
Cellular Automata Research Platform
Instruction Set Architecture

Revision 1.1

2017-05-28

ISA CONTENTS

Contents
1 Introduction 1

Instructions . 2
Rules . 3
LUTs . 4

2 General Instructions 5
No Operation . 6
Read Information . 7
Read Fitness . 8
Read Readout . 9
Write Weight . 10
Swap Cell Storage . 11
Reset Buffers . 12

3 Development Instructions 13
Read Rule Vectors . 14
Read Rule Numbers . 15
Write Rule . 16
Set Active Rules . 17
Develop . 18

4 Cell Storage Instructions 19
Read One State . 20
Read All States . 21
Read One Type . 22
Read All Types . 23
Write One State . 24
Write Row of States . 25
Write One Type . 26
Write Row of Types . 27
Fill Cells . 28

5 Cellular Automaton Instructions 29
Write LUT . 30
Configure . 31
Readback . 32
Step . 33

6 Control Flow Instructions 35
Break . 36
Store . 37
End . 38
Jump . 39
Jump Equal . 40

i

CONTENTS CARP

Increment Counter . 41
Reset Counter . 42

ii

ISA 1 INTRODUCTION

1 Introduction

This document is a complete specification of the instruction set for the Cellular Au-
tomata Research Platform. It documents all effects and possible side effects of every
instruction.

Unless otherwise stated, an instruction completes in one cycle. However, keep in mind
that multi-word instructions require multiple cycles to send over PCI Express.

When a bit vector is broken into multiple words, the least significant part is always listed
first.

1

1 INTRODUCTION CARP

Instructions

Each instruction is 256 bits and consists of a 5-bit operation code, a 3-bit length field
and up to 248 bits of parameters.

The operation code specifies what kind of instruction it is, and how the parameters
should be parsed.

The length field is used to improve communication speed by only transmitting the nec-
essary parts of an instruction; It is zero-extended back to 256 bits by the fetch module.
The field directly specifies the number of words after the first that are sent.

The parameters are of different types and lengths for each instruction. Please see the
individual instruction pages.

Instruction Format
012345678910111213141516171819202122232425262728293031

Parameters (low) Length OpCode
012345678910111213141516171819202122232425262728293031

Parameters (higher)

...

2

ISA 1 INTRODUCTION

Rules

Rules consists of conditions for each cell in the neighborhood and a result that will be
applied to the cell if the conditions match.

Each condition contains a type, a state and a bit for each that marks if it should be
checked. The result format is identical except for that the check bits are exchanged with
change bits that mark which parts of the cell should change if all conditions match.

In the formats below, [type bits] is assumed to be 5 and [states bits] 1 for the purpose
of having everything nicely align to bytes.

Rule Format
012345678910111213141516171819202122232425262728293031

Condition X– Condition X+ Condition Self Result
012345678910111213141516171819202122232425262728293031

Condition Z– Condition Z+ Condition Y– Condition Y+

Condition Format
01234567

Type Check T State Check S

Result Format
01234567

Type Change T State Change S

Notes

For a rule to be counted as a hit, all conditions must match and at least one change bit
must be set.

Conditions for Z are ignored when [matrix depth] is 1.

3

1 INTRODUCTION CARP

LUTs

The indexing for the look-up tables is (Z–,Z+,Y–,Y+,X–,X+,Self). For each of these
indexes, the next cell state is specified. The least significant index is written first (to the
right).

In the format below, [state bits] is assumed to be 1 since it is the only value currently
supported. This allows the entries for (Y–,Y+,X–,X+,Self) to fit exactly within one
word.

LUT Format
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 00
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 01
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 10
012345678910111213141516171819202122232425262728293031

(Y–,Y+,X–,X+,Self) when (Z–,Z+) is 11

Notes

The Z parts are ignored when [matrix depth] is 1.

4

ISA 2 GENERAL INSTRUCTIONS

2 General Instructions

This section covers instructions that are not used directly or do not fit into any of the
other categories.

5

2 GENERAL INSTRUCTIONS CARP

No Operation
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0

Format

nop()

Purpose

To do nothing for one cycle.

Description

Nothing is done for one cycle.

6

ISA 2 GENERAL INSTRUCTIONS

Read Information
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 1

Format

read_information()

Purpose

To retrieve information about the system.

Description

The following words are put into the Send Buffer.
012345678910111213141516171819202122232425262728293031

[matrix depth] [matrix height] [matrix width] [matrix wrap]
012345678910111213141516171819202122232425262728293031

[counter bits] [counter amount] [type bits] [state bits]
012345678910111213141516171819202122232425262728293031

[rule amount]
012345678910111213141516171819202122232425262728293031

[fitness parameters] [fitness words] [fitness id]
012345678910111213141516171819202122232425262728293031

[readout layer count] [ca output cell count]
012345678910111213141516171819202122232425262728293031

neuron count layer 1 neuron count layer 0
...

012345678910111213141516171819202122232425262728293031

neuron count layer [readout layer count]-1 neuron count layer [readout layer count]-2

Notes

This instruction takes 5 + d [readoutlayercount]
2 e cycles.

7

2 GENERAL INSTRUCTIONS CARP

Read Fitness
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 1 0

Format

read_fitness()

Purpose

To retrieve a fitness value.

Description

[fitness words] words are transfered from the Fitness Buffer to the Send Buffer.

Notes

This instruction takes [fitness words] cycles.

8

ISA 2 GENERAL INSTRUCTIONS

Read Readout
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 1 1

Format

read_readout()

Purpose

To retrieve readout values.

Description

32 words are transfered from the Readout Buffer to the Send Buffer.

Notes

This instruction takes 32 cycles.

9

2 GENERAL INSTRUCTIONS CARP

Write Weight
012345678910111213141516171819202122232425262728293031

ADDRESS WEIGHT 0 0 0 1 1 0 0 0

Format

write_weight(ADDR, WEIGHT)

Purpose

To configure the value of a weight in the spiking neural network in the readout mod-
ule.

Description

Weight at address ADDR is configured with the WEIGHT value.

10

ISA 2 GENERAL INSTRUCTIONS

Swap Cell Storage
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 0 0

Format

swap_cell_storage()

Purpose

To swap the contents of the two brams within the cell storage.

Description

Cell BRAM A and Cell BRAM B are remapped so that the contents appear to have been
swapped.

11

2 GENERAL INSTRUCTIONS CARP

Reset Buffers
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 1 0 1

Format

reset_buffers()

Purpose

To clear the Rule Vector, Live Count and Fitness Buffers.

Description

The read and write pointers of the circular FIFO buffers are set to 0. This makes them
appear to be empty.

Notes

If the Fitness module is processing data, the contents of the Live Count and Fitness
Buffers may become undefined.

If the Fitness buffer is full, this incruction should be called an additional time after any
pending data from Fitness has been transfered.

12

ISA 3 DEVELOPMENT INSTRUCTIONS

3 Development Instructions

This section covers all instructions affecting the development module. This includes
writing rules, setting active rules, running development and reading data for which rules
have triggered.

13

3 DEVELOPMENT INSTRUCTIONS CARP

Read Rule Vectors
012345678910111213141516171819202122232425262728293031

N 0 0 0 0 0 0 1 0

Format

read_rule_vectors(N)

Purpose

To retrieve N rule vectors.

Description

N rule vectors are placed into the Send Buffer. Each consists of [rule amount] bits,
where the first bit (rule zero) is always 1. The Send Buffer is word-aligned after each
rule vector by padding with 0.

Example

Assume a system with [rule amount] set to 48, where rules 13 and 47 have triggered.
read_rule_vectors(1) will put the following words into the Send Buffer.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Notes

This instruction takes [words per rule vector] * N cycles.

When there are no rule vectors available and less than N have been sent, this instruction
waits.

14

ISA 3 DEVELOPMENT INSTRUCTIONS

Read Rule Numbers
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 1 1

Format

read_rule_numbers()

Purpose

To retrieve the last rule that triggered for each cell during the previous development
step.

Description

Rule numbers for the entire matrix is put into the Send Buffer. Each consists of log2[rule
amount] bits, sent in raster order (first X, then Y, then Z). A value of 0 means that no
rules triggered. The Send Buffer is word-aligned after each row by padding with 0. If a
rule number would be split across two words, it is instead aligned to the next word.

Example

Assume a system with [matrix depth] set to 1, [matrix height] set to 2, [matrix width]
set to 3 and [rule amount] set to 256. If rule 2 triggered for all cells in the fist row and
rule 8 for all in the second, read_rule_numbers() will put the following words into the
Send Buffer.

012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Notes

The execution time (T) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY), [matrix width] (MX) and [rule amount] (RA).

T = MZMY

⌈
MX

max
(⌊

32
dlog2 RAe

⌋
, MX

)⌉+ 1

15

3 DEVELOPMENT INSTRUCTIONS CARP

Write Rule
012345678910111213141516171819202122232425262728293031

? 0 1 0 0 1
012345678910111213141516171819202122232425262728293031

INDEX
012345678910111213141516171819202122232425262728293031

RULE

Format

write_rule(RULE, INDEX)

Purpose

To write a development rule.

Description

RULE is written to Rule BRAM at address INDEX. The length of RULE varies depending
on [matrix depth], [type bits] and [state bits]. It is sent as one continuous piece spanning
multiple words. The instruction length field is adjusted accordingly.

Notes

INDEX is cropped to the number of bits in [rule amount].

16

ISA 3 DEVELOPMENT INSTRUCTIONS

Set Active Rules
012345678910111213141516171819202122232425262728293031

N (low) 0 0 1 0 1 0 1 0
012345678910111213141516171819202122232425262728293031

N (high)

Format

set_rules_active(N)

Purpose

To set the number of rules that are currently active, so others can be skipped to reduce
development time.

Description

Rules 1 to N is set to active (rule 0 is reserved). If N is 0, no rules will be set to
active.

Notes

N is cropped to the number of bits in [rule amount]. If this is 16 or less, the second
word can be discarded (and instruction length field set to 0).

17

3 DEVELOPMENT INSTRUCTIONS CARP

Develop
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 0 0

Format

develop()

Purpose

To perform development on all cells.

Description

The cells in Cell BRAM A are fetched and tested against all active rules. If a rule
matches a cell, the state and/or type of the cell is changed based on the rule. Rules of
higher index override those of lower index. The developed cells are then stored in Cell
BRAM B.

The lastly matched rule of each cell is stored in Rule Number BRAM, and a list of all
rules with a match is stored to the Rule Vector Buffer.

Notes

An overridden rule will be listed as having a match, but all its effects are discarded.

The execution time (T) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY), [rules active] (RA) and [rules tested in parallel] (RT IP).

T3D = MZMY max
(

RA + 1
RT IP

, 7
)

+ 6

T2D = MY max
(

RA + 1
RT IP

, 5
)

+ 4

18

ISA 4 CELL STORAGE INSTRUCTIONS

4 Cell Storage Instructions

This section covers all instructions for writing and reading states and types to/from the
cell storage.

19

4 CELL STORAGE INSTRUCTIONS CARP

Read One State
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 0 0 0 0 0 4

Format

read_state(Z, Y, X)

Purpose

To retrieve the state of the cell at (Z, Y, X).

Description

The state of cell (Z, Y, X) is put into the Send Buffer. The Send Buffer is then word-
aligned by padding with 0. Accessing cells outside the matrix dimensions yields undefined
states.

20

ISA 4 CELL STORAGE INSTRUCTIONS

Read All States
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 5

Format

read_states()

Purpose

To retrieve the state of all cells.

Description

The states of all cells are put into the Send Buffer in raster order (first X, then Y, then
Z). The Send Buffer is word-aligned after each row by padding with 0. If a state would
be split across two words, it is instead aligned to the next word.

Notes

The execution time (T) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY), [matrix width] (MX) and [state bits] (BS).

T = MZMY

⌈
MX

max
(⌊

32
BS

⌋
, MX

)⌉+ 1

21

4 CELL STORAGE INSTRUCTIONS CARP

Read One Type
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 0 0 0 0 0 6

Format

read_type(Z, Y, X)

Purpose

To retrieve the type of the cell at (Z, Y, X).

Description

The type of cell (Z, Y, X) is put into the Send Buffer. The Send Buffer is then word-
aligned by padding with 0. Accessing cells outside the matrix dimensions yields undefined
types.

22

ISA 4 CELL STORAGE INSTRUCTIONS

Read All Types
012345678910111213141516171819202122232425262728293031

0 0 0 0 0 0 0 7

Format

read_types()

Purpose

To retrieve the types of all cells.

Description

The types of all cells are put into the Send Buffer in raster order (first X, then Y, then
Z). The Send Buffer is word-aligned after each row by padding with 0. If a type would
be split across two words, it is instead aligned to the next word.

Notes

The execution time (T) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY), [matrix width] (MX) and [type bits] (BT).

T = MZMY

⌈
MX

max
(⌊

32
BT

⌋
, MX

)⌉+ 1

23

4 CELL STORAGE INSTRUCTIONS CARP

Write One State
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 1 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

STATE

Format

write_state(Z, Y, X, STATE)

Purpose

To write one state.

Description

State (Z, Y, X) in Cell BRAM A is set to STATE.

Notes

Each coordinate is cropped to the bits in its matrix dimension.

STATE is cropped to [state bits].

If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.

If X is outside the defined matrix, nothing will happen.

24

ISA 4 CELL STORAGE INSTRUCTIONS

Write Row of States
012345678910111213141516171819202122232425262728293031

Z Y X ? 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

STATES

Format

write_states(Z, Y, X, STATES)

Purpose

To write one row (or as many can fit an instruction) of states.

Description

STATES is a list of states in little-endian order. It is either [matrix width] or as many
can fit 224 bits in length. Each state is [state bits] long.

The states are written to Cell BRAM A at row (Z, Y). They are offset so the first state
is written to position X within the row. States offset to [matrix width] or more are
discarded.

The length of STATES varies depending on [matrix width] and [state bits]. It is sent as
one continuous piece spanning multiple words. The instruction length field is adjusted
accordingly.

Notes

Each coordinate is cropped to the bits in its matrix dimension.

If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.

25

4 CELL STORAGE INSTRUCTIONS CARP

Write One Type
012345678910111213141516171819202122232425262728293031

Z Y X 0 0 1 0 1 1 0 1
012345678910111213141516171819202122232425262728293031

TYPE

Format

write_types(Z, Y, X, TYPE)

Purpose

To write one state.

Description

Type (Z, Y, X) in Cell BRAM A is set to TYPE.

Notes

Each coordinate is cropped to the bits in its matrix dimension.

TYPE is cropped to [type bits].

If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.

If X is outside the defined matrix, nothing will happen.

26

ISA 4 CELL STORAGE INSTRUCTIONS

Write Row of Types
012345678910111213141516171819202122232425262728293031

Z Y X ? 0 1 1 1 1
012345678910111213141516171819202122232425262728293031

TYPES

Format

write_types(Z, Y, X, TYPES)

Purpose

To write one row (or as many can fit an instruction) of types.

Description

TYPES is a list of types in little-endian order. It is either [matrix width] or as many can
fit 224 bits in length. Each type is [type bits] long.

The types are written to Cell BRAM A at row (Z, Y). They are offset so the first type
is written to position X within the row. Types offset to [matrix width] or more are
discarded.

The length of TYPES varies depending on [matrix width] and [type bits]. It is sent as
one continuous piece spanning multiple words. The instruction length field is adjusted
accordingly.

Notes

Each coordinate is cropped to the bits in its matrix dimension.

If row (Z, Y) is outside the defined matrix, data will still be written but only accessible
by read instructions.

27

4 CELL STORAGE INSTRUCTIONS CARP

Fill Cells
012345678910111213141516171819202122232425262728293031

TYPE STATE 0 0 0 0 1 0 1 0

Format

fill_cells(STATE, TYPE)

Purpose

To set the state and type of all cells.

Description

STATE and TYPE is written to each cell in Cell BRAM A.

Notes

STATE is cropped to [state bits].

TYPE is cropped to [type bits].

This instruction takes [matrix depth] * [matrix height] cycles.

28

ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

5 Cellular Automaton Instructions

This section covers all instructions affecting the Cellular Automaton. This includes
writing look-up tables, configuring the CA, running the CA, and reading back the new
states.

29

5 CELLULAR AUTOMATON INSTRUCTIONS CARP

Write LUT
012345678910111213141516171819202122232425262728293031

? 0 1 0 0 0
012345678910111213141516171819202122232425262728293031

TYPE
012345678910111213141516171819202122232425262728293031

LUT

Format

write_lut(LUT, TYPE)

Purpose

To write a type to lookup table conversion entry.

Description

LUT is written to LUT BRAM at address TYPE. The length of LUT varies depending
on [matrix depth]. It is sent as one continuous piece spanning multiple words. The
instruction length field is adjusted accordingly.

Notes

TYPE is cropped to [type bits].

30

ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

Configure
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 1 0

Format

config()

Purpose

To configure the sblock matrix.

Description

The cells in Cell BRAM B are fetched along with the LUTs corresponding to each of
their types. The LUTs and states are then written to the sblocks.

Notes

The execution time (T) for this instruction depends on [matrix depth] (MZ), [matrix
height] (MY) and [lut configuration bits] (LUTCB).

T3D = MZMY
128

LUTCB

+ 2

T2D = MY
32

LUTCB

+ 2

31

5 CELLULAR AUTOMATON INSTRUCTIONS CARP

Readback
012345678910111213141516171819202122232425262728293031

0 0 0 1 0 0 1 1

Format

readback()

Purpose

To read back cell states from the sblock matrix.

Description

The states of all sblocks are written to Cell BRAM B. Types in Cell BRAM B are
preserved.

Notes

This instruction takes [matrix depth] * [matrix height] cycles.

32

ISA 5 CELLULAR AUTOMATON INSTRUCTIONS

Step
012345678910111213141516171819202122232425262728293031

STEPS 0 0 0 1 0 0 0 1

Format

step(STEPS)

Purpose

To perform updates of the sblock matrix.

Description

The sblock matrix is updated STEPS times. After each step, the number of live cells
(state equals 1) are counted and stored in the Live Count buffer.

Notes

This instruction takes STEPS + 1 cycles.

33

5 CELLULAR AUTOMATON INSTRUCTIONS CARP

34

ISA 6 CONTROL FLOW INSTRUCTIONS

6 Control Flow Instructions

This section covers all instructions that are related to the program memory. This includes
those for storing, starting and exiting programs, in addition to control flow within the
programs.

35

6 CONTROL FLOW INSTRUCTIONS CARP

Break
012345678910111213141516171819202122232425262728293031

0 0 0 1 1 0 0 1

Format

break_out()

Purpose

To break out of a running program and restore control to the host.

Description

The Fetch module exits [read from memory] mode and enters [read from communication]
mode.

Notes

This has no effect if the Fetch module is already in [read from communication] mode.

36

ISA 6 CONTROL FLOW INSTRUCTIONS

Store
012345678910111213141516171819202122232425262728293031

ADDRESS 0 0 0 1 1 0 1 0

Format

store(ADDRESS)

Purpose

To begin storage of a program to internal memory.

Description

The Fetch module exits [read from communication] mode and enters [save to memory]
mode. The next instruction will be saved at address ADDRESS, and then each address
thereafter.

Notes

This will be saved as a nop if the Fetch module is already in [save to memory] mode.

ADDRESS is cropped to [program counter bits].

37

6 CONTROL FLOW INSTRUCTIONS CARP

End
012345678910111213141516171819202122232425262728293031

0 0 0 1 1 0 1 1

Format

end()

Purpose

To end storage of a program to internal memory.

Description

The Fetch module exits [save to memory] mode and enters [read from communication]
mode.

Notes

This will be parsed as a nop if the Fetch module is already in [read from communication]
mode.

38

ISA 6 CONTROL FLOW INSTRUCTIONS

Jump
012345678910111213141516171819202122232425262728293031

ADDRESS 0 0 0 1 1 1 0 0

Format

jump(ADDRESS)

Purpose

To begin execution of or jump within a program stored to internal memory.

Description

If the Fetch module is not in [read from memory] mode, it exits [read from communica-
tion] mode and enters [read from memory] mode. The program counter is then updated
so the next instruction is the one at address ADDRESS.

Notes

ADDRESS is cropped to [program counter bits].

39

6 CONTROL FLOW INSTRUCTIONS CARP

Jump Equal
012345678910111213141516171819202122232425262728293031

ADDRESS COUNTER 0 0 1 1 1 1 0 1
012345678910111213141516171819202122232425262728293031

VALUE

Format

jump_equal(ADDRESS, COUNTER, VALUE)

Purpose

To begin execution of or jump within a program stored to internal memory if a counter
matches a value.

Description

If counter COUNTER is equal to VALUE, this instructions is exactly like jump(ADDRESS).
Otherwise, it is discarded.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.

ADDRESS is cropped to [program counter bits].

VALUE is cropped to [counter bits].

40

ISA 6 CONTROL FLOW INSTRUCTIONS

Increment Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 0

Format

counter_increment(COUNTER)

Purpose

To increment a counter.

Description

Counter COUNTER is incremented by 1. If counter COUNTER is at maximum, it
instead becomes 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.

41

6 CONTROL FLOW INSTRUCTIONS CARP

Reset Counter
012345678910111213141516171819202122232425262728293031

COUNTER 0 0 0 1 1 1 1 1

Format

counter_reset(COUNTER)

Purpose

To reset a counter.

Description

Counter COUNTER is set to 0.

Notes

Accessing counter [counter amount] or higher yields undefined behavior.

42

	Introduction
	Instructions
	Rules
	LUTs

	General Instructions
	No Operation
	Read Information
	Read Fitness
	Read Readout
	Write Weight
	Swap Cell Storage
	Reset Buffers

	Development Instructions
	Read Rule Vectors
	Read Rule Numbers
	Write Rule
	Set Active Rules
	Develop

	Cell Storage Instructions
	Read One State
	Read All States
	Read One Type
	Read All Types
	Write One State
	Write Row of States
	Write One Type
	Write Row of Types
	Fill Cells

	Cellular Automaton Instructions
	Write LUT
	Configure
	Readback
	Step

	Control Flow Instructions
	Break
	Store
	End
	Jump
	Jump Equal
	Increment Counter
	Reset Counter

