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Summary

In this dissertation, various topics related to control problems for under-actuated
marine vehicles are investigated. The thesis is divided into three parts.

The first part deals with the source-seeking problem for multi-agent systems.
It is assumed that a group of vehicles has to identify the location of a source in
the ocean space. The source may for instance be an area with a high concentra-
tion of a specific chemical substance. The agents have to define the direction of
motion towards the source utilizing distributed measurements of the scalar field
surrounding the source. It is supposed that the agents are organized in a leader-
follower scheme. An approach for kinematic unicycle agents is first presented. In
this approach the novelty is a variable-leader scheme. That is, it is assumed that
the leader can change during the mission. This allows for a better distribution of
the tasks in the group. In particular, there is an agent in the group which has
information about the direction where to move in order to explore an area of in-
terest. Then there is also another agent that can take on the role as leader if it
gets satisfactory measurements from the environment. This approach is then used
in order to develop a strategy for multi-agent systems consisting of under-actuated
marine vehicles. In this second case, a synchronization controller is used for the
vehicles in order to achieve motion in formation. The leader agent collects informa-
tion from the followers and is able to compute the direction pointing towards the
source, computing the approximated gradient of the field surrounding the source.
Simulation case studies are presented in order to validate the approaches.

In the second part of the thesis a novel approach for controlling under-actuated
marine vehicles is presented. The approach is inspired by works on control of non-
holonomic ground vehicles. The method is based on the definition of a different
output for the system. Then an input-output feedback linearization controller is
used in order to apply a change of inputs to the system. This methods transforms
the nonlinear model an under-actuated marine vehicle into a system with a lin-
ear external dynamics and a nonlinear internal dynamics. We use this approach
to solve the trajectory tracking control problem, the path following control prob-
lem and the leader-follower synchronization control problem for marine vehicles in
presence of environmental disturbances. Simulation case studies and experimental
results validate the theoretical results.

The third part of the thesis deals with the path following control problem
for under-actuated marine vehicles. First the path following control problem is
dealt with for unparametrized straight-line paths. A guidance law inspired by a
common control approach for aerial vehicles is developed. The guidance is based
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Summary

on geometric control principles and it is used together with an observer in order
to counteract the effect of ocean currents. Almost-global stability of the closed-
loop system is proven and a simulation case study validates the theoretical result.
Then the path following problem for curved paths is considered. In particular, paths
parametrized by a path variable are considered. Two strategies are considered. Both
the strategy are based on a parametrization of the curve which is used to propagate
a path-tangential frame. The path following errors are defined with respect to
the path-tangential frame. The first strategy forces the vehicle to move along the
normal of the path-tangential frame. This results in a singularity which makes the
strategy valid only locally around the path. The second strategy defines a different
path parametrization which is valid globally. Here an ocean current observer is also
used in order to counteract the ocean current disturbance. The closed-loop system
is proven to be globally asymptotically stable. The theoretical results are verified
via numerical simulations. Finally, a novel control strategy for path following of
curved paths is presented. The novelty of this last approach is that it does not
require any parametrization of the path. In fact, the path is implicitly defined as
a manifold in the state space. The control approach is based on geometric control
and hierarchical control design. An adaptive controller is used in order to deal with
the disturbance caused by ocean currents. The closed-loop system is proven to be
asymptotically stable.

iv



Contents

Summary iii

Contents v

List of figures ix

List of tables xi

Preface xiii

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline and scientific contributions . . . . . . . . . . . . . . . 8
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Model and mathematical preliminaries 17
2.1 The general model for marine vehicles . . . . . . . . . . . . . . . . . 17
2.2 The relative velocity model . . . . . . . . . . . . . . . . . . . . . . . 18

I Source seeking strategies for marine vehicles 23

3 Source-seeking with variable leader in the network 25
3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The revised agreement protocol . . . . . . . . . . . . . . . . . . . . . 30
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Adaptive source-seeking with marine vehicles 39
4.1 ASV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Constant bearing guidance law . . . . . . . . . . . . . . . . . . . . . 41
4.3 Leader’s heading computation . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Source seeking guidance law and synchronization controller . . . . . 45
4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.A Function definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



Contents

II Control of marine vehicles using the hand position ap-
proach 49

5 Trajectory tracking of marine vehicles 51
5.1 Vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Hand position: line of reasoning . . . . . . . . . . . . . . . . . . . . . 52
5.3 Control objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4 The controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 The particular case of straight-line paths . . . . . . . . . . . . . . . . 62
5.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.A Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Path following of marine vehicles 71
6.1 Vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Hand position: line of reasoning . . . . . . . . . . . . . . . . . . . . . 72
6.3 Problem definition and control objectives . . . . . . . . . . . . . . . 74
6.4 The control system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.6 The straight-lines case . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Unparametrized straight-line paths . . . . . . . . . . . . . . . . . . . 85
6.8 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.9 Sea trial results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Multi-agent formation with disturbance rejection 95
7.1 Agents’ model and assumptions . . . . . . . . . . . . . . . . . . . . . 96
7.2 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Control design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.5 Formation control of marine vehicles . . . . . . . . . . . . . . . . . . 102
7.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.A Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

III Path following for marine vehicles 113

8 Geometric guidance for path following of marine vehicles 115
8.1 Vehicle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Control objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.3 The guidance law and the observer . . . . . . . . . . . . . . . . . . . 117
8.4 The controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.5 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
8.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vi



Contents

8.A Perturbation terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9 Observer based path following for generic paths: a local approach133
9.1 Vessel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.3 Controller, observer, and guidance . . . . . . . . . . . . . . . . . . . 137
9.4 Closed-loop analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.A Proof of Lemma 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.B Proof of Lemma 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
9.C Proof of Lemma 9.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10 Observer based path following for generic paths: a global aproach161
10.1 Vessel model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 Controllers, Observer, and Guidance . . . . . . . . . . . . . . . . . . 164
10.4 Closed-Loop Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.A Proof of Lemma 10.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.B Proof of Lemma 10.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
10.C Proof of Lemma 10.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

11 Path following of unparametrized paths 191
11.1 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . 192
11.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
11.3 Hierarchical control approach . . . . . . . . . . . . . . . . . . . . . . 195
11.4 The case of zero ocean current . . . . . . . . . . . . . . . . . . . . . 196
11.5 The case of non-zero ocean current . . . . . . . . . . . . . . . . . . . 203
11.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.A Functions used in the model . . . . . . . . . . . . . . . . . . . . . . . 212
11.B Curvature computation for Lemma 11.3 . . . . . . . . . . . . . . . . 213

12 Conclusions and future work 215
12.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

A Mathematical references 221
A.1 Mathematical References . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.2 Graph theory tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

B Numerical simulation models 227
B.1 Numerical model for a supply vessel . . . . . . . . . . . . . . . . . . 227
B.2 Numerical model for the light autonomous under-water vehicle (LAUV)229

References 231

vii





List of figures

2.1 Vehicle’s states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Global and body frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Exchange of the leadership, the agent v1 is the initial leader, the agent

v2 is the the active follower, the red dots are the sensors . . . . . . . . . 28
3.3 Topology of the agents’ graph . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Motion of the vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Investment parameter k. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Formation moving towards the source, following a lawn-mower path. . . 47
4.2 Evolution of the variable weight k and synchronization error between

the followers and the leader. . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 The hand position point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Motion of the ship. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Time evolution of the errors states. . . . . . . . . . . . . . . . . . . . . . 66
5.4 Ocean current estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Time evolution of the surge velocity, sway velocity and yaw rate. . . . . 67

6.1 The hand position point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Path following. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Motion of the vehicle. The black dot represents the motion of the virtual

frame V F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Time evolution of the error states. . . . . . . . . . . . . . . . . . . . . . 89
6.5 Time evolution of the surge velocity, sway velocity and yaw rate. . . . . 89
6.6 Motion of the vehicle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 Top) Cross-track error, i.e. distance of the vehicle along the perpendic-

ular direction to the path; Bottom) Course error. . . . . . . . . . . . . . 92
6.8 Light autonomous underwater vehicle (LAUV). . . . . . . . . . . . . . . 92
6.9 Motion of the vehicle in the real trial. . . . . . . . . . . . . . . . . . . . 93
6.10 Top) Cross-track error in the sea trial; Bottom) Course error in the sea

trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Illustration of the control approach. . . . . . . . . . . . . . . . . . . . . 103
7.2 a) The pivot point (P) and the hand position h. b) Relative velocities

in the NED frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

ix



List of figures

7.3 Desired motion and topology of the communication graph. . . . . . . . . 108
7.4 Motion of the vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.5 Trajectory tracking errors of the leader v0. . . . . . . . . . . . . . . . . . 109
7.6 Formation errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.7 Time evolution of the yaw angle and yaw rate of the five agents. . . . . 111

8.1 a) Geometric guidance principle for the 2D case; b) Geometric guidance
principle for steady state situation . . . . . . . . . . . . . . . . . . . . . 119

8.2 Motion of the vessel. The arrows indicates the direction of the ocean
current, but they are not in scale. . . . . . . . . . . . . . . . . . . . . . . 129

8.3 Cross-track error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.4 Ocean current estimate errors. . . . . . . . . . . . . . . . . . . . . . . . 130
8.5 Top: surge propeller force; bottom: rudder torque . . . . . . . . . . . . . 130

9.1 Definition of the ship’s kinematic variables. . . . . . . . . . . . . . . . . 135
9.2 Definition of the path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Path of the vessel in the x− y-plane . . . . . . . . . . . . . . . . . . . . 150
9.4 Path following errros, current estimates, sway velocity, yaw rate, surge

velocity , and size of Cr over time. . . . . . . . . . . . . . . . . . . . . . 152

10.1 Definition of the ship’s kinematic variables. . . . . . . . . . . . . . . . . 162
10.2 Definition of the path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.3 Path of the vessel in the x− y-plane. . . . . . . . . . . . . . . . . . . . . 178
10.4 Path following errros, current estimates, sway velocity, yaw rate, surge

velocity , and size of Cr over time. . . . . . . . . . . . . . . . . . . . . . 179

11.1 Illustration of the ship’s kinematic variables. . . . . . . . . . . . . . . . 193
11.2 Path of the ship and the cassini oval (the ship is not to scale). . . . . . 209
11.3 Sway velocity of the ship. . . . . . . . . . . . . . . . . . . . . . . . . . . 209
11.4 Magnitude of h(p) as the vessel converges to the path. . . . . . . . . . . 210
11.5 Case of non-zero ocean current. The path of the ship and the Cassini

oval (the ship and the ocean current vectors are not to scale). . . . . . . 210
11.6 Case of non-zero ocean current. Sway velocity of the ship. . . . . . . . . 211
11.7 Case of non-zero ocean current. Magnitude of h(p) as the vessel con-

verges to the path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.1 A supply vessel. [36] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
B.2 The LAUV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

x



List of tables

3.1 Initial states and ocean currents affecting the vehicles. . . . . . . . . . . 37

5.1 Initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1 Initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Way points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Initial states and ocean currents affecting the vehicles. . . . . . . . . . . 108

xi





Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
philosophiae doctor (PhD) at the Norwegian University of Science and Technol-
ogy (NTNU). The work has been carried out at the Department of Engineering
Cybernetics and at the Center for Autonomous Marine Operations and Systems
(AMOS). My main supervisor has been Professor Kristin Ytterstad Pettersen and
my co-supervisor has been Professor Asgeir Sørensen from the Marine Technology
Department.

Acknowledgments

I believe that these few pages of acknowledgement probably are the most important
of this dissertation. Even people who will not understand the technical details of
the thesis will spend few minutes reading these few lines. I believe that I have to
put an extra effort into writing properly these words which are concluding this long
journey which lasted a little more than three years. As opposed to the rest of the
thesis, it is in these pages that I can tell about the contribution of other people
to my journey and to my personal growth. And this is by far the most important
thing which I obtained from the PhD journey.

If I have to talk about a journey, the first thing to do is to talk about its
beginning. I still remember that 19th of December 2013, the day when I got the
official contract from NTNU. That contract opened to me two possibilities: stay in
the same place as I grew up and continue a life which could have been, to a certain
extend, predictable. Or, I could just leave a familiar environment and and jump
into a new adventure, in a foreign country where I had never been before and where
I knew nobody. Since you are holding this thesis in yours, you can easily guess that
I chose the second option. It took probably few hours to take the decision. After
more than three years I can tell that that decision has been the best one of my life
so far!

The first person who I must thank for this great opportunity is my supervisor
Professor Kristin Ytterstad Pettersen. First of all, I have to thank her because she
believed in me the moment she chose me. Furthermore, she has been a great guide
and mentor. Without her positive attitude I could never had completed this long
path. I will never forget her support and help when I was visibly frustrated by
things which were not working. Thanks to her, I achieved things that I thought
unachievable at the beginning of this journey.

xiii



Preface

I would like to thank also my co-supervisor Professor Asgeir J. Sørensen for
the time that he dedicated to me, for his inspiring talks at AMOS events and for
his encouragement to share and discuss things with our colleagues. The warm and
kind environment which he helped to create in AMOS was one of the things which
I appreciated the most while working in this center of research.

I would also like to thank my former supervisor Professor Gianluca Antonelli
from University of Cassino and Southern Latium. He was the person who helped
me to find the open position at NTNU and he encouraged me to apply. Probably,
if he had not encouraged me, I would have missed this great opportunity. Talking
about my former university I have to thank also Professor Filippo Arrichiello. We
started a cooperation about a year ago but time went by too fast to allow us to get
to a concrete result. However, future is still ahead and we will see if we are able to
get somewhere.

During these years I also had the opportunity and the fortune to work with
many people who have been fundamental to obtain the results presented in this
thesis. I am grateful for the opportunity to work with Professor Manfredi Maggiore
from the University of Toronto. His scientific advice and insights were precious and
motivating. The outcomes of our joint works represent some of the highest quality
work included in this thesis. I will also remember our interesting and motivating
talks outside the work environment.

Another vital cooperation who characterized this thesis is the one with Professor
Erjen Lefeber from the University of Eindhoven. During my stay in Eindhoven we
worked together for few weeks. It was not a long time but it was very intense. His
patience and kindness were tremendously helpful to lift up some of my work. In
those few weeks I learnt a lot from him.

I would like also to thank Professor João Sousa at the University of Porto for
the opportunity to do experiments with the underwater vehicles of the Laboratório
de Sistemas e Tecnologia Subaquática (LSTS). A special thanks goes to José Pinto
and Maria Costa for their help to get ready the code and perform the experiments.

Another person who I will remember for our joint work is Mohamed Maghenem
from L2S Supélec. It was a great pleasure to have the possibility to work with
Mohamed. His incredible ability to dive into theoretical details, his passion and
good spirit have been essential to get high quality work in a very short time.

I am grateful to have worked also with Antonio Adaldo from KTH. He came
to visit our department and I had the opportunity and the pleasure to work with
him. Unfortunately, we were not able to achieve the expected result by the time I
started to write this thesis. However, I hope we will find the time to conclude our
work.

Last autumn I had also the pleasure to work with Koen Goris from University
of Eindhoven. He spent here the semester for an internship and I had the pleasure
to be his guide during this period.

I would also like to thank all my colleagues at AMOS and the Department
of Engineering Cybernetics. Our coffee breaks, parties and ski trips are all good
memories and remarkable moments of my life in Trondheim. Listing everyone would
take too long. But some people need to be explicitly mentioned here. I will start
with Dennis and Albert. Dennis has been my office mate from my first day here in
Trondheim up until he finished his PhD. We shared an office, many coffee breaks,

xiv



many beers, and we supported each other during the tough period as PhD students.
When Asgeir Sørensen said "Your best supervisor may be your office mate" he must
have been talking about Dennis. Especially during my first period, we had many
discussions which were invaluable for my learning process. Albert is still sitting next
door and since the day he arrived he brought that South European flavor which
was missing during the first months I was here. The many discussions with Dennis
and Albert have ranged from trivial jokes to the attempt to solve global problems.
I believe that we still have not managed to fix the world. However, I hope that in
the future we will find the time to give some more attempts to World salvation. I
need also to mention Mikkel C. Nielsen, his presence in our coffee breaks has been,
and it is still today, very relevant both to reach an high level of silliness and to
have a genuine serious talk. Then I need to thank my partner in crime Andreas,
Anna, Erlend, and Bård for great moments at and outside work.

I also had the fortune to meet many great people outside the work environment
which turned out to be also great friends. I can start mentioning my flatmate Luca.
It has been a great pleasure to share an apartment and good time with him. Our
serious discussions and jokes at home were essential for my survival during the PhD
life. I also need to thank Walter, who was one of the first persons who I met here in
Trondheim. He was the one who introduced me to a part of the Italian community
here in this city. I need to mention Luca A. and Maria, Giancarlo and Roberta,
Nick and Sepideh, Eleni and Eirini for our great time together. I had great time
with each one of you and with all of you together. Ski trips, walks in the woods,
simple dinners, trips, cabin trips, beers, board games. Each single occasion was
great. You all contributed to make my experience in Trondheim memorable.

When I decided to leave Italy, I also knew that some connections would have
become weaker. Today I can tell that some of them have become such. But others,
even though are characterized by a less frequent communication, do not need many
words to be as strong as they were in the past. It is not really possible to list all of
them here, but I will have to mention at least Simone and Giuseppe. Often, when
I went back for vacation in my home village, we found the time for a beer or two.
I hope we will keep this tradition.

Then I must thank my family, my father Bartolomeo, my mother Maria and
my brother Riccardo. Their support, during my years while I was there with them
and while I was here in Norway, has been constant and unconditioned. Sometimes
it has not been easy for them to deal with me.

Least but not the last I need to mention Antonietta. She has been (and is) so
close when we have been (and are) so far. Past and future become fuzzy and blurry
when I want to describe her influence during these last years. It looks like that it
has always been a far present with her.

Finally, I would like to thank the many people who consciously or unconsciously
have influenced this long and exciting journey.

Claudio Paliotta, April 2017



I have only one regret. . . that I have not worked harder.

Frederick Henry Royce



Chapter 1

Introduction

This thesis deals with control problems for under-actuated marine vehicles. In
particular, it mainly deals with control problems related to autonomous surface
vehicles (ASVs) and autonomous underwater vehicles (AUVs). The control prob-
lems related to marine vehicles span a broad area in the field of control theory and
marine systems. We decide to focus on a few of these problems, in particular:

• source-seeking for multi-vehicle systems;

• path following for a single vehicle;

• trajectory tracking for a single vehicle;

• synchronization control for multi-vehicle systems.
In this chapter we present the motivations and the contributions of this dissertation.

1.1 Background and motivation

In this section we first give a general introduction to the context of marine vehicles.
We then present motivations and a general overview of the previous works on the
topics dealt with in this thesis.

1.1.1 Modeling of marine vehicles

Autonomous vehicles have drawn the attention of researchers for the last decades.
The use of autonomous vehicles is appealing for several real world applications. For
instance, autonomous vehicles are particularly suitable for execution of tasks which
are dull, hard or impossible to execute for humans. Furthermore, autonomous ve-
hicles are interesting for different fields, and include unmanned vehicles for ground
applications (unmanned ground vehicles (UGVs)), unmanned vehicles for aerial
applications (unmanned aerial vehicles (UAVs)) and unmanned marine vehicles,
that is, autonomous surface vehicles (ASVs) and autonomous underwater vehicles
(AUVs). In each one of the aforementioned fields there are many examples of ap-
plications. We have autonomous cars which are leading towards profound changes
in our concept of transportation [73, 74]. We have extensive use of UAVs for explo-
ration, monitoring and surveillance tasks [35, 79, 127]. Also, autonomous vehicles
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have a large potential in applications intended to execute tasks in areas which are
inaccessible for humans, for instance space exploration [34, 60, 93], and Arctic [98]
or deep water exploration [21, 121, 133].

Another advantage of using autonomous vehicles is that they do not require an
operator to maneuver the system. Nevertheless, human operators are still involved
in some supervision of the mission. In the context of marine vehicles this may
allow savings in the costs of the operation. In fact, fully autonomous vehicles may
require less or may not require personnel on a vessel supporting the operation at all.
However, the absence of an operator who takes direct control of the vehicle requires
the development of more sophisticated control strategies. Indeed, when there is not
an operator taking care of the maneuvering of the system, the vehicle has to be able
to counteract also the disturbances which may prevent it from fulfilling the assigned
task. It is then clear that the development of control strategies requires the necessity
of a mathematical model for the system and the disturbance. The type of model
and its complexity depend on the particular task and the operation conditions.
A possible classification of the models depending on the operational conditions, is
between low velocity and high velocity models. The former is suitable for station
keeping and dynamic positioning operations where the vehicle is required to remain
in a fixed position. The latter is instead used for maneuvering tasks, such as path
following [54]. Another important aspect of the model is its complexity. According
to Sørensen [131] two main categories may be distinguished between in this sense.
The first category is called control plant model. This includes models which are a
simplified description of the system containing only the main physical properties
of the plant. The control plant model is suitable for control design purposes and
theoretical analysis. The second category is the process plant model, and it is a
more complex mathematical model which includes a detailed description of the
physical system. The process plant model is suitable for high fidelity simulation of
the system.

In real applications, ASVs and AUVs may be deployed in order to perform
independent tasks or tasks which require cooperation or coordination among the
vehicles. In the former case it is important to deal with control strategies which
concern a single vehicle and the control feedback depends only on the information
available to the vehicle. Instead, in the latter case a high level control which takes
care of the coordination among the vehicles, has to be carefully studied and ana-
lyzed. In this case, the control strategy requires also an exchange of information
among the vehicles in the network.

1.1.2 Source-seeking with multi-vehicle systems

Part I of this thesis concerns the source-seeking problem for marine vehicles.
The source-seeking task deals with the localization of the source of a specific sig-

nal. From a mathematical point of view, we call source the position of the maximum
(or the minimum) of a function f(x), which describes the scalar field associated
with the signal distribution, and where x ∈ R2 gives a specific position in space.
From a practical point of view, the source can, for instance, be seen as an area in
which there is a high concentration of a specific chemical substance or a thermal
source.
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The source-seeking task may be performed using static or moving agents. In
the first case a number of static sensors collects and exchanges information in order
to identify the location of the source. In the second case a group of mobile agents
is equipped with sensors. Each agent can detect scalar measurements of the signal
distribution and can exchange information with the rest of the group. The vehicles
then use the shared information in order to move towards and reach the source. In
this thesis we investigate this second case.

The advantage of using multi-agent systems lies in the fact that having several
vehicles allows spacial distributed measurements which can be used in order to
determine the position of the source. There are several methods in order to exploit
the measurements of the agents. The two most common methods are: gradient
based approaches [11, 53, 136, 137, 141, 142] and extremum-seeking [17, 59, 78].
The gradient based approaches are based on the approximation of the gradient
of the signal distribution using spacially diffused measurements from the agents
[11, 53, 136, 137, 141, 142]. The mobile agents then move to climb the gradient. It is
clear that gradient based methods require that the source exists and is unique. The
extremum-seeking method also relies on the approximated gradient computation.
However, the gradient is approximated by one or several vehicles probing the field,
usually with a sinusoidal or a dither motion [17, 59, 78, 139]. In this dissertation
we use a gradient based method since we want to exploit the spacial covering of
the multi-vehicle system without requiring dither motions of each agent.

When dealing with a multi-agent system, an important aspect of the network
is the hierarchy among the agents. We may have leader-follower schemes, where
the leader is an agent able to influence the states of the other agents, the followers.
There are also leaderless networks where the agents all have the same capabilities
and influence each other equally according to a specific communication scheme.
Examples of leader-follower networks are [17, 90, 141, 142]. The works [11, 63, 136,
137] deal instead with leaderless networks. In this work we focus on the leader-
follower approach.

One of the first studies of this scheme is given in [132]. In [132], the author
deals with a group of agents in which the leader is able to control the states
of the other agents. The communication among the agents is characterized by a
fixed topology graph. Necessary conditions on the structure of the communication
graph are given under which the states of the followers are controllable by the
leader. Further investigation about the connection between controllability of the
leader-follower networks and the topology of the communication scheme is given
in [70, 101, 119]. Other authors have focused on the controllability of the leader-
follower scheme considering a switching topology graph for communication [69, 95].
In particular, the seminal work [69] gives a thorough analysis of the stability of a
network of agents with and without a leader. It is assumed that over a certain
interval of time the neighbors of the i-th agent change. Necessary conditions on
the connectivity of the agents’ graph over time are given to achieve an agreement
among the agents. In the case of the leader-follower scheme the followers agree to
follow the leader’s heading.

Source-seeking tasks can be performed with the leader-follower scheme [17,
53, 105, 141] and with the leaderless scheme [63, 136, 137]. The work [17] deals
with a source-seeking mission using the extremum-seeking method. The multi-
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agent system is characterized by a leader which is able to get scalar measurements
from the field. In order to get distributed measurements, it moves due to a dither
motion to compute the approximated gradient. The followers keep an assigned
formation around the leader. Their relative position is controlled by a passivity
based control law. This controller guarantees that the followers move behind the
leader, filtering its dither motion while reaching the source. In [53, 105], a group of
fully-actuated agents are used to perform source-seeking using scalar measurements
from each agent. In particular, some virtual leaders are used to achieve a prescribed
formation using artificial potentials. Each real agent takes scalar measurements that
are used to compute the gradient of the environment. A Kalman filter is used to
improve the quality of the gradient estimate. Asymptotic convergence to a region
that contains local minima is proved. In [141], a source-seeking guidance law for
UAVs agents based on a leader-follower scheme is studied. The followers constantly
move on a circular trajectory around the leader. Only the followers are able to get
scalar measurements from the field. The leader receives the measurements from the
followers and uses them to compute the approximated gradient in order to move
towards the source. It is necessary that each follower communicates with the leader
during the motion. Asymptotic convergence towards the source is proved. The work
[105] describes source-seeking performed using a leaderless multi-agent system.
The control law of the mission is decoupled to perform formation control and
the source-seeking. The motion in formation is achieved using artificial potentials.
For the source-seeking, each agent gets scalar measurements and shares it with
a central computer. The computer computes the gradient of the field and gives
back information to the agents to reach the source. The work [137] presents a
source-seeking method for leaderless multi-agent systems not based on the explicit
gradient estimation. In particular, the velocity of each agent is decoupled in two
parts. The first part is proportional to the scalar measurements from the field.
The second part is used for controlling the relative position of the agents. This
method is in accordance with the behavior of schools of fish. Convergence to the
source while maintaining a certain formation is ensured. The work [136] extends
the results to the 3D case.

1.1.3 Trajectory tracking, path following and multi-agent
systems

The trajectory tracking problem, the path following problem and the formation
control problem are three common problems in the field of marine vehicles. In fact,
trajectory tracking and path following tasks are crucial for exploration and surveil-
lance missions, sea-bed scanning and pipeline inspection tasks [121]. Formation
control becomes relevant when we want to use multi-vehicle systems in order to
explore or monitor larger areas in a shorter time. Indeed, one of the advantages of
using multi-agent systems lies in the fact that they offer larger spacial coverage.

Marine vehicles, both ASVs and AUVs, generally operate in challenging opera-
tional conditions. In fact, ocean currents and environmental disturbances, generally
referred to as sea loads [52], may seriously influence the success of a mission. Fur-
thermore, ASVs and AUVs are generally under-actuated vehicles, i.e., the number
of independent control inputs is less than the degrees of freedom in the configura-

4



1.1. Background and motivation

tion space. This characteristic is due to common design rules. In fact, commercial
marine vehicles are often equipped just with fixed stern propellers and a steering
rudder, or with two azimuth propellers. Sometimes they also have tunnel thrusters
for lateral motion during docking, but such actuators work only at low speeds [75].
Consequently, the control design for this class of vehicles is challenging due to the
absence of a direct actuation in the side direction (sway direction). The challenge is
even bigger when environmental disturbances affect the system. At this point it is
clear that due to their relevance for real applications and the challenges that char-
acterize marine vehicles, trajectory tracking and path following tasks have drawn
the attention of researchers over the years [1, 4, 5, 15, 19, 20, 31, 32, 41–44, 46, 55–
57, 62, 71, 80, 87, 100, 103, 116, 117, 130, 135].

Trajectory tracking

The trajectory tracking control problem deals with the design of a controller
which steers and stabilizes a vehicle to a geometric path that is parametrized
by time, i.e., the vehicle has to follow a geometric path respecting a time con-
straint. Several works have dealt with this problem, proposing different approaches
[1, 4, 5, 41, 62, 71, 87, 116, 117, 130]. Pettersen and Nijmeijer [116] presents one
of the first solutions for the full-state stabilization of under-actuated marine vehi-
cles. In particular, [116] gives a trajectory tracking controller for a simplified model
of an ASV. The approach is based on the back-stepping and recursive technique
given for systems in chained form studied in [72]. The result in [116] was further
developed in [118], where some restrictions on the curvature were relaxed. Both
[116, 118] do not consider the effect of environmental disturbances, which are dealt
with in Pettersen and Nijmeijer [117].

The work [71] presents an approach using Lyapunov’s direct method to solve the
trajectory tracking problem of ASVs. Two constructive solutions are proposed by
application of Lyapunov’s direct method. Both the proposed controllers are devel-
oped exploiting the cascaded structure of the system. However, both the approaches
require a persistently exiting (PE) yaw rate. The PE condition is a common feature
with the works [116–118] mentioned above.

Do et al. [46] present a result which does not need the PE condition and it is
based on a combination of the back-stepping and Lyapunov’s direct methods. How-
ever, [46], like [116–118], considers a simplified model of a ship. That is, the mass
and damping matrices are assumed to be diagonal. This assumption is removed
in Do and Pan [41], where mass and damping matrices with non-zero off diagonal
elements are considered. Here a change of coordinates transforms the dynamics
into a diagonal form and the same method as in [46] is applied. Nonlinear damping
is considered in [45].

Sonnenburg and Woolsey [130] present two solutions for the trajectory tracking
control problem for a riverine ASV. The authors first identify the parameters of a
Nomoto model in order to describe the motion of the vehicle. Then this model is
used for control purposes and two control laws are proposed. The first law is a pro-
portional derivative controller, while the second is derived using the backstepping
technique. The results are validated experimentally.
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Aguiar et al. [4] presents an interesting approach based on an adaptive switching
supervisory control law combined with a nonlinear Lyapunov-based tracking control
law. The authors show convergence of the position tracking error to a neighborhood
of the origin that can be made arbitrarily small.

Path following

The path following control problem differs from the trajectory tracking control
problem because of the time constraints. That is, differently from the the trajectory
tracking control problem, the path following control problem does not impose any
time constraint on the vehicle. The ASV or the AUV is just required to converge
to and move along the path without any time constraint. In particular, the vehicle
is not required to be at a specific location along the path at a specified time. The
path following control problem for marine vehicles has been dealt with in many
works [15, 18–20, 30, 32, 44, 45, 48, 50, 55–57, 80, 100, 103, 134, 135].

A well-known guidance control strategy for path following of straight-lines is
the line-of-sight (LOS) guidance [19, 54, 56, 57]. The LOS guidance is based on the
approach of experienced helmsmen who steer the vessel towards a point lying at a
constant distance ahead of the ship along the desired path. Borhaug and Pettersen
[18] provides a stability proof for the LOS guidance control using cascaded system
theory. The closed-loop system is shown to be κ-exponentially stable and the zero
dynamics are carefully studied and proven to be well-behaved. However, [18] does
not consider the effect of environmental disturbances. This case is considered in
Børhaug et al. [19] where an integral action is added to the LOS guidance. A
stability analysis is provided and uniform global asymptotic stability of the closed-
loop system is shown. In Caharija et al. [32] the work of Børhaug et al. [19] is
revisited. Caharija et al. [32] considers a model based on relative velocities. This
approach simplifies the control design and analysis. Wiig et al. [134] proves that
the integral-LOS (ILOS) control system is semi-globally exponentially stable. In
Fossen et al. [56], the LOS guidance strategy is used together with a switching
algorithm in order to make the vehicle move along a piece-wise continuous path,
i.e., a path made of segments connecting several way-points. This approach was
further developed in Breivik and Fossen [24] for circular paths. However, both
[24, 56] do not consider disturbances.

One of the first scientific contributions for path following of marine vehicles for
curved-paths is Encarnação et al. [50]. Encarnação et al. [50] applies the approach
developed in Micaelli and Samson [102] for unicycles together with an observer in
order to compensate for constant disturbances. This approach has some limitations
since it is based on a parametrization of the path which is valid only locally. Fur-
thermore, it assumes a constant total velocity, which requires an active and not
practical control of the forward speed in order to compensate for variation in the
sway velocity induced by the curved motion. This approach has been further de-
veloped by Lapierre and Soetanto [80], Lapierre et al. [81]. In fact, [80, 81] present
a solution which is based on a globally valid parametrization of the path. This is
achieved by proposing a new parametrization of the path where the time update
of the parameter s which defines the path, is left as an extra degree of freedom for
control purposes. However, [80, 81] do not consider environmental disturbances.

6



1.1. Background and motivation

Moe et al. [103] uses the same relative velocity model as in [32]. Then, using the
same parametrization as in [80, 81] together with an observer, proposes a control
law valid for curved-paths in presence of constant ocean currents.

Multi-agent systems

The works discussed above are all about the trajectory tracking and path following
control problem for a single vehicle. However, it is relevant to deal with trajec-
tory tracking and path following control of multi-ASV and multi-AUV systems.
In fact, the use of marine vehicles is costly due to the necessity of vessels and
personnel supporting off-shore missions. Deploying more vehicles simultaneously
implies shorter time for completing the task and consequently cost saving. From a
more theoretical point of view, the design of formation control strategies for multi-
vehicle systems may be reduced to the the consensus or synchronization problem.
That is, all the agents should synchronize their outputs to a common signal. The
synchronization control problem for generic multi-agent systems has drawn a lot
of attention in the last decades [6, 40, 92, 92, 94, 96, 120, 126, 140]. It may be
divided into two different cases, i.e., leaderless synchronization (or the consensus
problem) and leader-follower synchronization (or consensus with a leader). In the
former case, the agents should synchronize to a common value which depends on
the initial states of the system [6, 92, 94, 96, 120, 126]. In general, the final com-
mon value reached by the states of each agent cannot be chosen freely, but it is
determined by the initial states of the agents. In the leader-follower case we have a
group of agents, generally addressed as followers, which have to synchronize their
states to the states of a certain agent in the network, the leader agent [40, 92, 140].
Generally, in the leader-follower case, it is assumed that it is possible to assign a
desired trajectory to the leader’s states. Therefore, this allows the followers’ states
to be steered to a desired trajectory. For instance, Zhang et al. [140] considers the
synchronization problem for a group of identical linear agents. The communication
graph is considered directed but it has to contain a spanning tree, that is, there
must be at least one agent which can communicate, directly or indirectly, with
all the others. A diffusive coupling law which makes the agents synchronize to the
reference trajectory of a leader agent is presented. However, [140] does not consider
the presence of disturbances affecting the systems. Ding [40] presents a solution for
the synchronization problem for a network of linear agents, with or without leader
and with the agents affected by disturbances. In particular, the approach in [40] is
based on a disturbance observer. The method is suitable for matched disturbances
and in general requires some pre-knowledge about the exosystem generating the
disturbance. Li et al. [92] gives an H∞ controller for agent synchronization to a
desired reference signal. The controller makes a group of agents interconnected
by an undirected graph synchronize to a desired reference signal while rejecting
exogeneous disturbances.

All the works discussed above considering multi-agent synchronization deal with
linear systems. We have already mentioned that the dynamical model of ASVs and
AUVs is nonlinear. This implies that all the results mentioned above cannot be
directly applied for the synchronization or the coordination control of multi-ASV
or multi-AUV systems. In addition, ASVs and AUVs are generally under-actuated.

7



1. Introduction

The problem of multi-vehicle coordination in the context of marine systems has
been dealt with in [8, 9, 12, 13, 19, 22, 26, 29, 30, 49, 51, 64–67, 129]. Børhaug et al.
[19] tackles the problem of the formation control of under-actuated marine vehicles
using a coordinated path following approach. That is, each vehicle has to reach
its own path. Once each vehicle reaches its own path, the formation is reached
by regulating the along path distance among the vehicles. However, [19] does not
consider the effect of disturbances affecting the system. The approach in [19] is then
revisited in [12, 13] where the effect of constant irrotational ocean currents is taken
into account. Encarnação and Pascoal [49] considers the formation control problem
for under-actuated marine vehicles using a leader-follower approach. In particular,
a follower vehicle is controlled in order to follow the leader vehicle, keeping a given
distance. However, [49] does not consider the effect of ocean currents. Skjetne et al.
[129] tackles the problem of formation control for fully-actuated marine vehicles
using a virtual structure approach and a backsteping control design. That is, a
virtual point moving in the space is defined for each vehicle. Each vehicle is then
required to converge to the assigned point and move along with it. When all the
vehicles have reached their virtual points, motion in formation is obtained. Skjetne
et al. [129] considers the presence of a constant ocean current. Arrichiello et al.
[9] uses the Null-Space-Based behavioral control (NSB) approach for solving the
formation control problem for a fleet of marine vehicles. The NSB approach is
a behavior-based approach. That is, several behaviors are assigned to the agents
and the resulting motion is a weighted average of the single behaviors. In [9],
the vehicles are required to move in formation and avoid obstacles which may
eventually be present in the environment. Under-actuated vehicles are considered,
but the presence of environmental disturbances is not taken into account. Ihle
et al. [67] combines a path following approach and a coordination law for solving
the formation control problem for fully-actuated marine vehicles. The closed-loop
system is shown to have passive properties.

1.2 Thesis outline and scientific contributions

This dissertation is divided into three main parts:

1. Source-seeking with multi-vehicle systems: consists of Chapters 3-4;

2. Control of ASVs and AUVs using the hand position point approach: consists
of Chapters 5-7;

3. Path following for ASVs and AUVs: consists of Chapters 8-11.

Parts I, II and III are further discussed in the two following subsections.

1.2.1 Source-seeking with multi-vehicle systems

Part I of the thesis deals with the source-seeking problem for marine vehicles. It
consists of Chapters 3-4. The content and the scientific contribution of each chapter
is discussed separately.
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Chapter 3

In this chapter we consider the source-seeking problem using under-actuated ve-
hicles organized in a leader-follower scheme. Here the agents are modeled as kine-
matic unicycles. We revise the controlled agreement protocol scheme [119, 132] with
the addition of a variable leader in order to shift the agreement. Our approach is
inspired by the biological model for the migration of birds presented in Couzin
et al. [37] and studied in Leonard [88] and Pais and Leonard [106]. According to
[37, 88, 106], during the migration, flocks of birds are characterized by leaders and
followers. Over generations leaders and followers change according to the so called
fitness parameter. Leonard [88], Pais and Leonard [106] study the dynamics of the
change of the leadership in the flock of birds over the generations. The role as leader
is taken by the most skilled animals, that is, the ones with the best capabilities in
detecting the best direction for the migration.

The main scientific contribution of this chapter is inspired by the migration
model for flocks of birds. A revised control consensus protocol with a variable
leader is applied to the source-seeking problem for multi-agent systems. The main
difference in this work compared to previous works is that in our model the lead-
ership is exchanged according to the environment conditions, i.e. the proximity to
the source. In particular, the agents move along a definite direction assigned to
the initial leader, but if during the motion one of the agents detects a source, they
deviate from the initial direction. The sensing agent would then take on the role as
leader and would compute a new direction that points towards the source. Being
the new leader, it imposes the new direction of motion to the rest of the agents.
Which is the current leader, depends on the current value of the investment pa-
rameter. This feature makes sure that the group follows the agent that has the best
information available about the source they are seeking, and is expected to provide
more efficient source-seeking operations.

Chapter 4

In this chapter we consider the source-seeking problem using a multi-agent systems
consisting of under-actuated ASVs. The main contribution of this chapter is a
method to achieve source-seeking tasks using a multi-agent system without a priori
assuming that there is a source in the field. Whereas in the literature the field is
often a priori assumed to contain a source. Consequently, it is common practice to
compute the heading based only on information from the source regardless of the
signal’s strength. While in this work an initial path to follow is given to the agents
in order to explore a given area. Then, if a source is present in the explored area
and the signal from the source is strong enough, i.e. exceeds a given threshold, the
group of vehicles will leave the initial path and will move towards the source. The
autonomy of the agents is increased because no matter if a source is present or
not, the agents can always choose a path to follow and this is in accordance with
the best available information from the field. Furthermore, it is shown that the
presented source-seeking strategy can easily be integrated with a leader-follower
synchronization based formation control strategy for ASVs or AUVs moving in the
horizontal plane.
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1.2.2 Control of ASVs and AUVs using the hand position point
approach

Part II of the thesis deals with the trajectory tracking control problem, the path
following control problem and the synchronization control problem for marine ve-
hicles. It consists of Chapter 5-7.

The chapters presented in Part II are based on a different approach to the
control problem of trajectory tracking and path following of marine vehicles. In
fact, all the works discussed in Section 1.1 have in common that the vehicle has to
track a trajectory or follow a path with respect to the center of mass or the pivot
point. The latter is a point on the center-line of the vehicle such that its lateral
motion (sway motion) is not affected by any of the control inputs. We propose
a different approach. We extend the definition of hand position, which has been
used for ground vehicles in [82, 122], to marine vehicles. The definition of the hand
position is further discussed in Chapters 5-7, but briefly described it is a point lying
along the center-line of the vehicle ahead of the pivot point. Choosing the hand
position motion as the output of our system and using an input-output feedback
linearizing controller, we perform a change of inputs to our system, which, as typical
for feedback-linearized systems, leads to an external dynamics which is linear, and
in particular to a double integrator. The advantage of this approach lies in the fact
that now we have to deal with a linear system for control purposes.

The content and the contribution of each chapter of Part II is discussed sepa-
rately in the following.

Chapter 5

In this chapter we consider the model of an ASV or an AUV moving in the hori-
zontal plane, affected by an environmental disturbance, i.e., an unknown constant
ocean current. We address the problem of trajectory tracking for straight-line and
curved paths. The proposed control strategy is based on the definition of the hand
position point and an input-output feedback linearizing controller. We present a
change of coordinates which is not standard for the input-output feedback lineariz-
ing approach. This particular choice for the new set of coordinates allows us to
obtain a transformed model where the ocean current affects the system at the level
of the linear external dynamics and can be counteracted with a simple integral
action. The drawback of this approach is that we obtain a nonlinear internal dy-
namics which is affected by the input of the external dynamics. Therefore, attention
has to be paid to the analysis of the states of the internal dynamics in order to
check that they are well-behaved. We show that the integral state is able to give
an estimate of the ocean current. We prove that our output, i.e., the hand position
point, converges to the desired trajectory globally exponentially while the states of
the internal dynamics are ultimately bounded. We also show that for the case of
straight-line trajectories we have almost-global asymptotic stability (AGAS) of the
closed-loop system. Finally, the theoretical results are validated by a simulation
case study.

10
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Chapter 6

This chapter considers the path following control problem for ASVs and AUVs
moving in the horizontal plane. The effect of unknown ocean currents is also taken
into account. The path following control problem is tackled using the same approach
as in Chapter 5. That is, the hand position point is defined as the output of the
system. An input-output feedback linearizing controller is then used in order to
obtain a transformed model which is more suitable for control design purposes. We
use the same change of coordinates as in Chapter 5. Consequently, we obtain the
same advantage as in Chapter 5, i.e., a linear external dynamics which facilitates
the control design phase. However, we have the same downside as in Chapter 5,
i.e., a nonlinear internal dynamics affected by the input of the external dynamics.
We consider parametrized paths, i.e., paths in which each point along the path is
uniquely defined by an along path variable s. The path variable is used to propagate
a virtual path-tangential frame with respect to which the path following errors are
defined. The propagation of the path-tangential frame depends on a time update
law for the path variable s. We design the time update law for s dependent on
the Euclidean distance of the vehicle from the path-tangential frame. The hand
position point is proven to converge to the desired path globally exponentially
while the states of the internal dynamics are ultimately bounded. The case of
parametrized and unparametrized straight-line paths is considered. It is shown that
in this case the closed-loop systems is AGAS. A simulation case study validates
the theoretical results. Furthermore, the case of unparametrized paths is validated
with experimental results.

Chapter 7

In Chapters 5 and 6 we have applied an input-output feedback linearizing con-
troller using the hand position point as output. We have obtained a linear external
dynamics and a nonlinear internal dynamics. A major motivation for transforming
the system into this form has been to be able to develop synchronization control
schemes for multi-vehicle systems consisting of under-actuated marine vehicles. In
particular, having a linear external dynamics facilitates the control design phase,
and also represents an advantage for designing synchronization control strategies.

Motivated by this and by leader-follower synchronization results in [126] and
[140], we propose a diffusive coupling law for leader-follower synchronization of
linear systems. In particular, we design a distributed controller for leader-follower
synchronization based on the one given in [140]. We add integral action in the
control law for each agent inspired by the distributed control in [126] for leaderless
synchronization. The integral action is introduced in order to reject the effect of
the constant unknown disturbance. The leader agent in the network may be real
or virtual. With respect to [140], we relax the condition that the leader is an
unforced linear time-invariant (LTI) system. Instead we take into account that the
leader may be an agent controlled independently of the followers. As regards the
communication scheme, we consider the general case of directed communication
among the agents and that the leader only needs to communicate with at least one
follower. The diffusive coupling law designed for linear systems is then applied for
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synchronization control of multi-ASV systems.

1.2.3 Path following for ASVs and AUVs

Part III consists of Chapters 8-11 and extensively deals with the path following
control problem. Solutions for parametrized and unparametrized paths are consid-
ered. In Chapter 6, the path following control problem is dealt with considering
the aforementioned hand position approach, i.e., applying a change of coordinates
to the system in order to obtain a different model for control purposes. In Part
III, the path following is instead considered using the standard nonlinear model of
marine vehicles.

The content and the contribution of each chapter is discussed separately below.

1.2.4 Chapter 8

In this chapter the path following control problem of unparametrized straight-
line paths is considered. The approach in this chapter is different from the one in
Chapter 6 due to the choice of the output of the system. In fact, in Chapter 6, the
path following control problem is addressed considering the hand position point
as output. Instead, in this chapter, the vehicle is controlled with respect to the
pivot point. Furthermore, the result in this chapter is limited to unparametrized
straight-line paths, while the results in Chapter 6 holds for parametrized curved
paths.

The main contribution of this chapter is a guidance law for ASVs and AUVs
moving on the horizontal plane in presence of an ocean current with unknown
direction and magnitude. We use an observer to estimate the current, such that we
can use the estimates in the guidance law in order to counteract its disturbing effect.
The method is based on geometric control considerations inspired by common
control strategies used for UAVs, in particular quad-copters. Specifically, this work
has been inspired by the control approach given in [84, 86]. We define a direction
which points towards the path using the cross track error vector and the estimated
ocean current vector. Then we make the vehicle align itself with this direction in
order to converge to the path. We do not define an explicit desired yaw angle,
but instead we use a feedback linearization controller based on an error function
developed directly on the SO(2) group [27]. Using cascaded systems theory we prove
that the closed-loop system is almost-GAS. A simulation case study validates the
theoretical results.

1.2.5 Chapter 9

This chapter considers path following of generic paths for under-actuated marine
vessels in the presence of constant ocean currents. A line-of-sight guidance law, an
ocean current observer, and a local parametrization of the path are used. For the
path, we use the same parametrization as used in Samson [124] for mobile ground
robots. We add an adaptation to the path parametrization in order to counteract
the effect of the unknown ocean currents. This parametrization aims to keep the
vessel on the normal of a path-tangential reference frame. However, this is only
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possible when the ocean current is known, and therefore the adaptation to the
parametrization includes a restoring term that assures that the vessel is brought
back to the normal of the path-tangential reference frame once the estimate of the
ocean current has converged. The strategy which we apply is similar to the one
used in Do and Pan [44]. However, Do and Pan [44] considers a simplified model
with diagonal mass and damping matrices. We consider non-diagonal mass and
damping matrices and we consider also the presence of ocean currents. Furthermore,
compared to Do and Pan [44], in this work the parametrization is adapted to include
the effect of the unknown ocean current.

Note that the path following control strategy presented in this chapter differs
by the one in Chapter 6 in the choice of the output. In fact, in Chapter 6 the vehicle
is controlled with respect to the hand position point, while here with respect to the
pivot point. Furthermore, the control approach in Chapter 9 is not limited only to
straight-line paths like the one in Chapter 8.

A complete analysis of the sway velocity dynamics is given, taking into account
the coupling between the total velocity and the sway velocity. The parametrization
which we use is valid only locally around the curve. In particular, it is valid inside
a tube around the curve whose dimensions depends on the maximum curvature
of the path. It is then proven that the closed-loop system is exponentially stable
when the vehicle is inside the tube.

1.2.6 Chapter 10

This chapter deals with the path following control problem for under-actuated
marine vessels in the presence of constant ocean currents of generic paths. The
approach is an extension of the one presented in Chapter 9. In fact, while the
parametrization defined in Chapter 9 holds only locally, here we define a parametrzi-
ation which holds globally, i.e., the initial error from the path can be arbitrarily
large. The guidance law which is presented here is a line-of-sight like guidance
where the look-ahead distance is adapted based on the path following errors. Also
in this case we use an ocean current observer in order to estimate and compensate
for the ocean current. The guidance law is an adaptation from Moe et al. [103],
which considers the same problem. The closed-loop system is proven to be globally
asymptotically stable under certain conditions for the look-ahead distance and the
curvature of the path. The main difference compared with Moe et al. [103] is a
different adaptation law and a different choice for the look-ahead distance which is
necessary in order to prove stability of the zero dynamics, which were not analyzed
in [103].

1.2.7 Chapter 11

In this chapter we present a solution to the path following control problem for un-
parametrized paths. That is, paths which are described by an implicit equation and
not by a path variable, as common in all the works about curved paths discussed
in Section 1.1.

The control strategy for path following presented in this chapter differs from
all the other path following control approaches discussed in the previous chapters.
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In fact, the results of Chapter 11 hold for unparametrized curved paths, while the
previous chapters present either solutions for unparametrized straight-line paths
or parametrized curved paths.

To the best of our knowledge, in the context of marine vessels, the problem of
finding a smooth, static, and time invariant feedback solving the path following
problem for unparametrized paths remains open. In this chapter, we present a first
solution. The controller is based on geometric considerations and the control design
follows from the hierarchical control method presented in [47]. Principles from
adaptive control are also used in order to deal with the ocean current effect. Using
the hierarchical control method, the closed-loop system is analyzed and proven to
be asymptotically stable while the zero dynamics is proven to be well-behaved. We
want to remark that this control approach to path following is a purer approach
compared to the ones discussed in Chapters 6, 8, 9 and 10. In fact, in this approach
the path is not parametrized and therefore there is no distinction among the points
constituting the curve.

1.3 Publications

This section presents the list of publications related to the work in the rest of this
thesis. The list includes publications in conferences and journals, and works which
are published and others which are to be submitted.

Journal papers

• D. J. W. Belleter, M. Maghenem, C. Paliotta, and K. Y. Pettersen. Observer
based path following for underactuated marine vessels in the presence of ocean
currents: a global approach. Submitted to IEEE Transactions on Control
Systems and Technology, 2017.

• C. Paliotta, E. Lefeber, K. Y. Pettersen, J. Pinto, M. Costa, and J. Sousa.
Trajectory tracking and path following for under-actuated marine vehicles.
Submitted to IEEE Transacations on Control Systems and Technology, 2017

1.3.1 Conference papers

• M. Maghenem, D. J. W. Belleter, C. Paliotta, and K. Y. Pettersen. Observer
based path following for underactuated marine vessels in the presence of ocean
currents: a local approach. In IFAC World Congress, Toulouse, France, 2017.

• C. Paliotta, E. Lefeber, and K. Y. Pettersen. Trajectory tracking of under-
actuated marine vehicles. In Proc. 45th IEEE Conference on Decision and
Control, Las Vegas, Nevada, USA, Dec. 2016.

• C. Paliotta and K. Y. Pettersen. Leader-follower synchronization with dis-
turbance rejection. In Proc. IEEE Multi-Conference on Systems and Control,
Buenos Aires, Argentina, Sep. 2016.

• D. J. W. Belleter, C. Paliotta, M. Maggiore, and K. Pettersen. Path fol-
lowing for underactuated marine vessels. In Proc. 10th IFAC Symposium on
Nonlinear Control Systems, Monterey, CA, USA 2016.
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estimation for ASVs and AUVs. In Proc. 2016 American Control Conference,
Boston, MA, USA, July 2016.
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Chapter 2

Model and mathematical
preliminaries

In this dissertation we deal with control problems related to under-actuated ma-
rine vehicles, in particular autonomous surface vehicles (ASVs) and autonomous
underwater vehicles (AUVs). In this chapter the physical model describing the mo-
tion of ASVs and AUVs moving in the horizontal plane is given. The choice of the
right model for the description of the motion of the vehicle is not an easy task. In
fact, a model can be more or less accurate and therefore more or less complex. A
trade-off between accuracy and complexity is needed in order to not overcomplicate
the analysis and the control design. Therefore, in this chapter a general model for
marine vehicles is first introduced. Then, several considerations are given in order
to obtain a simplified model which is suitable for the applications described in this
thesis.

2.1 The general model for marine vehicles

In this section we describe the general model for marine vehicles presented in [54].
When we want to describe the motion of a vehicle in a given environment we

can start by defining an earth fixed reference frame which we call the global or
inertial frame. The motion of the vehicle is analyzed with respect to the inertial
frame. For the inertial frame we consider the North-East-Down (NED) convention
to hold. That is, we have the x axis of the inertial frame pointing north, the y axis
pointing east and the z axis pointing down towards the center of the Earth. We
need also to consider a reference frame anchored to the vessel. We call the frame
fixed with the vehicle the body or local frame. For the body frame we consider
the x axis directed from stern to bow, the y axis directed to starboard and the z
axis pointing from top to bottom. In this dissertation only the case of ASVs and
AUVs moving in the horizontal plane is considered. Therefore, the model which
is described in the following refers to marine vehicles with 3 degrees of freedom
(DOF) and moving in the x − y plane of the NED frame. Note that we consider
AUVs moving in the horizontal plane and therefore we do not consider the vertical
model of the vehicle. From [54] we have that the equations of motion for ASVs and
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AUVs are

η̇ = R(ψ) ν (2.1a)
MRBν̇ +CRB(ν)ν +MAν̇ +CA(νr)νr +D(νr)νr = Bf + τw. (2.1b)

The vector η = [x, y, ψ]T ∈ R3 where the pair x, y gives the position in the NED
frame of the vehicle and ψ, called the yaw angle, gives the orientation. The angle
ψ is the angle between the x axis of the NED frame and the x axis of the body
frame. The vector ν = [u, v, r]T ∈ R3 gives the velocity of the vehicle expressed in
the body frame, where u is the surge velocity, v the sway velocity and r the yaw
rate. Then νr = ν − νc where νc = [uc, vc, rc]

T ∈ R3 is the velocity of the ocean
current expressed in the body frame. An illustration of the vehicle’s states is given
in Figure 2.1. The matrixB ∈ Rn×m is the input configuration matrix, where n = 3
is the number of DOF of the system and m is the number of independent inputs to
the system. The vector f ∈ Rm is represents the control input in the body frame.
Note that when m < n = 3 the vehicle is under-actuated, that is, the available
number of independent control inputs is smaller than the number of DOF of the
system. The vector τ = τwind + τwave gives the effect of wind and wave induced
forces. Note that νc, τwind, τwave describe all the environmental disturbances. In
this dissertation we consider only the effect of ocean current νc affecting the system
and assume that τwind = τwave = 0. The matrix R(ψ) ∈ SO(3), where

SO(3) = {R|R ∈ R3×3, RRT = RTR = I ∧ detR = 1}.
In particular, we have

R(ψ) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 . (2.2)

The matricesMRB = MT
RB > 0 and CRB(ν) are the rigid body inertia matrix and

Coriolis and centripetal matrix, respectively. ThenMA = MT
A > 0 and CA(ν) are

the added mass and added Coriolis and centripetal matrix, respectively. Finally,
D(ν) is the hydrodynamics damping matrix.

2.2 The relative velocity model

In this section we start from the model (2.1) and derive a simpler model which is
suitable for the control applications which we deal with in this work.

In this thesis only the presence of constant and irrotational ocean currents
is considered. This implies that the ocean current vector expressed in the body
frame is νc = [uc, vc, 0]T . At this point we can rewrite the model (2.1) in a more
convenient form to incorporate the ocean current effect. We can rewrite the ocean
current vector in the global frame as

V = R(ψ)νc (2.3)

where V = [Vx, Vy, 0]T ∈ R3. In [54], it is shown that

MRBν̇ +CRB(ν)ν = MRBν̇r +CRB(νr)νr (2.4)
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Figure 2.1: Vehicle’s states.

Therefore using (2.3) and (2.4) we can rewrite (2.1) as:

η̇ = R(ψ)νr + V (2.5a)
Mν̇r +C(νr) +D(νr)νr = Bf . (2.5b)

We have that M � MRB + MA and C(νr) = CRB(νr) + CA(νr). Note that it
holds that M = MT > 0. The model (2.5) presents the effect of constant and
irrotational ocean currents as a kinematic drift. Note also that (2.5) is function
only of the relative velocities νr. Therefore, during the control design phase we
decide to control the state νr. This gives a direct control on the direct energy
consumption of the vehicle since the hydrodynamics damping depends on νr [31].

Now some assumptions which are supposed to hold for the system, are given.
First, we consider the following assumption to hold:

Assumption 2.1. The vehicle is port-starboard symmetric.

This assumption holds for the largest part of marine vehicles available on the
market. Furthermore, according to Assumption 2.1, the mass matrix M and the
Coriolis matrix C(νr) have the following structure

M �



m11 0 0
0 m22 m23

0 m32 m33


 , C �




0 0 −m22vr −m23r
0 0 m11ur

m22vr +m23r −m11ur 0


 .

It is also assumed that the following assumption holds

Assumption 2.2. The hydrodynamic damping is linear.

Remark 2.1. The nonlinear damping term is not considered to not increase the
complexity of the controller. However, due to the passive nature of the damping
forces, the stability of the vehicle should still be enforced in case of nonlinear damp-
ing.
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According to this Assumption 2.1-2.2 the damping matrix is independent on
νr, i.e. has constant entries, and has the following structure

D ,



d11 0 0
0 d22 d23

0 d32 d33


 . (2.6)

This dissertation mainly focuses on under-actuated vehicles, that is, vehicles
which are characterized by f ∈ Rm,m < n = 3. This characteristic implies that
the number of independent control inputs which are available for controlling the
vehicle is smaller than the number of degrees of freedom. Most marine vehicles
available on the market are under-actuated with respect to the sway direction
when moving at speeds which are higher than 1 − 2[m/s] [22]. Therefore, this is
the case which we consider. Then we have f = [fu, fr]

T ∈ R2, where fu is the
surge trust input and fr is the rudder angle. The matrix B thus has the following
structure

B ,



b11 0
0 b22

0 b32


 .

Note that generally the term b22 6= 0, implying that an input from the rudder,
fr, has an effect also along the sway direction. In order to make the stability
properties of the sway easier to analyze, we can perform a change of coordinates
which leads to a system in which there is no indirect effect of the control inputs
fu, fr in the sway direction. We follow the same approach as in Fredriksen and
Pettersen [57]. We start by defining the distance ε as

ε = −m33b22 −m23b32

m22b32 −m23b22
.

The distance ε is such that the body fixed frame is moved to the so called pivot
point. An important characteristic of the pivot point is that the sway dynamics is
decoupled from the rudder input. Note that ε is well defined as long as the vehicle
is controllable in yaw. The transformation proposed in [57] is

ūr = ur, v̄r = vr + εr, r̄ = r (2.7)

This transformation corresponds to moving the body fixed frame along the center
line of the vehicle for a distance ε. Therefore defining

H ,




1 0 0
0 1 −ε
0 0 1


 . (2.8)

the equation of motion (2.5) can be transformed as described in [54] and we obtain

η̇ = R(ψ)νr + V (2.9a)

MP ν̇r +CP (νr) +DP (νr)νr = BPf (2.9b)
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whereMP ,HTMH, CP (νr) ,HTC(νr)H, DP ,HTDH, BP ,HTBH.
Now, it can be verified that

(M)
−1
BPf =




b11
m11

fu
0

m22b32−m23b22
m22m33−m2

23
fr


 (2.10)

and it is clear that the yaw rudder control is not affecting the sway dynamics of
the pivot point.

At this point, defining (M)
−1
BPf = τ = [τu, 0, τr]

T , we can write (2.9) in
component form as

ẋ = ur cos(ψ)− vr sin(ψ) + Vx (2.11a)
ẏ = ur sin(ψ) + vr cos(ψ) + Vy (2.11b)

ψ̇ = r (2.11c)
u̇r = Fur (vr) + τu (2.11d)
v̇r = X(ur)r + Y (ur)vr (2.11e)
ṙ = Fr(ur, vr, r) + τr. (2.11f)

The expressions for Fur (vr), X(ur), Y (ur), Fr(ur, vr, r) are

Fur (vr, r) ,
1
m11

(m22vr +m23r)r − d11
m11

ur, (2.12a)

X(ur) , −X1ur +X2, (2.12b)

Y (ur) , − Y1ur − Y2, (2.12c)

Fr(ur, vr, r) ,
m23d22−m22(d32+(m22−m11)ur)

m22m33−m2
23

vr (2.12d)

+ m23(d23+m11ur)−m22(d33+m23ur)
m22m33−m2

23
r (2.12e)

and

X1(M) , m11m33−m2
23

m22m33−m2
23

X2(M,D) , d33m23−d23m33

m22m33−m2
23

(2.13)

Y1(M) , (m11−m22)m23

m22m33−m2
23

Y2(M,D) , d22m33−d32m23

m22m33−m2
23
. (2.14)

The functions Y (ur), X(ur) are both linear in ur and for Y (ur) the following as-
sumption holds

Assumption 2.3. The following bounds hold on Y1, Y2

Y1 >0, Y2 > 0. (2.15)

This clearly implies
Y (ur) ≤ −Y min < 0,∀ur ∈ [u, ū]

where 0 < u < ū.

Remark 2.2. The conditions Y1, Y2 < 0 imply Y (ur) < 0, which is a natural
assumption. In fact, Y (ur) ≥ 0 would result in an unstable sway dynamics, which is
unfeasible for commercial marine vehicles by design. This is a common assumption
for marine systems control design, e.g. [33].
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Part I

Source seeking strategies for marine
vehicles
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Chapter 3

Source-seeking with variable leader
in the network

In this chapter a new approach to the leader-follower coordination problem of a
multi-agent system is considered for source-seeking tasks. The source-seeking prob-
lem for marine vehicles is relevant when the objective of a mission is to locate and
steer the agents towards a point with a high concentration of a chemical substance
or a thermal signal, e.g., from an underwater pipe leak. The main objective of the
method presented in this chapter is to improve the capabilities of a group of marine
vehicles for exploration and survey operations. In fact, one of the main advantage
of using multi-agent systems is the possibility to assign different sensors to different
vehicles. In this way, each vehicle has a different task depending on the particular
sensor that it has been equipped with. For instance, assuming that the agents can
communicate with each other, it may be necessary to equip just one vehicle with a
GPS and assign to this specific agent the task of steering the other agents towards
a specific area. Then another agent may be equipped with specific sensors for ac-
quiring data from that area. The distribution of the sensors among the vehicles
would imply power saving and therefore longer lasting and more efficient missions.

A group of n agents represented by a unicycle model is considered. The objective
of the group is to explore a given area moving along a desired direction. Then, if
a source is present in the explored area, the agents should leave the initial desired
direction of motion and move towards the source. In particular, in the group we
define two special agents, the initial leader and the active follower. The initial
leader is the agent which is the leader at the beginning of the mission and knows
the initial direction in which the agents should move. The active follower is an
agent which is able to get measurements of a specific signal from the environment.
If the measurements from the environment cross a given threshold, then the active
follower takes on the role as leader and the initial leader becomes a follower. In
other words, while the active follower is following the leader, it investigates the
field. If it gets a relevant signal it will compute the direction that points towards
the source of the signal and it will steer the whole group in this new direction. A
simple illustration is given in Figure 3.2.

In order to achieve the goal, we revise the controlled agreement protocol scheme
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proposed in [119] with the addition of a variable leader in order to shift the agree-
ment. That is, we have two leaders which can influence the other agents in order
to achieve an agreement on a given trajectory. Switching between the leaders we
switch the agreement among the followers and therefore the direction which the
whole group follows. We consider that the leadership may be switched between the
initial leader and the active follower. In order to define a law for the leadership
switching we extend to artificial systems the notion of an investment parameter
which characterizes the migration model of birds [37, 106]. In particular, [106]
studies the evolution of leadership among birds based on the model presented in
[37]. According to this model, during the migration each animal spends energy in
getting information from the environment and from its neighbors. This behavior
is expressed by the investment parameter. If a bird spends a lot of energy in sens-
ing the environment, it is characterized by a strong investment parameter. On the
other hand, if it gets information only from the neighbors, it is characterized by
a low investment parameter. The leaders have a high investment parameter and
influence the migration of the followers.

The work presented in this chapter is based on [108].
The chapter is organized as follows: in Section 3.1 the system is described;

Section 3.2 describes the proposed revised agreement for source-seeking; Section 3.3
presents the main results; in Section 3.4 some simulations are presented; Section
3.5 gives the conclusions.

3.1 System description

In this section we describe the model which characterizes the agents. The assump-
tions which hold on the communication network are also presented here.

3.1.1 The agents model

Each agent is characterized by a local coordinate system {b}. For the frame {b} we
use the convention typically used for marine vehicles, i.e. the z axis of the frame
points downwards. The velocity in the local frame is ui along xb, ψ̇ around zb and
wi along yb. The velocity in the global frame {g} is given by V = [ẋi, ẏi, ψ̇i]

T . An
illustration is given in Figure 3.1. The considered kinematic model is:

ẋi = ui cos(ψi) (3.1a)
ẏi = ui sin(ψi) (3.1b)

ψ̇i = ωi. (3.1c)

Equation (3.1) gives the model of a unicycle where the control inputs are the
forward velocity in the local frame ui and the angular rate ωi. In this chapter we
design ωi, ui independently by each other. That is, we design a distributed law for ωi
in order to reach an agreement on a direction of motion for the group. The direction
of motion is decided by the current leader in the group and is therefore subject to
change if the leader changes. For the forward velocity ui a distributed law id also
designed but it will be used just to agree on a forward velocity of motion. Note that
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Figure 3.1: Global and body frames

since ui, ωi are designed independently, the vehicles do not move respecting relative
distances among each other. These aspect does not guarantee collision avoidance
during the motion or that the agents stay close to each other during the motion.
However, collision avoidance or formation control are not points of discussion in
this chapter. The main focus here is the design of a novel agreement protocol based
on the switch of the leadership between two agents in the network. Since proximity
of the agents is not guaranteed we assume that the agents can communicate also
at long distances.

3.1.2 The network

In the following we consider a set of n agents defined by V, that are indexed as
vi. We model the communication network with a graph G = (V, E). Without loss
of generality we index the agents such that the agent v1 is the initial leader of
the group. The initial leader’s role is to make the group move in the fixed initial
direction. This makes the agents move into an area of interest where, based on
some a-priori knowledge of the environment, it is supposed that the source is.
We consider the case where only one agent is able to sense the environment. This
agent is denoted by v2, and in the following is called the active follower. Finally the
agents from v3 to vn are the passive followers. These cannot sense the environment
and may represent agents with different sensors, for instance cameras or antennas.
Moreover they might be communication nodes to allow communication among not
directly connected agents. This is particularly useful in our case because as we have
mentioned above, the model does not guarantee that the agents keep a formation
during the motion. But our model requires only a connected communication scheme
among the agents, therefore more agents allow to have communication over larger
areas.

The following assumption is valid on G:

Assumption 3.1. The graph G, which characterizes the agents, is connected and
has a controllable structure with respect to the nodes v1, v2.
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Figure 3.2: Exchange of the leadership, the agent v1 is the initial leader, the agent
v2 is the the active follower, the red dots are the sensors

Remark 3.1. The results in [101, 119] demonstrate that connectivity is a neces-
sary condition for a network based on leader-followers scheme to be controllable.
Furthermore, this kind of graph scheme does not require an all-to-all communica-
tion, which is an advantage for practical implementation. Conditions on the graph
structure to be controllable are given in [101, 119, 132]. For instance, a graph has
not to be complete or symmetric from the input node in order to be controllable.

Remark 3.2. We do not explicitly consider the case of directed graphs, which can
have a non-symmetric Laplacian and complex conjugate eigenvalues. However, if
the controllability condition with respect to v1, v2 is verified also for directed graph,
then the following considerations hold also for this case.

Since we assumed that the communication network may be described by a
graph, graph theory tools are used in this chapter. A brief overview of the tools
which we use is reported in Section A.2

3.1.3 The field

We assume that the agents have to locate the source of a vector field. The source
may be an area with an high concentration of a chemical agent, a possible scenario
may be the leak of oil from an underwater pipe. We assume that the location of the
source is unknown and that the source generates an unknown scalar field F (x, y)
around it. In order to identify where the source is, it is assumed that the active
follower is equipped with three sensors that can get scalar measurements of the
field. One of the sensors is located at the center of the body of the vehicle. The
other two are located at a distance d from this one on the axes xb and yb, respec-
tively (Figure 3.2). The measurements of v2 are used to calculate an approximated
gradient of the field and determine a direction pointing towards the source. In the
following we consider reaching the maximum of a given field F (x, y). But analogous
considerations hold to reach a minimum.

Assuming that v2 is the only agent equipped with sensors able to get measure-
ments from the field does not guarantee good distribution of the measurements,
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3.1. System description

and therefore does not guarantee a good computation of the gradient of the field.
However, as already mentioned above, our main concern in this chapter is not the
gradient estimation but rather the design of a novel agreement protocol based on
the switching of the leadership.

We assume that at each instant the scalar measurement are available. We as-
sume that the scalar measurement is δ(x, y) = hF (x, y), where h is a constant
parameter which scales the measurements from the field F (x, y) to the sensor. Ac-
cording to [141] it is possible to express the scalar measurement of the field δ(xi, yi)
at the generic position (xi, yi) according to the following Taylor expansion:

δ(xi, yi) ≈ δ(x, y) +
∂δ(x, y)

∂x
(xi − x) +

∂δ(x, y)

∂y
(yi − y). (3.2)

Considering that the active follower is equipped with three sensors it is possible to
write: [

δ22 − δ21

δ23 − δ21

]
=

[
xg2 − xg1 yg2 − yg1
xg3 − xg1 yg3 − yg1

] [∂δ21
∂x1
∂δ21
∂y1

]
(3.3)

where (xgi , y
g
i ) are the coordinates of the sensors on the agent v2 expressed in the

global frame. The index i ∈ {1, 2, 3} refers to the i-th sensor. In particular, i = 1
indexes the sensor in the center of the body of v2, i = 2 and i = 3 refer to the
sensors on the xb and yb local-frame axis of v2, respectively. Finally δ2i is the scalar
measure that corresponds to the i − th sensor. From (3.3), we can calculate the
gradient of the field as follows:

G =

[
Gx
Gy

]
=
(
PTP

)−1
PT
[
δ2 − δ1
δ3 − δ1

]
(3.4)

where:
P =

[
xg2 − xg1 yg2 − yg1
xg3 − xg1 yg3 − yg1

]
. (3.5)

The vector G is directed towards the source, so it is possible to compute the
direction ψd2 which points towards the source as follows:

ψd2 = arctan 2(Gy, Gx) = 2 arctan


 Gy√

G2
x +G2

y +Gx


 . (3.6)

Notice that (3.6) is not defined for (Gx, Gy) = (0, 0) and 0 ≥ ψd2 ≥ 2π. We design
the linear velocity such that the agents stop before arriving to the maximum of the
field, where (Gx, Gy) = (0, 0).

In this chapter we consider a time-invariant field F (x, y) : R2 → R+ that
satisfies the following assumption:

Assumption 3.2. The field F (x, y) is continuous and convex.

Remark 3.3. This assumption ensures that there is only one global maximum on
F (x, y), and therefore only one source in the field. A field with several local maxima
is equivalent to having several sources in the environment.

29



3. Source-seeking with variable leader in the network

3.2 The revised agreement protocol

In this section we present the distributed control for the agents. In particular, we
present our approach based on the controlled agreement protocol characterized by
a switch in the leadership. That is, a certain agent takes on the role of a leader or
a follower depending on its sensing of the strength of the field. In particular, the
closer to the field maximum/minimum the agent is, the more the agent takes on
the leader role. In order to make the group move into the area of interest, a fixed
initial direction of motion is assigned.

3.2.1 The investment parameter

Before presenting the control law we introduce the concept of investment parame-
ter. In [37, 89, 106], the migration model for birds is studied. This model is charac-
terized by leaders and followers. The leaders are animals with special skills which
are able to sense from the environment the right direction for the migration and
therefore lead the rest of the group. The followers are animals which are less skilled
than the leaders and therefore do not sense the environment but just get informa-
tion from their neighbors in the group. The difference between leaders and followers
is defined by the so called investment parameter. Each bird in the group is charac-
terized by an investment parameter ki ∈ [0, 1]. If ki = 0 the agent vi is a follower
and this means that it invests few energy in getting information from the environ-
ment. If ki = 1 then vi is a leader and this means that the vi invests a lot of energy
in getting information from the environment. The investment parameter ki for the
i-th agent changes over the generation of the animals according to the so called
fitness function, which takes into account the evolution of the skills of the birds
over the generations. For artificial agents we cannot apply the concept of evolu-
tion, but getting inspired by [37, 89, 106] we can define some agents in the network
which can change their status of followers or leaders during the mission. In partic-
ular, we consider that in the network there are just two agents which can change
their status. These two agents are the initial leader v1 and the active follower v2.
The agents v1 and v2 are characterized by an investment parameter ki ∈ [0, 1], for
i ∈ {1, 2}, which may change according to the environmental conditions. That is,
if the agents are far from a source and v2 does not get good enough measurements,
then k2 → 0, i.e. v2 is a follower and the group id led by v1. On the other hand, if
v2 senses measurements with a signal which crosses a given threshold, then k2 → 1
and v2 leads the group towards the source.

The investment parameters k1 and k2 are defined as follows:

k1 = k, k2 = 1− k (3.7)

where

k =
1

2
(cos (∆) + 1) (3.8a)

∆ =





0 if δ21 ≤ δm
π δ21−δmδM−δm if δm < δ21 < δM

π if δ21 ≥ δM
. (3.8b)
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The value δm > 0 defines the minimum relevant level for the measurements, δM >
δm is the maximum thresholds over which v2 becomes a full leader, δ21 is the
strength of the measurement signal that the agent v2 currently receives to its
central sensor. The function k is continuous and such that k = 1 for δ21 ≤ δm and
k = 0 for δ21 ≥ δM . Notice that δm, δM are not the minimum and the maximum
of F (x, y), but only two tuning parameters. The values δm, δM may be determined
by some a-priori knowledge of the the source and the field.

The choice (3.7) ensures that the initial leader and the active follower cannot
have their investment parameter equal to 1 or to 0 at the same time. If k1 = k2 = 1
then they would both be leader. In this case they would not influence each other.
Each one would follow its desired direction without caring about the direction of
the other one. If k1 = k2 = 0 they would both be followers. In this case there
would not be a leader in the group and all the agents would get an agreement on
a common direction that would be the average of their initial direction of motion
[101].

The derivative of k is:

k̇ =





0 if δ21 ≤ δm
π δ̇21
δM−δm if δm < δ21 < δM

0 if δ21 ≥ δM
(3.9a)

where δ̇2 is the velocity with which the signal from the field to the agent v2 varies.
Note that k̇ is well defined ∀δ21. We consider that the following Assumption holds
for our model:

Assumption 3.3. The velocity with which the signal from the field to the agent
v2 varies is bounded, i.e. ‖δ̇21‖ ≤ c, where c > 0

Remark 3.4. This Assumption ensures that the agents move with a finite velocity
over the field, and that the field itself has not discontinuities.

Note that Assumption 3.3 implies that k̇ ≤ πc
δM−δm = α.

3.2.2 The coordination law for headings

Inspired by [37, 89, 106], we propose the following law for the heading velocities ωi
of the initial leader v1 and the active follower v2:

ω1 = k1(ψd1 − ψ1)− (1− k1)
1

d(v1)
L1ψ (3.10a)

ω2 = k2(ψd2 − ψ2)− (1− k2)
1

d(v2)
L2ψ (3.10b)

where d(vi) is the degree number of the i − th agent, Li is the i − th row of the
Laplacian matrix. The parameters k1, k2 ∈ [0, 1] are given in (3.7). If ki = 1 the
agent is a full leader, if ki = 0 it becomes a pure follower. Equation (3.10) is similar
to the one in [37, 89, 106], where the leadership is associated with ki. Except that
in this thesis ki(t) varies according to the scalar signal measured from the source in
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3. Source-seeking with variable leader in the network

the field. When the agent v2 takes measures that cross a fixed threshold, it becomes
the new leader. Finally ψd1 is the initial heading assigned to v1, which is the initial
leader. Then ψd2 is the desired heading of the active follower given in (3.6), and it
depends on current position of the agent v2 in the field F (x, y).

For the other n− 2 passive followers the concept of investment parameter does
not apply since they do not participate actively in either leading the rest of the
group in a certain direction or sensing relevant information from the environment.
Therefore, ki = 0 ∀i ∈ {3, . . . , n}. We assign to their dynamics classic agreement
protocol [101], that is:

ωi = − 1

d(vi)
Liψ ∀i ∈ {3, . . . , n} (3.11)

If the graph is connected the agents will agree on a common direction to follow
[101]. In our case this direction is suggested by the current leader.

Equations (3.10) and (3.11) can be rewritten in matrix form:

ψ̇ = K(ψd −ψ)−D−1(I −K)Lψ (3.12)

where:

K =



[
k(t) 0

0 1− k(t)

]
O2×(n−2)

O(n−2)×2 O(n−2)×(n−2)


 (3.13)

ψd =




ψd1

ψd2

0(n−2)×2


 (3.14)

where Oa×b is a matrix [a× b] with all entries equal to zero. The vector ψd is the
vector of the desired headings. Finally notice that the last n − 2 elements of the
vector are conventionally assumed to be zeros. In fact the first term K(ψd − ψ)
couples only the dynamics of the agents that can change their investment parameter
ki. The desired headings of the n− 2 passive followers can assume whichever value
possible, but they are ignored because their ki is equal to zero. The dynamics of
the n−2 passive followers are coupled with the ones of the agents v1 and v2 via the
term D−1(I −K)Lψ. Notice that D−1 is the inverse of the degree matrix and this
inverse exists since we assume the graph to be connected. Finally I is the [n × n]
identity matrix. The equation can be rearranged and rewritten as:

ψ̇ = −Mψ +Kψd (3.15a)

M = [K +D−1(I −K)L]. (3.15b)

From the matrix K the necessity of our choice in (3.7) is more clear. If both k1 and
k2 were zero at the same time, the model given by (3.12) would become the classical
agreement protocol ψ̇ = Lψ [101]. If both k1 = k2 = 1, then both v1 ad v2 would
be leaders, in this case each one follows its desired direction ignoring the other one.
The passive followers follow a direction that depends on the characteristics of the
connection graph.
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3.2. The revised agreement protocol

3.2.3 The linear velocities

In our approach the control of the linear velocities u = [u1 u2 . . . un]T is done
independently from the angular velocities ψ̇.

We choose the velocity controllers such that agent v2 controls the linear velocity
of the other agents during the mission. In particular, this means that the active
follower v2 is always the agent in charge of controlling the linear velocity of the
remaining n−1 vehicles, initial leader v1 included, at any time. That is v2 imposes
its own linear velocity to the rest of the agents even though v1 is leading with respect
to headings. The motivation for the choice of v2 to decide the linear velocity of the
group is that it is the only agent which obtains measurements from the field, and
it is desirable to adjust the linear velocity with the intensity of the signal from the
field. The velocity for v2 is chosen as:

ū2 = u0 − (1− kc)u0 (3.16)

where u0 is the initial constant assigned velocity,

kc =
1

2
(cos (∆c) + 1) (3.17a)

∆c =





0 if δ21 ≤ δmu
π δ21−δmu
δMu−δmu if δmu < δ21 < δMu

π if δ21 ≥ δMu

. (3.17b)

Note that kc is a similar function to k and it is used to slow down v2 and stop it
completely when it reaches a point with scalar measurement δ21 = δMu.

The linear velocities of the agents are controlled by v2. We assign the forward
velocities ui according to the controlled agreement protocol in [132]:




u1

u2

u3

...
un




︸ ︷︷ ︸
u∗

= −




L11 L12 . . . L1n

0 0 . . . 0
L31 L32 . . . L3n

...
...

. . .
...

Ln1 Ln2 . . . Lnn







l1
l2
l3
...
ln




+




0
ū2

0
...
0




(3.18)

where Lij is the element (i, j) of the Laplacian matrix L, li is the measure of the
distance which each agents has traveled. Finally ū2 is the control input for the
linear velocity of v2.

The dynamics of the linear velocities of the agents v1, v3, . . . , vn is:

u∗ = −L̄l∗ − rū2 (3.19)

where L̄ is a matrix [(n−1)×(n−1)] obtained by the Laplacian deleting the second
column and the second row, i.e. the row and the column that corresponds to v2.
The vector l∗ is l∗ = [l1, l3, . . . , ln]T . Then the vector r is the [(n − 1) × 1] vector
obtained by the second column of the Laplacian deleting the second element. With
this dynamic we want the agents v1, v3, . . . , vn move with the same velocity as v2.
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3. Source-seeking with variable leader in the network

At this point is important to specify that the i-th agent moves according to the
model (3.1) where ui is given by (3.18) and ωi is given in (3.12). As already said,
this choice for ui, ωi does not guarantee motion in formation or collision avoidance.
However, our main concern in this chapter is to design a controlled agreement
protocol with a variable leader. This is done with the coordination law (3.12).

3.3 Results

In this section the conditions to have a stable exchange of the leadership within
the group are stated and demonstrated. In the following Oa×b is used to indicate
an [a × b] matrix with all the elements equal to zero. The investment parameter
k(t) is simply rewritten as k without neglecting its time variant behavior.

The following Lemma is important for the proof of the main Theorem.

Lemma 3.1. For a connected undirected graph G the matrixM = K+D−1(I−K)L
is positive definite if K 6= On×n.

Proof. We want to demonstrate that M is positive definite for each value of k. We
observe that M is not symmetric, but according to [76] we know that the positive-
definiteness is a property that holds also for non-symmetric matrix. Furthermore,
even in the case a non-symmetric matrix is positive definite, this guarantee that
its eigenvalues are all positive. So we focus on the following quadratic form:

xT (K +D−1(I −K)L)x = xTKx+ xTD−1(I −K)Lx ≥ 0 (3.20)

We do not know what are the eigenvalues of K +D−1(I −K)L, but if we can
prove that there is not a vector different from zero that makes (3.20) zero, then
K +D−1(I −K)L is strictly greater than 0, and so positive definite [76].

Let us consider first the case 0 < k < 1. The matrix K is diagonal and with
n−2 null elements on its diagonal, so it is positive semi-definite because k and 1−k
are non negative. Its eigenvalues are k, 1− k and 0. The eigenvalue 0 has algebraic
and geometric multiplicity n−2, so there are n−2 eigenvectors that correspond to
the eigenvalue λk = 0. We call e1 and e2 the eigenvectors that correspond to the
eigenvalues 1− k and k. Then we call ei, with i ∈ {3, ..., n}, the n− 2 eigenvectors
that correspond to λ = 0. The generic vector ei has n − 1 null elements and the
value 1 in the i− th position:

e3 = {0, 0, 1, 0, . . . , 0}T (3.21)

ei = {0, 0, . . . , 1, . . . , 0}T (3.22)

en = {0, 0, 0, . . . , 1}T (3.23)

Now it is sufficient to show that none of the eigenvectors ei makes the quadratic
form (3.20) zero. For this purpose, we consider (3.20) with x = ei where i ∈
{3, . . . , n}. We obtain:

eTi D
−1(I −K)Lei = Lii = d(vi) > 0 (3.24)
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where Lii is the i− th element on the diagonal of L that is equal to d(vi), that is
the number of neighbors of vi. Since we have a connected graph, each agent has to
have at least one neighbor, so d(vi) > 0.

When k = 0 we have e1 = {1, 0, . . . , 0}T and eT1 Me1 = d(v1) > 0.
When k = 1 we have e2 = {0, 1, 0, . . . , 0}T and eT2 Me2 = d(v2) > 0.
So we can conclude that there is not a vector that is different by 0, which can

make zero both the terms of (3.20) at the same time. Consequently we have proved
that M is positive definite, and so its eigenvalues are all positive [76].

Now it is possible state the main theorem:

Theorem 3.1. Consider a group of agents that move according to (3.15) in a time-
invariant field F(x,y), and assume that Assumptions 1-3 are satisfied. Then (3.15)
is input to state stable (ISS) with respect to the input Kψd. And if the eigenvalues
of L̄ are all distinct and the corresponding eigenvectors are not orthogonal to r,
then (3.18) is controllable by u2.

Proof. We want to demonstrate that (3.15) is Input to State Stable (ISS) with
input Kψd. To this purpose we know that M is positive definite according to
Lemma 3.1 and we want to focus on the norms of M and Ṁ . First we focus on M :

M =




1 −L12(k−1)
d1

−L13(k−1)
d1

. . . −L1n(k−1)
d1

L21k
d2

1 L23k
d2

. . . −L2nk
d2

L31

d3
L32

d3
1 . . . L3n

d3
...

...
...

. . .
...

Ln1

dn
Ln2

dn
Ln3

dn
. . . 1




(3.25)

where Lij are the (i, j) − th elements of L. According to [101] the sum of the
elements on the rows of L is zero. So using this property, the sum of the elements
on the rows of M are:

r1 =1 +
n∑

i=2

−L1i(k − 1)

d1
= 2− k (3.26)

r2 =
L21k

d2
+ 1 +

n∑

i=3

L2i

d2
= 1− k (3.27)

rj =

j−1∑

i=1

Lji
dj

+ 1 +
n∑

i=j+1

Lji
dj

= 0 (3.28)

where ri gives the sum of the elements of the i − th row, and j ∈ [3, 4, . . . , n].
According to this we have:

‖M‖∞ = max {2− k, 1− k, 0} ≤ 2 (3.29)

because 0 ≥ k ≥ 1.
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Now we focus on Ṁ :

Ṁ = (I −D−1)K̇ =




0 − k̇L12

d1
0 . . . 0

k̇L21

d2
0 0 . . . 0

k̇L31

d3
− k̇L32

d3
0 . . . 0

...
...

...
. . .

...
k̇Ln1

dn
− k̇Ln2

dn
0 . . . 0




(3.30)

According to the definition of the Laplacian we have Lij ∈ {0,−1} for i 6= j. So
considering also Assumption 3.3 we have:

‖Ṁ‖∞ = max

{
− k̇L12

d1
,
k̇L21

d2
,
k̇L31 − k̇L32

d3
, . . . ,

k̇Ln1 − k̇Ln2

dn

}
(3.31)

<max

{
k̇

d1
,− k̇

d2
,± k̇

d3
, . . . ,± k̇

dn
, 0

}
(3.32)

≤ k̇

min{di}
for i ∈ [1, 2, . . . , n] (3.33)

≤α1 (3.34)

where α1 is a constant. According to the properties of M and Ṁ we can conclude
that:

ψ̇ = −Mψ (3.35)

is globally exponentially stable (GES), according to [123, Theorem 8.7]. Moreover
0 ≥ ψd2 ≥ 2π because of its definition. And we have:

‖K‖∞ = max{1− k, k, 0} ≤ 1 ∀k ∈ [0, 1] (3.36)

because of the definition of K. So (3.15) is ISS according to [77, Lemma 4.6].
As regards the linear velocities, the system (3.18) is controllable by u2 if [132,

Theorem IV.1] applies. According to [101, 132] if Assumption 3.1 holds then the
eigenvalues of L̄ are all distinct and the corresponding eigenvectors are not orthog-
onal to r. Therefore the conditions of [132, Theorem IV.1] are satisfied and v2 can
control the velocities of the other agents.

The solution of (3.15) is ψ = [K + D−1(I − K)L]−1Kψd. Considering the
chosen function for k we know that it evolves over the field between the values 1
and 0. So when k = 1 and v2 is the leader the matrix [K + D−1(I − K)L]−1K
gives ψ = [ψd2, . . . , ψd2]T . When we have k = 0 the agent v1 is the leader and the
solution is ψ = [ψd1, . . . , ψd1]T . The direction ψd2 points towards the source [141].

3.4 Simulations

In this section simulation results are presented to illustrate the behavior of the
presented model.
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Table 3.1: Initial states and ocean currents affecting the vehicles.

x|t0 [m] y|t0 [m] ψ|t0 [deg]
v1 90 0 90
v2 87 3 120
v3 96 -6 60
v4 84 -9 30
v5 81 -12 10

We consider a group of five agents described by a graph (G,V). The graph is
connected but without a directed connection between v1 and v2. In other words we
assume a graph topology in which v1 and v2 do not directly exchange the infor-
mation about their relative position. The graph topology for the communication
scheme of the relative position is illustrated in Figure 3.3. The following Laplacian
matrix corresponds to the illustrated topology:

L =




2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 2 0 0
−1 0 0 1 0
0 −1 0 0 1




(3.37)

We assign u0 = 1 m/s. The considered field is:

F (x, y) =e(−0.1A(0.055(x+130)−10)2−0.2B0.04(y+170)−11)2 (3.38)

where A = e0.005(x+130), B = e(0.005(y+170). Notice that F (x, y) respects Assump-
tion 3.2. The thresholds for k are δm = 0.08 and δM = 0.5. The thresholds for the
variation of the velocity u are δmu = 0.8 and δMu = 0.95. The initial conditions for
the agents are summarized in Table 3.1. Figure 3.4 shows motion of the agent. It
is clear that they start with different directions and they all agree on the direction
that the leader v1 imposes to them. When they arrive close to the source the active
follower v2 takes on the role as leader and steers the agents to the source. Figure 3.5
shows when v2 becomes leader, that is, when the investment parameter k2 = 1− k
becomes 1.

3.5 Conclusions

The objective of this chapter was the design of a controlled agreement protocol
with switching of the leadership, which is applied to the headings of a multi-agent
systems where each agent has been modeled by a unicycle kinematic model. In
particular, in a network of n agents two special agents have been defined, the initial
leader v1 and the active follower v2. These are the two agents which can take on
the role as leader. The actual leader is defined by the investment parameter, a
parameter which defines the role of birds during migration. Extending the concept
of investment parameter to artificial agents, we have presented a coordination law
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3. Source-seeking with variable leader in the network
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Figure 3.3: Topology of the agents’ graph
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Figure 3.5: Investment parameter k.

which exchanges the leadership between v1 and v2 according to the environmental
conditions, i.e. considering the proximity of the group to the source of a scalar field.
It is assumed that only the agent v2 can take distributed scalar measurements of
the field and is able to compute the direction pointing towards the source. The
agent v1, i.e. the initial leader, has the role to take on the leadership when the
signal of the source is weak and steer the agents in a desired direction.

For the linear velocities a parallel controlled agreement for which v2 is the only
leader, without switching, was used. With this choice the linear velocities can be
made proportional to the strength of the signal from the source, since v2 is the only
agent able to get measurements from the environment. The linear velocity which
v2 imposes on the others is such that it is zero when the agents are sufficiently
close to the source.
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Chapter 4

Adaptive source-seeking with marine
vehicles

In this chapter we consider the source seeking problem using a multi-agent system
consisting of autonomous underwater vehicles (ASVs). It is assumed that a group
of n agents has to explore a given area where, based on a-priori knowledge, there
is supposed to be the source of a scalar field. The source may be an area where
there is a high concentration of a chemical substance, for instance, the leak from
an underwater pipe line may be considered a source in this context. In general,
when source-seeking algorithms are developed, it is always assumed that a source is
present in the explored area. Here a method which does not require this assumption
is presented. The method aims to increase the autonomy of the system. In this
sense, it is assumed that the group of agents moves along a given path in order to
explore a given area. Then, if the signal that the agents get from the environment
is sufficiently strong, the agents should leave the initial path meant to explore
the area, calculate a path which points towards the source and move towards it.
According to this approach, if a source is present in the area, then the agents leave
the initial path. On the other hand, if the measurement from the field are not
strong enough to suppose that a source is nearby, the agents do not leave the safe
initial desired path.

In order to achieve the exploration task described above, a system of n agents
characterized by a leader-follower scheme is considered. The leader is an agent
which influences the states of the followers, and the followers have no influence
on the leader’s states. In particular, the leader is the only agent which knows
the desired path to follow and the followers have to follow the leader, keeping a
prescribed formation. It is assumed that each agent in the network is equipped
with a sensor which can get scalar measurements of the field around the source.
These measurements are used to compute the approximated gradient of the field.
Using the gradient of the field and the intensity of the scalar measurements from
the field, a guidance law which adapts the desired heading of the leader is present.
In particular, an initial heading, which is meant to steer the agents towards an area
where the source is supposed to be, is assigned to the leader. The initial heading
is computed using a-priori knowledge of the environment. Then using the scalar
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4. Adaptive source-seeking with marine vehicles

measurements of the field, the direction towards the source is computed by means of
the approximated gradient. According to the intensity of the scalar measurements
from the environment, the heading law assigned to the leader weighs the initial
headings and the one computed from the approximated gradient. In particular, if
the intensity of the signal exceeds a given threshold, the heading pointing towards
the source is considered more relevant than the initial heading, and the group
moves following the former. On the other hand, if the intensity of the signal is poor,
that is below a fixed threshold, the group moves on keeping the initial heading.
The leader-follower synchronization controller presented in [13] is used in order
to achieve motion in formation. The motion in formation is important in order
to distribute the agents in the environment in such a way that the measurements
that they get are good for gradient computation. That is, it is undesirable to have
sensors aligned along a level curve or overlapping in a single point, since then it
would not be possible to compute the gradient.

The work in this chapter is based on [111].
The chapter is organized as follows. Section 4.1 gives a brief description of the

used model for the agents. Section 4.2 introduces the constant bearing guidance
law and the synchronization controller for the followers. Then in Section 4.3 the
source seeking guidance law for the leader is presented. In Section 4.4 we describe
the properties of the proposed heading guidance and the synchronization controller.
Section 4.5 presents a case study and simulation results for this. Finally Section
4.6 gives the conclusions.

4.1 ASV model

In this chapter the model of an ASV or an AUV moving in the horizontal plane in-
troduced in Section 2.2 is used. Recall that this model can be written in component
form as

ẋ =u cos(ψ)− v sin(ψ) (4.1a)
ẏ =u sin(ψ) + v sin(ψ) (4.1b)

ψ̇ =r (4.1c)
u̇ =Fu(v, r) + τu (4.1d)
v̇ =X(u)r + Y (u)v (4.1e)
ṙ =Fr(u, v, r) + τr (4.1f)

where Fu(v, r), X(u), Y (u), Fr(u, v, r) are given in Appendix 4.A. From the model
(4.1), it is clear that the vehicles are under-actuated in sway. Note that in this
chapter the effect of environmental disturbances is not considered, i.e., νc = 0.
Therefore, in (4.1) we have used ν = νr. This implies that a guidance method to
achieve motion in formation of the followers with respect to the leader has to be
suitably chosen. We decide to use the constant bearing guidance law [54].
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4.2. Constant bearing guidance law

4.2 Constant bearing guidance law

The constant bearing (CB) guidance law is briefly discussed here as presented in
[23, 54]. This guidance law is used for the followers to track the leader and assume
a desired relative positions with respect to it.

The constant bearing guidance law is:

vnd = vnl + vna (4.2a)

vna = − k p̃n

‖p̃n‖ (4.2b)

p̃n = pn − pnl (4.2c)

where vnl , [ẋl, ẏl]
T is the velocity of the leader in the NED frame, which has to

be matched to achieve synchronization. The term vna is proportional to the relative
distance between the leader and the follower p̃n expressed in the NED frame and
defined as

p̃n , [(xf − xl), (yf − yl)]T . (4.3)

Then the term pnl is defined as

pnl , pnl,true + R(ψl)pr. (4.4)

The term pnl,true is the actual position of the leader and R(ψl)pr is an off-set
distance expressed in the NED frame which imposes the relative distance pr =
[xr, yr]

T ∈ R2 between the follower and the leader. Finally

k = Ua,max
‖p̃‖√

(p̃n)T p̃n + ∆2
p̃

(4.5)

where Ua,max is the maximum approach velocity and ∆p̃ is a tuning parameter.
From (4.2b) and (4.5), it is clear that the approach speed approaches to zero

when the relative distance approaches to zero, i.e. vna → 0 for p̃n → 0. On the other
hand, if p̃n → ∞ we have vna → Ua,max and the CB guidance law commands the
maximum allowed velocity in order to make the follower catch up with the leader.

Remark 4.1. For curved paths the velocity vnl should be calculated in the off-set
point to track the curvature with minimal error.

Remark 4.2. Note that for the implementation of the CB guidance scheme in-
formation is needed about the leader’s position and its inertial frame velocity. This
information can be obtained through communication of GPS data or data from an
underwater acoustic network for AUVs.

4.2.1 The controller

In this section the controllers, used together with the CB guidance law described in
Section 4.2, are described. The closed-loop stability properties of these controllers
are described and analyzed in [13].
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4. Adaptive source-seeking with marine vehicles

The control objectives for each follower are:

lim
t→∞

p̃ =0 (4.6)

lim
t→∞

ṽ ,vn − vnd = 0 (4.7)

lim
t→∞

ψ̃ ,ψ − ψd = 0. (4.8)

These conditions correspond to synchronization among leader and followers. That
is, each follower follows the leader with a prescribed desired velocity and with a
desired relative position and heading.

These objectives are achieved using a feedback linearizing controller. For the
surge the following controller is used:

τu =− Fu(v, r) + u̇− ku(u− ud) (4.9)

where ku is a positive constant gain. This controller is a feedback linearizing P
controller. For the yaw rate actuation the following controller is used

τr = −Fr(u, v, r) + ψ̈ − kψ(ψ − ψd)− kr(ψ̇ − ψ̇d) (4.10)

where kψ and kr are positive gains.
The desired surge velocity ud can be calculated from ṽn using the transforma-

tions: 

ψ̃
ũ
ṽ


 =




1 0 0

0 cos(ψ̃ + ψd) sin(ψ̃ + ψd)

0 − sin(ψ̃ + ψd) cos(ψ̃ + ψd)



[
ψ̃
ṽn

]
(4.11)

where ũ = u− ud and ṽ = v. The desired heading angle ψd is calculated from the
inner and outer product of vn and vnd , see [25]. This implies that vn is aligned with
vnd . These controllers are the same as presented in [13, 14].

4.3 Leader’s heading computation

In this section we describe how we compute the leader’s heading. The heading for
the leader is computed taking into account the current gradient information from
the field. In particular, with our approach the leader, and therefore the group,
follows an initial given path and leaves this one in favor of the one pointing towards
the source only if the signal’s strength from the field exceeds a predefined threshold.

The main objective for the group is to explore an area of the environment
where the source of a scalar signal is supposed to be and eventually converge to
the origin of the source if it is present. The signal of the source can be assumed to
be the concentration of a chemical agent or an electromagnetic or thermal signal.
We assume that the distribution of a possibly present source is given by a map
F (x, y) : R2 → R whose shape is not known to the agents. Furthermore, we consider
that the following assumption holds for F (x, y):

Assumption 4.1. The map F (x, y) is time-invariant, continuous and character-
ized by only one global maximum which corresponds to the origin of the source,
e.g. the maximum concentration of a chemical agent or the maximum value of a
thermal signal.
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4.3. Leader’s heading computation

Remark 4.3. This assumption ensures that only one source may be present in the
explored environment. Considering a time-invariant map F (x, y) we exclude the
possibility that turbulences are present in the field. In the case that turbulences are
present and their magnitude is small compared to the mean value of the measure-
ments, then considering the non-stationary nature of the turbulence and the fact
that the vehicle’s dynamics act as a filter to fast changes, the source may still be
found. To actively deal with the occurrence of turbulence, high-frequency filters can
be applied to the measurements to remove the effect of high-frequency turbulence.

We consider a group of n = 3 agents with only one leader. The leader is ad-
dressed with the index l, while the followers are indexed with the index fi with
i ∈ [1, 2] ⊂ N.

We define the leader’s reference yaw rate to be:

ψ̇l,r = k(ψl,d1 − ψl,r) + (1− k)(ψl,d2 − ψl,r) (4.12)

where ψl,d1 is the initial heading assigned to the leader in order to explore an area
where the source is supposed to be. This is assumed to be bounded. The heading
ψl,d2 points towards the source and it is computed using the gradient of the field.
The law to compute ψl,d2 is given later. Finally k(t) ∈ [0, 1] is a variable weight
proportional to the strength of the signal from the source given by:

k =
1

2
(cos (∆) + 1) (4.13a)

∆ =





0 if δ21 ≤ δm
π δ21−δmδM−δm if δm < δ21 < δM

π if δ21 ≥ δM
. (4.13b)

where δm > 0 is the minimum level for the measurements to be considered, δM > δm
is the maximum threshold for the adaptation after which the heading ψl,d2(t) is
followed, δl(t) is the strength of the measured signal that the leader receives. The
function k is continuous and such that k = 1 for δ21 ≤ δm and k = 0 for δ21 ≥ δM .
Notice that δm, δM are not the minimum and the maximum of F (x, y), but only two
tuning parameters. The values δm, δM may be determined by some rough a-priori
knowledge of the the source and the field.

What is new in our method with respect to past works is that the updating
law (4.12) is adapting the current reference heading with respect to two desired
headings ψl,d1(t) and ψl,d2(t). In [63], [141], the authors consider the agents to be
in an environment where a source is surely present. Therefore the agents follow the
heading computed via the approximated gradient. Our method is more general and
assumes that a source may not be present in the environment. So in our heading
updating law (4.12) we add the term k(t)(ψl,d1(t)−ψl,r) which takes into account
the possibility to stay on a given desired trajectory if a source is not present. The
current reference heading for the group is defined in (4.12) by means of the weight
k(t), which according to (4.13) depends on the current strength of the signal. A
strong signal gives a k(t) → 1 which makes the agent leave the initial assigned
trajectory and to steer on a trajectory which goes towards the source.
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4. Adaptive source-seeking with marine vehicles

The heading ψl,d2 is computed using an estimation of the gradient obtained via
the single measurements of each vehicle and we assume that these are available
at each time instant. According to [141] it is possible to express the scalar mea-
sure of the field δ(xi, yi) at the generic position (xi, yi) using the following Taylor
expansion:

δ(xi, yi) ≈ δ(x, y) +
∂δ(x, y)

∂x
(xi − x) +

∂δ(x, y)

∂y
(yi − y) (4.14)

Considering that each vehicle has a sensor we write:

~δ =
[
δf1−δl
δf2−δl

]
=
[
xf1−xl yf1−yl
xf2−xl yf2−yl

] [ ∂δl
∂xl
∂δl
∂yl

]
(4.15)

where (xl, yl) is the position of the leader expressed in the NED frame and (xfiyfi)
with i = 1, 2 are the positions of the followers. Finally δl and δfi are the scalar
measurements that corresponds to the leader and the i-th follower, respectively.
From (4.15) it is possible to write:

~G =
[
Gx
Gy

]
=
(
PTP

)−1
PT
[
δf1−δl
δf2−δl

]
(4.16)

where:
P =

[
xf1−xl yf1−yl
xf2−xl yf2−yl

]
(4.17)

Notice that in the case of n > 3 agents with only one leader the computation of
the gradient requires only an extended matrix P of dimensions [(n − 1) × 2] and
the vector ~δ of dimension [(n− 1)× 1] with i-th element (δfi − δl).

The vector ~G is directed towards the source, so we compute ψl,d2 ∈ [−π, π) as
follows:

ψl,d2 = arctan 2(Gy, Gx)− π + 2 arctan

(
δd
δl

)
(4.18)

As shown in [141] the first term of (4.18) points towards the source while the second
and third terms allow the formation to track a level curve with signal strength δd.
Notice that arctan 2(Gy, Gx) is not verified for (Gx, Gy) = (0, 0) which corresponds
to the formation being at the maximum of the vector field. Therefore we use (4.18)
to steer the agents towards the source but instead of approaching the maximum
we make them track the level curve which corresponds to δd which is close to the
maximum of the vector field.

To guarantee convergence of the source seeking strategy we require the following
assumption on the communication scheme to hold:

Assumption 4.2. Each follower can communicate its measurement from the field
to the leader, such that the leader can compute the gradient of the field.

Remark 4.4. This assumption is easily satisfied for ASVs and can be satisfied for
AUVs using acoustic communication. Especially for AUVs continuous communica-
tion might be resource heavy, however, to reduce communication costs communica-
tion can be made event driven, meaning that communication will take place with a
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4.4. Source seeking guidance law and synchronization controller

specified minimum frequency outside the field. This frequency will be made higher
if the measurements of the field becomes stronger. In this way the communication
is reduced to a minimum outside the field and significantly reduced within the field.
The communication frequency can be changed by defining thresholds above and be-
low the last communicated measurement, and if the threshold is crossed then the
communication frequency is increased or decreased, respectively.

4.4 Source seeking guidance law and synchronization
controller

In this section we show that combining the synchronization controller presented
in Section 4.2 and 4.2.1 with the source seeking guidance law given in Section 4.3
does not affect the stability properties of the formation control.

The synchronization controller in [13] gives the control laws (4.9) and (4.10)
for the followers. These controllers allow the followers to track the current position
of the leader. As shown in [13], it does not matter which heading or direction the
leader follows as long as the leader’s input remains bounded.

To prove that the guidance law (4.12) gives bounded reference heading angles
to the leader for bounded values of ψl,d1 and ψl,d2, we rewrite the update law for
the heading angle (4.12) as:

ψ̇l = −ψl + (1− k)ψl,d2 + kψl,d1 (4.19)

Consequently, it can easily be verified that (4.19) is input-to-state stable (ISS) with
input u = (1−k(t))ψl,d2 +kψl,d1 . The reference input to the leader is thus bounded
as long as k, ψl,d1 and ψl,d2 are bounded, which they are by design (4.13),(4.18).
Furthermore, the solution of (4.19) is ψl = (1− k)ψl,d2 + kψl,d1 . Considering that
k ∈ [0, 1] we have ψl = ψl,d1 for k = 1 and ψl = ψl,d2 for k = 0.

Therefore if we use the guidance law (4.12) for the leader the closed-loop sta-
bility properties of the formation control strategy hold.

4.5 Simulations

In this section a case study is presented to validate the proposed method. A scenario
where the agents move in a triangular formation along a path made of circular arcs
and straight lines to explore a certain area is considered. This is a version of the
well-known lawn-mower pattern, which is much used in mapping, monitoring and
search and survey operation.

We consider three ASVs v1,v2,v3 whose initial positions and orientations ex-
pressed in the inertial frame are ηv1 = [−1500 m,−5500 m, 0 rad]T , ηv2 = [−2000 m,
−5000 m, π rad]T , and ηv3 = [−2000 m,−6000 m, π rad]T respectively. The surge
velocity of the leader v1 is uv1 = 3 [m/s]. The followers v2 and v3 regulate their
motion according to the CB guidance law (4.2a). For v2, the off-set distance with
respect to the leader expressed in the leader body frame is [−200, 200]T [m]. For v3,
it is [−200,−200]T [m]. Each agent takes scalar measurements from the field. The
leader computes the approximated gradient according to (4.16), then computes the
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4. Adaptive source-seeking with marine vehicles

desired direction ψl,d2 according to (4.18), and uses (4.12) to decide the direction
to follow. For the thresholds in (4.13) we choose δm = 1 and δM = 5. The level
curve to track in order to move around the source is defined by δd = 0.9. The
agents have no a priori knowledge of the existence and shape of the source. In this
simulation there is a source at the point [5000, 5000]T [m] and the field is described
by F = 10 exp(−(.0005x − 2.5)2 − (.0005y − 2.5)2). The lawn-mower pattern like
initial trajectory assigned to the leader is made of straight lines and circle’s arcs
and it is given by:

ψl,d1 =

{
0 for ∆tx = 3500 [s]
uv1
R (t− tc) for ∆ty = 2191 [s]

(4.20)

where uv1 is the surge velocity of the leader, R = 2100 [m] is the radius of circle
arc path along which the group will move after the straight line, t is the current
time instant and tc is the time at which the circular path starts. Notice that this
value is to be updated each time the agents start to turn. Furthermore note that
uv1/R is the angular velocity the group should have to move along a circular path
of radius R. The choice of ∆ty = 2191 [s] corresponds to moving on the circular
path until a half circle is traversed at the speed uv1 = 3 [m/s]. The results for this
case study are given in the Figures 4.1 and 4.2. From Figure 4.1 we see that agents
travel along the assigned path as long as they do not meet the field. When the
group meets the field around the source and starts to sense relevant measurements
from the environment it starts to turn towards the source. When the measurements
exceeds the threshold δM the initial path is not followed anymore and the agents
move towards the source. When they arrive on the desired level curve δd = 0.9 they
track it and move around the source. The synchronization error converges to zero
during the linear motion but it is not zero during turning and becomes constant
when the agents start to move in a circle. However, it still stays under 0.5 [m]
which is small compared to the off-set distance. The error is caused by the circular
motion which perturbs the under-actuated sway dynamics. Since each agent moves
along a curve with different radius the dynamics are perturbed differently and a
steady-state error remains due to the under-actuation.

4.6 Conclusion

In this chapter we have presented a method to perform source seeking with a multi-
agent system consisting of under-actuated ASVs or AUVs moving in a plane and
organized in a leader-follower scheme. Our method is based on a heading guidance
law which chooses the heading to follow between an initial heading assigned to
the leader and one computed from measurements from the field. The guidance law
chooses the best heading to follow according to the information from the environ-
ment. A synchronization controller based on a CB guidance law has been used to
achieve the motion of the agents in formation. We have also shown that our source
seeking guidance law does not influence the stability properties of the closed-loop
system of the synchronization controller.
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4.A Function definitions

The functions Fur , X(ur), Y (ur), and Fr are given by:

Fur ,
1
m11

(m22vr +m23r)r, (4.21)

X(ur) ,
m2

23−m11m33

m22m33−m2
23
ur + d33m23−d23m33

m22m33−m2
23
, (4.22)

Y (ur) ,
(m22−m11)m23

m22m33−m2
23
ur − d22m33−d32m23

m22m33−m2
23
, (4.23)

Fr(ur, vr, r) ,
m23d22−m22(d32+(m22−m11)ur)

m22m33−m2
23

vr

+ m23(d23+m11ur)−m22(d33+m23ur)
m22m33−m2

23
r.

(4.24)
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Part II

Control of marine vehicles using the
hand position approach
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Chapter 5

Trajectory tracking of marine
vehicles

In this chapter we consider the model of an ASV and an AUV moving in the hor-
izontal plane affected by an environmental disturbance, i.e. an unknown constant
ocean current. We address the problem of trajectory tracking control for curved
paths. The proposed control strategy is based on the definition of the hand position
point and an input-output feedback linearizing controller. We present a change of
coordinates which is not standard for the input-output feedback linearizing ap-
proach, but that allows us to obtain a transformed model where the ocean current
affects the system at the level of the linear external dynamics and can be counter-
acted with a simple integral action. We show that the integral state is able to give
an estimate of the ocean current. We prove that our output, i.e. the hand position
point, converges to the desired trajectory globally exponentially while the states
of the internal dynamics are ultimately bounded. We show also that for the case
of straight-line trajectories we have almost-global asymptotic stability (AGAS) of
the closed-loop system.

The work discussed in this chapter is based on [110, 112].
The chapter is organized as follows: Section 5.1 presents the model of the class of

vehicles which we consider; in Section 5.2 we describe our control approach; in Sec-
tion 5.3 we formalize the trajectory tracking control problem and give the control
objectives; Section 5.4 presents the proposed controller; in Section 5.5 we present
the main result for trajectory tracking in the form of a theorem and present a rig-
orous mathematical proof; then in Section 5.6 the theoretical results is specialized
to the case of straight-line trajectories; in Section 5.7 we present simulation results
in order to validate the theoretical outcomes; finally in Section 5.8 the conclusions
are given.

5.1 Vehicle model

This section briefly recalls the 3 DOF model for under-actuated marine vehicles
introduced in Chapter 2.
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5. Trajectory tracking of marine vehicles

We consider the model for ASVs and AUVs moving in the horizontal plane
introduced in Chapter 2, i.e. we consider Assumption 2.1-2.3 to hold and the model
(2.11) in component form:

ẋ =ur cos(ψ)− vr sin(ψ) + Vx (5.1a)
ẏ =ur sin(ψ) + vr cos(ψ) + Vy (5.1b)

ψ̇ =r (5.1c)
u̇r =Fur (vr) + τu (5.1d)
v̇r =X(ur)r + Y (ur)vr (5.1e)
ṙ =Fr(ur, vr, r) + τr. (5.1f)

The states x, y give the position of the vehicle in the NED frame, the state ψ is the
yaw angle and gives the orientation of the vehicle in the NED frame. The states
ur, vr are the surge and sway relative velocity, respectively. The state r is the yaw
rate, Vx, Vy are the component of the ocean current vector V. The expressions for
Fur (ur), Fr(ur, vr, r) are given in Appendix 5.A. Furthermore, X(ur) = −X1ur +
X2, Y (ur) = −Y1ur − Y2 and X1, X2, Y1, Y2 are reported in Appendix 5.A. We
consider the following assumption to hold:

Assumption 5.1. The ocean current in the inertial frame V = [Vx, Vy]T is con-
stant, irrotational and bounded, i.e., ∃Vmax ≥ 0 such that

√
V 2
x + V 2

y ≤ Vmax.

5.2 Hand position: line of reasoning

Before describing the trajectory tracking problem, in this section we present our
different approach to the general control problem of a marine vehicle. We present
the considerations which justify a different choice of the output for the system
described by (5.1) compared to previous literature. In previous works on trajectory
tracking of ASV and AUV the output of the system has been chosen as either the
center of mass or the pivot point p = [x, y]T , which was then defiend as the origin
of the body-fixed frame (cf. Figure 5.1). Inspired by the work of Lawton and Beard
[82], we choose the motion of a certain point on the center line of the vehicle, which
we call hand position, as the output of the system.

The work [82] deals with the control problem of first-order non-holonomic ve-
hicles, in particular unicycles whose model is

ẋ =u1 cos(ψ) (5.2a)
ẏ =u1 sin(ψ) (5.2b)

ψ̇ =u2. (5.2c)

where u1, u2 are the control inputs, pgv = [x, y]T is the position in the global
frame and ψ is the yaw angle. In particular, u1 is the forward velocity and u2 is
the yaw rate. The model (5.2) is similar to (5.1a-5.1c). They differ just because of
the under-actuated state vr which is characterized by the uncontrolled dynamics
(5.1e), and because of the ocean current that affects the system. Note also that
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Figure 5.1: The hand position point.

(5.1) has control inputs in the surge and yaw directions like in (5.2), but on the
dynamic level instead of on a purely kinematic level.

The aforementioned similarities between the kinematic model of unicycles and
ASVs and AUVs motivate us to choose a different output from the commonly used
pivot point for AUVs and ASVs. Based on this, we extend the definition of the hand
position point to marine vehicles and similarly to [82] by defining h = [ξ1, ξ2]T with

ξ1 = x+ l cos(ψ) (5.3a)
ξ2 = y + l sin(ψ), (5.3b)

where x, y give the position of the pivot point in the NED frame, ψ is the yaw angle
and l > 0 is a constant. An illustration of the hand position point is given in Figure
5.1. For practical applications the constant l may be chosen such that the point h
coincides with the position of a certain sensor of the vehicle. For instance, in case of
an exploration mission, h may be chosen similar to the position of a camera, such
that h tracks a prescribed path in order to take specific images of the area which
is explored. From Figure 5.1 it is also clear that the point h is indirectly actuated
by the control inputs acting on p. In particular, note that an actuation on p along
the surge direction generates an actuation in the surge direction of h. Then, an
actuation around the yaw axis in p generates an actuation in the sway direction of
h, which is directly proportional to the constant l. Note that we therefore have two
indirect control inputs available which actuate the point h with a linear motion in
two perpendicular directions, while in p we have available two control inputs which
generate motion in the linear direction of surge and in the rotational direction of
yaw, respectively.

The next step is to apply the output feedback linearization method [68] with
h chosen as output. Note, however, that the output feedback linearization method
[43] cannot be straightforwardly applied, but needs to be adjusted because of the
ocean currents that affect the system. This will be described later in this section.
First, we need to check if (5.1) is input-output feedback linearizable with output
h, i.e, we need to check if the vector relative degree ρ = [ρξ1 , ρξ2 ]T is well defined
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5. Trajectory tracking of marine vehicles

[68] . Deriving ξ1, ξ2 twice we obtain
[
ξ̈1
ξ̈2

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
Fur (vr, r)− vrr − lr2

urr +X(ur)r + Y (ur)v + Fr(ur, vr, r)l

]

+

[
cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]

︸ ︷︷ ︸
B(ψ)

[
τu
τr

]
. (5.4)

From (5.4), we see that the system has a well-defined vector relative degree since
ρξ1 = ρξ2 = 2 for l 6= 0, since B(ψ) is non-singular for l 6= 0. Note that l = 0 makes
B(ψ) singular and therefore the system does not have a well-defined relative degree
when the pivot point is chosen as output.

Now we define the following change of coordinates

z1 = ψ (5.5a)
z2 = r (5.5b)
ξ1 = x+ l cos(ψ) (5.5c)
ξ2 = y + l sin(ψ) (5.5d)
ξ3 = ur cos(ψ)− vr sin(ψ)− rl sin(ψ) (5.5e)
ξ4 = ur sin(ψ) + vr cos(ψ) + rl cos(ψ). (5.5f)

Note that we cannot choose ξ3 = ξ̇1, ξ4 = ξ̇2 since this choice would imply that ξ3, ξ4
are functions of the ocean current, which is unknown. Our change of coordinates
results in ξ3 = ξ̇1 − Vx, ξ4 = ξ̇2 − Vy. Therefore, ξ3, ξ4 are the relative velocities of
the vehicle in the global frame.

Applying (5.5), (5.1) becomes

ż1 =z2 (5.6a)
ż2 =Fz2(z1, ξ3, ξ4) + τr (5.6b)

[
ξ̇1
ξ̇2

]
=

[
ξ3
ξ4

]
+

[
Vx
Vy

]
(5.6c)

[
ξ̇3
ξ̇4

]
=

[
Fξ3(z1, ξ3, ξ4)
Fξ4(z1, ξ3, ξ4)

]
+

[
cos(z1) −l sin(z1)
sin(z1) l cos(z1)

] [
τu
τr

]
(5.6d)

where

[
Fξ3(·)
Fξ4(·)

]
=

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

] [
Fur (·)− vrr − dr2

urr +X(·)r + Y (·)vr + Fr(·)l

]
(5.7)

and Fz2(z1, ξ3, ξ4) is obtained from Fr(ur, vr, r) substituting ur = ξ3 cos(z1) +
ξ4 sin(z1), vr = −ξ3 sin(z1) + ξ4 cos(z1) − z2l, and r = z2. Note that choosing
ξ3 6= ξ̇1, ξ4 6= ξ̇2 in (5.5) is not a standard approach for feedback llinearization.
However, this choice is necessary to make ξ3, ξ4 independent on the unknown ocean
current. Note also that with this choice for ξ3, ξ4 the environmental disturbance is
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affecting the system at the level of the linear external dynamics where, as it will
become clear from the next sections, it is possible to counteract it using an integral
action.

Now we apply the following change of input in order to linearize the external
dynamics

[
τu
τr

]
=

[
cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]−1 [−Fξ3(z1, ξ3, ξ4) + µ1

−Fξ4(z1, ξ3, ξ4) + µ2

]
. (5.8)

The terms µ1, µ2 in (5.8) are new inputs which are to be defined in Section 5.4
in order to solve the trajectory tracking problem. Substituting (5.8) in (5.6) we
obtain

ż1 =z2 (5.9a)

ż2 =−
((

Y1 −
X1 − 1

l

)
U cos(z1 − φ) + Y2 +

X2

l

)
z2

−
(
Y1

l
(ξ3 cos(z1) + ξ4 sin(z1)) +

Y2

l

)
U sin(z1 − φ)

− µ1 sin(z1)

l
+
µ2 cos(z1)

l
(5.9b)

ξ̇1 =ξ3 + Vx (5.9c)

ξ̇2 =ξ4 + Vy (5.9d)

ξ̇3 =µ1 (5.9e)

ξ̇4 =µ2 (5.9f)

where

U =
√
ξ2
3 + ξ2

4 (5.10)

φ = arctan

(
ξ4
ξ3

)
. (5.11)

Note that z1 appears only as an argument of trigonometric functions with period
2π. Therefore, we can consider (5.9a-5.9b) to take values on the manifoldM = S×R
where S is the one-dimensional sphere.

The main advantage of choosing h as output is clear from (5.9). In fact, the
transformed model (5.9) is characterized by a linear external dynamics (5.9c-5.9f)
and a nonlinear internal dynamics (5.9a-5.9b) as common for feedback linearized
systems. Therefore, as opposed to considering the model (5.1), we can consider
the external dynamics which is linear, for control purposes. The price to pay is
clearly the fact that the inputs µ1, µ2, which are to be designed in order to fulfill
the control objectives, are affecting also the internal dynamics (5.9a-5.9b), and we
have carefully to check the internal stability properties of the states z1, z2.

5.3 Control objectives

In this section the trajectory tracking control problem is formalized. Based on the
arguments in Section 5.2, our control objective is to make the point h follow an
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5. Trajectory tracking of marine vehicles

assigned generic trajectory. Without loss of generality we consider a trajectory
which starts at origin of the NED frame. We consider the desired trajectory Γ(t) =
{(ξ1d(t), ξ2d(t), ξ3d(t), ξ4d(t))|t ∈ R+} to be parametrized by the time t. We consider
the following assumption to hold:

Assumption 5.2. There exist constants ξ
3
, ξ̄3, ξ4

, ξ̄4, ξ
∗
3d
, ξ̄∗3d , ξ

∗
4d
, ξ̄∗4d such that

ξ3 ≤ξ3d(t) ≤ ξ̄3 (5.12a)
ξ

4
≤ξ4d(t) ≤ ξ̄4 (5.12b)

ξ∗
3d
≤ξ̇3d(t) ≤ ξ̄∗3d (5.12c)

ξ∗
4d
≤ξ̇4d(t) ≤ ξ̄∗4d . (5.12d)

Remark 5.1. Assumption 5.2 implies that the desired linear velocity and acceler-
ation of the vehicle are upper and lower bounded. The lower bound on the velocity
is necessary for the under-actuated vehicle to be controllable. The upper bound on
the velocity is required for the desired linear velocity to be bounded, and thus create
a feasible trajectory. The bounds on the acceleration are necessary in order to have
a smooth motion of the vehicle.

The control objectives can be formalized as

lim
t→∞

(ξ1 − ξ1d(t)) = 0 (5.13a)

lim
t→∞

(ξ2 − ξ2d(t)) = 0 (5.13b)

lim
t→∞

(ξ3 − (ξ3d(t)− Vx)) = 0 (5.13c)

lim
t→∞

(ξ4 − (ξ4d(t)− Vy)) = 0. (5.13d)

Note that (5.13c-5.13d) require the relative velocities ξ3, ξ4 in the global frame
to converge to the values ξ3d − Vx, ξ4d − Vy. This is necessary because we want
the absolute velocities in the NED frame to converge to ξ3d , ξ4d , which allow the
vehicle to track the desired trajectory Γ(t). Note that (5.13c-5.13d) depend on
Vx, Vy which are unknown, however, as discussed previously, we will cope with this
by introducing an integral action in our controller.

We consider the following assumption to hold

Assumption 5.3. The total relative velocity is such that

Ud =
√

(ξ2
3d
− Vx)2 + (ξ4d − Vy)2 > 0.

Furthermore, the vehicle’s thrusters provide enough power in order to overcome the
ocean current disturbance.

Remark 5.2. This is a necessary assumption in order to have forward motion
of the vehicle, which again is necessary for the controllability of under-actuated
marine vehicles.

Remark 5.3. Note that Assumption 5.2 implies that Ud ≤ Ud ≤ Ūd, where Ud, Ūd
are constants.
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5.4. The controller

5.4 The controller

In this section we present our choice for the control inputs µ = [µ1, µ2]T in (5.9)
which solve the control problem described in Section 5.3. In order to make the
point h track the desired trajectory Γ(t) we choose

µ1 =− kvx(ξ3 − ξ3d)− kpx(ξ1 − ξ1d)− kIx(ξ1I − ξ1dI ) + ξ̇3d (5.14a)

µ2 =− kvy (ξ4 − ξ4d)− kpy (ξ2 − ξ2d)− kIy (ξ2I − ξ2dI ) + ξ̇4d (5.14b)

where kpx , kpy , kvx , kvy , kIx , kIy are positive real gains, ξiI =
∫ t

0
ξi(τ)dτ where

i ∈ {1, 2, 1d, 2d}. The integral action in (5.14) is necessary to reject the constant
disturbance, i.e. the ocean current V, affecting the system [10].

5.5 Main result

The main result is presented in this section. The following theorem gives the con-
ditions under which the control objectives (5.13a) are fulfilled using the controller
(5.8).

Theorem 5.1. Consider an under-actuated marine vehicle described by the model
(5.1). Consider the hand position point h = [ξ1, ξ2]T = [x+ l cos(ψ), y+ l sin(ψ)]T ,
where [x, y]T is the position of the pivot point of the ship, l is a positive constant
and ψ is the yaw angle of the vehicle. Then define

Ud =
√

(ξ3d − Vx)2 + (ξ4d − Vy)2 > 0 (5.15)

as the desired relative velocity magnitude and

φ1 = arctan

(
ξ4d − Vy
ξ3d − Vx

)
(5.16)

as the crab angle. If Assumption 5.3 is satisfied and if

0 <Ud <
Y2

Y1
(5.17)

kvi >0, kpi > 0, kIi > 0, i ∈ {x, y} (5.18)
kvikpi >kIi i ∈ {x, y} (5.19)

l >max

{
m22

m23
,−X2

Y2

}
(5.20)

Ū∗d ≤
2 min{a(d− c), b}((

ā+
√
ā2 + 1

) (
Y1 − X1−1

l

)
+ 2Y1Ūd

l

) (5.21)

then the controller (5.8), where the new inputs µ1, µ2 are given by (5.14), guaran-
tees the achievement of the control objectives (5.13). In particular,

(ξ1, ξ2, ξ3, ξ4) → (ξ1d , ξ2d , ξ3d , ξ4d)
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globally exponentially and (z1, z2) are globally ultimately bounded. Furthermore, the
steady state values of the integral variables give an estimate of the ocean current:

V̂x = lim
t→∞

kvx(ξ1I − ξ1Id )

kIx
, V̂y = lim

t→∞

kvy (ξ2I − ξ2Id )

kIy
. (5.22)

Remark 5.4. Notice that we assume an unknown ocean current and therefore
also the crab angle φ, which is necessary in order to counteract the currents and
follow the trajectory, is unknown. However, the integral action in (5.8) takes care
of compensating for the unknown value of the constant disturbance.

Proof. First of all we define the following change of coordinates

z̃1 = z1 − φ1, ξ̃1I = ξ1I −
∫ t

0

ξ1ddτ −
kIxVx
kvx

, (5.23a)

z̃2 = z2 − φ̇1, ξ̃2I = ξ2I −
∫ t

0

ξ2ddτ −
kIyVy

kvy
, (5.23b)

ξ̃1 = ξ1 − ξ1d , ξ̃4 = ξ4 − (ξ4d − Vy) , (5.23c)

ξ̃2 = ξ2 − ξ2d , ξ̃3 = ξ3 − (ξ3d − Vx) . (5.23d)

Defining the vectors z̃s = [sin(z̃1), z̃2]T , ξ̃ = [ξ̃1I , ξ̃2I , ξ̃1, ξ̃2, ξ̃3, ξ̃4]T , the closed-loop
system becomes

˙̃z =Hz̃(z̃1)z̃s +G(z̃, ξ̃3, ξ̃4)ξ̃ + ∆(φ̇1, φ̈1, z̃1) (5.24a)
˙̃
ξ =Hξ̃ ξ̃ (5.24b)

where G(·) is reported in Appendix 5.A and

Hz̃(z̃) =

[
0 1

−(c cos(z1) + d) −(a cos(z1) + b)

]
(5.25)

∆(φ̇1, φ̈1, z̃1) =

[
0

δ(φ̇1, φ̈1, sin(z̃1))

]
(5.26)

δ(·) =− (a cos(z̃1) + b)φ̇1 + φ̈1

+ (ξ̇4d cos(z̃1)− ξ̇3d sin(z̃1)) cos(φ1)

+ (−ξ̇4d sin(z̃1) + ξ̇3d cos(z̃1)) sin(φ1) (5.27)

a =

(
Y1 −

X1 − 1

l

)
Ud b =Y2 +

X2

l
(5.28)

c =
Y1U

2
d

l
d =

Y2Ud
l

(5.29)
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Hξ̃ =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−kVx 0 −kpx 0 −kvx 0

0 −kVy 0 −kpy 0 −kvy



. (5.30)

According to Assumption 2.3 (Y1, Y2 > 0), we have c, d > 0 and (5.17) implies d >
c ∀t. We also have a, b > 0 ∀t because of (5.20). Note also that from Ud ≤ Ud ≤ Ūd
we have ā > a > a, c̄ > c > c, d̄ > d > d with ā, a, c̄, c, d̄, d positive constants.
Finally, we have also that δ ≤ δ̄ since function of bounded signals. We now study
the stability properties of the external dynamics (5.24b) and the tracking dynamics
(Equation (5.24a) with G(z̃, ξ̃3, ξ̃4)ξ̃ = 0) and then the stability properties of the
total system (5.24).

5.5.1 The external dynamics

The equilibrium point of (5.24b) is ξ̃ = 0. The matrix Hξ̃ is Hurwitz for kvi , kpi , kIi
respecting (5.18-5.19).

5.5.2 The internal dynamics

Consider the

˙̃z1 =z̃2 (5.31a)
˙̃z2 =− (a cos(z̃1) + b)z̃2 − (c cos(z̃1) + d) sin(z̃1)

+ δ(φ̇1, φ̈1, z̃1). (5.31b)

The subsystem (5.31) does not have an equilibrium point at the origin due to the
presence of the disturbance δ(·). Thus, we study the ultimately boundedness of the
states z̃1, z̃2.

Define the following Lyapunov function candidate (LFC)

W =
1

2
z̃Ts

[
a2 + c a
a 1

]

︸ ︷︷ ︸
Pzs

z̃s + (ab+ d)(1− cos(z̃1)). (5.32)

We have that W > 0 ∀(cos(z̃1), sin(z̃1), z̃2) ∈ M − {[1, 0, 0]} and W = 0 only for
(cos(z̃1), sin(z̃1), z̃2) = (1, 0, 0). The time derivative is

Ẇ = − z̃Ts
[
a(d+ c cos(z̃1)) 0

0 b

]
z̃s +

∂W

∂z̃s
∆z̃

+ z̃Ts

[
2ȧa+ ċ ȧ

ȧ 0

]
z̃s + (ȧb+ ḋ)(1− cos(z̃1)).

(5.33)
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Note that ȧ, ċ, ḋ all depend on U̇d. Since U̇d ≤ Ū∗d due to Assumption 5.3, we have
ȧ ≤ ā∗, ċ ≤ c̄∗, ḋ ≤ d̄∗. Then we have

Ẇ ≤ − z̃Ts
[
a(d− c) 0

0 b

]

︸ ︷︷ ︸
Qz̃

z̃s +
∂W

∂z̃s
∆z̃ + (ā∗b+ d̄∗)(1− cos(z̃1))

+
1

2
z̃Ts

[
2ā∗ā ā∗

ā∗ 0

]

︸ ︷︷ ︸
Λ1

z̃s +
1

2
z̃Ts

[
c̄∗ 0
0 0

]

︸ ︷︷ ︸
Λ2

z̃s.

(5.34)

From the definition of ∆z̃ we have that
∥∥∥∥
∂W

∂z̃s

∥∥∥∥ ‖∆z̃‖ ≤ α1δ̄‖z̃s‖ (5.35)

where α1 = max{1, a} and δ̄ is the upperbound of δ(t), i.e. δ(t) ≤ δ̄ since δ(t) is
function of bounded signals. Then we obtain

Ẇ ≤− (λmin
Qz̃ − λmax

Λ1
− λmax

Λ2
)

︸ ︷︷ ︸
σ

‖z̃s‖2 + α1δ̄‖z̃s‖+ 2
(
ā∗b+ d̄∗

)
(5.36)

where λmin
Qz̃

= min{a(d−c), b} is the minimum eigenvalue ofQz̃, λmax
Λ1

= 1
2

(
ā+
√
ā2 + 1

)
ā∗

and λmax
Λ2

= 1
2 c̄
∗ are the maximum eigenvalues of Λ1,Λ2, respectively. We have

σ > 0 when (5.21) holds. Thus we obtain

Ẇ ≤− (1− θ)σ‖z̃s‖2 < 0 ∀‖z̃s‖ ≥
α1δ̄ +

√
8σ
(
ā∗b+ d̄∗

)
− α2

1

2θσ
(5.37)

where 0 < θ < 1.
The important conclusion which can draw from the considerations above is that

the state z̃2, which is the only one that may grow unbounded on the manifold M,
stays bounded when the external dynamics is at steady state.

5.5.3 Stability of the complete system

Since (5.24b) is GES, there exist two positive definite matrices Pξ, Qξ such that
they satisfy the Lyapunov equation HT

ξ Pξ + PξHξ = −Qξ. Thus, we choose the
following LFC

V = W + κ ξ̃TPξ ξ̃ (5.38)
where W is the same as in (5.32), and κ > 0 still to be determined. Deriving (5.38)
along the directions of (5.24) we obtain

V̇ ≤ −σ‖z̃s‖2 − κ ξ̃TQξ ξ̃ +
∂W

∂z̃
G(·)ξ̃ +

∂W

∂z̃2
δ(·) (5.39)

The following bounds hold for G(·) and W :

G(z̃, ξ̃3, ξ̃4) ≤ G1(‖ξ̃‖)‖z̃s‖+G2(‖ξ̃‖) ≤ Ḡ1‖z̃s‖+ Ḡ2 (5.40)
∥∥∥∥
∂W

∂z̃

∥∥∥∥ ≤ ‖z̃s‖
∥∥∥∥
[
a2 + c+ ab+d

2 a
a 1

]∥∥∥∥ ≤ α2‖z̃s‖, (5.41)
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where Ḡ1 = G1(ξ̄), Ḡ2 = G2(ξ̄), and ξ̄ is the upperbound of ‖ξ‖. Let λmin
Pzs

, λmin
Pξ

,
λmin
Qξ

denote the minimal eigenvalue of Pzs , Pξ, Qξ respectively. The closed-loop
external dynamics (5.24b) is GES, therefore there exists a time t∗ such that for all
t ≥ t∗: ‖ξ̃(t)‖ ≤ σ/(2α2Ḡ1). For t ≤ t∗ and

κ >
α2

2Ḡ
2
2

σλmin
Qξ

+
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Qξ

λmin
Pzs

(5.42)

we have

V̇ ≤− σ‖z̃s‖2 − κ ξ̃TQξ ξ̃
+ α2‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃ + α1δ̄‖z̃s‖

≤ − σ‖z̃s‖2 + α2Ḡ1ξ̄‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖
− κλmin

Qξ
‖ξ̃‖2 + α1δ̄‖z̃s‖

≤ − 1

2
σ‖z̃s‖2 −

(
α2

2Ḡ
2
2

σλmin
Qξ

+
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Qξ

λmin
Pzs

)
λmin
Qξ
‖ξ̃‖2

+ α2Ḡ1ξ̄‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖

− 1

2
σ‖z̃s‖2 + α1δ̄‖z̃s‖ (5.43)

for ‖z̃s‖ ≥ 2α1δ̄
σ we have

V̇ ≤− 1

2
σ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ −

α2
2Ḡ

2
2

σ
‖ξ̃‖2

−
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2

≤
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2

≤
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2

± 2α2Ḡ1ξ̄

λmin
Pzs

(ad+ c)(1− cos(z̃1))

≤2α2Ḡ1ξ̄

λmin
Pzs

V + 4
α2Ḡ1ξ̄

λmin
Pzs

(ad+ c), (5.44)
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so for t < t∗ ∧ ‖z̃s‖ ≥ 2α1δ̄
σ the trajectories are bounded. For t < t∗ ∧ ‖z̃s‖ < 2α1δ̄

σ
we have

V̇ ≤− 1

2
σ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ −

α2
2Ḡ

2
2

σ
‖ξ̃‖2

−
α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2 + α1δ̄‖z̃s‖

≤
α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2 + δ̄
2α2

1

σ

≤ α2Ḡ1ξ̄‖z̃s‖2 +
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + δ̄
2α2

1

σ

± 2α2Ḡ1ξ̄

λmin
Pzs

(ad+ c)(1− cos(z̃1))

≤ 2α2Ḡ1ξ̄

λmin
Pzs

V + δ̄
2α2

1

σ
+ 4

α2Ḡ1ξ̄

λmin
Pzs

(ad+ c), (5.45)

so V (t) remains bounded also for the case t ≤ t∗ ∧ ‖z̃s‖ < 2α1

σ , meaning that the
trajectories are bounded for any t < t∗.

For t ≥ t∗ we have

V̇ ≤− σ‖z̃s‖2 − κλmin
Qξ
‖ξ̃‖2 + α2‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃ + α1δ̄‖z̃s‖

≤ − 1

2
σ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ − κλmin

Qξ
‖ξ̃‖2 + α1δ̄‖z̃s‖

≤ − 1

2
θσ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ − κλmin

Qξ
‖ξ̃‖2

∀‖z̃s‖ >
2α1δ̄

(1− θ)σ ∧ 0 < θ < 1, (5.46)

which is negative definite for κ > α2
2Ḡ

2
2/(σλ

min
Qξ

). We can conclude that ξ̃ → 0
globally exponentially while the states z1, z2 are ultimately bounded.

5.6 The particular case of straight-line paths

Now we draw our attention to straight-line paths and constant desired forward
velocity. Without loss of generality, consider a path which is aligned along the x
axis of the NED frame. This implies ξ̇3d = ξ4d = ξ̇4d = 0. Furthermore, since we
assume that the desired forward velocity is constant we have ξ̇3d = 0. As a result,
we have δ(φ̇1, φ̈1, sin(z̃1) = 0 and φ1 is a constant angle. Under this conditions, we
can derive the following corollary from Theorem 5.1.

Corollary 5.1. Consider an under-actuated marine vehicle described by the model
(5.1). Consider the hand position point h = [x1, y1]T = [x+ l cos(ψ), y+ l sin(ψ)]T ,
where [x, y]T is the position of the pivot point of the ship, l is a positive constant
and ψ is the yaw angle of the vehicle. Then define Ud =

√
(ud − Vx)2 + V 2

y > 0 as

62



5.6. The particular case of straight-line paths

the desired relative velocity magnitude and φ = arctan
(
−Vy
ud−Vx

)
as the crab angle.

If Assumption 5.3 is satisfied and if

0 <Ud <
Y2

Y1
(5.47)

kvi >0, kpi > 0, kIi > 0, i ∈ {x, y} (5.48)
kvikpi >kIi i ∈ {x, y} (5.49)

l >max

{
m22

m23
,−X2

Y2

}
(5.50)

then the controller (5.8), where the new inputs µ1, µ2 are given by (5.14), guaran-
tees the achievement of the control objectives (5.13). In particular,

(z1, z2, ξ1, ξ2, ξ3, ξ4) → (φ, 0, udt, 0, ud − Vx,−Vy)

almost-globally asymptotically. Furthermore, the steady state values of the integral
variables give an estimate of the ocean current:

V̂x = lim
t→∞

kIx(ξ1I − ξ1Id )

kvx
+ ud, V̂y = lim

t→∞

kIy (ξ2I − ξ2Id )

kvy
. (5.51)

Proof. The proof follows along the lines of the proof of Theorem 5.1.

5.6.1 The external dynamics

The same considerations given in 5.5.1 hold here.

5.6.2 The internal dynamics

The tracking dynamics now becomes

˙̃z1 =z̃2 (5.52a)
˙̃z2 =− (a cos(z̃1) + b)z̃2 − (c cos(z̃1) + d) sin(z̃1). (5.52b)

The system (5.52) can be studied on the manifoldM = S×R = {(cos(θ), sin(θ), r) | θ ∈
R, r ∈ R}. The system (5.52) has two equilibria , and they are

Es = (1, 0, 0) ∈M, Eu = (−1, 0, 0) ∈M. (5.53)

The point Es is a stable node, while Eu is a saddle point since we assumed d > c.
Note that Eu is a hyperbolic equilibrium. Choosing (5.32) as Lyapunov function
we obtain

Ẇ = −z̃Ts Qz̃ z̃s ≤ 0 ∀(sin(z̃1), z̃2) 6= (0, 0). (5.54)

Equation 5.54 implies that the state (sin(z̃1), z̃2) = (0, 0) is GAS. However, sin(z̃1) =
0 corresponds either to cos(z̃1) = 1 or cos(z̃1) = −1 on the one-dimensional unit
sphere. That is, if the vehicle is required to move along a straight-line path it
may move forward (cos(ψ) = 1) or backwards (cos(ψ) = −1). But, linearizing
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(5.52) about the origin, we have that the equilibrium Eu = {cos(z̃1), sin(z̃1), z̃2) =
(−1, 0, 0)} ∈M is unstable and hyperbolic. Then, recalling Theorem A.2 we deduce
that Eu is characterized by a stable and an unstable manifoldWs

u,Wu
u , respectively.

The unstable manifold Wu
u is tangent to the eigenspace spanned by the positive

real part eigenvalue of the Jacobian matrix of the system (5.52) evaluated at Eu.
This manifold is therefore one-dimensional and converges to the only other equi-
librium point of the system, that is Es = {cos(z̃1), sin(z̃1), z̃2) = (1, 0, 0)} ∈ M.
The stable manifold Ws

u is also one-dimensional since it is spanned by the nega-
tive real part eigenvalue of the Jacobian matrix of (5.52). Since the system (5.52)
evolves on the manifold M = S× R, which is 2-dimensional (it is a "pipe-shaped"
manifold, that is, it is a cylindrical surface in the space), we have that Ws

u has one
dimension less than M and has therefore zero Lebesgue measure. At this point we
can conclude that all the trajectories which do not start on Ws

u converge to the
point Es. Furthermore, since Ws

u has zero Lebesgue measure, we can say that Es
is almost-GAS.

5.6.3 Stability of the total system

The stability of the total system follows from the same considerations as in Sub-
section 5.5.3.

5.7 Simulations

In this section we present the results of a simulation case study. We consider the
model of the Light Autonomous Underwater Vehicle (LAUV) of the Laboratorio
de System y Tecnologia Subaquatica (LSTS) at the University of Porto. The model
of the vehicle is give [38] and reported in Appendix B.

We consider that the vehicle has to track a circle centered at the origin of the
NED frame. We consider a circle with radius R = 80 m. The circle is parametrized
by the time t and the the vehicle has to travel with constant tangential velocity to
the circle such that it completes a round in T = 80 s. The desired signals are

ξ1d = R cos (ωt) (5.55a)
ξ2d = R sin (ωt) (5.55b)
ξ3d = −Rω sin (ωt) (5.55c)
ξ4d = Rω cos (ωt) (5.55d)

ξ̇3d = −Rω2 cos (ωt) (5.55e)

ξ̇4d = −Rω2 sin (ωt) (5.55f)

where ω = −|1/T | = −0.0125 1/s . Note that the negative sign just implies that
the ship has to travel counterclockwise along the circle.

We choose the constant l = 1 m in (5.3a) The initial conditions of the vehicle
are summarized in Table 5.1. From Table 5.1 we have that
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Table 5.1: Initial conditions.
x|t0 m y|t0 m ψ|t0 rad ur m/s vr m/s r rad/s

t0 0 140 −π 0 0 0

ξ10 = 0 m (5.56a)
ξ20 = 139 m (5.56b)
ξ30 = 0 m/s (5.56c)
ξ40 = 0 m/s (5.56d)
z10 = 0 rad (5.56e)
z20 = 0 rad/s. (5.56f)

The gains in (5.14) are

kpx = kpy = 0.5 (5.57a)
kvx = kvy = 10 (5.57b)
kIx = kIy = 0.007. (5.57c)

The ocean current is V = [−0.05, 0.16]T m/s. According to the choice of the gains
and the properties of the path described above, the conditions under which Theo-
rem 5.1 holds are satisfied.

The results of the simulation are shown in Figures 5.2-5.5. In Figure 5.2 we can
see the motion of the vehicle. We see that the vehicle converges to the trajectory
counteracting the ocean current. In Figure 5.3, the time evolution of the error
states ξ̃1, ξ̃2, ξ̃3, ξ̃4 confirms that the trajectory tracking task is fulfilled. In fact, all
the error states converge to zero. Figure 5.4 shows the the ocean current estimates
calculated from the integral states. It is clear that when the vehicle reaches the
steady state the ocean current estimate error converges to zero. Finally, in Figure
5.5 the relative surge velocity ur, the relative sway velocity vr and the yaw rate r
are shown. Note that ur and vr are not constants. In fact, since the ocean current
is not constant in the local frame even though it is constant in the NED frame, we
have that ur, vr have to be time varying in order to make the vehicle travel with
absolute velocity constant and tangential to the circle as required. This is clear
also from the inversion of the change of coordinates (5.5). In fact it results in

ur = (ξ3 − Vx) cos (ψ) + (ξ4 − Vy) sin (ψ) (5.58a)
vr = − (ξ3 − Vx) sin (ψ) + (ξ4 − Vy) cos (ψ)− lr. (5.58b)

Finally note that from Figure 5.5 we see that r = z2 is bounded as expected.

5.8 Conclusions

In this chapter we considered the relative velocity model of a marine vehicle. In
particular, the model of an ASV or an AUV moving on the horizontal plane. We
considered that a constant and irrotational ocean current affects the vehicle. We
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Figure 5.3: Time evolution of the errors states.

66



5.8. Conclusions

Vx

Vy

Time [s]

O
ce

an
C

ur
re

nt
[m

/s
]

0 100 200 300 400 500 600
−1

−0.5

0

0.5

1

1.5

Figure 5.4: Ocean current estimates.

Time [s]

r[
ra

d/
s]

Time [s]

v r
[m

/s
]

Time [s]

u
r
[m

/s
]

0 100 200 300 400 500 600

0 100 200 300 400 500 600

0 100 200 300 400 500 600

−0.03

−0.02

−0.01

0

0

0.004

0.008

0.012

0

2

4

6

8
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dealt with the trajectory tracking problem, that is we wanted the vehicle to follow
a given trajectory parametrized by the time t. The solution which we proposed is
based on a novel approach for marine vehicles. The approach was inspired by the
work of Lawton and Beard [82]. In particular, we extended the definition of hand
position, given in [82] for ground vehicles, to ASVs and AUVs. Then we used the
input-output feedback linearization method using the hand position point motion
as output. In this way we transformed the nonlinear model of the AUV in a model
with a linear external dynamics and a nonlinear internal dynamics. The advantage
of the transformed model is that we had to deal with a double integrator dynamics,
that is, the linear external dynamics, for control purposes. The price to pay is
that the stability properties of the nonlinear internal dynamics had to be carefully
studied since the internal dynamics are affected by the control input designed for
the linear external dynamics. The proposed controller makes the vehicle achieve
the control objectives. We showed that the closed-loop system has a GES external
dynamics and internal dynamics with ultimately bounded states. Finally, we have
also shown that in case of straight-line paths the closed-loop system is almost-GAS.
That is, the control objectives are achieved for almost all the initial conditions and
the states of the internal dynamics converge to constant signals. In particular, the
yaw rate converges to zero and the the yaw angle converges to a constant angle,
the crab angle, dependent on the ocean current components and the desired linear
velocities.
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5.A Equations

The nonlinear terms appearing in (5.1) and (5.24b) are reported here:

Fur (vr, r) ,
1

m11
(m22vr +m23r)r −

d11

m11
ur, (5.59)

X1(M) ,
m11m33 −m2

23

m22m33 −m2
23

X2(M,D) ,
d33m23 − d23m33

m22m33 −m2
23

(5.60)

Y1(M) ,
(m11 −m22)m23

m22m33 −m2
23

Y2(M,D) ,
d22m33 − d32m23

m22m33 −m2
23

(5.61)

X(ur) , −X1ur +X2 Y (ur) , −Y1ur − Y2, (5.62)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr (5.63)

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r, (5.64)

G(z̃, ξ̃3, ξ̃4) ,

[
0 0 0 0 0 0

− sin(z̃1)
l

cos(z̃1)
l 0 0 α(z̃, ξ̃3) β(z̃, ξ̃3, ξ̃4)

]
(5.65)

α(z̃, ξ̃3) , −
(
(Y1Ud cos(z̃1)2 + Y1Ud cos(z̃1) sin(z̃1)

+Y2 sin(z̃1) + Y2ξ̃3 sin(z̃1) cos(z̃1)

+

(
−Y1 +

X1 − 1

d

)
z̃2 cos(z̃1)

)
(5.66)

β(z̃, ξ̃3, ξ̃4) , Y1Ud sin(z̃1) cos(z̃1) + Y1Ud cos(z̃1)2

+ Y2 cos(z̃1) + Y1ξ̃3 sin(z̃1) + Y1 cos(z̃1)2ξ̃3

− Y1 cos(z̃1) sin(z̃1)ξ̃4 +

(
−Y1 +

X1 − 1

d

)
z̃2 sin(z̃1) (5.67)
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Chapter 6

Path following of marine vehicles

In this chapter we address the path following control problem of curved and
straight-line paths for ASVs and AUVs. We consider paths that are paramerized
by the arc length s. The control strategy proposed in this chapter builds on the
approach presented in Chapter 5. In particular, we use the same input-output
feedback linearizing controller presented in Section 5.2. The main contribution of
this chapter is a guidance control strategy for parametrized curved paths which
depends on the Euclidean distance of the vehicle from the path. and propose an
update law for the path variable s which depends on the Euclidean distance from
the path. It is also considered that a constant and unknown ocean current affects
the system. We show that the hand position point converges exponentially to the
desired path while the states of the internal dynamics are ultimately bounded. Fur-
thermore, it is shown that for the case of straight-line paths the closed-loop system
is almost-global asymptotic stability (AGAS). Finally, we consider also the case of
unparametrized straight-line paths. This case is of particular interest for practical
applications, and we show that we can deal with it using the approach presented
in this chapter. Simulation case studies and experimental results are presented in
order to validate the theoretical results. The structure and results of this chap-
ter are similar to Chapter 5 since the control approach is the same as in Chapter
5. However, the hand position point approach is used here for solving the path
following control problem.

The work discussed in this chapter is based on [110, 112].
The chapter is organized as follows: Section 6.1 presents the model of the class

of vehicles which is considered; Section 6.2 recalls the definition of the hand position
point from Chapter 5 and illustrates our general approach; in Section 6.3 the control
problem is described and formalized; Section 6.4 introduces the controller proposed
in order to solve the path following problem; in Section 6.5 the main result of this
chapter is given; Section 6.6 deals with the special case of straight-line paths;
Section 6.7 shows how the results of this chapter can be applied also to the case
of unparametrized straight-line paths; in Section 6.8 two simulation case studies
are presented. One using simulations performed with Matlab for the case of curved
paths and one using the simulator DUNE for the case of straight-line paths; Section
6.9 presents experimental results for straight-line paths; finally, Section 6.10 gives
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the conclusions.

6.1 Vehicle model

In this section we recall the model for ASVs and AUVs moving in the horizontal
plane introduced in Chapter 2.

We consider Assumptions 2.1-2.3 to hold and the model (2.11) in component
form:

ẋ =ur cos(ψ)− vr sin(ψ) + Vx (6.1a)
ẏ =ur sin(ψ) + vr cos(ψ) + Vy (6.1b)

ψ̇ =r (6.1c)
u̇r =Fur (vr) + τu (6.1d)
v̇r =X(ur)r + Y (ur)vr (6.1e)
ṙ =Fr(ur, vr, r) + τr. (6.1f)

The states x, y give the position of the vehicle in the NED frame, the state ψ is the
yaw angle and gives the orientation of the vehicle in the NED frame. The states
ur, vr are the surge and sway relative velocity, respectively. The state r is the yaw
rate. The ocean current disturbance in the NED frame is given by V = [Vx, Vy]T .
The expressions for Fur (ur), Fr(ur, vr, r) are given in Appendix 5.A. Furthermore,
X(ur) = −X1ur + X2, Y (ur) = −Y1ur − Y2 and X1, X2, Y1, Y2 are reported in
Appendix 5.A. We consider the following assumption to hold:

Assumption 6.1. The ocean current in the inertial frame V = [Vx, Vy]T is con-
stant, irrotational and bounded, i.e., ∃Vmax ≥ 0 such that

√
V 2
x + V 2

y ≤ Vmax.

6.2 Hand position: line of reasoning

Before describing the path following problem, in this section we recall the approach
based on the definition of the hand position point already introduced in Chapter 5
The reader is referred to Section 5.2 for a more detailed discussion.

Inspired by the work of Lawton and Beard [82], we define the hand position
point as h = [ξ1, ξ2]T with

ξ1 =x+ l cos(ψ) (6.2)
ξ2 =y + l sin(ψ), (6.3)

where x, y give the position of the pivot point in the NED frame, ψ is the yaw
angle and l > 0 is a constant. An illustration of the hand position point is given in
Figure 6.1.

In Section 5.2 we have already shown that (6.1) is input-output feedback lin-
earizable with output h since the vector relative degree ρ = [ρξ1 , ρξ2 ]T is well
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Figure 6.1: The hand position point.

defined if l > 0. Therefore we can apply the following change of coordinates

z1 =ψ (6.4a)
z2 =r (6.4b)
ξ1 =x+ l cos(ψ) (6.4c)
ξ2 =y + l sin(ψ) (6.4d)
ξ3 =ur cos(ψ)− vr sin(ψ)− rl sin(ψ) (6.4e)
ξ4 =ur sin(ψ) + vr cos(ψ) + rl cos(ψ). (6.4f)

together with the feedback linearizing controller
[
τu
τr

]
=

[
cos(ψ) −l sin(ψ)
sin(ψ) l cos(ψ)

]−1 [−Fξ3(z1, ξ3, ξ4) + µ1

−Fξ4(z1, ξ3, ξ4) + µ2

]
. (6.5)

We obtain

ż1 =z2 (6.6a)

ż2 =−
((

Y1 −
X1 − 1

l

)
U cos(z1 − φ) + Y2 +

X2

l

)
z2

−
(
Y1

l
U cos(z1 − φ) +

Y2

l

)
U sin(z1 − φ)

− µ1 sin(z1)

l
+
µ2 cos(z1)

l
(6.6b)

ξ̇1 =ξ3 + Vx (6.6c)

ξ̇2 =ξ4 + Vy (6.6d)

ξ̇3 =µ1 (6.6e)

ξ̇4 =µ2 (6.6f)

where

U =
√
ξ2
3 + ξ2

4 (6.7)

φ = arctan

(
ξ4
ξ3

)
. (6.8)

73



6. Path following of marine vehicles

The terms µ1, µ2 in (6.5) are new inputs which are to be defined in Section 6.4 in
order to solve the path following problem. Note that z1 appears only as an argument
of trigonometric functions with period 2π. Therefore, we can consider (6.6a-6.6b)
to take values on the manifold M = S× R where S is the one-dimensional sphere.

The main advantage of choosing h as output is clear from (6.6). In fact, the
transformed model (6.6) is characterized by a linear external dynamics (6.6c-6.6f)
and a nonlinear internal dynamics (6.6a-6.6b) as common for feedback linearized
systems. Therefore, as opposed to considering the model (6.1), we can consider the
external dynamics which are linear, for control purposes. The drawback is that the
inputs µ1, µ2, which are to be designed in order to fulfill the control objectives, are
affecting also the internal dynamics (6.6a-6.6b), and we have carefully to check the
internal stability properties of the states z1, z2.

6.3 Problem definition and control objectives

In this section we formalize the path following control problem.
The path following task requires the vehicle to follow a given curve γ(s) =

{(x(s), y(s))|s ∈ R}, where s is a scalar parameter, and travel along the curve with
a constant velocity Ū > 0 in the global frame. This task can be fulfilled by an
under-actuated vehicle if its total velocity Ut is tangential to the path, where

Ut =

√
(ξ3 + Vx)

2
+ (ξ4 + Vy)

2
.

The main difference between the path following task and the trajectory tracking
discussed in Section 6.3 is that for the path following the path is parametrized by
a generic variable s and not necessarily by the time t. This implies that the vehicle
is not required to be in a given position along the curve at a specific time instant
t, instead the vehicle is required just to converge to the path and move along it
with a prescribed velocity. We consider that γ(s) ∈ C2, this can be formalized by
the following assumption

Assumption 6.2. The path γ(s) is a C2 function.

Remark 6.1. This assumption implies that

∂x (s)

∂s
,
∂y (s)

∂s
,
∂2x (s)

∂s2
,
∂2x (s)

∂s2

are all continuous. Therefore the curvature κ of γ (s) is continuous and the curve
is smooth.

We assume also that the path γ(s) is parametrized by the arc length s. This
way the tangent vector T is given by

T =
[
∂x(s)
∂s

∂y(s)
∂s

]T

and it is a unit vector, that is

‖T‖ =

√(
∂x (s)

∂s

)2

+

(
∂y (s)

∂s

)2

= 1.
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~

∂yγ(s)

∂s

Figure 6.2: Path following.

According to this choice of the parametrization, we can consider that a virtual
frame V F moves along γ(s). The position along the curve of the origin of V F ,
which we call xγ , yγ , is defined by the parameter s. The x axis of V F is given by
the unit tangent vector to the curve T . The y axis is given by the normal vector
N and it is chosen by rotating clock-wise T of π/2 radiant (recall that the z axis
of the NED frame points downwards). The velocity in the NED frame with which
V F moves along γ(s) is given by

ẋγ (s) =
∂xγ (s)

∂s
ṡ ẏγ (s) =

∂yγ (s)

∂s
ṡ.

Note that its norm is

Uγ = ṡ

√(
∂xγ (s)

∂s

)2

+

(
∂yγ (s)

∂s

)2

= ṡ

because of our choice of the parametrization for γ(s). An illustration is given in
Figure 6.2.

Our objective it to make the vehicle converge to the path γ(s) and move along
it with an assigned constant velocity Ū . In other words, we want that the point
h converges to (xγ , yγ). Then we want h to move with total velocity vector Ut =
[ξ3 + Vx, ξ4 + Vy]

T aligned with the vector T and with magnitude Ut = Ū . The
control objectives can be formalized as follows

lim
t→∞

(ξ1 − xγ(s)) =0 (6.9a)

lim
t→∞

(ξ2 − yγ(s)) =0 (6.9b)

lim
t→∞

(
Ut − Ū

)
=0. (6.9c)

Remark 6.2. Note that the control objectives require the vehicle to track the point
(xγ , yγ). We want to remark that this approach still identifies a path following
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6. Path following of marine vehicles

control problem. In fact, the trajectory tracking control problem requires the vehicle
to be at a certain position in the space at a specific time. With the control objectives
(6.9) we are requiring the vehicle to track the point (xγ , yγ) and its propagation on
γ is defined by ṡ. It will be clear in the next section that ṡ does not depend on time,
but rather on the motion of the vehicle.

6.4 The control system

In this section we discuss our choice for the dynamics ṡ which is a design parameter
and can be chosen in order to ease the convergence of the vehicle to the path. Then
we introduce the control law which we use to achieve the control objectives (6.9).

6.4.1 The parameter s

Our control objective is to make the vehicle move along γ(s). Therefore, we can
define the error variables

ξ̃1 = ξ1 − xγ(s) ξ̃2 = ξ2 − yγ(s). (6.10)
(6.11)

We want to define a law for ṡ such that if the Euclidean distance between V F and
the vehicle is large, i.e.,

√
ξ̃2
1 + ξ̃2

2 is large, then V F should slow down and wait for
the vehicle to catch up. To this purpose we define the following law for ṡ

ṡ =Ū

(
1− ε tanh

(√
ξ̃2
1 + ξ̃2

2

))
. (6.12)

The value ε > 0 is a constant. According to (6.12), ṡ → 0 if
√
ξ̃2
1 + ξ̃2

2 → ∞, that
is the frame tends to stop if the vehicle is far away from the path. On the other

hand, if
√
ξ̃2
1 + ξ̃2

2 → 0 we have ṡ→ Ū .
We consider the following assumption to hold

Assumption 6.3. The velocity Ū is such that Ū > ‖V ‖.

6.4.2 The controller

In order to make the vehicle converge to the path we define the the following control
inputs µ1, µ2

µ1 =− kvx(ξ3 − ẋγ(s))− kpx(ξ1 − xγ(s))− kIx
(
ξ1I −

∫ t

0

xγ(s)dτ
)

+ ẍ∗γ(s)

(6.13a)

µ2 =− kvy (ξ4 − ẏγ(s))− kpy (ξ2 − yγ(s))− kIy
(
ξ2I −

∫ t

0

xγ(s)dτ
)

+ ÿ∗γ(s)

(6.13b)
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where

ẋγ(s) = ṡ
∂xγ(s)

∂s
ẍ∗γ(s) = ṡ2 Ū

∂2xγ (s)

∂2s
(6.14)

ẏγ(s) = ṡ
∂yγ(s)

∂s
ÿ∗γ(s) = ṡ2 Ū

∂2yγ (s)

∂2s
. (6.15)

The terms ẍ∗γ(s), ÿ∗γ(s) are two feed-forward terms. Note ẍ∗γ(s) 6= ẍγ(s), ÿ∗γ(s) 6=
ÿγ(s). We cannot choose ẍγ(s), ÿγ(s) as feed-forward terms since the expression of
s̈ depends on Vx, Vy, which are unknown. Finally, kvx , kvy , kpx , kpy , kIx , kIy are all
positive constants.

6.5 Main result

In this section the main result of this chapter is presented in the following theorem.

Theorem 6.1. Consider an under-actuated marine vehicle described by the model
(6.1). Consider the hand position point h = [x1, y1]T = [x+ l cos(ψ), y+ l sin(ψ)]T ,
where [x, y]T is the position of the pivot point of the ship, l is a positive constant
and ψ is the yaw angle of the vehicle. Then define

Ud =

√(
Ū
∂xγ (s)

∂s
− Vx

)2

+

(
Ū
∂yγ (s)

∂s
− Vy

)2

> 0 (6.16)

as the desired relative velocity magnitude and

φ̄1 = arctan

(
Ū
∂xγ(s)
∂s − Vy

Ū
∂yγ(s)
∂s − Vx

)
(6.17)

as the crab angle. Consider Assumptions 6.3-6.2 and the following conditions to
hold

0 < Ud <
Y2

Y1
(6.18)

kvi > 0, kpi > 0, kIi > 0, i ∈ {x, y} (6.19)
kvikpi > kIi i ∈ {x, y} (6.20)

l > max

{
m22

m23
,−X2

Y2

}
(6.21)

ε <
λmin
Q

2λmax
P

(6.22)

κ ≤ 2 min{a(d− c), b}(
ā+
√
ā2 + 1

(
Y1 − X1−1

l + 2Y1Ūd
l

))
Ū

(6.23)

where κ is the curvature of γ(s). Then, the controller (6.5), where the new inputs
µ1, µ2 are given by (6.13), guarantees the achievement of the control objectives
(6.9).
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Remark 6.3. Before going we want to remark the differences among the velocities
Uγ , Ut, Ud and Ū .

• Uγ is the magnitude velocity of the V F frame in the NED frame;

• Ut is the absolute velocity of the vehicle. We want this quantity to converge
to a constant which is Ū > 0;

• Ud is the desired relative velocity, note Ud 6= Ut;

• Ū is the desired value for Ut.

Note that when Ut → Ū , the relative velocity vector is such that [ξ3, ξ4]T → ŪT−V .

Proof. First of all we define the following change of coordinates

z̃1 = z1 − φ̄1 z̃2 = z2 − ˙̄φ1 (6.24a)

ξ̃1I = ξ1I −
∫ t

0

xγ(s)dτ − kvxVx
kIx

ξ̃2I = ξ2I −
∫ t

0

yγ(s)dτ − kvyVy

kIy
(6.24b)

ξ̃1 = ξ1 − xγ (s) ξ̃2 = ξ2 − yγ (s) (6.24c)

ξ̃3 = ξ3 −
(
Ū
∂xγ(s)

∂s
− Vx

)
ξ̃4 = ξ4 −

(
Ū
∂yγ(s)

∂s
− Vy

)
. (6.24d)

Defining the vectors z̃s = [sin(z̃1), z̃2]T , ξ̃ = [ξ̃1I , ξ̃2I , ξ̃1, ξ̃2, ξ̃3, ξ̃4]T the closed-
loop system becomes

˙̃z =Hz̃(z̃1)z̃s +G(z̃, ξ̃3, ξ̃4)ξ̃ + ∆z̃(
˙̄φ1,

¨̄φ1, z̃1) (6.25a)
˙̃
ξ =Hξ̃ ξ̃ + ∆ξ̃(ξ̃1, ξ̃2) (6.25b)

where G(·) is reported in Appendix 5.A and

Hz̃(z̃) =

[
0 1

−(c cos(z̃1) + d) −(a cos(z̃1) + b)

]
(6.26)

∆z̃(
˙̄φ1,

¨̄φ1, z̃1) =

[
0

δ( ˙̄φ1,
¨̄φ1, sin(z̃1))

]
(6.27)

δ(·) =− (a cos(z̃1) + b) ˙̄φ1 + ¨̄φ1

+ (ξ̇4d cos(z̃1)− ξ̇3d sin(z̃1)) cos(φ̄)

+ (−ξ̇4d sin(z̃1) + ξ̇3d cos(z̃1)) sin(φ̄) (6.28)

a =

(
Y1 −

X1 − 1

l

)
Ud b = Y2 +

X2

l
(6.29)

c =
Y1U

2
d

l
d =

Y2Ud
l

(6.30)
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Hξ̃ =




0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−kIx 0 −kpx 0 −kvx 0

0 −kIy 0 −kpy 0 −kvy




(6.31)

∆ξ̃(ξ̃1, ξ̃2) = ε




0
0

Ū
∂xγ(s)
∂s tanh

(√
ξ̃2
1 + ξ̃2

2

)

Ū
∂yγ(s)
∂s tanh

(√
ξ̃2
1 + ξ̃2

2

)

0
0




. (6.32)

Assumption 2.3 implies c, d > 0 and (6.18) implies d > c ∀t. We also have
a, b > 0 because of (6.21). Note also that we have Ud which is not constant since
∂xγ(s)
∂s ,

∂xγ(s)
∂s varies along γ(s), however we have Ud ≤ Ud ≤ Ūd since γ(s) ∈ C2

by Assumption 6.2. Therefore, we have ā > a > a, c̄ > c > c, d̄ > d > d
with ā, a, c̄, c, d̄, d positive constants. We now study the stability properties of
the external dynamics (6.25b) and the internal dynamics (Equation (6.25a) with
G(z̃, ξ̃3, ξ̃4)ξ̃ = 0) and then the stability properties of the total system (6.25).

6.5.1 The external dynamics

Since Hξ̃ is Hurwitz because of (6.19-6.20), there exists a positive definite matrix
P which satisfies

HT
ξ̃
Pξ̃ + PT

ξ̃
Hξ̃ = −Qξ̃.

where Q is a positive definite matrix . Choosing the following LFC

Vξ̃ = ξ̃TPξ̃ ξ̃ (6.33)

we have

V̇ξ̃ = − ξ̃TQξ̃ ξ̃ +
∂Vξ̃

∂ξ̃
∆ξ̃(·) (6.34)

≤ − λmin
Qξ̃
‖ξ̃‖2 + 2‖Pξ̃‖‖ξ̃‖ε‖ξ̃‖ (6.35)

≤ − λmin
Qξ̃
‖ξ̃‖2 + 2ελmax

Pξ̃
‖ξ̃‖2 (6.36)

≤ − λ‖ξ̃‖2. (6.37)

We have λ > 0 for ε <
λmin
Q
ξ̃

2λmax
P
ξ̃

. Choosing ε this way implies also that ‖ξ̃‖ = 0 is

GES.
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6.5.2 The internal dynamics

Let us now focus on the internal dynamics:

˙̃z1 =z̃2 (6.38a)

˙̃z2 =− (a cos(z̃1) + b)z̃2 − (c cos(z̃1) + d) sin(z̃1) + δ( ˙̄φ1,
¨̄φ1, z̃1). (6.38b)

Since (6.38) does clearly not have an equilibrium point at the origin due to the
presence of the disturbance δ(·), we study the ultimately boundedness of the states
z̃1, z̃2. Now note that δ ≤ δ̄ since function of bounded signals. In fact, δ is function
of ˙̄φ, ¨̄φ which in turn are functions of ẋ(s), ẏ(s), ẍ(s), ÿ(s) which are bounded.

Now we define the following Lyapunov function candidate (LFC)

W =
1

2
z̃Ts

[
a2 + c a
a 1

]

︸ ︷︷ ︸
Pzs

z̃s + (ab+ d)(1− cos(z̃1)). (6.39)

We have that W > 0 ∀(cos(z̃1), sin(z̃1), z̃2) ∈ M − {[1, 0, 0]} and W = 0 only for
(cos(z̃1), sin(z̃1), z̃2) = (1, 0, 0). The time derivative is

Ẇ = − z̃Ts
[
a(d+ c cos(z̃1)) 0

0 b

]
z̃s +

∂W

∂z̃s
∆z̃

+
1

2
z̃Ts

[
2ȧa+ ċ ȧ

ȧ 0

]
z̃s + (ȧb+ ḋ)(1− cos(z̃1)).

(6.40)

Note that ȧ, ċ, ḋ all depend on U̇d. According to (6.16), the velocity vector Ud is

Ud = ŪT − V ,

where T = [
∂xγ(s)
∂s ,

∂yγ(s)
∂s ]T is unit tangent vector to the path at s. Thus

U̇d = κṡN.

where κ is the curvature of γ(s) and N is the unit normal vector of γ(s) at s. It is
clear that ‖U̇d‖ = U̇d ≤ Ū∗d = κŪ . This implies that also ȧ, ċ, ḋ are upper bounded,
that is, ȧ ≤ ā∗, ċ ≤ c̄∗, ḋ ≤ d̄∗. Then we have

Ẇ ≤ − z̃Ts
[
a(d− c) 0

0 b

]

︸ ︷︷ ︸
Qz̃

z̃s +
∂W

∂z̃s
∆z̃ + (ā∗b+ d̄∗)(1− cos(z̃1))

+
1

2
z̃Ts

[
2ā∗ā ā∗

ā∗ 0

]

︸ ︷︷ ︸
Λ1

z̃s +
1

2
z̃Ts

[
c̄∗ 0
0 0

]

︸ ︷︷ ︸
Λ2

z̃s.

(6.41)

From the definition of ∆z̃ we have that
∥∥∥∥
∂W

∂z̃s

∥∥∥∥ ‖∆z̃‖ ≤ α1δ̄‖z̃s‖ (6.42)
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where α1 = max{1, a} and δ̄ is the upperbound of δ(t), i.e. δ(t) ≤ δ̄ since δ(t) is
function of bounded signals. Then we obtain

Ẇ ≤− (λmin
Qz̃ − λmax

Λ1
− λmax

Λ2
)

︸ ︷︷ ︸
σ

‖z̃s‖2 + α1δ̄‖z̃s‖+ 2
(
ā∗b+ d̄∗

)
(6.43)

where λmin
Qz̃

= min{a(d−c), b} is the minimum eigenvalue ofQz̃, λmax
Λ1

= 1
2

(
ā+
√
ā2 + 1

)
ā∗

and λmax
Λ2

= 1
2 c̄
∗ are the maximum eigenvalues of Λ1,Λ2, respectively. We have

σ > 0 when (6.23) holds. Thus we obtain

Ẇ ≤− (1− θ)σ‖z̃s‖2 < 0 ∀‖z̃s‖ ≥
α1δ̄ +

√
8σ
(
ā∗b+ d̄∗

)
− α2

1

2θσ
(6.44)

where 0 < θ < 1. The important conclusion which we can draw from the consider-
ations above is that the state z̃2, which is the only one that may grow unbounded
on the manifold M, stays bounded when the external dynamics is at steady state.

6.5.3 Stability of the complete system

We choose the following LFC

V = W + κ1 Vξ̃ (6.45)

where W is the same as in (6.39), and κ1 > 0 is a constant still to be determined.
Deriving (6.45) along the directions of (6.25) we obtain

V̇ ≤ − σ‖z̃s‖2 − κ1 ξ̃
TQξ ξ̃ +

∂W

∂z̃
G(·)ξ̃ +

∂W

∂z̃2
δ(·) + κ1

∂Vξ̃

∂ξ̃
∆ξ̃(·)

≤ − σ‖z̃s‖2 − κ1λ‖ξ̃‖2 +
∂W

∂z̃
G(·)ξ̃ +

∂W

∂z̃2
δ(·) (6.46)

The following bounds hold for G(·) and W :

G(z̃, ξ̃3, ξ̃4) ≤ G1(‖ξ̃‖)‖z̃s‖+G2(‖ξ̃‖) ≤ Ḡ1‖z̃s‖+ Ḡ2 (6.47)
∥∥∥∥
∂W

∂z̃

∥∥∥∥ ≤ ‖z̃s‖
∥∥∥∥
[
a2 + c+ ab+d

2 a
a 1

]∥∥∥∥ ≤ α2‖z̃s‖, (6.48)

where Ḡ1 = G1(ξ̄), Ḡ2 = G2(ξ̄), and ξ̄ is the upperbound of ‖ξ‖. Let λmin
Pzs

, λmin
Pξ

,
λmin
Qz̃

, λmin
Qξ

denote the minimal eigenvalue of Pzs , Pξ, Qz̃, Qξ respectively. The
closed-loop external dynamics (6.25b) is GES, therefore there exists a time t∗ such
that for all t ≥ t∗: ‖ξ̃(t)‖ ≤ σ/(2α2Ḡ1). For t ≤ t∗ and

κ1 >
α2

2Ḡ
2
2

σλ
+
α2Ḡ1ξ̄λ

min
Pξ

λλmin
Pzs

(6.49)
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we have

V̇ ≤− σ‖z̃s‖2 − κ1λ‖ξ̃‖2

+ α2‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃ + α1δ̄‖z̃s‖

≤ − 1

2
σ‖z̃s‖2 −

(
α2

2Ḡ
2
2

σλ
+
α2Ḡ1ξ̄λ

min
Pξ

λλmin
Pzs

)
λ‖ξ̃‖2

+ α2Ḡ1ξ̄‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖

− 1

2
σ‖z̃s‖2 + α1δ̄‖z̃s‖ (6.50)

for ‖z̃s‖ ≥ 2α1

σ we have

≤− 1

2
σ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ −

α2
2Ḡ

2
2

σ
‖ξ̃‖2

−
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2

≤2α2Ḡ1ξ̄‖z̃s‖2 +
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2

+
2α2Ḡ1ξ̄

λmin
Pzs

(ad+ c)(1− cos(z̃1))− 2α2Ḡ1ξ̄

λmin
Pzs

(ad+ c)(1− cos(z̃1))

≤2α2Ḡ1ξ̄

λmin
Pzs

V +
4α2Ḡ1ξ̄

λmin
Pzs

(ad+ c), (6.51)

so for t < t∗ ∧ ‖z̃s‖ ≥ 2α1

σ the trajectories are bounded. For t < t∗ ∧ ‖z̃s‖ < 2α1

σ we
have

V̇ ≤− 1

2
σ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ −

α2
2Ḡ

2
2

λmin
Qz̃

‖ξ̃‖2

−
α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + α2Ḡ1ξ̄‖z̃s‖2 + α1δ̄‖z̃s‖

≤ α2Ḡ1ξ̄‖z̃s‖2 +
2α2Ḡ1ξ̄λ

min
Pξ

λmin
Pzs

‖ξ̃‖2 + δ̄
2α2

1

σ

+
2α2Ḡ1ξ̄

λmin
Pzs

(ad+ c)(1− cos(z̃1))− 2α2Ḡ1ξ̄

λmin
Pzs

(ad+ c)(1− cos(z̃1))

≤ 2α2Ḡ1ξ̄

λmin
Pzs

V + δ̄
2α2

1

σ
+

4α2Ḡ1ξ̄

λmin
Pzs

(ad+ c), (6.52)

so V (t) remains bounded also for the case t ≤ t∗ ∧ ‖z̃s‖ < 2α1

σ , meaning that the
trajectories are bounded for any t < t∗.

82



6.6. The straight-lines case

For t ≥ t∗ we have

V̇ ≤− σ‖z̃s‖2 − κ1 λ‖ξ̃‖2 + α2‖z̃s‖(Ḡ1‖z̃s‖+ Ḡ2)ξ̃ + α1δ̄‖z̃s‖

≤ − 1

2
σ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ − κ1λ‖ξ̃‖2 + α1δ̄‖z̃s‖

≤ − 1

2
θσ‖z̃s‖2 + α2Ḡ2‖z̃s‖‖ξ̃‖ − κ1λ‖ξ̃‖2

∀‖z̃s‖ >
2α1δ̄

(1− θ)σ ∧ 0 < θ < 1, (6.53)

which is negative definite for κ1 > α2
2Ḡ

2
2/(σλ). We can conclude that ξ̃ → 0 globally

exponentially while the states z1, z2 are ultimately bounded. Finally, this implies
that the control objectives (6.9) are fulfilled.

Remark 6.4. Note the condition (6.23). This condition is needed in order to
guarantee boundedness of the internal dynamics. In Chapter 5 we have seen that
for the case of trajectory tracking the boundedness of the states of the internal
dynamics is guaranteed with a similar condition on the magnitude of the total
desired acceleration. Given a a desired tangential velocity UdT , where T is the unit
tangent vector to the curve, we know that

U̇d = UdκN + U̇dT

where N is the unit normal vector. As shown above, for the path following case,
where the tangential velocity of the frame V F is considered constant, we have U̇d =
0. Thus, the condition needed for the boundedness of the states z1, z2 can be reduced
to a condition just on the curvature κ. On the other hand, the case of trajectory
tracking considered in Chapter 5 is more general. We do not restrict to the case
of trajectory tracking with constant tangential velocity, that is, U̇d 6= 0. Thus,
the condition for the boundedness of z1, z2 has to be more general and involve
boundednees of the magnitude of the desired tangential acceleration.

6.6 The straight-lines case

In this section we discuss about the specific case of straight-line paths. This case
is of particular interest for practical applications since lawn-mower paths, paths
made of a series of straight-line segments, are standard for marine vehicles when
required to execute surveillance and scanning tasks in the ocean.

Without loss of generality, consider a path which is aligned along the x axis of
the NED frame. This implies γ(s) = {(x(s), y(s))|y(s) = 0 ∧ s ∈ R} Then we have

T =
[
∂xγ(s)
∂s

∂yγ(s)
∂s

]T
=
[
1 0

]T
.

Note that velocity in the NED frame with which V F moves along γ(s) is given
by

ẋγ (s) =
∂xγ (s)

∂s
ṡ = ṡ, ẏγ (s) = 0.

For the special case considered in this section, we can derive the following
corollary from Theorem 6.1.
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6. Path following of marine vehicles

Corollary 6.1. Consider an under-actuated marine vehicle described by the model
(6.1). Consider the hand position point h = [x1, y1]T = [x+ l cos(ψ), y+ l sin(ψ)]T ,
where [x, y]T is the position of the pivot point of the ship, l is a positive constant
and ψ is the yaw angle of the vehicle. Then define

Ud =
√

(Ū − Vx)2 + V 2
y > 0 (6.54)

as the desired relative velocity magnitude and

φ̄2 = arctan

( −Vy
ud − Vx

)
(6.55)

as the crab angle. If Assumptions 6.2-6.3 are satisfied and if

0 <Ud <
Y2

Y1
(6.56)

kvi >0, kpi > 0, kIi > 0, i ∈ {x, y} (6.57)
kvikpi >kIi i ∈ {x, y} (6.58)

l >max

{
m22

m23
,−X2

Y2

}
(6.59)

then the controller (6.5), where the new inputs µ1, µ2 are given by (6.13), guaran-
tees the achievement of the control objectives (6.9). In particular,

(z1, z2, ξ1, ξ2, ξ3, ξ4) → (φ̄2, 0, udt, 0, ud − Vx,−Vy)

almost-globally asymptotically. Furthermore, the steady state values of the integral
variables give an estimate of the ocean current:

V̂x =
kIx(ξ1I − ξ1Id )

kvx
, V̂y =

kIy (ξ2I − ξ2Id )

kvy
. (6.60)

Proof. The proof of this Corollary follows from the proof of Theorem 6.1. Applying
the change of coordinates (6.24) we obtain the closed loop system (6.25). However,
note that now U̇d = 0 and ˙̄φ2 = 0. This implies that a, b, c and d are constants.
Furthermore, δ(·) = 0.

6.6.1 The external dynamics

The proof that ξ̃ = 0 is GES follows from Theorem 6.1.

6.6.2 The internal dynamics

The internal dynamics is

˙̃z1 =z̃2 (6.61a)
˙̃z2 =− (a cos(z̃1) + b)z̃2 − (c cos(z̃1) + d) sin(z̃1). (6.61b)
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6.7. Unparametrized straight-line paths

The system (6.61) has two equilibria , and they are

Es = (1, 0, 0) ∈M, Eu = (−1, 0, 0) ∈M. (6.62)

The point Es is a stable node, while Eu is a saddle point since we assumed d > c.
Note that Eu is a hyperbolic equilibrium. Use W in (6.39) as Lyapunov function
candidate. Since a, b,, c, d are constants and δ(·) = 0, the time derivative is

Ẇ = −z̃Ts Qz̃ z̃s ≤ 0 ∀(sin(z̃1), z̃2) 6= (0, 0). (6.63)

Equation 6.63 implies that the state (sin(z̃1), z̃2) = (0, 0) is GAS. However, sin(z̃1) =
0 corresponds either to cos(z̃1) = 1 or cos(z̃1) = −1 on the one-dimensional unit
sphere. That is, if the vehicle is required to move along a straight-line path it may
move forward (cos(ψ) = 1) or backwards (cos(ψ) = −1). Linearizing (6.61) around
the origin, it is easy to verify that

Eu = {(cos(z̃1), sin(z̃1), z̃2) = (−1, 0, 0)} ∈M

is unstable and hyperbolic. Then, invoking Theorem A.2 we infer that Eu is charac-
terized by a stable and an unstable manifold Ws

u, Wu
u , respectively. Both Ws

u, Wu
u

are one-dimensional since spanned by the positive and the negative eigenvalue of
the Jacobian matrix of (6.61), respectively. Recall that the system (6.25a) evolves
on the manifold M = S × R, which is 2-dimensional (it is a "pipe-shaped" mani-
fold, that is, it is a cylindrical surface in the space). Then Ws

u has therefore zero
Lebesgue measure since it has one dimension less than M. So we can conclude that
Es is almost-GAS since all the trajectories which do no start on Ws

u converge to
Es.

6.6.3 Stability of the complete system

Following the same approach as in Theorem 6.1 it is straightforward to conclude
that the closed loop system is AGAS and that the control objectives (6.9) are
satisfied.

6.7 Unparametrized straight-line paths

In this section we discuss about the specific case of unparametrized straight-line
paths. This case is of particular interest for practical applications. In fact, when
an ASVs or an AUVs is used for surveillance or exploration tasks, it is required to
follow a path made of a series of unparametrized straight-line segments, generally
a lawn-mower path.

Without loss of generality, we consider a path which is aligned along the x axis
of the NED frame. The fact that the path is left unparametrized means that there
is not a parameter s which is associated to the points of the path. Then the path
can be simply defined as P = {(x, y)|y = 0} [32, 33]. Then, it is also clear that
there is not the freedom to design the time update for the parameter s. However,
in order to have the vehicle to move along P, it is enough to regulate the state ξ2
to zero and the forward velocity ξ3 to a constant value Ū . It is important to notice
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6. Path following of marine vehicles

that the state ξ1 can be left uncontrolled since now we cannot define a virtual
frame V F propagating along P.

The path following control objectives for the unparametrized straight-line paths
can be formalized as

lim
t→∞

ξ2 = 0 (6.64a)

lim
t→∞

ξ3 − Ū = 0. (6.64b)

Since the state ξ1 cannot be specified, we have to leave it uncontrolled. We
define the following controller µ

µ1 =− kvx(ξ3 − Ū) (6.65a)

µ2 =− kvyξ4 − kpyξ2 − kIy
(
ξ2I −

∫ t

0

xγ(s)dτ
)
. (6.65b)

The intent of (6.65) is to regulate ξ2 and ξ4 while counteracting the ocean current
by means of an integral action. Note that since ξ1 cannot be specified, we cannot
counteract the along path component of the ocean current V . Therefore, if we
regulate ξ3 to Ū the absolute velocity of the vehicle in the along path direction is
ξ3 − Vx.

We can derive the following corollary from Theorem 6.1 and 6.1

Corollary 6.2. Consider an under-actuated marine vehicle described by the model
(6.1). Consider the hand position point h = [x1, y1]T = [x+ l cos(ψ), y+ l sin(ψ)]T ,
where [x, y]T is the position of the pivot point of the ship, l is a positive constant
and ψ is the yaw angle of the vehicle. Then define

Ud =
√
Ū + V 2

y > 0 (6.66)

as the desired relative velocity magnitude and

φ̄3 = arctan

(−Vy
Ū

)
(6.67)

as the crab angle. If Assumptions 6.2-6.3 are satisfied and if

0 <Ud <
Y2

Y1
(6.68)

kvi >0, kpi > 0, kIi > 0, i ∈ {x, y} (6.69)
kvikpi >kIi i ∈ {x, y} (6.70)

l >max

{
m22

m23
,−X2

Y2

}
(6.71)

then the controller (6.5), where the new inputs µ1, µ2 are given by (6.65), guaran-
tees the achievement of the control objectives (6.64). In particular,

(z1, z2, ξ1, ξ2, ξ3, ξ4) → (φ̄3, 0, udt, 0, ud − Vx,−Vy)

almost-globally asymptotically.

The proof of this corollary follows from the proofs of Theorem 6.1 and Corollary
6.1.
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6.8. Simulation results

Table 6.1: Initial conditions.
x|t0 m y|t0 m ψ|t0 rad ur m/s vr m/s r rad/s

t0 0 150 −π 0 0 0

6.8 Simulation results

In this section we present two simulation case studies in order to validate the
theoretical results presented above. The first case study considers the case of
parametrized curved paths while the second case deals with unparametrized straight-
line paths.

6.8.1 Curved paths

We consider the model of the Light Autonomous Underwater Vehicle (LAUV) of
the Laboratorio de System y Tecnologia Subaquatica (LSTS) at the University of
Porto. The model of the vehicle is give [38] and reported in Appendix B.

We consider that the vehicle has to track a circle centered at the origin of the
NED frame. We consider a circle with radius R = 80 m. The desired signals are

xγ = R cos
( s
R

)
(6.72a)

yγ = R sin
( s
R

)
(6.72b)

ẋγ = − ṡ sin
( s
R

)
(6.72c)

ẏγ = ṡ cos
( s
R

)
(6.72d)

ẍ∗γ = − ṡ2

R
cos
( s
R

)
(6.72e)

ÿ∗γ = − ṡ2

R
sin
( s
R

)
. (6.72f)

We choose the constant l = 1 m in (6.2). The initial conditions of the vehicle
are summarized in Table 6.1. From Table 6.1 we have that

ξ10
= 0 m (6.73a)

ξ20
= 149 m (6.73b)

ξ30
= 0 m/s (6.73c)

ξ40
= 0 m/s (6.73d)

z10
= 0 rad (6.73e)

z20
= 0 rad/s. (6.73f)

The gains in (6.13) are

kpx = kpy = 0.5 (6.74a)
kvx = kvy = 10 (6.74b)
kIx = kIy = 0.007. (6.74c)
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Figure 6.3: Motion of the vehicle. The black dot represents the motion of the virtual
frame V F .

The ocean current is V = [−0.15, 0.05]T m/s. According to the choice of the gains
and the properties of the path described above, the conditions under which Theo-
rem 6.1 holds are satisfied.

For the path parametrization, we choose the initial position of the virtual frame
V F such that the distance between the vehicle and the path is minimum. This
imply that the initial value of the path parameter is chosen as s0 = Rπ/2. For the
update law (6.12), we choose ε = 0.5.

Remark 6.5. Under the conditions chosen for this simulation, we would need
ε <

λmin
Q

2λmax
P
≈ 10−5. This condition is conservative due to the conservativeness of

the Lyapunov analysis. We choose instead ε = 0.5 > 10−5 which would be more
suitable for practical applications.

The results of the simulation are shown in Figures 6.3-6.5. Figure 6.3 shows
the motion of the vehicle. The black dot on the circle represents the origin of the
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Figure 6.4: Time evolution of the error states.
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Figure 6.5: Time evolution of the surge velocity, sway velocity and yaw rate.
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6. Path following of marine vehicles

virtual frame V F . It is clear that the vehicle converges to the circle and moved
with V F . We see also that while the vehicle is not on the path, the frame V F slows
down. In Figure 6.4, the time evolution of the error states ξ̃1, ξ̃2, ξ̃3, ξ̃4 confirms that
the trajectory tracking task is fulfilled. In fact, all the error states converge to zero.
Finally, in Figure 6.5 the relative surge velocity ur, the relative sway velocity vr
and the yaw rate r are shown. Note that that r = z2 is bounded as expected.

6.8.2 Straight-line paths

We use the model of the LAUV (light autonomous underwater vehicle) given in
Appendix B and define a lawn-mower path in order to simulate the path following
case described in Section 6.7. The simulation will also be a benchmark for the sea
trial results which are presented in Section 6.9, and we therefore consider the special
case of straight-line paths which is what we could implement in the experiments.
The choice of such a kind of path is driven by the fact that lawn-mower paths
are standard for marine vehicles when required to execute surveillance and scan-
ning tasks in the ocean. We perform the simulation using the simulator of DUNE
[39], software developed by the Laboratório de Sistemas e Tecnologia Subaquática
(LSTS) at University of Porto, and running on the LAUVs. In fact, DUNE has a
very detailed model of the LAUV and there are nodes in the software which realis-
tically simulate the behavior of the sensors on-board the real vehicle, i.e. they also
simulate noises.

As regards the desired motion, the vehicle is required to move with a constant
forward velocity of Ud = 1.2 m/s while traveling along a lawn-mower path made
of four long straight-lines l1 = 130 m connected by three perpendicular straight-
lines l2 = 27 m. The depth of the path is set to 2 [m] under the surface. We do not
implement any depth controller but rather use the depth controller already available
on the LAUV. In the simulation we assign an ocean current V = [Vx, Vy]T =
[0.1, 0.2]T m/s which is unknown to the vehicle. For the point h we choose l = 1
m. Since we have chosen a lawn-mower path we decide to deal with the case of
unparametrized paths as discussed in Section 6.7, i.e. we define kpx = kIx = ε = 0.
The other gains are

kvx = kvy = 1, kpy = 0.2, kIy = 0.01.

We have required the vehicle to move from its initial random position in the envi-
ronment to the point (−136.5, 106.5) m in order to bring it closer to the defined
lawn-mower path. This action is done just to facilitate the motion of the vehicle to-
wards the path and limit the saturation of the thrusters due to a large initial error.
Figure 6.6 shows the motion of the vehicle, and it is readily seen from this figure
that the path following task is fulfilled. Note that along the short side of the path
the transient is not long enough in order to have ξ̃2 → 0. This is not a problem for
real applications, e.g. sonar scanning, since the data collection is performed along
the long sides of the path. In Figure 6.7, the cross-track error, i.e. the state ξ̃2, is
shown and we see that along the long side of the path it converges to zero. Figure
6.7 shows also the state z̃1 = ψ − φ converging to a constant φ =

(
Vy
U

)
, i.e. the

crab angle, where Vy is the component of V acting in the perpendicular direction
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Figure 6.6: Motion of the vehicle.

with respect to the straight-line the vehicle is traveling. This is in accordance with
Corollary 6.2. We have zoomed the behavior in the range (200, 300)[s] which char-
acterizes the motion of the vehicle in the North-East direction. Note that z̃1 → 0.5◦

and we expect φ = 0.6◦. The value do not coincide due to the presence of simulated
noises in the sensors’ nodes.

6.9 Sea trial results

In this section we present the results from the sea trial. The experiments have
been performed in Porto, Portugal using the LAUV (see Figure 6.8) of the LSTS.
The LAUV is a lightweight, one-man-portable under-water vehicle. It is easy to
operate since it require minimal operational setup. The LAUV is equipped with
a computational system and navigation sensors. However, its capabilities can be
enhanced adding optional payloads. The task assignment for the vehicle is the same
as in the simulation case study described in Section 6.8. Note that in the real trial
we do not know the value of the ocean current so we cannot compute the expected
angle φ.

Figure 6.9 shows the motion of the vehicle compared to the desired trajectory.
We see that the vehicle fulfills the path following task. This is also confirmed by
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Figure 6.7: Top) Cross-track error, i.e. distance of the vehicle along the perpendic-
ular direction to the path; Bottom) Course error.

Figure 6.8: Light autonomous underwater vehicle (LAUV).
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Figure 6.9: Motion of the vehicle in the real trial.

Figure 6.10 where the cross-track error is reported, and it is possible to see how it
converges to zero during the motion along the long sides of the path.

From Figures 6.9-6.10, it is also clear that the behavior of the vehicle from the
experimental results is in line with what to expect from the simulations.

6.10 Conclusions

In this chapter we have dealt with the path following control problem for ASVs
and AUVs moving in the horizontal plane. A disturbance affecting the system,
that is, an unknown ocean current, has been considered. The same control strategy
as in Chapter 5 has been used for solving the path following control problem.
In particular, we have used the definition of the hand position point for ASVs
and AUVs in order to apply an input-output linearization. Like in Chapter 5, we
obtain a linear external dynamics to deal with for control purposes. This simplifies
the control design phase. Furthermore, we obtain a nonlinear internal dynamics
which is affected by the control inputs designed for the external dynamics. Paths
parametrized using the arc length have been considered. The time update for the
path parameter is free to be designed. We have designed the time update for the
path parameter dependent on the Euclidean distance of the vehicle from the path.
That is, the tangential velocity of the path parameter has been chosen dependent
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Figure 6.10: Top) Cross-track error in the sea trial; Bottom) Course error in the
sea trial.

on the distance between the path and the vehicle. The tangential velocity of the
parameter decreases if the vehicle is far in order to help the vehicle to catch up
with the path. We have shown that our approach solves the path following control
problem. In particular, we have that the external dynamics converges globally
exponentially to the desired states, while the states of the internal dynamics are
ultimately bounded. We have also shown that in the case of straight-line paths the
closed-loop system is almost-global asymptotically stable. Furthermore, we have
also considered the case of unparametrized straight-line paths and shown that the
results of this chapter apply also in this case. Simulations and experimental results
have been presented in order to validate the theoretical results.
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Chapter 7

Multi-agent formation with
disturbance rejection

In this chapter the leader-follower synchronization problem is considered. We con-
sider a group of N + 1 linear agents affected by an unknown constant disturbance,
which does not necessarily have to be equal for each agent. The network of agents
is characterized by one leader and n followers. The leader is an agent which can
influence the other N agents and it is not influenced by them. On the other hand,
the remaining N agents, called followers, can influence each other and can be in-
fluenced by the leader. We assume that the communication scheme of the agents
is described by a graph which has fixed topology. We assume also that the leader
can communicate with at least one follower which is a root node in the graph.

The synchronization problem is solved using a diffusive coupling law. In par-
ticular, each agent tries to synchronize with its neighbors and the leader if it can
directly communicate with these. An integral action is introduced in the control
law in order to reject the effect of the constant unknown disturbance. The proposed
solution to the leader-follower synchronization problem in this chapter is inspired
by the approaches in [126] and [140]. In particular, we design a distributed con-
troller for leader-follower synchronization based on the one given in [140] and we
add integral action in the control law for each agent inspired by the distributed
control in [126] for leaderless synchronization. The integral action is introduced in
order to reject the effect of the constant unknown disturbance. The leader agent
in the network may be real or virtual. With respect to [140], we relax the con-
dition that the leader is an unforced linear time-invariant (LTI) system. Instead
we take into account that the leader may be an agent controlled independently of
the followers. As regards the communication scheme, we consider the general case
of directed communication among the agents and that the leader only needs to
communicate with at least one follower.

The approach described above for linear systems is then applied for formation
control of marine vehicles. In particular, the nonlinear model described in Chapter
2 is used for ASVs and AUVs moving in the horizontal plane. Since the model
in Chapter 2 is nonlinear, the considerations developed for linear systems cannot
be directly applied. Therefore, the control approach based on the definition of the
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7. Multi-agent formation with disturbance rejection

hand position as output of the system and presented in Chapters 5, 6 is used
to linearize the model of the marine vehicles. In fact, with the hand position as
output, we obtain a linearized external dynamics to which it is possible to apply
the synchronizing controller which has been developed for LTI systems, together
with an internal dynamics which is asymptotically stable for bounded states of the
external dynamics. The main idea is similar to the one presented in [125]. That is,
the input-output feedback linearizing controller is used at a local level in order to
linearize the dynamics of each agent. Then, a diffusive coupling law is used at the
network level in order to achieve synchronization of the agents. We show that the
desired motion in formation is achieved for the nonlinear under-actuated marine
vehicles, even though ocean currents of different unknown constant magnitudes
and directions are affecting each vehicle.

This chapter is based on [107].
The chapter is organized as follows: Section 7.1 gives the model and the as-

sumptions for the agents in the network; in Section 7.2 the control objective for
each agent is defined; Section 7.3 gives the control design and some considerations
on the controller; in Section 7.4 the main result of this chapter is presented; in
Section 7.5 we show how the feedback linearizing controller of [110] makes it possi-
ble to apply the leader-follower synchronization controller presented in Section 7.3
to under-actuated marine vehicles; in Section 7.6 a simulation case study which
illustrates the effectiveness of our controller is presented; finally, in Section 7.7, the
conclusions are given.

7.1 Agents’ model and assumptions

In this section we will describe the class of linear systems for which we address the
leader-follower synchronization problem. Furthermore, we introduce the assump-
tions which characterize the system.

The i-th agent is characterized by the LTI dynamics

Φ̇i =AΦi +Bµi + Pdi (7.1a)
Yi =CΦi (7.1b)

where Φi ∈ Rn, µi ∈ Rm, Yi ∈ Rk, m ≤ n, k ≤ n and m,n, k ∈ N. We assume
that the dimension of the disturbance is the same as of the control input µi, i.e.
di ∈ Rm. Then A ∈ Rn×n, B ∈ Rn×m, P ∈ Rn×m, C ∈ Rk×n. The vector µi is the
control input and we will in the following design the control law for µi of every
vehicle in order to achieve the output synchronization. The vector di is a constant
disturbance, which in general may or may not be different for every agent. Finally,
Yi is the output of the system. Note that we consider i = 0, . . . , N , i.e. the leader
is identical to the followers. This is different from [140].

We consider the following assumption to hold for the leader:

Assumption 7.1. The control action µ0 = f(Y0 − Y0d) is able to counteract a
disturbance which may affect the leader. Furthermore, f(Y0 − Y0d) is a globally
Lipschtiz function such that |Y0 − Y0d | globally asymptotically converges to zero,
i.e. f(Y0 − Y0d)→ 0.
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Remark 7.1. Assumption 7.1 implies that the control action µ0 = f(Y0 − Y0d)
regulates the leader to a constant reference. The special case in which µ0 = 0 ⇔
Y0 = Y0d ∀t ≥ 0 corresponds to the case considered in [91, 140].

Remark 7.2. The followers will synchronize to the leader’s output regardless of
the fact that the leader converges or not to its desired output. That is, if µ0 is not
able to counteract a constant disturbance such that the leader’s output converges
instead to |Y0 − Y0d | = ε, then the followers will synchronize their outputs to the
resulting output state of the leader.

In the following we will focus only on the design of the control inputs for the
followers µi, i = {1, . . . , N}.

Remark 7.3. Note that the leader v0 described by the model (7.1) may be real or
virtual. That is, the leader may be a real vehicle which is moving with the group
of followers, or it may be a reference signal, generated by the linear model (7.1),
which is available to only some followers.

We will now assume the following assumption to hold on the network commu-
nication:

Assumption 7.2. The followers communicate among each other according to a
digraph G = (V, E) which has at least one spanning tree. The leader agent v0 com-
municates its state to at least one root node of the digraph G.

Since we assumed that the communication network may be described by a
graph, graph theory tools are used in this chapter. A brief overview of the tools
which we use is reported in Section A.2.

7.2 Control objective

In this section we will describe the control objective which we want to achieve.
The main goal is to design a distributed control law for each follower such that

they will synchronize their output states to the output states of the leader. This
can be expressed as

lim
t→∞

((Yi + Γi)− Y0) = 0 ∀i ∈ {1, . . . , N} (7.2)

where Γi ∈ Rk is a vector which prescribes an offset with respect to to the leader
output. Non zero Γi assign relative distances between the i-th follower and the
leader position, and may be used in order to assign a desired formation for the
agents, while with Γi = 0 Equation (7.2) presents the consensus objective. Note
that in the following we will consider Γi constant, which corresponds to assigning
a rigid formation. Note that each agent vi is affected by an unknown constant
disturbance which must be rejected in order to achieve the control objective (7.2).
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7.3 Control design

In this section we design a control law which will achieve the control objective
described in Section 7.2.

The model for the i-th follower (7.1) is affected by the presence of a constant
disturbance di. Since we want to design a control law able to reject this disturbance,
we will include an integral action. In order to do this, we consider an augmented
model of (7.1)

Φ̇iA =AAΦiA +BAµi + PAdi (7.3a)
Yi =CAΦiA (7.3b)

where

ΦiA =

[
ξi
Φi

]
AA =

[
0 C
0 A

]
BA =

[
0
B

]
PA =

[
0
P

]
CA =

[
0
C

]
(7.4)

and ξi ∈ Rk is such that ξ̇i = Yi = CΦi. The matrices 0 in AA, BA, PA are
matrices with zero entries of appropriate dimensions. Note that also for the leader
we consider an augmented model

Φ̇0A =AAΦ0A +BAµ0 + PAd0 (7.5a)
Y0 =CAΦ0A (7.5b)

We need to assume that the integral state of the leader is available to the followers
which are receiving information from it. The reason why this information is needed
will be clarified in the following.

We design the following control law for the i-th agent

µi =KP


∑

j∈Ni
((Φi + Γi)− (Φj + Γj)) + gi (Φ0 − (Φi + Γi))




+KI


∑

j∈Ni

((
ξi + C

∫ t

0

Γidτ

)
−
(
ξj + C

∫ t

0

Γjdτ

))

+gi

(
ξ0 −

(
ξi − C

∫ t

0

Γidτ

)))
(7.6)

where KP ∈ Rm×n and KI ∈ Rm×k are matrices with positive constants as entries.
For convenience in the notation and without loss of generality, in the following we
will consider Γi = 0. Then, we rewrite (7.6) using the augmented model of the i-th
agent (7.3), and we obtain

µi =
[
KI KP

]
︸ ︷︷ ︸

KA


∑

j∈Ni
(ΦiA − ΦjA) + gi (Φ0A − ΦiA)


 (7.7)
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where clearly KA ∈ Rm×(n+k). We can rewrite the controller as a function of the
communication topology matrix, L,G, and the other agents’ states as

µi = KA

(
(−Lr,i ⊗ Im+k) Φ̄A + (Gr,i ⊗ Im+k)

(
Φ̄A − Φ̄0A

))
(7.8)

where ⊗ represents the Kronecker product, In+k is the (n+ k)× (n+ k) identity
matrix, Lr,i, Gr,i are the i-th row of the Laplacian and pinning matrix, respectively.
Finally, Φ̄A ∈ RN(n+k) is a vector in which all the states of the all N followers are
stacked and has the form Φ̄A = [ΦT1A . . .Φ

T
NA

]T while Φ̄0A = [ΦT0A . . .Φ
T
0A ]T ∈

RN(n+k) is a vector in which the leader’s augmented state Φ0A is stacked N times.
At this point we can give some observations about the control law for the

followers. First, note that (7.7) can be rearranged as

µi =− (∆i + gi)KA


Φi −

∑
j∈Ni

Φj+giΦ0

∆i+gi︸ ︷︷ ︸
r′i




− (∆i + gi)KI


ξi −

∑
j∈Ni

ξj+giξ0

∆i+gi︸ ︷︷ ︸
riI


 (7.9)

From (7.9), it is clear that ri is the reference signal for the i-th agent vi. The signal
ri is an average of the states of the neighbors of vi, and the agent leader if gi 6= 0. In
order to reject a constant disturbance, we include the integral signal riI =

∫
ridτ .

This implies that we need information about the leader’s integral state and the
neighbors’ integral state since riI is a function of the leader’s and agents’ state.
Furthermore, the controller (7.9) differs from the controller in [140] because of the
integral action, i.e. the main difference is the term riI . While the main difference
of (7.9) with respect to the controller presented in[126] is given by the influence of
a leader on the reference signals, i.e. in [126] gi = 0 ∀i ∈ {1, . . . , N}.

7.4 Main results

In this section we present the result for the agents described by the LTI dynamics
(7.1) controlled by the distributed control law (7.7).

The closed-loop analysis has to consider the behavior of the entire group of
agents. Therefore, based on (7.3), we write the dynamics of the whole group of
agents as

˙̄ΦA = (IN ⊗AA) Φ̄A + (IN ⊗BA) µ̄+ (IN ⊗ PA) d̄ (7.10)

where d̄ = [dT1 , d
T
2 , . . . , d

T
N ]T ∈ RNn.

The controller (7.7) in stacked form for (7.10) is

µ̄ =
(
(− (L+G)⊗KA) Φ̄A + ((L+G)⊗KA) Φ̄0A

)
(7.11)
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7. Multi-agent formation with disturbance rejection

where we have used the Kronecker product’s properties and the fact that (G ⊗
In+k)Φ̄0A = ((L+G)⊗ In+k)Φ̄0A . Substituting (7.11) for µ̄ in (7.10) we obtain

˙̄ΦA = ((IN ⊗AA)− ((L+G)⊗BAKA))︸ ︷︷ ︸
Ac

Φ̄A

+ ((L+G)⊗BAKA) Φ̄0A + (Im+k ⊗ PA) d̄ (7.12)

At this point we present a lemma which will be used for the proof of the main
theorem

Lemma 7.1. Under Assumptions 7.1-7.2 and if there exists a matrix KA =
[KI KP ] which makes the following matrix Hurwitz

[
0 −λiC

−λiBKI A− λiBKP

]
(7.13)

where λi ∀i ∈ {1, . . . , N} are the eigenvalues of L + G, then the matrix Ac is
Hurwitz, and therefore invertible.

Proof. First, we recall Lemma 3.3 in [91] in order to prove that the matrix L+G
has eigenvalues λi > 0 ∀i ∈ {1, . . . , N}. The conditions for Lemma 3.3 in [91] are
straightforwardly satisfied by Assumption 7.2.

Then we can apply a Jordan decomposition to the matrix L+G

J = P−1(L+G)P =



J1(λ1)

. . .
Jp(λp)


 (7.14)

where P is a nonsingular matrix which exists for every square matrix L+G. Then,
Jj(λj) is a Jordan block of the form

Jj =




λj 1
λj 1

. . .
λj


 (7.15)

where in each Jordan block the j-th eigenvalue is repeated with its algebraic mul-
tiplicity.

We apply the similarity transformation (P−1 ⊗ IN )Ac(P ⊗ IN ) to Ac and we
get

Āc =IN ⊗AA − J ⊗BAKA (7.16)

Since similar matrices share the eigenvalues, if we can show that the eigenvalues of
Āc are all negative then we also have that Ac is Hurwitz.

The matrix Āc is block upper triangular of the form

Āc =



AA − λ1BAKA ?

. . . ?
AA − λNBAKA


 (7.17)
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where the ? replaces a block of the form −BAKA if the j − th eigenvalue has
multiplicity larger than one, or a zero entries block otherwise. However, it is not
important which block is in the place of the ? since the matrix is block upper
triangular and its eigenvalues are therefore determined only by the eigenvalues of
the diagonal blocks. That is, the eigenvalues of Āc are given by the union of the
eigenvalues of blocks AA − λjBAKA ∀j ∈ {1, . . . , N}. At this point, we need to
show that the j-th diagonal block is Hurwitz

Tj =

[
0 −λjC

−λjBKI A− λjBKP

]
(7.18)

Applying another similarity transformation using S = diag(λjIk, In) we obtain

T̄j =S−TjS

=

[− 1
λj
Ik

Im

] [
0 −λjC

−λjBKI A− λjBKP

] [
−λjIk

Im

]

=

[
0 −λiC

−λiBKI A− λiBKP

]
= AA − λjBAKA (7.19)

which is Hurwitz for every j ∈ {1, . . . , N} and for a suitable choice of KA.
To sum up, we have T̄j Hurwitz for every j ∈ {1, . . . , N}, which implies Tj to

be Hurwitz for every j ∈ {1, . . . , N}, which implies Āc to be Hurwitz, which in
turn implies Ac to be Hurwitz, and therefore invertible.

At this point we are ready to introduce the theorem presenting the main result
of this chapter:

Theorem 7.1. Consider a group of N + 1 agents consisting of N follower agents
and one leader agent, v0. Consider that the dynamics of the N + 1 agents are
described by the LTI system (7.1) and that Assumptions 7.1-7.2 hold. If the matrix
pair (A,B) is stabilizable and if the matrix Ac is Hurwitz, then the controller (7.11)
makes each agent achieve the control objective (7.2). In particular, Yi − Y0 → 0
globally asymptotically.

Proof. First, we will apply the change of variables δ = Φ̄A − Φ̄0A which reflects
the disagreement error of the followers with respect to the leader. Then, applying
Lemma 7.1 and Lemma 4.6 in [77], we will show that the disagreement dynamics is
input-to-state stable (ISS) with respect to the leader control input since Assump-
tion 7.1 holds. Finally, we will show that, since µ0 → 0 globally asymptotically,
then also the disagreement dynamics converges globally asymptotically to zero.

In order to perform the change of variables δ = Φ̄A− Φ̄0A , we take into account
that

Φ̇0A = (IN ⊗AA) Φ̄0A + (IN ⊗BA) µ̄0 (7.20)

where µ̄0 = [µT0 , . . . , µ
T
0 ]T ∈ RmN . Furthermore, note that, without loss of general-

ity and for convenience in the notation, we have considered d0 = 0, since, according
to Assumption 7.1, we assume that µ0 is able to compensate for a possible distur-
bance affecting the leader. Then, we get

δ̇ =Acδ + (IN ⊗ PA) d̄+ (IN ⊗BA) µ̄0 (7.21)
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7. Multi-agent formation with disturbance rejection

Since the conditions required by Lemma 7.1 hold, we have that A−1
c exists. Then,

we define δ∗ = A−1
c (IN ⊗ PA) d̄. The value δ∗ is constant since we have assumed

that di is constant for every agent vi. Now we can apply another change of variables
δ̄ = δ − δ∗ which gives

˙̄δ = Acδ̄ + (IN ⊗BA) µ̄0 (7.22)

Because of Assumption 7.1 we have that (IN ⊗BA) µ̄0 → 0 globally asymptotically,
independently of the behavior of δ̄, and µ̄0(Y0 − Y0d(t)) is a globally Lypschitz
function. Furthermore, the unforced system ˙̄δ = Acδ̄ is GES since Ac is Hurwitz
due to Lemma 7.1. Therefore, the conditions of Lemma 4.6 in [77] are respected.
This implies that (7.22) is ISS. Moreover, since (IN ⊗BA) µ̄0 → 0, we have that
δ̄ → 0 globally asymptotically. According to the considerations above, we have that
δ → δ∗ globally asymptotically.

Now we have to also show that Yi − Y0 = ξ̇i − ξ̇0 → 0 for the synchronization
objective (7.2) to be satisfied. In order to do this, we note that

δ =




Φ1A − Φ0A
...

ΦiA − Φ0A
...

ΦNA − Φ0A




=




[
ξ1 − ξ0

Φ1 − Φ0

]

...[
ξi − ξ0

Φi − Φ0

]

...[
ξN − ξ0

ΦN − Φ0

]




→




[
ξ∗1
Φ∗1

]

...[
ξ∗i
Φ∗i

]

...[
ξ∗N
Φ∗N

]




= δ∗ (7.23)

Then, since δ∗ is constant, we have that
[
ξ̇i − ξ̇0

Φ̇i − Φ̇0

]
→ 0 (7.24)

The fact that ξ̇i−ξ̇0 = Yi−Y0 → 0 proves that the control objective is achieved.

Remark 7.4. A suitable matrix KA may be chosen according to the method given
in [91, 92, 126], which requires to solve a Riccati equation. As shown in [91], this
is equivalent to solve the optimization problem

Ji =

∫ ∞

0

(
xTi Qxi + uTi Rui

)
dt (7.25)

where Q = QT > 0, R = RT > 0 and xi, ui are the sates and control vector of each
agent, respectively.

7.5 Formation control of marine vehicles

In this section we show that the distributed controller defined in Section 7.3 can be
applied to solve the formation control problem of under-actuated marine vehicles.
The presented approach is similar to the one given in [125]. In particular, [125]
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Local levelLocal level

Local level
Local level

Network level

Figure 7.1: Illustration of the control approach.

presents a hierarchical strategy for the coordination of nonlinear agents. That is,
the control strategy is divided into two phases. The first phase requires a controller
acting at a local level, that is, the controller is independent for each agent. The
second phase is characterized by a controller developed at the network level, that
is, the controller couples the behavior of all the agents. Note that in [125] it is con-
sidered a leaderless scheme for the agents. In our case, we apply this hierarchical
approach to the followers. The input-output feedback linearizing controller given
in Chapter 5 is used at a local level in order to linearize the dynamics of each
agent. This phase takes place for each agent independently from the others. Then
the diffusive coupling controller presented in Section 7.3 is applied to the linearized
dynamics and it is used in order to coordinate the agents. As regards the leader,
a different approach holds. In fact, the leader is meant to influence the followers
and to not be influenced by them. Therefore, the leader can be imagined at the
top of this hierarchy. That is, the leader influences the coordination of the network
being the reference signal in the diffusive coupling control law presented in Section
7.3. Note that the leader may be real or virtual. However, without loss of gener-
ality, in the following we assume the leader to be a vehicle which has the same
dynamics as the followers. This means that we apply an input-output feedback
linearizing controller also to the leader. Figure 7.1 gives a visual understanding of
this approach.

7.5.1 Model

In this section we consider a system consisting of N + 1 agents characterized by
the nonlinear model for ASVs and AUVs presented in Chapter 2. We briefly recall
the model here.
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We assume that the motion of the i-th vehicle is described in 3 DOF, i.e. surge,
sway and yaw, and that the vehicle is port-starboard symmetric. We study the
motion of the vehicles in an inertial frame for which we use the North-East-Down
frame (NED) convention [54]. We consider that the ocean current affecting the
i-th vehicle is given in the inertial frame by the vector Vi = [Vxi , Vyi ]

T . Then, we
assume that Vi is constant, irrotational and bounded, i.e. ∃Vmax ≥ 0 such that√
V 2
xi + V 2

yi ≤ Vmax. We assume that in general Vi 6= Vj .

The pose of the vehicle, i.e. the position and the orientation of the i-th vehicle,
in the NED frame is given by the vector ηi = [xi, yi, ψi]

T . The motion of an ASV or
an AUV moving in a horizontal plane, is given by the following 3 DOF maneuvering
model given in [54] which we report here in component form

ẋi =uri cos(ψi)− vri sin(ψi) + Vxi (7.26a)
ẏi =uri sin(ψi) + vri cos(ψi) + Vyi (7.26b)

ψ̇i =ri (7.26c)

u̇ri =Furi (vri)−
d11
m11

uri + τui (7.26d)

v̇ri =X(uri)ri + Y (uri)vri (7.26e)
ṙi =Fri(ui , vri , ri) + τri (7.26f)

The expressions for Furi (·), X(·), Y (·) and Fri(·) are given in Appendix 7.A.

As it is clear from (7.26), the i-th vehicle is actuated only along the surge direc-
tion, i.e. by the surge force τui , and around the local z axis, i.e. by the yaw moment
τri . Therefore, the model describes an under-actuated vehicle, in particular, a sec-
ond order non-holonomic vehicle [54]. Equation (7.26) describes the motion of the
pivot point of a ship.

7.5.2 The local controller

The model (7.26) is nonlinear and it is not possible to directly apply the distributed
controller derived in Section 7.3 to a group of vehicles described by (7.26). There-
fore, we now apply the results of Chapter 5, which achieves a LTI external dynamics
and an internal dynamics which is asymptotically stable for bounded states of the
external dynamics.

In particular, in Chapter 5 the concept of hand position hi = [ξ1i , ξ2i ]
T =

[xi + li cos(ψi), yi + li sin(ψi)]
T , where li > 0 is constant, [xi, yi]

T is the pivot point
and ψi the yaw angle (cf. Figure 7.2), has been applied to under-actuated marine
vehicles. Using hi as output, it has been shown that the model is output-feedback
linearizable. Thus, for each vehicle, it is possible to define the following change of
coordinates
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Figure 7.2: a) The pivot point (P) and the hand position h. b) Relative velocities
in the NED frame.

z1i = ψi (7.27a)
z2i = ri (7.27b)
ξ1i = xi + li cos(ψi) (7.27c)
ξ2i = yi + li sin(ψi) (7.27d)
ξ3i = uri cos(ψi)− vri sin(ψi)− rili sin(ψi) (7.27e)
ξ4i = uri sin(ψi) + vri cos(ψi) + rili cos(ψi) (7.27f)

and the controller

[
τui
τri

]
=

[
cos(ψi) −li sin(ψi)
sin(ψi) li cos(ψi)

]−1 [−Fξ3i (z1i , ξ3i , ξ4i) + µ1i

−Fξ4i (z1i , ξ3i , ξ4i) + µ2i

]
. (7.28)

The terms Fξ3i (z1i , ξ3i , ξ4i), Fξ4i (z1i , ξ3i , ξ4i) gather some nonlinearities and are
given in Appendix 7.A. Applying (7.27) and (7.28) to each vehicle, we obtain

ż1i = z2i (7.29a)
ż2i = f (z1i , z2i , ξ1i , ξ2i , ξ3i , ξ4i , µ1i , µ2i) (7.29b)

ξ̇1i = ξ3i + Vxi (7.29c)

ξ̇2i = ξ4i + Vyi (7.29d)

ξ̇3i = µ1i (7.29e)

ξ̇4i = µ2i . (7.29f)

The function f(·) is a nonlinear function given in Appendix 7.A. In particular,
(7.29a-7.29b) represent the internal dynamics which, in Chapter 5, has been proven
to be asymptotically stable for bounded states of the external dynamics. This
implies that for bounded values of ξ3i , ξ4i we have bounded z1i , z2i . Finally, note
that the external dynamics (7.29c-7.29f) can be rewritten in canonical form, i.e. in
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the form



ξ1i
ξ̇2i
ξ̇3i
ξ̇4i


 =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




︸ ︷︷ ︸
A




ξ1i
ξ2i
ξ3i
ξ4i


+




0 0
0 0
1 0
0 1




︸ ︷︷ ︸
B

[
µ1i

µ2i

]
+




1 0
0 1
0 0
0 0




︸ ︷︷ ︸
P

[
Vxi
Vyi

]
(7.30a)

Yi = hi =

[
ξ1i
ξ2i

]
=

[
1 0 0 0
0 1 0 0

]

︸ ︷︷ ︸
C




ξ1i
ξ2i
ξ3i
ξ4i


 (7.30b)

which respects the conditions required by Theorem 1 in Section 7.4.

7.5.3 The leader and the followers

Without loss of generality we label the leader agent as v0 and the N followers as
vi i ∈ {1, . . . , N}.

Since we consider that the leader is a real vehicle, we want to define a con-
troller for (7.29) such that the leader converges to a desired path. We consider here
the case of linear paths. This case is the most common for practical applications.
For instance, lawn-mower paths are standard for exploring or mapping tasks. The
control objective for the leader is formalized as

lim
t→∞

(h0 − h0d(t)) = 0, (7.31)

where h0d(t) is a time parametrized linear trajectory. In particular, we assign h0d(t)
as a piece-wise linear trajectory defined by way-points [54]. We want the leader
vehicle to move along the segments defined by the way points with a constant
forward velocity Ud. We choose the following PID controller

µ10 =− kvx0 (ξ30 − ξ3d0 )− kpx0 (ξ10 − ξ1d0 )− kIx0 (ξ1I0 − ξ1dI0 ) + ξ̇3d0 (7.32a)

µ20 =− kvy0 (ξ40 − ξ4d0 )− kpy0 (ξ20 − ξ2d0 )− kIy0 (ξ2I0 − ξ2dI0 ) + ξ̇4d0 (7.32b)

where kpx0 , kpy0 , kvx0 , kvy0 , kIx0 , kIy0 are positive real gains, ξiI =
∫ t

0
ξi(τ)dτ where

i ∈ {1, 2, 1d, 2d}.
For the followers we decide to solve the synchronization problem, i.e.

lim
t→∞

(hi − h0) = 0,

assigning µξ3i , µ2i according to (7.8).

7.5.4 The result for marine vehicles

According to the choice that we have done above, we can formulate the following
corollary which states the conditions under which the linear diffusive coupling law
(7.8), developed in Section 7.3, can be applied for solving the formation control
problem for marine vehicles.
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Table 7.1: Way points.

x[m] y[m]
WP1 0 0
WP2 3500 0
WP3 3500 3500
WP4 0 3500

Corollary 7.1. Consider a network of N+1 agents described by (7.26). Define the
hand position hi = [xi+d cos(ψi), yi+d sin(ψi)]

T as output for each vehicle. Define
the input-output feedback linearizing controller (7.28) for each vehicle and apply it
with [µ1i , µ6i ]

T chosen as (7.8) for all the followers, and choose [µ10
, µ20

]T as in
(7.32) for the leader. If the conditions of Theorem 1 are satisfied by the external
dynamics (7.29c-7.29f) then the control objective (7.2) is achieved. Furthermore,
the internal dynamics of each follower (7.29a-7.29b) stays bounded by the bounded
states of the respective external dynamics.

Proof. The proof of this corollary is a direct consequence of Theorem 5.1 in Chapter
5 and Theorem 7.1.

7.6 Simulations

In this section a simulation case study is presented in order to validate the theo-
retical results.

For our simulations we consider for each vehicle the ASV model given in [57]
and reported in Appendix B. We consider four followers and one leader which com-
municate via the graph given in Figure 7.3. We use the controller (7.28) together
with (7.8) for the followers and (7.28) together with (7.32) for the leader. The de-
sired formation is for the followers to move behind the leader, forming a pentagon
with side length 200[m]. The leader has to travel along a piece-wise continuous line
trajectory γ(t) made of three line segments, that is, γ(t) = γ1(t)∪γ2(t)∪γ3(t). We
consider

γ1 = {(x0d(t), y0d(t)) | x0d(t) = 3 t [m], y0d = 0 [m] }
γ2 = {(x0d(t), y0d(t)) | x0d(t) = 3500 [m], y0d = 3 (t− t1) [m] }
γ3 = {(x0d(t), y0d(t)) | x0d(t) = −3 (t− t2) + 3500 [m], y0d = 3500 [m] }.

(7.33)

Note that t1 is the time instant at which the vehicle arrives nearby WP2 and t2
the time instant at which it arrives nearby WP3. An illustration of the path and
of the desired configuration for the agents is given in Figure 7.3.

It is clear that γ(t) is delimited by the fours way points listed in Table 7.1.
The switch from γi(t) to γi+1(t) is made with the circle of acceptance method
[54]. That is, the desired path switches from γ1(t) to γ2(t) when the vehicle is
inside a circle of radius R = 200[m] centered at WP2. The switch from γ2(t) to
γ3(t) happens in the same way when the distance between the vehicle and WP3

is smaller than 200[m]. Table 7.2 gives the agents’ initial positions and the ocean
current affecting each one of them. Note that the currents are strongly different
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Figure 7.3: Desired motion and topology of the communication graph.

Table 7.2: Initial states and ocean currents affecting the vehicles.

x|t0 [m] y|t0 [m] ψ|t0 [deg] Vx [m/s] Vy [m/s]
v0 -10 50 10 -0.7 -0.9
v1 -100 50 50 0.5 -1
v2 -300 300 30 0.2 -0.5
v3 -300 -150 20 -1 -0.8
v4 0 100 15 1 -0.3

for each vehicle. This is a somewhat unrealistic situation, but we use it in order
to show the generality of our theoretical result. During our simulation we consider
saturation for both the rudder and the propeller using the same saturation limit
as in [57]. The maximum rudder angle of the ASV is 35◦ and the maximum rudder
turning rate 10[◦/s] . The maximum available propeller force is 1600[kN]. Finally,
we consider li = lj = 50[m] ∀i, j ∈ {1, . . . , N}. Figures 7.4-7.7 show the results of
the simulation.

From Figure 7.4 we see that the leader vehicle v0 converges to the desired path
while the four followers converge to the desired formation. Figure 7.5 shows the
trajectory tracking error of the leader. It is cleat that the control objective of the
leader, that is tracking γ(t) is achieved. Note that when v0 is close to the way
points we have a jump in the error. This corresponds to a switch from a segment to
the other of the path. However, the error is driven to zero again. Figure 7.6 shows
the error between the output of each agent, that is the hand position point hi of
the i − th agent, and the output of the leader, that is h0. It is clear that also the
formation task is achieved. Also in this case note how the formation error jumps
from to zero to an high value when a way point is reached. However, also in this
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Figure 7.6: Formation errors.

case the formation error is then driven to zero again. Finally, Figure 7.7 shows the
states z1i , z2i for the five agents. They are all bounded as expected from Theorem
7.1.

7.7 Conclusions

In this chapter we have presented a leader-follower strategy for agents with LTI
dynamics. We have considered that each agent is affected by an unknown constant
disturbance. We have proved that our approach gives global asymptotic synchro-
nization of the followers’ output with the leader’s output. We have also considered
that the leader may be a controlled linear system, or a virtual leader generated by
the LTI dynamics (7.1). Furthermore, we have applied the proposed synchronizing
controller to the formation control problem for nonlinear under-actuated marine
vehicles. In particular, we have applied recent results on how to develop a feed-
back linearized system with stable internal dynamics by choosing the concept of
hand position as system output, and applied the proposed leader-follower synchro-
nization approach to the resulting LTI system. The theoretical results have been
validated with a simulation case study.
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7.A Equations

Fur (vr, r) ,
1

m11
(m22vr +m23r)r −

d11

m11
ur, (7.34)

X1(M) ,
m11m33 −m2

23

m22m33 −m2
23

X2(M,D) ,
d33m23 − d23m33

m22m33 −m2
23

(7.35)

Y1(M) ,
(m11 −m22)m23

m22m33 −m2
23

Y2(M,D) ,
d22m33 − d32m23

m22m33 −m2
23

(7.36)

X(ur) , −X1ur +X2 Y (ur) , −Y1ur − Y2, (7.37)

Fr(ur, vr, r) ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r,

(7.38)

f(z1, z2, ξ1, ξ2, ξ3, ξ4, µ1, µ2) , −
((

Y1 −
X1 − 1

l

)
U cos(z1 − φ) + Y2 +

X2

l

)
z2

−
(
Y1

l
U cos(z1 − φ) +

Y2

l

)
U sin(z1 − φ)

− µ1 sin(z1)

l
+
µ2 cos(z1)

l

U ,
√
ξ2
3 + ξ2

4 ∧ φ , arctan
(
ξ4
ξ3

)
(7.39)

[
Fξ3i (·)
Fξ4i (·)

]
,

[
cos(ψi) − sin(ψi)
sin(ψi) cos(ψi)

] [
Furi (·)− vriri − lr2

i

uriri +X(·)ri + Y (·)vri + Fri(·)l

]

(7.40)
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Path following for marine vehicles
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Chapter 8

Geometric guidance for path
following of marine vehicles

In this chapter the path following control problem of unparametrized straight-line
paths is considered. ASVs and AUVs moving in the horizontal plane and affected
by an constant and unknown ocean current are considred. We use an observer to
estimate the current, such that we can use the estimates in the guidance law in
order to counteract its disturbing effect. The method is inspired by common con-
trol strategies for UAVs, in particular quad-copters, that are based on differential
geometry considerations Specifically, this work has been inspired by the control
approach given in [83, 84, 86].

The method presented here is based on the following approach. We define a
direction which points towards the path using the cross track error vector and the
estimated ocean current vector. Then we make the vehicle align itself with this
direction in order to converge to the path. We do not define an explicit desired
yaw angle, but instead we use a feedback linearizing controller based on an error
function developed directly on the SO(2) group [27, 84, 86]. Furthermore, notice
that in [86] environmental disturbances are not considered, while our controller
takes into account the rejection of disturbances due to ocean currents. Moreover,
in our guidance approach the desired linear velocity is defined using the ocean
current estimate and a desired value for the along path velocity.

The way the desired velocity and the desired orientation are defined allows the
vehicle to move along the path with an assigned along path velocity, i.e. speed
over ground. In other guidance methods, e.g. the ILOS [33], it is only possible
to control the relative surge velocity, which is not aligned with the path if the
system is affected by an ocean current. This misalignment, i.e. the side-slip angle,
is different for different ocean current vectors and the same relative surge velocity.
Consequently, with the ILOS the speed over ground and forward along path velocity
will depend on the magnitude of the ocean current velocity.

The main difference between the control approach presented in Chapter 6 and
the one presented in this chapter stays in the choice of the output of the system.
In fact, while in Chapter 6 an input-output feedback linearizing controller was
applied choosing the motion of the hand position point as output, in this chapter
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8. Geometric guidance for path following of marine vehicles

the vehicle is controlled with respect to the pivot point. Furthermore, the control
strategy presented in Chapter 6 was valid for parametrized curved paths, while the
approach presented here is valid only for unparametrized straight-line paths.

Furthermore, the guidance approach in this chapter presents two main differ-
ences with respect to control approach presented in Chapter 6. First, the approach
developed here is valid only for unparametrized straight-line paths. Second, we
control the marine vehicle without applying any change of inputs to the model
presented in Chapter 2, as instead done in Chapter 6.

Using cascaded systems theory we prove that the closed-loop system is almost-
globally asymptotically stable (AGAS). The work presented in this chapter is based
on [109].

The chapter is organized as follows: in Section 8.1 the model for under-actuated
marine vehicles is given and briefly described; Section 8.2 introduces the path
following control problem; in Section 8.3 the proposed guidance strategy is given
and discussed; Section 8.4 gives the controller; Section 8.5 presents the main result
of this chapter; in Section 8.6 a simulation case study is given in order to validate
the theoretical result; finally, Section 8.7 gives the conclusions.

8.1 Vehicle model

In this chapter the relative velocity model for ASVs and AUVs moving in the
horizontal plane discussed in Chapter 2 is used. Assumptions 2.1-2.3 are considered
to hold. The model (2.11) in component form is recalled here:

[
ẋ
ẏ

]
= R

[
ur
vr

]
+

[
Vx
Vy

]
(8.1a)

ψ̇ = r (8.1b)

u̇r = Fur (vr)−
d11

m11
ur + τu (8.1c)

v̇r = X(ur)r + Y (ur)vr (8.1d)
ṙ = Fr(ur, vr, r) + τr (8.1e)

where ur is the relative surge velocity, vr the relative sway velocity and Vx, Vy
are the x and y components of the ocean current V = [Vx, Vy]T , respectively. The
expressions for Fur (ur), X(ur), Y (ur), Fr(ur, vr, r) are given in Appendix 8.A. The
matrix R ∈ SO(2), that is, R is a roation matrix and is such that

R =
[
b1 b2

]
(8.2a)

bT1 b2 = 0 (8.2b)

bT1 b1 = 1 (8.2c)

bT2 b2 = 1. (8.2d)

The model (8.1) describes a planar motion, therefore R describes the orientation
of the vehicle on the 1-dimensional unit sphere S1, where S1 = {ζ ∈ R2|‖ζ‖ = 1}.
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This implies that the orientation on the Euclidean plane can be described by a
single parameter, that is the yaw angle ψ. Then we have

R =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. (8.3)

In this chapter we present a control strategy based on an attitude tracking error
evolving directly in SO(2). This is because the derivation of our approach results
more intuitive if used to design a desired rotation matrix Rd to describe the desired
orientation. However, even though for the development of the theory we use R, for
practical reasons in real applications the matrix R would be computed as in (8.3)
since the on-board sensors would provide the yaw angle ψ and not the vectors
b1,b2.

We consider the following assumption to hold:

Assumption 8.1. The ocean current in the inertial frame Vc = [Vx, Vy]T is con-
stant, irrotational and bounded, that is, Vmax ≥

√
V 2
x + V 2

y with Vmax constant.

8.2 Control objectives

In this section the path following control problems for straight-lines in the presence
of unknown ocean current is described and formalized.

Without loss of generality we choose the desired path to be P = {(x, y) ∈
R2|y = 0}. This implies P is aligned along the x-axis of the NED frame, which in
turn implies that the y coordinate is equal to the cross-track error y = e, i.e., the
minimum distance from the path. The path P represents a set in the space which
we want to stabilize. The control objectives can be stated as follows:

lim
t→∞

y = 0 (8.4a)

lim
t→∞

(ur − urd) = 0 (8.4b)

lim
t→∞

R̃ = lim
t→∞

RT
dR = I (8.4c)

The values Rd and urd are the desired rotation matrix and the surge relative
velocity, respectively. They will be defined in the next section.

8.3 The guidance law and the observer

In this section we present our guidance approach. First, the desired surge velocity
urd and the desired rotation Rd are presented and discussed in this section. Then
we describe the liner observer presented in [3]. The use of the observer is necessary
due to the presence of the constant ocean current V affecting the system (8.1). We
use the observer in order to estimate and compensate for the effect of the unknown
ocean current.
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8.3.1 Surge velocity

For the desired value of the surge velocity we choose

urd(ux, V̂ ) =

√
(ux − V̂x)2 + (−V̂y)2 (8.5)

where ux is a constant. The steady state surge velocity urd,ss which is reached
when the observer has converged is given by urd,ss =

√
(ux − Vx)2 + (−Vy)2. This

implies that the vehicle moves with a constant absolute along path velocity ux, see
Figure 8.1.

This differs from previous works considering straight-line path following, for
instance, [20, 32], in which only the relative surge velocity is controlled to a constant
independent of the ocean current. In particular, they only require urd > ‖V‖, which
implies that when the vehicle is on the path it moves with an unknown along-path
velocity depending on urd > ‖V‖.

Finally we consider the following assumption to hold

Assumption 8.2. The desired along path velocity respects the following condition

|ux| ≥ Vx. (8.6)

Remark 8.1. This assumption ensures that there will be forward motion along the
path P. Note that when the vehicle is not on the path, urd > ‖V‖ by definition.
This guarantees that the vehicle is able to counteract the disturbing effect of the
vehicle as long as the thrusts are able to provide enough power.

In order to guide the vehicle towards the path, we define a desired rotation
matrix Rd

b1d =ux − e− V̂ (8.7)

Rd =
[

b1d

‖b1d‖
b2d

‖b2d‖

]
=

[
ux−V̂x
N̂

ke+V̂y

N̂
−kê−V̂y

N̂

ux−V̂x
N̂

]
(8.8)

where ux = [ux, 0]T is the desired constant along path velocity expressed in the
NED frame, e = [0, kê]T gives the cross-track error scaled by the constant gain k,
V̂ = [V̂x, V̂y]T is the estimation of the current, and

N̂ = ‖V̂ + ux + e‖ =

√
(ux − V̂x)2 + (−ke− V̂y)2. (8.9)

Note that in order to have a well defined guidance law we need N̂ 6= 0 ∀t. This can
be assured by a careful design of the observer for the ocean current V and it will
be discussed in the next section. The unit vector b2d

‖b2d‖ is chosen such that

(
b1d

‖b1d‖

)T
b2d

‖b2d‖
= 0. (8.10)

This implies that Rd ∈ SO(2), i.e. Rd is an orthogonal matrix [128].
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Figure 8.1: a) Geometric guidance principle for the 2D case; b) Geometric guidance
principle for steady state situation

The meaning of the vector b1d is clear from Figure 8.1. I particular, the vector
b1d is the sum of e,ux,−V̂. Therefore, no matter what the sign or direction of
the current is, if the vehicle is not on the path it will have a non zero component
pointing towards the path due to the vector e. This implies that the rotation
imposed by Rd is also pointing towards P. Note also that in the vector sum for
b1d there is V̂, which compensates for the effects of the ocean current when it
converges to the real value of the ocean current. This is illustrated in Figure 8.1.
Finally, when e is zero the final desired direction is such that the orientation of the
vehicle counteracts the current and moves along the path with velocity ux. This
situation is shown in Figure 8.1b.

To sum up: what we aim to do with our guidance approach is to define the
direction b1d due to geometric considerations. This direction points towards the
path and is used to define a desired rotation matrix Rd which aligns the surge axis
of the vehicle along b1d. In fact, since we consider under-actuated vehicles the only
way for the vehicle to move with the assigned absolute velocity is to align its x axis
along the direction of the desired absolute velocity.
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8.3.2 The observer

In order to estimate the ocean current, we use the Luenberger observer for AUVs
proposed in [3]

˙̂η = Rνr + V̂ + K1η̃ (8.11a)
˙̂
V = K2η̃ (8.11b)

where η̂ = [x̂, ŷ]T contains the estimates of the positions, V̂ = [V̂x, V̂y]T con-
tains the estimates of the current velocities, and K1 = diag{kx1

, ky1} and K2 =
diag{kx2 , ky2} are diagonal matrices of positive constant values. From (8.1a-8.1b)
and (8.11) we obtain the following error dynamics




˙̃x
˙̃y
˙̃Vx
˙̃Vx




︸ ︷︷ ︸
ξ̇1

=




−kx1
0 1 0

0 −ky1 0 1
−kx2 0 0 0

0 −ky2 0 0







x̃
ỹ

Ṽx
Ṽy




︸ ︷︷ ︸
ξ1

(8.12)

where the tilde quantities represent the estimation error, and are chosen such that
ã = a − â with a ∈ {x, y, Vx, Vy}. It is important to note that the injection term
of the observer depends on the states x, y which are the real x and y position in
the NED frame of the vehicle. The values of x and y in the NED frame can be
obtained by a GPS sensor for surface vessels or via acoustic network for AUVs.

At this point, note that in order to have a well defined Rd ∀t we need that
N̂ 6= 0 ∀t. This is guaranteed if the two terms ux − V̂x,−ke − V̂y are not zero at
the same time. It then suffices to have ux > V̂max ∀t. This can be guaranteed with
an opportune inizialization of the of states of the observer, for instance

[x̂(t0), ŷ(t0), V̂x(t0), V̂y(t0)]T = [x(t0), y(t0), 0, 0]T .

This implies an initial error for the observer that is

[x̃(t0), ỹ(t0), Ṽx(t0), Ṽy(t0)]T = [0, 0, Vx, Vy]T ≤ Vmax (8.13)

Now define the following Lyapunov function

W (t) = x̃2 + ỹ2 +
1

kx2

Ṽ 2
x +

1

ky2
Ṽ 2
y . (8.14)

We obtain the following derivative

Ẇ (t) = −2kx1 x̃
2 − 2ky1 ỹ

2 ≤ 0. (8.15)

This implies that W (t) ≤ ‖W (t0)‖. According to our choice of initial conditions we
have

‖W (t0)‖ =
V 2
x

kx2

+
V 2
y

ky2
≤ 1

min(kx2
, ky2)

V 2
max. (8.16)
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From (8.14) we also have

1

max(kx2
, ky2)

‖Ṽ(t)‖2 ≤W (t). (8.17)

Without loss of generality we can choose kx2
= ky2 , and combining (8.16), (8.17)

we obtain
‖Ṽ(t)‖2 ≤ V 2

max. (8.18)

Finally according to Assumption 8.2, we have ux > V̂max ≥ Vx.

8.4 The controllers

In this section we present the controller design to achieve our control objectives
(8.4). We first define an attitude error function. In fact, in Section 8.3 we have
presented a guidance law which defines a desired rotation matrix Rd in order to
steer the vehicle towards the desired path P. This requires the definition of an
attitude error function which is defined in the SO(2) space. Finally, we present two
feedback linearizing controllers for tracking the desired surge velocity urd and the
desired rotation matrix Rd.

8.4.1 Attitude error function

With the purpose of driving the system towards the desired orientation given by
Rd, we define a controller which works directly in the SO(2) space defining an
attitude error function Ψ(R,Rd) : SO(2) × SO(2) → R such that Ψ(Rd,Rd) = 0
[27, 84] and then we choose its derivative as yaw tracking error. This approach is
similar to the one in [84, 86].

We define Ψ(R,Rd) as follows:

Ψ(R,Rd) =
1

2
tr
[
I −Rd

TR
]
. (8.19)

and its derivative with respect to R is [28, 84, 86]

DRΨ(R,Rd) = eR =
1

2
(Rd

TR−RTRd)∨ (8.20)

where (Rd
TR − RTRd) is a 2 × 2 skew-symmetric matrix and ∨ is an operator

such that

a = S(a)∨ =

([
0 −a
a 0

])∨
. (8.21)

Note that Ψ(R,Rd) ∈ [0, 2]. In particular, Ψ(Rd,Rd) = 0 corresponds to the
situation for which the x axis of the local frame of the vehicle is aligned along the
desired direction b1d, that is, the vehicle is moving with the desired orientation.
While Ψ(−Rd,Rd) = 2 corresponds to the situation for which the x axis of the
local frame of the vehicle is aligned along −b1d, that is, the vehicle is pointing in
the opposite direction with respect to the desired one.

According to [83], the following properties hold for Ψ(R,Rd)
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Properties 8.1. Ψ(R,Rd) respects the following properties:
(i.) Ψ(R,Rd) is positive definite about R = Rd

(ii.) the critical points of Ψ(R,Rd), i.e. the points in at which the derivative of
Ψ(R,Rd) is zero, are {Rd} ∪ {±πŝ} for s ∈ S1, and there exists only one
critical point {Rd} in the sublevel set L2 = {R ∈ SO(2)|Ψ(R,Rd) < 2}

(iii.) Ψ(R,Rd) is locally quadratic on L2

1

2
‖eR‖2 ≤ Ψ(R,Rd) ≤

1

2− ψ ‖e
2
R‖. (8.22)

where ψ < 2.

Property ii tells that the derivative of Ψ(R,Rd) is zero, i.e. eR = 0, when the
x axis of the body frame of the vehicle is aligned with b1d and when it points
the opposite direction of b1d. That is, eR = 0 when R = Rd and eR = 0 when
R = −Rd, that is, when the orientation given by R differs by 180◦ of the one given
by Rd. Note also that the sublevel set L2 almost covers the space SO(2) since it
includes all the rotation matrices R which give orientations that differ by 180◦

from the orientation given by Rd.
The yaw rate error is defined as

r̃ = r − rd (8.23)

and the desired signal rd can be calculated from

rd = S(rd)
∨ =

(
RT
d Ṙd

)∨
(8.24)

S(rd) =

[
0 −rd
rd 0

]
. (8.25)

For Ψ(R,Rd) we have that

dΨ(R,Rd)

dt
= eRr̃ (8.26)

Then we have that

ėR =
1

2

(
tr
(
RT
dR
)
I2×2S(r̃)

)∨

=
1

2
tr
(
RTRd

)
︸ ︷︷ ︸

C

r̃ (8.27)

where

S(r) =

[
0 −r
r 0

]
. (8.28)

Note that |C| ≤ 1 and this implies |ėR| ≤ |r̃| ∀t.
Remark 8.2. Note that in order to implement our guidance law, the rotation
matrix R, which gives the actual orientation of the vehicle is needed. The matrix
R can be calculated using the yaw angle ψ measured by the on-board magnetometer.
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8.4.2 The controller

Motivated by [20] and [33], we choose the following feedback linearizing controller

τu = −Fur (vr)− ku (ur − urd)︸ ︷︷ ︸
ũr

+
d11

m11
urd + u̇rd (8.29a)

τr = −Fr(ur, vr, r)− kr r̃ − kReR + ṙd (8.29b)

where Fur (vr), Fr(ur, vr, r) cancel out the non-linearities of the surge and yaw
dynamics in (8.1c),(8.1e). We decide not to cancel out the damping term d11/m11

in order to obtain some robustness with respect to modeling errors in d11 and
m11. The values ku, kr, kR are all positive constants. The main difference between
this controller and the one in [20, 33] is that in our case the orientation error is
defined using an attitude error function defined on the SO(2) group. Note that in
the following we will use ũr = ur − urd(·).

8.5 Main result

In this section we present the main result of the chapter stating a theorem which
includes the conditions under which the observer (8.11) and the controller (8.29)
make the system achieve the control objectives (8.4). In the following the notation
0a×b, with a, b ∈ R, is used for a a × b matrix with zero entries. The notation 0a
is used for vectors with dimension a ∈ R.

Theorem 8.1. Consider an under-actuated vessel described by the dynamic model
(8.1). If Assumptions 8.1-8.2 hold and

kx1
, ky1 , kx2

, ky2 > 0 (8.30)

0 < k <
Ym (ux − Vx)

2XM
(8.31)

then the observer (8.11) has a GES equilibrium point (x̂, ŷ, V̂x, V̂y) = (x, y, Vx, Vy).
Furthermore, the controller (8.29), where urd and Rd are given by (8.5) and (8.8),
respectively, guarantees the achievement of the control objectives (8.4) for almost
all the initial conditions.

Proof. In order to prove Theorem 8.1, we first substitute (8.29) in (8.1), we define

N =
√

(ux − Vx)
2

+ (ke+ Vy)
2, ξ1 = [x̃, ỹ, Ṽx, Ṽy]T , ξ2 = [ũ, eR, r̃]

T , z = [e, vr]
T
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and after rearranging we obtain the following closed-loop system
[
ė
v̇r

]
=

[
−kurdN ux−Vx

N
k2X(urd )(ux−Vx)

N3 −kX(urd )(ux−Vx)2

N3 + Y (urd)

] [
e
vr

]

+

[ (
1− urd

N

)
(
1− urd

N

) k2X(urd )(ux−Vx)2

N

]
Vy +

[
ge(ξ1, ξ2, z)
gvr (ξ1, ξ2, z)

]

︸ ︷︷ ︸
G(ξ1,ξ2,z)

(8.32a)

[
ėR
˙̃r

]
=

[
0 C
−kR −kr

] [
eR
r̃

]
(8.32b)

˙̃ur = −
(
ku +

d11

m11

)
ũr (8.32c)




˙̃x
˙̃y
˙̃Vx
˙̃Vx


 =




−kx1
0 1 0

0 −ky1 0 1
−kx2

0 0 0
0 −ky2 0 0




︸ ︷︷ ︸
H




x̃
ỹ

Ṽx
Ṽy


 . (8.32d)

The closed-loop system (8.33) can be seen as a cascaded system of the form

ż = fz(z, ξ) +G(ξ, z) (8.33a)

ξ̇ = fξ(ξ) (8.33b)

with z = [e, vr]
T ∈ R2, ξ = [ξ1, ξ2]T ∈ R7.

The proof can be divided in four steps:
(i.) prove that the estimates of the observer (8.11) globally exponentially con-

verges to the real values of the ocean current, i.e. ξ1 = 04 is GES;
(ii.) prove that (eR, r̃)→ (0, 0) globally asymptotically, but in particular R→ Rd

almost-globally asymptotically;
(iii.) prove that (e, vr) = (0, 0) is GAS when (8.32a) is unperturbed, i.e. (e, vr) =

(0, 0) is GAS for ge(·) = gvr (·) = 0;
(iv.) prove that the origin of the closed loop-system system is GAS and implies

that the control objectives are fulfilled for almost all initial conditions.
In the following we will use X(urd) = X and Y (urd) = Y for ease of notation.

8.5.1 Observer stability

From (8.32d), we note that H is a Hurwitz matrix. Therefore there exists a sym-
metric positive definite matrix Pξ1 > 0 such that

PTξ1Hξ1 +HT
ξ1Pξ1 = −Qξ1

for a given positive definite matrix Qξ1 > 0. Then we have

V1 = ξT1 Pξ1ξ1 (8.34)

V̇1 = − ξT1 Qξ1ξ1. (8.35)

124



8.5. Main result

Thus the equilibrium point (x̃, ỹ, Ṽx, Ṽy) = (0, 0, 0, 0) is GES. This implies that

(x̂, ŷ, V̂x, V̂y)→ (x, y, Vx, Vy)

exponentially.

8.5.2 Stability of the surge error dynamics

The error dynamics of ũr (8.32c) is clearly exponentially stable since ku, d11/m11 >
0. Therefore ũr = 0 is a GES equilibrium point. This implies that ur → urd =√

(ux − V̂x)2 + (−V̂y)2 globally exponentially.

8.5.3 Stability of the attitude error dynamics

The equilibrium point of (8.32b) is (eR, r̃) = (0, 0). Note that

eR|R=Rd
= eR|R=−Rd

= 0.

That is, eR = 0 for R = Rd and R = −Rd.
Let us define the following Lyapunov function candidate

V2 =
1

2
r̃2 + kRΨ. (8.36)

Since Ψ > 0 ∀eR 6= 0, V2 > 0 for r̃ 6= 0 and eR 6= 0. The derivative of V2 is

V̇2 ≤ −kr r̃2 ≤ 0. (8.37)

This implies that r̃ → 0. Then, invoking the La Salle invariance principle we
know that eR → 0 as well. According to the definition of eR we have eR = 0 for
R = Rd ∧ R = −Rd. Differentiating the dynamics (8.32b) with respect to the
states eR, r̃ we obtain the following Jacobian matrix

J =

[
0 tr

(
RT
dR
)

−kR −kr

]
. (8.38)

In particular, we have that J |R=Rd
has two eigenvalues with negative real part

and J |(R=−Rd) has one eigenvalue with negative real part and one eigenvalue with
positive real part. This implies that (eR, r̃)|Ψ(R,Rd)=0 = (0, 0) ⇔ R = Rd is a
stable equilibrium point, while (eR, r̃)|Ψ(R,Rd)=2 = (0, 0) ⇔ R = −Rd is unstable
and in particular hyperbolic. This implies that Ψ(R,Rd) = 0 is a stable condition,
that is, the motion of the vehicle with the desired orientation given by Rd is stable.
On the other hand, Ψ(R,Rd) = 2 is unstable, that is, if the vehicle moves with an
orientation which differs by 180◦ to the desired one, the motion is unstable.

Then, according to Theorem A.2 and [85] we have that the equilibrium

(eR, r̃)|R=−Rd
= (0, 0)

has a stable and an unstable manifold Ws
u and Wu

u , respectively. Both Ws
u and

Wu
u are one-dimensional. In fact, the manifold Wu

u is spanned by the eigenvalue
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with positive real part of the J |R=−Rd). While Ws
u, is spanned by the eigenvalue

with negative real part of J |R=−Rd) [85]. Since the system (8.32b) evolves on the
2-dimensional manifold R2, we have that Ws

u has zero Lebesgue measure. The
discussion above implies that (eR, r̃) → (0, 0) is GAS. In particular, if (R, r) →
(Rd, rd) if (eR, r̃)t0 ∈ R2\Wu

u , then the control objective (8.4c) is satisfied for
almost-all the initial conditions, that is, almost globally. Note also that (R, r) =
(Rd, rd) is locally exponentially stable (LES). Finally, note also that Ψ(R,Rd)→ 0
almost-globally asymptotically and locally exponentially.

8.5.4 Stability of the sway error dynamics

We now pay attention to the unperturbed sway dynamics (8.32a), that is, we pay
attention to the dynamics of e, vr when ξ1 = 04, ũ = eR = r̃ = 0.

Let us define the Lyapunov candidate function

V3 =
1

2

(
e2 + κ2v

2
r

)
(8.39)

with κ2 > 0 to be determined. We obtain

V̇3 = eė+ κ2vrv̇r

= e

(
−kurd

N
+
ux − Vx
N

vr +
(

1− urd
N

)
Vy

)
+

+ κ2vr

(
k2X (ux − Vx)

N3
e− kX (ux − Vx)

2

N3
vr + Y vr+

−kX (ux − Vx)

N2

(
1− urd

N

)
Vy

)
. (8.40)

Recall that N =
√

(ux − Vx)2 + (ke− Vy)2. Then, when e = 0, we have ud = N .
Thus, the following inequalities hold

−kurd
N

e+
(

1− urd
N

)
Vy ≤ −

k (urd − |Vy|) e
N

(8.41a)

−
(

1− urd
N

)
Vy ≤

k|Vy|e
N

. (8.41b)

We obtain

V̇3 ≤ −
k (urd − |Vy|)

N
e2 + (ux − Vx)

[
1 + κ2

k2X (urd + |Vy|)
N2

] |vr||e|
N

+

+ κ2

(
−Ym +

kXM

(ux − Vx)

)
v2
r . (8.42)

Define now the variable

|z| = |e|
N

=
|e|√

(uxVx)
2

+ (ke+ Vy)
2
. (8.43)
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We have that

−k (urd − |Vy|)
N

e2 = −Nk (urd − |Vy|) z2 ≤ − (ux − Vx) k (urd − |Vy|) z2 (8.44)

and

V̇3 ≤ − (ux − Vx) k (urd − |Vy|) z2 + (ux − Vx)

[
1 + κ2

k2X (urd + |Vy|)
N2

]
|vr||z|

+ κ2

(
−Ym +

kXM

(ux − Vx)

)
v2
r (8.45)

≤ − (ux − Vx) k (urd − |Vy|) z2 + (ux − Vx)

[
1 + κ2

k2X (urd + |Vy|)
(ux − Vx)

2

]
|vr||z|

+ κ2

(
−Ym +

kXM

(ux − Vx)

)
v2
r (8.46)

(8.47)

Choosing

κ2 =
(2α− 1) (ux − Vx)

2

k2 (urd + |Vy|)
(8.48a)

α =
(urd − |Vy|)
(urd + |Vy|)

[
Ym (ux − Vx)

kXM
− 1

]
(8.48b)

we obtain

V̇3 ≤ − (ux − Vx)

[
k (urd − |Vy|) z2 − 2α|vr||z|+

α (2α− 1)

k (urd − |Vx|)
v2
r

]
(8.49)

≤ − (ux − Vx)

[
k (urd − |Vy|) z2 − 2α|vr||z|+

α2

k (urd − |Vx|)
v2
r

]

− (ux − Vx)
α (α− 1)

k (urd − |Vx|)
v2
r (8.50)

≤ − (ux − Vx)




√
k
√

(urd − |Vy|)e√
(ux − Vx)

2
+ (ke+ Vy)

2
− αvr√

k
√

(urd − |Vy|)




2

− (ux − Vx)
α (α− 1)

k (urd − |Vx|)
v2
r (8.51)

≤ − φ (e, vr) . (8.52)

The function φ (e, vr) is negative definite if α > 1. Recalling the condition (8.31)
and noticing that α > 1 requires

k <
Ym (ux − Vx) (urd − |Vy|)

2XMurd
≤ Ym (ux − Vx)

2XMurd
(8.53)

we can conclude that −φ (e, vr) is negative definite. This implies that (e, vr) = (0, 0)
is GAS. Furthermore, we have that near the origin φ (e, vr) ≤ −λee2 − λvrv

2
r ,

implying that (e, vr) = (0, 0) is also locally exponentially stable (LES).
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8.5.5 Stability of the complete system

As mentioned above, our system respects the structure (8.33). Therefore, in order
to prove that the origin of the closed-loop system (8.32) is GAS, we use the results
of Theorem A.1. We need to check that the three conditions of Theorem A.1 are
satisfied. That is:
(i.) The unperturbed e, vr dynamics, that is, (8.32a), have GAS origin when

G(ξ)ξ = 0. This has been proven in Section 8.5.4;

(ii.) The perturbing dynamics ξ1, ũ, eR, r̃ respect the integrability condition. This
holds since ξ1, ũ, eR, r̃ are all GAS and LES;

(iii.) The perturbing term G(z, ξ)ξ has to have at most linear growth with respect
to the state z. Also this property holds since

G(ξ) ≤ G1(‖ξ‖)‖z‖+G2(‖z‖) ≤ Ḡ1‖z‖+ Ḡ2. (8.54)

Since all conditions required by Theorem A.1 are satisfied we can tell that the
origin of (8.32) is GAS. Thus e = y → 0, u→ urd and the control objectives (8.4a-
8.4b) are fulfilled. Finally, we have eR → 0 which implies that either R → Rd

or R → −Rd according to the initial conditions. According to what is proven in
Section 8.5.3, we have that R→ Rd for almost all the initial conditions.

8.6 Simulation results

In this section the simulation of a case study is reported in order to validate the
theoretical results.

For our simulations we consider the model of an ASV given in [57]. We consider
that at the time instant t0 = 0 the ASV is stationary (u|t=0 = 0) at the initial
position p|t=0 = [50,−1100]T [m]. We assume that the system is affected by an
ocean current V = [Vx, Vy]T = [−0.6, 0.7]T [m/s]. The vehicle will have an estimate
of the current given by the observer (8.11). The initial value of the estimation
of the ocean current is V̂ |t=0 = [0, 0]Tm/s. As regard the position estimation
the observer is initialized with the value p0 = [50,−1100]Tm. This respects our
considerations in Section 8.3 in order to not have overshoot in the estimation of
V. At t = 0 the vehicle is pointing in the direction b1/‖b1‖ = [0.854,−0.5197]T

which corresponds to an initial angle ψ|t=0 = −34, 4◦. The gains for the controller
are k = 0.01, kr = 0.04, kR = 0.004 and ku = 1. Without loss of generality we have
chosen a desired straight path fixed along the x axis of the NED frame. Therefore,
considering also the disturbance due to the ocean current, the desired direction for
the vehicle in order to move along the path is given by b1,d/‖b1,d‖ = [0.99−0.12]T .
During our simulation we consider saturation for both the rudder and the propeller
using the same saturation limit as in [57]. The maximum rudder angle of the ASV
is 35◦ and the maximum rudder turning rate 10[◦/s] . The maximum available
propeller force is 1600[kN].

In Figure 8.2, we can see how the vehicle converges to the path. It is clear that
when the vehicle is on the path, its orientation is non-zero due to the necessary
side-slip angle to counteract the ocean current. Figure 8.3 shows the convergence
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Figure 8.2: Motion of the vessel. The arrows indicates the direction of the ocean
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to zero of the cross track error e, the surge velocity error ũ and the attitude errors
Ψ(R,Rd), eR and r̃. In Figure 8.4 we can see that the error estimates of the
ocean current converge to zero without overshooting. This means that during the
transient we have ‖V̂‖ ≤ V. Finally, in Figure 8.5 we can see the surge propeller
force is saturated. and the rudder torque. We see that at the beginning of the
motion, the surge propeller force is saturated.

8.7 Conclusions

In this chapter we have presented a guidance control approach for ASVs and AUVs
moving in the horizontal plane, based on geometric considerations. The method has
been inspired by the control strategies used in [84] for UAVs, and further extended
to handle environmental disturbances. Our method uses an observer in order to
estimate the ocean current and counteract it during the motion. Based on a model
including both the kinematics and dynamics of the vehicle, and using cascaded
systems theory, almost-GAS for the closed-loop system has been proved. Finally,
simulation results from a case study have been reported in order to validate the
theoretical results.

8.A Perturbation terms

The nonlinear terms appearing in (8.1) are reported here

Fur ,
1

m11
(m22vr +m23r)r, (8.55)

X(ur) ,
m2

23 −m11m33

m22m33 −m2
23

ur +
d33m23 − d23m33

m22m33 −m2
23

, (8.56)

Y (ur) ,
(m22 −m11)m23

m22m33 −m2
23

ur −
d22m33 − d32m23

m22m33 −m2
23

, (8.57)

Fr ,
m23d22 −m22(d32 + (m22 −m11)ur)

m22m33 −m2
23

vr

+
m23(d23 +m11ur)−m22(d33 +m23ur)

m22m33 −m2
23

r

(8.58)

(8.59)
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The nonlinear terms representing the perturbation terms in (8.32) are reported
here

ge = zT2

(
I − R̃

)
Rdurd + zT2

(
I − R̃

)
+

(−ke− Vy
N̂

)
ũr

+




1−
√

1 + g
(ux−Vx)2+(ke−Vy)2√

(ux − Vx)
2

+ (ke− Vy)
2

+ g



(
ke+ Vy
N

urd
(ux − Vx)

N
vr

)
(8.60)

gvr = Xgr +Xr̃ (8.61)

g = Ṽ 2
x + Ṽ 2

y − 2uxṼx + k2ỹ2 + 2k2eỹ + 2kỹV̂y + 2ỹṼy+

+ 2keṼy + kVyṼy (8.62)

gr = − k (ux − Vx)

N̂
ge −

(ux − Vx)

N̂
ky1 ỹ −

(
ke+ V̂y

)

N̂
kx1

x̃+

Ṽx

N̂

(
−keurd

N
+
(

1− urd
N

)
Vy +

(ux − Vx)

N
vr + ge

)
+

Ṽx

N̂

(
−kurd

N
+
ux − Vx
N

vr +
(

1− urd
N

)
Vy + ge

)
. (8.63)

It is possible to verify that ge, gvr are made of additive terms which are all at the
most linear in e, vr or bounded with respect to e, vr. Recall that

G(ξ1, ξ2, z) =

[
ge(ξ1, ξ2, z)
gvr (ξ1, ξ2, z),

]
(8.64)

then it holds

G(ξ) ≤ G1(‖ξ‖)‖z‖+G2(‖z‖) ≤ Ḡ1‖z‖+ Ḡ2. (8.65)
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Chapter 9

Observer based path following for
generic paths: a local approach

In this chapter a solution to the problem of following a curved path in the pres-
ence of a constant unknown ocean current disturbance is presented. The path is
parametrized by a path variable that is used to propagate a path-tangential refer-
ence frame. The update law for the path variable is chosen such that the motion
of the path-tangential frame ensures that the vessel remains on the normal of
the path-tangential reference frame. As shown in the seminal work [124] such a
parametrization is only possible locally. A tube is defined in which the aforemen-
tioned parametrization is valid and the path following problem is solved within this
tube. The size of the tube is proportional to the maximum curvature of the path.

The control strategy presented in this chapter differs from the one in Chapter
6 in the control approach. In fact, in Chapter 6, a change of inputs was performed
using the input-output feedback linearization method and defining the motion of
the hand position point as output. Here, we control the vehicle with respect to the
pivot point. Furthermore, in this chapter, we consider parametrized curved paths,
while in Chapter 8 we considered unparametrized straight-line paths only.

It is shown that within the tube, the closed-loop system of the proposed con-
troller, guidance law, and the ocean current observer provides exponential stability
of the path following error dynamics. The sway velocity dynamics are analyzed
taking into account couplings previously overlooked in the literature, and is shown
to remain bounded. Simulation results are presented.

The work in this chapter is based on [99].

The chapter is organized as follows: in Section 9.1 the vessel model and the
problem definition are presented. The path parametrization is introduced in Sec-
tion 9.2. Section 9.3 presents the ocean current observer, the guidance law, and
controllers. The closed-loop system is then formulated and analyzed in Section 9.4.
A simulation case study is presented in Section 9.5 and conclusions are given in
Section 9.6.
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9.1 Vessel model

In this section we consider the model for a surface vessel given in Chapter 2. This
model can be used to describe an autonomous surface vessel or an autonomous
underwater vehicle moving in a plane. We consider vehicles satisfying Assumptions
2.1-2.3. Thus, their model can be expressed in component form as:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (9.1a)
ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (9.1b)

ψ̇ = r, (9.1c)

u̇r = Fur (vr, r)− d11
m11

ur + τu, (9.1d)

v̇r = X(ur)r + Y (ur)vr, (9.1e)
ṙ = Fr(ur, vr, r) + τr, (9.1f)

The functions X(ur), Y (ur), Fu, and Fr are given in Chapter 2. The kinematic
variables are illustrated in Figure 9.1. We consider the ocean current to satisfy the
following assumption.

Assumption 9.1. The ocean current is assumed to be constant and irrotational
with respect to the inertial frame, i.e. Vc , [Vx, Vy, 0]T . Furthermore, it is bounded
by Vmax > 0 such that ‖Vc‖ =

√
V 2
x + V 2

y ≤ Vmax.

Additionally, we assume that the following assumption holds

Assumption 9.2. It is assumed that 2Vmax < urd(t) ∀t, i.e. the desired relative
velocity of the vessel is larger than the maximum value of the ocean current.

Assumption 9.2 assures that the vessel has enough propulsion power to over-
come the ocean current affecting it. The factor two in Assumption 9.2 adds some
extra conservativeness to bound the solutions of the ocean current observer. This
is discussed further in Section 9.6.

9.2 Problem definition

The goal is to follow a smooth path P , parametrised by a path variable θ, by appro-
priately controlling the ship’s surge velocity and yaw rate. For an underactuated
vessel, path following can be achieved by positioning the vessel on the path with
the total velocity ut ,

√
u2
r + v2

r (see Figure 9.1) tangential to the path. To express
the path following error we propagate a path-tangential frame along P such that
the vessel will be on the normal of the path-tangential frame at all time. This is
illustrated in Figure 9.2. The preceding implies that the progression of the path-
tangential frame is controlled such that the path following error takes the form:

[
xb/p
yb/p

]
=

[
cos(γp(θ)) sin(γp(θ))
− sin(γp(θ)) cos(γp(θ))

] [
x− xP (θ)
y − yP (θ)

]
(9.2a)

=

[
0
yb/p

]
, (9.2b)
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9.2. Problem definition

Figure 9.1: Definition of the ship’s kinematic variables.

where γ(θ) is the angle of the path with respect to the X-axis, xb/p is the deviation
from the normal in tangential direction, and yb/p is the deviation from the tangent
in normal direction. The time derivative of the angle γ(θ) is given by γ̇(θ) = κ(θ)θ̇
where κ(θ) is the curvature of P at θ. The goal is to regulate xb/p and yb/p to zero.

9.2.1 Locally valid parametrization

The error in the tangential direction xb/p will be kept at zero by the choice of the
update law for the path variable θ, i.e. the vehicle is kept on the normal. It is well
known that such a parametrization will only be unique locally [124]. In particular,
such a unique expression exists when the vehicle is closer to the path than the
inverse of the maximum curvature of the path, i.e. when yb/p < 1/κmax where
κmax is the maximum curvature of the path. Note that this is equivalent to being
closer than the radius of the smallest inscribed circle of the path. To design such a
parametrization we first consider the error dynamics of the vessel with respect to
the path frame, which is given by:

ẋb/p = −θ̇(1− κ(θ)yb/p) + ut cos(χ− γp(θ)) + VT , (9.3a)

ẏb/p = ut sin(χ− γp(θ)) + VN − κ(θ)θ̇xb/p, (9.3b)

where χ � ψ + β is the course angle (see Figure 9.1) and VT � Vx cos(γp(θ)) +

Vy sin(γp(θ)) and VN � Vy cos(γp(θ))− Vx sin(γp(θ)) are the ocean current compo-
nent in the tangential direction and normal direction of the path-tangential refer-
ence frame, respectively. Consequently, if the path variable θ is updated according
to

θ̇ =
ut cos (χ− γp(θ)) + VT

1− κ(θ)yb/p
, (9.4)
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9. Observer based path following for generic paths: a local approach

the vessel stays on the normal when it starts on the normal. In particular, substi-
tution of (9.4) in (9.3a) results in ẋb/p = 0. To make sure that the update law (9.4)
is well defined the following condition should be satisfied

Condition 9.1. To have a well defined update law for the path variable θ it should
hold that

1− κ(θ)yb/p �= 0 (9.5)

for all time.

Note that Condition 9.1 implies that the update law is well defined within the
tube of radius yb/p < 1/κmax which results in the parametrization being only locally
valid.

Figure 9.2: Definition of the path.

The update law (9.4) depends on the current component VT . However, since
the current is assumed unknown we have to replace VT by its estimate V̂T �
V̂x cos(γ(θ)) + V̂y sin(γ(θ)). Consequently, (9.2b) does not hold until the current is
estimated correctly. Therefore, (9.2) takes the form

[
xb/p

yb/p

]
=

[
cos(γ(θ)) sin(γ(θ))
− sin(γ(θ)) cos(γ(θ))

] [
x− xP (θ)
y − yP (θ)

]
. (9.6)

To force (9.6) to become equal to (9.2) once the ocean current is estimated correctly
we augment (9.4) to be

θ̇ =
ut cos (χ− γp(θ)) + V̂T + kδxb/p

1− κ(θ)yb/p
, (9.7)

such that the path-tangential reference frame propagates based on an estimate of
the ocean current and has a restoring term to drive xb/p to zero. Hence, substituting
(9.7) in (9.3a) gives

ẋb/p = −kδxb/p + ṼT , (9.8)
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which shows that if the estimate of the current has converged the restoring term
kδxb/p remains to drive xb/p to zero after which the vessel remains on the normal
of the path-tangential frame.

The dynamics of the error along the normal are given by

ẏb/p = ut sin(χ− γp(θ)) + VN − xb/pκ(θ)θ̇. (9.9)

In the next section a guidance law is chosen to stabilise the origin of the dynamics
(9.8)-(9.9) and achieve the goal of path following.

Note that since the path parametrization is only local, we can only utilise it
within a tube around the path with radius 1/κmax. To achieve global results this
tube needs to be made attractive and invariant, such that the vehicle first converges
to the tube after which the unique parametrization to achieve path following can
be used. The disadvantage of this is that a two-step approach is needed to solve
the path following problem, which complicates the analysis. There is, however,
also a big advantage to this approach, since extra design freedom is available when
making the tube attractive. This allows one to design the approach behaviour and
convergence when far from the path, while for a global one-step approach this is in
general not possible to do independently of the behaviour close to the path. Hence,
for the one-step approach the global behaviour will be a compromise between the
desired behaviour far away from the path and the desired behaviour close to the
path. For the two-step approach, the behaviour far away from the path and close
to the path can be optimised independently. This, for instance, allows strategies
where the vehicle moves along the normal of the path to reach the path as fast as
possible. Moreover, in cluttered environments this allows the vessel to converge to
the path along a clearly defined approach path, after which it can switch to the
guidance strategy that allows it to follow the desired path P .

9.3 Controller, observer, and guidance

In this section we design the two control laws τu and τr, and the ocean current
estimator that are used to achieve path following. In the first subsection we present
the velocity control law τu. The second subsection presents the ocean current es-
timator. The third subsection first presents the guidance to be used within the
tube.

9.3.1 Surge velocity control

The velocity control law is a feedback-linearising P-controller that is used to drive
the relative surge velocity to a desired urd and is given by

τu = −Fur (vr, r) + u̇rd +
d11

m11
urd − ku(ur − urd), (9.10)

where ku > 0 is a constant controller gain. It is straightforward to verify that
(9.10) ensures global exponential tracking of the desired velocity. In particular,
when (9.10) is substituted in (9.1d) we obtain

˙̃ur = −ku(ur − urd) = −kuũr, (9.11)
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where ũr , ur − urd. Consequently, the velocity error dynamics are described by
a stable linear systems, which assures exponential tracking of the desired velocity
urd.

9.3.2 Ocean current estimator

This subsection presents the ocean current estimator introduced in [2]. This ob-
server provides the estimate of the ocean current needed to implement (9.7) and
the guidance law developed in the next subsection. Rather than estimating the
time-varying current components in the path frame VT and VN the observer is
used to estimate the constant ocean current components in the inertial frame Vx
and Vy. The observer from [2] is based on the kinematic equations of the vehicle,
i.e. (9.1a) and (9.1b), and requires measurements of the vehicle’s x and y position
in the inertial frame. The observer is formulated as

˙̂x = ur cos(ψ)− vr sin(ψ) + V̂x + kx1 x̃ (9.12a)
˙̂y = ur sin(ψ) + vr cos(ψ) + V̂y + ky1 ỹ (9.12b)

˙̂
Vx = kx2 x̃ (9.12c)
˙̂
Vy = ky2 ỹ (9.12d)

where x̃ , x− x̂ and ỹ = y − ŷ are the positional errors and kx1 , kx2 , ky1 , and ky2
are constant positive gains. Consequently, the estimation error dynamics are given
by

˙̃x = Ṽx − kx1
x̃ (9.13a)

˙̃y = Ṽy − ky1 ỹ (9.13b)
˙̃Vx = −kx2 x̃ (9.13c)
˙̃Vy = −ky2 ỹ (9.13d)

which can be written in vector form as



˙̃x
˙̃y
˙̃Vx
˙̃Vy


 =




−kx1
0 1 0

0 −ky1 0 1
−kx2 0 0 0

0 −ky2 0 0







x̃
ỹ

Ṽx
Ṽy


 . (9.14)

which is a linear system with negative eigenvalues. Hence, the observer error dy-
namics are globally exponentially stable at the origin. Note that this implies that
also V̂T and V̂N go to VT and VN respectively with exponential convergence since
it holds that

V̂T = V̂x cos(γ(θ)) + V̂y sin(γ(θ)), (9.15a)

V̂N = −V̂x sin(γ(θ)) + V̂y cos(γ(θ)). (9.15b)
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For implementation of the controllers it is desired that ‖V̂N (t)‖ < urd(t) ∀t. To
achieve this we first choose the initial conditions of the estimator as

[x̂(t0), ŷ(t0), V̂x(t0), V̂y(t0)]T = [x(t0), y(t0), 0, 0]T . (9.16)

Consequently, the initial estimation error is given by

[x̃(t0), ỹ(t0), Ṽx(t0), Ṽy(t0)]T = [0, 0, Vx, Vy]T , (9.17)

which has a norm smaller than or equal to Vmax according to Assumption 9.1. Now
consider the function

W (t) = x̃2 + ỹ2 +
1

kx2

Ṽ 2
x +

1

ky2
Ṽ 2
y , (9.18)

which has the following time derivative

Ẇ (t) = 2x̃ ˙̃x+ 2ỹ ˙̃y +
2

kx2

Ṽx
˙̃Vx +

2

ky2
Ṽy

˙̃Vy

= 2x̃(Ṽx − kx1
x̃) + 2ỹ(Ṽy − ky1 ỹ)− 2Ṽy ỹ − 2Ṽxx̃

= −2kx1
x̃2 − 2ky1 ỹ

2 ≤ 0.

(9.19)

This implies that W (t) ≤ ‖W (t0)‖. From our choice of initial conditions we know
that

‖W (t0)‖ =
1

kx2

V 2
x +

1

ky2
V 2
y ≤

1

min(kx2
, ky2)

V 2
max. (9.20)

Moreover, it is straightforward to verify

1

max(kx2 , ky2)
‖Ṽc(t)‖2W (t). (9.21)

Combining the observations given above we obtain

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤
1

min(kx2
, ky2)

V 2
max. (9.22)

Consequently, we obtain

‖Ṽc(t)‖ ≤
√

max(kx2 , ky2)

min(kx2
, ky2)

Vmax <

√
max(kx2 , ky2)

min(kx2
, ky2)

urd(t), ∀t, (9.23)

which implies that if the gains are chosen as kx2 = ky2 we have

‖V̂N‖ ≤ 2Vmax ≤ urd(t), ∀t. (9.24)

Hence, ‖V̂N‖ < urd(t), ∀t if 2Vmax < urd(t), ∀t.

Remark 9.1. The bound 2Vmax < urd, ∀t, is only required when deriving the
bound on the solutions of the observer. In particular, it is required to guarantee
that ‖V̂N‖ < urd(t), ∀t. For the rest of the analysis it suffices that Vmax < urd, ∀t.
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Therefore, if the more conservative bound 2Vmax < urd, ∀t, is not satisfied the
observer can be changed to an observer that allows explicit bounds on the estimate
V̂N , e.g. the observer developed Narendra and Annaswamy [104], rather than an
observer that only provides a bound on the error Ṽc as is the case here. For practical
purposes the estimate can also be saturated such that ‖V̂N‖ < urd, ∀t, which is the
approach taken in Moe et al. [103]. However, in the theoretical analysis of the yaw
controller we use derivatives of V̂N which will be discontinuous when saturation is
applied.

9.3.3 Guidance

This subsection presents the guidance that is used in combination with the local
parametrization. Since, the chosen parametrization is only valid in a tube around
the path, the proposed guidance is designed for operation in the tube. Inside the
tube we propose the following guidance law

ψd = γ(θ)− atan

(
vr
urd

)
− atan

(
yb/p + g

∆

)
. (9.25)

The guidance law consists of three terms. The first term is a feedforward of the
angle of the path with respect to the inertial frame. The second part is the desired
side-slip angle, i.e. the angle between the surge velocity and the total speed when
ur ≡ urd. This side-slip angle is used to make the vehicle’s total speed tangential to
the path when the sway velocity is non-zero. The third term is a line-of-sight (LOS)
term that is intended to steer the vessel to the path, where g is a term dependent
on the ocean current. The choice of g provides extra design freedom to compensate
for the component of the ocean current along the normal axis VN . To analyse the
effect of this guidance law and to design g we consider the error dynamics along
the normal (9.9). To do this we substitute (9.25) in (9.9) and obtain

ẏb/p = utd sin
(
ψd + ψ̃ + βd − γp(θ)

)
+ VN − xb/pκ(θ)θ̇ + ũr sin(ψ − γp(θ))

(9.26a)

= −utd
yb/p + g√

(yb/p + g)2 + ∆2
+ VN +G1(ψ̃, ũr, xb/p, ψd, yb/p, utd, γ̇p(θ))

(9.26b)

where G1(·) is a perturbing term given by

G1(·) = utd

[
1− cos(ψ̃)

]
sin

(
arctan

(
yb/p + g

∆

))
+ ũr sin(ψ − γp(θ))

+ utd cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)− xb/pγ̇p(θ)

(9.27)

and utd ,
√
u2
rd + v2

r is the desired total velocity. Note that G1(·) satisfies

G1(0, 0, 0, ψd, yb/p, utd, γ̇p(θ)) = 0 (9.28a)

‖G1(ψ̃, ũr, xb/p, ψd, yb/p, utd, γ̇p(θ))‖ ≤ ζ(γ̇p(θ), utd)‖(ψ̃, ũ, xb/p)‖, (9.28b)
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where ζ(γ̇p(θ), utd) > 0, which shows that G1(·) is zero when the perturbing vari-
ables are zero and that it has maximal linear growth in the perturbing variables.

To compensate for the ocean current component VN the variable g is now chosen
to satisfy the equality

utd
g√

∆2 + (yb/p + g)2
= V̂N . (9.29)

which is a choice inspired by [103]. In order for g to satisfy the equality above, g
should be the solution of the following second order equality

(u2
td − V̂ 2

N )︸ ︷︷ ︸
−a

(
g

V̂N

)2

= ∆2 + y2
b/p︸ ︷︷ ︸

c

+2 yb/pV̂N︸ ︷︷ ︸
b

(
g

V̂N

)
, (9.30)

hence we choose g to be

g = V̂N
b+
√
b2 − ac
−a , (9.31)

which has the same sign as V̂N and is well defined for (u2
rd − V̂ 2

N ) > 0. Moreover,
since √

b2 − ac =
√

∆2(u2
td − V̂ 2

N ) + y2
b/pu

2
td (9.32)

solutions are real for (u2
rd − V̂ 2

N ) > 0.
Consequently, if we substitute this choice for g in (9.26) we obtain

ẏb/p = −utd
yb/p√

(yb/p + g)2 + ∆2
+ ṼN +G1(ψ̃, ũ, xb/p, ψd, yb/p, utd, γ̇p(θ)). (9.33)

The desired yaw rate can be found by taking the time derivative of (9.25)
resulting in

ψ̇d = κ(θ)θ̇ +
v̇rurd − u̇rdvr
u2
rd + v2

r

+
∆(ẏb/p + ġ)

∆2 + (yb/p + g)2
, (9.34)

where v̇r as given in (9.1e), ẏb/p in (9.33), and ġ is given by

ġ =
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂a
ȧ+

∂g

∂b
ḃ+

∂g

∂c
ċ, (9.35)

where

∂g

∂a
= V̂N

c

2a
√
b2 − ac

+ V̂N
b+
√
b2 − ac
a2

, (9.36a)

ȧ = 2V̂N
˙̂
VN − 2urdu̇rd − 2vr [X(ur)r + Y (ur)vr] , (9.36b)

∂g

∂b
= V̂N

b+
√
b2 − ac

a
√
b2 − ac

, (9.36c)

ḃ = 2V̂N ẏb/p + 2
˙̂
VNyb/p,

∂g

∂c
= V̂N

1

2
√
b2 − ac

, ċ = 2yb/pẏb/p. (9.36d)

Note that ẏb/p appears a number of times in the expression for ψ̇d and that ẏb/p
depends on ṼN . Consequently, ψ̇d depends on an unknown variable and cannot be
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used to control the yaw rate. This was not considered in [103] where the proposed
controller contained both ψ̇d and ψ̈d.

Moreover, since ψ̇d contains v̇r, which depends on r = ψ̇, the yaw rate error
˙̃
ψ , ψ̇ − ψ̇d grows with ψ̇ which leads to a necessary condition for a well defined
yaw rate error. The yaw rate error dynamics are given by

˙̃
ψ = r

[
1 +

X(ur)urd
u2
rd + v2

r

− ∆

∆2 +
(
yb/p + g

)2
∂g

∂a
(2vrX(ur))

]

− κ(θ)θ̇ +
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2
˙̂
VN

b+
√
b2 − ac
−a

+
∆

∆2 +
(
yb/p + g

)2
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)

+
∆

∆2 +
(
yb/p + g

)2
∂g

∂b

(
2

˙̂
VNyb/p

)

+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ẏb/p

∆2 +
(
yb/p + g

)2

(9.37)

which leads to the following necessary condition for a well defined yaw rate, i.e.
existence of the yaw controller,

Condition 9.2. To have a well defined yaw controller it should hold that

Cr , 1 +
X(ur)urd
u2
rd + v2

r

− ∂g

∂a

2vrX(ur)∆

∆2 +
(
yb/p + g

)2 6= 0. (9.38)

for all time after entering the tube.

Remark 9.2. The condition above can be verified for any positive velocity, for
the vehicles considered in this thesis. Note that for most vessels this condition is
verifiable since standard ship design practices will result in similar properties of
the function X(ur). Besides having a lower bound greater then zero Cr is also
upper-bounded since the term between brackets can be verified to be bounded in its
arguments.

Since ψ̇d depends on the unknown signal ṼN we cannot take ψ̇d = rd. To define
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an expression for rd without requiring the knowledge of ṼN we use (9.37) to define

rd ,−
1

Cr

[
κ(θ)

(
ut cos(ψ + β − γp(θ)) + kδxb/p + V̂T

1− κ(θ)yb/p

)

+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+
∂g

∂b

(
2

˙̂
VNyb/p

)

+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)
)]]

(9.39)

which results in the following yaw angle error dynamics

˙̃
ψ = Cr r̃ +

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2 (9.40)

where r̃ , r− rd is the yaw rate error. From (9.40) it can be seen that choosing rd
as in (9.39) results in yaw angle error dynamics that have a term dependent on the
yaw rate error r̃ and a perturbing term that vanishes when the estimation error
ṼN goes to zero.

To add acceleration feedforward to the yaw rate controller, the derivative of rd
needs to be calculated. However, when we analyse the dependencies of rd we obtain

rd =rd(h, yb/p, xb/p, ψ̃, x̃, ỹ), (9.41)

where h = [θ, vr, ur, urd, u̇rd, V̂T , V̂N ]T is introduced for the sake of brevity and rep-
resents all the variables whose derivatives do not contain ṼN or ṼT . Consequently,
the acceleration feedforward cannot be taken as ṙd since using (9.41), (9.8), and
(9.9) it is straightforward to verify this signal contains the unknowns ṼT and ṼN .
Therefore we define the yaw rate controller in terms of only known signals as:

τr =− F (ur, vr, r) +
∂rd
∂hT

ḣ+
∂rd
∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)
)

+
∂rd
∂xb/p

(
−kδxb/p

)
+
∂rd

∂ψ̃
Cr r̃ −

∂rd
∂x̃

kxx̃−
∂rd
∂ỹ

ky ỹ − k1r̃ − k2ψ̃

(9.42)

Using (9.42) in (9.1f) we then obtain the yaw rate error dynamics

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd

∂ψ̃

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2

− ∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

(9.43)

which has a term depending on the yaw angle error, a term depending on the
yaw rate error, and perturbing terms depending on the unknown ocean current
estimation error.
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Remark 9.3. It is straightforward to verify that all the terms in (9.34) are smooth
fractionals that are bounded with respect to (yb/p, xb/p, x̃, ỹ, ψ̃) or are periodic
functions with linear arguments and consequently the partial derivatives (9.42) and
(9.43) are all bounded. This is something that is used when showing closed-loop
stability in the next section.

9.4 Closed-loop analysis

In this section we analyse the closed-loop system of the model (9.1) with controllers
(9.10) and (9.42) and observer (9.12) when the frame propagates with (9.7) along
the path P . To show that path following is achieved we have to show that the
following error dynamics converge to zero

ẋb/p =− kδxb/p + ṼT (9.44a)

ẏb/p =− utd
yb/p√

∆2 + (yb/p + g)2
+G1(·) + ṼN (9.44b)

˙̃
ψ = Cr r̃ +

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2 (9.44c)

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

− ∂rd

∂ψ̃

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)] ∆ṼN

∆2 +
(
yb/p + g

)2
(9.44d)

˙̃u =−
(
ku +

d11

m11

)
ũ (9.44e)

The system (9.44) has the following perturbed form:

˙̃X ,




ẋb/p
ẏb/p

˙̃
ψ
˙̃r
˙̃u




=




−kδxb/p
−utd yb/p√

∆2+(yb/p+g)2
+G1(·)

Cr r̃

−k1r̃ − k2Crψ̃
−k3ũ




+




ṼT
ṼN[

1 + ∂g
∂c2yb/p + ∂g

∂b

(
2V̂N

)]
∆ṼN

∆2+(yb/p+g)
2

− ∂rd
∂pb/p

[
ṼT
ṼN

]
− ∂rd

∂ψ̃

[
1 + ∂g

∂c2yb/p + ∂g
∂b 2V̂N

]
∆ṼN

∆2+(yb/p+g)
2 − ∂rd

∂ ˜pb/p
Ṽc

0




(9.45)

where pb/p , [xb/p, yb/p]
T and all the perturbing terms disappear as the current

estimates converge to zero. In particular, we cannot apply our desired control action
whilst the current estimates have not converged yet, since the current cannot be
compensated for until it is estimated correctly.
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9.4. Closed-loop analysis

The full closed-loop system of the model (9.1) with controllers (9.10) and (9.42)
and observer (9.12) is given by

˙̃X1 ,



ẏb/p

˙̃
ψ
˙̃r


 =



−utd yb/p√

∆2+(yb/p+g)2
+G1(·)

Cr r̃

−k1r̃ − k2Crψ̃


+




ṼN[
1 + ∂g

∂c2yb/p + ∂g
∂b

(
2V̂N

)]
∆ṼN

∆2+(yb/p+g)
2

− ∂rd
∂pb/p

[
ṼT
ṼN

]
− ∂rd

∂ψ̃

[
1 + ∂g

∂c2yb/p + ∂g
∂b 2V̂N

]
∆ṼN

∆2+(yb/p+g)
2 − ∂rd

∂p̃ Ṽc


 (9.46a)

˙̃X2 ,




ẋb/p
˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u




=




−kδxb/p + ṼT
−kxx̃− Ṽx
−ky ỹ − Ṽy
−kx1x̃
−ky1ỹ
−kuũ




(9.46b)

v̇r = X(urd + ũ)rd(h, yb/p, xb/p, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (9.46c)

Before starting with the stability analysis of (9.46), we first establish GES of
(9.46b) by using the following lemma.

Lemma 9.1. The system (9.46b) is GES.

Proof. Note that (9.46b) is a cascaded system of the form

ẋb/p = −kδxb/p + ṼT , (9.47a)



˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u




=




−kxx̃− Ṽx
−ky ỹ − Ṽy
−kx1x̃
−ky1ỹ
−kuũ



. (9.47b)

The nominal dynamics of (9.47) are given by ẋb/p = −kδxb/p from (9.47a), which
is a stable linear system and thus GES. The perturbing dynamics are given by
(9.47b) and where shown to be GES in Section 9.3. The interconnection term is
the term ṼT from (9.47a). The growth of the interconnection term can be bounded
by ‖ṼT ‖ ≤ ‖[Ṽx, Ṽy]T ‖, which satisfies the condition for the interconnection term
from Theorem A.1. Note that it is trivial to shown the nominal dynamics admit
the quadratic Lyapunov function Vxb/p = 1/2x2

b/p. Consequently, all the conditions
of Theorem A.1 and Proposition A.1 are satisfied. Therefore, the cascaded system
(9.47) is GES, which implies that (9.46b) is GES.

Note that although we show that the system (9.46b) is GES, the dynamics of
xb/p are only defined in the tube to avoid the singularity in the parametrization.
Hence, the stability result is only valid in the tube.
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9. Observer based path following for generic paths: a local approach

The first step in the stability analysis of (9.46) is to assure that the closed-loop
system is forward complete and that the sway velocity vr remains bounded. There-
fore, under the assumption that Condition 9.1-9.2 are satisfied, i.e. 1−κ(θ)yb/p 6= 0
and Cr 6= 0, we take the following three steps:

1. First, we prove that the trajectories of the closed-loop system are forward
complete.

2. Then, we derive a necessary condition such that vr is locally bounded with
respect to (X̃1, X̃2).

3. Finally, we establish that for a sufficiently big value of ∆, vr is locally bounded
only with respect to X̃2.

The above three steps are taken by formulation and proving three lemmas. For
the sake of brevity in the main body of this chapter the proofs of the following
lemmas are replaced by a sketch of each proof in the main body. The full proofs
can be found in the Appendices 9.A-9.C.

Lemma 9.2 (Forward completeness). The trajectories of the global closed-loop
system (9.46) are forward complete.

The proof of this lemma is given in Appendix 9.A. The general idea is as
follows. Forward completeness for (9.46b) is evident since this part of the closed-
loop system consists of GES error dynamics. Using the forward completeness and
in fact boundedness of (9.46b) we can show forward completeness of (9.46c), ˙̃

ψ,
and ˙̃r. Hence, forward completeness of (9.46) depends on forward completeness of
ẏb/p. To show forward completeness of ẏb/p, we consider the yb/p dynamics with
X̃2, ψ̃, r̃, and vr as input, which allows us to claim forward completeness of ẏb/p
according to Theorem A.3. Consequently, all the states of the closed-loop system
are forward complete and hence the closed-loop system (9.46) is forward complete

Lemma 9.3 (Boundedness near (X̃1, X̃2) = 0). The system (9.46c) is bounded near
(X̃1, X̃2) = 0 if and only if the curvature of P satisfies the following condition:

κmax , max
θ∈P
|κ(θ)| < Ymin

Xmax
. (9.48)

The proof of this lemma is given in Appendix 9.B. A sketch of the proof is
as follows. The sway velocity dynamics (9.46c) are analyzed using a quadratic
Lyapunov function V = 1/2v2

r . It can be shown that the derivative of this Lyapunov
function satisfies the conditions for boundedness when the solutions are on or close
to the manifold where (X̃1, X̃2) = 0. Consequently, (9.46c) satisfies the conditions
of boundedness near (X̃1, X̃2) = 0 as long as (9.48) is satisfied.

In Lemma 9.3 we show boundedness of vr for small values of (X̃1, X̃2) to derive
the bound on the curvature. However, locality with respect to X̃1, i.e. the path
following errors and yaw angle and yaw rate errors, is not desired and in the next
lemma boundedness independent of X̃1 is shown under an extra condition on the
look-ahead distance ∆.
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9.4. Closed-loop analysis

Lemma 9.4 (Boundedness near X̃2 = 0). If the following additional assumption
is satisfied:

∃ σ > 0 s.t. 1− κ(θ)yb/p ≥ σ > 0 ∧
[
Ymin −Xmaxκmax

1

σ

]
> 0 (9.49)

the system (9.46c) is bounded only near X̃2 = 0 if we have

∆ >
4Xmax[

Ymin −Xmaxκmax
1
σ

] (9.50)

κmax < σ
Ymin

Xmax
(9.51)

Remark 9.4. The size of σ can be calculated by using the following tuning proce-
dure.

1. Start by calculating the absolute bound on the curvature from Lemma 9.3.
This is a bound that is necessary for feasibility of the trajectories.

2. Now choose a positive ∆ and using the maximum curvature of the path, solve
(9.50) to obtain a possible value for σ.

3. Using the value for σ obtained in the previous step and the maximum value
of the curvature we can use the inequality 1 − κ(θ)yb/p ≥ σ from (9.49) to
calculate the size of the tube as

ytube
b/p =

1− σ
κmax

. (9.52)

If initial conditions are within the tube ytube
b/p , and are chosen such that the transient

caused by the unknown current does not force the vessel out of the tube. Then the
sway velocity is bounded for all time. Note that the choice of ∆ in step two given
above determines how large the tube will be. More specifically, a larger choice for
∆ will result in a smaller value for σ which will lead to a larger tube in step three.
However, due to the nature of the guidance a larger ∆ will mean slower steering
and consequently slower convergence to the path.

The proof of Lemma 9.4 is given in Appendix 9.C, the general idea is given
as follows. The proof follows along the same lines of that of Lemma 9.3 but solu-
tions are considered close to the manifold X̃2 = 0 rather than (X̃1, X̃2) = 0. It is
shown that boundedness can still be shown if (9.50) is satisfied additionally to the
conditions of Lemma 9.3.

Theorem 9.1. Consider a θ-parametrised path denoted by P (θ) , (xp(θ), yp(θ)).
Then under Conditions 9.1-9.2 and the conditions of Lemma 9.2-9.4, the system
(9.1) with control laws (9.10) and (9.42) and observer (9.12) follows the path P ,
while maintaining vr, τr and τu bounded. In particular, the origin of the system
(9.46a)-(9.46b) is exponentially stable in the tube.

Proof. From the fact that the origin of (9.46b) is GES, the fact that the closed-
loop system (9.46) is forward complete according to Lemma 9.2, and the fact that
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9. Observer based path following for generic paths: a local approach

solutions of (9.46c) are locally bounded near X̃2 = 0 according to Lemma 9.4, we
can conclude that there is a finite time T > t after which solutions of (9.46b) will
be sufficiently close to X̃2 = 0 to guarantee boundedness of vr.

Having established that vr is bounded we first analyse the cascade
[

˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]
+

[
G2(·)

−∂rd
∂ψ̃
G2(·)− ∂rd

∂pb/p
[ṼT , ṼN ]T + ∂rd

∂[x̃,ỹ]T
Ṽc

]
(9.53a)




ẋb/p
˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u




=




−kδxb/p + ṼT
−kxx̃− Ṽx
−ky ỹ − Ṽy
−kx1x̃
−ky1ỹ
−kuũ




(9.53b)

The perturbing system (9.53b) is GES as shown in Lemma 9.1. The interconnection
term, i.e. the second and third term in (9.53a), satisfies the linear growth criteria
from Theorem A.1. More specifically, it does not grow with the ψ̃ and r̃ since all
the partial derivatives of rd and g can be bounded by constants. The nominal dy-
namics, i.e. the first matrix in (9.53a), can be analyzed with the following quadratic
Lyapunov function

V(r̃,ψ̃) =
1

2
r̃2 +

1

2
k2ψ̃

2 (9.54)

whose derivative along the solutions of the nominal system is given by

V̇(r̃,ψ̃) = −k1r̃
2 − k2Crψ̃r̃ + k2Cr r̃ψ̃ = −k2r̃

2 ≤ 0 (9.55)

which implies that r̃ and ψ̃ are bounded. The derivative of (9.55) is given by

V̈(r̃,ψ̃) = −2k2
1 r̃

2 − 2k1k2Crψ̃r̃ (9.56)

which is bounded since r̃ and ψ̃ are bounded. This implies that (9.55) is a uniformly
continuous function. Consequently, by applying Barbalat’s lemma (see Lemma A.5)
we have that

lim
t→∞

V̇(r̃,ψ̃) = lim
t→∞

−k1r̃
2 = 0 ⇒ lim

t→∞
r̃ = 0. (9.57)

Since Cr is persistently exciting, which follows from the fact that Cr is upper
bounded and lower bounded by a constant larger then zero, it follows from the
expression of the nominal dynamics that

lim
t→∞

r̃ = 0 ⇒ lim
t→∞

ψ̃ = 0. (9.58)

This implies that the system is globally asymptotically stable according to Defi-
nition A.3 and since the nominal dynamics are linear it follows that the nominal
dynamics are globally exponentially stable. Consequently, from the above it follows
that the cascade (9.53) is GES using Theorem A.1 and Proposition A.1.
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9.5. Case study

We now consider the following dynamics

ẏb/p = −utd
yb/p√

∆2 + (yb/p + g)2
+ ṼN +G1(·). (9.59)

Note that we can view the systems (9.53) and (9.59) as a cascaded system where
the nominal dynamics are formed by the first term of (9.59), the interconnection
term is given by second matrix of (9.59), and the perturbing dynamics are given by
(9.53). As we have just shown the perturbing dynamics are GES. Using the bound
on G1(·) from (9.28) it is straightforward to verify that the interconnection term
satisfies the conditions of Theorem A.1. We now consider the following Lyapunov
function for the nominal system

Vyb/p =
1

2
y2
b/p. (9.60)

whose derivative along the solutions of the nominal system is given by

V̇yb/p = −utd
y2
b/p√

∆2 + (yb/p + g)2
≤ 0, (9.61)

which implies that the nominal system is GAS. Moreover, since it is straight-
forward to verify that V̇yb/p ≤ αVyb/p for some constant α dependent on initial
conditions, it follows from the comparison lemma (Lemma A.4) that the nominal
dynamics are also LES. Consequently, the cascaded system satisfies the conditions
of Theorem A.1 and Lemma A.3, and therefore the cascaded system is GAS and
LES. This implies that the origin of the error dynamics, i.e. (X̃1, X̃2) = (0, 0), is
globally asymptotically stable and locally exponentially stable. However, since the
parametrization is only valid locally we can only claim exponential stability in the
tube.

9.5 Case study

This section presents a case study to verify the theoretical results presented in this
chapter. The case study under consideration is following of a circular path using
the model of an underactuated surface vessel from Fredriksen and Pettersen [57],
the parameters of which are given in Section B.1. The ocean current components
are given by Vx = −1 m/s and Vy = 1.2 m/s and consequently Vmax ≈ 1.562 m/s.
The desired relative surge velocity is chosen to be constant and set to urd = 5 m/s
such that Assumption 9.2 is verified. Now recall the expression for X(ur), Y (ur)
given by Equations (2.12b-2.12c):

X(ur) , −X1ur +X2, (9.62a)

Y (ur) , − Y1ur − Y2. (9.62b)

Using the ship’s model parameters from Section B.1 and the expressions (9.62a)
and (9.62b) it is straightforward to see that the curvature bound from Lemma
9.3 is given by κmax < (Ymin)/(Xmax) ≈ 0.1333. The observer is initialised as
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9. Observer based path following for generic paths: a local approach

suggested in Subsection 9.3.2 and the observer gains are selected as kx1
= ky1 = 1

and kx1 = ky1 = 0.1. The controller gains are selected as kur = 0.1 for the surge
velocity controller and k1 = 1000 and k2 = 400 for the yaw rate controller.

In this case study the vessel is required to follow a circle with a radius of 400 m
that is centred around the origin. Consequently, the curvature of the path is given
by κp = 1/400 = 0.0025. To choose the parameters of the guidance law we will
now follow the tuning procedure lined out in Remark 9.4. In the first step we
verify that the feasibility constraint on the curvature is satisfied for the path under
consideration, which is clearly the case since κp < (Ymin)/(Xmax) ≈ 0.133. In the
second step we fix our ∆ as ∆ = 40 m, which results in σ ≈ 0.0268. In the third step
we use the value for σ to calculate the size of the tube as ytube

b/p ≈ 369.983 m. Note
that this is only slightly smaller then the size of the tube where the parametrization
is valid, i.e. 400 m. To stay within this tube we choose the initial conditions as

[ur(t0), vr(t0), r(t0), x(t0), y(t0), ψ(t0)]T = [0, 0, 0, 700, 10, π/2]T . (9.63)

The resulting trajectory for the vessel can be seen in Figure 9.3. The blue dashed
line is the trajectory of the vessel and the red circle is the reference path. The yellow
vessels represent the orientation of the vessel at certain instances. From the plot in
Figure 9.3 it can be seen that the vessel converges to the circle and starts to follow
the path. Moreover, it can be seen from the yellow vessels that the orientation of
the ship is not tangential to the circle which is necessary to compensate for the
ocean current.

x [m]

y
[m

]

−400 −200 0 200 400 600

−400

−300

−200

−100

0

100

200

300

400

Figure 9.3: Path of the vessel in the x − y-plane. The dashed blue line is the
trajectory of the path and the red line is the reference. The yellow ships denote
the orientation of the vessel at certain times.

The path following errors can be seen in the top plot of Figure 9.4 which confirm
that the path following errors converge to zero. A detail of the steady-state is
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9.6. Conclusion

given to show the reduction of the error. Moreover, note that because of the choice
of parametrization the error in tangential direction xb/p is zero throughout the
motion except from a very small transient at the beginning caused by the transient
of the observer. The estimates obtained from the ocean current observer can be
seen in the second plot from the top in Figure 9.4. From this plot it can be seen
that the estimates converge exponentially with no overshoot. This underlines the
conservativeness of the bound from Assumption 9.2 that is required for the error
bound for the observer as explained in Subsection 9.3.2. The third plot in Figure
9.4 depicts the yaw rate and the sway velocity induced by the motion. It can be
seen that these do not converge to zero but converge to a periodic motion. Note
that for circular motion in the absence of current the yaw rate would converge to
zero. However, when current is present the vessel needs to change its turning rate
depending on if it goes with or against the current. The relative surge velocity is
given in the fourth plot from the top in Figure 9.4 and shows that the surge velocity
converges exponentially to the desired value. This plot is especially interesting in
combination with the plot of the magnitude of Cr given at the bottom of Figure
9.4. From this plot it can clearly be seen that Condition 9.2 is verified both in
steady-state and during the transient of the velocity controller.

9.6 Conclusion

This chapter considered curved-path following for underactuated marine vessels in
the presence of constant ocean currents. In this approach the path is parametrized
by a path variable with an update law that is designed to keep the vessel on the
normal of a path-tangential reference frame. This assures that the path following
error is defined as the shortest distance to the path. However, the disadvantage is
that this type of update law has a singularity which only allows for local results.
The vessel is steered using a line-of-sight guidance law, which to compensate for
the unknown ocean currents is aided by an ocean current observer. The closed-
loop system with the controllers and observer was analyzed. This was done by first
showing boundedness of the underactuated sway velocity dynamics under certain
conditions. It was then shown that if these conditions are satisfied and the sway
velocity is bounded, the path following errors are exponentially stable within the
tube in which the parametrization is well defined. Due to the singularity of the
update law, the feasibility of this problem depends on the initial conditions, the
curvature of the path, and the magnitude of the ocean current. More specifically,
the size of the tube in which the parametrization is well defined was shown to be a
function of the maximal curvature of the path. This implies that the combination of
curvature and ocean current should be such that a suitable set of initial conditions
exists for which the transient of the ocean current observer does not bring the
vessel out of the tube.
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Figure 9.4: Path following errros plotted agains time (top), current estimates
against time (second), sway velocity and yaw rate against time (third), surge ve-
locity against time (fourth), and size of Cr over time (bottom).
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9.A. Proof of Lemma 9.2

9.A Proof of Lemma 9.2

Consider the following part of the global closed-loop system:
[

˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]

+




[
1 + ∂g

∂c2yb/p + ∂g
∂b

(
2V̂N

)]
∆ṼN

∆2+(yb/p+g)
2

− ∂rd
∂pb/p

[
ṼT
ṼN

]
− ∂rd

∂ψ̃

[
1 + ∂g

∂c2yb/p + ∂g
∂b 2V̂N

]
∆ṼN

∆2+(yb/p+g)
2 − ∂rd

∂p̃b/p
Ṽc




︸ ︷︷ ︸
R(h,yb/p,xb/p,ψ̃,x̃,ỹ)

(9.64a)

v̇r = X(urd + ũ)rd(h, yb/p, xb/p, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (9.64b)

From the boundedness of the vector [X̃T
2 , κ(θ), urd, u̇rd, VT , VN ]T we know that∥∥∥[X̃T

2 , κ(θ), urd, u̇rd, VT , VN ]T
∥∥∥ ≤ β0, and from (9.39) we can conclude the existence

of positive functions ard(·), brd(·), aR(·), and bR(·) which are all continuous in their
arguments and are such that such the following inequalities hold:

|rd(·)| ≤ ard(∆, β0) |vr|+ brd(∆, β0) (9.65)

and,

‖R(·)‖ ≤ aR(∆, β0) |vr|+ bR(∆, β0) (9.66)

Then taking the following Lyapunov function candidate:

V1(ψ̃, r̃, vr) =
1

2

(
k2ψ̃

2 + r̃2 + v2
r

)
(9.67)

whose time derivative along the solutions of (9.64) is

V̇1(·) = k2Cr r̃ψ̃ − k1r̃
2 − k2Cr r̃ψ̃ + [ψ̃ r̃]R(·) + Y (urd + ũ)v2

r

+X(urd + ũ)r̃vr +X(urd + ũ)rd(·)vr
(9.68)

Using Young’s inequality we note that

V̇1(·) ≤ k1r̃
2 + ψ̃2 + r̃2 +R2(·) + Y (urd + ũ)v2

r

+ |X(urd + β0)|
(
r̃2 + v2

r

)
+ |X(urd + β0)|

(
r2
d(·) + v2

r

)

≤αV + β, α ≥ 0, β ≥ 0

(9.69)

Note that since the differential inequality (9.69) is scaler we can invoke the com-
parison lemma Khalil [77, Lemma 3.4] given as Lemma A.4 in Appendix A.1. From
Lemma A.4 we know that the solutions of differential inequality (9.69) are bounded
by the solutions of the linear system:

ẋ = αx+ β (9.70)
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which has solutions
x(t) =

‖x(t0)‖α+ β

α
eα(t−t0) − β

α
(9.71)

Hence, from Lemma A.4 we have that

V1(·) ≤ ‖V1(t0)‖α+ β

α
eα(t−t0) − β

α
(9.72)

which shows the solutions of V1(·) are defined up to tmax = ∞ and consequently
from (9.67) it follows that the solutions of ψ̃, r̃, and vr must be defined up to
tmax =∞. Hence, the solutions of (9.64) satisfy Definition A.5 and we can conclude
forward completeness of trajectories of (9.64).

The forward completeness of trajectories of the global closed-loop system now
depends on forward completeness of ẏb/p from (9.46a). We can conclude forward
completeness of ẏb/p by considering the Lyapunov function

V2 =
1

2
y2
b/p. (9.73)

The time derivative of (9.73) is given by

V̇2 = yb/pẏb/p

≤ −utd
yb/p√

∆2 + (yb/p + g)2
+ (G1(·) + ṼN )yb/p

≤ (G1(·) + ṼN )yb/p

(9.74)

where using the bound on G1(·) from (10.23) and Young’s inequality we obtain

V̇2 ≤ V2 +
1

2

(
ζ2(γ̇p(θ), utd)‖[ψ̃, r̃, xb/p]T ‖2 + Ṽ 2

N

)
(9.75)

≤ V2 + σ2(vr, ψ̃, r̃, ṼN , ṼT , xb/p) (9.76)

with σ2(·) ∈ K∞. Consequently, if we view the arguments of σ2(·) as input to
the yb/p dynamics, then (9.75) satisfies Theorem A.3 and hence ẋb/p and ẏb/p are
forward complete. Note that the arguments of σ2(·) are all forward complete and
therefore fit the definition of an input signal given in Definition A.5. We have now
shown forward completeness of (9.46a) and (9.46c) and since (9.46b) is GES is
is trivially forward complete. We can therefore claim forward completeness of the
entire closed-loop system (9.46) and the proof of Lemma 9.2 is complete.

9.B Proof of Lemma 9.3

Recall the sway velocity dynamics (9.46c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (9.77)
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The derivative of (9.77) along the solutions of (9.46c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(9.78)

where we used the fact that:

Y (ur) = ayur + by (9.79)
X(ur) = axur + bx (9.80)

The term rdvr can be bounded as a function of vr as follows

rdvr =− vr
Cr

[
κ(θ)

(
ut cos(ψ + β − γp(θ)) + kδxb/p + V̂T

1− κ(θ)yb/p

)

+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)
+
∂g

∂b

(
2

˙̂
VNyb/p

)

+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)
)]]

≤ 1

Cr
|κ(θ)| v2

r

1

1− κ(θ)yb/p
+ F2(X̃1, X̃2,∆, VT , VN , urd)v

2
r

+ F1(X̃1, X̃2,∆, VT , VN , urd)vr

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(9.81)

where F1,2(·) are continuous functions in their arguments with:

F2(0, 0,∆, VT , VN , urd) = 0. (9.82)

When substituting (9.81) in (9.78) we obtain

V̇3 ≤ X(urd)F2(X̃1, X̃2,∆, VT , VN , urd)v
2
r +

∣∣∣C
∗
r−Cr
CrC∗r

∣∣∣ (|X(urd)κ(θ)| − |Y (urd)|) v2
r

+
1

C∗r

[
|X(urd)| |κ(θ)|

(
1 +

yb/p

1− κ(θ)yb/p

)
− |Y (urd)|+ ayũ

]
v2
r

+
(
X(urd)F1(X̃1, X̃2,∆, VT , VN , urd) + axũ(rd + r̃) +X(urd)r̃

)
vr

(9.83)

where C∗r (vr, yb/p,∆, VN , urd) = Cr(vr, yb/p,∆, V̂N = VN , ur = urd). When substi-
tuting (9.81) in (9.78) we have used the fact that

1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
X(ur)Y (ur)v

2
r =

Cr − 1

Cr
Y (ur)v

2
r . (9.84)
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Remark 9.5. Note that C∗r (vr, yb/p,∆, VN , urd) can be found independently of yb/p
and xb/p since the terms in Cr are bounded with respect to these variables.

Consequently, on the manifold where (X̃1, X̃2) = 0 we have

V̇3 ≤
1

C∗r
(Xmax |κ(θ)| − Ymin) v2

r +X(urd)F1(0, 0,∆, VT , VN , urd)|vr| (9.85)

which is bounded as long as

Xmax |κ(θ)| − Ymin < 0. (9.86)

Hence, satisfaction of (9.86) renders the quadratic term in (9.85) negative and since
the quadratic term is dominant for sufficiently large vr, (9.85) is negative definite
for sufficiently large vr. If V̇3 is negative for sufficiently large vr this implies that
V3 decreases for sufficiently large vr. Since V3 = 1/2v2

r , a decrease in V3 implies a
decrease in v2

r and by extension in vr. Therefore, vr cannot increase above a certain
value and vr is bounded near the manifold where (X̃1, X̃2) = 0.

Consequently, close to the manifold where (X̃1, X̃2) = 0 the sufficient and nec-
essary condition for local boundedness of (9.46c) is the following:

Xmax |κ(θ)| − Ymin < 0. (9.87)

which is satisfied if and only if the condition in Lemma 9.3 is satisfied.

9.C Proof of Lemma 9.4

Recall the sway velocity dynamics (9.46c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (9.88)

The derivative of (9.88) along the solutions of (9.46c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(9.89)

where we used the fact that:

Y (ur) = ayur + by (9.90)
X(ur) = axur + bx (9.91)
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The term rdvr is given by:

rdvr =− 1

Cr
vr

[
κ(θ)

ut cos(ψ + β − γp(θ))
1− κ(θ)yb/p

+ κ(θ)
kδxb/p + V̂T

1− κ(θ)yb/p

+
∆
(
b+
√
b2 − ac

)

a∆2 + a
(
yb/p + g

)2 (−kx1
x̃ sin(γp(θ)) + ky1 ỹ cos(γp(θ)))

+
∆κ(θ)V̂T

(
b+
√
b2 − ac

)

a∆2 + a
(
yb/p + g

)2

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p − V̂T
1− κ(θ)yb/p

)

+
∆ ∂g
∂a2V̂N

∆2 +
(
yb/p + g

)2 (kx1
x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆κ(θ) ∂g∂a2V̂N V̂T

∆2 +
(
yb/p + g

)2

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

− ∆ ∂g
∂a

∆2 +
(
yb/p + g

)2 (2urdu̇rd − 2vrY (ur)vr) +
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆∂g
∂b 2yb/p

∆2 +
(
yb/p + g

)2 (kx1
x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆κ(θ)∂g∂b 2yb/pV̂T

∆2 +
(
yb/p + g

)2

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

− φ(·)utd
yb/p√

∆2 + (yb/p + g)2
+ φ(·)ũ sin(ψ − γp)

+ φ(·)
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))

+ φ(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

− 2φ(·)xb/pκ(θ)

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)]

(9.92)

where the function φ(yb/p, vr, urd, V̂N ,∆) is bounded by a constant with respect to
vr and defined as

φ(·) , 2∆yb/p

∆2 +
(
yb/p + g

)2
∂g

∂c
︸ ︷︷ ︸

φ1(·)

+
∆

∆2 +
(
yb/p + g

)2
︸ ︷︷ ︸

φ2(·)

+
2∆V̂N

∆2 +
(
yb/p + g

)2
∂g

∂b
︸ ︷︷ ︸

φ3(·)

(9.93)
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We can rewrite rdvr to obtain

rdvr =− 1

Cr
vr

[
κ(θ)

ut cos(ψ + β − γp(θ))
1− κ(θ)yb/p

− φ2(·)utd
yb/p + g√

∆2 + (yb/p + g)2
+ φ2(·)V̂N

+ φ2(·)
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))

+ φ2(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

]
− 1

Cr
vrΦ1(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(9.94)

where Φ1(·) collects terms that are bounded with respect to vr and terms that
grow linearly with vr but vanish when X̃2 = 0. The function Φ1(·) is defined as

Φ1(·) , κ(θ)
kδxb/p − V̂T
1− κ(θ)yb/p

− u̇rdvr
u2
rd + v2

r

+
2urdu̇rd∆

∆2 +
(
yb/p + g

)2
∂g

∂a

+
∆
(
b+
√
b2 − ac

)

a∆2 + a
(
yb/p + g

)2 (−kx1
x̃ sin(γp(θ)) + ky1 ỹ cos(γp(θ)))

+
∆κ(θ)V̂T

(
b+
√
b2 − ac

)

a∆2 + a
(
yb/p + g

)2

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

+
∆ ∂g
∂a2V̂N

∆2 +
(
yb/p + g

)2 (kx1 x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆ ∂g
∂a2κ(θ)V̂N V̂T

∆2 +
(
yb/p + g

)2

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

+
∆∂g
∂b 2yb/p

∆2 +
(
yb/p + g

)2 (kx1 x̃ sin(γp(θ))− ky1 ỹ cos(γp(θ)))

− ∆∂g
∂b 2yb/pκ(θ)V̂T

∆2 +
(
yb/p + g

)2

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

− (φ1(·) + φ3(·))utd
yb/p√

∆2 + (yb/p + g)2
+ φ(·)ũ sin(ψ − γp)

+ (φ1(·) + φ3(·))
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))

+ (φ1(·) + φ3(·)) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

− 2φ(·)xb/pκ(θ)

(
ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
+
kδxb/p + V̂T

1− κ(θ)yb/p

)

(9.95)
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We now introduce C∗r (·) as defined in the proof of Lemma 9.3, so we can rewrite
rdvr to obtain:

rdvr =− 1

C∗r
vr

[
κ(θ)ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
−

φ2(·)utd
yb/p + g√

∆2 + (yb/p + g)2
+

φ2(·)
[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))
+

φ2(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

]
− 1

Cr
vrΦ2(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(9.96)

where Φ2(·) collects terms that are bounded with respect to vr and terms that
grow linearly with vr but vanish when X̃2 = 0. The function Φ2(·) is defined as

Φ2(·) , Φ1(·) +
C∗r − Cr
C∗r

[
φ2(·)

[
1− cos(ψ̃)

]
utd sin

(
arctan

(
yb/p + g

∆

))

+
κ(θ)ut cos(ψ + β − γp(θ))

1− κ(θ)yb/p
− φ2(·)utd

(
yb/p + g

)
√

∆2 + (yb/p + g)2

+ φ2(·) cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)utd

−
(

urd
u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)vr

]
+ φ2(·)V̂N

(9.97)

Considering the above we derive the following upper bound for rdvr:

rdvr ≤
∣∣∣∣

1

C∗r
vr

∣∣∣∣
[ |κ(θ)|ut

1− κ(θ)yb/p
+ 4 |φ2(·)|utd

]
− 1

Cr
vrΦ2(·) (9.98)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r (9.99)

Using the fact that: ut ≤ |ur|+ |vr|, we obtain:

rdvr ≤
∣∣∣∣
vr
C∗r

∣∣∣∣
[ |κ(θ)| (|ur|+ |vr|)

1− κ(θ)yb/p
+ 4 |φ2(·)| |urd|+ 4 |φ2(·)| |vr|

]
− vr
Cr

Φ2(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣

1

C∗r

∣∣∣∣
|κ(θ)| v2

r

1− κ(θ)yb/p
+ 4

∣∣∣∣
1

C∗r

∣∣∣∣ |φ2(·)| v2
r + Φ3(·)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(9.100)
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where Φ3 collects the terms that grow linear in vr and terms that grow quadratically
in vr but vanish when X̃2 = 0. The function Φ3 is defined as

Φ3(·) ,
∣∣∣∣

1

C∗r

∣∣∣∣
|κ(θ)| |vrur|
1− κ(θ)yb/p

+

∣∣∣∣
1

C∗r

∣∣∣∣ |vrurd| |φ2(·)| − 1

Cr
vrΦ2(·) (9.101)

Observing the definition of Φ3(·) one can easily conclude the existence of three
continuous positive functions F0,2(X̃1, X̃2, urd, u̇rd, VT , VN ,∆) which are bounded
since the vector [X̃T

2 , urd, u̇rd, VT , VN ,∆]T is bounded, and where

F2(X̃1, X̃2 = 0, urd, u̇rd, VT , VN ,∆) = 0,

such that:

Φ3(·) ≤ F2(·)v2
r + F1(·)vr + F0(·) (9.102)

Consequently, when we substitute (9.100) in (9.89) obtain:

V̇3 = vrv̇r ≤ |X(urd)|
[∣∣∣∣

1

C∗r

∣∣∣∣
|κ(θ)| v2

r

1− κ(θ)yb/p
+ 4

∣∣∣∣
1

C∗r

∣∣∣∣ |φ2(·)| v2
r + Φ3(·)

]

+ axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
X(urdY (urd)v

2
r

≤
∣∣∣∣

1

C∗r

∣∣∣∣
[
Xmaxκmax

1− κ(θ)yb/p
+ 4Xmax |φ2(·)| − Ymin

]
v2
r

+ |X(urd)| |Φ3(·)|+ axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r

(9.103)

To have boundedness of vr for small values of X̃2 we have to satisfy the following
inequality:

Xmaxκmax

1− κ(θ)yb/p
+ 4Xmax |φ2(·)| − Ymin < 0 (9.104)

such that the quadratic term in (9.103) is negative. Using (9.49) we need to choose
∆, such that:

|φ2(·)| <
[
Ymin −Xmaxκmax

1
σ

]

4Xmax
> 0, (9.105)

since |φ2(·)| ≤ 1
∆ , we can take ∆ > 4Xmax

[Ymin−Xmaxκmax
1
σ ]

such that (9.104) holds.

Consequently, near the manifold X̃2 = 0 it holds that (9.103) is negative definite
for sufficiently large vr. If V̇3 is negative for sufficiently large vr this implies that
V3 decreases for sufficiently large vr. Since V3 = 1/2v2

r , a decrease in V3 implies a
decrease in v2

r and by extension in vr. Consequently, vr cannot increase above a
certain value and vr is bounded near X̃2 = 0.
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Chapter 10

Observer based path following for
generic paths: a global aproach

This chapter considers path following of generic paths for under-actuated marine
vessels in the presence of constant ocean currents. The path is parametrized by
a parameter s. We assume that a Serret-Frenet frame moves along the path and
its motion is described by a certain time update law for the parameter s. The
update law for s is a design parameter and we design it in order to achieve the
path following task. The parametrization that we use was first introduced in [80].
The work presented in this chapter is an extension of the results in Chapter 9,
where the time update law for s was valid only locally.

We use a line-of-sight-like (LOS-like) guidance strategy together with an ob-
server for the ocean current estimation. The look-ahead distance of the guidance
law depends on the distance from the path and it is therefore time-varying. The
observer is used to estimate the unknown ocean current in order to compensate for
it. A thorough analysis of the closed-loop system is done and it shows boundedness
of the sway velocity and global asymptotic stability of the path following errors. We
want also to remark that the control strategy presented in this chapter is similar to
the one presented in [103]. In particular, we add stabilizing term for the tangential
error dynamics. This approach is needed in order to achieve boundedness of the
zero dynamics which were not analyzed in [103].

The work in this chapter is based on [16].
The outline of the chapter is as follows. In Section 10.1 the vessel model is given.

The path-following problem and the chosen path parametrization are introduced in
Section 10.2. Section 10.3 presents the ocean current observer that is used together
with the guidance law and controllers. The closed-loop system is then formulated
and analyzed in Section 10.4. A simulation case study is presented in Section 10.5
and conclusions are given in Section 10.6.

10.1 Vessel model

In this section we consider the model for a surface vessel given in Chapter 2. This
model can be used to describe an autonomous surface vessel or an autonomous
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underwater vehicle moving in a plane. We consider vehicles satisfying Assumptions
2.1-2.3. Thus, their model can be expressed in component form as:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx, (10.1a)
ẏ = ur sin(ψ) + vr cos(ψ) + Vy, (10.1b)

ψ̇ = r, (10.1c)

u̇r = Fur
(vr, r)− d11

m11
ur + τu, (10.1d)

v̇r = X(ur)r + Y (ur)vr, (10.1e)
ṙ = Fr(ur, vr, r) + τr, (10.1f)

The functions X(ur), Y (ur), Fu, and Fr are given in Chapter 2. The kinematic
variables are illustrated in Figure 10.1. We consider the ocean current to satisfy
the following assumption.

Assumption 10.1. The ocean current is assumed to be constant and irrotational
with respect to the inertial frame, i.e. Vc � [Vx, Vy, 0]

T . Furthermore, it is bounded
by Vmax > 0 such that ‖Vc‖ =

√
V 2
x + V 2

y ≤ Vmax.

Additionally, we assume that the following assumption holds

Assumption 10.2. It is assumed that 2Vmax < urd(t) ∀t, i.e. the desired relative
velocity of the vessel is larger than the maximum value of the ocean current.

Assumption 10.2 assures that the vessel has enough propulsion power to over-
come the ocean current affecting it. The factor two in Assumption 10.2 adds some
extra conservativeness to bound the solutions of the ocean current observer. This
is discussed further in Section 10.6.

Figure 10.1: Definition of the ship’s kinematic variables.
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10.2 Problem definition

The goal is to follow a smooth path P , parametrised by a path variable θ, by appro-
priately controlling the ship’s surge velocity and yaw rate. For an underactuated
vessel path following can be achieved by positioning the vessel on the path with the
total velocity ut �

√
u2
r + v2r (see Figure 10.1) tangential to the path. To express

the path-following errors we propagate a path-tangential frame along P . This is
illustrated in Figure 10.2. The path-following errors, pb/p � [xb/p, yb/p]

T , take the
following form:

[
xb/p

yb/p

]
=

[
cos(γp(θ)) sin(γp(θ))
− sin(γp(θ)) cos(γp(θ))

] [
x− xp(θ)
y − yp(θ)

]

where γ(θ) is the angle of the path with respect to the X-axis. The time derivative
of the angle γ(θ) is given by γ̇(θ) = κ(θ)θ̇ where κ(θ) is the curvature of P at θ. The
path-following error is expressed in xb/p and yb/p which are the relative positions
between the path frame and body frame expressed along the axes of the path frame.
Hence, xb/p is the position of the vehicle along the path-frame tangential axis and
yb/f is the position of the vehicle along the path-frame normal axis. The goal is to
regulate both xb/p and yb/p to zero.

Figure 10.2: Definition of the path.

The error dynamics of a vessel with respect to the path frame are given by:

ẋb/p = ut cos(χ− γp(θ))− θ̇(1− κ(θ)yb/p) + VT (10.2a)

ẏb/p = ut sin(χ− γp(θ)) + VN − κ(θ)θ̇xb/p (10.2b)

where χ � ψ + β is the course angle (see Figure 10.1) and VT � Vx cos(γp(θ)) +

Vy sin(γp(θ)) and VN � Vy cos(γp(θ)) − Vx sin(γp(θ)) are the ocean current com-
ponent in the tangential direction and normal direction of the path-tangential
reference frame respectively.
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As proposed in [80] we can use the update law of the path variable as an extra
degree of freedom in the controller design. In particular, the propagation speed
of the frame is used to get the desired behaviour of the xb/p dynamics. This is
achieved by setting

θ̇ = ut cos(χ− γp(θ)) + kxfθ(xb/p, yb/p) + VT (10.3)

where kx > 0 is a control gain for the convergence of xb/p and fθ(xb/p, yb/p) is a
function to be designed later satisfying fθ(xb/p, yb/p)xb/p > 0. Consequently, when
substituting (10.3) in (10.2a) we obtain

ẋb/p = −kxfθ(xb/p, yb/p) + θ̇κ(θ)yb/p (10.4)

For the case where the current is unknown we need to replace VT by its estimate
V̂T , and the update law becomes

θ̇ = ut cos(χ− γ(θ)) + kxfθ(xb/p, yb/p) + V̂T (10.5)

Substituting this revised update law into (10.2) results in

ẋb/p = −kxfθ(xb/p, yb/p) + θ̇κ(θ)yb/p + ṼT (10.6)

ẏb/p = ut sin(χ− γp(θ)) + VN − xb/pκ(θ)θ̇. (10.7)

Note that the parametrization (10.5) does not decouple (10.6) from (10.7). Conse-
quently, since (10.6) depends on yb/p the xb/p it does not converge independently
from those of yb/p and both xb/p and yb/p will have to be regulated to zero using the
surge and yaw rate controllers. Moreover, note that although this parametrization
has the advantage that the update law can be well defined on the entire state space
the path-following error is no longer defined as the shortest distance to the path
since the vessel is not on the normal.

10.3 Controllers, Observer, and Guidance

In this section we design the two control laws τu and τr, and the ocean current esti-
mator that are used to achieve path-following. In the first subsection we present the
velocity control law τu. The second subsection presents the ocean current observer.
The third subsection presents the guidance to be used.

10.3.1 Surge velocity control

The velocity control law is a feedback-linearising P-controller that is used to drive
the relative surge velocity to a desired urd and is given by

τu = −Fur (vr, r) + u̇rd + d11
m11

urd − ku(ur − urd) (10.8)

where ku > 0 is a constant controller gain. It is straightforward to verify that
(10.8) ensures global exponential tracking of the desired velocity. In particular,
when (10.8) is substituted in (10.1d) we obtain

˙̃ur = −ku(ur − urd) = −kuũr (10.9)

164



10.3. Controllers, Observer, and Guidance

where ũr , ur − urd. Consequently, the velocity error dynamics are described by
a stable linear systems, which assures exponential tracking of the desired velocity
urd.

10.3.2 Ocean current estimator

This subsection presents the ocean current estimator introduced in [2]. This ob-
server provides the estimate of the ocean current needed to implement (10.5) and
the guidance law developed in the next subsection. Rather then estimating the
time-varying current components in the path frame VT and VN the observer is
used to estimate the constant ocean current components in the inertial frame Vx
and Vy. The observer from [2] is based on the kinematic equations of the vehicle,
i.e. (10.1a) and (10.1b), and requires measurements of the vehicle’s x and y position
in the inertial frame. The observer is formulated as

˙̂x = ur cos(ψ)− vr sin(ψ) + V̂x + kx1
x̃ (10.10a)

˙̂y = ur sin(ψ) + vr cos(ψ) + V̂y + ky1 ỹ (10.10b)
˙̂
Vx = kx2

x̃ (10.10c)
˙̂
Vy = ky2 ỹ (10.10d)

where x̃ , x− x̂ and ỹ , y − ŷ are the positional errors and kx1
, kx2

, ky1 , and ky2
are constant positive gains. Consequently, the estimation error dynamics are given
by 



˙̃x
˙̃y
˙̃Vx
˙̃Vy


 =




−kx1
0 1 0

0 −ky1 0 1
−kx2

0 0 0
0 −ky2 0 0







x̃
ỹ

Ṽx
Ṽy


 (10.11)

which is a linear system with negative eigenvalues. Hence, the observer error dy-
namics are globally exponentially stable at the origin. Note that this implies that
also V̂T and V̂N go to VT and VN respectively with exponential convergence since
it holds that

V̂T = V̂x cos(γ(θ)) + V̂y sin(γ(θ)) (10.12a)

V̂N = −V̂x sin(γ(θ)) + V̂y cos(γ(θ)) (10.12b)

For implementation of the controllers it is desired that ‖V̂N (t)‖ < urd(t) ∀t. To
achieve this we first choose the initial conditions of the estimator as

[x̂(t0), ŷ(t0), V̂x(t0), V̂y(t0)]T = [x(t0), y(t0), 0, 0]T .

Consequently, the initial estimation error is given by

[x̃(t0), ỹ(t0), Ṽx(t0), Ṽy(t0)]T = [0, 0, Vx, Vy]T (10.13)

which has a norm smaller than or equal to Vmax according to Assumption 10.1.
Now consider the function

W (t) = x̃2 + ỹ2 +
1

kx2

Ṽ 2
x + 1

ky2
Ṽ 2
y (10.14)
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which has the following time derivative

Ẇ (t) = −2kx1 x̃
2 − 2ky1 ỹ

2 ≤ 0. (10.15)

This implies that W (t) ≤ ‖W (t0)‖. From our choice of initial conditions we know
that

‖W (t0)‖ =
V 2
x

kx2

+
V 2
y

ky2
≤ 1

min(kx2
, ky2)

V 2
max. (10.16)

Moreover, it is straightforward to verify

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤W (t). (10.17)

Combining the observations given above we obtain

1

max(kx2
, ky2)

‖Ṽc(t)‖2 ≤
1

min(kx2
, ky2)

V 2
max. (10.18)

Consequently, we obtain

‖Ṽc(t)‖ ≤
√

max(kx2
, ky2)

min(kx2 , ky2)
Vmax

<

√
max(kx2 , ky2)

min(kx2
, ky2)

urd(t), ∀t,
(10.19)

which implies that if the gains are chosen as kx2
= ky2 we have

‖V̂N‖ ≤ 2Vmax ≤ urd(t), ∀t. (10.20)

Hence, ‖V̂N‖ < urd(t), ∀t if 2Vmax < urd(t), ∀t.
Remark 10.1. The bound 2Vmax < urd, ∀t, is only required when deriving the
bound on the solutions of the observer. In particular, it is required to guarantee
that ‖V̂N‖ < urd(t), ∀t. For the rest of the analysis it suffices that Vmax < urd, ∀t.
Therefore, if the more conservative bound 2Vmax < urd, ∀t, is not satisfied the
observer can be changed to an observer that allows explicit bounds on the estimate
V̂N , e.g. the observer developed Narendra and Annaswamy [104], rather than an
observer that only provides a bound on the error Ṽc as is the case here. For practical
purposes the estimate can also be saturated such that ‖V̂N‖ < urd, ∀t, which is the
approach taken in Moe et al. [103]. However, in the theoretical analysis of the yaw
controller we use derivatives of V̂N which will be discontinuous when saturation is
applied.

10.3.3 Guidance for global parametrization

When using the global parametrization we can define one guidance law that can
be used everywhere. As in Moe et al. [103] we choose a guidance law of the form:

ψd = γ(θ)− atan

(
vr
urd

)
− atan

(
yb/p + g

∆(pb/p)

)
(10.21)
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The guidance law consists of three terms. The first term is a feedforward of the
angle of the path with respect to the inertial frame. The second part is the desired
side-slip angle, i.e. the angle between the surge velocity and the total speed when
ur ≡ urd. This side-slip angle is used to make the vehicle’s total speed tangential
to the path when the sway velocity is non-zero. The third term is a line-of-sight
(LOS) term that is intended to steer the vessel to the path, where g is a term
dependent on the ocean current. The choice of g provides extra design freedom to
compensate for the component of the ocean current along the normal axis VN .

Remark 10.2. The guidance law (10.21) with the choice ∆(xb/p, yb/p) =
√
µ2 + x2

b/p

was utilised in Moe et al. [103]. However, as will be shown this leads to a desired
yaw rate that goes to infinity as yb/p goes to infinity. Consequently, no finite value
of the constant µ can be found that stabilises the system globally, i.e. for any yb/p.

When we substitute (10.21) in (10.7) we obtain

ẏb/p = utd sin
(
ψd + ψ̃ + βd − γp(θ)

)
+ VN

− xb/pκ(θ)θ̇ + ũr sin(ψ − γp(θ))

= − utd(yb/p + g)√
(yb/p + g)2 + ∆2

− xb/pγ̇p(θ)

+ VN +G1(ψ̃, ũr, g, ψd, yb/p, utd)

(10.22)

where G1(·) is a perturbing term given by

G1(·) = utd

[
1− cos(ψ̃)

]
sin

(
arctan

(
yb/p + g

∆

))

+ ũr sin(ψ − γp(θ))

+ utd cos

(
arctan

(
yb/p + g

∆

))
sin(ψ̃)

Note that G1(·) satisfies

G1(0, 0, g, ψd, yb/p, utd) = 0 (10.23a)

‖G1(ψ̃, ũr, ψd, yb/p, utd)‖ ≤ ζ(utd)‖[ψ̃, ũr]T ‖, (10.23b)

where ζ(utd) > 0, which shows that G1(·) is zero when the perturbing variables are
zero and that it has maximal linear growth in the perturbing variables.

To compensate for the ocean current component VN the variable g is now chosen
to satisfy the equality

utd
g√

∆2 + (yb/p + g)2
= V̂N . (10.24)

which is a choice inspired by [103]. In order for g to satisfy the equality above, it
should be the solution of the following second order equality

(u2
td − V̂ 2

N )︸ ︷︷ ︸
−a

(
g

V̂N

)2

= ∆2 + y2
b/p︸ ︷︷ ︸

c

+2 yb/pV̂N︸ ︷︷ ︸
b

(
g

V̂N

)
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hence we choose g to be

g = V̂N
b+
√
b2 − ac
−a (10.25)

which has the same sign as V̂N and is well defined for (u2
rd − V̂ 2

N ) = −a > 0.
Substituting this in (10.22) gives

ẏb/p = − utd
yb/p√

(yb/p + g)2 + ∆2
− xb/pγ̇p(θ)

+ ṼN +G1(ψ̃, ũ, ψd, yb/p, utd)

(10.26)

Recall that the error in tangential direction is given by :

ẋb/p = θ̇(1− κ(θ)yb/p) + ut cos(ψ + β − γp(θ)) + VT (10.27)

where κ(θ) is the curvature of the path at the point (xp(θ), yp(θ)). We now choose
θ̇ to be:

θ̇ = ut cos(ψ + β − γp(θ)) +
kδxb/p√
1 + x2

b/p

+ V̂T (10.28)

such that we obtain:

ẋb/p =− kδ
xb/p√

1 + x2
b/p

+ θ̇κ(θ)yb/p + ṼT . (10.29)

where kδ > 0. In this way we introduce a stabilising term to the tangential er-
ror dynamics by appropriately controlling the propagation of our path-tangential
frame.

The derivative of (10.21) is given by

ψ̇d = κ(θ)θ̇ − v̇rurd − u̇rdvr
u2
rd + v2

r

− ∆(ẏb/p + ġ)

∆2 + (yb/f + g)2

+
yb/p + g

∆2 + (yb/p + g)2

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏb/p

] (10.30)

with

ġ =
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂a
ȧ+

∂g

∂b
ḃ+

∂g

∂c
ċ (10.31)
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where
∂g

∂a
= V̂N

c

2a
√
b2 − ac

+ V̂N
b+
√
b2 − ac
a2

(10.32a)

∂g

∂b
= V̂N

b+
√
b2 − ac

a
√
b2 − ac

(10.32b)

∂g

∂c
= V̂N

1

2
√
b2 − ac

(10.32c)

ȧ = 2V̂N
˙̂
VN − 2urdu̇rd − 2vr [X(ur)r + Y (ur)vr] (10.32d)

ḃ = V̂N ẏb/p +
˙̂
VNyb/p (10.32e)

ċ = 2yb/pẏb/p + 2∆(xb/p, yb/p)

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏb/p

]
(10.32f)

The expression for ψ̇d contains terms depending on ẏb/p and ẋb/p which depend
on ṼN and ṼT respectively. Consequently, ψ̇d depends on unknown variables and
cannot be used to control the yaw rate. This was not considered in [103] where the
proposed controller contained both ψ̇d and ψ̈d.

Moreover, from (10.21) we see that ψ̇d contains v̇r, which depends on r = ψ̇.
Therefore, the yaw rate error ˙̃

ψ , ψ̇− ψ̇d grows with ψ̇ which leads to a necessary
condition for a well defined yaw rate error. The yaw rate error dynamics are given
by

˙̃
ψ = r

[
1 +

X(ur)urd
u2
rd + v2

r

− ∆

∆2 +
(
yb/p + g

)2
∂g

∂a
(2vrX(ur))

]

− κ(θ)θ̇ +
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂b

(
2

˙̂
VNyb/p

)

+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)

+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)]
ẏe

+
∂g

∂c
2∆

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏp/f

]]

− yb/p + g

∆2 + (yb/p + g)2

[
∂∆

∂xb/p
ẋb/p +

∂∆

∂yb/p
ẏb/p

]

(10.33)

which shows we have the following necessary condition for the existence of our
controller:

Condition 10.1. If it holds that

Cr , 1 +

[
urd

u2
rd + v2

r

− 2vr∆

∆2 +
(
yb/p + g

)2
∂g

∂a

]
X(ur) > 0. (10.34)
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then the yaw rate controller is well defined for all time.

Remark 10.3. The condition above can be verified for any positive velocity, for
the vehicles considered in this thesis. Note that for most vessels this condition is
verifiable since standard ship design practices will result in similar properties of
the function X(ur). Besides having a lower bound greater then zero Cr is also
upper-bounded since the term between brackets can be verified to be bounded in its
arguments.

Since ψ̇d depends on the unknown signal ṼN we cannot take ψ̇d = rd. To define
an expression for rd without requiring the knowledge of ṼN we use (10.34) to define

rd =− 1

Cr

κ(θ)

ut cos(ψ + β − γp) + kδ
xb/p√

1 + x2b/p

+ V̂T


+
Y (ur)vrurd − u̇rdvr

u2
rd + v2r

+
∆

∆2 +
(
yb/p + g

)2 [ ˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd

−2vrY (ur)vr) +

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
∗

∗
(

−utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+
∂g

∂c
2∆

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

− yb/p + g

∆2 + (yb/p + g)2

 ∂∆

∂xb/p

−kδ xb/p√
1 + x2b/p

+ yb/pκ(θ)θ̇


+

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

(10.35)

with,

˙̂
VN =− ˙̂

Vx sin(γp(θ)) +
˙̂
Vy cos(γp(θ))

− κ(θ)


ut cos(ψ + β − γp(θ)) +

kδxb/p√
1 + x2

b/p

− V̂T


 V̂T

(10.36)

Notice that (10.35) is equivalent to (10.30), but without the terms depending on the
unknowns Ṽx and Ṽy that cannot be used in the input functions. If we substitute
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(10.35) in (10.33) and use r̃ , r − rd we obtain

˙̃
ψ = Cr r̃ +

∆

∆2 +
(
yb/p + g

)2
[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2
∂g

∂c
− yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (10.37)

Note that we have used the notation
∂∆

∂pb/p

[
ṼT , ṼN

]T
=

∂∆

∂xb/p
ṼT +

∂∆

∂yb/p
ṼN . (10.38)

From (10.37) it can be seen that choosing rd as in (10.35) results in yaw angle
error dynamics that have a term dependent on the yaw rate error r̃ and a perturbing
term that vanishes when the estimation errors ṼT and ṼN go to zero. To add
acceleration feedforward to the yaw rate controller, the derivative of rd should be
calculated. Using the expression of rd in (10.35) with (10.10), (10.11) and (10.12)
it can be seen that rd has the following dependencies

rd =rd(h
T , yb/p, xb/p, ψ̃, x̃, ỹ), h , [θ, vr, ur, urd, u̇rd, V̂T , V̂N ]T . (10.39)

where h is a vector that contains all the variable whose time derivative do not de-
pend on ṼN and ṼT . However, the other dependencies of rd do introduce new terms
depending on ṼN and ṼT when the acceleration feedforward is calculated. Conse-
quently, we define our yaw rate controller instead with an acceleration feedforward
that contains only the known terms from ṙd

τr =− F (ur, vr, r) +
∂rd
∂hT

ḣ+
∂rd
∂xb/p


−kδ

xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇




+
∂rd

∂ψ̃
Cr r̃ −

∂rd
∂x̃

kxx̃−
∂rd
∂ỹ

ky ỹ − k1r̃ − k2Crψ̃

+
∂rd
∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)
.

(10.40)

where k1 > 0 and k2 > 0 are constant controller gains.
Using the controller (10.40) in (10.1f) the yaw rate error dynamics become

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

− ∂rd

∂ψ̃

[
∆

∆2 +
(
yb/p + g

)2
[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2
∂g

∂c
− yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T
]

(10.41)

which contains two stabilising terms −k1r̃ and −k2Crψ̃, and perturbing terms
depending on ṼT and ṼN that cannot be cancelled by the controller.
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Remark 10.4. It is straightforward to verify that all the terms in (10.30) are
smooth fractionals that are bounded with respect to (yb/p, xb/p, x̃, ỹ, ψ̃) or are
periodic functions with linear arguments and consequently the partial derivatives in
(10.40) and (10.41) are all bounded. This is something that is used when showing
closed-loop stability in the next section.

10.4 Closed-Loop Analysis

In this section we analyse the closed-loop system of the model (10.1) with con-
trollers (10.8) and (10.40) and observer (10.10), when the frame propagates along
the path P with update law (10.5). To show that path following is achieved we
have to show that the following error dynamics converge to zero

ẏb/p =− utd
yb/p√

∆2 + (yb/p + g)2
+G1(·)− xb/pκ(θ)θ̇ + ṼN (10.42a)

ẋb/p =− kδ
xb/p√

1 + x2
b/p

+ yb/pκ(θ)θ̇ + ṼT (10.42b)

˙̃
ψ = Cr r̃ +

∆

∆2 +
(
yb/p + g

)2
[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2
∂g

∂c
− yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (10.42c)

˙̃r =− k1r̃ − k2Crψ̃ −
∂rd
∂yb/p

ṼN −
∂rd
∂xb/p

ṼT +
∂rd
∂x̃

Ṽx +
∂rd
∂ỹ

Ṽy

− ∂rd

∂ψ̃

[
∆

∆2 +
(
yb/p + g

)2
[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2
∂g

∂c
− yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T
]

(10.42d)
˙̃u =− kuũ (10.42e)

To show that the error variables in (10.42) converge to zero, we formulate the
following total closed-loop system that also contains all variables that converge to
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zero independently of the variables in (10.42)

˙̃X1 =




ẏb/p
ẋb/p

˙̃
ψ
˙̃r


 =




−utd yb/p√
∆2+(yb/p+g)2

− xb/pκ(θ)θ̇ +G1(·)
−kδ xb/p√

1+x2
b/p

+ yb/pκ(θ)θ̇

Cr r̃

−k1r̃ − k2Crψ̃




+




ṼN
ṼT

G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT )

−∂rd
∂ψ̃
G2(·)− ∂rd

∂yb/p
ṼN − ∂rd

∂xb/p
ṼT + ∂rd

∂x̃ Ṽx + ∂rd
∂ỹ Ṽy




(10.43a)

˙̃X2 =




˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u




=




−kx1
x̃− Ṽx

−ky1 ỹ − Ṽy
−kx2 x̃
−ky2 ỹ
−kuũ




(10.43b)

v̇r = X(urd + ũ)rd(h, yb/p, xb/p, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (10.43c)

where

G2(·) =
∆

∆2 +
(
yb/p + g

)2
[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2
∂g

∂c
− yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (10.44)

Note that G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT ) satisfies

G2(∆, yb/p, xb/p, g, V̂N , V̂T , 0, 0) = 0 (10.45)

‖G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT )‖ ≤ ζ2(∆)‖[ṼT , ṼN ]‖, (10.46)

where ζ2(∆) > 0, which shows that G2(·) is zero when the perturbing variables,
i.e. ṼT and ṼN , are zero and that it has at most linear growth in the perturbing
variables. Note that by an appropriate choice of ∆ we will assure that ζ2(∆) > 0
is a constant independent of xb/p and yb/p.

The first step in the stability analysis of (10.43) is to assure that the closed-
loop system is forward complete and that the sway velocity vr remains bounded.
Therefore, under the assumption that Condition 10.1 is satisfied, i.e. Cr > 0, we
take the following three steps:

1. First, we prove that the trajectories of the closed-loop system are forward
complete.

2. Then, we derive a necessary condition such that vr is locally bounded with
respect to (X̃1, X̃2).

3. Finally, we establish that for a sufficiently big value of ∆, vr is locally bounded
only with respect to X̃2, i.e. independently of X̃1.
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Furthermore we design the time-varying look-ahead distance as

∆(xb/p, yb/p) =
√
µ+ x2

b/p + y2
b/p, (10.47)

where µ > 0 is a constant. The choice of (10.47) depending on xb/p and yb/p is
necessary to find a bounded value of µ to assure local boundedness of vr with
respect to X̃2 independently of X̃1.

The above three steps are taken by formulating and proving three lemmas. For
the sake of brevity in the main body of this chapter, the proofs of the following
lemmas are replaced by a sketch of each proof in the main body. The full proofs
can be found in the Appendices 10.A-10.C.

Remark 10.5. In the proof of Lemma 10.2 it is shown that by choosing (10.47)
the skew symmetric terms −xb/pκ(θ)θ̇ and yb/pκ(θ)θ̇ do not affect the boundedness
of the sway velocity. The choice of ∆ proposed in Moe et al. [103], i.e. ∆(xb/p) =√
µ+ x2

b/p is impossible since the terms that cancel due to skew-symmetry in the
case presented here will not vanish. The terms that remain have no upper bound
independent of yb/p and g, and therefore a lower bound on µ necessary for bound-
edness of vr independent on xb/p and yb/p cannot be found.

Lemma 10.1 (Forward completeness). The trajectories of the closed-loop system
(10.43) are forward complete.

The proof of this lemma is given in Appendix 10.A. The general idea is as
follows. Forward completeness for (10.43b) is evident since this part of the closed-
loop system consists of GES error dynamics. Using the forward completeness and
in fact boundedness of (10.43b) we can show forward completeness of (10.43c), ˙̃

ψ,
and ˙̃r. Hence, forward completeness of (10.43) depends on forward completeness
of ẋb/p and ẏb/p. To show forward completeness of ẋb/p and ẏb/p, we consider the
xb/p and yb/p dynamics with X̃2, ψ̃, r̃, and vr as input which allows us to claim
forward completeness of ẋb/p and ẏb/p according to Theorem A.3. Consequently, all
the states of the closed-loop system are forward complete and hence the closed-loop
system (10.43) is forward complete

Lemma 10.2 (Boundedness near (X̃1, X̃2) = 0). The system (10.43c) is bounded
near (X̃1, X̃2) = 0 if and only if the curvature of P satisfies the following condition:

κmax , max
θ∈P
|κ(θ)| < Ymin

2Xmax
. (10.48)

The proof of this lemma is given in Appendix 10.B. A sketch of the proof
is as follows. The sway velocity dynamics (10.43c) are analyzed using a quadratic
Lyapunov function V = 1/2v2

r . It can be shown that the derivative of this Lyapunov
function satisfies the conditions for boundedness when the solutions are on or close
to the manifold where (X̃1, X̃2) = 0. Consequently, (10.43c) satisfies the conditions
of boundedness near (X̃1, X̃2) = 0 as long as (10.48) is satisfied.

In Lemma 10.2 we show boundedness of vr for small values of (X̃1, X̃2) to derive
the bound on the curvature. However, locality with respect to X̃1, i.e. the path-
following errors and yaw angle and yaw rate errors, is not desirable and in the next
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lemma boundedness independent of X̃1 is shown under an extra condition on the
constant µ from the definition (10.47) of the look-ahead distance ∆.

Lemma 10.3 (Boundedness near X̃2 = 0). The system (10.43c) is bounded near
X̃2 = 0, independent of X̃1, if we choose

µ >
8Xmax

Ymin − 2Xmaxκmax
. (10.49)

The proof of this lemma is given in Appendix 10.C. The general idea is given
as follows. The proof follows along the same lines of that of Lemma 10.2 but
solutions are considered close to the manifold X̃2 = 0 rather than (X̃1, X̃2) = 0. It
is shown that boundedness can still be shown if (10.49) is satisfied additionally to
the conditions of Lemma 10.2.

Theorem 10.1. Consider a θ-parametrized path denoted by P (θ) , (xp(θ), yp(θ)).
Then under Condition 10.1 and the conditions of Lemma 10.1-10.3, the system
(10.1) with control laws (10.8) and (10.40) and observer (10.10) follows the path
P , while maintaining vr, τr and τu bounded. In particular, the origin of the system
(10.43a)-(10.43b) is GAS and LES.

Proof. From the fact that the origin of (10.43b) is GES, the fact that the closed-
loop system (10.43) is forward complete according to Lemma 10.1, and the fact
that solutions of (10.43c) are locally bounded near X̃2 = 0 according to Lemma
10.3, we can conclude that there is a finite time T > t after which solutions of
(10.43b) will be sufficiently close to X̃2 = 0 to guarantee boundedness of vr.

Having established that vr is bounded we first analyse the cascade
[

˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]
+

[
G2(·)

−∂rd
∂ψ̃
G2(·)− ∂rd

∂pb/p
[ṼT , ṼN ]T + ∂rd

∂[x̃,ỹ]T
Ṽc

]
(10.50a)




˙̃x
˙̃y
˙̃Vx
˙̃Vy
˙̃u




=




−kx1 x̃− Ṽx
−ky1 ỹ − Ṽy
−kx2 x̃
−ky2 ỹ
−kuũ




(10.50b)

The perturbing system (10.50b) is GES as shown in Section 10.3. The intercon-
nection term, i.e. the second matrix in (10.50a), satisfies the linear growth criteria
from Theorem A.1. More specifically, it does not grow with the ψ̃ and r̃ since all
the partial derivatives of rd and G2(·) can respectively be bounded by constants
and linear functions of Ṽx and Ṽy. The nominal dynamics, i.e. the first matrix in
(10.50a), can be analyzed with the following quadratic Lyapunov function

V(r̃,ψ̃) =
1

2
r̃2 +

1

2
k2ψ̃

2 (10.51)

whose derivative along the solutions of the nominal system is given by

V̇(r̃,ψ̃) = −k1r̃
2 − k2Crψ̃r̃ + k2Cr r̃ψ̃ = −k2r̃

2 ≤ 0 (10.52)
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which implies that r̃ and ψ̃ are bounded. The derivative of (10.52) is given by

V̈(r̃,ψ̃) = −2k2
1 r̃

2 − 2k1k2Crψ̃r̃ (10.53)

which is bounded since r̃ and ψ̃ are bounded. This implies that (10.52) is a
uniformly continuous function. Consequently, by applying Barbalat’s lemma (see
Lemma A.5) we have that

lim
t→∞

V̇(r̃,ψ̃) = lim
t→∞

−k1r̃
2 = 0 ⇒ lim

t→∞
r̃ = 0. (10.54)

Since Cr is persistently exciting, which follows from the fact that Cr is upper
bounded and lower bounded by a constant larger then zero, it follows from the
expression of the nominal dynamics that

lim
t→∞

r̃ = 0 ⇒ lim
t→∞

ψ̃ = 0. (10.55)

This implies that the system is globally asymptotically stable according to Defi-
nition A.3 and since the nominal dynamics are linear it follows that the nominal
dynamics are globally exponentially stable. Consequently, from the above it follows
that the cascade (10.50) is GES using Theorem A.1 and Proposition A.1.

We now consider the following dynamics

[
ẏb/p
ẋb/p

]
=



−utd yb/p√

∆2+(yb/p+g)2
− xb/pκ(θ)θ̇

−kδ xb/p√
1+x2

b/p

+ yb/pκ(θ)θ̇


+

[
ṼN +G1(·)

ṼT

]
. (10.56)

Note that we can view the systems (10.50) and (10.56) as a cascaded system where
the nominal dynamics are formed by the first matrix of (10.56), the interconnection
term is given by second matrix of (10.56), and the perturbing dynamics are given
by (10.50). As we have just shown the perturbing dynamics are GES. Using (10.23)
it is straightforward to verify that the interconnection term satisfies the conditions
of Theorem A.1. We now consider the following Lyapunov function for the nominal
system

V(xb/p,yb/p) =
1

2
x2
b/p +

1

2
y2
b/p. (10.57)

whose derivative along the solutions of the nominal system is given by

V̇(xb/p,yb/p) = −utd
y2
b/p√

∆2 + (yb/p + g)2
− kδ

x2
b/p√

1 + x2
b/p

≤ 0, (10.58)

which implies that the nominal system is GAS. Moreover, since it is straightforward
to verify that V̇(xb/p,yb/p) ≤ αV(xb/p,yb/p) for some constant α dependent on initial
conditions, it follows from the comparison lemma (Lemma A.4) that the nominal
dynamics are also LES. Consequently, the cascaded system satisfies the conditions
of Theorem A.1 and Lemma A.3, and therefore the cascaded system is GAS and
LES. This implies that the origin of the error dynamics, i.e. (X̃1, X̃2) = (0, 0), is
globally asymptotically stable and locally exponentially stable.
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10.5 Case Study

This section presents a case study for the theoretical results presented in this chap-
ter. We will apply the path-following approach to the case of following a circular
path. The ocean current components are given by Vx = −1 m/s and Vy = 1.2 m/s
and consequently Vmax ≈ 1.562 m/s. The desired relative surge velocity is chosen
to be constant and set to urd = 5 m/s such that Assumption 10.2 is verified. We
recall here the expression for X(ur), Y (ur) given by Equations (2.12b-2.12c):

X(ur) , −X1ur +X2, (10.59a)

Y (ur) , − Y1ur − Y2, (10.59b)

The simulation uses the ship model parameters from Fredriksen and Pettersen
[57] and reported in Section B.1. Using these parameters and expressions (10.59a)
and (10.59b) it is straightforward to verify that the curvature bound from Lemma
10.2 is given by κmax < (Ymin)/(2Xmax) ≈ 0.0667. The observer is initialised as
suggested in Subsection 10.3.2 and the observer gains are selected as kx1

= ky1 = 1
and kx1

= ky1 = 0.1. The controller gains are selected as kur = 0.1 for the surge
velocity controller and k1 = 1000 and k2 = 400 for the yaw rate controller.

In this case study the vessel is required to follow a circle with a radius of 400 m.
Consequently, the curvature of the path is given by κp = 1/400 = 0.0025. This
implies we satisfy our constraint on the curvature κp < (Ymin)/(2Xmax) ≈ 0.0667.
The required value for µ can be calculated as suggested in Lemma 10.3 to obtain
µ > 62.3468 m, which can be satisfied by taking µ = 70 m. The initial conditions
are taken as

[ur(t0), vr(t0), r(t0), x(t0), y(t0), ψ(t0)]T = [0, 0, 0, 700, 10, π/2]T . (10.60)

The resulting trajectory of the ship can be seen in Figure 10.3. The dashed
blue line is the trajectory of the vessel and the red cicle is the reference. The yellow
ships represent the orientation of the ship at certain times. From Figure 10.3 it can
clearly be seen that the orientation of the ship is not tangent to the circle, which
is indeed what is needed to compensate for the ocean current.

The path-following errors in tangential direction, xb/p, and in normal direction,
yb/p can be seen in the top plot of Figure 10.4 from which it can clearly be seen
that the path-following error converge to zero after a transient period. A detail of
the last portion of the simulation is given to illustrate the errors converge to zero.
The estimates for the ocean current components obtained from the ocean current
observer are given in the second plot from the top in Figure 10.4. From this plot
it can clearly be seen that the estimates converge to the desired values without
overshoot, which illustrates the conservativeness of the bound 2Vmax < urd(t), ∀t,
derived in the analysis of the observer-error dynamics in Subsection 10.3.2. The
yaw rate r and sway velocity vr are plotted together in the third plot of Figure
10.4. These plots show that due to the curvature of the path the yaw rate and
sway velocity do not converge to zero but follow a periodic motion induced by the
motion along the circle. The periodic signals are not symmetric due to the ocean
current affecting the ship’s motion, i.e. on part of the circle the ship moves against
the current and on part of the circle it moves with the current. The relative surge
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Figure 10.3: Path of the vessel in the x − y-plane. The dashed blue line is the
trajectory of the path and the red line is the reference. The yellow ships denote
the orientation of the vessel at certain times.

velocity is plotted in the fourth plot from the top of Figure 10.4. This plot clearly
shows the exponential convergence of the velocity as it moves to the desired value
of urd = 5 m/s. Especially interesting is the coupling of the relative surge velocity
with the value of Cr from Condition 10.1, which is plotted in the bottom plot of
Figure 10.4. From this plot it can clearly be seen that Cr is bounded away from
zero throughout the motion.

10.6 Conclusion

In this chapter the path following control problem of generic paths has been con-
sidered for ASVs and AUVs moving in the horizontal plane. An unknown ocean
current has been considered to affect the system. The path has been considered
to be parametrized by a parameter s. Then a Serret-Frent frame has been con-
sidered to propagate along the path according to a specified update law for s.
In order to solve the path following control problem, a LOS-like guidance con-
trol strategy has been proposed together with a certain update law for s and an
observer for the ocean current. The guidance law has been characterized by a time-
varying look-ahead distance which is dependent on the distance from the path. The
parametrization s has been chosen to allow the fulfillment of the control objectives
for all the initial conditions. The observer was necessary in order to estimate and
compensate for the ocean current.

The closed-loop system has been thoroughly analyzed. Boundedness of the zero
dynamics under certain conditions has been proven. Finally, if these conditions are

178



10.6. Conclusion

xb/p

yb/p

V̂x

V̂y

vr
r

Time [s]

C
r

Time [s]

u
r
[m

/s
]

Time [s]

r
[r
ad

/s
]
v r

[m
/s
] Time [s]

V̂
c
[m

/
s]

Time [s]

E
rr
o
r
[m

]

500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

−0.01
0

0.01

0.4

0.6

0.8

1

1.2

0

2

4

6

−0.2

0

0.2

0.4

−1

0

1

2

−300

−200

−100

0

100

Figure 10.4: Path following errros plotted agains time (top), current estimates
against time (second), sway velocity and yaw rate against time (third), surge ve-
locity against time (fourth), and size of Cr over time (bottom).
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verified, the path following control errors are proved to be globally asymptotically
stable.

10.A Proof of Lemma 10.1

Consider the following part of the global closed-loop system:
[

˙̃
ψ
˙̃r

]
=

[
Cr r̃

−k1r̃ − k2Crψ̃

]

+

[
G2(∆, yb/p, xb/p, g, V̂N , V̂T , ṼN , ṼT )

−∂rd
∂ψ̃
G2(·)− ∂rd

∂yb/p
ṼN − ∂rd

∂xb/p
ṼT + ∂rd

∂x̃ Ṽx + ∂rd
∂ỹ Ṽy

]

︸ ︷︷ ︸
R(h,yb/p,δx,ψ̃,x̃,ỹ)

(10.61a)

v̇r =X(urd + ũ)rd(h, yb/p, δx, ψ̃, x̃, ỹ) +X(urd + ũ)r̃ + Y (urd + ũ)vr (10.61b)

where

G2(·) =
∆

∆2 +
(
yb/p + g

)2
[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]
ṼN

+

(
2∆2

∆2 +
(
yb/p + g

)2
∂g

∂c
− yb/p + g

∆2 + (yb/p + g)2

)
∂∆

∂pb/p

[
ṼT , ṼN

]T (10.62)

From the boundedness of the vector [X̃T
2 , κ(θ), urd, u̇rd, VT , VN ]T we know that∥∥∥[X̃T

2 , κ(θ), urd, u̇rd, VT , VN ]T
∥∥∥ ≤ β0, and from (10.35) we can conclude the exis-

tence of positive functions ard(·), brd(·), aR(·), and bR(·) which are all continuous
in their arguments and are such that such the following inequalities hold:

|rd(·)| ≤ ard(µ, β0) |vr|+ brd(µ, β0) (10.63)

and,

‖R(·)‖ ≤ aR(µ, β0) |vr|+ bR(µ, β0) (10.64)

Then we choose the following Lyapunov function candidate:

V1(ψ̃, r̃, vr) =
1

2

(
k2ψ̃

2 + r̃2 + v2
r

)
(10.65)

whose time derivative along the solutions of (10.61) is

V̇1(·) = k2Cr r̃ψ̃ − k1r̃
2 − k2Cr r̃ψ̃ + [ψ̃ r̃]R(·)

+ Y (urd + ũ)v2
r +X(urd + ũ)r̃vr +X(urd + ũ)rd(·)vr

(10.66)

Using Young’s inequality we note that

V̇1(·) ≤ k1r̃
2 + ψ̃2 + r̃2 +R2(·) + Y (urd + ũ)v2

r

+ |X(urd + β0)|
(
r̃2 + v2

r

)
+ |X(urd + β0)|

(
r2
d(·) + v2

r

)

≤ αV1 + β, α ≥ 0, β ≥ 0

(10.67)
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Note that since the differential inequality (10.67) is scaler we can invoke the com-
parison lemma Khalil [77, Lemma 3.4] given as Lemma A.4 in Appendix A.1.
From Lemma A.4 we know that the solutions of differential inequality (10.67) are
bounded by the solutions of the linear system:

ẋ = αx+ β (10.68)

which has solutions

x(t) =
‖x(t0)‖α+ β

α
eα(t−t0) − β

α
(10.69)

Hence, from Lemma A.4 we have that

V1(·) ≤ ‖V1(t0)‖α+ β

α
eα(t−t0) − β

α
(10.70)

which shows the solutions of V1(·) are defined up to tmax = ∞ and consequently
from (10.65) it follows that the solutions of ψ̃, r̃, and vr must be defined up to
tmax = ∞. Hence, the solutions of (10.61) satisfy Definition A.5 and we can con-
clude forward completeness of trajectories of (10.61).

The forward completeness of trajectories of the global closed-loop system now
depends on forward completeness of of ẏb/p and ẋb/p from (10.43a). We can conclude
forward completeness of ẏb/p and ẋb/p by considering the Lyapunov function

V2 =
1

2
x2
b/p +

1

2
y2
b/p. (10.71)

The time derivative of (10.71) is given by

V̇2 = xb/pẋb/p + yb/pẏb/p

≤ −utd
y2
b/p√

∆2 + (yb/p + g)2
−

kδx
2
b/p√

1 + x2
b/p

+ (G1(·) + ṼN )yb/p + ṼTxb/p

≤ (G1 + ṼN )yb/p + ṼTxb/p

(10.72)

where using the bound on G1(·) from (10.23) and Young’s inequality we obtain

V̇2 ≤ V2 +
1

2

(
ζ2(utd)‖[ψ̃, r̃]T ‖2 + Ṽ 2

N + Ṽ 2
T

)
(10.73)

≤ V2 + σ2(vr, ψ̃, r̃, ṼN , ṼT ) (10.74)

with σ2(·) ∈ K∞. Consequently, if we view the arguments of σ2(·) as input to the
xb/p and yb/p dynamics, then (10.73) satisfies Theorem A.3 and hence ẋb/p and ẏb/p
are forward complete. Note that the arguments of σ2(·) are all forward complete
and therefore fit the definition of an input signal given in Definition A.5. We have
now shown forward completeness of (10.43a) and (10.43c) and since (10.43b) is
GES is is trivially forward complete. We can therefore claim forward completeness
of the entire closed-loop system (10.43) and the proof of Lemma 10.1 is complete.
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10.B Proof of Lemma 10.2

Recall the sway velocity dynamics (10.43c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (10.75)

The derivative of (10.75) along the solutions of (10.43c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(10.76)

where we used the fact that:

Y (ur) = ayur + by (10.77)
X(ur) = axur + bx (10.78)

The term rdvr is given by

rdvr =− vr
Cr


κ(θ)


ut cos(ψ + β − γp(θ)) + kδ

xb/p√
1 + x2

b/p

+ V̂T




+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)

+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+
∂g

∂c
2∆


 ∂∆

∂xb/p


−kδ

xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇




+
∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

− yb/p + g

∆2 + (yb/p + g)2


 ∂∆

∂xb/p


−kδ

xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇




+
∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

(10.79)
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We now introduce a term F (X̃1, X̃2,∆, VT , VT , urd, vr) to collect all the terms that
grow linearly with vr and the terms that grow quadratically with vr but vanish
when X̃1 and X̃2 are zero. Consequently we rewrite (10.79) to obtain

rdvr =− vr
Cr

[
1 +

∆xb/p

∆2 +
(
yb/p + g

)2

]
κ(θ) (ut cos(ψ + β − γp(θ)))

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

+ F (X̃1, X̃2,∆, VT , VT , urd, vr)

(10.80)

where

F (·) =− vr
Cr


κ(θ)


kδ

xb/p√
1 + x2

b/p

+ V̂T


− u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂b

(
2

˙̂
VNyb/p

)

+ 2
∂g

∂a

(
V̂N

˙̂
VN − urdu̇rd

)
− xb/pκ(θ)


 kδxb/p√

1 + x2
b/p

+ V̂T




+

[
∂g

∂c
2yb/p +

∂g

∂b

(
2V̂N

)]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

− ∂g

∂c
2∆


 ∂∆

∂xb/p

kδxb/p√
1 + x2

b/p

+
∂∆

∂yb/p

(
utdyb/p√

∆2 + (yb/p + g)2
+G1(·)

)




+
yb/p + g

∆2 + (yb/p + g)2


 ∂∆

∂xb/p

kδxb/p√
1 + x2

b/p

+
∂∆

∂yb/p

(
utdyb/p√

∆2 + (yb/p + g)2
+G1(·)

)]]

(10.81)

Note here that using our definition of ∆ in (10.47) all the terms in rdvr with
partial derivatives of ∆ multiplied by θ̇ are cancelled due to skew-symmetry. It is
straightforward to verify that the function F (·) satisfies the following inequality:

|F (·)| ≤ F2(X̃1, X̃2,∆, VT , VN , urd)v
2
r + F1(X̃1, X̃2,∆, VT , VN , urd) |vr| (10.82)

where F1,2(·) are positive functions continuous in their arguments with:

F2(0, 0,∆, VT , VN , urd) = 0. (10.83)
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Consequently, using (10.80) the term rdvr can be bounded as a function of vr as
follows

rdvr ≤
√
u2
r + v2

r

∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)|
∣∣∣∣∣

[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2

]∣∣∣∣∣+ |F (·)|

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣
v2
r

Cr

∣∣∣∣ |κ(θ)|
∣∣∣∣∣

[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2

]∣∣∣∣∣+ |F (·)|

+

∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)| |ur|
∣∣∣∣∣

[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2

]∣∣∣∣∣

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(10.84)

Remark 10.6. The necessity for the choice of ∆ as in (10.47) becomes evident
from (10.80). The choice of ∆ constant would make all partial derivatives of ∆
equal to zero. However, from vr/Crxb/pκ(θ)θ̇ we obtain a term of the form

v2
r

Cr
κ(θ)

∆2xb/p

(∆2 + (yb/f + g)2)3/2
(10.85)

which grows quadratically in vr with a gain that cannot be bounded independent of
xb/f if ∆ is independent of xb/f . Therefore, boundedness of vr cannot be shown

independently of xb/f . With the choice of ∆ =
√
µ2 + x2

b/p as proposed in Moe
et al. [103], the partial derivatives with respect to yb/p would be zero. The term in
(10.85) would now be upper-bounded by one. However, a new term would then be
introduced from the partial derivative of ∆

v2
r

Cr

∂∆

∂xb/p
κ(θ)

∆yb/p(yb/p + g)

(∆2 + (yb/f + g)2)3/2
(10.86)

where it should be noted that this term can grow unbounded in yb/p near the manifold
where g = −(yb/p + 1). Hence, the growth of this quadratic term in vr cannot be
upper-bounded independent of yb/p.

To avoid the issues describe in Remark 10.6, we choose ∆ as defined in (10.47).
Using the definition of ∆(xb/p, yb/p) given in (10.47) it is straightforward to verify
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that

rdvr ≤
∣∣∣∣
v2
r

Cr

∣∣∣∣ |κ(θ)|
∣∣∣∣∣

[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2

]∣∣∣∣∣+ |F (·)|

+

∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)| |ur|
∣∣∣∣∣

[
−1 +

∆xb/p

∆2 +
(
yb/p + g

)2

]∣∣∣∣∣

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤ 2

∣∣∣∣
v2
r

Cr

∣∣∣∣ |κ(θ)|+ 2 |ur|
∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)|+ |F (·)|

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

(10.87)

When substituting (10.87) in (10.76) we obtain

V̇3 = vrv̇r ≤
1

Cr

[
2 |X(urd)| |κ(θ)|+ Y (urd)

]
v2
r + ayũv

2
r + axũvr r̃

+X(urd)

(
F (·) + 2 |ur|

∣∣∣∣
vr
Cr

∣∣∣∣
)

+ axũrdvr +X(urd)vr r̃

(10.88)

Consequently, on the manifold where (X̃1, X̃2) = 0 we have

V̇3 ≤
1

C∗r

(
2Xmax |κ(θ)|+ Ymin

)
v2
r +X(urd)F1(0, 0,∆, VT , VN , urd)|vr| (10.89)

where C∗r (vr, xb/p, yb/p,∆, VN , urd) = Cr(vr, xb/p, yb/p,∆, V̂N = VN , ur = urd).
Boundedness of (10.89) is guaranteed as long as

2Xmax |κ(θ)|+ Ymin < 0 (10.90)

Hence, satisfaction of (10.48) renders the quadratic term in (10.89) negative and
since the quadratic term is dominant for sufficiently large vr, (10.89) is negative
definite for sufficiently large vr. If V̇3 is negative for sufficiently large vr this implies
that V3 decreases for sufficiently large vr. Since V3 = 1/2v2

r , a decrease in V3 implies
a decrease in v2

r and by extension in vr. Therefore, vr cannot increase above a
certain value and vr is bounded near the manifold where (X̃1, X̃2) = 0.

Remark 10.7. Note that C∗r (vr, yb/f ,∆, VN , urd) can be found independently of
yb/p and xb/p since the terms in Cr are bounded with respect to these variables.

Consequently, close to the manifold where (X̃1, X̃2) = 0 the sufficient and nec-
essary condition for local boundedness of (10.43c) is the following:

2Xmax |κ(θ)|+ Ymin < 0 (10.91)

which is satisfied if and only if the condition in Lemma 10.2 is satisfied. This
completes the proof of Lemma 10.2.
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10.C Proof of Lemma 10.3

Recall the sway velocity dynamics (10.43c):

v̇r = X(ũ+ urd)(rd + r̃) + Y (urd + ũ)vr, Y (urd) < 0

Consider the following Lyapunov function candidate:

V3(vr) =
1

2
v2
r (10.92)

The derivative of (10.92) along the solutions of (10.43c) is given by

V̇3 = vrv̇r = vrX(urd + ũ)rd +X(urd + ũ)vr r̃ + Y (urd + ũ)v2
r

≤ X(urd)rdvr + axũrdvr +X(urd)vr r̃ + axũvr r̃ + ayũv
2
r + Y (urd)v

2
r

(10.93)

where we used the fact that:

Y (ur) = ayur + by (10.94)
X(ur) = axur + bx (10.95)

The term rdvr is given by:

rdvr =− vr
Cr


κ(θ)


ut cos(ψ + β − γp(θ)) + kδ

xb/p√
1 + x2

b/p

+ V̂T




+
Y (ur)vrurd − u̇rdvr

u2
rd + v2

r

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a

+
∂g

∂b

(
2

˙̂
VNyb/p

)
+
∂g

∂a

(
2V̂N

˙̂
VN − 2urdu̇rd − 2vrY (ur)vr

)

+

[
1 +

∂g

∂c
2yb/p +

∂g

∂b
2V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+
∂g

∂c
2∆


 ∂∆

∂xb/p


−kδ

xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇




+
∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

− yb/p + g

∆2 + (yb/p + g)2


 ∂∆

∂xb/p


−kδ

xb/p√
1 + x2

b/p

+ yb/pκ(θ)θ̇




+
∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)]]

(10.96)
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We can now collect the terms that have less than quadratic growth in vr and/or
vanish when X̃2 = 0.

rdvr =− vr
Cr
κ(θ)

(√
u2
r + v2

r cos(ψ + β − γp(θ))
)

+
vr
Cr

∆xb/p

∆2 +
(
yb/p + g

)2
(
κ(θ)

√
u2
r + v2

r cos(ψ + β − γp)
)

− vr
Cr

∆

∆2 +
(
yb/p + g

)2

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)
)

+
vr
Cr

yb/p + g

∆2 + (yb/p + g)2

∂∆

∂yb/p

(
−utd

yb/p√
∆2 + (yb/p + g)2

+G1(·)
)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

+G(X̃1, X̃2,∆, VT , VN , urd, vr)

(10.97)

where,

G(·) ,− vr
Cr


κ(θ)


kδ

xb/p√
1 + x2

b/p

+ V̂T


− kδxb/p√

1 + x2
b/p

− u̇rdvr
u2
rd + v2

r

− yb/p + g

∆2 + (yb/p + g)2

∂∆

∂xb/p

+
∆

∆2 +
(
yb/p + g

)2

[
˙̂
VN

b+
√
b2 − ac
−a +

∂g

∂b

(
2

˙̂
VNyb/p

)

− ∂g

∂c
2∆


 ∂∆

∂xb/p

kδxb/p√
1 + x2

b/p

+
∂∆

∂yb/p

(
utdyb/p√

∆2 + (yb/p + g)2
+G1(·)

)


+ 2

[
∂g

∂c
yb/p +

∂g

∂b
V̂N

]( −utdyb/p√
∆2 + (yb/p + g)2

+G1(·)− xb/pκ(θ)θ̇

)

+ 2
∂g

∂a

(
V̂N

˙̂
VN − urdu̇rd

)
− xb/pκ(θ)


 kδxb/p√

1 + x2
b/p

+ V̂T








(10.98)

where G(·) is the function introduced to collect the terms that have less than
quadratic growth in vr and/or vanish when X̃2 = 0. Note here that using our defi-
nition of ∆ in (10.47) all the terms in rdvr with partial derivatives of ∆ multiplied
by θ̇ are cancelled due to skew-symmetry. We can now find the following bound on
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(10.96)

rdvr ≤
∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)|
√
u2
r + v2

r

∣∣∣∣∣
∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣

+

∣∣∣∣
vr
Cr

∣∣∣∣
∣∣∣∣

1

∆

∣∣∣∣
(

4
√
u2
r + v2

r + |ũ|
)

+

∣∣∣∣
vr
Cr

∣∣∣∣
∣∣∣∣

yb/p + g

∆2 + (yb/p + g)2

∣∣∣∣
(

4
√
u2
r + v2

r + |ũ|
)

+ |G(·)|

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a

)
Y (ur)v

2
r

≤
∣∣∣∣
v2
r

Cr

∣∣∣∣

[
|κ(θ)|

∣∣∣∣∣
∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣+
8

∆

]
+ |G(·)|

+

∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)| |ur|
∣∣∣∣∣

∆xb/p

∆2 +
(
yb/p + g

)2 − 1

∣∣∣∣∣+

∣∣∣∣
vr
Cr

∣∣∣∣
∣∣∣∣

2

∆

∣∣∣∣ (4 |ur|+ |ũ|)

− 1

Cr

(
urd

u2
rd + v2

r

− 2∆vr
∆2 + (yb/p + g)2

∂g

∂a
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(10.99)

where,

Φ(·) , |G(·)|+ 2

∣∣∣∣
vr
Cr

∣∣∣∣ |κ(θ)| |ur|+ 2

∣∣∣∣
vr
Cr

∣∣∣∣
∣∣∣∣

1

∆

∣∣∣∣ (4 |ur|+ |ũr|) (10.100)

The function Φ(·) is introduced to collect the remaining terms that have less than
quadratic growth in vr and/or vanish when X̃2 = 0. Note also the terms in G(·)
with partial derivatives of g that appear to have quadratic growth. Although the
overall terms appear to have quadratic growth, the partial derivatives of g actually
decrease for increasing vr giving the entire term less than quadratic growth. From
the definitions of Φ(·) and G(·) one can easily conclude the existence of three
continuous positive functions F0,2(X̃1, X̃2, urd, u̇rd, VT , VN ,∆) which are bounded
under the boundedness of the vector [X̃T

2 , urd, u̇rd, VT , VN ,∆]T , with

F2(X̃1, X̃2 = 0, urd, u̇rd, Vxe , Vye ,∆) = 0,

such that:

Φ(·) ≤ F2(·)v2
r + F1(·)vr + F0(·). (10.101)
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When we substitute the bound on rdvr from (10.99) in (10.93) we obtain:
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[
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+ axũrdvr +X(urd)(vr r̃ + Φ(·)) + axũvr r̃ + ayũv
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(10.102)

Consequently, on the manifold where X̃2 = 0 we obtain

V̇3 ≤
∣∣∣∣

1

Cr

∣∣∣∣
[
Xmax

[
2κmax +

8

∆

]
− Ymin

]
v2
r

+X(urd)(F1(X̃1, 0, urd, u̇rd, VT , VN ,∆) |vr|
+ F0(X̃1, 0, urd, u̇rd, VT , VN ,∆))

(10.103)

To have boundedness of vr for small values of X̃2 we have to satisfy the following
inequality:

Xmax

[
2κmax +

8

∆

]
− Ymin < 0 (10.104)

such that the quadratic term in (10.103) is negative. Using (10.47) we need to
choose µ, such that:

µ >
8Xmax

Ymin − 2κmaxXmax
(10.105)

which is the condition given in Lemma 10.3. Note that the denominator of µ is
nonzero and positive as long of the conditions of Lemma 10.2 are satisfied. Con-
sequently, near the manifold X̃2 = 0 it holds that (10.103) is negative definite for
sufficiently large vr. Consequently, near the manifold X̃2 = 0 it holds that (10.102)
is negative definite for sufficiently large vr. If V̇3 is negative for sufficiently large vr
this implies that V3 decreases for sufficiently large vr. Since V3 = 1/2v2

r , a decrease
in V3 implies a decrease in v2

r and by extension in vr. Consequently, vr cannot
increase above a certain value and vr is bounded near X̃2 = 0 if µ is chosen such
that (10.49) holds, which completes the proof of Lemma 10.3.
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Chapter 11

Path following of unparametrized
paths

This chapter addresses the path following control problem of unparametrized curved
paths for ASVs and AUVs. In particular, we consider that the path is identified by
an implicit expression and we do not use an explicit parametrization for control
purposes. That is, we do not define a path parameter s which uniquely identifies
a point on the path. The control objective is to make the vehicle converge to the
path and move along it with a specified constant forward velocity. We consider that
a constant and irrotational ocean current affects the vehicle. However, differently
from the previous chapters, the disturbance is not considered to act as a distur-
bance at the level of the kinematics, but rather as a disturbance at the level of the
accelerations. For this reason, a different model for ASVs and AUVs is introduced
in this chapter.

The path following control problem has already been considered in Chapters 6,
8-10. However, in Chapters 6, 8-10 we considered parametrized paths. In that case
the proposed solution consisted of finding a control law which made the vehicle
track a virtual frame propagating along the curve according to the motion of the
vehicle. Since here we do not use any parametrization, such an approach cannot be
used. The approach presented in this chapter is based on the hierarchical control
approach presented in [47]. In particular, the control design is divided into two main
steps. We first solve the path following control problem for a kinematic point-mass.
We then use the feedback designed for the point-mass in order to obtain a desired
yaw angle to assign to the marine vehicle. The desired yaw angle is assigned using
a feedback linearizing controller together with an adaptive control law in order
to reject the constant disturbance. These two steps are equivalent to defining and
stabilizing two nested subsets of the state space. Using the hierarchical control
methodology in [47] we show that under certain conditions on the curvature of the
path, the path following control problem is solved and the sway velocity of the
vehicle stays bounded.

Note that the problem of unparametrized straight line paths was already pre-
sented in Chapters 6, 8, where we showed that the control approach presented
in Chapters 6, 8 can solve the path following control problem for unparametrized
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11. Path following of unparametrized paths

straight line paths. Note also that the path following of straight line unparametrized
paths has already been dealt with in the past, for instance in [20, 32, 56]. Further-
more, the path following problem for curves parametrized by a path variable has
also been dealt with in the past, see for instance [80, 103]. However, to the best
of our knowledge, for marine vehicles, the path following control problem of un-
parametrized curved paths is an open problem. A preliminary solution for the case
of no disturbance affecting the vehicle was given in [15]. In this chapter a solution
for the case of non-zero ocean current is also presented.

The work presented in this chapter is an extension of the work presented in
[15].

The chapter is organized as follows: Section 11.1 gives some preliminaries and
the notations used in the chapter; in Section 11.2 the control problem is described
and the dynamic model used for the vehicle is introduced; Section 11.3 describes
our hierarchical approach; Section 11.4 presents our approach to the control design
and stability analysis for the case of zero ocean current; in Section 11.5 the consid-
erations given in the previous section are extended to the case of non-zero ocean
current; Section 11.6 presents the simulation results both for the case of zero and
non-zero ocean current; Finally, Section 11.7 gives the conclusions.

11.1 Preliminaries and notation

In this chapter we adopt the following notation. We denote by S1 the set of real
numbers modulo 2π, with the differentiable manifold structure making it diffeo-
morphic to the unit circle. If ψ ∈ S1, Rψ is the rotation matrix

Rψ =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
.

If f(x, y) is a differentiable function of two scalar variables, we denote by ∂xf , ∂yf
the partial derivatives with respect to x and y, respectively. Similarly, we define
∂2
xyf := ∂x∂yf , and similarly for the other second-order partial derivatives. If f :

Rn → Rm is a differentiable vector function and p ∈ Rn, dfp is the m×n Jacobian
matrix of f at p. If Γ is a closed subset of a metric space (M,d) and x ∈M , then
we denote by ‖x‖M the point-to-set distance of x to M , ‖x‖M = infy∈M d(x− y).

The following stability definitions are taken from [47]. Let Σ : χ̇ = f(χ) be a
smooth dynamical system with state space a Riemannian manifold X with asso-
ciated metric d. Let φ(t, χ0) denote the local phase flow generated by Σ, and let
Bδ(x) denote the ball of radius δ centred at x ∈M .

Consider a closed set Γ ⊂ X which is positively invariant for Σ, i.e., for all
χ0 ∈ Γ, φ(t, χ0) ∈ Γ for all t > 0 for which φ(t, χ0) is defined. Then we have the
following stability definitions taken from [47].

Definition 11.1. The set Γ is stable for Σ if for any ε > 0, there exists a neigh-
borhood N (Γ) ⊂ X such that, for all χ0 ∈ N (Γ), φ(t, χ0) ∈ Bε(Γ), for all t > 0 for
which φ(t, χ0) is defined. The set Γ is attractive for Σ if there exists a neighborhood
N (Γ) ⊂ X such that for all χ0 ∈ N (Γ), limt→∞ ‖φ(t, χ0)‖Γ = 0. The domain of
attraction of Γ is the set {χ0 ∈ X : limt→∞ ‖φ(t, χ0)‖Γ = 0}. The set Γ is globally
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Figure 11.1: Illustration of the ship’s kinematic variables.

attractive for Σ if it is attractive with domain of attraction X . The set Γ is locally
asymptotically stable (LAS) for Σ if it is stable and attractive. The set Γ is globally
asymptotically stable for Σ if it is stable and globally attractive. If Γ1 ⊂ Γ2 are two
closed positively invariant sets, then Γ1 is asymptotically stable relative to Γ2 if Γ1

is asymptotically stable for the restriction of Σ to Γ2. System Σ is locally uniformly
bounded (LUB) near Γ if for each x ∈ Γ there exist positive scalars λ and m such
that φ(R+, Bλ(x)) ⊂ Bm(x). �

The following result is key in the development of this chapter.

Theorem 11.1 ([47]). Let Γ1, Γ2, Γ1 ⊂ Γ2 ⊂ X , be two closed sets that are
positively invariant for Σ and suppose that Γ1 is not compact. If
(i) Γ1 is asymptotically stable relative to Γ2,

(ii) Γ2 is asymptotically stable, and

(iii) Σ is LUB near Γ1,
then Γ1 is asymptotically stable for Σ.

11.2 The problem

Consider the 3-degrees-of-freedom vessel depicted in Figure 11.1, which may de-
scribe an autonomous surface vessel (ASV) or an autonomous underwater vehicle
(AUV) moving in the horizontal plane. We denote by p ∈ R2 the position of the
vessel on the plane and ψ ∈ S1 its heading (or yaw) angle. The yaw rate ψ̇ is
denoted by r.

We attach at the point p of the vessel a body frame aligned with the main axes
of the vessel, as depicted in the figure, with the standard convention that the z-axis
points into the plane (towards the sea bottom). We represent the velocity vector
ṗ in body frame coordinates as (u, v), where u, the longitudinal component of the
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11. Path following of unparametrized paths

velocity vector, is called the surge speed, while v, the lateral component, is called
the sway speed. Finally, the control inputs of the vessel are the surge trust Tu and
the rudder angle Tr. In terms of these variables, the model derived in [54] is

η̇ =

[
Rψ 0
0 1

]
ν

MRBν̇ +CRB(ν)ν = −MAν̇r −CA(νr)νr −Dνr +Bf .

(11.1)

with η , [p, ψ]>, ν , [u, v, r]>, where νr , ν − νc with νc = RT (ψ)Vc ,
[uc, vc, 0]T , and Vc , [Vx, Vy, 0]T is the constant ocean current affecting the system.
Finally, f , [Tu, Tr]

>. The matrices MRB , MA, D and B are given by

Mi ,



mi

11 0 0
0 mi

22 mi
23

0 mi
23 mi

33


 ,D ,



d11 0 0
0 d22 d23

0 d32 d33


 ,B ,



b11 0
0 b22

0 b32


 .

with i ∈ {RB,A} andMi = M>
i > 0. The matricesMRB andMA are the inertia

and added mass matrix, respectively. D > 0 is the hydrodynamic damping matrix,
andB is the actuator configuration matrix. Moreover,CRB(ν) is the matrix of cen-
tripetal forces and CA(νr) is the matrix of the centripetal forces due to the added
massMA. The matrices CRB(ν) and CA(νr) can be obtained fromMRB andMA

(see [54]). We place the origin of the body frame at a point on the center-line of the
vessel with distance ε from the centre of mass. Following [58], assuming that the
vessel is starboard symmetric, there exists ε such that the resulting dynamics have
mass and damping matrices satisfying this relation: M−1Bf = [τu, 0, τr]

>. Thus,
with this choice of origin of the body frame, the sway dynamics become decoupled
from the rudder control input, making it easier to analyze the stability properties
of the sway dynamics. Using this convention, the model of the marine vessel (11.1)
can be represented as

ṗ = Rψ

[
u
v

]

u̇ = − d11

m11
u+

(m22v +m23r)r

m11
+ φTu (ψ, r)θu + τu

v̇ = X(u)r + Y (u)v + φTv1(u, v, ψ)θv + φTv2(ψ)θur

ψ̇ = r

ṙ = Fr(u, v, r) + φTr (u, v, r, ψ)θr + τr.

(11.2)

The functions X(u) and Y (u) are linear.Their expressions are given in Appendix
11.A together with those of Fu, Fr, φu, φv1, φv2, φr. Moreover, θu , [Vx, Vy]T ,
and θv , θr , [Vx, Vy, V

2
x , V

2
y , VxVy]T . Denoting by χ , (p, u, v, ψ, r) the state of

the vessel, the state space is X := R2 × R× R× S1 × R.

Assumption 11.1. We assume that Y (u) < 0 for all u ∈ [0, Umax].

This is a realistic assumption, since Y (ū) ≥ 0 would imply that the sway dy-
namics are undamped or unstable when the yaw rate r is zero.
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Assumption 11.2. The ocean current is assumed to be constant and irrotational
with respect to the inertial frame, i.e. Vc , [Vx, Vy, 0]T . Furthermore, it is bounded
by Vmax > 0 such that ‖Vc‖ =

√
V 2
x + V 2

y ≤ Vmax.

Consider a planar Jordan1 curve γ expressed in implicit form as γ = {p : h(p) =
0}, where h is a C1 function whose gradient never vanishes on γ. We assume that
h : R2 → R is a proper function, i.e., all its sublevel sets {p : h(p) ≤ c}, c ∈ R, are
compact. Since γ is assumed to be compact, there is no loss of generality in this
assumption.

Path Following Problem (PFP). Design a smooth time-invariant feedback
such that, for suitable initial conditions, the position vector p(t)→ {p : h(p) = 0},
and the speed ‖ṗ(t)‖ satisfies 0 < ‖ṗ(t)‖ ≤ supt ‖ṗ(t)‖ < ∞. In other words, we
want to make the position of the ship converge to the path, travel along it without
stopping, while guaranteeing that its speed is bounded.

Geometric objects. Associated with the implicit representation h(p) = 0 of
γ there are three geometric objects: the unit tangent and normal vectors, and the
signed curvature. The unit normal vector at p is

N(p) := dh>p /‖dhp‖.

The unit tangent vector at p is the counterclockwise rotation of N(p) by π/2,

T (p) := Rπ/2N(p).

Finally, the signed curvature κ(p) is defined as

κ(p) = − (∂yh)2 ∂2
xxh− 2∂2

xyh ∂xh ∂yh+ ∂2
yyh (∂xh)2

(
(∂xh)2 + (∂yh)2

)(3/2)
. (11.3)

The quantities N(p), T (p), κ(p) are defined not just on γ, but at all points p such
that dhp 6= [0 0]. If p0 6∈ γ, then N(p0), T (p0), κ(p0) are the normal vector, tangent
vector, and curvature at p0 of the curve {p : h(p) = p0}.

11.3 Hierarchical control approach

The idea of the proposed solution is hierarchical in nature.

1. We regulate the surge speed u to a desired constant ū > 0.

2. We consider the kinematic point-mass system

ṗ = µ,

and we solve the PFP with the constraint that ‖µ‖ = (ū2 + v2)(1/2). The
result of this design is a function µ(p, v).

1A curve is said to be Jordan if it is closed and has no self-intersections.
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11. Path following of unparametrized paths

3. Having found µ(p, v), we find the desired heading angle ψd(p, v) such that

Rψd

[
ū
v

]
= µ.

This equation has a solution because, by construction, ‖µ‖ = (ū2 + v2)(1/2).
Intuitively, when ψ = ψd and u = ū, the marine vessel behaves like a kine-
matic point-mass subject to a path following control law.

4. Having found ψd(p, v), we define the output function e = ψ−ψd and we show
that, under certain conditions on ū (possibly any ū > 0), the system with
input τr and output e has relative degree 2. We thus define a controller τr(χ)
that stabilizes the set where e = ė = 0.

5. We show that, if the curvature of the path is not too large, then the sway
speed v remains bounded. We use Theorem 11.1 to prove that the hierarchical
approach described above does indeed solve the PFP if the curvature of the
path is not too large.

In the remainder of this chapter we solve the PFP for system (11.2). However,
for the sake of clarity we first consider the special case where the current is zero in
the next section. In Section 11.5 we will then extend our to the general case where
the ocean current is non-zero.

11.4 The case of zero ocean current

When the ocean current is zero, i.e. Vc = 0, the model (11.2) reduces to

ṗ = Rψ

[
u
v

]

u̇ = Fu(v, r)− d11

m11
u+ τu

v̇ = X(u)r + Y (u)v

ψ̇ = r

ṙ = Fr(u, v, r) + τr.

(11.4)

In this section we first carry out the design steps 1-4 outlined above, then we deal
with the stability analysis of step 5 for the special case Vc = 0.

11.4.1 Control design

Step 1: regulation of surge speed. This step is trivial, we choose the feedback
linearizing control law

τu = −Fu(v, r) +
d11

m11
u−Ku(u− ū), Ku > 0. (11.5)

Step 2: solution of the PFP for a kinematic point-mass. Consider the
kinematic point-mass system

ṗ = µ, (11.6)

196



11.4. The case of zero ocean current

where the velocity vector µ ∈ R2 is the control input. We are to design µ such
that ‖µ‖ = (ū2 + v2)(1/2) and the set {h(p)} is asymptotically stable. To this end,
consider the output z = h(p). The derivative is

ż = dhpµ = ‖dhp‖N(p)>µ. (11.7)

Define
µ(p, v) := −

[
ūσ(h(p))

]
N(p) + w(p, v)T (p). (11.8)

This control input is composed of two terms. The first term is orthogonal to all
level sets of h (in particular, to γ) and is responsible for making z → 0, as we shall
see in a moment. The second term is tangent to the level sets of h and it will be
designed to guarantee that ‖µ‖ = (ū2 + v2)(1/2). The function σ : R → (−a, a),
a ∈ (0, 1), is a saturation function, chosen to be smooth, monotonically increasing,
zero in zero, and such that lim|z|→∞ |σ(z)| = a. The positive scalar a is a design
parameter.

Since {T (p), N(p)} is an orthonormal frame, substitution of (11.8) into (11.7)
gives

ż = −‖dhp‖ūσ(z).

Since, by assumption, ‖dhp‖ 6= 0 on γ, by continuity of h we have that ‖dhp‖ 6= 0
in a neighborhood of γ. Therefore, for any ū > 0, the set {p : h(p) = 0} is
asymptotically stable.

Next we design w(p, v) such that ‖µ(p, v)‖ = (ū2 + v2)(1/2). Referring to the
identity (11.8), since {T (p), N(p)} form an orthonormal frame, we have

‖µ‖2 = ū2σ2(h(p)) + w2(p, v).

Setting
w(p, v) :=

(
ū2(1− σ2(h(p))) + v2

)(1/2)
, (11.9)

we have ‖µ(p, v)‖ = (ū2 + v2)(1/2), as required. Note that the above expression of
w(p, v) is well-defined and smooth because, by construction, |σ| < a ≤ 1.

In conclusion, we have the following result.

Lemma 11.1. The feedback µ(p, v) defined in (11.8) and (11.9) makes the set {p ∈
R2 : h(p) = 0} asymptotically stable for the kinematic point-mass system (11.6).

Step 3: definition of ψd. We need to find a smooth function ψd(p, v) such
that

Rψd

[
ū
v

]
= µ(p, v).

The vector on the left-hand side of the identity above has norm (ū2 + v2)(1/2) and,
by construction, so does the vector on the right-hand side. Thus ψd is just the
phase of the vector µ,

ψd(p, v) := atan2(µ2(p, v), µ1(p, v)), (11.10)

where atan2 is the four-quadrant arctangent function such that atan2(sin(θ), cos(θ)) =
θmod2π.
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Step 4: regulation of ψ to ψd. We define the output function e = ψ − ψd.
Consequently

ė = g(p, u, v)r + f(p, u, v, ψ), (11.11)

where
g(p, u, v) = 1−

(
∂vψd(p, v)

)
X(u),

f(p, u, v, ψ) = −
(
∂pψd(p, v)

)
Rψ

[
u
v

]
− ∂vψdY (u)v.

Taking one more time derivative along (11.4) we get

ë = g(p, u, v)
(
Fr(v, r) + τr

)
+ ġ(χ)r + ḟ(χ).

Lemma 11.2. The following identity holds:

∂vψd = − ū

ū2 + v2

[
1 +

σ(h(p))v

w(p, v)

]
, (11.12)

where w(p, v) is given in (11.9). Suppose that

1− ū|X(ū)|
ū2 + v2

> 0 (11.13)

for all v ∈ R. Then, the parameter a ∈ (0, 1] in the saturation σ can be chosen
small enough that system (11.4) with input τr and output e = ψ − ψd(p, v) has
relative degree 2 at any point χ = (p, u, v, ψ, r) such that u = ū.

Remark 11.1. Condition (11.13) is met for all ū, for the ship parameters listed
in Appendix 11.A and used in our simulations.

Proof. Recall that, by definition, ψd satisfies the following identity

Rψd

[
ū
v

]
= µ,

from which we deduce that
[
cos(ψd)
sin(ψd)

]
=

1

ū2 + v2

[
ū v
−v ū

]
µ.

Now using the identity

∂vψd =
[
− sin(ψd) cos(ψd)

] [∂v cos(ψd)
∂v sin(ψd)

]
,

and the expressions for cos(ψd), sin(ψd) found above, after some manipulation one
gets

∂vψd = − ū

ū2 + v2
+

1

ū2 + v2
µ>
[

0 1
−1 0

]
∂vµ.

Substituting in the above the expression for µ given in (11.8), after some algebra
one obtains identity (11.12).
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Now we turn to the relative degree property. System (11.4) with input τr and
output e has relative degree 2 when u = ū if 1− ∂vψd(p, v)X(ū) > 0, or

1 +
X(ū)ū

ū2 + v2

[
1 +

σ(h(p))v

w(p, v)

]
> 0.

Using the fact that |σ(·)| < a ≤ 1 and |v/w(p, v)| < 1, we have the inequality

1 +
X(ū)ū

ū2 + v2

[
1 +

σ(h(p))v

w(p, v)

]
> 1− |X(ū)|(1 + a)ū

ū2 + v2
.

If condition (11.13) holds, there exists a ∈ (0, 1], such that the lower bound above
is greater than zero, implying that the system (11.4) with output e has relative
degree 2.

Assuming that (11.13) holds, we define the smooth feedback linearizing control
law

τr = −Fr(v, r) +
1

g(p, u, v)

(
− ḟ(χ)− ġ(χ)r

−Kp sin(ψ − ψd(p, v))−Kd(r − ψ̇d(χ))
)
,

(11.14)

where dot on a function denotes the time derivative of the function along the vector
field (11.4) with τu as in (11.5). With the feedback above, we obtain

ë+Kp sin(e) +Kdė = 0.

This is the equation of a pendulum with friction. Thus the equilibrium (e, ė) = (0, 0)
is almost globally asymptotically stable. This implies that the set {χ ∈ X : ψ =
ψd(p, v), r = ψ̇d(χ)} is stable. Moreover, this set is also asymptotically stable if
the original system (11.4) with the chosen feedbacks τu and τr has no finite escape
times. The absence of finite escape times will be proved in the next section.

Summary of feedback design. We have designed the following feedback
control law

τu = − Fu(v, r) +
d11

m11
u−Ku(u− ū),

τr = − Fr(v, r) +
1

g(p, u, v)

(
− ḟ(χ)− ġ(χ)r

−Kp sin(ψ − ψd(p, v))−Kd(r − ψ̇d(χ))
)
,

(11.15)

where ū,Ku,Kp,Kd > 0 are design parameters and

ψd(p, v) = atan2(µ2(p, v), µ1(p, v)),

µ(p, v) = −
[
ūσ(h(p))

]
N(p) +

(
ū2(1− σ2(h(p))) + v2

)(1/2)
T (p).

Finally, σ(z) is any smooth, monotonically increasing function such that σ(0) = 0
and lim|z|→∞ |σ(z)| = a, where a ∈ (0, 1] is sufficiently small as in Lemma 11.2.
For instance, σ(z) = a tanh(Kz), K > 0, has the desired properties.

As we discussed, in the absence of finite escape times the feedback above asymp-
totically stabilizes the set Γ2 := {χ ∈ X : u = ū, ψ = ψd(p, v), r−ψ̇d(p, u, v, r) = 0}.
In Theorem 11.2 below we show that it solves the PFP.
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11. Path following of unparametrized paths

11.4.2 Stability analysis

As we shall see in a moment, the control design procedure developed in the previous
section amounts to the simultaneous stabilization of the two nested closed sets
Γ1 ⊂ Γ2

Γ2 = {χ ∈ X : u = ū, ψ = ψd(p, v), r = ψ̇d(χ)},
Γ1 = {χ ∈ Γ2 : h(p) = 0}.

On Γ2, the ship behaves like a kinematic point-mass subject to a path following
control law. On Γ1, the ship is on the path with a desired surge speed ū. Showing
that the feedback (11.15) solves the PFP amounts to showing that Γ1 is asympto-
tically stable. To prove this property, we will use Theorem 11.1.

To begin, we observe that, by design, Γ2 is stable, and asymptotically stable if
solutions starting in a neighborhood of Γ2 have no finite escape times. Assume for
a moment that this is the case. On Γ2, we have

ṗ = Rψd

[
ū
v

]
.

By the construction in step 2,

Rψd

[
ū
v

]
= µ(p, v),

and thus
ṗ = µ(p, v).

By Lemma 11.1, the set {h(p) = 0} is asymptotically stable for the above dynamics.
In the absence of finite escape times, this implies that Γ1 is asymptotically stable
relative to Γ2. Therefore, in order to prove asymptotic stability of Γ1, we will prove
that the closed-loop system has no finite escape times near Γ2 and, in addition,
property (iii) of Theorem 11.1 holds. This is done in the next lemma.

Lemma 11.3. Consider system (11.4) with the feedbacks defined in (11.15), and
suppose Assumptions 11.1 and 11.2 hold. Suppose further that the desired surge
speed ū ∈ [0, Umax] is such that 1 + ūX(ū)/(ū2 + v2) 6= 0. Then for any initial
condition in a neighborhood of Γ2, the solution is defined for all t ≥ 0. Moreover,
if the curvature κ of γ satisfies the bound

max
p∈γ
|κ(p)| < |Y (ū)|

|X(ū)| ,

then the closed-loop system is LUB near Γ1.

Proof. We first show that the closed-loop system has no finite escape times near
Γ2. Since Γ2 is stable, for any δ > 0 there exists a positively invariant neighborhood
of Γ2, N (Γ2), such that all solutions originating in N (Γ2) satisfy |u(t) − ū| < δ,
|ψ(t)−ψd(p(t), v(t))| < δ, |ṙ(t)−ψ̇d(χ(t))| < δ. From now on, consider an arbitrary
solution χ(t) originating in N (Γ2). Since u− ū is bounded, u has no finite escape
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11.4. The case of zero ocean current

times. Since ψ ∈ S1, a compact set, the same holds for ψ. Recalling that on Γ2 we
have ṗ = µ(p, v), we may write

ṗ = µ(p, v) +

(
Rψ

[
u
v

]
−Rψd

[
ū
v

])

= Rψ−ψdµ(p, v) +Rψ

[
u− ū

0

]
.

Letting, as in the previous section, z = h(p), we have

ż = −‖dhp‖
(
ūσ(z)N>Rψ−ψdN −N>Rψ

[
u− ū

0

])

= −‖dhp‖
(
ūσ(z) cos(ψ − ψd)−N>Rψ

[
u− ū

0

])
.

Using the fact that zσ(z) ≥ 0, cos(ψ − ψd) > cos(δ), and |u − ū| < δ, we deduce
the following inequality

zż ≤ −‖dhp‖|z| (ūσ(z) cos(δ)− δ) . (11.16)

Pick δ small enough that δ/(ū cos(δ)) < 1, then we see that zż ≤ 0 whenever
z > ρ(δ) := σ−1(δ/ū cos δ). This implies that all trajectories of the z-dynamics
are bounded and, moreover, the interval {z : |z| < ρ(δ)} is positively invariant
for the z-dynamics. Recalling that z = h(p) and that h is proper, we deduce that
all trajectories of the p subsystem are bounded and hence have no finite escape
times. Moreover, the neighborhood of Γ1 defined as {χ ∈ N (Γ2) : |h(p)| < ρ(δ)},
is positively invariant. Since ρ(·) is a class-K function, Γ1 is stable. In the rest of
the proof we denote

N (Γ1) = {χ ∈ Γ2 : |h(p)| < ρ(δ)}.

By the construction above, for any δ > 0 this set is a neighborhood of Γ1 and
trajectories originating in it satisfy the bounds

|u− ū| < δ, |ψ − ψd(p, v)| < δ, |ṙ − ψ̇d(χ)| < δ, |h(p)| < ρ(δ).

We now turn our attention to the v-subsystem. For convenience, denote α(p, v) :=
∂vψd, whose expression is given in Lemma 11.2. On N (Γ2), ė is bounded. Us-
ing (11.11) and Lemma 11.2, we have

r =
1

1− α(p, v)X(u)

(
α(p, v)Y (u)v + (∂pψd)Rψ

[
u
v

]
+ ė

)
,

where ė is bounded. Since condition (11.13) is assumed to hold, the quantity 1 −
α(p, v)X(ū) > 0. Therefore, for small enough δ > 0, the quantity 1−α(p, v)X(u) >
0 as well, implying that r above is well defined. Substituting the expression for r
in the v̇ equation in (11.4) and rearranging terms, we get

v̇ =
1

1− α(p, v)X(u)

(
Y (u)v +X(u)

(
(∂pψd)Rψ

[
u
v

]
+ ė
))
.

201



11. Path following of unparametrized paths

We argue that |v̇| ≤ C1 + C2|v|, for suitable C1, C2 > 0. Indeed, on N (Γ2) the
coefficient in front of the parenthesis is upper bounded by a constant. The term
Y (u)v is linear in v and u is bounded. The term ∂pψd is a continuous function
of (p, v). Since we have established that p(t) is bounded, ∂pψd is bounded with
respect to p. Moreover, using the definition of ψd and µ it is possible to show
that supv |∂pψd| < ∞. Thus the term X(u)∂pψdRψ[u v]> grows linearly with
v, proving the claim. Since |v̇| grows linearly with v, the v subsystem has no
finite escape times. Finally, concerning r(t), we have expressed it as function of
(p(t), u(t), v(t), ψ(t), ė(t)), signals that are defined for all t ≥ 0, and therefore r(t)
has no finite escape times. In conclusion, all solutions originating on N (Γ2) are
defined for all t ≥ 0.

Now we prove that the closed-loop system is LUB near Γ1. Consider a generic
solution χ(t) originating in N (Γ1). Since |h(p(t))| < ρ(δ), and since h is proper,
‖p(t)‖ has a bound independent of the initial condition in N (Γ1). Consider now
the v̇ equation above, and in particular the term (∂pψd)Rψ[u v]>. On Γ2, this
term reduces to

(∂pψd)Rψd

[
ū
v

]
= (∂pψd)µ(p, v).

We show in Appendix 11.B that

(∂pψd)µ(p, v) = −κ(p)w(p, v) + ∆1(p, v),

where κ(p) is the curvature at p of the level set of h through p, w(p, v) is defined
in (11.9), and ∆1(p, v) is a smooth function that vanishes on γ and is bounded
with respect to v. Since p(t) has a uniform bound over initial conditions in N (Γ1),
so does ∆1(p(t), v(t)). Back to the v̇ equation, using the identity

Rψ

[
u
v

]
= Rψd

[
ū
v

]
+ (Rψ−ψd − I)

[
ū
v

]
+Rψ

[
u− ū

0

]
,

we have
v̇ =

1

1− αX
(
Y (u)v − w(p, v)X(u)κ(p)

+X(u)(∂pψd)(Rψ−ψd − I)

[
ū
v

]
+ ∆2(χ)

)
,

where ∆2(χ) = X(u)(∆1(p, v)+∂pψd(Rψ[u−ū 0]>)+ė) is uniformly bounded along
solutions originating in N (Γ1). We now derive two bounds valid on the positively
invariant set N (Γ1). First, the boundedness of p yields

∣∣w(p, v)X(u)κ(p)
∣∣ ≤ C1 + |X(u)||κ||v|

for some C1 > 0. Also, it is possible to show that ‖∂pψd(p, v)‖ is bounded. Then,
since |ψ − ψd| < δ, we have the second bound

∣∣X(u)(∂pψd)(Rψ−ψd − I)[ū v]>
∣∣ ≤ |X(u)|δ|v|+ C2,

for some C2 > 0. Recall that, by Assumption 11.1, ū ∈ [0, Umax], so that Y (ū) < 0
and for sufficiently small δ, Y (u) < 0 as well. Define the Lyapunov function V =
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11.5. The case of non-zero ocean current

v2/2, then

V̇ ≤ −1

1− αX
(
|Y (u)| − |X(u)|(|κ|+ δ)

)
v2

+
(

(C1 + C2) + sup
χ∈N (Γ1)

∆2(χ)
)
|v|.

By assumption, |Y (ū)| − |X(ū)||κ(p)| > 0 for all p ∈ γ. Since κ is a continuous
function and since, on N (Γ1), |u− ū| < δ and |h(p)| < ρ(δ), we have that for small
enough δ,

|Y (u)| − |X(u)|(|κ(p)|+ δ) > 0.

Thus v(t) is uniformly bounded. Since r is a continuous function of (p, u, v, ψ, ė),
r is uniformly bounded as well. This proves the LUB property near Γ1.

Application of Theorem 11.1 gives the following result.

Theorem 11.2. Consider system (11.4) with the feedbacks defined in (11.15),
suppose that Assumptions 11.1 and 11.2 hold, and assume that the desired surge
speed ū ∈ [0, Umax] is chosen such that condition (11.13) holds. If the curvature κ
of γ satisfies the bound

max
p∈γ
|κ(p)| < |Y (ū)|

|X(ū)| ,

then Γ1 and Γ2 are asymptotically stable, implying that feedback (11.15) solves the
PFP.

Remark 11.2. It is interesting to note that in [103, Theorem 1], the authors
present a stability result for a path following control law with a similar, but more
restrictive, curvature bound, max |κ| < (1/3)|Y (ū)/X(ū)| compared to that in The-
orem 11.2.

11.5 The case of non-zero ocean current

The model of the system in this case is given by (11.2). In this section we first
carry out the control design of steps 1-4 and then the stability analysis for Vc 6= 0.

11.5.1 Control design

Step 1: regulation of surge speed. The dynamics of u in (11.2) is affected
by the unknown disturbance θu. We choose to reject the disturbance using an
adaptive controller. Define θ̂u to be the adaptive state and eu , u− ū. We choose
the following feedback lienarizing controller and adaptive law

τu = Fu(·)− φ(ψ, r)Tθu −Ku (u− ū)

˙̂
θu = ΛKueuφ

T
u (ψ, r)

(11.17)

where Λ = ΛT > 0. The following result is straightforward.

Lemma 11.4. The feedback controller and adaptive law (11.17) make u = ū and
θ̂u = θu globally stable and in particular u→ ū asymptotically.
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11. Path following of unparametrized paths

Step 2: solution of the PFP for a kinematic point-mass. This step is the
same as for the case with Vc = 0. We can choose µ as in (11.8).

Step 3: definition of ψd. This step is the same as for the case with Vc = 0.
We can choose ψd as in (11.10).

Step 4: regulation of ψ to ψd. Consider the yaw dynamics

ψ̇ = r

ṙ = Fr(u, v, r) + φTr (u, v, r, ψ)θr + τr.
(11.18)

Consider also the expression of ψd in (11.10). Since ψd depends on ψ, u, v, r, it
easy to verify that ψ̇d, ψ̈d depend on θu,θr,θv1 ,θv2 . Then the same approach as
in Step 4 in Section 11.4.1, i.e., defining e , ψ−ψd, leads to a complicated control
design phase due to the coupling of several unknown terms in the error dynamics
ë. Therefore, we take a different approach and we start defining eψ , ψ−ψd. Then

ėψ = r − ψ̇d
=

r

C(p, u, v, ψ)
− rd + δψd(p, u, v, ψ, r)θ̃r

(11.19)

where

rd =
1

C(·)

(
∂ψd
∂v

(
Y (u)v + φTv1(u, v, ψ)θ̂r

)
+
∂ψd
∂p

ṗ

)

C(·) = 1− ∂ψd
∂v

(
X(u) + SφTv1(ψ)θ̂r

)

δψd(·) = − ∂ψd
∂v

(
φTv1(·) + φTv2(·)Sr

)
(11.20)

and S = [I2×2,02×3]. The term rd depends only on known terms and it is well
defined only if C(·) 6= 0. We consider the following assumption to hold

Assumption 11.3. For the term C(·) it holds that

C(·) = 1− ∂ψd
∂v

(
X(u) + SφTv1(ψ)θ̂r

)
> 0. (11.21)

Remark 11.3. Condition (11.21) depends on the ship parameters and it is met
for the ship parameters listed in Appendix 11.A.

Now define er = r − rd, its derivative is

ėr =
∂rd
∂p

ṗ+
∂rd
∂ψ

r −Ku
∂rd
∂u

(u− ū)

+
∂rd
∂v

(
X(u)r + Y (u)v + φTv1(·)θ̂r + φTv2(·)θ̂rSr

)

+ δr(p, ψ, u, v, r)

where
δr(·) =

∂rd
∂u
φTu (·)S +

∂rd
∂v

(
φTv1(·) + φTv2Sr

)
+ φTr (·).
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11.5. The case of non-zero ocean current

In order to stabilize eψ and er to the origin, we define a feedback linearizing con-
troller using rd and the known terms of ṙd together with an adaptive law for the
state θ̂r. Choose

τr = − Fr(·)− φTr (·)θ̂r −KψC(·) sin(eψ)−Krer

∂rd
∂p

ṗ+
∂rd
∂ψ

r −Ku
∂rd
∂u

(u− ū)

+
∂rd
∂v

(
X(u)r + Y (u)v + φTv1(·)θ̂r + φTv2(·)θ̂rSr

)

˙̂
θr = − ΓδPe

(11.22)

where e = [eψ, er]
T , δ = [δψ(·), δr(·)]T and Γ = ΓT > 0. The following result holds

Lemma 11.5. Consider the yaw dynamics (11.18). The feedback linearizing con-
troller together with the adaptive law (11.22) make eψ, er asymptotically stable at
the origin and the state θ̃r is bounded.

A sketch of the proof of Lemma 11.5 is presented here.

Proof. Substituting (11.22) in (11.18) we obtain
[
ėψ
ėr

]

︸ ︷︷ ︸
e

=

[
0 C(·)

−KψC(·) sin(eψ)
eψ

−Kr

] [
eψ
er

]
+

[
δψd(·)
δr(·)

]

︸ ︷︷ ︸
δ

θ̃r. (11.23)

Note that for eψ ∈ (−π/2, π/2) we have sin(eψ)
eψ

> 0. Since ψd ∈ (−π/2, π/2) by

design, assume ψ|t=0 ∈ (−π/2, π/2). Now consider the case θ̃r = 0. Choose

P =

[
kψ(C̄+ε)

kr
1
2

1
2

C̄+ε
kr

]

where C̄ > C(·) and ε > 0. Then defining

V =
1

2
eTPe

we obtain
V̇ = −eTQe ≤ 0

where

Q =

[
kψC

kr
2

kr
2 ε

]
.

Then choose
W = V + θ̃Tr γ

−1θ̃r. (11.24)

The choice for ˙̂
θr implies

Ẇ ≤ −λmin
Q ‖e‖2 ≤ 0 ψ|t=0 ∈ (−π/2, π/2)

where λmin
Q > 0 is the smallest eigenvalue of Q.
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Remark 11.4. Lemma 11.5 proves that for any |ψ|t0 < π/2 we have |ψ(t)| <
π/2 ∀t > 0. Since the set (−π/2, π/2) almost cover the unit sphere S, we can say
that the feedback linearizing controlelr together with the adaptive law (11.22) almost
globally stabilizes ψ = ψd and r = rd.

Summary of feedback design. We have designed the following feedback
control laws and adaptive laws

τu = Fu(·)− φ(ψ, r)Tθu −Ku (u− ū)

˙̂
θu = ΛKueuφ

T
u (ψ, r)

τr = − Fr(·)− φTr (·)θ̂r −KψC(·) sin(eψ)−Krer

∂rd
∂p

ṗ+
∂rd
∂ψ

r −Ku
∂rd
∂u

(u− ū)

+
∂rd
∂v

(
X(u)r + Y (u)v + φTv1(·)θ̂r + φTv2(·)θ̂rSr

)

˙̂
θr = − ΓδPe

(11.25)

where eu = u− ū, eψ = ψ−ψd, er = r−rd, ψd is given in (11.10) and rd in (11.20).
From the discussion above, we have that the feedback and the adaptive law

(11.25) asymptotically stabilizes the set Γ2 := {χ ∈ X : u = ū, ψ = ψd(p, v), r −
rd(p, u, v, r) = 0}. In Theorem 11.3 below, we show that (11.25) solves the PFP for
the marine vehicle described by (11.1) when Vc 6= 0.

11.5.2 Stability analysis

As in Section 11.4.2, the control procedure presented above aims to stabilize the
two nested sets Γ1 ⊂ Γ2 simultaneously. Thus, showing that Γ1 is asymptotically
stable is equivalent to showing that the feedback (11.25) solves the PFP.

The proof follows along the lines of the stability analysis presented in Section
11.4.2. Consequently, we have to prove that the closed-loop system has no finite
escape time and that property (iii) of Theorem 11.1 holds. Due to the presence of
the unknown disturbances θu, θr, θv1 , θv2 we cannot apply Lemma 11.3. However,
we can modify Lemma 11.3 as follows

Lemma 11.6. Consider system (11.2) with the feedbacks and the adaptive laws
defined in (11.25), and suppose Assumptions 11.1 and 11.3 hold. Consider the
sublevel set ΓW , {X |W ≤ c}, where W is given in (11.24). Then for any initial
condition in N (Γ2) ∩ ΓW , the solution is defined for all t ≥ 0. Moreover, assume
that the curvature κ of γ satisfies the bound

max
p∈γ
|κ(p)| < |Y (ū) +K3Vmax|

|(X(ū) + φ̄v2Vmax|
,

where K3 is given in the Appendix 11.A. Then the closed-loop system is LUB near
Γ1.
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11.5. The case of non-zero ocean current

Proof. The proof of Lemma 11.6 follows along the lines of the proof of Lemma 11.3.
However, it presents some differences due to the presence of the unknown distur-
bances θu, θr, θv1 , θv2 . The boundedness of the states u, ψ, r originating in N (Γ1)
follows in the same way as in Lemma 11.6. Now we draw our attention on v. First
rewrite

r =
1

1− ∂vψd
(
X(u) + φTv2(ψ)θu

) [∂vψdY (u)v

+∂vψdφ
T
v1(u, v, ψ)θr + ∂pψdRψ

[
u
v

]
+ ėψ

]
.

The state r is always well defined according to Assumption 11.3. Substituting in
the expression for v̇ we obtain

v̇ =
1

1− ∂vψd
(
X(u) + φTv2(ψ)θu

)
(
Y (u)v + φTv1(·)θr

+
(
X(u) + φTv2(ψ)θu

) [
∂pψdRψ

[
u
v

]
+ ėψ

])
.

The coefficients of v are bounded in N (Γ2). Furthermore, also the terms which
do not contain v are bounded. Attention has to be paid on the state ėr which,
according to Lemma 11.5, is bounded bounded for any X ∈ N (Γ2) ∩ ΓW . In fact,
from Lemma 11.5 we have that eψ, er → 0, while θ̂r is bounded. Then, it is easy
to check that W (t) ≤W (t0) ≤ c and that θ̂r ∈ N (Γ2)∩ΓW . Thus, using the same
approach as in the proof for Lemma 11.3, it is easy to check that |v̇ ≤ C1 + C2|v|
and that the closed-loop system is LUB in N (Γ1). Note that now the uniformly
boundedness of v follow on the new condition for the curvature

max
p∈γ
|κ(p)| < |Y (ū) +K3Vmax|

|(X(ū) + φ̄v2Vmax|
,

which depends also on the ocean current.

Applying Theorem 11.1 gives the following result

Theorem 11.3. Consider system (11.2) with the feedbacks and the adaptive laws
defined in (11.25), and suppose Assumptions 11.1 and 11.3 hold. Consider the
sublevel set ΓW = {X |W ≤ c}, where W is given in (11.24). Then for any initial
condition in N (Γ2) ∩ ΓW , the solution is defined for all t ≥ 0. Moreover, assume
that the curvature κ of γ satisfies the bound

max
p∈γ
|κ(p)| < |Y (ū) +K3Vmax|

|(X(ū) + φ̄v2Vmax|
,

where K3 is given in the Appendix 11.A. Then Γ1 and Γ2 are asymptotically stable,
implying that feedback (11.25) solves the PFP.
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11.6 Simulation results

In this section two case studies are presented to verify the proposed path following
strategy. We first consider the case where there is no disturbance affecting the
system. We then consider a non-zero ocean current affecting the motion of the
vessel. For this purpose we consider a supply vessel described by the model (11.4)
with the function descriptions and model parameters given in Appendix 11.A.

11.6.1 The case of zero ocean current

In this case study the goal is to follow a Cassini oval. This implies that h(p) ,
(p2
x + p2

y)2 − 2a2(p2
x − p2

y) + a4 − b4 and that the path is implicitly described by

γ = {p : (p2
x + p2

y)2 − 2a2(p2
x − p2

y) + a4 − b4 = 0}.

where in this case study a = 22.5 [m] and b = 24.9 [m]. This results in a curve for
which the maximum curvature maxp∈γ |κ(p)| = 0.0785 and with a desired velocity
ū = 2 [m/s] the ratio |Y (ū)|/|X(ū)| = 0.2483. Note that this curve satisfies the cur-
vature condition of Theorem 11.2 showing that this is not a very restrictive condi-
tion, since it allows a ship with a length of approximately 83 meters to follow a curve
whose diameter (the maximum distance between any two of its points) is approx-
imately 70 metres. The saturation function is set to σ(h(p)) = 2/π tan−1(αh(p)),
where α is a parameter that can be used to tune the slope of the saturation func-
tion. In this case the magnitude of h(p) is large, therefore α needs to be small to
make the saturation effective close to the path and we choose α = 10−4. The initial
conditions are given by χ0 := ([15, 45], 0, 0,−2/3π, 0) and the controller gains from
(11.15) are given by Ku = 1, Kp = 30, and Kd = 5. The trajectory of the ship
and the desired oval can be seen in Figure 11.2. From Figure 11.2 we can clearly
see convergence to the desired oval and from the superimposed ships it can be seen
that the heading of the vessel is not tangent to the oval. Its velocity vector, on the
other hand, is tangent to the path. From the plot of the sway velocity in Figure
11.3 it can be seen that this motion induces quite large sway velocities relative
to the desired surge velocity ū = 2 [m/s]. The value of h(p) is plotted in Figure
11.4 which shows that h(p) is driven to zero as the ship converges to the path,
showing that the ship is able to track the specified Cassini oval in accordance with
the theoretical analysis.

11.6.2 The case of non-zero ocean current

In this case study we consider the same Cassini oval as in the previous section. The
maximum curvature is again maxp∈γ = |κ(p)| = 0.0785. Given a desired velocity
ū = 2[m/s] the ratio

max
p∈γ
|κ(p)| < |Y (ū) +K3Vmax|

|(X(ū) + φ̄v2Vmax|
= 0.3287.

The condition required by Theorem 11.3 is thus respected. Note that also in
this case this condition is not restrictive since the dimensions of the path are
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Figure 11.2: Path of the ship and the cassini oval (the ship is not to scale).
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Figure 11.3: Sway velocity of the ship.

the same as the section above and they are very small compared to a path that
a real vehicle would follow in a real application. We consider an ocean current
Vc = [0.1,−0.2][m/s] affecting the system. Therefore, we consider the model (11.2)
together with the feedback law and the adaptive law given in (11.25). The satura-
tion function is set to σ(h(p)) = 2/π tan−1(αh(p)), where α = 10−4. The controller
gains from (11.25) are given by Ku = 1, Kp = 30, Kd = 5, The initial conditions
are given by χ0 := ([15, 45], 0, 0,−2/3π, 0).

The trajectory of the ship and the desired oval can be seen in Figure 11.5. The
vectors in the figure give an idea of the direction of the ocean current. Figure 11.5
shows that the vehicle converges to the path. Note that the heading of the vehicle
is not tangent to the oval. This is normal since the vehicle is under-actuated and
there is also a disturbance affecting its motion. Figure 11.6 gives the plot of the
sway velocity. Also in this case we see that this motion induces quite large sway
velocities relative to the desired surge velocity ū = 2 [m/s]. Figure 11.7 shows that
h(p) is driven to zero. This implies that the vehicle converges and constraints its
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Figure 11.4: Magnitude of h(p) as the vessel converges to the path.
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motion along the Cassini oval. This is in accordance with the theoretical analysis.

11.7 Conclusions

In this chapter we presented a methodology to design path following controllers for
a class of under-actuated marine vessels. The methodology allows one to migrate
a path following controller designed for a point-mass to one that is guaranteed
to work for the under-actuated vessel. Both the cases of zero and non-zero ocean
current have been considered. For simplicity, we assumed the curve to be Jordan.
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11. Path following of unparametrized paths

11.A Functions used in the model

The functions Fu,X(u), Y (u), and Fr are given by: The functionsX(ur, uc), Y (ur),
Fu, Fr(u, v, r), φu(ψ, r), φv(u, v, r, ψ), and φr(u, v, r, ψ)are given by:

X(u) ,
m33(−d23 −m11u) +m23(d33 +m23u)

m22m33 −m2
23

Y (u) ,
m23d32 −m33d22 +m23(mA

22 −mA
11)u

m22m33 −m2
23

Fu ,
1

m11
(m22v +m23r)r,

Fr(u, v, r) ,
m22 (m11uv − (m22v −m23r)u− d32v − d33r)

m22m33 −m2
23

− m23 (−m11ur − d22v − d23r)

m22m33 −m2
23

φu(ψ, r) ,

[
d11
m11

cos(ψ)− mA11−mA22
m11

r sin(ψ)
d11
m11

sin(ψ) +
mA11−mA22
m11

r cos(ψ)

]

φr(u, v, ψ, r) ,




a1 cos(ψ)− a2 sin(ψ)
a1 sin(ψ) + a2 cos(ψ)

−m22(mA11−mA22)
m22m33−m2

23
sin(ψ) cos(ψ)

m22(mA11−mA22)
m22m33−m2

23
sin(ψ) cos(ψ)

m22(mA11−mA22)
m22m33−m2

23
(1− 2 sin2(ψ))




φv1(u, v, ψ) ,




b1 cos(ψ)− b2 sin(ψ)
b1 sin(ψ) + b2 cos(ψ)

m23(mA11−mA22)
m22m33−m2

23
sin(ψ) cos(ψ)

−m23(mA11−mA22)
m22m33−m2

23
sin(ψ) cos(ψ)

−m23(mA11−mA22)
m22m33−m2

23
(1− 2 sin2(ψ))




φv2 ,
(m33m

A
11 +m23(mA

22 −mA
23))

m22m33 −m2
23

[
cos(ψ)
sin(ψ)

]

where

a1 , −m22

((
mA

11 −mA
22

)
v +

(
mA

23 −mA
22

)
r
)

+m23m
A
11r

m22m33 −m2
23

a2 ,
m22

(
d32 −

(
mA

11 −mA
22

)
u
)
−m23d22

m22m33 −m2
23

b1 , −m23(mA
22 −mA

11)v

m22m33 −m2
23

b2 ,
m33d22 −m23d32 −m23(mA

22 −mA
11)u)

m22m33 −m2
23
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11.B. Curvature computation for Lemma 11.3

The numerical expressions for the matrices M , D, and B used in the simulations
are

M ,




7.22e6 0 0
0 1.21e7 −5.6446e7
0 −5.6446e7 4.9044e9


 ,

D ,




9.507e4 0 0
0 4.34e6 −9.6961e6
0 −2.6026e7 8.0445e8


B ,




1 0
0 −1.13e6
0 9.8181e9




which are the model parameters from [57] translated from the center of gravity to
the point ε, where ε = 1.6650 m.

The constant K3 used in Lemma 11.6 is

K3 = −m23(mA
22 −mA

11)

m22m33 −m2
23

.

11.B Curvature computation for Lemma 11.3

We need to find an expression for (∂pψd)µ(p, v). We begin by recalling the expres-
sions for cos(ψd) and sin(ψd) from the proof of Lemma 11.2:

[
cos(ψd)
sin(ψd)

]
=

1

ū2 + v2

[
ū v
−v ū

]
µ.

Then we write

∂pψd =
[
− sin(ψd) cos(ψd)

] [∂p cos(ψd)
∂p sin(ψd)

]

=
1

(ū2 + v2)2
µ>
[

v ū
−ū v

] [
ū v
−v ū

]
∂pµ

=
1

(ū2 + v2)
µ>
[

0 1
−1 0

]
∂pµ.

Thus

(∂pψd)µ(p, v) =
1

(ū2 + v2)
µ>
[

0 1
−1 0

]
(∂pµ)µ.

At this point we substitute in the expression for µ(p, v) in (11.8), using w(p, v)
in (11.9) and the fact that

N(p) =
1

((∂xh)2 + (∂yh)2)(1/2)
, T (p) =

[
0 −1
1 0

]
N(p).

After some algebra we obtain

(∂pψd)µ = −κ(p)w(p, v) + ∆1(p, v),
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11. Path following of unparametrized paths

where κ is given in (11.3) and

∆1(p, v) = − ūσ(h(p))

((∂xh)2 + (∂yh)2)3/2

[
∂2
xyh ((∂xh)2 − (∂yh)2)

+ (∂xh)(∂yh)(∂2
yyh− ∂2

xxh)
]
− ū2σ(h(p))σ′(h(p))

w(p, v)((∂xh)2 + (∂yh)2)3/2

·
[
(∂xh)4 + (∂yh)4 + 2(∂xh)2(∂yh)2

]
.

We see that ∆1(p, v) vanishes when h(p) = 0. Moreover, its dependence on v arises
in the term w(p, v) in one denominator. Since the function 1/w(p, v) is bounded
with respect to v, so is ∆1.
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Chapter 12

Conclusions and future work

This thesis considered several topics in the field of marine robotics and it was
divided into three main parts. This chapter gives some concluding remarks and
some suggestions for future works.

12.1 Conclusions

In this section the concluding remarks for each chapter are given.

12.1.1 Source seeking strategies for marine vehicles

Part I of the thesis was divided into two chapters.

Chapter 3 - Source seeking strategies for marine vehicles

Chapter 3 dealt with the source seeking problem for agents modeled as kinematic
unicycles. We considered a leader-follower scheme with a variable leader. Inspired
by the biological model of schools of birds given in Couzin et al. [37] and studied in
Leonard [88], we extended the definition of the investment parameter to artificial
networks. In particular, we defined the investment parameter as a function of the
intensity of the measurements from the scalar field surrounding the source. Only
two agents in the group, the initial leader and the active follower, were considered
able to exchange the leadership during the motion. The initial leader steered the
agents towards an assigned direction of motion if the measurements from the source
were below a certain threshold. If instead the measurements from the source crossed
a certain level, then the active follower took on the role as a leader and steered
the agents towards the source. It was assumed that only the active follower got
distributed measurements of the scalar field surrounding the source. The other
followers had a passive role with respect to the source-seeking, that is, they could
carry other sensors, for instance, cameras, but they were not considered to take
an active part in the localization of the source. The main scientific contribution of
the chapter was the design of a controlled agreement protocol with exchange of the
leadership between two agents.
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12. Conclusions and future work

Chapter 4 - Adaptive source seeking with marine vehicles

Chapter 4 considered the source-seeking problem more specifically for multi-agent
systems consisting of marine vehicles. It was considered that the agents are orga-
nized in a leader-follower scheme. The synchronization controller in [13] was used
in order to obtain motion in formation of the vehicles. It was assumed that the
each agent got scalar measurements of the field and communicated the value of the
measurement to the leader. Then the leader computed the approximated gradient
of the source and from this it computed the direction pointing towards the source.
The leader computed the direction of motion using an adaptive law based on the
concept of the investment parameter introduced in Chapter 3. However, the result
in Chapter 4 was based on a different approach with respect to the one in Chapter
3. In fact, no change in the leadership was used in Chapter 4.

12.1.2 Control of marine vehicles using the hand position
approach

Part II of this dissertation focused on a novel approach to control of marine vehicles
and it was divided into three chapters.

Chapter 5 - Trajectory tracking of marine vehicles

This chapter focused on the trajectory tracking control problem for under-actuated
marine vehicles in presence of unknown disturbances. Generic paths were consid-
ered and the problem was approached using a method introduced for ground vehi-
cles in Lawton et al. [82] and based on the definition of the so called hand position
point as output of the system. In particular, we extended the definition of the
hand position point to marine vehicles. We then applied an input-output feedback
linearizing controller choosing the hand position point as output. As common for
feedback linearized systems we obtained a linear external dynamics for control pur-
poses and a nonlinear internal dynamics. We designed a simple PID for the external
dynamics in order to fulfill the trajectory tracking objectives. We then showed that,
under certain conditions on the desired trajectory, the external dynamics is GES
and that the states of the internal dynamics are ultimately bounded. Finally, we
considered also the special case of straight-straight trajectories and we showed that
the closed-loop system is AGAS in this case.

Chapter 6 - Path following of marine vehicles

In this chapter the path following control problem for under-actuated marine ve-
hicles affected by an unknown ocean current was considered. We used the same
approach as in Chapter 5, that is, we used an input-output feedback linearizing
controller choosing the hand position point as output. The path following strategy
was based on a parametrization of the path where the path parameter was used to
propagate a path-tangential frame along the curve. The path following error was
defined with respect to the propagating frame. The time update law for the path
parameter, which defines the propagation of the path-tangential frame, was chosen
dependent on the path following error. Under certain conditions on the curvature
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of the path, the external dynamics was proven to be GES and the internal dynam-
ics to have bounded states. The special case of parametrized straight-line paths
was also considered and the closed-loop system was proven to be AGAS. In this
chapter, we also considered the case of unparametrized straight-line paths. In this
special case, the closed-loop system was proven to be AGAS. Finally, simulation
and experimental results were presented in order to validate the theoretical results.

Chapter 7 - Multi-agent formation with disturbance rejection

This chapter focused on the development of a leader-follower synchronization law
for LTI systems. The proposed control law was based on a diffusive coupling ap-
proach and it included an integral action in order to reject constant disturbances
affecting the system. We showed that this diffusive coupling law may be applied
to marine vehicles. In fact, considering a group of marine vehicles, it was possible
to apply to each vehicle an input-output feedback linearizing controller using the
hand position point as output. Each vehicle was then characterized by a linear
external dynamics. Consequently, it was possible to apply to each agent the dif-
fusive coupling law designed for LTIs. We showed that this approach solves the
synchronization control problem for marine vehicles. In particular, we showed that
the synchronization error between the leader and the followers is globally asympto-
tically stable, while the states of the internal dynamics of each vehicle are bounded.
A simulation case study was presented in order to validate the theoretical results.

12.1.3 Path following for marine vehicles

Part III of the thesis focused on the path following problem for under-actuated
marine vehicles. This part was divided into four chapters.

Chapter 8 - Geometric guidance for path following of marine vehicles

In this chapter the path following control problems of unparametrized straight-line
paths for under-actuated marine vehicles was considered. A guidance law based
on geometric control considerations was proposed. The method was based on the
definition of the direction pointing towards the desired path using information
about the cross-track error, the ocean current and the desired along path speed.
The ocean current was supposed to be unknown, and, therefore, we used an observer
to estimate it. The method was inspired by [84], where a similar strategy for UAVs
in absence of disturbances was presented. Almost-GAS of the closed-loop system
was proven using Lyapunov theory and cascaded systems theory. Simulation results
from a case study were reported in order to validate the theoretical results.

Chapter 9 - Observer based path following for generic paths: A local
approach

The path following control problem for curved paths was dealt with in this chapter.
A control strategy for under-actuated marine vehicles described by the relative
velocity model presented in Chapter 2 was considered. The effect of a constant and
irrotational ocean current was also taken into account. The presented approach is
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valid for paths parametrized via a path parameter. A path-tangential frame was
propagated along the curve using a designed time update law for the path variable.
The path following error was defined with respect to the path-tangential frame. The
guidance law was a line-of-sight like strategy which was combined with an ocean
current observer in order to counteract the ocean current effect. In this approach,
the path following error was defined as the shortest distance with respect to the
path. This resulted in a parametrization which was valid only locally, that is, inside
a tube around the path. It was shown that the path following error is exponentially
stable when the initial position of the vehicle is inside the tube. The sway velocity
was shown to be bounded under certain conditions.

Chapter 10 - Observer based path following for generic paths: A global
approach

In this chapter the path following control problem for under-actuated marine vehi-
cles was dealt with using a similar approach to the one presented in Chapter 9. We
considered curved paths, parametrized by a path parameter whose time update law
was chosen in order to propagate a path-tangential frame. The guidance approach
is also a line-of-sight like law used together with an ocean current observer in order
to counteract the ocean current disturbance. The main difference with respect to
Chapter 9 is given by the parameterization of the path. In particular, in Chapter 10
we relaxed the requirement that the vehicle has to move along the normal direction
of the path-tangential frame. This gives extra freedom in the design of the time
update law for the path variable and avoids that the parametrization is valid only
locally. The path following error was shown to be globally asymptotically stable
while the sway velocity was proven to be bounded.

Chapter 11 - Path following of unparametrized paths

In this chapter a novel approach to path following of curved paths was proposed.
Ocean current disturbances were also considered. The approach in this chapter
differs from all the others presented in the rest of this dissertation since it dealt
with unparametrized curved paths. In this sense this strategy represented a purer
approach to the path following control problem since it aimed to stabilize the curve
seen as a manifold in the state space. The control law was based on geometric con-
trol and hierarchical principles. Furthermore, considerations from adaptive control
were used in order to counteract the effect of the ocean current. We showed that
under certain conditions for the curvature of the path the closed-loop system is
asymptotically stable.

12.2 Future work

In this section some suggestions for future work are given.
The method designed in Chapter 3 may be improved by including also a for-

mation controller for the agents. Furthermore, the extension to the case of agents
modeled with a more realistic model for ASVs and AUVs is also a possible direction
of improvement.

218



12.2. Future work

The approach presented in Chapter 4 may be extended taking into account
noisy measurements from the source.

The investigation of 3D trajectories and 3D paths may be a possible future
step for the results in Chapters 5, 6. Also the considerations of other environmental
disturbances, like wind or waves effect, may be of interest for practical applications.

In Chapter 7 it was considered continuous time communication among the
agents. This assumption is easily violated in real applications, and especially in
underwater environment, because of practical restrictions on the bandwidth of the
communication. This implies that the information exchanged among the agents
may present some delays. Therefore, a possible future step is the development
of a leader-follower synchronization law which takes into account communication
delays.

A possible development of the results in Chapter 8 is the extension to the 3D
case. In fact, the method used in Chapter 8, and based on the definition of an
attitude error function defined in the SO(2) group, would solve the problem of the
singularities arising in the attitude control.

The control strategies presented in Chapters 9, 10 might be extended to the 3D
case. Furthermore, these two path following control approaches may be used also
for coordinated path following of multi-vehicle systems. That is, defining a path
for each agent in a multi-vehicle system, these strategies may be used to make each
vehicle converge to its own path. It is then possible to design a certain law for the
tangential speed in order to reach motion in formation of the vehicles.

Finally, the results presented in Chapter 11 are limited to the case of Jordan
curves, that is, closed curves with no self-intersections. Future work may aim to
the relaxation of this condition.
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Appendix A

Mathematical references

A.1 Mathematical References

This section contains some of the mathematical definitions and notations that are
used in the thesis.

A.1.1 Notation

We denote by Rn the n-dimensional Euclidean space and by R+ the set of all
non-negative real numbers. The absolute value of a scalar x is denoted by |x|.
The p-norm of a vector x ∈ Rn is denoted by ‖x‖p, for p ∈ [1,∞], when no
subscript is given, i.e. ‖x‖, the Euclidean norm is implied. The following definitions
of comparison functions, known as class K and KL functions, are used throughout
the thesis.

Definition A.1 (Khalil [77, Definition 4.2]). A continuous function α : [0, a) →
[0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is said
to belong to class K∞ if a =∞ and α(r)→∞ as r →∞.

Definition A.2 (Khalil [77, Definition 4.3]). A continuous function β : [0, a) ×
[0,∞)→ [0,∞) is said to belong to class KL if, for each fixed s, the mapping β(r, s)
belongs to class K with respect to r and, for each fixed r, the mapping β(r, s) is
decreasing with respect to s and β(r, s)→ 0 as s→∞.

Lemma A.1 (Khalil [77, Lemma 4.2]). Let α3 and α4 be class K functions on
[0, a), α1 and α2 be class K∞ functions on [0, a), and β be a class KL function.
Denote the inverse of αi by α−1

i . Then,
• α−1

1 is defined on [0, α1(a)) and belongs to class K.
• α−1

3 is defined on [0,∞) and belongs to class K∞.

• α1 ◦ α2 belongs to class K.
• α3 ◦ α4 belongs to class K∞.

• σ(r, s) = α1(β(α2(r), s)) belongs to class KL.
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A.1.2 Stability definitions

We now presents some notions of stability for a nonautonomous system

ẋ = f(t, x) (A.1)

where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz in x
on [0,∞)×D, with D ⊂ Rn a domain that contains the origin x = 0. The following
definitions are obtained from Khalil [77]

Definition A.3. The equilibrium point x = 0 of (A.1) is
• uniformly stable (US) if and only if there exist a class K function α and a
positive constant c, independent of t0, such that

‖x(t)‖ ≤ α(‖x(t)‖), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c (A.2)

• globally uniformly stable (UGS) if and only if inequality (A.2) is satisfied for
any initial state x(t0).

• uniformly asymptotically stable (UAS) if and only if there exist a class KL
function β and a positive constant c, independent of t0, such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c (A.3)

• globally uniformly asymptotically stable (UGAS) if and only if inequality
(A.3) is satisfied for any initial state x(t0)

• almost-globally asymptotically stable (AGAS) if and only if inequality (A.3)
is satisfied for almost all the initial conditions, e.g.,

x(t0) ∈ Rn/W

where W has zero Lebesgue measure.

Definition A.4 (Khalil [77, Definition 4.5]). The equilibrium point x = 0 of (A.1)
is locally exponentially stable (LES) if there exist positive constants c, k, and λ such
that

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ < c (A.4)

and globally exponentially stable (GES) if (A.4) is satisfied for any initial state
x(t0).

A.1.3 Cascaded systems

Consider the following nonlinear time-varying cascaded system:

ẋ = f1(t, x) + g(t, x, y) (A.5a)
y = f2(t, y) (A.5b)

where x ∈ Rn, y ∈ Rm, and f1(t, x) and f2(t, x) continuously differentiable in their
arguments. The following results characterise the stability properties of the system
(A.5).
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Lemma A.2 (Panteley and LorıA [114, Lemma 2]). Consider the cascaded sys-
tem (A.5). If both ẋ = f1(t, x) and ẏ = f2(t, y) are UGAS and the solutions of
(A.5a) and (A.5b) are globally uniformly bounded, then the cascaded system (A.5)
is UGAS.

Theorem A.1 (Panteley and Loria [113, Theorem 2]). Consider the cascaded
system (A.5). Assume that the system ẋ = f1(t, x) is UGAS with a Lyapunov
function V (t, x) satisfying

∥∥∂V
∂x

∥∥ ‖x‖ ≤ c1V (t, x), ∀‖x‖ ≥ η > 0, (A.6)

and that Assumptions (A1)-(A2) below are satisfied. Then the cascaded system
(A.5) is UGAS.
(A1) The function g(t, x, y) satisfies

‖g(t, x, y)‖ ≤ θ1(‖y‖) + θ2(‖y‖)‖x‖, (A.7)

where θ1, θ2 : R+ → R+ are continuous.
(A2) The system ẏ = f2(t, y) is UGAS and for all t ≥ t0,

∫ t

t0

‖x(s)‖ds ≤ φ(‖x(t0)‖), (A.8)

where φ(·) ∈ K.
Remark A.1. If the nominal system ẋ = f1(t, x) is UGAS with a quadratic Lya-
punov function, then the condition (A.6) is satisfied trivially.

Remark A.2. If the perturbing system ẏ = f2(t, y) is UGAS and ULES (or equiv-
alently exponentially stable in any ball of initial conditions), then the integrability
condition (A.8) is satisfied trivially

Lemma A.3 (Panteley et al. [115, Lemma 8]). If in addition to the assumptions
in Theorem A.1, both ẋ = f1(t, x) and ẏ = f2(t, y) are UGAS and ULES then the
cascaded system (A.5) is UGAS and ULES.

Proposition A.1 (Loría and Panteley [97, Proposition 2.3]). If in addition to the
assumptions in Theorem A.1, both ẋ = f1(t, x) and ẏ = f2(t, y) are UGES then
the cascaded system (A.5) is UGES.

A.1.4 Additional tools

Lemma A.4 (Comparison Lemma, Khalil [77, Lemma 3.4]). Consider the scalar
differential equation

u̇ = f(t, u), u(t0) = u0

where f(t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and all
u ∈ J ⊂ R. Let [t0, T ) (T could be infinity) be the maximal interval of existence
of the solution u(t) ∈ J for all t ∈ [t0, T ). Let v(t) be a continuous function whose
upper right-hand derivative D+v(t) satisfies the differential inequality

D+v(t) ≤ f(t, v(t)), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all t ∈ [t0, T ).
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Theorem A.2 (Theorem 1.3.2 [61] - Stable Manifold Theorem for a Fixed Point)).
Consider the system

ẋ = f(x) x ∈ Rn (A.9)

where f = [f1(x), . . . , fn(x)]T . The linearized system around the fixed point x̄ is

ξ̇ = Df(x̄), ξ ∈ Rn, (A.10)

where Df = [∂fi/∂xj ]. Suppose that ẋ = f(x) has a hyperbolic fixed point x̄. Then
there exist local stable and unstable manifolds Ws

loc(x̄) and Wu
loc(x̄), of the same

dimensions ns, nu as those of the eigenspaces Es, Eu of the linearized system A.10,
and tangent to Es, Eu at x̄. Ws

loc(x̄), Wu
loc(x̄) are as smooth as the function f .

Definition A.5 (Angeli and Sontag [7]). Consider a general nonlinear system of
the form

ẋ = f(x, u), y = h(x) (A.11)

with states x ∈ Rn, inputs u ∈ Rm, and outputs y ∈ Rp. The maps f : Rn ×
Rm → Rn and h : Rn → Rm are locally Lipschitz continuous. By an input signal
for (A.11) we mean any measurable locally essentially bounded function of time,
u(·) : R → Rm. The system (A.11) is called forward complete if for every initial
condition and every input signal u, the corresponding solution is defined for all
t ≥ 0.

Theorem A.3 (Angeli and Sontag [7, Corollary 2.11]). System (A.11) is forward
complete if and only if there exists a smooth and proper function V : Rn → R≥0

and such that

∂V (x)
∂x f(x, u) ≤ V (x) + σ(‖u‖), ∀x ∈ Rn, ∀u ∈ Rm (A.12)

holds for some σ ∈ K∞.

Lemma A.5 (Khalil [77, Lemma 8.2]). Let φ : R→ R be a uniformly continuous
function on [0,∞). Suppose that limt→∞

∫ t
0
φ(τ)dτ exists and is finite. Then,

φ(t)→ 0 (A.13)

as t→∞.

A.2 Graph theory tools

This section provides some notions from graph theory which will be used through-
out this dissertation. Further information about graph theory can be found in
[101].

Consider a network of N + 1 agents, where we have N follower agents and one
leader agent. Assume that the communication scheme among the N follower agents
is described by a directed graph G. A directed graph, or digraph, G is defined by
the pair of sets (V, E), where V, addressed as the vertex set, is the set of N vertices
vi, i = 1 . . . , N , while E , addressed as the edge set, is the set of ordered pair of
vertices εij = (vi, vj) ∈ E ⊆ V × V. In particular, in the ordered pair of vertices
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εij = (vi, vj) ∈ E , i 6= j, i, j = 1, . . . , N , the vertex vi is said to be the tail and vj
is said to be the head of the edge εij . This means that εij tells that it is possible
to go from vi to vj , but not vice versa. We will consider that the edge εii /∈ E ,
i.e. we consider that there are no self-loop in the digraph. If εij ∈ E , then vj is
said to be a neighbor of vi. The set of the neighbors of the agent vi is defined
as Ni = {vj |(vi, vj) ∈ E}. A directed path of length r in a digraph is a sequence
of r + 1 neighbor vertices. A digraph is said to have a spanning tree if there is a
node vr (called the root), such that there is a directed path from the root to every
other node in the graph. The adjacency matrix A is a N ×N matrix with elements
aij , i, j = 1, . . . , N . The elements aij > 0 if εij ∈ E , while aij = 0 otherwise.
Notice that aii = 0 since there are no self-loops in the digraph. The value aij gives
the weight of the edge εij . For convenience and without loss of generality we will
assume that if aij > 0, then aij = 1. That is, we assume that the weight of all the
edges is the same. The in-degree matrix ∆ is the diagonal N ×N matrix where the
i-th element on the diagonal, ∆i, is such that

∆ =




∆1 . . . . . . 0
...

. . .
...

...
. . .

...
0 . . . . . . ∆N



, (A.14)

where ∆i =
∑
j∈Ni aij ∀i ∈ {1, . . . , n} The Laplacian matrix L is defined as L =

∆ − A. By definition we have L1N = 0, where 1N is the N-dimensional column
vector where all the entries are equal to 1. Without loss of generality we assume
that the leader agent is addressed as the agent v0. We define the pinning matrix
G as the diagonal N ×N matrix where the i-th element on the diagonal is defined
as gi = 1 if the follower agent vi can communicate with the leader agent v0, or
gi = 0 otherwise. The matrix G captures the interaction between the leader and
the group of the followers.
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Appendix B

Numerical simulation models

This appendix presnets the 3DOF models used for numerical simulations in the
thesis.

B.1 Numerical model for a supply vessel

Several simulations presented in this dissertation have used the numerical model of
the under-actuated supply vessel used in Fredriksen and Pettersen [58]. Note that
in Chapters 4-10 a dynamic model based on relative velocities has been used. While
in Chapter 11 a model based on absolute velocities has been used. A picture of a
supply vessel is given in Figure B.1. The physical parameters of both the models
are reported here.

Figure B.1: A supply vessel. [36]
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B.1.1 Relative velocities model

Recall the dynamic model based on relative velocities given in [54], and introduced
in Chapter 2

Mν̇r +C(νr) +D(νr)νr = Bf . (B.1)

The mass of the vehicle is m = 6.4 · 106[kg]. The numerical values for M , B,
C(νr) are given by

M =




7.22 · 106 0 0
0 1.21 · 107 −3.63 · 107

0 −3.63 · 107 4.75 · 109


 ,

C(νr) =




0 0 −1.21 · 107vr + 3.63 · 107r
0 0 7.22 · 106ur

1.21 · 107vr − 3.63 · 107r −7.22 · 106ur 0




B =




1 0
0 −1.13 · 106

0 9.63 · 107


 .

(B.2)
The linear damping matrix from Fredriksen and Pettersen [58] is given by

D =




95070 0 0
0 4.34 · 106 −2.47 · 106

0 −1.88 · 107 7.57 · 108


 . (B.3)

B.1.2 Absolute velocities model

Recall the dynamic model based on relative velocities given in [54], and introduced
in Chapter 11

MRBν̇ +CRB(ν)ν = −MAν̇r −CA(νr)νr −Dνr +Bf . (B.4)
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The numerical values for MRB , MA, B, CRB(νr), CA(νr) are given by

MRB =




6.4 · 106 0 0
0 6.4 · 106 1.07 · 107

0 1.07 · 107 mRB33


 ,

MA =




8.2 · 105 0 0
0 5.70 · 106 −4.696 · 107

0 −4.696 · 107 mA33


 ,

CRB(νr) =




0 0 4.696 · 107 · r − 5.70 · 106 · v
0 0 8.2 · 105 · u

−4.696 · 107 · r + 5.70 · 106 · v −8.2 · 105 · u 0


 ,

CA(νr) =




0 0 4.696 · 107 · r − 5.70 · 106 · v
0 0 8.2 · 105 · u

−4.696 · 107 · r + 5.70 · 106 · v −8.2 · 105 · u 0


 ,

B =




1 0
0 −1.13 · 106

0 9.63 · 107


 .

(B.5)

The linear damping matrix from Fredriksen and Pettersen [58] is given by

D =




95070 0 0
0 4.34 · 106 −2.47 · 106

0 −1.88 · 107 7.57 · 108


 . (B.6)

B.2 Numerical model for the light autonomous
under-water vehicle (LAUV)

The simulation results presented in Chapters 5-6 are based on the model of the
LAUV. The LAUV was developed by the Labórato rio de Sistemas e Tecnologia
Subaquática of the LSTS at the University of Porto. A picture of the LAUV is
given in Figure B.2. The physical parameter of the vehicle are reported here and
taken from da Silva et al. [38].

Recall the dynamic model based on relative velocities given in [54], and intro-
duced in Chapter 2

Mν̇r +C(νr) +D(νr)νr = Bf . (B.7)

The mass of the vehicle is m = 6.4 · 106[kg]. The numerical values for M , B,
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Figure B.2: The LAUV.

C(νr) are given by

M =




19 0 0
0 2.1 0
0 0 2.1


 ,

C(νr) =




0 0 −34 · vr
0 0 19 · ur

34 · vr −19 · ·ur 0




B =




1 0
0 −39.8783
0 18.1446


 .

(B.8)

The linear damping matrix from da Silva et al. [38] is given by

D =




2.4 0 0
0 9.7 −11.5
0 3.1 9.7


 . (B.9)
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