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Abstract

The windowed scattering transform is an operator that is invariant to small trans-
lations, deformations and rotations. The transform can be used in conjunction
with a classification algorithm to perform image recognition. This thesis consists
of one theoretical part and one numerical part. In the theoretical part the under-
lying theory of the windowed scattering transform, namely Fourier analysis and
wavelets, is briefly introduced. Then, the construction of the windowed scattering
transform and its numerical approximation is explained in detail. The numer-
ical part consists of examples showcasing the properties of the transform, and
the transform applied in image recognition on a dataset of handwritten letters.
An error rate of 10.2% was achieved, using the k-nearest neighbors algorithm for
classification. The error rate is high compared to other more sophisticated image
recognition procedures. Most of the errors stem from inaccurate classification on
classes with few samples, and from incorrect classifications on letters that are sim-
ilar in shape. Some suggestions are given on how the error rates could be improved
in further work.
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Sammendrag

Windowed scattering transform er en operator som er invariant til små translasjoner,
deformasjoner og rotasjoner. Transformen kan bli brukt i kombinasjon med en
klassifikasjonsalgoritme for å utføre bildegjenkjenning. Denne masteroppgaven
inneholder en teoretisk del og en numerisk del. I den teoretiske delen forklares
teorien som ligger bak windowed scattering transform, i hovedsak Fourieranalyse
og wavelets. Deretter konstrueres transformen og dens numeriske approksimasjon
i detalj. Den numeriske delen består av eksempler som belyser transformens egen-
skaper, og transformen anvendes i bildegjenkjenning på et datasett av håndskrevne
bokstaver. Bokstavgjenkjenningen hadde en feilrate på 10.2%. Denne feilraten
er høy sammenlignet med andre mer sofistikerte bildegjenkjenningsprosedyrer.
Mesteparten av feilene stammer fra feilaktige klassifikasjoner på klasser med få
bilder, og fra forveksling mellom bokstaver som er lik i form. Avslutningsvis gis
noen forslag til hvordan feilraten kan forbedres i fremtidig arbeid.
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Chapter 1

Introduction

In this thesis, we will study wavelets and a technique called the windowed scat-
tering transform. The transform will be used along with the classification algo-
rithm k-nearest neighbors to perform image recognition on handwritten letters.
Machines analyze images by looking at individual pixels. However, recognizing
patterns and structures in images by comparing individual pixels only, will not
yield convincing results. A simple example, shown in Figure 1.1, illustrates that
a matching number of pixels between images does not imply that the images are
depicting the same pattern. Both Figure 1.1a and 1.1b depict a diagonal line,
while Figure 1.1c does not. When comparing Figure 1.1a with Figure 1.1b and
Figure 1.1c by looking at individual pixels, they have the same number of match-
ing pixels. More sophisticated algorithms are needed for a machine to analyze
images on a larger scale in order for it to recognize patterns and structures.

(a) (b) (c)

Figure 1.1: Images (a) and (b) have the same pattern, but images (b) and (c) have
an equal amount of matching pixels when compared to image (a).

For example, two images of the same object, as shown in Figure 1.2. The object
in the second image is translated, deformed and rotated compared to the object
in the first image. Humans can easily recognize that the two images depict the
same object, but for a machine, this is a difficult task.
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Chapter 1. Introduction

(a) (b)

Figure 1.2: Image (a) depicts the letter A. Image (b) depicts the same A subjected
to translation, deformation and rotation.

An even more challenging task in image recognition is to recognize the same ob-
ject from different angles. Figure 1.3 shows the same airplane from three different
angles. Humans will recognize that the three images depict an airplane, but a ma-
chine might not. Noise, blur and light variations are other effects that could make
image recognition more difficult. These effects can be analyzed using standard
signal processing tools, which machines can do better than humans.

Figure 1.3: Images of the same airplane from three different angles.

A standard approach when performing image recognition is to use artificial neural
networks, which is a technique developed in the field of artificial intelligence and
machine learning. For a more in-depth look at artificial neural networks, see for
example one of the many textbooks on machine learning [14]. In image recognition,
an artificial neural network is trained by allowing the network to analyze datasets
containing classified images. The network can be trained on the dataset by having
it attempt to classify the images in the dataset, and have the network continuously
adjust itself based on the correct classification of the image. Eventually, the
network could learn the patterns which differentiate the objects from one another.
This would make the network capable of classifying images of the same objects
which were not in the dataset. The windowed scattering technique was developed
by Mallat [13] as a straightforward alternative to artificial neural networks.
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Chapter 1. Introduction

In this thesis, we restrict ourselves to identifying translated, deformed and rotated
objects. More challenging tasks, like recognizing the same object from different
angles will not be attempted. Noise, blur or light variations will not be considered
either. Because of this, handwritten letters were chosen as the objects to classify in
this thesis. The windowed scattering transform can recognize translated, deformed
and rotated objects and it will be applied to a dataset of handwritten letters [9].
Letters were chosen as the objects to be classified because digits and letters are
standard choices in image recognition. Choosing simple letters will allow us to
analyze the windowed scattering transforms main features. Furthermore, choosing
letters is beneficial because it provides several options. The task can be made easier
or more difficult depending on the letters chosen. For example, recognizing letters
written in different fonts is easy compared to recognizing handwritten letters.

Images are two-dimensional signals. However, in this thesis, a lot of the theory and
examples will be presented in the one-dimensional case. Chapter 2 will introduce
definitions and theorems from Fourier analysis that will be used in later chapters.
Chapter 3 will present a more in-depth look at wavelets and the wavelet transform,
which are the building blocks of the windowed scattering transform. Chapter 4
is the main theoretical part of this thesis and will define the windowed scattering
transform. In Chapter 5, numerical examples showcase the windowed scattering
transform and its properties. All results in Chapter 5 come from the author’s
implementation of the windowed scattering transform. In Chapter 6, the windowed
scattering transform will be used to perform image recognition on handwritten
letters. In Chapter 6 the Matlab toolbox Scatnet [15] was used to compute the
windowed scattering transform, because of its improved runtime over the author’s
implementation. Finally, a conclusion is provided in the form of a summary, and
future work is discussed.
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Chapter 2

Fourier transform

In this thesis, we will restrict ourselves to one and two-dimensional functions,
which corresponds to audio signals and images respectively. An example of a one-
dimensional signal is an audio signal f(t) measured at a fixed point in space. For
this signal, the amplitude f depends on the time t. If the amplitude of a sound is
too low, our eardrums will not be able to sense the fluctuating air pressure, and
we cannot hear the sound. Furthermore, if the amplitude is too high, we cannot
hear the sound because the high air pressure would destroy our eardrums. Limits
on the amplitude range humans can sense are not the only restriction on what
sound signals we can perceive. Humans are only able to perceive sounds which
include frequencies between 20Hz and 20kHz [7]. These two limits correspond to
two different representations of the same signal. A signal may be represented in
time-space as f(t), or in frequency-space where the signal is denoted f̂ and is a
function of the frequency ω. The function f̂ is called the Fourier transform of f ,
and in one dimension, it is defined as follows.

Definition 2.1. The Fourier transform of a signal f(t) is given by

f̂(w) =
ˆ ∞
−∞

f(t) e−iwt dt. (2.1)

An example of a two-dimensional signal is an image f(x, y). For this signal,
the amplitude f(x, y) depends on the position (x, y). For greyscale images f
typically takes values between a lower and an upper bound, where the lower bound
corresponds to black, the upper bound corresponds to white and the values in
between give different tones of gray. The function f(x, y) can also be represented
in frequency space as f̂(u, v) where u and v are spatial frequencies. The two-
dimensional Fourier transform is defined as follows.

4



Chapter 2. Fourier transform

Definition 2.2. The Fourier transform of a signal f(x, y) is given by

f̂(u, v) =
ˆ ∞
−∞

ˆ ∞
−∞

f(x, y) e−i(xu+yv) dx dy. (2.2)

In this thesis three different representations of signals will be used, the Fourier
transform, the wavelet transform and the windowed scattering transform. For
these representations to be meaningful, the transforms have to be stable. Stabil-
ity means that a small change in the signal will produce a small change in the
transform. Take a signal and add two different noise variations to it. These two
signals will not be that different. If a transform lacks stability, the difference be-
tween the same transform of those two signals could be huge. Stability ensures
that the same transform of two similar signals are indeed close to each other.

Definition 2.3. The energy of a signal f is equal to the L2-norm of the signal
squared, that is ‖f‖2

2.

Energy is useful because it is closely related to stability. We say that a transform
preserves energy if the energy of a signal is equal to the energy of the transform.
If a transform preserves energy, then the transformation is stable. It the trans-
form is stable, then the transformation preserves the energy of the signal up to a
constant. The following theorem will prove that the Fourier transform preserves
energy up to a constant, and thus is stable. For the rest of this chapter, only the
one-dimensional case will be discussed, but all results can be generalized to two
dimensions.

Theorem 2.4. For signals f, g ∈ L1(R) ∩ L2(R) we have that

〈f, g〉 = 1
2π 〈f̂ , ĝ〉,

which is known as Parseval’s formula. If f = g we get Plancherel’s formula

‖f‖2
2 = 1

2π
∥∥∥f̂∥∥∥2

2
. (2.3)

Proof. See Reference [12].

The Fourier transform is a powerful tool, but it has some drawbacks. The Fourier
transform gives information about what frequencies are present in a signal, but the
Fourier Transform does not give any information as to at what time the different
frequencies appear. A tool that can be used to solve this problem is the windowed
Fourier transform.
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Chapter 2. Fourier transform

Definition 2.5. Let the window g be any bounded function with finite support.
The Windowed Fourier transform of a signal f ∈ L2(R) at time u and frequency
ξ is given by

Sf(u, ξ) = 〈f(t), g(t− u)eitξ〉 =
ˆ ∞
−∞

f(t) g∗(t− u) e−itξ dt, (2.4)

where g∗(t− u) is the complex conjugate of g.

The Fourier transform has exact frequency information, but no information as to
at what time those frequencies appear. On the other hand, the windowed Fourier
transform has time information, but loses exact frequency information. As per
Heisenberg’s uncertainty principle [12], there is a limit on the time and frequency
resolution.

For different applications of the windowed Fourier transform, there are many pos-
sible choices of windows. We will now introduce Heisenberg boxes which may be
used to compare windows, and in Chapter 3 the boxes will be used to compare
the windowed Fourier transform and the wavelet transform.

Definition 2.6. Let {ζγ}γ∈Γ be a famility of functions ζγ ∈ L2(R) with ‖ζγ‖2 = 1.
Then for any f ∈ L2(R) we have a general time-frequency transform defined by

Tf = 〈f, ζγ〉 =
ˆ ∞
−∞

f(t)ζ∗γ(t) dt.

The time-frequency resolution of Tf can be represented in the time-frequency
domain (t, ω) by a box whose position and width depend on the chosen function
ζγ. This box is called a Heisenberg box. The expressions |ζγ(t)|2 and 1

2π |ζ̂γ(t)|
2 can

be interpreted as probability density functions because
ˆ ∞
−∞
|ζγ(t)|2 dt = ‖ζγ‖2

2 = 1 and 1
2π

ˆ ∞
−∞
|ζ̂γ(ω)|2 ω = 1

2π
∥∥∥ζ̂γ∥∥∥2

2
= ‖ζγ‖2

2 = 1,

where we have used Plancherel’s formula (2.3). From the probability density
interpretation, we get that the position of the Heisenberg box is given by the
mean values of ζγ and ζ̂γ, that is

Et(γ) =
ˆ ∞
−∞

t |ζγ(t)|2 dt and Eω(γ) = 1
2π

ˆ ∞
−∞

ω |ζγ(ω)|2 dω.

6



Chapter 2. Fourier transform

Also, the widths (σt, σω) of the box is given by the variances of ζγ and ζ̂γ, that is

σ2
t (γ) =

ˆ ∞
−∞

(t− Et)2 |ζγ(t)|2 dt and σ2
ω(γ) = 1

2π

ˆ ∞
−∞

(ω − Eω)2 |ζγ(ω)|2 dω.

Remark 2.7 . Heisenberg’s uncertainty principle [12] gives that σtσω ≥ 1/2. Poor
choice of window gives Heisenberg boxes with an area larger than 1/2. It can be
shown that using Gaussian windows, that is ζγ equal the Gaussian distribution,
gives Heisenberg boxes with area σtσω = 1/2.

Let us compute the Heisenberg boxes of the windowed Fourier transform for a real
and symmetric window g. Then the Heisenberg box of gu,ξ(t) = g(t − u)eiξt is
centered at (Et, Eω) = (u, ξ). The width (σt, σω) of the box is given by

σ2
t =
ˆ ∞
−∞

(t− Et)2 |gu,ξ(t)|2 dt =
ˆ ∞
−∞

t2 |g(t)|2 dt and

σ2
ω =
ˆ ∞
−∞

(ω − Eω)2 |ĝu,ξ(ω)|2 dω =
ˆ ∞
−∞

ω2 |ĝ(ω)|2 dω.

Notice that both σt and σω do not depend on u and ξ, which implies that the time-
frequency resolution is the same for all positions and frequencies. An illustration
of the boxes is given in Figure 2.1. The width of the boxes is the time resolution,
and the height of the boxes is the frequency resolution. Since all the Heisenberg
boxes have the same size, the resolution is constant and does not depend on the
chosen u and ξ.

t0

ω

u1 u2

ξ1

ξ2

σω

σt

σt

σω

Figure 2.1: Time-frequency resolution of the windowed Fourier transform.
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Chapter 3

Wavelet transform

In the previous chapter, the Fourier transform and the windowed Fourier transform
were defined. These two transforms are examples of time-frequency transforms. In
this chapter, we will define another time-frequency transform, namely the wavelet
transform. Similarly to the windowed Fourier transform (2.4), the wavelet trans-
form is localized both in time and frequency, and there is once again a bound
on the resolution given by Heisenberg’s uncertainty principle [12]. The advan-
tage of the wavelet transform over the windowed Fourier transform is that it may
offer different time-frequency resolution for different times and frequencies. The
windowed Fourier transform has fixed time-frequency resolution for all times and
frequencies, while the wavelet transform can have good time resolution for high
frequencies and good frequency resolution for low frequencies. This property is
illustrated in Figure 3.2. Wavelets and the wavelet transform will be defined in
one and two dimensions in Section 3.1 and 3.2 respectively.

3.1 One-dimensional wavelets

One-dimensional wavelets are wave-like oscillations, but in contrast to sine and
cosine waves whose support is infinite, wavelets decay rapidly to zero and have
finite support. Sharp transitions and rapid changes are not well modeled by plane
waves, but wavelets which are localized in time and frequency, are better suited
to model signals that have these features.

Definition 3.1. Let ψ be the one-dimensional function ψ ∈ L1(R) ∩ L2(R). We
define the constant

Cψ =
ˆ ∞

0

|ψ̂(w)|2
w

dw.

8



Chapter 3. Wavelet transform

The function ψ(t) is a wavelet if it satisfies the admissibility condition

0 < Cψ <∞. (3.1)

Satisfying the admissibility condition implies that the wavelet is smooth, centered
at t = 0 and has zero average

ˆ ∞
−∞

ψ(t) dt = 0.

It is common to normalize wavelets such that ‖ψ‖2 = 1.

Example 3.1. An example of a wavelet is the Mexican hat wavelet. It is the
second derivative of the Gaussian distribution, and is given by

ψ(t) = 2
π1/4
√

3σ

(
t2

σ2 − 1
)

exp
(
−t2

2σ

)
.

A possible application of the Mexican hat wavelet is in signal processing, where
it may be used to detect sharp transitions and edges [12]. For σ = 1, the wavelet
−ψ(t) is illustrated in Figure 3.1.

-5 -4 -3 -2 -1 0 1 2 3 4 5

t

-0.5

0

0.5

1

Figure 3.1: Illustration of the Mexican hat wavelet.

Before defining the wavelet transform, we introduce some notation. A wavelet
that is translated by u ∈ R and scaled by s ∈ R>0 is denoted ψu,s and is given by

ψu,s(t) = 1√
s
ψ
(
t− u
s

)
,

where the constant s−1/2 has been chosen such that ‖ψu,s‖2 = 1.

9



Chapter 3. Wavelet transform

Definition 3.2. The wavelet transform of a signal f ∈ L2(R) at time u ∈ R and
scale s ∈ R>0 is given by

Wf(u, s) = 〈f, ψu,s〉 =
ˆ ∞
−∞

f(t) 1√
s
ψ∗
(
t− u
s

)
dt. (3.2)

where ψ∗(t) is the complex conjugate of ψ(t).

Using Definition 2.6, we compute the Heisenberg boxes for a scaled and translated
wavelet ψu,s. The box will be centered at (Et, Eω) = (u, η), where η is the center
frequency of ψu,s. The widths of the box for ψu,s are s2σt and s−2σω, where σt
and σω are the widths of the box for a non-translated and non-scaled wavelet ψ.
An illustration of the two boxes for two different scales s1 and s2 are depicted in
Figure 3.2. The trade off in resolution for the wavelet transform corresponds to
the chosen scale s, this is an advantage of the wavelet transform over the windowed
Fourier transform (2.4). How the chosen parameters affect its resolution is more
hidden for the windowed Fourier transform.

tu2u10

η
s1

σω

s1

s1σt

σω

s2

s2σt

η
s2

ω

Figure 3.2: Time-frequency resolution of the wavelet transform.

The admissibility condition (3.1) ensures that the energy of a signal is equal to the
energy of its wavelet transform, up to a constant. As already discussed in Chapter
2, this energy conservation property ensures that the wavelet transform is stable.
The admissibility condition also ensures that a function can be recovered from its
wavelet transform. Both of these properties will be proved in the next theorem.
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Chapter 3. Wavelet transform

Theorem 3.3. For all f ∈ L2(R), if ψ ∈ L2(R) is a wavelet that satisfies the
admissibility condition (3.1), then

ˆ ∞
−∞
|f(t)|2 dt = 1

Cψ

ˆ ∞
0

ˆ ∞
−∞
|Wf(u, s)|2 du ds

s2 (3.3)

and
f(t) = 1

Cψ

ˆ ∞
0

ˆ ∞
−∞

Wf(u, s) 1√
s
ψ
(
t− u
s

)
du

ds

s2 . (3.4)

Proof (3.3). The Fourier transform ofWf(u, s) with respect to u is
√
sf̂(w)ψ̂∗(sω).

Then by applying Plancherel’s formula (2.3) to the right hand side of (3.3) we get
that

1
Cψ

ˆ ∞
0

ˆ ∞
−∞
|Wf(u, s)|2 du ds

s2 = 1
2πCψ

ˆ ∞
0

ˆ ∞
−∞
|f̂(w)|2|ψ̂(sω)|2 dw ds

s
,

where we have used that |ψ∗(sω)| = |ψ(sω)|. Now we apply Fubini’s Theorem A.2
and substitute s′ = ωs

1
2πCψ

ˆ ∞
−∞
|f̂(w)|2

ˆ ∞
0
|ψ̂(sω)|2 ds

s
dw = 1

2π

ˆ ∞
−∞
|f̂(w)|2dω 1

Cψ

ˆ ∞
0

|ψ̂(s′)|2
s′

ds′,

we notice that Cψ cancel out and by applying Plancherel’s formula (2.3) again, we
get ||f ||22, which is what we wanted to prove.

Proof (3.4). Let r(t) denote the right hand side of (3.4). First notice that the
innermost integral of r(t) can be written as a convolution.

ˆ ∞
−∞

Wf(u, s) 1√
s
ψ
(
t− u
s

)
du = (Wf(s) ∗ ψs)(t).

The wavelet transform, Equation (3.2), may be rewritten as a convolution.

Wf(u, s) = (f ∗ ψ̄s)(u) with ψ̄s(u) = 1√
s
ψ∗
(−u
s

)
.

Inserting these two results into into r(t) gives

r(t) = 1
Cψ

ˆ ∞
0

(Wf(s) ∗ ψs)(t)
ds

s2 = 1
Cψ

ˆ ∞
0

(f ∗ ψ̄s ∗ ψs)(t)
ds

s2 .

If the Fourier transform of r(t) is equal the Fourier transform of f(t) then f(t) =
r(t). Let us compute the Fourier transform of r(t).

r̂(ω) = 1
Cψ

ˆ ∞
0

f̂(ω)
√
s ψ̂∗(sω)

√
s ψ̂(sω) ds

s2 = f̂(ω)
Cψ

ˆ ∞
0
|ψ̂(sω)|2 ds

s

11



Chapter 3. Wavelet transform

Using the substitution ξ = sω, we recognize the last integral as the constant Cψ
and we get r̂ = f̂ .

We will now define the Littlewood-Paley wavelet transform. In Section 4.4 the
Littlewood-Paley wavelet transform will be used instead of the standard wavelet
transform (3.2) to define the windowed scattering transform.

Definition 3.4. Let J ∈ Z. For a wavelet ψ(t), let ψj(t) = 2−jψ(2−jt), where the
constant 2−j has been chosen such that ‖ψ‖1 = ‖ψj‖1 = 1. The Littlewood-Paley
wavelet transform of a signal f ∈ L2(R) at scale 2j is given by

W [j]f(t) = (f ∗ ψj)(t) =
ˆ ∞
−∞

f(u) 2−j ψ( 2−j (t− u)) du. (3.5)

Notice that for the Littlewood-Paley wavelet transform the scales s are discrete
and dyadic, s = 2j with j ∈ Z, as opposed to the standard wavelet transform
(3.2), where the scales were continuous. This shift from continuous scales to
discrete scales is necessary when implementing the windowed scattering transform
numerically (4.1) and dyadic scales is the natural choice of discretization.

The Littlewood-Paley wavelet transform also differs from the standard wavelet
transform (3.2) in that it has been normalized with respect to the L1-norm, while
previously, all wavelets were normalized with respect to the L2-norm. This change
was made because it will be convenient in calculations and will among other things
be used in the next proposition. The next proposition proves that if f has finite
energy, then W [j]f has finite energy as well.

Proposition 3.5. If f ∈ L2(R), then ‖W [j]f‖2 ≤ ‖f‖2 ‖ψj‖1 = ‖f‖2 ‖ψ‖1, which
implies that W [j]f ∈ L2(R).

Proof.

‖W [j]f‖2 = ‖ψj ∗ f‖2 =
∥∥∥∥∥
ˆ ∞
−∞

f(x− t) ψj(t) dt
∥∥∥∥∥

2
.

Rewriting the integral as a Riemann sum gives

‖W [j]f‖2 =

∥∥∥∥∥∥
∞∑

i=−∞
∆ f(x− ti) ψj(ti)

∥∥∥∥∥∥
2

,

12



Chapter 3. Wavelet transform

where ∆ = ti − ti−1 and has the same value for all i. Now using Minkowski’s
inequality A.5, and noting that ||f(x− ti)||2 = ||f(x)||2, we get

‖W [j]f‖2 ≤
∞∑

i=−∞
∆ ψj(ti) ‖f(x− ti)‖2

= ‖f(x)‖2

∞∑
i=−∞

∆ ψj(ti)

= ‖f‖2 ‖ψj‖1 = ‖f‖2 ‖ψ‖1.

3.2 Two-dimensional wavelets

Definition 3.6. Let ψ be the two-dimensional function ψ ∈ L1(R2) ∩ L2(R2).
Using the same notation as for one-dimensional wavelets, we define the constant

Cψ =
ˆ ∞
−∞

ˆ ∞
−∞

|ψ̂(ω1, ω2)|2

‖(ω1, ω2)‖2 dω1 dω2.

Whenever the constant Cψ is used, it should be clear from context whether it is
the one- or two-dimensional version. The function ψ(x, y) is a wavelet if it satisfies
the admissibility condition

0 < Cψ <∞. (3.6)

Satisfying the admissibility condition implies that the wavelet is smooth, centered
at (x, y) = (0, 0) and has zero average

ˆ ∞
−∞

ˆ ∞
−∞

ψ(x, y) dx dy = 0.

As for the one-dimensional wavelets, two-dimensional wavelets are also normalized
such that ||ψ||2 = 1.

For one-dimensional wavelets we considered translation and scaling. In two di-
mensions rotation can be considered as well. A wavelet that is translated by
(u, v) ∈ R2, scaled by s ∈ R>0 and rotated by θ ∈ [0, 2π) is denoted ψu,v,s,θ and is
given by

ψu,v,s,θ(x, y) = s−1 ψ

(
r−1
θ

(
(x, y)− (u, v)

s

))
,

13



Chapter 3. Wavelet transform

where the constant s−1 has been chosen such that ‖ψū,s,θ‖2 = 1 and r−1
θ is the

inverse of the rotation matrix defined by

rθ =
 cos(θ) − sin(θ)

sin(θ) cos(θ)

 .
Definition 3.7. The wavelet transform of a signal f ∈ L2(R2) at position (u, v) ∈
R2, scale s ∈ R>0 and rotation θ ∈ [0, 2π) is given by

Wf(u, v, s, θ) = 〈f, ψu,v,s,θ〉

=
ˆ ∞
−∞

ˆ ∞
−∞

f(x, y) s−1 ψ∗
(
r−1
θ

(
(x, y)− (u, v)

s

))
dx dy, (3.7)

where ψ∗(t) is the complex conjugate of ψ(t).

Energy preservation and stability of the wavelet transform in two dimensions are
proved by extending the proof of Theorem 3.3 to two dimensions. The proofs are
similar except for the integral substitution, but the proofs have nonetheless been
included for the reader’s convenience and the sake of completeness.

Theorem 3.8. For all f ∈ L2(R2), if ψ ∈ L2(R2) satisfies the admissibility
condition (3.6), then
ˆ ∞
−∞
|f(x, y)|2 dx dy = 1

Cψ

ˆ 2π

0

ˆ ∞
0

ˆ ∞
−∞

ˆ ∞
−∞
|Wf(u, v, s, θ)|2 du dv ds

s3 dθ, (3.8)

and

f(x, y) = 1
Cψ

ˆ 2π

0

ˆ ∞
0

ˆ ∞
−∞

ˆ ∞
−∞

Wf(u, v, s, θ) ψu,v,s,θ(x, y) du dv ds
s3 dθ. (3.9)

Proof (3.8). The Fourier transform of Wf(u, v, s, θ) with respect to (u, v) is

sf̂(ω1, ω2)ψ̂∗
(
sr−1
θ (ω1, ω2)

)
.

Then by applying Plancherel’s formula (2.3) to the right hand side of (3.8) we get
that

1
2πCψ

ˆ 2π

0

ˆ ∞
0

ˆ ∞
−∞

ˆ ∞
−∞
|f(ω1, ω2)|2

∣∣∣ψ̂ (sr−1
θ (ω1, ω2)

)∣∣∣2 dω1 dω2
ds

s
dθ.

14



Chapter 3. Wavelet transform

By applying Fubini’s Theorem A.2 we get

1
2πCψ

ˆ ∞
−∞

ˆ ∞
−∞
|f(ω1, ω2)|2

ˆ 2π

0

ˆ ∞
0

∣∣∣ψ̂ (sr−1
θ (ω1, ω2)

)∣∣∣2 ds

s
dθ dω1 dω2.

If we can get the inner double integral and the constant Cψ to cancel each other
out, we are done. Now let us take a closer look at the constant

Cψ =
ˆ ∞
−∞

ˆ ∞
−∞

|ψ̂(ω′1, ω′2)|2
ω′21 + ω′22

dω′1 dω
′
2,

where we will use the following substitution

ω′1 = sω1 cos(θ) + sω2 sin(θ)

ω′2 = −sω1 sin(θ) + sω2 cos(θ).

The Jacobian of this substitution is J = s(w2
1 + w2

2), resulting in

Cψ =
ˆ 2π

0

ˆ ∞
0

|ψ̂(sr−1
θ (ω1, ω2))|2

s2(ω2
1 + ω2

2) s(ω2
1 + ω2

2) ds dθ.

Proof (3.9). Let r(x, y) denote the right hand side of (3.9). First notice that the
inner double integral of r(x, y) may be written as a convolution.

ˆ ∞
−∞

ˆ ∞
−∞

Wf(u, v, s, θ) ψu,v,s,θ(x, y) du dv = (Wf(s, θ) ∗ ψs,θ) (x, y).

The wavelet transform, Equation (3.7), may be rewritten as a convolution.

Wf(u, v, s, θ) = (f ∗ ψ̄s,θ)(u, v) with ψ̄s,θ(x, y) = 1
s
ψ∗
(
r−1
θ

(−x
s
,
−y
s

))
.

Inserting these two convolutions into r(x, y) gives

r(x, y) = 1
Cψ

ˆ 2π

0

ˆ ∞
0

(f ∗ ψ̄s,θ ∗ ψs,θ)(x, y) ds
s3 dθ.

If the Fourier transform of r(x, y) is equal the Fourier transform of f(x, y), then
f(x, y) = r(x, y). Let us compute the Fourier transform of r(x, y).

r̂(ω1, ω2) = 1
Cψ

ˆ 2π

0

ˆ ∞
0

f̂(ω1, ω2)sψ̂∗(sr−1
θ (ω1, ω2))sψ̂(sr−1

θ (ω1, ω2)) ds
s3 dθ

= f̂(ω1, ω2)
Cψ

ˆ 2π

0

ˆ ∞
0
|ψ̂(sr−1

θ (ω1, ω2))|2 ds
s
.
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Chapter 3. Wavelet transform

Using the same substitution as in the proof of (3.8) we get that the integral and
the constant Cψ cancel each other out and r̂ = f̂ .

Before defining the two-dimensional Littlewood-Paley wavelet transform, some
notation will be introduced. Let 2Z be the set {2j : j ∈ Z}. The space of rotations
in two dimensions is denoted SO(2) and is defined as

SO(2) =

rθ =
 cos(θ) − sin(θ)

sin(θ) cos(θ)

 : θ ∈ [0, 2π)

 .
Definition 3.9. Let λ = 2jrθ ∈ 2Z × SO(2). For a two-dimensional wavelet
ψ(x, y), let ψλ(x, y) = 2−2jψ(2−jr−1(x, y)), where the constant 2−2j have been
chosen such that ‖ψ‖1 = ‖ψλ‖1 = 1. The Littlewood-Paley wavelet transform of a
signal f ∈ L2(R2) at scale 2j and rotation r is given by

W [λ]f(x, y) = (f ∗ ψλ)(x, y)

=
ˆ ∞
−∞

ˆ ∞
−∞

f((u, v)) 2−2j ψ
(
λ−1 ((x, y)− (u, v))

)
du dv. (3.10)

Proposition 3.5 and its proof can be extended to two dimensions in order to show
that for a signal with finite energy f ∈ L2(R2), the Littlewood-Paley wavelet
transform of the signal also has finite energy W [λ]f ∈ L2(R2).
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Chapter 4

Windowed scattering transform

In this thesis, the goal is to compare signals, and to measure the difference between
them. Only one- and two-dimensional cases will be considered. The aim is to be
able to recognize the similarity in the shape of two signals. The tool that will be
used to achieve this is the windowed scattering transform, which will be defined
in Section 4.4. Throughout this chapter, the theory will be discussed for the
one-dimensional case, except for Section 4.6, which explains how to extend the
windowed scattering transform to two dimensions.

We want to introduce a metric which has the property that the distance between
two signals of similar shape is small, independent of position. As the next example
will show, the Lp-norms do not have this property. Let dp(·, ·) be the metric
induced by the Lp-norm such that dp(f, g) = ‖f − g‖p. Take for example the three
one-dimensional signals f , g and h shown in Figure 4.1 and 4.2. The difference
dp(f, g) = ‖f − g‖p is much smaller than the difference dp(f, h) = ‖f − h‖p, which
is not what we want to achieve. We want a metric d(·, ·) where d(f, h) is smaller
than d(f, g), since f and g are more similar in shape than f and h. Two operations
can be used to transform f into h, namely, translation and deformation which will
be defined in Section 4.1 and 4.2 respectively.

To summarize, we want to recognize the similarity between a signal f(t) and the
shifted signal f(t − c), and to recognize the similarity between a signal f(t) and
the slightly deformed signal f(t − τ(t)). Figure 4.3 and 4.4 shows a shifted and
a deformed signal respectively. The function τ(t) will be defined in Section 4.2.
Since the standard Lp-norms do not have the desired properties, we need another
metric. Consider the operator

Φ : L2(R)→ H,

17



Chapter 4. Windowed scattering transform
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Figure 4.1: Signals f and g are differ-
ent in shape, but the difference
||f − g||p is small.
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Figure 4.2: Signals f and h are similar
in shape, but the difference ||f − h||p
is large.
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Figure 4.3: Signal f and translated
signal f(t− c).
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Figure 4.4: Signal f and deformed
signal f(t− τ(t)).

where H is a Hilbert space, as defined in A.3. If Φ is invariant to translation and
stable to deformation, the induced metric

d(f, g) = ‖Φ(f)− Φ(g)‖H,

would be able to recognize the desired similarities. Furthermore, Φ should be able
to distinguish different signals. Therefore we need a Φ that preserves information
about all frequencies in a signal. As we will see later in this chapter, it is not
very difficult to construct a Φ that is either invariant to translation or stable to
deformation. The challenge is to construct a Φ that has both these properties,
while retaining information about all frequencies.
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Chapter 4. Windowed scattering transform

4.1 Translation invariance

The translation operator Tc : L2(R)→ L2(R) is given by Tcf(t) = f(t− c) for all
constants c ∈ R. Example of a translated signal can be seen in Figure 4.3.

Definition 4.1. Let f be a function in L2(R). An operator Φ : L2(R) → H is
invariant to translations if

∀c ∈ R, ‖Φ(f)− Φ(Tcf)‖H = 0.

Example 4.1. The Fourier modulus operator f 7→ |f̂ | is an operator that is
translation invariant. The Fourier transform of a translated signal is T̂cf(ω) =
e−icωf̂(ω), which gives that the Fourier modulus of a translated signal is |T̂cf(ω)| =
|e−icωf̂(ω)| = |f̂(ω)|.

In practice, we consider signals (or images) which are concentrated within given
time (or space) frame. What we want is stability with respect to translations
within this frame only. That is, if both a signal f and a shifted signal Tcf are
considered within the frame, we demand

‖Φ(f)− Φ(Tcf)‖H � 1.

Later, we do this relation more precise by specifying frame size and corresponding
scale of the windowed scattering transform (4.1). In the rest of this thesis, when
translation invariance is discussed, we really refer to translation within a given
frame.

4.2 Stability to deformations

A deformation is a C2 diffeomorphism on R. For two intervals X and Y in R,
a function τ : X → Y is a C2 diffeomorphism if τ is bijective and τ and its
inverse τ−1 : Y → X are two times continuously differentiable. The deformation
operator related to τ is denoted Lτ , and the deformation of a signal f is Lτf(t) =
f(t − τ(t)). An example of a deformed signal can be seen in Figure 4.4. Notice
that the deformation of a signal resembles the translation of a signal, but for
the deformation, the amount of translation is dependent on the time t. A simple
example of a deformation is the dilation τ(t) = εt for ε ∈ R\{0}. This deformation
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Chapter 4. Windowed scattering transform

will be used throughout the text as a model example. We say that the deformation
τ(x) = εx is small when ε is small, that is ε� 1.

Definition 4.2. We say that an operator Φ is stable to the action of deformations
if Φ is Lipschitz continuous to the action of C2 diffeomorphisms, which means that
‖Φ(f)− Φ(Lτf)‖H is bounded by the size of the deformation. In one dimension,
the size of deformation over a compact set Ω ⊂ R is given by the norm

‖τ‖∞ = sup
t∈Ω
|τ(t)|+ sup

t∈Ω
| d
dt
τ(t)|,

where supt∈Ω |τ(t)| is the maximum amplitude of the deformation and supt∈Ω | ddtτ(t)|
is the gradient of the deformation. We say that Φ is Lipschitz continuous to the
action of C2 diffeomorphism, and therefore stable to the action of deformations, if

‖Φ(f)− Φ(Lτf)‖ ≤ C ‖f‖2

(
sup
t∈Ω
|τ(t)|+ sup

t∈Ω
| d
dt
τ(t)|

)
.

Example 4.2. The Fourier modulus is not stable to deformations. Let τ be
the dilation τ(t) = εt. Let f(t) = eiξtθ(t), where θ is regular, have fast decay,
and θ̂(ω) is concentrated near the origin. A deformed signal can then be written
Lτf(t) = f(t − τ(t)) = f((1− ε)t) = f(at) where a = 1 − ε. Now the Fourier
transform gives

L̂τf(ω) =
ˆ ∞
−∞

θ(at) eiξat e−iωt dt = 1
a
θ̂

(
ω − aξ
a

)
.

The central frequency of θ̂ is ξ, while the central frequency of L̂τf(ω) is aξ =
(1−ε)ξ, as illustrated in Figure 4.5. Therefore, the difference || |L̂τf |−|f̂ | || is non-
negligible, and proportional to |ε||ξ|‖θ‖. As |ξ| can be chosen arbitrarily large, the
Fourier modulus is not Lipschitz continuous to the action of C2 diffeomorphisms.

4.3 Construction of invariant operator

We want to construct an operator Φ that is invariant to translations and sta-
ble to deformations. The next theorem proves that the Littlewood-Paley wavelet
transform (3.5) at scale 2j is stable to deformations. How to retain all frequency
information will be discussed in Section 4.4. The theorem is proved in one dimen-
sion, but can be extended to two dimensions.
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(1-0)9 9

!

jf̂(t)j
jf̂(t! 0t)j

Figure 4.5: Fourier modulus is not stable to deformations.

Theorem 4.3. Let f ∈ L2(R) be a bounded signal with finite support, that is
supp(f) ⊂ [−N,N ] and let a deformation be τ(x) = εx, with ε � 1. Then the
Littlewood-Paley wavelet transform W [j] : L2(R) → L2(R) of f is stable to the
action of deformations, that is

‖W [j]Lτf −W [j]f‖2 ≤ C(N)‖f‖2

(
sup
x∈Ω
|τ(x)|+ sup

x∈Ω
|τ ′(x)|

)
.

Proof. We see that
W [j]f(t) =

ˆ ∞
−∞

f(u)ψj(t− u)du

and that

W [j]Lτf(t) =
ˆ ∞
−∞

f ((1− ε)u) ψj(t− u)du

= 1
1− ε

ˆ ∞
−∞

f(v)ψj
(
t− v

1− ε

)
dv.

Using the two previous results, and by rewriting the integral as a Riemann sum,
we get

‖W [j]Lτf −W [j]f‖2 =
∥∥∥∥∥
ˆ ∞
−∞

f(u)
[ 1
1− εψj

(
t− u

1− ε

)
− ψj(t− u)

]
du

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∞∑

i=−∞
∆f(ui)

[ 1
1− εψj

(
t− ui

1− ε

)
− ψj(t− ui)

]∥∥∥∥∥∥
2

≤
∞∑

i=−∞
∆|f(ui)|

∥∥∥∥ 1
1− εψj

(
t− ui

1− ε

)
− ψj(t− ui)

∥∥∥∥
2
,
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where ∆ = ui − ui−1 and the inequality follows from Minkowski’s inequality A.5.
Now we estimate the norm∥∥∥∥ 1

1− εψj
(
t− ui

1− ε

)
− ψj(t− ui)

∥∥∥∥
2

=
∥∥∥∥ψj (t− ui

1− ε

)
− ψj(t− ui) +

( 1
1− ε − 1

)
ψj

(
t− ui

1− ε

)∥∥∥∥
2

≤
∥∥∥∥ψj (t− ui

1− ε

)
− ψj(t− ui)

∥∥∥∥
2

+ |ε|
|1− ε|‖ψj‖2,

where the inequality again follows from Minkowski’s inequality A.5. Now using
the first order Taylor series expansion A.8, that is f(x)− f(a) = (x− a)f ′(a), we
approximate
∥∥∥∥ψj (t− ui

1− ε

)
− ψj(t− ui)

∥∥∥∥
2
≈
∥∥∥∥ui (1− 1

1− ε

)
ψ′j(t− ui)

∥∥∥∥
2
≤ N

|ε|
|1− ε|

∥∥∥ψ′j∥∥∥2
,

where ui is bounded by N , which is the size of the support of f . Combining all
previous estimates results in

‖W [j]Lτf −W [j]f‖2 ≤
∞∑

i=−∞
∆|f(ui)| ·

|ε|
|1− ε|

[
N
∥∥∥ψ′j∥∥∥2

+ ‖ψj‖2

]
= ‖f‖1

|ε|
|1− ε|

[
N
∥∥∥ψ′j∥∥∥2

+ ‖ψj‖2

]
.

Using the fact that f is bounded and has finite support, Holders inequality A.6
gives that

‖f · 1‖1 ≤ ‖1‖2‖f‖2 =
(ˆ N

−N
dt

) 1
2

‖f‖2 =
√

2N‖f‖2

which inserted into the above equation gives that

‖W [j]Lτf −W [j]f‖2 ≤
√

2N‖f‖2
|ε|
|1− ε|

[
N
∥∥∥ψ′j∥∥∥2

+ ‖ψj‖2

]
= C(N) ‖f‖2

|ε|
|1− ε| ≈ C(N) ‖f‖2 |ε|.

Neither the Fourier modulus nor the wavelet transform have all the properties
we want. Example 4.1 and 4.2 showed that the Fourier modulus is translation
invariant, but not stable to deformations. The wavelet transform is stable to
deformations, but not translation invariant. Translating a signal will also translate
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the wavelet transform of the signal,

W [j]Tcf(t) =
ˆ ∞
−∞

Tcf(u) ψj(t− u) du =
ˆ ∞
−∞

f(u− c) ψj(t− u) du

=
ˆ ∞
−∞

f(v) ψj(t− c− v) dv = W [j]f(t− c).

A different operator is needed. Now let U [j] be an operator which is defined on
L2(R), and that commutes with translations, that is TcU [j]f = U [j]Tcf . Since U [j]
commutes with translations, we see that

´
U [j]f(x)dx is translation invariant if the

integral is well defined. The wavelet transformW [j]f = f∗ψj does in fact commute
with translations due to how convolutions behave. However,

´
W [j]f(t) dt = 0,

as will be shown by the next computation.
ˆ ∞
−∞

W [j]f(t) dt =
ˆ ∞
−∞

ˆ ∞
−∞

f(u)ψj(t− u) du dt

=
ˆ ∞
−∞

f(u)
ˆ ∞
−∞

ψj(t− u) dt du = 0,

where we have applied Fubini’s theorem A.2 and the fact that wavelets have zero
average

´
ψ(t) dt = 0. As a matter of fact, it can be shown than any linear

transformation of W [j]f , which is translation invariant, will be zero [13].

Following Mallat [13] we will use a modulus operation in order to introduce non-
linearity in a simple way. The operator U [j]f = |f ∗ ψj| is non-linear and stable
to deformations. Furthermore, the integral

´
U [j]f(t)dt =

´
|(f ∗ ψj)(t)| dt is

invariant with respect to translations. However, as the next example shows, the
modulus maps the frequencies of W [j]f to lower frequencies.

Example 4.3. Let f(x) = eiξ1t + eiξ2t where ξ1 and ξ2 are positive and sits in the
frequency band covered by ψ̂j. Then

U [j]f(t) = |(f ∗ ψj)(t)| = |
ˆ ∞
−∞

(
eiξ1(t−u) + eiξ2(t−u)

)
ψj(u) du|

= |eiξ1t

ˆ ∞
−∞

e−iξ1u ψj(u) du+ eiξ2t

ˆ ∞
−∞

e−iξ2u ψj(u) du|

= |ψ̂(2−jξ1) eiξ1t + ψ̂(2−jξ2) eiξ2t| = |ψ̂(2−jξ1) + ψ̂(2−jξ2) ei(ξ2−ξ1)t|,

which means that |(f ∗ ψj)(t)| oscillates at frequency |ξ2 − ξ1|. We see that the
frequencies of W [j]f have been shifted to lower frequencies since |ξ2− ξ1| is lower
than |ξ1| and |ξ2|.
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Let 1 be a function that is equal to one for all t. Notice that the integration of
U [j]f can be written as a convolution with 1, that is

´
U [j]f(t)dt = U [j]f ∗ 1.

More generally, any convolution with 1 gives the one-dimensional integral of that
function. The Fourier transform of 1 is the Dirac delta function δ(ω). This
means that convolving a signal with 1 is the same as filtering the signal with a
low-pass filter. Let φJ be a low-pass filter. Since U [j]f filtered with the low-
pass filter 1 is translation invariant, then U [j]f filtered with a low-pass filter
(f ∗ φJ)(u) =

´
f(t)φJ(u − t)dt will also be translation invariant. The reasoning

behind our shift from 1 to φJ is that the filter 1 is not well suited for numerical
computations. How to choose the low-pass filter φJ will be explained in Section
4.4.

Filtering a signal with a low-pass filter will cause loss of high-frequency infor-
mation. In order to regain those frequencies, the wavelet transform W [j] de-
fined in (3.5) will be applied to U [j]f(t). How to make sure that all frequen-
cies are covered will be explained in Section 4.4. The modulus will also be ap-
plied again, |W [j′]U [j]f | = |U [j]f ∗ ψj′| = U [j′]U [j]f , such that the integration´
U [j′]U [j]f(t)φJ(u−t)dt will be translation invariant. Let us illustrate this trans-

lation invariance by an example.

Example 4.4. Let f(x) = eiξ1t + aeiξ2t, where a < 1, and ξ1 and ξ2 are in the
frequency band covered by ψ̂j. This signal is the same as the one used in Example
4.3 except for the introduction of the scalar a. By using the computation from
Example 4.3 we get

(U [j]f ∗ ψj′)(t) =
ˆ ∞
−∞
|ψ̂(2−jξ1) + a ψ̂(2−jξ2) ei(ξ2−ξ1)u| ψj′(t− u) du.

Now if |ξ2 − ξ1| is in the support of ψj′ , and |ξ2 − ξ1| � 2j, we get that

(U [j]f ∗ ψj′)(t) = a ψ̂(2−jξ2)
ˆ ∞
−∞

ei(ξ2−ξ1)u ψj′(t− u) du

= −a ei(ξ2−ξ1)t ψ̂(2−jξ2) ψ̂j′(ξ2 − ξ1),

which gives that U [j′]U [j]f(t) is equal to the constant |ψ̂(2−jξ2)| |ψ̂j′(ξ2−ξ1)|, and
constants are translation invariant.
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4.4 Scattering transforms

In the previous section we defined the operator U [j]f = |f ∗ ψj|. This opera-
tor is stable to deformations, and the integral

´
U [j]f(t)φJ(u − t)dt =

´
|(f ∗

ψj)(t)|φJ(u − t)dt is translation invariant. For a fixed j, U [j]f will only have
information about frequencies that are covered by the frequency band of the
corresponding wavelet ψj. We need to cover all the frequencies of f or else
we are not able to distinguish f and a signal f− which lacks some of the fre-
quencies of f . Together the elements of the set {U [j]f : j ∈ Z} cover all fre-
quencies, but each element is not translation invariant. The elements of the set
{
´
U [j]f(t)φJ(u− t)dt : j ∈ Z} are translation invariant, but due to the low-pass

filtering, high frequency information is lost.

Now we repeatedly apply U [jk] to U [j]f for some jk ∈ Z. As shown in Example
4.3, each time an U [jk] is applied the frequencies are shifted lower because of the
modulus operator. By applying U [jk] a sufficient number of times, the frequencies
of the original signal f are shifted so low that they are inside the frequency band
of the low-pass filter φJ when φJ is applied to U [jk]U [jk−1] . . . U [j2]U [j1]U [j]f .

In order to cover all frequencies, we need to systematically apply U [j] iteratively
and record with low-pass filter φJ . This procedure is known as the windowed
scattering transform. The notation will be same as the one used by Mallat [13].
First, we define paths and the scattering propagator U [p].

Definition 4.4. A path is an ordered sequence p = (j1, j2, . . . , jm) where jk ∈ Z.
The empty path is denoted p = ∅.

Definition 4.5. A scattering propagator is a path ordered product of operators
defined by

U [p] = U [jm] . . . U [j2]U [j1],

which gives that the scattering propagator applied to f ∈ L2(R) is

U [p]f = | |f ∗ ψj1| ∗ ψj2| · · · | ∗ ψjm|.

Notice that the scattering propagator with the empty set as its path is the identity
U [∅] = Id.

Two paths p = (j1, . . . , jm) and p′ = (j′1, . . . , j′m) can be concatenated by p+p′ =
(j1, . . . , jm, j

′
1, . . . , j

′
m). Note that p + j = (j1, . . . , jm, j). Furthermore, note

that U [p+ p′] = U [p′]U [p], which follows from the definition of U [p].
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Proposition 4.6. Let P∞ be the set of all finite paths. For each finite path
p ∈ P∞, the operator U [p] is well defined on L2(R).

Proof. In Proposition 3.5 it was proved that ‖W [j]f‖2 ≤ ‖f‖2‖ψj‖1, which gives
that ‖U [j]f‖2 ≤ ‖f‖2‖ψj‖1. By iteratively applying this result to ‖U [p]f‖2 we get
that

‖U [p]f‖2 ≤ ‖f‖2‖ψj1‖1‖ψj2‖1 · · · ‖ψjm‖1 = ‖f‖2‖ψj‖
m
1 .

Since ‖ψj‖1 = 1 for all j, ‖U [p]f‖2 is finite as well.

The scattering propagator is a cascade of convolutions and moduli, all of which
are stable to the action of deformation, and the scattering propagator is therefore
also stable to deformations. Next, we define the scattering transform, which is
also invariant to translations.

Definition 4.7. For all p ∈ P∞, the scattering transform S̄ of f ∈ L1(R) is a
function defined on P∞ by the relation

S̄f(p) = 1
µp

ˆ ∞
−∞

U [p]f(t) dt, with µp =
ˆ ∞
−∞

U [p]δ(t) dt,

where µp is a normalization constant.

The path variable p in the scattering transform plays the role of the frequency
variable ω in the Fourier transform (2.1). Convolving a signal with a wavelet ψj
filter the signal according to the frequency band covered by ψ̂j. This indicates that
p is related to frequencies. Next, we define the windowed scattering transform,
which is analogous to the windowed Fourier transform (2.4).

Definition 4.8. Let J ∈ Z, and fix a low-pass filter φJ(t) = 2−Jφ(2−Jt). Let
ΛJ = {j ∈ Z : j < J}, and PJ be the set of all finite paths p = (j1, . . . , jm) with
jk ∈ ΛJ . Then a windowed scattering transform of f ∈ L2(R) is defined for all
p ∈ PJ by

SJ [p]f(t) = (U [p]f ∗ φJ)(t) =
ˆ ∞
−∞

U [p]f(u) φJ(t− u) du.

We see that the path variable p in the windowed scattering transform plays the
role of the frequency variable ω and the low-pass filter φJ plays the role of the
window function g in the windowed Fourier transform (2.4). The parameter J
needs to be chosen such that the maximum translation between two signals we
want to recognize similarity in, is smaller than 2J . In practice, J is chosen such
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that 2J is larger than the size of the frame our signals are defined on. This ensures
that all translations are covered.

The transform S̄[p] can be seen as a convolution with the low-pass filter 1, hence
its translation invariance. However, a convolution with 1 cannot be implemented
numerically. Therefore, SJ [p] has to be implemented instead. Notice that as J goes
to infinity, the limit of the windowed scattering transform SJ [p] is proportional to
the scattering transform S̄(p). We use that φ(t) is continuous at t = 0 and get
that for all t ∈ R

lim
J→∞

2J SJ [p]f(t) = φ(0)
ˆ ∞
−∞

U [p]f(u) du = φ(0) µp S̄f(p).

Computing SJ [p]f(t) will only cover one frequency path, but we need to cover as
many frequencies as possible. Therefore, following the notation of Mallat [13], we
are going to compute the windowed scattering transform of PJ .

Definition 4.9. Let PJ be the set of all finite paths p = (j1, . . . , jm) with jk ∈ ΛJ .
The windowed scattering transform of f ∈ L2(R) is defined for all J ∈ Z by

SJ [PJ ]f = {SJ [p]f}p∈PJ
, (4.1)

which is an infinite family of functions.

The windowed scattering transform will be computed by iteratively applying the
one-step propagator UJ .

Definition 4.10. The one-step propagator is defined for all J ∈ Z by

UJf = {AJf, (U [j]f)j∈Λj
},

where AJf = f ∗ φJ .

The set UJf is an infinite family of functions. The next iteration is computed by
applying UJ to U [j]f for each j ∈ Λj, which results in an extended infinite family
of functions {UJU [j]f}j∈Λj

. Next, notice that

UJU [p]f = {SJ [p]f, (U [p+ j]f)j∈Λj
}
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since AJU [p]f = SJ [p]f and U [j]U [p]f = U [p+j]. Now, let Λm
J be the set of paths

p = (j1, . . . , jm) with length m and with jk ∈ ΛJ , where Λ0
J = ∅. We observe that

UJU [Λm
J ]f = {SJ [Λm

J ]f, U [Λm+1
J ]f},

which gives that SJ [PJ ]f can be iteratively computed from U [∅]f = f since
∪m∈N Λm

J = PJ . SJ [PJ ] is an infinitely long set of functions from L2(R), which
may be written

SJ [PJ ] =



SJ [∅]f
(SJ [j1]f)j1∈ΛJ

(SJ [j1, j2]f)j1,j2∈ΛJ

(SJ [j1, j2, j3]f)j1,j2,j3∈ΛJ

...


=



f ∗ φ2J

(|f ∗ ψj1 | ∗ φ2J )j1∈ΛJ

(||f ∗ ψj1| ∗ ψj2| ∗ φ2J )j1,j2∈ΛJ

(|||f ∗ ψj1| ∗ ψj2| ∗ ψj3| ∗ φ2J )j1,j2,j3∈ΛJ

...


.

U [j1, j2, j3]f

U [j1, j2]f

U [j1]f

U [∅]f = f

SJ [j1, j2]f

SJ [j1]f

SJ [∅]f

Figure 4.6: An illustration of how the one-step propagator UJ is used to compute
SJ [PJ ]. The first two rows correspond to the zeroth layer, the next two rows
correspond to the first layer and so on. For all layers subsequent to the first, only
a few of the infinitely many nodes in the corresponding layer can be drawn. All
jk are indices from the infinite set ΛJ .

Each "row" in the system will be called a layer, where the topmost layer is denoted
the 0th layer. The m’th layer will be all SJ [p] with paths p of length m. All layers
except the first will be infinitely long, and each layer m+ 1 will be an extension of
layer m for all m ∈ N. An illustration of the three first layers, that is path length
m = 2, can be found in Figure 4.6. In order to compute a new layer, UJ will be
applied to all U [p]f from the previous layer. For all paths p in previous layer, this
outputs a SJ [p] , and computes a U [p + jk]f for each jk ∈ ΛJ . Those U [p + jk]f
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may further be used to compute the next layer. How to compute the windowed
scattering transform numerically will be explained in Section 4.5.

Mallat proves [13] that the windowed scattering transform (4.1) is translation
invariant and stable to deformations. The range of the windowed scattering trans-
form is the product space generated by taking the Cartesian product, defined in
A.1, of several L2(R)-spaces. This product space is a Hilbert space, see A.4 for
more details. Then we see that the norm of the windowed scattering transform
(4.1) can be defined as follows.

Definition 4.11. For any set of finite paths Ω, the norm of SJ(Ω) is given by

‖SJ [Ω]f‖2 =
∑
p∈Ω
‖SJ [p]f‖2.

The following theorem gives stability of the windowed scattering transform (4.1).

Theorem 4.12. Let φ be a low-pass filter. A wavelet ψ is said to be admissible
if there exists η ∈ R and a function ρ such that ρ ≥ 0, with |ρ̂(ω)| ≤ |φ̂(2ω)| and
ρ̂(0) = 1, such that the function

Ψ̂(ω) = |ρ̂(ω − η)|2 −
∞∑
k=1

k
(
1− |ρ̂(2−k(ω − η))|2

)

satisfies

α = inf
1≤|ω|≤2

∞∑
j=−∞

Ψ̂(2−jω)|ρ̂(2−jω)|2 > 0.

If the wavelet is admissible then for all f ∈ L2(R)

lim
m→∞

‖U [Λm
J ]f‖2 = lim

m→∞

∞∑
n=m
‖SJ [Λn

J ]f‖2 = 0

and
‖SJ [PJ ]f‖ = ‖f‖.

Proof. See Reference [13].
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4.5 Numerical approximation

The windowed scattering transform (4.1) of a signal f outputs an infinitely long
vector of functions from L2(R). In order to compute the transform (4.1) numer-
ically, no part of the transform can be infinite. Several approximations will be
made in order to achieve this. First, all functions need to be discrete rather than
continuous. If we restrict the transform (4.1) to a finite number of layers, with a
finite number of functions in each layer, the transform will be a finite vector of
discrete signals, in other words a vector of vectors.

Now we need to determine how many layers we need, and which signals to keep
in each layer. We see that increasing the number of layers increases the computa-
tional cost exponentially, and it is thus beneficial to have as few layers as possible.
According to Reference [15], having more than three layers yields marginal im-
provements in applications. Therefore, we will typically use path length m = 2,
which is three layers. All jk belong to the set ΛJ = {j ∈ Z : j < J}, but this
set is infinite. Then, following Reference [15] we let all jk belong to the finite
set Λ̄J = {0, 1, . . . , J − 1} instead of ΛJ . J is the number of scalings that are
considered. With these approximations, the windowed scattering transform (4.1)
will be a finite vector of discrete signals.

For m layers, the number of signals in the approximated widowed scattering trans-
form is

1 + J + J2 + . . . + Jm =
m∑
n=0

Jn = Jm+1 − 1
J − 1 .

The number of signals can be lowered even further by considering frequency-
decreasing paths. Let Ω be a path set and a subset of PJ . If we choose the
paths in Ω to be those where ‖SJ [p]f‖ contributes significantly to the total energy
‖SJ [PJ ]f‖, then ‖SJ [Ω]f‖ is an approximation of ‖SJ [PJ ]f‖. Every modulus
operation in U [p] shifts the frequencies of f to lower levels, which implies that
the energy will be propagated towards lower frequencies. In other words, we only
need to consider those paths p where the frequencies are decreasing.

Definition 4.13. A frequency-decreasing path, is a path p = (j1, . . . , jm) of length
m, such that |jk+1| ≥ |jk| for all k.
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When considering frequency decreasing paths the number og signals in the ap-
proximated widowed scattering transform is

1 + J + J(J + 1)
2 + J(J + 1)(J + 2)

6 + . . . + Πm−1
i=0 (J + i)

m! =
m∑
n=0

(J + n− 1)!
n!(J − 1)!

= (J +m)!
J !m! ∼ (2πm)−1/2

(
eJ

m

)m
,

where the last approximation follows from the assumption that J � m and Stir-
ling’s formula n! ∼

√
2πn(n/e)n defined in A.9.

4.6 Two dimensions

By replacing how paths are defined, all the notation that was defined for one-
dimensional scattering will be the same for two-dimensional scattering. First we
introduce the set

ΓJ =
{

2jrθ ∈ 2Z × SO(2) : j < J, θ ∈ {0, 2π/K, 4π/K, . . . , (K − 1)2π/K}
}
.

In two dimensions a path is an ordered sequence p = (λ1, λ2, . . . , λm) where
λk ∈ ΓJ . Which results in the following scattering propagator

U [p]f = U [λm] . . . U [λ2]U [λ1]f

= | |f ∗ ψλ1 | ∗ ψλ2| · · · | ∗ ψλm |.

where U [λk]f = |W [λk]f |.

Definition 4.14. Let PJ be the set of all finite paths p = (λ1, λ2, . . . , λm) with
λk ∈ ΓJ . The windowed scattering transform of f ∈ L2(R2) is defined for all J ∈ Z
by

SJ [PJ ]f = {SJ [p]f}p∈PJ
= {U [p]f ∗ φJ}p∈PJ

. (4.2)

The difference between scattering in one and two dimensions is that the paths are
defined in order to account for the rotation in the two-dimensional Littlewood-
Paley transform (3.10).

When discretizing scattering in two dimensions, λk belong to the set

Γ̄J =
{

2jrθ ∈ 2Z × SO(2) : 0 ≤ j < J, θ ∈ {0, 2π/K, 4π/K, . . . , (K − 1)2π/K}
}
.
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The difference between ΓJ and Γ̄J is that J is only bounded from below for Γ̄J .
As for one dimensions, J is the number of scalings, while K is the number of
rotations. For m layers, the number of signals in the approximated windowed
scattering transform is

1 + (J ·K) + (J ·K)2 + . . . + (J ·K)m =
m∑
n=0

(J ·K)n = (J ·K)m+1 − 1
(J ·K)− 1 .

When considering frequency decreasing paths, the number is reduced to

1 + JK + J(J + 1)K2

2 + J(J + 1)(J + 2)K3

6 + . . . + Km Πm−1
i=0 (J + i)
m!

=
m∑
n=0

(J + n− 1)!Kn

n!(J − 1)! ∼ 1√
2π

m∑
n=0

1√
n

(
eK(J − 1)

n

)n
,

where again the last approximation follows from the assumption that J � m and
Stirling’s formula n! ∼

√
2πn(n/e)n defined in A.9.
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Numerical examples

In this chapter, we will compute the windowed scattering transform (4.1) numer-
ically, and three different examples will be given to showcase the transform. The
first two examples are one-dimensional, and will be presented in Section 5.1. The
third example is two-dimensional, and will be presented in Section 5.2. In the first
example, we will compute and plot the windowed scattering transform one step at
a time. In the second and third examples, results showing translation invariance
and stability to deformation are presented. Throughout the chapter we will use
the rule of frequency decreasing paths 4.13 and path length m = 2. The scale 2J

is chosen to best fit each example.

5.1 One dimension

We will compute the windowed scattering transform (4.1) of f , g and h, which
are shown in Figure 5.2. For this first example all the signals are contained in
the time frame [−2, 3]. Therefore we will use J = 3 such that 2J = 8 which is
larger than the size of the time frame. This implies that paths will be on the form
p = (j1, j2), where j1 and j2 will take values from the set Λ̄3 = {0, 1, 2}. This
results in the path set

Ω̄ = {∅, 1, 2, 3, (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)},

which contains ten elements. The structure of S3[Ω̄] applied to a signal f can be
seen in Figure 5.1. In the last layer, only the outputs are computed. It is not
necessary to compute the next layer of scattering propagators, because those will
not be used.
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U [1]f U [2]f

f

U [0]f

U [0, 0]f U [0, 2]f U [1, 2]f U [2, 2]fU [0, 1] U [1, 1]f

S3[0, 0]f S3[0, 2]f S3[2, 2]fS3[0, 1]f S3[1, 2]fS3[1, 1]f

S3[0]f S3[1]f S3[2]f

S3[∅]f

Figure 5.1: The structure of the windowed scattering transform for m = 2 and
J = 3. The output of the transform is the ten black nodes. In the second layer,
some paths have been removed due to the rule of frequency decreasing paths.

First we compute one of the outputs from S3[Ω̄]. The operator SJ [p] = S3[0] will
be applied to the three signals f , g and h. The signals are shown in Figure 5.2 and
the Fourier transforms of those signals are shown in Figure 5.3. The computation
of SJ [p] = S3[(0)] applied to the signals will be broken down into steps. Each step
will be plotted and explained. Note that in this chapter, whenever the Fourier
transform of a signal is plotted, the absolute value of that Fourier transform will
be plotted instead. As the absolute value of the Fourier transforms are always
symmetric, only the positive frequency axis will be displayed.

The first step is to take the wavelet transform W [j] = W [0] of the signals. The
wavelet that will be used is the Morlet wavelet given by

ψj(t) = 2−j ψ(2−j t) with ψ(t) = cos(2πt) exp
(
−t2/2

)
.

The Morlet wavelet for j = 0 is shown in Figure 5.4 and its Fourier transform is
shown in Figure 5.5. The wavelet transforms of f , g and h can be seen in Figure
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Figure 5.2: Signals f and g are similar
in L2-norm, signals f and h are similar
in shape.
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Figure 5.3: Fourier transforms of sig-
nals f , g and h.
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Figure 5.4: Morlet wavelet ψj(t) for
j = 0.
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Figure 5.5: Fourier transform of the
Morlet wavelet ψj(t), with j = 0.

5.6 and their respective Fourier transforms can be seen in Figure 5.7. Notice that
applying the wavelet transform has filtered the frequencies of the signals according
to the frequency spectrum of the wavelet.

Next we take the absolute value of W [0]f , W [0]g and W [0]h. That is U [0]f =
|W [0]f |, U [0]g = |W [0]g|, and U [0]h = |W [0]h| which are shown in Figure 5.8.
Their respective Fourier Transforms are shown in Figure 5.9. As expected, the
frequencies of W [0]f , W [0]g and W [0]h have been shifted to lower frequencies
after applying the modulus.

Finally, the last step is to apply a low-pass filter φJ . We will use the Gaussian
distribution as a low pass filter, that is

φJ(t) = 2−J φ(2−J t) with φ(t) = 1√
2π

exp
(
−t2/2

)
.

The low pass filter φJ is plotted for J = 3 in Figure 5.10, and its Fourier transform
is plotted in Figure 5.11. Lastly, U [0]f , U [0]g and U [0]h are filtered by φ3, resulting
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Figure 5.6: Wavelet transform W [0] of
signals f , g and h.
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Figure 5.7: Fourier transforms of
W [0]f , W [0]g and W [0]h.
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Figure 5.8: Operator U [0] applied to
signals f , g and h.
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Figure 5.9: Fourier transforms of
U [0]f , U [0]g and U [0]h.
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Figure 5.10: Low-pass filter φJ(t) for
J = 3.
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Figure 5.11: Fourier transform of the
low-pass filter φJ(t), with J = 3.
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Figure 5.12: Operator S3[0] applied to
signals f , g and h.
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Figure 5.13: Fourier transforms of
S3[0]f , S3[0]g and S3[0]h.

in S3[0]f , S3[0]g and S3[0]h which are shown in Figure 5.12. Their respective
Fourier transforms are shown in Figure 5.13. As expected, the low-pass filter has
removed the high frequencies.

We started with three signals f , g and h, where f and g are close to each other
in L2-norm, while f and h are close to each other in shape. A simple calculation
gives that ‖f − g‖2 = 5.23 < ‖f − h‖2 = 13.89. Another calculation gives that
‖S3[0]f − S3[0]h‖2 = 0.22 < ‖S3[0]f − S3[0]g‖2 = 0.62. For these computations
the scale was 2J = 23 and the time step was 0.1. The path p = (0) does cap-
ture the similarity in shape, but this path is only one path in the path set Ω̄.
When considereing all the paths in Ω̄, see Figure 5.14, we get the desired result∥∥∥S3[Ω̄]f − S3[Ω̄]h

∥∥∥
2

= 1.94 <
∥∥∥S3[Ω̄]f − S3[Ω̄]g

∥∥∥
2

= 2.06. We are also able to
recognize similarity in shape when the rule of frequency decreasing paths is not
applied. All of these results are summarized in Table 5.1.

Table 5.1: Difference between signals for different norms.

Functions L2-norm Scattering - frequency decreasing Scattering - full
d(f, g) 5.23 2.06 2.52
d(f, h) 13.89 1.94 2.47
d(h, g) 14.64 3.42 4.22

For the next example we once more consider m-shaped and disk-shaped signals, but
several different translations and deformations will be examined. All the signals
can be seen in Figure 5.15. The deformations are as follows: for the first two rows
ε = 0, for the two next rows ε = 0.1 and for the last two rows ε = 0.15. All m-
shaped signals have been given a number from one to eight, and each disk-shaped
signal have been given a number from nine to sixteen. We see that the signals are
defined on a time frame of approximate length 25. Therefore we choose the scale
2J = 25. Then we compute ‖S5[Ω]fi − S5[Ω]fj‖2 for i, j ∈ {1, 2, . . . , 16}, where
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Ω is the path set that corresponds to J = 5 and m = 2. The results can be seen in
Figure 5.16. The square on the intersection of row i and column j shows the value
of ‖S5[Ω]fi − S5[Ω]fj‖2. As expected the difference ‖S5[Ω]fi − S5[Ω]fj‖2 is small
when comparing m-shaped signals with other m-shaped signals, as seen in the
upper left quadrant. The difference is also small when comparing a disk-shaped
signal with other disk-shaped signals, as seen in the lower right quadrant. The
two remaining quadrants, in which m-shaped signals are compared to disk-shaped
signals, give larger differences.

5.2 Two dimensions

For the last example we consider two-dimensional signals, and again we look at
several translations and deformations. All the signals can be seen in Figure 5.17.
The amount of deformation is as follows: for the first two rows ε = 0 and for the
two next rows ε = 0.1. All box-shaped signals have been given a number from
one to six, and each circle-shaped signal have been given a number from seven to
twelve. We see that the space frame is of size 24×24, and we thus choose the scale
2J = 24. Then we compute ‖S4[Ω]fi − S4[Ω]fj‖2 for i, j ∈ {1, 2, . . . , 12}, where
Ω is the path set that corresponds to J = 4 and m = 2. The results can be seen
in Figure 5.18. The square on the intersection of row i and column j shows the
value of ‖S4[Ω]fi − S4[Ω]fj‖2. As expected, the difference ‖S4[Ω]fi − S4[Ω]fj‖2 is
small when comparing box-shaped signals with other box-shaped signals, as seen
in the upper left quadrant. The difference is also small when comparing a circle-
shaped signal with other circle-shaped signals, as seen in the lower right quadrant.
The two remaining quadrants, in which box-shaped signals are compared to circle-
shaped signals, give larger differences.

This example does not include rotations as rotations, and thus the number of
considered rotations K was equal to zero. Rotations have been excluded from this
example since rotations will not be considered in Chapter 6, when the windowed
scattering transform (4.2) is applied on handwritten letters.
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Figure 5.14: The windowed scattering transform S3[Ω̄] applied to signals f , g and
h. For all paths p ∈ Ω̄, S3[p]f are plotted with blue lines, S3[p]g are plotted with
red lines and S3[p]h are plotted with green lines.
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Figure 5.15: Several translated and deformed one-dimensional signals.

Figure 5.16: Norm of difference between several translated and deformed
one-dimensional signals after applying the windowed scattering transform.
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Figure 5.17: Several translated and deformed two-dimensional signals.

Figure 5.18: Norm of difference between several translated and deformed
two-dimensional signals after applying the windowed scattering transform.
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Chapter 6

Image recognition

In this chapter, image recognition will be performed on handwritten letters us-
ing the windowed scattering transform (4.2). The k-nearest-neighbours algorithm,
hereby denoted KNN, will be used to classify the results. The handwritten let-
ters come from a dataset of handwritten words collected by Rob Kassel at MIT
Spoken Language Systems Group [9]. All the letters were extracted from the hand-
written words, disregarding the structure imposed by the words. Capital letters
were ignored, as including them would have made the problem more complicated.
Therefore, the dataset consist of all letters in English alphabet, that is letters a-z.
This results in a dataset consisting of 52152 letters from 26 classes. The number of
images of each letter in the dataset is not equal. Some letters have more samples
than other letters. Each letter is represented by a binary image of size 16x8 pixels,
see Figure 6.1 for examples. The KNN algorithm will be explained in Section 6.1.
Section 6.2 shows the results of the image recognition procedure and Section 6.3
discusses those results.

2 4 6 8

5

10

15

(a)
2 4 6 8

5

10

15

(b)
2 4 6 8

5

10

15

(c)

Figure 6.1: Three a-letters from the dataset of handwritten letters [9]. Notice that
the a-letter in image (c) has a different font.
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6.1 k-nearest neighbors algorithm

Image recognition is a classification problem, where the goal is to determine which
object the images are depicting, or in other words which class the images belong
to. Two standard approaches when performing classification are supervised learn-
ing and unsupervised learning. A supervised learning algorithm is defined as an
algorithm that makes a model based on data where the class of the data is known,
called training data, like the handwritten dataset presented earlier. The model
can then be used to predict the classes of unknown data. For the model to be suc-
cessful, all the training data from each class has to be sufficiently representative of
the variance within its class. An unsupervised learning algorithm uses data with
unknown classes. The unsupervised algorithm classifies the unknown data, and a
model is made based on those classifications. An unsupervised learning algorithm
essentially aims to partition data into meaningful classes. Since it is known which
letter each image in the database of handwritten letters correspond to, we will use
supervised learning.

The k-nearest neighbors algorithm is a supervised classification algorithm. For
k = 1 the class of an unknown datapoint will be equal to the class of the nearest
datapoint in the model. For k larger than one, the class of an unknown data-
point will be equal to whichever class has the majority among its k neighbors.
In the case of a tie, either in majority or distance, there exists several possible
tiebreakers. There are also several possible metrics that can be used to compute
the distances. In this thesis, we will use Euclidean distance as the metric, and
the closest-neighbor-rule will break ties. The closest-neighbor-rule states that the
class will be equal to the class of the closest neighbor among the tied neighbors.
In the rare case that the distances to different classes are perfectly equal, the class
will be chosen randomly from the tied neighbors. The KNN-algorithm was chosen
for thesis because it is simple and easy to interpret.

Choosing k too small will lead to overfitting, that is a small perturbation in a
new datapoint might lead to a different classification. Choosing k too large will
lead to underfitting and the model’s rules for classifying new datapoints might
become too simple. Ideally, we want some middle ground k. The simplest way to
determine the best k is through trial and error.
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6.2 Results

The first step of the image recognition procedure is to compute the widowed
scattering transform (4.2) of all images. This new dataset will be called the dataset
of scattering coefficients. The next step is then to split the dataset of scattering
coefficients into a training set and a test set. According to the Pareto principle
[10], 80% of the variance in a dataset comes from 20% of the samples. Therefore
20% of the images of each letter will be used as the test set. These images are
chosen randomly. Then finally, after using the KNN algorithm, the error rate
can be computed. The error rate is defined as the number of misclassified images
in the test set divided by the number of test images. A flowchart of the image
recognition procedure can be seen in Figure 6.2.

Figure 6.2: Flow chart of the image recognition procedure.
Blue boxes indicates parameters that have to be chosen.

Notice that, the parameters J and m in the windowed scattering transform have
to be chosen, as well as the number of considered neighbors k in the KNN algo-
rithm. Rotation will not be considered as none of the letters in the dataset are
rotated. Another benefit when not considering rotations is that computational
cost is reduced. In this chapter, the error rate showed in different figures need not
coincide for similar parameters. This is because the partitioning of the dataset
into test and training sets is determined randomly.
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Figure 6.3 shows the error rate for different values of J and k. For all these error
rates m = 2. The same test and training set was used for all values of k and J .
We observe that k = 7 and J = 2 gives the lowest error rate.
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Figure 6.3: Error rates of the image recognition procedure as a function of k for
several values of J . The right subfigure is the same has the left subfigure, except
that some lines have been removed and even values of k have been excluded.

Figure 6.4 shows the error rate for different values of m and k. For all these error
rates J = 2. The same test and training set was used for all values ofm and J . We
observe that k = 7 and m = 2 gives the lowest error rate. For all the remaining
results we chose m = 2, J = 2 and k = 7, since those values gave the lowest error
rate.
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Figure 6.4: Error rates of the image recognition procedure as a function of k for
several values of m. The right subfigure is the same has the left subfigure, except
that some lines have been removed and even values of k have been excluded.

Figure 6.5 shows the error rates of the procedure as a function of the size of the
training set. Figure 6.5 also shows the error rate of the KNN algorithm applied
directly on the dataset of images without using the windowed scattering transform
(4.2). For each size of training set data, the training set is a subset of all larger
training sets. The same test set was used for all the different training set sizes.
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Figure 6.5: Error rates of the image recognition procedure as a function of the
number of images in the training set. The blue line is KNN applied on the scat-
tering coefficients. The red line is KNN applied directly on the images.

Figure 6.6 shows a confusion matrix. The procedure was performed on all the
letters, but for the sake of printing, only the parts of interest from the confusion
matrix has been included. The summarized confusion matrix consists of those
letters that were difficult to classify correctly. The columns and the rows of the
matrix are numbered by letters. The square on the intersection of column x and
row y contains two numbers. The upper number shows how many times x has been
classified as y, and the lower numbers shows the percentage of such classifications
among the total number of test images. The diagonal (green) show the number
of correct classifications for each letter. The bottommost row (blue) shows the
percentages of correct and incorrect classifications for each letter. The rightmost
column (blue) show how many percents of the classifications for one letter that
was correct. For example, out of all the a-letter classifications that were made,
the top right square shows how many percent of those classifications were correct.
In the bottom right corner (yellow) the total error rate is shown.
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Figure 6.6: Confusion matrix displaying the number of correct and incorrect clas-
sifications for some letters.

6.3 Discussion

In this section, we will first discuss how the different parameters affected the error
rates. Then the largest contributors to the error rates are discussed. Finally, the
error rates achieved in this thesis is compared with results from other research.

From Figure 6.4 we see that choosing m = 2 layers gives the lowest error rate.
Choosing m = 2 yields a small improvement over choosing m = 1, but at the
cost of substantially increasing the runtime of the procedure. The expectation
was that larger m would give lower error rates. It was not expected that m = 1
and m = 2 would be so close. It is also surprising that choosing m = 3 gives such
high error rates. For increasing m, the number of scattering coefficients increases
exponentially, this could result in a weaker KNN-model as the dimension grows
to large. It would be interesting to investigate why m = 3 did not yield a better
error rate.

From both Figure 6.3 and 6.4 we see that odd k are better than even k. When k is
even, the tie break rules is employed more often, which results in poorer accuracy.
Testing has shown that k = 7 was often the best choice, but choosing k = 3,
k = 5 or k = 7 gives similar error rates subject to variations in the partitioning
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of the test and training set. There are other options for KNN besides choosing
k. Several metrics can be chosen, and some of them might yield better results,
but only Euclidean distance have been used in this thesis. When the number of
samples available to each class varies, it is possible to apply a weighting in the
KNN model. This was briefly attempted, but did not improve the error rates.

The scale J could be chosen according to the image size of 16x8 pixels, but as seen
in Figure 6.3, choosing scale J = 2 unexpectedly gave the lowest error rate. Scale
J = 2 gives translation invariance within a frame of size 2J = 4 pixels. We learn
that most of the variation within one class can be captured in a frame of size 4x4
pixels. The increased translation invariance when J > 2 makes it more difficult to
distinguish the classes. Choosing J = 1 gives translation invariance within a frame
of 2x2 pixels, but this small frame is too small to capture the variance within one
class of letters and gives a poorer error rate than choosing J = 2.

A significant portion of the errors come from letters that are similar, like g and
y, and especially i and l. Similar letters will always pose a problem. A possible
solution could be to increase the number of training samples for the letters that
are similar. This solution is not guaranteed to improve the error rates, and for
this database, all the letters have been employed already. From the confusion
matrix, Figure 6.6, we see that i-letters was classified as l-letters 116 times, and
l-letters was classified as i-letters 134 times. To better identify these two letters,
it is possible to investigate if another value of J or m could better distinguish
these two letters. However, switching parameters would lead to overall poorer
error rates.

A possible solution to similar letters is to apply the windowed scattering transform
more than once. First, for a set of parameters the scattering coefficients are
computed for all samples. Then, whenever a letter is classified as an i or an l,
apply the windowed scattering transform with a different set of parameters. These
parameters would be fine-tuned to distinguish i and l. Applying the windowed
scattering transform once more should be beneficial when two letters are easily
confused with each other, but this solution does not work if a letter is easily
confused with several other letters. Instead of applying the windowed scattering
transform more than once, another option is to use other algorithms. For example,
to better distinguish i and l one could check the connectivity of letters. l-letters
are connected, while i-letters are not.

Some letters like f , h, j, k, q, v, w and x are represented only by a few images
in the dataset. From the confusion matrix, Figure 6.6, we see that these letters
that have few samples have poor error rates. However, a dataset that contains

48



Chapter 6. Image recognition

equally many images from each class will not necessarily give better error rates.
The dataset needs to have a large amount of images for each letter. This can be
seen in Figure 6.5, which shows that having few training samples results in poor
error rates.

For some letters in the dataset there are multiple fonts, which makes it more
difficult to get accurate classifications. For example, there are two kinds of a-
letters in the set, a and a, see Figure 6.1 for examples. However, from the confusion
matrix 6.6 we see that the class of a-letters have an error rate of 9.2% which is
below the total error rate of 10.2%. Therefore these different kinds of fonts do
not have a huge impact on the error rate. This discovery was a bit surprising as
it was expected that the different fonts would lead to poorer error rates. For few
samples, if both fonts are not represented in the test and training set, the different
fonts could increase the error rate, but the chance for this to happen is negligible

Classification on handwritten letters is closely related to classification of hand-
written digits, and in order to compare with similar procedures, we compare error
rates with results from classification of handwritten digits. The aim was to do
something new by doing classification on handwritten letters, but in retrospect,
it would have been better to do classification on handwritten digits. Then the
comparisons of error rates would be more meaningful.

In previous research [4], the windowed scattering transform was applied on the
MNIST database of handwritten digits [11]. Two different classification algorithms
were used, support vector machines and principal component analysis. When a
support vector machine was used for classification, an error rate of 0.70% was
achieved, whereas the principal component analysis classification achieved an er-
ror rate of 0.72%. Reference [11] lists the error rates of several artificial neural
networks, many of which acquired error rates below 1% on the MNIST dataset.

In Reference [2] an error rate of 1.6% was achieved on the MNIST dataset using
KNN and some preprocessing of the images. In Figure 6.5 we see that applying
KNN directly on the images yields an error rate of 20.6%. The error rate of 10.2%
achieved in this thesis is better than the error rate when only KNN is applied to
the images, but it is not better than KNN with preprocessing or the windowed
scattering transform with another classifier. In this thesis, KNN was used in
its simplest form. The author expects that a more sophisticated classification
algorithm or a more advanced variant of KNN would yield better results. It would
be interesting to investigate how the error rate is affected by choice of classification
algorithm, but it is not in the scope of this thesis.
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The error rate of 10.2% in this thesis was achieved using the simple classifier
KNN, and was run on a home computer, which is not comparable to results from
more advanced research. Other research [2, 4, 11] have achieved error rates that
are vastly better than the one produced in this thesis. It is harder to classify
letters than to classify digits because there are more classes, that is 26 compared
to 10 classes. The images in the MNIST dataset are relatively evenly distributed
with respect to the classes, as opposed to in the database of handwritten letters
[9], in which some classes contain significantly more samples. Combined with
the fact that the MNIST database has more images, poorer error rates are to be
expected on the database of handwritten letters [9]. However, fewer samples and
the additional classes only account for some of the difference in error rates. The
windowed scattering transform may be thought of as a pre-conditioning that we
can apply a classification algorithm on. Refinement and additional steps, both
in preprocessing and classification that is seen in other research, are necessary in
order to produce the best error rates. By refining and adding additional steps
to the straightforward approach in this thesis, comparable error rates should be
attainable.
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Conclusion and future work

In this thesis, the windowed scattering transform and its underlying theory were
defined in detail. Examples of the capabilities of the transform were given. The
transform was used to perform image recognition on handwritten letters, and the
k-nearest neighbors algorithm was used for classification. An error rate of 10.2%
was achieved. The error rate is high compared to other research, where error rates
below 1% were obtained on a dataset of handwritten digits using the windowed
scattering transform [4] and using artificial neural networks [11]. It was discovered
that the scale 2J should not be chosen based on the size of the images. The scale
should rather be chosen according to the size of the variation within each class
of letters. Furthermore, the number of images in the training set substantially
impacts the error rates. Therefore, as many training samples as possible should
be used in order to improve error rates. There were two main challenges which were
the cause of the high error rates. There were more inaccurate classifications on
classes with few samples. Also, it was challenging to distinguish letters like i and l,
which are very similar. To better distinguish similar letters, an interesting solution
could be to combine the windowed scattering transforms with other techniques.

For future work, it would be interesting to improve the error rates by combining
the windowed scattering transform with other techniques. It would also be inter-
esting to investigate other classification algorithms besides the k-nearest neighbors
algorithm. With the aim of finding the classification algorithms best suited to be
used in combination with the windowed scattering transform. Another option is
to investigate the k-nearest neighbors algorithm further, in order to see if another
metric would yield improved error rates. Results showed that m = 3 gave poorer
error rates than m = 2, which is unexpected and should be studied further.
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Appendix A

Results from mathematical
analysis

Definition A.1. [6] The Cartesian product of two sets A and B, is the set of ordered
pairs (a, b) of elements a ∈ A and b ∈ B, such that A×B = {(a, b) : a ∈ A, b ∈ B}.

Theorem A.2. [16] (Fubini’s Theorem). Let (X,BX , µX) and (Y,BY , µY ) be complete
σ-finite measure spaces, and let f : X × Y → C be absolutely integrable with respect to
the closure of BX ×BY . Then

1. For µX-almost every x ∈ X, the function y → f(x, y) is absolutely integrable with
respect to µY , and in particular

´
Y f(x, y)dµY (y) exists. Furthermore, the (µX-

almost everywhere defined) map x→
´
Y f(x, y)dµY (y) is absolutely integrable with

respect to µX .

2. For µY -almost every y ∈ Y , the function x→ f(x, y) is absolutely integrable with
respect to µX , and in particular

´
X f(x, y)dµX(x) exists. Furthermore, the (µY -

almost everywhere defined) map y →
´
X f(x, y)dµX(x) is absolutely integrable

with respect to µY .

3. We have
ˆ
X×Y

f(x, y)BX ×BY (x, y) =
ˆ
X

(ˆ
Y
f(x, y) dµY (y)

)
dµX(x)

=
ˆ
Y

(ˆ
X
f(x, y) dµX(x)

)
dµY (y).

Definition A.3. [5] A Hilbert space is a vector space H over R or C together with an
inner product 〈 · , · 〉H such that relative to the metric d(x, y) = ||x− y|| induced by the
norm, H is a complete metric space.
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Proposition A.4. [5] Let H1,H2, . . . be Hilbert spaces, let

H = {(hn)∞n=1 : hn ∈ Hn ∀n and
∞∑
n=1
||hn||2 <∞}.

For h = (hn) and g = (gn) in H, define

〈h, g〉H =
∞∑
n=1
〈hn, gn〉Hn .

Then 〈 · , · 〉 is an inner product on H and the norm relative to this inner product is
||h|| = (

∑∞
n=1 ||hn||2 )1/2. With this inner product H is a Hilbert space.

Theorem A.5. [3] (Minkowski’s inequality). If x and y are elements of an inner
product space, then ||x+ y|| ≤ ||x||+ ||y||.

Theorem A.6. [3] (Hölder’s inequality). Let (X,µ) be a positive measure space. Sup-
pose 1 ≤ p < ∞ and let 1/p + 1/q = 1. If f ∈ Lp(µ) and g ∈ Lq(µ), then fg ∈ L1(µ)
and ‖fg‖1 ≤ ‖f‖p‖g‖q.

Theorem A.7. [8] (Taylor’s Theorem). If f and its first n derivatives f ′, f ′′, . . . , f (n)

are continuous on the closed interval [a, x], and f (n) is differentiable on the open interval
(a, x), then there exist a number c between a and x such that

f(x) =f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + . . .

+ f (n)(a)
n! (x− a)n + f (n+1)(c)

(n+ 1)! (x− a)n+1.

Remark A.8 . A function f can be approximated to order m < n using Taylor’s
Theorem A.7. We get the approximation

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + . . . + f (m)(a)

m! (x− a)m.

The approximation is valid for x sufficiently close to a, because then the discarded terms
are small compared to the approximation, that is

f (m+1)(a)
(m+ 1)! (x− a)m+1 + . . . + f (n+1)(c)

(n+ 1)! (x− a)n+1 � f(a) + . . . + f (m)(a)
m! (x− a)m.

In order to get the best approximation, the orderm should be chosen as large as possible.
However, often the aim is to simplify as much as possible and m is chosen small, even
though smaller m’s gives poorer approximations.

Definition A.9. [1] Stirling’s approximation. Let θ be a number such that 0 < θ < 1.
Then for all x > 0 we have that x! =

√
2π xx+ 1

2 e−x (1 + o(1)).
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