purpose

To write one state.

Description

State (Z, Y, X) in Cell BRAM A is set to STATE.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
STATE is cropped to [state bits].
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
If X is outside the defined matrix, nothing will happen.
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ISA 4 CELL STORAGE INSTRUCTIONS

Write Row of States
012345678910111213141516171819202122232425262728293031

Z Y X ? 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

STATES

Format

write_states(Z, Y, X, STATES)

Purpose

To write one row (or as many can fit an instruction) of states.

Description

STATES is a list of states in little-endian order. It is either [matrix width] or as many
can fit 224 bits in length. Each state is [state bits] long.
The states are written to Cell BRAM A at row (Z, Y). They are offset so the first state
is written to position X within the row. States offset to [matrix width] or more are
discarded.
The length of STATES varies depending on [matrix width] and [state bits]. It is sent as
one continuous piece spanning multiple words. The instruction length field is adjusted
accordingly.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
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4 CELL STORAGE INSTRUCTIONS CARP

Write One Type
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 1 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

TYPE

Format

write_types(Z, Y, X, TYPE)

Purpose

To write one state.

Description

Type (Z, Y, X) in Cell BRAM A is set to TYPE.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
TYPE is cropped to [type bits].
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
If X is outside the defined matrix, nothing will happen.
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ISA 4 CELL STORAGE INSTRUCTIONS

Write Row of Types
012345678910111213141516171819202122232425262728293031

Z Y X ? 0 1 1 1 1
012345678910111213141516171819202122232425262728293031

TYPES

Format

write_types(Z, Y, X, TYPES)

Purpose

To write one row (or as many can fit an instruction) of types.

Description

TYPES is a list of types in little-endian order. It is either [matrix width] or as many can
fit 224 bits in length. Each type is [type bits] long.
The types are written to Cell BRAM A at row (Z, Y). They are offset so the first type
is written to position X within the row. Types offset to [matrix width] or more are
discarded.
The length of TYPES varies depending on [matrix width] and [type bits]. It is sent as
one continuous piece spanning multiple words. The instruction length field is adjusted
accordingly.

Notes

Each coordinate is cropped to the bits in its matrix dimension.
If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.
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4 CELL STORAGE INSTRUCTIONS CARP

Fill Cells
012345678910111213141516171819202122232425262728293031

TYPE STATE 0 0 0 0 1 0 1 0

Format

fill_cells(STATE, TYPE)

Purpose

To set the state and type of all cells.

Description

STATE and TYPE is written to each cell in Cell BRAM A.

Notes

STATE is cropped to [state bits].
TYPE is cropped to [type bits].
This instruction takes [matrix depth] * [matrix height] cycles.
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ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

5 Cellular Automaton Instructions

This section covers all instructions affecting the Cellular Automaton. This includes
writing look-up tables, configuring the CA, running the CA, and reading back the new
states.
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5 CELLULAR AUTOMATON INSTRUCTIONS CARP

Write LUT
012345678910111213141516171819202122232425262728293031

? 0 1 0 0 0
012345678910111213141516171819202122232425262728293031

TYPE
012345678910111213141516171819202122232425262728293031

LUT

Format

write_lut(LUT, TYPE)

Purpose

To write a type to lookup table conversion entry.

Description

LUT is written to LUT BRAM at address TYPE. The length of LUT varies depending
on [matrix depth]. It is sent as one continuous piece spanning multiple words. The
instruction length field is adjusted accordingly.

Notes

TYPE is cropped to [type bits].
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ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

Configure
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 1 0

Format

config()

Purpose

To configure the sblock matrix.

Description

The cells in Cell BRAM B are fetched along with the LUTs corresponding to each of
their types. The LUTs and states are then written to the sblocks.

Notes

The execution time (T ) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY ) and [lut configuration bits] (LUTCB).

T3D = MZMY
128

LUTCB

+ 2

T2D = MY
32

LUTCB

+ 2
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5 CELLULAR AUTOMATON INSTRUCTIONS CARP

Readback
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 1 1

Format

readback()

Purpose

To read back cell states from the sblock matrix.

Description

The states of all sblocks are written to Cell BRAM B. Types in Cell BRAM B are
preserved.

Notes

This instruction takes [matrix depth] * [matrix height] cycles.
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ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

Step
012345678910111213141516171819202122232425262728293031

STEPS 0 0 0 1 0 0 0 1

Format

step(STEPS)

Purpose

To perform updates of the sblock matrix.

Description

The sblock matrix is updated STEPS times. After each step, the number of live cells
(state equals 1) are counted and stored in the Live Count buffer.

Notes

This instruction takes STEPS + 1 cycles.
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ISA 6 CONTROL FLOW INSTRUCTIONS

6 Control Flow Instructions

This section covers all instructions that are related to the program memory. This includes
those for storing, starting and exiting programs, in addition to control flow within the
programs.
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6 CONTROL FLOW INSTRUCTIONS CARP

Break
012345678910111213141516171819202122232425262728293031

0 0 0 1 1 0 0 1

Format

break_out()

Purpose

To break out of a running program and restore control to the host.

Description

The Fetch module exits [read from memory] mode and enters [read from communication]
mode.

Notes

This has no effect if the Fetch module is already in [read from communication] mode.
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ISA 6 CONTROL FLOW INSTRUCTIONS

Store
012345678910111213141516171819202122232425262728293031

ADDRESS 0 0 0 1 1 0 1 0

Format

store(ADDRESS)

Purpose

To begin storage of a program to internal memory.

Description

The Fetch module exits [read from communication] mode and enters [save to memory]
mode. The next instruction will be saved at address ADDRESS, and then each address
thereafter.

Notes

This will be saved as a nop if the Fetch module is already in [save to memory] mode.
ADDRESS is cropped to [program counter bits].
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6 CONTROL FLOW INSTRUCTIONS CARP

End
012345678910111213141516171819202122232425262728293031

0 0 0 1 1 0 1 1

Format

end()

Purpose

To end storage of a program to internal memory.

Description

The Fetch module exits [save to memory] mode and enters [read from communication]
mode.

Notes

This will be parsed as a nop if the Fetch module is already in [read from communication]
mode.
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ISA 6 CONTROL FLOW INSTRUCTIONS

Jump
012345678910111213141516171819202122232425262728293031

ADDRESS 0 0 0 1 1 1 0 0

Format

jump(ADDRESS)

Purpose

To begin execution of or jump within a program stored to internal memory.

Description

If the Fetch module is not in [read from memory] mode, it exits [read from communica-
tion] mode and enters [read from memory] mode. The program counter is then updated
so the next instruction is the one at address ADDRESS.

Notes

ADDRESS is cropped to [program counter bits].
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6 CONTROL FLOW INSTRUCTIONS CARP

Jump Equal
012345678910111213141516171819202122232425262728293031

ADDRESS COUNTER 0 0 1 1 1 1 0 1
012345678910111213141516171819202122232425262728293031

VALUE

Format

jump_equal(ADDRESS, COUNTER, VALUE)

Purpose

To begin execution of or jump within a program stored to internal memory if a counter
matches a value.

Description

If counter COUNTER is equal to VALUE, this instructions is exactly like jump(ADDRESS).
Otherwise, it is discarded.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
ADDRESS is cropped to [program counter bits].
VALUE is cropped to [counter bits].
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ISA 6 CONTROL FLOW INSTRUCTIONS

Increment Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 0

Format

counter_increment(COUNTER)

Purpose

To increment a counter.

Description

Counter COUNTER is incremented by 1. If counter COUNTER is at maximum, it
instead becomes 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
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6 CONTROL FLOW INSTRUCTIONS CARP

Reset Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 1

Format

counter_reset(COUNTER)

Purpose

To reset a counter.

Description

Counter COUNTER is set to 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
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Abstract—Reservoir Computing (RC) is a new and interesting
approach to machine learning in which temporal input is imposed
as perturbations on a dynamic reservoir and output is read
out by performing a linear classification of reservoir state some
time after the initial perturbation. While Recurrent Neural
Networks are a common choice of reservoir, any dynamical
system exhibiting the ability to let perturbations “echo” through
the system over time and to respond distinctly to different inputs
could be used. In this paper we are interested in systems where
the output is spiking in nature, such as biological neurons and
cellular automata (CA). Implementations of RC-systems with
spiking reservoirs typically convert spiking data to analog values
before performing classification. This conversion can introduce
unwanted biases to the system, as well as being potentinally
expensive to implement in hardware. In this paper, we introduce
a linear classifier operating in the spiking domain, the Simplified
Spiking Neural Network (SSNN), that avoids this conversion.
To show that this model is viable, we implement a software
simulation of an RC-system consisting of a one-dimensional,
uniform cellular automata and a small SSNN and train the
network so that is able to distinguish between the dynamics
emerging in the reservoir from different initial states.

We also implement a novel RC-system on an FPGA, using
a Dynamical System with Dynamical Structure (DS)2 as a
reservoir and an SSNN as a readout layer. (DS)2 systems are
interesting in the context of reservoir computing because they
have the ability to self-regulate and adapt their own dynamics
based on their environment. This allows for agents that are
capable learning on their own, as opposed to being trained. We
implement the (DS)2 reservoir as a non-uniform CA in which
the state transition function in each cell is subject to development
over time.

I. INTRODUCTION

In recent years, research into computation using non-
traditional physical mediums and paradigms, so called uncon-
ventional computing, has seen increased interest. With chal-
lenges currently facing traditional architectures, such as the
von Neumann bottleneck and ensuring continued scalability
and reliability, unconventional computation presents possible
solutions from a new perspective. Instead of designing archi-
tectures top-down, by composing complex units and orches-
trating their interaction, a bottom-up approach is employed,
where complex behaviour emerges from local interactions be-
tween simple units. Cellular computing, introduced by Sipper
in [1], is an example of one such paradigm. These same
principles are also used to explore computational capabilities
in unconventional materials, as shown in [2].

Reservoir computing (RC) is a novel approach to machine
learning and intelligent systems, in which input data is im-
posed as perturbations on a dynamic system (the reservoir)
and output is generated by performing a linear classification of
the reservoir state [3]. With RC as a field originating from the
study of Recurrent Neural Networks (RNNs), these are a com-
mon choice of reservoir in RC implementations [3]. The focus
of this paper however, is the use of developmental systems [4]
as a reservoir and how to perform readout from such a system.
Specifically, we are interested in developmental systems based
on non-uniform Cellular Automata (CA) [5]. Where traditional
CAs have fixed transition functions throughout a simulation,
determining how the state of a cell should update based on the
state of its neighbors and itself, these functions are subject to
change in developmental systems. Based on growth rules and
environment feedback, developmental systems change their
dynamical behaviour. This ability is particularily interesting
in the context of unconventional computation, as it allows
for architectures with self-organizing, self-repairing and self-
scaling properties. A major advantage of CA-based reservoirs
over ones based on RNNs, is that they allow for efficient
implementation in hardware, since no expensive floating-point
operations are required.

In RC systems where the reservoir output is spiking in
nature, such as (developmental) cellular automata and bio-
logical neurons, spiketrains from the reservoir is typically
converted to analog values before being processed by a linear
readout layer. This is usually done by resampling spiketrains
and applying exponential filtering before classifying the output
with linear/ridge regression [3]. Converting to, and perform-
ing classification in the analog domain, introduces expensive
floating-point operations to the RC pipeline. In the interest of
achieving efficient end-to-end simulation of a CA-based RC
system in hardware, a readout layer that can process spiking
data without need for conversion is needed.

In this paper we propose a simplified spiking neural network
model (SSNN) suitable for use as a readout layer in an
RC system. This model is capable of classifying reservoir
dynamics based on unconverted spiketrain data. As a proof
of principles, we implement a software simulation of an RC
system consisting of a one-dimensional, homogenous CA and
a SSNN, and show that the system can compute XOR.

We also implement a RC-machine based on a cellular



developmental system on reconfigurable hardware, a field-
programmable gate array (FPGA), where the readout layer is
implemented using the above mentioned SSNN model.

This paper is organized as follows: Section II gives relevant
background and Section III describes the Simplified Spiking
Neural Network model. In Section IV the cellular, develop-
mental RC-machine implemented in hardware is presented.
Section V describes the software and methodology used to
carry out the experiment described in Section VI. Finally,
Section VII offers a short conclusion, followed by an overview
of future work in Section VIII.

II. BACKGROUND

A. Reservoir Computing

Artificial Neural Networks (ANNs) are a commonly used
computational model in machine learning and bio-inspired
computing. Simple, feed forward ANNs lend themselves well
to problems were data can be spatially correlated, such as
classification. Many real world problems however, are tem-
poral in nature. Recurrent neural networks (RNNs) have been
shown to be powerful tools for solving temporal problems such
as stock market prediction [6], learning context free/sensitive
languages [7] and speech synthesis [8]. Training RNNs is com-
putationally expensive and often requires application specific
adaptions of generalized training algorithms in order to reli-
ably converge [9]. Several techniques have been proposed that
circumvent problems related to training, such as Echo State
Networks [10] (ESNs), Liquid State Machines [11] (LSMs)
and Backpropagation Decorrelation learning [12]. These all
share the common feature of only training weights of the
output layer of the network, while leaving the hidden layers
of the network untrained or simply subject to weight scaling.
In [13], Verstraeten et al. propose that systems based on this
idea should be unified under the term reservoir computing
(RC).

In general, reservoir computing as a term describes any
computational system where a dynamic reservoir is excited
by input data and output is generated by performing clas-
sification/regression over reservoir state. Figure 1 shows the
basic architecture of any reservoir computing system. With
its origins in research on various types of recurrent neural
networks and training thereof, the reservoir in RC systems
is often represented as an RNN [13]. However, any dynamic
system capable of eventually forgetting past perturbations
and of responding distinctly to different perturbations, can in
principle be used. Snyder et al. [14] investigate using Random
Boolean Networks, Yilmaz uses Cellular Automata [15] and
Fernando et al. use a bucket of water [16].

B. Cellular Automata and EvoDevo Systems

John von Neumann introduced cellular automata (CA) as
a discrete computational model based on local interaction of
cells on a grid of finite dimensionality [17]. At any timestep t
during the simulation, each cell in the grid is in one of a finite
number of states. The state of any cell at time t+1 is computed
as a function of the cells and its neighboring cells current

Input Reservoir Readout

f(x)

Output

Fig. 1. Basic overview of an RC system.

states. Under this simple scheme, von Neumann showed that
advanced properties such as autonomous self-reproduction is
possible. In later years, much research has gone into both
qualitative and quantitative analysis of the capabilities of CAs
as an abstract model of computation [18] [19].

Artificial evolution is an important tool in biologically in-
spired computing. Inspired by Darwin’s theories of evolution,
artificial evolution is often used to solve problems by encoding
potential solutions as individuals in a population and applying
mechanisms such as reproduction, recombination, mutation
and selection on said population to breed better solutions with
regard to some fitness function [20]. Of particular interest
with regards to the work being presented in this paper, is
the use of evolution to explore the rule-space of CAs [21].
In [22], Tufte describes how artificial evolution and devel-
opmental techniques can be combined to grow multicellular
systems for which both structure and behaviour are emerging
properties, so called Dynamical Systems with Dynamical
Structures ((DS)

2) [23]. Where dynamical systems, such as
Random Boolean Networks and CAs, have fixed structural
topology and state transition functions, (DS)

2 systems allow
these properties to undergo a developmental process. Through
this process, these systems can self-regulate and adapt their
dynamics and change their possible trajectories through state
space. In this paper and in future work, we are interested in
exploring the capabilities of these kinds of systems when used
as reservoir.

C. Spiking Neural Networks

Artificial neural networks can be grouped into three genera-
tions, based on the characteristics of their base computational
unit, the neuron. The first generation, based on McCulloch-
Pitts neurons [24], simple threshold gates, allows for universal
computation on digital input/output values. In the second
generation, neurons apply a non-linear, continuous activation
function on the weighted sum of their inputs.

The third generation of networks bases itself on spiking
neurons, which model the interaction between biological neu-
rons more closely. In this model, a neuron v fires when its
potential Pv exceeds a threshold ✓v . The potential is, at any
time, the sum of the postsynaptic potentials, resulting from
firing of presynaptic neurons. The contribution of a spike
from presynaptic neuron u at time s to the potential Pv of
postsynaptic neuron v is given by wu,v · "u,v(t � s), where
wu,v is a weight representing the strength of the synapse
connecting u and v, and ✏u,v(t�s) models the response of the



Fig. 2. Common spike response function shape, figure taken from [25].

spike as a function of time passed since the spike occurred.
A synapse can be both excitatory and inhibitory, meaning that
its contribution to the total potential Pv can be both positive
and negative. A biologically plausible response function is
shown in figure 2. From a machine learning perspective, the
trainable part of a spiking neural network, is the weight wu,v ,
determining to what degree spikes from a neuron u influences
the potential of neuron v.

In [25], Maass shows that spiking neurons are at least
computationally equal to the models used in generation one
and two, and that they can also be more efficient in terms
of neurons required to compute a function. SNNs also have
the required attributes to be used as a reservoir in an RC
system [26]. In order to be able to create an efficient imple-
mentation of a RC-machine based on a cellular developmental
system as described in IV, being able to perform classification
in the spiking domain is essential.

III. SIMPLIFIED SPIKING NEURAL NETWORK

In this section, we present a simple neural model inspired by
the SNN model outlined in Section II-C. The basic architecture
of each neuron is shown in Figure 3.

Similarily to their biological counterparts, the potential for
a neuron to fire increases as more spikes come in. For each in-
coming edge/synapse, a neuron has a separate counter/weight-
pair. Counters are incremented every time a spike comes in
via the corresponding synapse. Weights act as thresholds. For
each synapse, they represent the minimal number of incoming
spikes required for the neuron to fire. An incoming spike to
a counter that is already equal to its weight, will not cause
the counter to increment. When all counters are equal to their
weights, the neuron fires, and the counters reset.

Counters are also susceptible to decay over time. If at any
timestep a spike is not occurring for some incoming edge, the
corresponding counter is decremented.

IV. (DS)
2 RC-MACHINE

An FPGA-prototype of a (DS)
2 RC-machine with a SSNN

readout layer was implemented as a part of this project. In
this section, we provide an overview of the functionality and
implementation of the reservoir and readout components of
the prototype, as well as numbers on resource usage and
scalability.

Fig. 3. Block diagram for the base computation occuring in the simplified
spiking neurons.

A. Developmental Reservoir

The implemented reservoir is a developmental system based
on the work presented by Tufte in [27]. In this model, the
functional behavior of each cell on a regular grid of finite
dimensionality is decided by its type. To model emergence
of both structure and behaviour, the rules governing growth
and structural development, the genome, is applied to all
cells every so called Development Step (DS). These rules are
expressed as a condition and a result, with the condition being
dependent on both the current type and state of the cells in
the von Neumann neighborhood 1 of the cell being developed.
Growth is in other words encoded in the genome in much
the same way as transition functions are in traditional CAs.
It is important to note that the genome is not a blueprint
describing exactly how the final result should look, but rather
a description of how to build a system.

Each DS consists of a set number of State Steps (SS). Every
state step, the state of each cell is updated. The type of the
cell determines its behavior, or which transition function to
use to evaluate cell states every state step. As in traditional
CAs, the state of cells in the von Neumann neighborhood is
used as input to the transition function.

A system operating under the regime described in this
section, will essentially be a heterogeneous CA where the
transition function used in each cell changes over time. Since
both the type and state (environment) is taken into account
during development, the system can adapt to and self-regulate
its own behavioral dynamics. This property is of particular
interest in the context of machine learning, as it allows for
agents that are capable of learning, as opposed to the current
norm, agents that can be trained.

Figure 5 shows the development of a reservoir starting from
a single green cell, under the growth rule from Figure 6.
For each growth rule, the label underneath the neighborhood

1The cells directly north, east, south and west of a cell, as well as the cell
itself.



Fig. 4. High-level system architecture for the (DS)2 RC-machine

indicates the direction from which the cell should grow. For
instance; Gw, Grow west, indicates that the rightmost cell
in the neighborhood should be copied into the center cell.
Analogous rules apply for Grow north and east, as well as
a special case for Grow south. A cell with a green northern
neighbor will turn into a red cell, while one with a red northern
neighbor will turn green. The functional difference between
the red and green cell type is that they use different state
transition functions. For the neighborhoods not enumerated
here, the center cell remains unchanged. A subset of statesteps
for DS 1 and DS 2 is shown to illustrate how cell type affects
behavior. For the sake of simplicity, this rule does not take
the state of neighboring cells into account when performing a
development step, only their type.

B. FPGA implementation

An FPGA-based implementation of a developmental system
as described here was completed and verified by Lundal
in [28]. Figure 4 shows a high-level overview of the sys-
tem architecture. The system is implemented as a three-
stage interlocked pipeline, consisting of Fetch, Decode and
Execute stages. Cell states and types is stored in On-chip
Memory, so called Block RAM (BRAM) in the Cell Storage
module. At each execute stage, one of two modules, either
the Development or the CA module, operates on the data.
Development steps happen in the development module, where
growth rules are stored in BRAM. Whenever a DS instruc-
tion occurs, all cells are fetched from the Cell Storage and
tested against all rules. Similarily for state steps, cells are
moved to the CA module, a two- or three-dimensional grid
of Sblocks [29], allowing for fully parallel execution of the
behavior of the system. Each sblock is connected the sblocks
in the von Neumann-neighborhood around it, receiving their
states as input. The type of a cell determines the functionality
configured in the sblock LUT.

New hardware, equipped with Convey Wolverine WX-2000
coprocessors (see micron.com) based on the Xilinx Virtex-7
XC7V2000T FPGA (see xilinx.com), has since been aquired
and the system has been ported to work on this new platform.

In an effort to further modernize the codebase, the system
has been partially ported from VHDL to Chisel, a Hardware
Description Domain Specific Language implemented in Scala
(see chisel.eecs.berkeley.edu).

The architecture of the developmental system as imple-
mented by Lundal remains largely unchanged. To allow the
readout layer to process data in real time, without the need
for an intermediate instruction between state steps, support
has been added for marking sblocks as output blocks. The
state from all output blocks is wired directly to the readout
layer. This happens at synthesis time, as the amount of FPGA
resources required for making it possible to reconfigure which
blocks are used as output blocks at runtime is immense. For
large reservoirs, the routing of state-signals from sblocks to the
readout layer will require a considerable amount of resources
in itself, making it necessary to limit the number of output
sblocks. While this will limit the readout layer’s “view” into
the dynamics of the reservoir, the hope is that the reservoir
will adapt around this, based on the feedback it receives from
the readout layer.

C. Readout

Based on the basic description of each neurons compu-
tational functionality in Section III, a parameterized FPGA-
implementation was created to perform realtime classification
of the readout from the developmental reservoir described in
the previous section. Given a description of a network topology
(i.e. the number of neurons in each layer and the number of
output cells in the reservoir), and weights for all neurons,
hardware is generated accordingly, as shown in Figure 7.
For each layer, a module encapsulating the neurons in that
layer is synthesised, with each neuron being modeled as a
separate entity within the layer. Neurons are implemented
very similar to how they are depicted in Figure 3. Incoming
spikes are counted in a set of registers, one for each neuron in
the preceeding layer, which are used to determine wether or
not the neuron should fire by comparing register values with
statically configured weight values. In addition, circuitry for
resetting the counters after a neuron fires has been added.

Layers in the SSNN form a pipeline, through which data
propagates in sync with the state steps of the reservoir. For
two layers in the SSNN, A and B, where B directly follows
A in the pipeline, the output from neurons in layer A at time
t is used as input for the neurons in layer B at time t+ 1. As
mentioned, all neurons are synthesised with one counter per
neuron in the preceeding layer. This means that all networks
are implemented fully connected. That is, all neurons in one
layer are connected to all neurons in the next. Connections
can be pruned by setting a weight value of zero.

D. Resource Usage

Table I shows resource usage for different configurations of
the developmental system in the RC-machine. The percentage
utilization is based on the total amount of resources available
on the Virtex-7 XC7V2000T FPGA. We see that for the
configuration with 96 ⇤ 96 = 9216 cells, ⇠ 20% of LUTs
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Fig. 5. Development starting from a single green cell using the growth rule in Figure 6.
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Fig. 6. Growth rules for a cellular developmental system where cells are
either empty or of the green type.

Fig. 7. HW architecture for the SSNN readout module.

Fig. 8. At each timestep, the state of the CA is fed to the input-layer of the
SSNN, which propagates updates through the network layers in a pipelined
fashion.

and ⇠ 24% of available BRAMs are utilized. It should, in
other words, be possible to scale the developmental system
up to approximately 36000 cells on this hardware. In a full
RC-system, some resources will also need to be used by the
SSNN, limiting the maximum size of the reservoir further.

V. METHODOLOGY

To demonstrate the viability of a SSNN as a readout-layer in
a RC-system, a simple software simulation was implemented
in the Python programming language. The implementation
consists of three modules; a one-dimensional, homogenous,
binary CA, an SSNN implementation and a genetic algorithm.
Figure 8 shows how the CA and the SSNN is connected.

A. Cellular Automata Module

The CA consists of an array of 0s and 1s, and a step function
that, given a CA-array, performs a single transition step on it.
As the CA is uniform, the same development rule is applied
to each cell every development step. Since the state of the
CA is stored in such a simple format, perturbing the system
with input is as simple as replacing the array as a whole or
modifying parts of it betweeen timesteps.

For the work presented in this paper, CAs 32 cells wide was
used, with rule 90 (see Table II) as the transition function. To



TABLE I
(DS)2 RC-MACHINE FGPA RESOURCE USAGE.

Cell Count LUTs Total LUTS % Registers Total Registers % BRAMs total BRAMs %
8 ⇥ 8 194624 15.93 208690 8.54 227.5 18.91

64 ⇥ 64 224442 18.37 221061 9.05 280.0 23.28
72 ⇥ 72 230094 18.84 223355 9.14 286.5 23.82
96 ⇥ 96 251219 20.56 231616 9.48 308.5 25.64

4 ⇥ 4 ⇥ 4 195360 15.99 209171 8.56 232.5 19.33
16 ⇥ 16 ⇥ 16 249320 20.41 218109 8.93 261 21.70

TABLE II
RULE 90

Neighborhood 111 110 101 100 011 010 001 000
New state 0 1 1 0 1 1 1 0

TABLE III
GA HYPERPARAMETERS

Population size 50
Crossover rate 0.5
Mutation rate 0.4
Crossover function Braid
Mutation function Per Genome

accurately model the FPGA implementation, only a subset of
the cells are used as input to the readout layer.

B. SSNN Readout Module

The model described in III is implemented as an array of
neurons for each layer in the desired network topology. Each
neuron is represented as an array of counters and an array of
weights, one weight and one counter for each neuron in the
previous layer. As in the hardware implementation, networks
are fully connected by default, allowing for connections to be
pruned by setting a weight value of zero. The simulation also
imitates the pipelined dataflow used in the FPGA implemen-
tation.

C. Genetic Algorithm

A genetic algorithm was used to search the space of possible
weight configurations of the SSNN. The hyperparameters used
are shown in Table III.

Each individual in the population represents one possible
weight configuration for the topology being optimized. The
genotype of each individual is simply a matrix of numbers,
each one representing one weight. Crossover of two parent
individuals is done by braiding their layers, so that the
child has layer one from parent one, layer two from parent
two, layer three from parent one, et cetera. Individuals are
subject to random mutations performed per genome with some
probability p. An individual chosen to be mutated, will have
a randomly chosen weight changed, with equal probability of
incrementing or decrementing the weight.

Fitness for an individual is calculated by comparing spike-
trains output by the network when fed with test data, with the
expected spiketrains for that data.

VI. EXPERIMENTS AND RESULTS

Using the software simulation setup described in Section V,
we wish to show that the SSNN model is viable to use as a
readout layer in an RC system. For this to be the case, it
needs to be possible to train the network to produce distinct
spiketrains given different sequences of readouts from the
reservoir. In other words, given desired output spiketrains for
different input perturbations to the reservoir, it needs to be
possible to train the SSNN to correctly classify the temporal
dynamics arising from the perturbations and to produce the
corresponding output spiketrain.

To verify that this is possible, we encode the four different
input cases of a two-bit XOR-operation, 00, 01, 10, 11 as four
distinct initial states for the CA and let the presence or absence
of a spike from the SSNN output node at given timesteps after
some number of initial number of timesteps indicate result of
the XOR operation. Specifically, for each of the initial states,
the CA/SSNN was allowed to run for 200 timesteps before the
output from the SSNN was sampled ten times at 25 timestep
intervals. In other words, an optimal weight configuration
for the SSNN is one whose output samples are ten zeroes,
ten ones, ten ones and ten zeroes for the four initial states
respectively. No specific mapping scheme was used to map
from XOR-inputs to their respective initial states. Rather at
the start of each experiment, four random 32-wide bitstrings
are chosen to represent the inputs.

For this experiment, the SSNN was configured with two
layers, a two-neuron input-layer fully connected to 8 of the
32 cells in the CA, and an output layer with a single neuron.
As described in Section V-C, a genetic algorithm (GA) is used
to search through the space of possible weight configurations.
Being an optimization algorithm, the GA does not guarantee
that an optimal solution will be found. For several of the
configurations run during this experiment, optimal solutions
were however found, showing that SSNNs are viable as
readout layers in RC-systems.

Depending on how large a subsection of the CA’s cells’
states are fed as input to the SSNN, the convergence rate
for the search varies. By using fewer cells, the size of the
search space is reduced, along with the amount of dynamic
behavior captured, making it harder/potentially impossible
to distinguish the dynamics emerging from one initial state
from the others. Use too many, and the search space size
increases, making it more likely that the search gets stuck in a
local maximum. Optimal solutions were found most frequently
when 8 of the total 32 cells in the CA were used as output.



Fig. 9. Average, maximum and standard deviation of fitnesses for one run of
the XOR experiment.

A plot of average and maximum fitnesses as well as fitness
standard deviation for one run where an optimal solution was
found is shown in Figure 9.

VII. CONCLUSION

In this paper, we present a Simplified Spiking Neural
Network model, with the goal of using it as a readout layer
in RC systems where the reservoir output is spiking in nature.
Through experiments simulated in software, we show that it
is possible to train a network based on this model to correctly
classify temporal dynamics emerging in a cellular automaton.
We also review work done towards an FPGA-implementation
of a reservoir computing system consisting of a (DS)

2 cellular
reservoir and a spiking neural network as a readout layer.

VIII. FUTURE WORK

While this paper shows that the SSNN is suitable for use in
an RC system, using a genetic algorithm for training is less
than desireable, and alternative training schemes should be
investigated. Two possible alternatives are SpikeProp [30], a
version of the backpropagation training algorithm adapted for
spiking neurons, and spike-timing-dependent plasticity [31],
an on-line training scheme where synapses over which spikes
arrive right before the neuron fires are strengthened, while
those over which spikes arrive right after thee neuron has fired
are weakened.

The FPGA-based implementation of the SSNN is very
simple so far, and needs more work to be practical in use.
As mentioned in Section IV-C, weights are set statically at
synthesis-time. To allow for easy reconfigurability, they should
instead be stored in BRAM. As it is implemented now, the
output from the SSNN is not stored anywhere, nor fed back
into the reservoir. To facilitate analysis of the results, the
output should be buffered for some time, allowing them to
be transferred to the host program. It should also be possible
to mark specific cells as input cells, into which the output from

the SSNN is fed continuously. Since the reservoir is a (DS)
2

system, this will allow it to adapt according to the performance
of its own dynamics.

Scalability is another issue with the current SSNN im-
plementation. For a configuration with 4000 output cells in
the reservoir and 64 neurons in the first layer of the SSNN,
4000 ⇥ 64 = 256000 registers will be inferred by the current
implementation. To allow for flexible experimentation with
reservoir sizes, number of output cells and SSNN topologies,
the implementation should be changed so that it no longer
generates one circuit per neuron per layer, but instead gener-
ates a limited number of neuron-circuits per layer. This way,
computation in each layer happens over several clock cycles,
but more FPGA-resource can be used by the reservoir.

Regarding the RC-machine described in Section IV, while
work remains in order to make both the reservoir and readout
components complete, much of the foundation is now in place.
An interesting use case of the system is to use it to explore
the space of growth rules for (DS)

2 systems. Rules that allow
systems with interesting properties, such as the ability to self-
reproduce or robustness, are of particular interest. These rules
can potentially be used to guide the growth and development
of reservoirs based on biological neurons, such as those used in
the NTNU Cyborg project (see https://www.ntnu.edu/cyborg).
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plan9

plan9 is an implementation of the Cellular Automata Research Platform (CARP)
developed at NTNU targeting Convey WX coprocessors. It consists of a hardware
component implemented using Chisel, Verilog and VHDL (residing in /hardware)
and a software API written in C (/software). For instructions on synthesizing
and deploying the hardware component, see hardware/README.md. Similarily
for the API, software/README.md.

1



plan9-hardware

Synthesizing and building the plan9-hardware component requires the Convey
PDK to be installed. The design is implemented in Chisel, with some VHDL
blackboxes down the module hierarchy. All configuration and parameterization
happens in CarpParameters.scala. The ChiselParameters trait is an interface
specifying the parameters required for the design to synthesize. It also provides
semi-sane defaults. Instead of changing the values in the trait directly, it is
recommended to create a new object implementing the trait and change only
the necessary values on a per-need basis, as shown below.

package plan9

object SpecificExperimentParams extends CarpParameters {
SNNTopology = Array(4,2,1)

}

To have the new parameters be used during synthesis, SpecificExperimentParams
has to be passed as a parameter when instantiating the Carp-module in
Plan9.scala.

val carpParams = SpecificExperimentParams
...
val carp = Module(new Carp(carpParams))

Make targets

make gen_verilog

make gen_verilog invokes the Scala Build Tool and generates Verilog based on
the Chisel code.

make all

Invokes the gen_verilog target before starting the Xilinx flow, incorporating
the plan9-design into the Convey Application Engine wrapper and generating a
bitfile. This takes a while.

make release

Moves the bitfile resulting from the previous run of make all to the
hardware.released directory. Useful for archiving separate versions of the
design.

1



make install

Deploys the most recently synthesized bitfile to the Convey personalities folder.
This target requires the following variables to be set in phys/Makefile:

• PERSONALITY: Personality ID.
• RELEASE_DIR: Path to the folder into which make release moves bitfiles.
• CNY_DIR: Path to the root Convey directory, usually /opt/convey.

make test

Run all simulation tests in src/test/scala/.

Setup on NTNU servers

moog.idi.ntnu.no has been used for synthesis. The Convey cards are installed
on lobo.idi.ntnu.no. This means that the bitfile resulting from make all will
have to be manually moved between the two, instead of using the make install
target. This can be done with the following commands:

$ scp moog.idi.ntnu.no:/home/<your_user>/<path_to_plan9>/\
hardware.released/<release_tag>/ae_fpga.tgz ./

$ scp ae_fpga.tgz lobo.idi.ntnu.no:/opt/convey/\
personalities/65002.0.0.4.0/

2



plan9-software

The plan9 software API is implemented in C. It depends on the Convey SDK,
specifically "wdm_user.h".

Make targets

make all

Build the library and all programs residing in programs/.

make test

Executes all programs in programs/ whose filename start with test_.

make clean

Delete build artefacts.

1
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