


6 CONTROL FLOW INSTRUCTIONS CARP

Jump Equal
012345678910111213141516171819202122232425262728293031

ADDRESS COUNTER 0 0 1 1 1 1 0 1
012345678910111213141516171819202122232425262728293031

VALUE

Format

jump_equal(ADDRESS, COUNTER, VALUE)

Purpose

To begin execution of or jump within a program stored to internal memory if a counter
matches a value.

Description

If counter COUNTER is equal to VALUE, this instructions is exactly like jump(ADDRESS).
Otherwise, it is discarded.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
ADDRESS is cropped to [program counter bits].
VALUE is cropped to [counter bits].
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ISA 6 CONTROL FLOW INSTRUCTIONS

Increment Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 0

Format

counter_increment(COUNTER)

Purpose

To increment a counter.

Description

Counter COUNTER is incremented by 1. If counter COUNTER is at maximum, it
instead becomes 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
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6 CONTROL FLOW INSTRUCTIONS CARP

Reset Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 1

Format

counter_reset(COUNTER)

Purpose

To reset a counter.

Description

Counter COUNTER is set to 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.
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Abstract—Reservoir Computing (RC) is a new and interesting
approach to machine learning in which temporal input is imposed
as perturbations on a dynamic reservoir and output is read
out by performing a linear classification of reservoir state some
time after the initial perturbation. While Recurrent Neural
Networks are a common choice of reservoir, any dynamical
system exhibiting the ability to let perturbations “echo” through
the system over time and to respond distinctly to different inputs
could be used. In this paper we are interested in systems where
the output is spiking in nature, such as biological neurons and
cellular automata (CA). Implementations of RC-systems with
spiking reservoirs typically convert spiking data to analog values
before performing classification. This conversion can introduce
unwanted biases to the system, as well as being potentinally
expensive to implement in hardware. In this paper, we introduce
a linear classifier operating in the spiking domain, the Simplified
Spiking Neural Network (SSNN), that avoids this conversion.
To show that this model is viable, we implement a software
simulation of an RC-system consisting of a one-dimensional,
uniform cellular automata and a small SSNN and train the
network so that is able to distinguish between the dynamics
emerging in the reservoir from different initial states.

We also implement a novel RC-system on an FPGA, using
a Dynamical System with Dynamical Structure (DS)2 as a
reservoir and an SSNN as a readout layer. (DS)2 systems are
interesting in the context of reservoir computing because they
have the ability to self-regulate and adapt their own dynamics
based on their environment. This allows for agents that are
capable learning on their own, as opposed to being trained. We
implement the (DS)2 reservoir as a non-uniform CA in which
the state transition function in each cell is subject to development
over time.

I. INTRODUCTION

In recent years, research into computation using non-
traditional physical mediums and paradigms, so called uncon-
ventional computing, has seen increased interest. With chal-
lenges currently facing traditional architectures, such as the
von Neumann bottleneck and ensuring continued scalability
and reliability, unconventional computation presents possible
solutions from a new perspective. Instead of designing archi-
tectures top-down, by composing complex units and orches-
trating their interaction, a bottom-up approach is employed,
where complex behaviour emerges from local interactions be-
tween simple units. Cellular computing, introduced by Sipper
in [1], is an example of one such paradigm. These same
principles are also used to explore computational capabilities
in unconventional materials, as shown in [2].

Reservoir computing (RC) is a novel approach to machine
learning and intelligent systems, in which input data is im-
posed as perturbations on a dynamic system (the reservoir)
and output is generated by performing a linear classification of
the reservoir state [3]. With RC as a field originating from the
study of Recurrent Neural Networks (RNNs), these are a com-
mon choice of reservoir in RC implementations [3]. The focus
of this paper however, is the use of developmental systems [4]
as a reservoir and how to perform readout from such a system.
Specifically, we are interested in developmental systems based
on non-uniform Cellular Automata (CA) [5]. Where traditional
CAs have fixed transition functions throughout a simulation,
determining how the state of a cell should update based on the
state of its neighbors and itself, these functions are subject to
change in developmental systems. Based on growth rules and
environment feedback, developmental systems change their
dynamical behaviour. This ability is particularily interesting
in the context of unconventional computation, as it allows
for architectures with self-organizing, self-repairing and self-
scaling properties. A major advantage of CA-based reservoirs
over ones based on RNNs, is that they allow for efficient
implementation in hardware, since no expensive floating-point
operations are required.

In RC systems where the reservoir output is spiking in
nature, such as (developmental) cellular automata and bio-
logical neurons, spiketrains from the reservoir is typically
converted to analog values before being processed by a linear
readout layer. This is usually done by resampling spiketrains
and applying exponential filtering before classifying the output
with linear/ridge regression [3]. Converting to, and perform-
ing classification in the analog domain, introduces expensive
floating-point operations to the RC pipeline. In the interest of
achieving efficient end-to-end simulation of a CA-based RC
system in hardware, a readout layer that can process spiking
data without need for conversion is needed.

In this paper we propose a simplified spiking neural network
model (SSNN) suitable for use as a readout layer in an
RC system. This model is capable of classifying reservoir
dynamics based on unconverted spiketrain data. As a proof
of principles, we implement a software simulation of an RC
system consisting of a one-dimensional, homogenous CA and
a SSNN, and show that the system can compute XOR.

We also implement a RC-machine based on a cellular



developmental system on reconfigurable hardware, a field-
programmable gate array (FPGA), where the readout layer is
implemented using the above mentioned SSNN model.

This paper is organized as follows: Section II gives relevant
background and Section III describes the Simplified Spiking
Neural Network model. In Section IV the cellular, develop-
mental RC-machine implemented in hardware is presented.
Section V describes the software and methodology used to
carry out the experiment described in Section VI. Finally,
Section VII offers a short conclusion, followed by an overview
of future work in Section VIII.

II. BACKGROUND

A. Reservoir Computing

Artificial Neural Networks (ANNs) are a commonly used
computational model in machine learning and bio-inspired
computing. Simple, feed forward ANNs lend themselves well
to problems were data can be spatially correlated, such as
classification. Many real world problems however, are tem-
poral in nature. Recurrent neural networks (RNNs) have been
shown to be powerful tools for solving temporal problems such
as stock market prediction [6], learning context free/sensitive
languages [7] and speech synthesis [8]. Training RNNs is com-
putationally expensive and often requires application specific
adaptions of generalized training algorithms in order to reli-
ably converge [9]. Several techniques have been proposed that
circumvent problems related to training, such as Echo State
Networks [10] (ESNs), Liquid State Machines [11] (LSMs)
and Backpropagation Decorrelation learning [12]. These all
share the common feature of only training weights of the
output layer of the network, while leaving the hidden layers
of the network untrained or simply subject to weight scaling.
In [13], Verstraeten et al. propose that systems based on this
idea should be unified under the term reservoir computing
(RC).

In general, reservoir computing as a term describes any
computational system where a dynamic reservoir is excited
by input data and output is generated by performing clas-
sification/regression over reservoir state. Figure 1 shows the
basic architecture of any reservoir computing system. With
its origins in research on various types of recurrent neural
networks and training thereof, the reservoir in RC systems
is often represented as an RNN [13]. However, any dynamic
system capable of eventually forgetting past perturbations
and of responding distinctly to different perturbations, can in
principle be used. Snyder et al. [14] investigate using Random
Boolean Networks, Yilmaz uses Cellular Automata [15] and
Fernando et al. use a bucket of water [16].

B. Cellular Automata and EvoDevo Systems

John von Neumann introduced cellular automata (CA) as
a discrete computational model based on local interaction of
cells on a grid of finite dimensionality [17]. At any timestep t
during the simulation, each cell in the grid is in one of a finite
number of states. The state of any cell at time t+1 is computed
as a function of the cells and its neighboring cells current

Input Reservoir Readout

f(x)

Output

Fig. 1. Basic overview of an RC system.

states. Under this simple scheme, von Neumann showed that
advanced properties such as autonomous self-reproduction is
possible. In later years, much research has gone into both
qualitative and quantitative analysis of the capabilities of CAs
as an abstract model of computation [18] [19].

Artificial evolution is an important tool in biologically in-
spired computing. Inspired by Darwin’s theories of evolution,
artificial evolution is often used to solve problems by encoding
potential solutions as individuals in a population and applying
mechanisms such as reproduction, recombination, mutation
and selection on said population to breed better solutions with
regard to some fitness function [20]. Of particular interest
with regards to the work being presented in this paper, is
the use of evolution to explore the rule-space of CAs [21].
In [22], Tufte describes how artificial evolution and devel-
opmental techniques can be combined to grow multicellular
systems for which both structure and behaviour are emerging
properties, so called Dynamical Systems with Dynamical
Structures ((DS)

2) [23]. Where dynamical systems, such as
Random Boolean Networks and CAs, have fixed structural
topology and state transition functions, (DS)

2 systems allow
these properties to undergo a developmental process. Through
this process, these systems can self-regulate and adapt their
dynamics and change their possible trajectories through state
space. In this paper and in future work, we are interested in
exploring the capabilities of these kinds of systems when used
as reservoir.

C. Spiking Neural Networks

Artificial neural networks can be grouped into three genera-
tions, based on the characteristics of their base computational
unit, the neuron. The first generation, based on McCulloch-
Pitts neurons [24], simple threshold gates, allows for universal
computation on digital input/output values. In the second
generation, neurons apply a non-linear, continuous activation
function on the weighted sum of their inputs.

The third generation of networks bases itself on spiking
neurons, which model the interaction between biological neu-
rons more closely. In this model, a neuron v fires when its
potential Pv exceeds a threshold ✓v . The potential is, at any
time, the sum of the postsynaptic potentials, resulting from
firing of presynaptic neurons. The contribution of a spike
from presynaptic neuron u at time s to the potential Pv of
postsynaptic neuron v is given by wu,v · "u,v(t � s), where
wu,v is a weight representing the strength of the synapse
connecting u and v, and ✏u,v(t�s) models the response of the



Fig. 2. Common spike response function shape, figure taken from [25].

spike as a function of time passed since the spike occurred.
A synapse can be both excitatory and inhibitory, meaning that
its contribution to the total potential Pv can be both positive
and negative. A biologically plausible response function is
shown in figure 2. From a machine learning perspective, the
trainable part of a spiking neural network, is the weight wu,v ,
determining to what degree spikes from a neuron u influences
the potential of neuron v.

In [25], Maass shows that spiking neurons are at least
computationally equal to the models used in generation one
and two, and that they can also be more efficient in terms
of neurons required to compute a function. SNNs also have
the required attributes to be used as a reservoir in an RC
system [26]. In order to be able to create an efficient imple-
mentation of a RC-machine based on a cellular developmental
system as described in IV, being able to perform classification
in the spiking domain is essential.

III. SIMPLIFIED SPIKING NEURAL NETWORK

In this section, we present a simple neural model inspired by
the SNN model outlined in Section II-C. The basic architecture
of each neuron is shown in Figure 3.

Similarily to their biological counterparts, the potential for
a neuron to fire increases as more spikes come in. For each in-
coming edge/synapse, a neuron has a separate counter/weight-
pair. Counters are incremented every time a spike comes in
via the corresponding synapse. Weights act as thresholds. For
each synapse, they represent the minimal number of incoming
spikes required for the neuron to fire. An incoming spike to
a counter that is already equal to its weight, will not cause
the counter to increment. When all counters are equal to their
weights, the neuron fires, and the counters reset.

Counters are also susceptible to decay over time. If at any
timestep a spike is not occurring for some incoming edge, the
corresponding counter is decremented.

IV. (DS)
2 RC-MACHINE

An FPGA-prototype of a (DS)
2 RC-machine with a SSNN

readout layer was implemented as a part of this project. In
this section, we provide an overview of the functionality and
implementation of the reservoir and readout components of
the prototype, as well as numbers on resource usage and
scalability.

Fig. 3. Block diagram for the base computation occuring in the simplified
spiking neurons.

A. Developmental Reservoir

The implemented reservoir is a developmental system based
on the work presented by Tufte in [27]. In this model, the
functional behavior of each cell on a regular grid of finite
dimensionality is decided by its type. To model emergence
of both structure and behaviour, the rules governing growth
and structural development, the genome, is applied to all
cells every so called Development Step (DS). These rules are
expressed as a condition and a result, with the condition being
dependent on both the current type and state of the cells in
the von Neumann neighborhood 1 of the cell being developed.
Growth is in other words encoded in the genome in much
the same way as transition functions are in traditional CAs.
It is important to note that the genome is not a blueprint
describing exactly how the final result should look, but rather
a description of how to build a system.

Each DS consists of a set number of State Steps (SS). Every
state step, the state of each cell is updated. The type of the
cell determines its behavior, or which transition function to
use to evaluate cell states every state step. As in traditional
CAs, the state of cells in the von Neumann neighborhood is
used as input to the transition function.

A system operating under the regime described in this
section, will essentially be a heterogeneous CA where the
transition function used in each cell changes over time. Since
both the type and state (environment) is taken into account
during development, the system can adapt to and self-regulate
its own behavioral dynamics. This property is of particular
interest in the context of machine learning, as it allows for
agents that are capable of learning, as opposed to the current
norm, agents that can be trained.

Figure 5 shows the development of a reservoir starting from
a single green cell, under the growth rule from Figure 6.
For each growth rule, the label underneath the neighborhood

1The cells directly north, east, south and west of a cell, as well as the cell
itself.



Fig. 4. High-level system architecture for the (DS)2 RC-machine

indicates the direction from which the cell should grow. For
instance; Gw, Grow west, indicates that the rightmost cell
in the neighborhood should be copied into the center cell.
Analogous rules apply for Grow north and east, as well as
a special case for Grow south. A cell with a green northern
neighbor will turn into a red cell, while one with a red northern
neighbor will turn green. The functional difference between
the red and green cell type is that they use different state
transition functions. For the neighborhoods not enumerated
here, the center cell remains unchanged. A subset of statesteps
for DS 1 and DS 2 is shown to illustrate how cell type affects
behavior. For the sake of simplicity, this rule does not take
the state of neighboring cells into account when performing a
development step, only their type.

B. FPGA implementation

An FPGA-based implementation of a developmental system
as described here was completed and verified by Lundal
in [28]. Figure 4 shows a high-level overview of the sys-
tem architecture. The system is implemented as a three-
stage interlocked pipeline, consisting of Fetch, Decode and
Execute stages. Cell states and types is stored in On-chip
Memory, so called Block RAM (BRAM) in the Cell Storage
module. At each execute stage, one of two modules, either
the Development or the CA module, operates on the data.
Development steps happen in the development module, where
growth rules are stored in BRAM. Whenever a DS instruc-
tion occurs, all cells are fetched from the Cell Storage and
tested against all rules. Similarily for state steps, cells are
moved to the CA module, a two- or three-dimensional grid
of Sblocks [29], allowing for fully parallel execution of the
behavior of the system. Each sblock is connected the sblocks
in the von Neumann-neighborhood around it, receiving their
states as input. The type of a cell determines the functionality
configured in the sblock LUT.

New hardware, equipped with Convey Wolverine WX-2000
coprocessors (see micron.com) based on the Xilinx Virtex-7
XC7V2000T FPGA (see xilinx.com), has since been aquired
and the system has been ported to work on this new platform.

In an effort to further modernize the codebase, the system
has been partially ported from VHDL to Chisel, a Hardware
Description Domain Specific Language implemented in Scala
(see chisel.eecs.berkeley.edu).

The architecture of the developmental system as imple-
mented by Lundal remains largely unchanged. To allow the
readout layer to process data in real time, without the need
for an intermediate instruction between state steps, support
has been added for marking sblocks as output blocks. The
state from all output blocks is wired directly to the readout
layer. This happens at synthesis time, as the amount of FPGA
resources required for making it possible to reconfigure which
blocks are used as output blocks at runtime is immense. For
large reservoirs, the routing of state-signals from sblocks to the
readout layer will require a considerable amount of resources
in itself, making it necessary to limit the number of output
sblocks. While this will limit the readout layer’s “view” into
the dynamics of the reservoir, the hope is that the reservoir
will adapt around this, based on the feedback it receives from
the readout layer.

C. Readout

Based on the basic description of each neurons compu-
tational functionality in Section III, a parameterized FPGA-
implementation was created to perform realtime classification
of the readout from the developmental reservoir described in
the previous section. Given a description of a network topology
(i.e. the number of neurons in each layer and the number of
output cells in the reservoir), and weights for all neurons,
hardware is generated accordingly, as shown in Figure 7.
For each layer, a module encapsulating the neurons in that
layer is synthesised, with each neuron being modeled as a
separate entity within the layer. Neurons are implemented
very similar to how they are depicted in Figure 3. Incoming
spikes are counted in a set of registers, one for each neuron in
the preceeding layer, which are used to determine wether or
not the neuron should fire by comparing register values with
statically configured weight values. In addition, circuitry for
resetting the counters after a neuron fires has been added.

Layers in the SSNN form a pipeline, through which data
propagates in sync with the state steps of the reservoir. For
two layers in the SSNN, A and B, where B directly follows
A in the pipeline, the output from neurons in layer A at time
t is used as input for the neurons in layer B at time t+ 1. As
mentioned, all neurons are synthesised with one counter per
neuron in the preceeding layer. This means that all networks
are implemented fully connected. That is, all neurons in one
layer are connected to all neurons in the next. Connections
can be pruned by setting a weight value of zero.

D. Resource Usage

Table I shows resource usage for different configurations of
the developmental system in the RC-machine. The percentage
utilization is based on the total amount of resources available
on the Virtex-7 XC7V2000T FPGA. We see that for the
configuration with 96 ⇤ 96 = 9216 cells, ⇠ 20% of LUTs
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Fig. 5. Development starting from a single green cell using the growth rule in Figure 6.
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Fig. 6. Growth rules for a cellular developmental system where cells are
either empty or of the green type.

Fig. 7. HW architecture for the SSNN readout module.

Fig. 8. At each timestep, the state of the CA is fed to the input-layer of the
SSNN, which propagates updates through the network layers in a pipelined
fashion.

and ⇠ 24% of available BRAMs are utilized. It should, in
other words, be possible to scale the developmental system
up to approximately 36000 cells on this hardware. In a full
RC-system, some resources will also need to be used by the
SSNN, limiting the maximum size of the reservoir further.

V. METHODOLOGY

To demonstrate the viability of a SSNN as a readout-layer in
a RC-system, a simple software simulation was implemented
in the Python programming language. The implementation
consists of three modules; a one-dimensional, homogenous,
binary CA, an SSNN implementation and a genetic algorithm.
Figure 8 shows how the CA and the SSNN is connected.

A. Cellular Automata Module

The CA consists of an array of 0s and 1s, and a step function
that, given a CA-array, performs a single transition step on it.
As the CA is uniform, the same development rule is applied
to each cell every development step. Since the state of the
CA is stored in such a simple format, perturbing the system
with input is as simple as replacing the array as a whole or
modifying parts of it betweeen timesteps.

For the work presented in this paper, CAs 32 cells wide was
used, with rule 90 (see Table II) as the transition function. To



TABLE I
(DS)2 RC-MACHINE FGPA RESOURCE USAGE.

Cell Count LUTs Total LUTS % Registers Total Registers % BRAMs total BRAMs %
8 ⇥ 8 194624 15.93 208690 8.54 227.5 18.91

64 ⇥ 64 224442 18.37 221061 9.05 280.0 23.28
72 ⇥ 72 230094 18.84 223355 9.14 286.5 23.82
96 ⇥ 96 251219 20.56 231616 9.48 308.5 25.64

4 ⇥ 4 ⇥ 4 195360 15.99 209171 8.56 232.5 19.33
16 ⇥ 16 ⇥ 16 249320 20.41 218109 8.93 261 21.70

TABLE II
RULE 90

Neighborhood 111 110 101 100 011 010 001 000
New state 0 1 1 0 1 1 1 0

TABLE III
GA HYPERPARAMETERS

Population size 50
Crossover rate 0.5
Mutation rate 0.4
Crossover function Braid
Mutation function Per Genome

accurately model the FPGA implementation, only a subset of
the cells are used as input to the readout layer.

B. SSNN Readout Module

The model described in III is implemented as an array of
neurons for each layer in the desired network topology. Each
neuron is represented as an array of counters and an array of
weights, one weight and one counter for each neuron in the
previous layer. As in the hardware implementation, networks
are fully connected by default, allowing for connections to be
pruned by setting a weight value of zero. The simulation also
imitates the pipelined dataflow used in the FPGA implemen-
tation.

C. Genetic Algorithm

A genetic algorithm was used to search the space of possible
weight configurations of the SSNN. The hyperparameters used
are shown in Table III.

Each individual in the population represents one possible
weight configuration for the topology being optimized. The
genotype of each individual is simply a matrix of numbers,
each one representing one weight. Crossover of two parent
individuals is done by braiding their layers, so that the
child has layer one from parent one, layer two from parent
two, layer three from parent one, et cetera. Individuals are
subject to random mutations performed per genome with some
probability p. An individual chosen to be mutated, will have
a randomly chosen weight changed, with equal probability of
incrementing or decrementing the weight.

Fitness for an individual is calculated by comparing spike-
trains output by the network when fed with test data, with the
expected spiketrains for that data.

VI. EXPERIMENTS AND RESULTS

Using the software simulation setup described in Section V,
we wish to show that the SSNN model is viable to use as a
readout layer in an RC system. For this to be the case, it
needs to be possible to train the network to produce distinct
spiketrains given different sequences of readouts from the
reservoir. In other words, given desired output spiketrains for
different input perturbations to the reservoir, it needs to be
possible to train the SSNN to correctly classify the temporal
dynamics arising from the perturbations and to produce the
corresponding output spiketrain.

To verify that this is possible, we encode the four different
input cases of a two-bit XOR-operation, 00, 01, 10, 11 as four
distinct initial states for the CA and let the presence or absence
of a spike from the SSNN output node at given timesteps after
some number of initial number of timesteps indicate result of
the XOR operation. Specifically, for each of the initial states,
the CA/SSNN was allowed to run for 200 timesteps before the
output from the SSNN was sampled ten times at 25 timestep
intervals. In other words, an optimal weight configuration
for the SSNN is one whose output samples are ten zeroes,
ten ones, ten ones and ten zeroes for the four initial states
respectively. No specific mapping scheme was used to map
from XOR-inputs to their respective initial states. Rather at
the start of each experiment, four random 32-wide bitstrings
are chosen to represent the inputs.

For this experiment, the SSNN was configured with two
layers, a two-neuron input-layer fully connected to 8 of the
32 cells in the CA, and an output layer with a single neuron.
As described in Section V-C, a genetic algorithm (GA) is used
to search through the space of possible weight configurations.
Being an optimization algorithm, the GA does not guarantee
that an optimal solution will be found. For several of the
configurations run during this experiment, optimal solutions
were however found, showing that SSNNs are viable as
readout layers in RC-systems.

Depending on how large a subsection of the CA’s cells’
states are fed as input to the SSNN, the convergence rate
for the search varies. By using fewer cells, the size of the
search space is reduced, along with the amount of dynamic
behavior captured, making it harder/potentially impossible
to distinguish the dynamics emerging from one initial state
from the others. Use too many, and the search space size
increases, making it more likely that the search gets stuck in a
local maximum. Optimal solutions were found most frequently
when 8 of the total 32 cells in the CA were used as output.



Fig. 9. Average, maximum and standard deviation of fitnesses for one run of
the XOR experiment.

A plot of average and maximum fitnesses as well as fitness
standard deviation for one run where an optimal solution was
found is shown in Figure 9.

VII. CONCLUSION

In this paper, we present a Simplified Spiking Neural
Network model, with the goal of using it as a readout layer
in RC systems where the reservoir output is spiking in nature.
Through experiments simulated in software, we show that it
is possible to train a network based on this model to correctly
classify temporal dynamics emerging in a cellular automaton.
We also review work done towards an FPGA-implementation
of a reservoir computing system consisting of a (DS)

2 cellular
reservoir and a spiking neural network as a readout layer.

VIII. FUTURE WORK

While this paper shows that the SSNN is suitable for use in
an RC system, using a genetic algorithm for training is less
than desireable, and alternative training schemes should be
investigated. Two possible alternatives are SpikeProp [30], a
version of the backpropagation training algorithm adapted for
spiking neurons, and spike-timing-dependent plasticity [31],
an on-line training scheme where synapses over which spikes
arrive right before the neuron fires are strengthened, while
those over which spikes arrive right after thee neuron has fired
are weakened.

The FPGA-based implementation of the SSNN is very
simple so far, and needs more work to be practical in use.
As mentioned in Section IV-C, weights are set statically at
synthesis-time. To allow for easy reconfigurability, they should
instead be stored in BRAM. As it is implemented now, the
output from the SSNN is not stored anywhere, nor fed back
into the reservoir. To facilitate analysis of the results, the
output should be buffered for some time, allowing them to
be transferred to the host program. It should also be possible
to mark specific cells as input cells, into which the output from

the SSNN is fed continuously. Since the reservoir is a (DS)
2

system, this will allow it to adapt according to the performance
of its own dynamics.

Scalability is another issue with the current SSNN im-
plementation. For a configuration with 4000 output cells in
the reservoir and 64 neurons in the first layer of the SSNN,
4000 ⇥ 64 = 256000 registers will be inferred by the current
implementation. To allow for flexible experimentation with
reservoir sizes, number of output cells and SSNN topologies,
the implementation should be changed so that it no longer
generates one circuit per neuron per layer, but instead gener-
ates a limited number of neuron-circuits per layer. This way,
computation in each layer happens over several clock cycles,
but more FPGA-resource can be used by the reservoir.

Regarding the RC-machine described in Section IV, while
work remains in order to make both the reservoir and readout
components complete, much of the foundation is now in place.
An interesting use case of the system is to use it to explore
the space of growth rules for (DS)

2 systems. Rules that allow
systems with interesting properties, such as the ability to self-
reproduce or robustness, are of particular interest. These rules
can potentially be used to guide the growth and development
of reservoirs based on biological neurons, such as those used in
the NTNU Cyborg project (see https://www.ntnu.edu/cyborg).
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plan9

plan9 is an implementation of the Cellular Automata Research Platform (CARP)
developed at NTNU targeting Convey WX coprocessors. It consists of a hardware
component implemented using Chisel, Verilog and VHDL (residing in /hardware)
and a software API written in C (/software). For instructions on synthesizing
and deploying the hardware component, see hardware/README.md. Similarily
for the API, software/README.md.
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plan9-hardware

Synthesizing and building the plan9-hardware component requires the Convey
PDK to be installed. The design is implemented in Chisel, with some VHDL
blackboxes down the module hierarchy. All configuration and parameterization
happens in CarpParameters.scala. The ChiselParameters trait is an interface
specifying the parameters required for the design to synthesize. It also provides
semi-sane defaults. Instead of changing the values in the trait directly, it is
recommended to create a new object implementing the trait and change only
the necessary values on a per-need basis, as shown below.

package plan9

object SpecificExperimentParams extends CarpParameters {
SNNTopology = Array(4,2,1)

}

To have the new parameters be used during synthesis, SpecificExperimentParams
has to be passed as a parameter when instantiating the Carp-module in
Plan9.scala.

val carpParams = SpecificExperimentParams
...
val carp = Module(new Carp(carpParams))

Make targets

make gen_verilog

make gen_verilog invokes the Scala Build Tool and generates Verilog based on
the Chisel code.

make all

Invokes the gen_verilog target before starting the Xilinx flow, incorporating
the plan9-design into the Convey Application Engine wrapper and generating a
bitfile. This takes a while.

make release

Moves the bitfile resulting from the previous run of make all to the
hardware.released directory. Useful for archiving separate versions of the
design.
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make install

Deploys the most recently synthesized bitfile to the Convey personalities folder.
This target requires the following variables to be set in phys/Makefile:

• PERSONALITY: Personality ID.
• RELEASE_DIR: Path to the folder into which make release moves bitfiles.
• CNY_DIR: Path to the root Convey directory, usually /opt/convey.

make test

Run all simulation tests in src/test/scala/.

Setup on NTNU servers

moog.idi.ntnu.no has been used for synthesis. The Convey cards are installed
on lobo.idi.ntnu.no. This means that the bitfile resulting from make all will
have to be manually moved between the two, instead of using the make install
target. This can be done with the following commands:

$ scp moog.idi.ntnu.no:/home/<your_user>/<path_to_plan9>/\
hardware.released/<release_tag>/ae_fpga.tgz ./

$ scp ae_fpga.tgz lobo.idi.ntnu.no:/opt/convey/\
personalities/65002.0.0.4.0/

2



plan9-software

The plan9 software API is implemented in C. It depends on the Convey SDK,
specifically "wdm_user.h".

Make targets

make all

Build the library and all programs residing in programs/.

make test

Executes all programs in programs/ whose filename start with test_.

make clean

Delete build artefacts.
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