
Research on Development and Evaluation
of WebRTC Signaling based on XMPP

Chun Fan

Master of Telematics - Communication Networks and Networked Services

Supervisor: Min Xie, IIK

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

Research on Development and Evalu-
ation of WebRTC Signaling based on
XMPP

Chun Fan

Submission date: June 2017
Responsible professor: Min Xie, ITEM
Supervisor: Min Xie, ITEM

Norwegian University of Science and Technology
Department of Telematics

Abstract

Web is becoming more and more popular. Web Real-time Communication
(WebRTC), as one of the new technologies based on Web, makes real-time
communication easy to be used through the Web. However, WebRTC is not
a standardization responsible for specifying protocols. Therefore, there are
many solutions proposed in WebRTC signaling. JavaScript Object Notation
(JSON) and EXtensible Markup Language (XML) via XMLHttpRequest (XHR),
both of them support de�ning objects and transferring data, and thus can be
used in solutions of implementing signaling. HTTP Comet and WebSocket,
that enable pushing data from server to client, can be good solutions for
implementing signaling. Mature protocols such Session Initiation Protocol
(SIP) and Extensible Messaging and Presence Protocol (XMPP) are also good
solutions. Moreover, combination of XMPP, SIP, Jingle or constructing own
protocol carrying Session Description Protocol-like (SDP -like) information
can also work for signaling.

XMPP as a mature protocol, which is open standard for messaging and
presence, is one of those proposed signaling solutions for WebRTC. As XMPP
has features of openness, standardization, provenness, decentralized, security,
�exibility and diversity, it is chosen as solution for WebRTC signaling to be
studied.

In order to verify whether XMPP is a valid solution for WebRTC signaling,
this project develops WebRTC application with two solutions for WebRTC
signaling. The �rst one is a straightforward way of using XMPP whereas the
second one introduces modi�cations targeting to improve the performance.

The project �rst designed and implemented one model that WebRTC sup-
ported browser connects to XMPP server directly which is the straightforward
way to achieve. Since XMPP is a heavy text based protocol which may lead to
too much tra�c through the Internet, this project designed and implemented
another model that building a middleware server on the same sever as XMPP
server. So WebRTC browser communicates with the middleware sever with
core information and the middleware server communicates with XMPP server
with XMPP supported message, and thus the majority of tra�c are moved
from Internet to local. It is then expected that the latter model may improve
performance of delay for WebRTC signaling.

In addition, to analyze two models, the validation methods have also been
implemented. These methods includes setting timestamps according to dif-
ferent steps in signaling process, capturing and computing data �ow size

according to messages sent and received during signaling process, and also
recording number of candidates which a�ect the performance of signaling
process.

Besides, many technologies have been studied and applied during imple-
mentations, as well as many challenges.

Analysis was then conducted after implementation. It is demonstrated that
XMPP as WebRTC signaling method can be a valid solution, since call can
be set up successfully between users. In addition, methods of measurement
including recoding timestamp, data �ow size and number of candidates also
work �ne, since all data which is needed are recored. It also �nds out in
quantity that building a middleware server together with XMPP server can
move most data from Internet to local. However, building a middleware server
can not guarantee less delay. But the delay is more stable in the model with
middlware than in the model with direct connection to XMPP server. Interactive
Connectivity Establishment candidate (ICE candidate) as an important role in
WebRTC signaling, which is an object containing information for establishing
communication between peers, a�ects much on delay performance of WebRTC
signaling. More research on ICE candidate can help to improve the delay
performance of WebRTC signaling.

WebRTC is an interesting topic and it is proved by this project that WebRTC
is a nice technology for peer to peer communication, and XMPP works �ne as
a solution for WebRTC signaling.

Preface

Once upon a time, there was a summer job proposed by Telenor. The
summer job is about WebRTC and it was my �rst time hear about WebRTC.
I got a chance to the interview and the interviewer is Min Xie. Though the
summer job was canceled since budget, I tried to work as a volunteer for the
research on a product from Telenor. The product is called Appear.in which
is based on WebRTC. During half year together with WebRTC, I felt a great
interest in WebRTC. And therefore, I chose WebRTC as my master thesis topic.

Thanks very much that I met Min and Min gave so many advice and
suggestions not only about study but also research. She helps me a lot to
improve my ability of researching. She pointed out my strengths and enhance
them while found out my weaknesses and strengthen them. Also she taught
me how to design methodology to conduct my research, how to �nd out
possibilities to make deep research and also how to write a good research
report. Those instructions help really a lot.

Meanwhile, I also want to thank my former girlfriend who is my wife now.
She has been supporting my study even though we have lived with a long
distance for many years. She gives me love and courage. This makes me do
my best e�ort on my work.

I also have to thank my family, especially my parents. Without my family,
I can not support to study abroad. My parents always want to give me the
best opportunities in education. I knew it was big stress for them to make the
decision to send me here in NTNU for my further study. However, I believe
that this is the greatest decision they ever made that changes my future.

In addition, I want to thank all my friends. They make my life enjoyable.
Without them, I cannot make delicious food, I cannot take nice pictures, I
cannot sing wonderful songs, etc.

Thank you all!

Contents

List of Figures xi

List of Tables xiii

List of Implementations xv

1 Introduction 1
1.1 Overview . 1
1.2 Problem Statement . 2
1.3 Objectives . 2

2 Background and Related Work 5
2.1 Research on WebRTC . 5
2.2 Research on Signaling . 7
2.3 Existing Signaling Requirements and Solutions for WebRTC 8

2.3.1 Message Exchange Process of WebRTC Signaling 8
2.3.2 Potential Signaling Solutions for WebRTC 9
2.3.3 Integration of XMPP and WebRTC 10

3 Methodology 13
3.1 Literature Review . 13
3.2 Model Design . 13
3.3 Technology in Use . 14
3.4 Model Implementation . 16
3.5 Validation Method Implementation . 16
3.6 Data Collection . 17
3.7 Results and Analysis . 18

4 Model Design 19
4.1 Design of Architecture . 19

4.1.1 Architecture Design of Direct Connection to XMPP Server 19
4.1.2 Architecture Design of Indirect Connection to XMPP Server . . . 20

4.2 Design of Signaling Flow . 22

vii

4.3 Design of Data Format . 29
4.3.1 JSON Format . 29
4.3.2 XML Format . 29

4.4 Design of Measurement . 30
4.4.1 Measurement of Data Size . 30
4.4.2 Measurement of Time Cost . 31
4.4.3 Measurement of Number of Candidate 31

5 Model Implementation 33
5.1 Implementation of XMPP Based Server 33

5.1.1 Installation of Ejabberd . 33
5.1.2 Con�guration of Ejabberd . 34
5.1.3 Startup of Ejabberd . 34

5.2 Implementation of WebRTC based Web Application 35
5.2.1 Framework . 35
5.2.2 Core Functions . 38

5.3 Implementation of Signaling for Direct Connection to XMPP Server . . . 39
5.4 Implementation of Signaling for Indirect Connection to XMPP Server . . 41

5.4.1 Core Functions at Front End . 41
5.4.2 Core Functions at Back End . 41

5.5 Implementation of Measurement . 42
5.6 Challenges in Implementation . 43

5.6.1 Echo problem . 43
5.6.2 Advanced con�guration for Ejabberd 43
5.6.3 Strict order of Signaling Process 43
5.6.4 Security of Signaling Process . 44

6 Results and Analysis 45
6.1 Screen Shots . 45
6.2 Environment of Experiments . 48
6.3 Collections of Data . 49
6.4 Analysis of Data . 49

6.4.1 Results . 49
6.4.2 Reasoning . 52
6.4.3 Additional Experiment on ICE Candidate 55

7 Conclusion 59

References 61

Appendices

A Front End Implementation 65

A.1 Component Layer . 65
A.1.1 AppComponent . 65
A.1.2 VideoComponent . 67
A.1.3 ChatComponent . 68

A.2 Service Layer . 70
A.2.1 SignalService . 70
A.2.2 DirectConnectionService . 77
A.2.3 IndirectConnectionService . 80
A.2.4 SettingService . 82

B Back End Implementation 85
B.1 Controller Layer . 85

B.1.1 CallController . 85
B.2 Service Layer . 88

B.2.1 CallService . 88
B.3 WebSocket Layer . 91

B.3.1 WebSocketCon�g . 91
B.3.2 CallMessageListener . 92
B.3.3 CallWebSocketHandler . 94

C Collected Data 97

List of Figures

2.1 WebRTC in Browser[1] . 6
2.2 WebRTC Trapezoid[1] . 6
2.3 Process of Applying XMPP . 10

3.1 WebRTC Model Design with Direct Connection 14
3.2 WebRTC Model Design with Indirect Connection 15

4.1 Architecture Design of Direct Connection to XMPP 20
4.2 Architecture Design of Indirect Connection to XMPP 21
4.3 Signaling Flow of Models: Initiation of WebRTC 22
4.4 Signaling Flow of Models: Connection of WebRTC 23
4.5 Signaling Flow of Models: O�er of WebRTC 24
4.6 Signaling Flow of Models: Answer of WebRTC 25
4.7 Signaling Flow of Models: Candidate of WebRTC (a) 26
4.8 Signaling Flow of Models: Candidate of WebRTC (b) 27
4.9 Signaling Flow of Models: Stream of WebRTC 28

5.1 Front End Framework: Angular . 35
5.2 Back End Framework: Spring . 37

6.1 Screen Shots: Initiating Application . 45
6.2 Screen Shots: Application Initiated . 46
6.3 Screen Shots: Dialog . 46
6.4 Screen Shots: Joining of Participant . 47
6.5 Screen Shots: Participant Joined . 47
6.6 Data Flow Size in Di�erent Experiments . 50
6.7 Time Cost in Di�erent Experiments . 51
6.8 Number of Candidates in Di�erent Experiments 52
6.9 Network Condition of Experiment . 55

xi

List of Tables

3.1 Data to be Collected . 17

6.1 Experiment Environment 1 . 48
6.2 Experiment Environment 2 . 48
6.3 Experiment Environment 3 . 48
6.4 Data Flow Size . 49
6.5 Time Cost . 50
6.6 Number of Candidates . 52

C.1 Data from Experiment 1 with Direct Connection to XMPP 97
C.2 Data from Experiment 1 with Indirect Connection to XMPP 98
C.3 Data from Experiment 2 with Direct Connection to XMPP 98
C.4 Data from Experiment 2 with Indirect Connection to XMPP 99
C.5 Data from Experiment 3 with Direct Connection to XMPP 99
C.6 Data from Experiment 3 with Indirect Connection to XMPP 100

xiii

List of Algorithms

4.1 JSON Data Format for Candidate . 29
4.2 XML Data Format for Candidate . 30
5.1 Installation of Ejabberd on Debian . 33
5.2 Con�guration of Ejabberd on Debian . 34
5.3 Startup of Ejabberd on Debian . 34
5.4 Function Swicher . 40
6.1 Example of ICE Candidate . 53
6.2 Interface of ICE Candidate[2] . 53
6.3 Generated Candidates . 56
6.4 Received Candidates . 57

xv

Chapter1Introduction

This chapter gives an overview of this thesis. As Web is one of the most popular ways
to surf the Internet, it becomes part of people‘s life for 47% population in the world and
79% population in Europe in 2016[3]. Web real-time communication (WebRTC) as a Web
based real-time communication technology provides people more convenient possibilities
to get in touch with other people through the Internet. However, a new generation of
technology could not always be perfect. It therefore has many existing or potential problems.
This chapter then describes a set of problems which may occur in WebRTC. Meanwhile,
objectives to achieve of this thesis are also included.

1.1 Overview

The World Wide Web (abbreviated WWW or the Web) is an information space where
Uniform Resource Locators (URLs) identify documents and other web resources, interlinked
by hypertext links, and can be accessed via the Internet.[4] It is quite convenient to surf
the Internet as long as you have a browser installed on your device, no matter it is a PC or
a mobile. Therefore technologies based on Web would provide big potential nowadays.

WebRTC is one of the technologies. It enables rich, high-quality RTC applications
to be developed for browser, mobile platforms, and IoT devices, and allow them all to
communicate via a common set of protocols.[5]

WebRTC makes real-time communication easy to be used through the Web. However,
signaling methods and protocols are not speci�ed by WebRTC. Therefore there are many
solutions proposed in WebRTC signaling.[6] Extensible Messaging and Presence Protocol
(XMPP) as a mature protocol, which is open standard for messaging and presence, is
one of those proposed signaling solutions for WebRTC. There is quite little research on
implementation of WebRTC based on XMPP and on quanti�ed performance analysis. To �nd
out whether XMPP’s capability is suitable as signaling solution, this project is conducted to
validate and evaluate the delay performance of WebRTC signaling method based on XMPP.

1

2 1. INTRODUCTION

1.2 Problem Statement

Since WebRTC does not specify signaling implementation, many di�erent solutions have
been given by researchers and engineers. JSON or XML via XMLHttpRequest (XHR), HTTP
Comet or WebSocket can be good solutions for implementing signaling. Mature protocols
such SIP and XMPP are also good solutions. In addition, combination of XMPP, SIP, Jingle or
constructing own protocol carrying SDP-like information can also make work for signaling.
[1][7][8][9][10]

Among the solutions, XMPP is one of those discussed frequently. XMPP is the Extensible
Messaging and Presence Protocol, which has been designed as the open standard for
messaging and presence. As XMPP has features of openness, standardization, provenness,
decentralized, security, �exibility and diversity, it is becoming more and more popular.[11]
XMPP is a set of open technologies for instant messaging, presence, multi-party chat,
lightweight middleware, and generalized routing of XML data. Instant message and presence
enable information exchange for signaling. Multi-party chat supports signaling for multiple
clients. Lightweight middlware makes signaling easy and generalized routing of XML data
makes signaling scalable. Thus, XMPP can help to set up a signaling server and can be a
good signaling solution for WebRTC.

However, a coin has two sides. XMPP as signaling protocol by WebRTC has many
advantages, meanwhile it has disadvantages as well. One of disadvantages is heavy text-
based communication. Since XML is text based, normal XMPP has a higher network
overhead compared to JSON. This disadvantage is considered as barrier which may have
negative e�ect on the performance when XMPP is used as signaling solution for WebRTC.
To improve the solution, several objectives as set as follows.

1.3 Objectives

The main objective is to evaluate if XMPP is a good candidate for WebRTC signaling. In
order to achieve this, the following have been done:

1. Design and develop a direct XMPP-based signaling protocol. In order to �nd
out that XMPP is an e�ective solution for WebRTC signaling, it is necessary to design
and implement WebRTC with XMPP �rst. So a model in which client connect to
XMPP server directly is proposed and implemented.

2. Design and develop an indirect XMPP-middleware signaling protocol. Since
XMPP is heavy text-based communication protocol, it is expected that by adding a
middleware between client and XMPP server which is located at the same server
would reduce data �ow between client and server, that is, data �ow between client
and middleware through the Internet is reducing while data �ow between middleware

1.3. OBJECTIVES 3

and XMPP server is increasing. Transmission inside the same machine is considered
much faster than over the Internet. Then it may improve delay performance for
WebRTC signaling. Therefore, another model with middleware is proposed and
implemented.

3. Propose an evaluation method. After implementations have been done, analysis
of performance will be planned. To achieve this, approach of measurement shall be
validated. The �rst thing is splitting signaling process in implementations into steps.
Then timestamps will be set between each two steps and data size will be captured
as well. So size of data �ow and time cost will be recorded, as well as number of
candidates.

4. Test and compare the two signaling protocols. Based on the records, perfor-
mances can be analyzed. Then performances for both models can be compared in
quantity and in the end results can be concluded. The results can be a guideline for
other researchers in relevant �elds.

Chapter2Background and Related Work

This chapter summarizes background and related work according to this thesis. A general
research on WebRTC is �rst conducted. Then research on signaling is followed. In order
to make a deep understanding of signaling of WebRTC, research on existing signaling
solutions for WebRTC is conducted.

2.1 Research on WebRTC

Web real-time communication (WebRTC) enables rich, high-quality RTC applications
to be developed for browser, mobile platforms, and IoT devices, and allow them all to
communicate via a common set of protocols.

In Figure 2.1, there are three layers, Web Server on the top, application developed with
JavaScript/HTML/CSS in the middle and Native OS at the bottom. The application connects
to Web Server with HTTP/WebSocket. HTTP is used to send request and receive response.
Basically, it is used for fetching application. WebSocket is used for setting up connection to
WebServer and enable server to push data to the application. The application helps to call
WebRTC API in order to control Web browser and invoke Browser RTC functions, then
utilize resources from native OS or communication with remote client.

Figure 2.2 shows the WebRTC trapezoid and real-time communication in the browser.
From left bottom, browser on a client sets up communication with Web server using
HTTP/WebSockets, and the same for browser on another client at right bottom. Web
servers help to set up signaling path. By exchange information through the signaling path,
media path can be built up between clients. To achieve signaling, one client can send
information to a certain remote client. While the remote client receives the information
and send information back to the sender.

WebRTC makes real-time communication easy to be implemented through the Web.
However, signaling methods and protocols are not speci�ed by WebRTC.[6] Therefore,
research on signaling and WebRTC signaling should be conducted.

5

6 2. BACKGROUND AND RELATED WORK

Figure 2.1: WebRTC in Browser[1]

Figure 2.2: WebRTC Trapezoid[1]

2.2. RESEARCH ON SIGNALING 7

2.2 Research on Signaling

To establish a connection between two peers in WebRTC and enable a call, signaling is a
necessary part.

The earliest telephone exchanges were “manual” switchboards, in which all calls were
set up and taken down by operators. To make a call, the subscriber starts by sending a
ringing signal. This alerted an operator, who would connect her telephone to the calling
line, and ask for the called number. The operator then would connect her telephone to the
called line, and ring the line. After answer by the called party, the operator would establish
the connection. Signaling as we know it today started around 1890, with the invention, by
Almon B. Strowger (a Kansas City undertaker), of an automatic switchboard that could
receive the called number dialed by the calling subscriber, and would then automatically
set up the connection. During the past 100 years, signaling applications and technology
have evolved in parallel with the developments in telecommunications.[12]

Signaling is a signi�cant part in telecommunication. The two parties cannot communi-
cate with each other without signaling even though they have cable connected with each
other. So there are many protocols developed to implement signaling process.

A signaling protocol is a type of protocol used to identify signaling encapsulation.[13]
Signaling can be done by many protocols associated with WebRTC such as XMPP, SIP,
Jingle and so on.

XMPP as signaling protocol

XMPP is a set of open technologies for instant messaging, presence, multi-party chat,
voice and video calls, collaboration, lightweight middleware, content syndication, and
generalized routing of XML data.[11] The XMPP speci�cations were published as RFC
3920 and RFC 3921 in 2004, and the XMPP Standards Foundation continues to publish
many XMPP Extension Protocols. In 2011 the core RFCs were revised, resulting in the most
up-to-date speci�cations (RFC 6120, RFC 6121, and RFC 7622).[14][15][16][17][18]

As a mature protocol, it is one of those proposed signaling solutions for WebRTC,
since its features such as instant message, presence and multi-party chat support the
functionalities of WebRTC signaling and its features such as lightweight middleware,
content syndication, and generalized routing of XML data support the non functionalities
of WebRTC signaling. The functionalities make WebRTC signaling available and the non-
functionalities make WebRTC signaling performance well. The Internet Engineering Task
Force (IETF) has formalized the core XML streaming protocols as an approved instant
messaging and presence technology.

8 2. BACKGROUND AND RELATED WORK

SIP as signaling protocol

According to IETF, SIP is an application-layer control (signaling) protocol for creating,
modifying, and terminating sessions with one or more participants. These sessions in-
clude Internet telephone calls, multimedia distribution, and multimedia conferences.[19]
SIP is being used to construct peer-to-peer systems, residential telephony services, PBX
replacement systems, and large-scale carrier next-generation networks, such as the IMS (IP
Multimedia Subsystem) of the 3GPP (Third Generation Partnership Project).[20]

SIP, compared with XMPP, has more functions than instant message. It then of course
supports the part as WebRTC signaling.

Jingle as signaling protocol

Besides, Jingle is an XMPP protocol extension for initiating and managing peer-to-peer
media sessions between two XMPP entities in a way that is interoperable with existing
Internet standards. The protocol provides a pluggable model that enables the core session
management semantics (compatible with SIP) to be used for a wide variety of application
types (e.g., voice chat, video chat, �le transfer) and with a wide variety of transport methods
(e.g., TCP, UDP, ICE, application-speci�c transports).[21]

Jingle, similar to SIP, it supports more functions such as video call and audio call. So it
supports WebRTC signaling the same as XMPP and SIP.

XMPP vs SIP and Jingle

Basically, XMPP is famous for its supporting instant message. Although SIP and Jingle
also support instant message, these two protocols are more supportive to multimedia
communication. They have additional functions more than the WebRTC signaling needs.
For researching from essential, XMPP is a better choice. Therefore, XMPP is chosen as
target to be researched here as the way to implement WebRTC signaling.

2.3 Existing Signaling Requirements and Solutions for WebRTC

2.3.1 Message Exchange Process of WebRTC Signaling

Message exchange is the most signi�cant part of WebRTC signaling. In book, "Real-Time
Communication with WebRTC", the message exchange process of signaling has been
explained by examples.[1]

In message exchange process of WebRTC signaling, there are several steps. RTC
PeerConnection[6] is the WebRTC component that handles stable and e�cient communi-
cation of streaming data between peers. First a RTCPeerConnection is created on caller side.
The MediaStream[6] API represents synchronized streams of media. For example, a stream

2.3. EXISTING SIGNALING REQUIREMENTS AND SOLUTIONS FOR WEBRTC 9

taken from camera and microphone input has synchronized video and audio tracks. After
the RTCPeerConnection has been created, local MediaStream is added to it. The Session
Description Protocol (SDP)[6] is a format for describing streaming media initialization
parameters. SDP is intended for describing multimedia communication sessions for the
purposes of session announcement, session invitation, and parameter negotiation. The
RTCPeerConnection adds MediaStream and then create an o�er which contains SDP infor-
mation. The RTCPeerConnection set the o�er as local description and then send it to callee.
As long as the callee receives the o�er from the caller, it creates a RTCPeerConnection as
well. The same as caller side, callee adds local MediaStream to the RTCPeerConnection,
too. Right after, the callee set the o�er as remote description to the RTCPeerConnection.
Then the RTCPeerConnection on callee side creates an answer. Answer is the same as o�er.
It is just with another name which is distinct from o�er. Afterwards, the answer is set as
local description to the RTCPeerConnection on callee side, then sent to caller. As long as
the caller receives the answer, it set the answer as remote description to the RTCPeerCon-
nection. After creating the PeerConnection and passing in the available STUN and TURN
servers, an event will be �red once the ICE framework has found some “candidates” that
will allow you to connect with a peer. Knowing the message exchange process of WebRTC
signaling helps to design and implement the solutions.

2.3.2 Potential Signaling Solutions for WebRTC

Copy and Paste Manually

Copying necessary SDP information and pasting to the target can be a solution. This sounds
like a stupid way but it works. As long as the necessary SDP information for WebRTC
are exchanged for both peers, both peers can then establish a connection. However, the
problem is that it cannot work as an application since it is not programmatic and it is not
feasible when scenario becomes complex.

Comet

Comet is a web application model in which a long-held HTTP request allows a web server to
push data to a browser, without the browser explicitly requesting it.[22][23] So by applying
Comet, it enables that server can push messages to client. Thus, message can be sent from
server forward to a target as long as server receive message from a source and then execute
message exchange process. But it does not de�ne own proprietary signaling messages. It
therefore needs support from signaling protocols such as XMPP, SIP, Jingle and so on.

WebSocket

WebSocket is an advanced technology that makes it possible to open an interactive com-
munication session between the user’s browser and a server. With this API, you can
send messages to a server and receive event-driven responses without having to poll the

10 2. BACKGROUND AND RELATED WORK

Figure 2.3: Process of Applying XMPP

server for a reply.[24] The same as Comet, it needs support from signaling protocols but it
consumes less resource than Comet.

XMPP or SIP over WebSocket

WebSocket provides pretty good solution for transfer messages. Combined with XMPP
or SIP will enable the whole process of WebRTC signaling. However, WebRTC supports
media communication for peers, only IM is enough for the signaling. SIP is more than a
IM protocol and the extra functions are not necessary for WebRTC signaling. Therefore,
XMPP is preferred here in this project. SIP may also be a good solution, but since time is
limited in this project, SIP as a solution will be researched in the future work.

2.3.3 Integration of XMPP and WebRTC

To integrate XMPP into WebRTC signaling, study on message exchange process of XMPP is
necessary.See Figure 2.3, �rst thing �rst, client need to connect to XMPP server. Therefore,
creating of connection to XMPP from client comes before everything. Then from client,
user need to login to XMPP server. If the user has not registered in XMPP server, then

2.3. EXISTING SIGNALING REQUIREMENTS AND SOLUTIONS FOR WEBRTC 11

registration should be done before login. To support Multiple User Chat (MUC), a chat
room also should be created. Afterwards, callers and callees should then join the same chat
room. To start a call, one user as a caller sends messages such as o�er from caller, answer
from callee or candidate information to other callees through the chat room. As long as
XMPP receive messages from user, it then sends to forward to certain targets, i.e. one or
more callees. By implementing message exchange as above, WebRTC signaling can manage
to integrate XMPP.

Chapter3Methodology

To achieve the objectives mentioned in Chapter 1, the research is planned to conduct a
literature review of relevant topics, design models based on XMPP and then implement
them. Afterwards, analysis will be conducted based on the models.

3.1 Literature Review

Basic theories are important for research. To conduct such research on WebRTC signaling,
a clear understanding of WebRTC is necessary. The research on WebRTC helps to know
what WebRTC is, how WebRTC looks like and how it works. Since signaling methods
and protocols are not speci�ed by WebRTC, research on signaling is also needed. The
research on signaling helps to know what signaling is used for, how it works and which
protocols it has. Also, it lists several signaling protocols associated with WebRTC signaling.
In addition, a set of existing signaling solutions for WebRTC are studied in order to make a
better solution based on others’ research.

3.2 Model Design

In order to avoid the problems mentioned in Chapter 1, utilizing XMPP server as a signaling
server for WebRTC may be a good solution. Designing an architecture by setting up
a middleware server between XMPP server and the WebRTC clients can help. It could
reduce data �ow between client and server. In such way the time cost that one client
sends message to server and server sends forward to another client may reduce. To �nd
out if the solution works, two models mentioned in objectives in Chapter 1 are designed,
implemented, analyzed and compared.

The �rst one is a simple model that client connect to XMPP server directly. In Figure 3.1,
it shows the one without middleware server will enable the WebRTC client to communicate
directly with the XMPP server. All the contents are being transfered through the channel
between them.

13

14 3. METHODOLOGY

Figure 3.1: WebRTC Model Design with Direct Connection

As mentioned in Chapter 1, since XMPP is heavy text-based communication protocol, it
is expected that by adding a middleware between client and XMPP server which is located
at the same server would reduce data �ow between client and server, that is, data �ow
between client and middleware through the Internet is reducing while data �ow between
middleware and XMPP server is increasing. Transmission inside the same machine is
considered much faster than over the Internet.

In Figure 3.2, it shows the model with middleware server. The middelware server is set
together with the XMPP server on the same machine. It will work in such a way that the
WebRTC client sends request to the middelware server, the middelware server communicate
with the XMPP server with the majority part of the contents, and then the middelware
server pushes a response to the WebRTC client.

Both models can apply the process of WebRTC signaling according to the previous
research in Chapter Chapter 2.

3.3 Technology in Use

As signaling is complex, many technologies are used in the project. WebRTC components
are accessed with JavaScript APIs. Currently in development are the Network Stream

3.3. TECHNOLOGY IN USE 15

Figure 3.2: WebRTC Model Design with Indirect Connection

API, which represents an audio or video data stream, and the PeerConnection API. The
WebSocket Protocol enables two-way communication between a client running untrusted
code in a controlled environment to a remote host that has opted-in to communications
from that code. STOMP provides an interoperable wire format so that STOMP clients can
communicate with any STOMP message broker to provide easy and widespread messaging
interoperability among many languages, platforms and brokers. Ejabberd is fully open
source, secure, �exible, interoperable and professionally maintained. Smack is an Open
Source XMPP (Jabber) client library for instant messaging and presence. Strophe.js is an
XMPP library for JavaScript. Its primary purpose is to enable web-based, real-time XMPP
applications that run in any browser.

– WebRTC API[25]. To access native resources such as fetching the MediaStream and
communication from peer to peer, WebRTC APIs are necessary for the requirement.

– Ejabberd[26]. XMPP is just a protocol. So a server which implement XMPP is needed
for the solution. Ejabberd is such an XMPP server.

– WebSocket[24]. Client sends data to server meanwhile server need to push data to
client. So WebSocket plays the role.

16 3. METHODOLOGY

– STOMP[27]. Since JSON is text-based format, STOMP is then used for messaging.
STOMP is the Simple (or Streaming) Text Orientated Messaging Protocol.

– Smack[28]. Middleware is planned to be implemented by Java. In order to enable
communication between middelware and Ejabberd, such a Java library which supports
to send message to and receive message from server is neccessary. Smack is the
proper one.

– Strophe.js[29]. To enable communication directly from client to XMPP server,
Strophe.js as a JavaScript library is needed to complete the task.

3.4 Model Implementation

Practice makes theory come true. After designing, the next step is implementation.

Implementing the model enabling communication directly from client to XMPP server
will be conducted in the following way. Ejabberd will be installed on the server side. This is
how XMPP is implemented. Through this server, client can send message to another client.
Javascript will be used as programming language on client side. JavaScript helps to call
WebRTC APIs, to communicate with server and to implement the process. Strophe.js is an
XMPP library for JavaScript. Its primary purpose is to enable web-based, real-time XMPP
applications that run in any browser. This is used for communicating with Ejabberd from
the client side. WebRTC APIs will then be called to use native resources. First local stream
will be fetched and then signaling process will be implemented. After the signaling process
has done, communication between clients via WebRTC should work.

The same as the former model, Ejabberd, Javascript, WebRTC API will be used to
implement the model with middleware server. Besides, there are serveral other steps
needed. Java as programming language will be used to develop the middleware. Spring
Framework will be used improving the development and supporting WebSocket on the
middleware side. Then SockJS will enable WebSocket on client side to enable communication
between client and middleware. Afterwards, Smack will be used in middleware to enable
communication between middleware and Ejabberd.

3.5 Validation Method Implementation

Experiments will be conducted right after implementation. To conduct the experiments,
validation method shall be designed and implemented. Time cost and data �ow size are
two of the most signi�cant parameters which are considered a�ecting the performance of
WebRTC signaling and both of them need to be recorded.

3.6. DATA COLLECTION 17

Table 3.1: Data to be Collected

Index Name
1 Total Time Cost
2 Signaling Time Cost
3 Total Data Size
4 Answer Size
5 Candidate Size
6 Number of Generated Candidates
7 Number of Received Candidates

In order to obtain time cost of WebRTC signaling, timestamps will be set between each
step of WebRTC signaling process. By calculating the time di�erence between each two
timestamps, the time cost can be obtained. The details will be explained in Section 4.4.2

To obtain data �ow size, there are two ways. One is to capture the data �ow when
sending data from sender and the other one is to capture the data �ow when receiving data
by receiver. As long as the data �ow is captured, the data �ow size can then be obtained.
The details will be explained in Section 4.4.1

After implementing the validation method, data collection can then be executed.

3.6 Data Collection

To analyze performance of the signaling process of WebRTC, the following data are about
to be collected, see Table 3.1.

1. Total Time Cost. This represent the total time spent in the entire signaling process.
2. Signaling Time Cost. This represent the total time spent in initiating call, sending

o�er, sending answer but without ICE Candidates exchanging.
3. Total Data Size. This represent all the data �ow that has been exchange during the

entire signaling process.
4. Answer Size. This represent the data size of an answer SDP.
5. Candidate Size. This represent the data size of a ICE Candidate.
6. Number of Generated Candidates. This represent the total number of ICE Candidates

that are generated and added to local peer.
7. Number of Received Candidates. This represent the total number of ICE Candidates

that are received from a remote peer after ICE Candidate exchange.

18 3. METHODOLOGY

3.7 Results and Analysis

Having collected the data needed, the implementations should work well. Results can be
shown by making screen shots and tables. To analyze the results, more and deeper research
will be conducted according to the results.

Chapter4Model Design

This chapter describes what are the two models about, how they are designed and why
they are designed in the certain way. This chapter also describes how caller and callee
interact with each other and manage to communicate with each other via video call, audio
call or text message.

4.1 Design of Architecture

4.1.1 Architecture Design of Direct Connection to XMPP Server

Basically, it is a Client-Server architecture, see Figure 4.1.

In order to describe clearly, it designs the model with two-party calls. So on client side,
there are two participants. To enable a call, either a video call or an audio call, it needs two
parts. One is caller and the other is callee. Both caller and callee are using Web, so two
clients in the architecture are actually two Web browsers. Additionally, not all browser
support WebRTC, the two browsers should be WebRTC supported browsers.

On server side, it provides such functions that receive data from one client and send
data forward to another client, since two WebRTC browsers are private and they do not
know much about each other. To enable such functions, XMPP applies here.

To start a call, WebRTC browsers need to call WebRTC APIs to complete the tasks. It
�rst need to check whether the browser supports WebRTC or not. If the browser supports
WebRTC, it then loads resource, either video resource, audio resource or other kinds of
resources, such as video stream, audio stream or ICE candidate.

And then clients exchange the necessary information through the server based on
XMPP. In order to connect to XMPP server, stroph.js is being used here. Stronph.js enables a
connection between the client and the XMPP server via WebSocket which means it enables
sending data from client and pushing data from server.

19

20 4. MODEL DESIGN

Figure 4.1: Architecture Design of Direct Connection to XMPP

Ejabberd is used as the XMPP server which provides core functions of XMPP. Since
XMPP server is XML based, the data format between Ejabberd and clients is XML, which is
generated by stroph.js.

After exchanging necessary information between two browsers, the two browsers can
then communicate with each other through the peer connections.

According to the architecture described above, a client can send messages to another
client or another group of clients whenever it wants and a server can push messages to any
clients as long as it receives such messages.

4.1.2 Architecture Design of Indirect Connection to XMPP Server

The same as previous model, it is a Client-Server architecture, see Figure 4.2. Since XMPP
is heavy text-based communication protocol, it is expected that by adding a middleware
between client and XMPP server which is located at the same server would reduce data �ow
between client and server, that is, data �ow between client and middleware through the
Internet is reducing while data �ow between middleware and XMPP server is increasing.

4.1. DESIGN OF ARCHITECTURE 21

Figure 4.2: Architecture Design of Indirect Connection to XMPP

Transmission inside the same machine is considered much faster than over the Internet. So
the di�erence of architecture between direct and indirect connection to XMPP server is
that there is an extra part which is called middleware server in the model. Clients do not
connect directly to XMPP server. Instead, clients connect to the middleware server and
the middleware server connects to XMPP server. Middleware server and XMPP server are
running on the same server.

To make it work, Sock.js run on the client side and Spring WebSocket run on the server
side enable the connection between client and server through WebSocket. Stomp.js enables
text based messages over WebSocket. Therefore the clients can communicate with the
middleware server with the data in JSON format.

The middleware server then communicates with XMPP server with Smack. The middle-
ware server is a Java based server. Smack, the Java based library helps to generate XMPP
based messages and also helps to send and push XML data between the middleware server
and the XMPP server, Ejabberd.

The same as previous model, after exchanging necessary information between two

22 4. MODEL DESIGN

Figure 4.3: Signaling Flow of Models: Initiation of WebRTC

browsers, the two browsers can then communicate with each other through the peer
connections.

4.2 Design of Signaling Flow

Figure 4.3 shows how WebRTC initiates when application starts up. Both caller and callee
send HTTP Request to application server. Application is developed as a Web application. It
therefore accesses to the Web server, fetches Web application. The core part is JavaScript
code. After loading code locally, WebRTC API are called by the code in browser to Get
User Media. Then browser can represent local user media such as video stream and audio
stream.

4.2. DESIGN OF SIGNALING FLOW 23

Figure 4.4: Signaling Flow of Models: Connection of WebRTC

Figure 4.4 explains how caller and callee get connected. First of all, caller and callee
should register by generating a universally unique identi�er (UUID). By using the UUID,
caller and callee register on the XMPP server. After having an account on the XMPP server,
caller and callee can then connect and login to the XMPP server. In order to support multi
user chat (MUC), chat room is used here. Caller and callee create or join the same room to
be able to have call together. When all participants have joined the room, the connection
establishes successfully. The server then sends a feedback to the clients so that the clients
can continue next steps.

24 4. MODEL DESIGN

Figure 4.5: Signaling Flow of Models: O�er of WebRTC

From Figure 4.5 it starts to represent the core steps of WebRTC signaling. PeerConnection
is an object applied by WebRTC API which implements functions to establish connection
between peers. First, caller creates a PeerConnection. Then the local media stream is added to
the PeerConnection. After that, the WebRTC signaling process starts with creating an O�er.
When O�er is created successfully, the PeerConnection sets local description immediately
for the O�er and then the O�er is sent to callee. Callee will get the O�er and process next
steps.

4.2. DESIGN OF SIGNALING FLOW 25

Figure 4.6: Signaling Flow of Models: Answer of WebRTC

Figure 4.6 explains the steps how callee answers a call while caller is o�ering the call.
The same as caller, callee creates a PeerConnection �rst. Then the local media stream of callee
is added to the PeerConnection. As long as caller sends O�er and callee receives the O�er,
the PeerConnection of callee sets remote description from caller carried in the O�er. The
PeerConnection of callee then creates an Answer according to the O�er. When the Answer
is created successfully, the PeerConnection of callee sets local description immediately for
the Answer and then the Answer is sent to caller. Caller will receive the Answer and the
PeerConnection of caller will set remote description carried in the Answer from callee.

26 4. MODEL DESIGN

Figure 4.7: Signaling Flow of Models: Candidate of WebRTC (a)

Figure 4.7 shows how candidates are exchanged after O�er and Answer have been
exchanged. The PeerConnections has a listener for candidates. As long as there is a new
candidate generated on caller, the candidate will be sent to callee. When callee receives the
candidate, it will be add to its local PeerConnection.

4.2. DESIGN OF SIGNALING FLOW 27

Figure 4.8: Signaling Flow of Models: Candidate of WebRTC (b)

Similar to Figure 4.7, Figure 4.8 shows how candidates are exchanged after O�er and
Answer have been exchanged on callee. The PeerConnections has a listener for candidates.
As long as there is a new candidate generated on callee, the candidate will be sent to caller.
When caller receives the candidate, it will be add to its local PeerConnection.

28 4. MODEL DESIGN

Figure 4.9: Signaling Flow of Models: Stream of WebRTC

In Figure 4.9, streams are added to PeerConnections on both caller and callee after nec-
essary information has been exchanged for both of them. In the end, both PeerConnections
can establish a connection. Therefore, a call can be set up between caller and callee.

4.3. DESIGN OF DATA FORMAT 29

4.3 Design of Data Format

4.3.1 JSON Format

JSON Object is de�ned as the basic object in the signaling process including connect, start,
o�er, answer and candidate. In Implementation 4.1, it shows an example of data in JSON
format.

For each of candidate, there is a �eld called ’type’. ’type’ indicates their types, among
connect, start, o�er, answer and candidate.

Another �led is called ’from’. ’from’ represents where the message comes from, therefore
it knows where the response should be send back to. The type of ’from’ is UUID.

The third �eld is a dynamic �eld, which stores the data according to the object type.
See Implementation 4.1, for example, if the type is candidate, then the third �led is called
candidate and candidate is stored in this �eld.

Implementation 4.1 JSON Data Format for Candidate

{
type: "candidate",
from: "f64363ab40d4403da95304c8e2aeb5a1",
candidate: {

"candidate":"candidate:2241210590 1 udp 2122260223
192.168.2.101 57343 typ host generation 0
ufrag 8jg3 network-id 1 network-cost 10",

"sdpMid":"audio",
"sdpMLineIndex":0

}
}

4.3.2 XML Format

XML format is the basic format for XMPP. Implementation 4.2 shows an example of data in
XML format in XMPP.

The root tag is <message>. Tag <message> has the name space "jabber:client". Tag <mes-
sage> also has attributes from, to, type and id. id identi�es each message. from and to repre-
sent where the message comes from and where the message goes to. While type indicates the
type of message. Here in the example, the id is ab627d95-9931-402e-97c0-0f34�95ede1. The
message comes from test@conference.f2f.chat/ddb88c89e9c14e208e5d41d894811399 and will
be sent to textitddb88c89e9c14e208e5d41d894811399@f2f.chat/9788994081495626803661991.
And the type of message is groupchat.

30 4. MODEL DESIGN

Implementation 4.2 XML Data Format for Candidate

<message xmlns="jabber:client" from="test@conference.f2f.chat/
ddb88c89e9c14e208e5d41d894811399" to="
ddb88c89e9c14e208e5d41d894811399@f2f.chat
/9788994081495626803661991" type="groupchat" id="ab627d95
-9931-402e-97c0-0f34ff95ede1">
<body>

{
type: "candidate",
from: "f64363ab40d4403da95304c8e2aeb5a1",
candidate: {

"candidate":"candidate:2241210590 1 udp
2122260223
192.168.2.101 57343 typ host generation 0
ufrag 8jg3 network-id 1 network-cost 10",

"sdpMid":"audio",
"sdpMLineIndex":0

}
}

</body>
<x xmlns="jabber:x:event"><composing/></x>

</message>

In tag <message>, there is a tag <body> which contains the core information. The
content of information is the same as in JSON format.

4.4 Design of Measurement

4.4.1 Measurement of Data Size

Since two models are designed in di�erent ways, the data transfer between client and server
has di�erent data format and di�erent data size. Data size will a�ect the performance of
signaling, particularly when network condition is not good, because when data size is larger
it takes longer time for transferring. Therefore, measuring data size is necessary. Sizeof.js
as a third-party JavaScript library is used for calculate the data size and display it. There are
two options to capture data �ow and calculate data size. One is to capture the data when it
is ready to send and the other one is to capture the data when the data is received. Since
the function sending data are implemented in other third-party JavaScript libraries while
the function receiving data are implemented in own implementation, the latter option is a
better solution in order to avoid modi�cation to source code of other libraries.

4.4. DESIGN OF MEASUREMENT 31

4.4.2 Measurement of Time Cost

Time cost apparently shows how fast the signaling process is. Measuring time cost for the
signaling process is a good approach to analyze the performance of signaling process. To
measure the time cost, recording timestamps in each steps and calculate time di�erence
between each steps will work. Therefore, timestamps are set whenever the following events
are triggered: onInit, onO�er, onAnswer, onCandidate, onAddStream, see Figure 4.3, 4.4, 4.5,
4.6, 4.7, 4.8, 4.9. For one call, onInit, onO�er and onAnswer happened once and onCandidate
may happens several times. When onAddStream is called to add remote stream to a local
peer connection, the signaling process is done and the call would be successful.

4.4.3 Measurement of Number of Candidate

Each time there is a candidate added to the peer connection, the function onCandidate is
triggered. Since in the measurement of time cost, timestamps are added in the function
onCandidate, the remark of adding candidates and the timestamps are displayed. By
counting the times onCandidate is triggered, the number of candidate can be measured.
Since candidate contains signi�cant information about address of peer, and it is generated
dynamically, the number of generated would a�ect the performance of signaling. Therefore
it is considered to be one of the parameters that would a�ect the performance and would
be measured.

Chapter5Model Implementation

This chapter describes how the models are implemented. And it also explains challenges
during the implementation.

5.1 Implementation of XMPP Based Server

Ejabberd has been in development since 2002 and is used all over the world to power the
largest XMPP deployments. This project is so versatile that you can deploy it and customize
it for very large scale, no matter what is your use case.[26] Ejabberd brings con�gurability,
scalability and fault-tolerance to the core feature of XMPP – routing messages. Its architec-
ture is based on a set of pluggable modules that enable di�erent features. The ones used
here are listed below:

– One-to-one messaging
– Store-and-forward (o�ine messages)
– Contact list (roster) and presence
– Groupchat: MUC (Multi-User Chat)
– Messaging archiving with Message Archive Management (MAM)

5.1.1 Installation of Ejabberd

Command 5.1 Installation of Ejabberd on Debian

$ sudo ./ejabberd-version-linux-x86_64-installer.run

To install Ejabberd on Debian, the installer for Linux version can be found and down-
loaded from Ejabberd’s o�cial site. Installation can be done by running the following
command in terminal.

33

34 5. MODEL IMPLEMENTATION

5.1.2 Con�guration of Ejabberd

Command 5.2 Con�guration of Ejabberd on Debian

...
hosts:
- "localhost"
- "f2f.chat"

...
listen:
-
port: 5222
module: ejabberd_c2s
certfile: "/home/chun/Development/ejabberd/conf/server.pem"
starttls: true

-
port: 5280
module: ejabberd_http
request_handlers:
"/websocket": ejabberd_http_ws

...
acl:
admin:
user:
- "admin@f2f.chat"

...
registration_timeout: infinity
...

By default, path of con�guration �le is ’/etc/ejabberd/ejabberd.yml’. hosts de�nes do-
mains served by ejabberd. Here the hosts are set as localhost and f2f.chat. listen con�gures
ports listened by ejabberd. Port 5222 enables module ejabberd_c2s which supports TLS
connection while Port 5280 enables ejabberd_http which supports HTTP connection. Con-
�guring request_handlers makes it support WebSocket through the connection. acl stands
for access control lists. Changing admin:user: to admin@f2f.chat enables control from
remote code on f2f.chat. Setting registration_timeout to in�nity enables that in�nity of
users can register at the same time.

5.1.3 Startup of Ejabberd

Command 5.3 Startup of Ejabberd on Debian

$ sudo ./ejabberdctl

By running ./ejabberdctl on ejabberd server, ejabberd can be started.

5.2. IMPLEMENTATION OF WEBRTC BASED WEB APPLICATION 35

Figure 5.1: Front End Framework: Angular

There are also other relevant commands used in the implementation, but they are not
important in this thesis, so they are not discussed here.

5.2 Implementation of WebRTC based Web Application

5.2.1 Framework

Frontend Framework: Angular

AngularJS is a toolset for building the framework for Web application. It makes environment
of development expressive, readable, and quick to develop.[30] Angular is therefore used

36 5. MODEL IMPLEMENTATION

as front end framework here. Since the application is not too complex, two main layers are
applied here including component layer and service layer, see Figure 5.1.

By applying AppModule in index page, everything in front end will be loaded. App-
Module then imports and applies AppComponent.

In component layer, each component de�nes di�erent part in a Web page. AppCom-
ponent is the base component of the front end component. It de�nes basic layout of the
application. In AppComponent, it imports and applies VideoComponent and ChatCompo-
nent. VideoComponent de�nes layout of video part when a call is setting up. The video
part displays a gray background if only audio is available. ChatComponent de�nes layout
of chat part. It displays how dialog looks like in browser. Since in later experiment data
need to be displayed, it will be displayed together with dialog in ChatComponent.

Service layer provides concrete services to components. SignalService are used in
both VideoComponent and ChatCompoennt. It implements how components execute
signaling process. Meanwhile, it imports and applies either DirectConnectionService or
IndirectConnectionServcie. DirectConnectionService implements signaling method that
connect to Ejabberd server directly without a middleware while IndirectConnectionService
connects to a middleware deployed at the same server as Ejabberd server and then connect
to Ejabberd through the middleware. SettingService provide basic settings supporting the
application.

Back End Framework: Spring

Spring helps to build simple, portable, fast and �exible JVM-based systems and applications.[31]
So Spring is used as back end framework here. Three main layers are applied here including
controller layer, service layer and WebSocket layer, see Figure 5.2.

In controller layer, CallController class is the main class used as a dispatcher. When a
request coming from client, CallController dispatches the request to corresponding services
including index page, call page, register service and WebSocket service.

In service layer, CallService class implements all the services needed for the application.
Service layer provides open connection service, close connection service, initiate service,
register service, login service, create or join room service and send message service.

In WebSocket layer, it provides WebSocketCon�g class which set necessary con�gura-
tion for WebSocket. It also provides CallWebSocketHandler class which enable abilities
to handle connection between client and server via WebSocket. In addition, it provides
CallMessageListener class. This class is used for handle the incoming and outgoing messages
via WebSocket.

There are also two other layers called �lter layer and utility layer. Filter layer provides

5.2. IMPLEMENTATION OF WEBRTC BASED WEB APPLICATION 37

Figure 5.2: Back End Framework: Spring

class to handle request after request send from client but before request handled by server.
Here CORSFilter enables Cross-Origin Resource Sharing (CORS) for Java web application.
And in utility layer it implements classes as utilities such as static parameters.

38 5. MODEL IMPLEMENTATION

5.2.2 Core Functions

The core processes have been explained in Chapter 4. Here is the implementation of them.

onInit

Function onInit is executed when application is loaded. It �rst checks whether browser
support WebRTC or not by calling functions in WebRTC API. navigator.getUserMedia checks
in general while navigator.webkitGetUserMedia and navigator.mozGetUserMedia check for
Chrome and Firefox. If browser supports WebRTC, it then get resources such as video
stream and audio stream. As long as resources are loaded successfully, it will register an
UUID and connect to server, either Ejabberd server or middleware server. It depends on
which signaling method used to connect to either Ejabberd server or middleware server.
More details will be explained in section 5.3 and 5.4.

onConnect

Function onConnect is executed to prepare for a call when successfully connecting to the
server.

onStart

Function onStart obviously means starting of a process. This process stands for signaling
process. It �rst constructs a RTCPeerConnection. Then there are two interfaces need to be
implemented for further use. One is onicecandidate and the other one is onaddstream. In
later process, these two interfaces will be called when new candidates and new streams
are added to this peer connection. Then by calling addStream, the local stream can be
added to the peer connection. The next step is then generating o�er. After generating o�er
successfully, the local description is set by constructing RTCSessionDescription according to
the o�er and the o�er is then sent to callee.

onO�er

Function onO�er handles the situation when it receives an o�er from the server. Thus it
plays the role as callee. As a callee, it constructs a RTCPeerConnection for the remote role,
caller. The same as above, two interfaces onicecandidate and onaddstream are implemented.
And then by calling addStream, the local stream can be added to the peer connection. Since
the o�er carries a RTCSessionDescription, the peer connection set it as a remote description.
The next step is then generating answer. After generating answer successfully, the local
description is set by constructing RTCSessionDescription according to the answer and the
answer is then sent to caller.

5.3. IMPLEMENTATION OF SIGNALING FOR DIRECT CONNECTION TO XMPP SERVER 39

onAnswer

Function onAnswer is called by caller when callee received o�er and sent answer back. As
long as the answer is received by caller, the peer connection of caller set remote description
according to the RTCSessionDescription carried in the answer.

onCandidate

Having exchanged o�er and answer and set local description and remote description for
both peer connections, the event onicecandidate to both peer connections shall be triggered.
They will then send candidates to each other. By receiving candidates, function onCandidate
are called. It adds those remote candidates to the local peer connection.

onChat

Function onChat is executed when receiving a chatting message. It displays the received
chatting message to the ChatComponent on the Web page.

sendChat

Function sendChat is used to send data to a speci�c user. When answer and candidates are
sent to target, sendChat is called.

sendGroupChat

Function sendGroupChat is used to send data to users in a speci�c room. It is used when a
new joined user sends o�er to everybody in the room.

swicher

Function swicher in Algorithm 5.4 works as a dispatcher. Every time there is a data coming
in and received, it checks the data type and then dispatches it to the respective functions.
The data types include start, connect, o�er, answer, candidate and chat.

5.3 Implementation of Signaling for Direct Connection to XMPP
Server

register

In the function register, the third-party library Stroph.js, mentioned in Section 3.3, is
applied. It is used to set up connection to Ejabberd server through WebSocket service
https://f2f.chat:5280/http-bind.

40 5. MODEL IMPLEMENTATION

Algorithm 5.4 Function Swicher

swicher = (data) => {
switch (data.type) {

case "start":
this.onStart();
break;

case "connect":
this.onConnect(data);
break;

case "offer":
this.onOffer(data);
break;

case "answer":
this.onAnswer(data);
break;

case "candidate":
this.onCandidate(data.candidate);
break;

case "chat":
this.onChat(data);
break;

default:
break;

}
}

registerCallback

When feedback is sent back from Ejabberd server, function registerCallback will be called.
According to feedback status, it executes di�erent programs. Status include REGISTER,
REGISTERED, CONFLICT, NOTACCEPTABLE, REGIFAIL and CONNECTED. Except for those
status, it executes nothing.

msg_handler_cb

Function msg_handler_cb is called to handle received messages. Every time Ejabberd push
a message to client, msg_handler_cb is triggered. It parses the message and extracts the
core data from the original data from Ejabberd server. And then it sends the data to swicher
for further handling.

createRoom

Function createRoom is used for creating a chat room for multi user chat.

5.4. IMPLEMENTATION OF SIGNALING FOR INDIRECT CONNECTION TO XMPP SERVER 41

sendChat

It implements the interface sendChat de�ned in SignalService.

sendGroupChat

It implements the interface sendGroupChat de�ned in SignalService.

5.4 Implementation of Signaling for Indirect Connection to
XMPP Server

5.4.1 Core Functions at Front End

register

In function register, it send request to back end and the back end generates a UUID for new
user. In addition, it registers new user on Ejabberd server by utilizing the UUID as part of
the account.

connect

Function connect is used for establish a connection between client and back end server. By
applying the third-party library SockJS, it �rst generates a WebSocket instance establishing
a connection to the target server. Then by applying the third-party library Stomp.js, it
generates a stomp client to support text based message through WebSocket. After that, the
stomp client subscribes the service provided from the back end server.

sendChat

It implements the interface sendChat de�ned in SignalService.

sendGroupChat

It implements the interface sendGroupChat de�ned in SignalService.

5.4.2 Core Functions at Back End

CallController

CallController works as a dispatcher. When request is sent from client, CallController
handles the request and call the corresponding service including registering user and
establishing WebSocket.

CallService: register

register is used to register a new account in XMPP server.

42 5. MODEL IMPLEMENTATION

CallService: login

After registering a new account, function login can be used to login to XMPP server to
enable chatting.

CallService: send

Obviously, function send is used for sending messages through XMPP server.

CallService: openConnection

openConnection is used to open the XMPPTCPConnection which is an API provided by Smack
to establish connection to XMPP server.

CallService: closeConnection

closeConnection is used to close the XMPPTCPConnection in order to terminate the connec-
tion.

WebSocketCon�g

WebSocketCon�g con�gures the WebSocket connected with client. It de�nes the application
destination pre�xes. It also de�nes the URL which is called endpoint. It enables Cross-origin
resource sharing. It also sets the WebSocket handler. In addition, it enables the support for
SockJS.

CallMessageListener

CallMessageListener listens to the messages. As long as there is a new coming message, it
will handle it and send forward to the target.

CallWebSocketHandler

CallWebSocketHandler handles things such as afterConnected, handleException, handle-
TransportError, getPayloadType and handleFrame.

5.5 Implementation of Measurement

sizeof

Function sizeof is a third-party library which is used for computing data size. By setting it
to where data is received and display it in dialog, the data �ow size can be captured.

5.6. CHALLENGES IN IMPLEMENTATION 43

printTimestamp

Function printTimestamp is used for displaying timestamp. This function can be set any-
where needed.

5.6 Challenges in Implementation

It is full of challenges on the way of implementation. But it is exciting when solving hard
problems.

5.6.1 Echo problem

When video and audio resources were �rst loaded locally, it is full of noise. A lot of time
were spent on research how WebRTC acts with echo problem. Some were talking about
theory while some were recommanding tools. However, a super simple solution were found
when I muted the local audio by accident. Then the world became calm.

5.6.2 Advanced con�guration for Ejabberd

Many rare exceptions happened during implementation with using Ejabberd. It has many
settings by default, but seems not working in my situation. In order to make things work, I
have changed many places in the con�guration �le.

Finding registration_timeout and setting it to in�nity enable that I can register new
users as many as possible. Otherwise, it threw some rare exceptions while I registered too
many new users in a short time.

Creating account over insecure connection will throw an exception in future versions
of Smack if AccountManagerṡensitiveOperationOverInsecureConnection(true) is not set.
It was due to trusted_network tag had value as loopback:allow in ejabberd con�g �le. I
changed it to all:allow. Things started to work.

Owner privileges are required. By setting all: allow for creating MUC can solve the
problem.

5.6.3 Strict order of Signaling Process

As described in section 4.2, caller and callee connect to server and exchange necessary
information in order to establish peer connection between each other. This process has to
be strictly in the same order as described. Otherwise, it would throw an exception showing
the current status. However, it did not give more information about what the previous
status is and what the next status is.

44 5. MODEL IMPLEMENTATION

5.6.4 Security of Signaling Process

In order to secure the signaling process, the connections between peer and server are
secured by TLS. All the connections are transferred through HTTPS. When testing locally,
I use self signed certi�cate. When testing on Amazon server, I use certi�cate provided by
Amazon.

Chapter6Results and Analysis

This chapter shows how the application looks like, describes what kind of data are collected,
how the data are collected and how the data are handled from experiments. By analyzing
the data, it concludes some results and based on the results deeper research are conducted.

6.1 Screen Shots

This section show how application looks like from startup to connection established.

Figure 6.1 shows the screen shot of initiating application.

Figure 6.1: Screen Shots: Initiating Application

45

46 6. RESULTS AND ANALYSIS

Figure 6.2: Screen Shots: Application Initiated

Figure 6.3: Screen Shots: Dialog

Figure 6.2 shows the screen shot of application having initiated.

Figure 6.3 shows the screen shot of dialog of chatting �led. This chatting �eld is used
for chatting. Meanwhile, it is used for displaying time costs and data �ow sizes.

6.1. SCREEN SHOTS 47

Figure 6.4: Screen Shots: Joining of Participant

Figure 6.5: Screen Shots: Participant Joined

Figure 6.4 shows the screen shot of joining of another participant.

Figure 6.5 shows the screen shot of another participant having joined.

48 6. RESULTS AND ANALYSIS

Table 6.1: Experiment Environment 1

Location Trondheim, Norway
OS Windows
Process AMD A10-5800K APU with Radeon™ HD Graphics 3.8GHz
Memory 16 GB
System Type Windows 10 Pro 64-bit Operating System, x64-based processor
Browser Google Chrome Version 56.0.2924.87
Signaling Type Direct and Indirect

Table 6.2: Experiment Environment 2

Location Trondheim, Norway
OS Mac
Process 2.8 GHz Intel Core i5
Memory 16 GB 1600 MHz DDR3
System Type OS X EI Captain Version 10.11.6
Browser Google Chrome Version 58.0.3029.81 (64-bit)
Signaling Type Direct and Indirect

Table 6.3: Experiment Environment 3

Location Wuhan, China
OS Windows
Process Intel® Core™ i3-4150 CPU @ 3.50GHz 3.50GHz
Memory 4.00GB (3.71GB usable)
System Type Windows 8 Pro 64-bit Operating Syste, x64-based processor
Browser Google Chrome Version 58.0.3029.81 (64-bit)
Signaling Type Direct and Indirect

6.2 Environment of Experiments

According to di�erent conditions such as location, operating system, processor, memory,
system type and browser, several groups of experiments have been conducted and data
from the following cases have been collected showing in the following tables from Table
6.1 to Table 6.3.

6.3. COLLECTIONS OF DATA 49

Table 6.4: Data Flow Size

Index Direct Model
(byte)

Indirect Model
(byte)

Experiment 1 716973 12066.8
Experiment 2 711600 12047.8
Experiment 3 447945.2 11437.6

6.3 Collections of Data

In order to collect the data needed as results to be analyzed, the experiment is conducted as
follows.

1. Select a callee and record basic information of the callee.
2. Then select a caller and record basic information of the caller.
3. As callee, visit the application on https://direct.f2f.chat/test.
4. Until callee successfully get ready for call, the caller visit the application on web.

Temporarily the application is running on https://direct.f2f.chat/test.
5. Collect the data including candidate number, total time cost, total data �ow.
6. Once again, as callee, visit the application on https://indirect.f2f.chat/test.
7. Until callee successfully get ready for call, the caller visit the application on web.

Temporarily the application is running on https://indirect.f2f.chat/test.
8. Collect data the same as above.
9. Repeat steps above ten times.
Since candidate numbers in each case are always the same in the ten times’ experiment,

they are kept the same as from the original data. The same as candidate numbers, received
candidate numbers are handled in the same way. Total time costs in each case are calculated
as an average value from the ten times’ experiment. The same as total time costs, signaling
time costs without candidate are calculated in the same way. Total message size in each
case are calculated as an average value from the ten times’ experiment. Answer size and
candidate size are calculated in the same way as total message size.

6.4 Analysis of Data

6.4.1 Results

Data Flow Size

Table 6.4 shows the summary of data �ow sizes from the experiments. From Table C.1 and
Table C.2, we can see that in experiment 1 the average data �ow sizes are 716973 bytes for
the Direct model and 12066.8 bytes for the Indirect model. Respectively in experiment 2,
the average data �ow sizes are 711600 bytes and 12047.8 bytes, see Table C.3 and Table C.4.

50 6. RESULTS AND ANALYSIS

Figure 6.6: Data Flow Size in Di�erent Experiments

Table 6.5: Time Cost

Index Direct Model
(second)

Indirect Model
(second)

Experiment 1 11.939 7.347
Experiment 2 2.292 6.110
Experiment 3 5.653 7.397

And in experiment 3, the average data �ow sizes are 447945.2 bytes and 11437.6 bytes, see
Table C.5 and Table C.6.

So from Figure 6.6 we can see obviously, the size of data �ow in the model by using a
middlware server is much less than the size of data �ow in the model without a middleware.
Data �ow size a�ects the transfer time between peer to peer. When data �ow size is larger, it
takes longer time for transferring. Thus, the indirect model does improve the performance
of WebRTC signaling according to the data �ow size.

Time Cost

Table 6.5 shows the summary of time cost from the experiments. From Table C.1 and Table
C.2, we can see that in experiment 1 the average time cost in direct signaling model is
more than the average time cost in indirect signaling model which are 11.939 seconds and
7.347 seconds. While in experiment 2 the average time costs are 2.292 seconds and 6.110

6.4. ANALYSIS OF DATA 51

Figure 6.7: Time Cost in Di�erent Experiments

seconds respectively and in experiment 3 the average time costs are 5.653 seconds and
7.397 seconds respectively which shows the average time cost in direct signaling model is
less than the average time cost in indirect signaling model. This does not indicates which
method is absolutely faster than another method. However, we can see that when the
number of candidates is increasing from one case to another, the average time costs increase
di�erently. Comparing experiment 2 and experiment 1, the numbers of candidates increase
from 5 to 17 and from 6 to 17 while the average time costs increase from 2.292 seconds to
11.939 seconds and from 6.110 seconds to 7.347 seconds. And also, in all cases the average
time costs in direct signaling model varies from 2.292 seconds to 11.939 seconds while the
average time costs in indirect signaling model varies from 6.110 seconds to 7.397 seconds.

So as we can see from Figure 6.7 the average time costs in indirect signaling model
looks more stable than the average time costs in direct signaling model. More stable means
that, when the number of candidates grows even larger, the time cost of WebRTC signaling
would not increase that much.

Number of Candidates

Table 6.6 shows the summary of number of candidates from the experiments. In Figure 6.8,
it shows that in experiment 1 the number of candidates is 17 both by using direct signaling
model and indirect signaling model while in experiment 2 the number of candidates is 5
by using direct signaling model and 6 by using indirect signaling Model. Respectively in
experiment 3, the numbers of candidates are 8 and 6. So the signaling method does not

52 6. RESULTS AND ANALYSIS

Table 6.6: Number of Candidates

Index Direct Model
(second)

Indirect Model
(second)

Experiment 1 17 17
Experiment 2 5 6
Experiment 3 8 6

Figure 6.8: Number of Candidates in Di�erent Experiments

a�ect much on the number of candidates . However, number of candidates varies a lot
according to di�erent conditions and a�ects the performance of the signaling process. To
clearly understand how candidates in�uence the performance of the signaling process,
additional research should be conducted.

6.4.2 Reasoning

Research on ICE Candidate

In order to �gure out why the candidate numbers are so various according to di�erent
conditions, a deeper research on WebRTC ICE Candidate are conducted.

As described in abstract, ICE Candidate is an object which contains information for
establishing communication between peers. Each ICE Candidate describes a method which
the originating peer is able to communicate. Each peer sends candidates in the order of

6.4. ANALYSIS OF DATA 53

discovery, and keeps sending until it runs out of suggestions, even if media has already
started streaming. Once the two peers suggest a compatible candidate, media begins to
�ow. If they later agree on a better pairing (usually higher-performance), the stream may
change formats as needed.[25]

In the signaling process, the o�er and answer have been exchanged and carried the
information to set up calls between users. But they do not carry information about addresses
except for local address. However, the ICE candidates carry the information about target
addresses. Example of a candidate in Implementation 6.1 shows more information about
the addresses. Therefore, to enable the communication between peers after exchanging,
the two peers will exchange ICE Candidates.

Implementation 6.1 Example of ICE Candidate

"candidate:2241210590 1 udp 2122260223 192.168.2.101 54318 typ
host generation 0 ufrag xTxe network-id 1 network-cost 10"

Implementation 6.2 Interface of ICE Candidate[2]

[Constructor(RTCIceCandidateInit candidateInitDict)]
interface RTCIceCandidate {

readonly attribute DOMString candidate;
readonly attribute DOMString? sdpMid;
readonly attribute unsigned short? sdpMLineIndex;
readonly attribute DOMString? foundation;
readonly attribute unsigned long? priority;
readonly attribute DOMString? ip;
readonly attribute RTCIceProtocol? protocol;
readonly attribute unsigned short? port;
readonly attribute RTCIceCandidateType?type;
readonly attribute RTCIceTcpCandidateType? tcpType;
readonly attribute DOMString? relatedAddress;
readonly attribute unsigned short? relatedPort;
readonly attribute DOMString? ufrag;
serializer = {candidate, sdpMid, sdpMLineIndex, ufrag};

};

In model design, it mentioned that the ICE Candidates are exchanged during the sig-
naling process. When candidates are generated by a client, they are then sent to other
clients. In implementation, the RTCIceCandidate interface in Impelmentation 6.2 were
called to execute ICE Candidate. The RTCIceCandidate() constructor takes a dictionary
argument, candidateInitDict, whose content is used to initialize the new RTCIceCandidate
object. When run, if both the sdpMid and sdpMLineIndex dictionary members are null,
throw a TypeError. Besides the constructor, RTCIceCandidate also has thirteen attributes

54 6. RESULTS AND ANALYSIS

including candidate, sdpMid, sdpMLineIndex, foundation, priority, ip, protocol, port, type,
tcpType, relatedAddress, relatedPort, ufrag.

– candidate. This carries the candidate-attribute as de�ned in section 15.1 of [ICE][32].
If this RTCIceCandidate represents an end-of-candidates indication, candidate is an
empty string.

– sdpMid. This contains the identi�er of the "media stream identi�cation" as de�ned
in [RFC5888] for the media component this candidate is associated with.

– sdpMLineIndex. This indicates the index (starting at zero) of the media description
in the SDP this candidate is associated with.

– foundation. This is a unique identi�er that allows ICE to correlate candidates that
appear on multiple RTCIceTransports.

– priority. This is the assigned priority of the candidate.
– ip. This is the IP address of the candidate.
– protocol. This is the protocol of the candidate (udp/tcp).
– port. This is the port of the candidate.
– type. This is the type of the candidate.
– tcpType. If protocol is tcp, tcpType represents the type of TCP candidate.
– relatedAddress. For a candidate that is derived from another, such as a relay or

re�exive candidate, the relatedAddress is the IP address of the candidate that it is
derived from. For host candidates, the relatedAddress is null.

– relatedPort. For a candidate that is derived from another, such as a relay or re�exive
candidate, the relatedPort is the port of the candidate that it is derived from. For host
candidates, the relatedPort is null.

– ufrag. This carries the ufrag as de�ned in section 15.4 of [ICE][32].
Because of the big group of parameters, any change of network condition will lead to

generate a new ICE candidate. The number of candidates may be a�ected by IP address,
port for a particular transport protocol, physical or logical network interfaces, Virtual
Private Network (VPN) or Mobile IP (MIP), private network, public Internet. Therefore
the number of candidates varies a lot according to di�erent conditions. As one network
condition di�ers from another, the number of candidates according to the speci�c network
will change.

In order to generate the ICE Candidates and exchange them, the following steps should
be executed.[32].

1. Gathering Candidate Addresses.
2. Connectivity Checks.
3. Sorting Candidates.
4. Frozen Candidates.
5. Security for Checks.
6. Concluding ICE.
As explained above, the process from generating candidate address to concluding ICE

and exchange ICE Candidates is a complex process. Each step needs time to compute. That

6.4. ANALYSIS OF DATA 55

Figure 6.9: Network Condition of Experiment

is why when the number of candidates increases, the time cost of signaling process is
increasing.

6.4.3 Additional Experiment on ICE Candidate

To make sure everything is correct, an additional experiment on ICE Candidate has been
conducted.

Figure 6.9 shows the network condition of the experiment. It contains both IPv4 and IPv6
addresses. IPv4 address is 10.22.67.94 while IPv6 address is 2001:700:300:4010:8095:f72a:29d8:30b5.
Implementation 6.3 displays the generated candidates and Implementation 6.4 displays the
received candidates. Apparently, each IP address has at least one candidate including IPv4
and IPv6. And for both UDP and TCP, it has di�erent candidates. sdpMid has two types
here, video and audio. So sdpMid also leads to more candidates.

As we can see from Implementation 6.4, not all candidates are exchanged. Even though
not all candidates are exchanged, the process of handling candidates takes time. The greater
the number of candidates is, the more signaling time costs. So optimizing the way it
handling ICE Candidate can help to optimize the performance of WebRTC signaling.

Therefore in the experiments, the more candidates it is, the longer delay it would be
according to di�erent situations.

56 6. RESULTS AND ANALYSIS

Implementation 6.3 Generated Candidates

{"candidate":"candidate:2636380675 1 udp 2122262783
2001:700:300:4010:8095:f72a:29d8:30b5 54971 typ host
generation 0 ufrag TtVx network-id 2 network-cost 10","
sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:2782990128 1 udp 2122194687 10.22.67.94
60359 typ host generation 0 ufrag TtVx network-id 1

network-cost 10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:2636380675 1 udp 2122262783
2001:700:300:4010:8095:f72a:29d8:30b5 60360 typ host
generation 0 ufrag TtVx network-id 2 network-cost 10","
sdpMid":"video","sdpMLineIndex":1}

{"candidate":"candidate:2782990128 1 udp 2122194687 10.22.67.94
65495 typ host generation 0 ufrag TtVx network-id 1

network-cost 10","sdpMid":"video","sdpMLineIndex":1}

{"candidate":"candidate:213811429 1 udp 1685987071
129.241.228.97 40493 typ srflx raddr 10.22.67.94 rport
60359 generation 0 ufrag TtVx network-id 1 network-cost
10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:213811429 1 udp 1685987071
129.241.228.97 37787 typ srflx raddr 10.22.67.94 rport
65495 generation 0 ufrag TtVx network-id 1 network-cost
10","sdpMid":"video","sdpMLineIndex":1}

{"candidate":"candidate:3550480115 1 tcp 1518283007
2001:700:300:4010:8095:f72a:29d8:30b5 9 typ host tcptype
active generation 0 ufrag TtVx network-id 2 network-cost
10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:3949130688 1 tcp 1518214911 10.22.67.94
9 typ host tcptype active generation 0 ufrag TtVx network-

id 1 network-cost 10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:3550480115 1 tcp 1518283007
2001:700:300:4010:8095:f72a:29d8:30b5 9 typ host tcptype
active generation 0 ufrag TtVx network-id 2 network-cost
10","sdpMid":"video","sdpMLineIndex":1}

{"candidate":"candidate:3949130688 1 tcp 1518214911 10.22.67.94
9 typ host tcptype active generation 0 ufrag TtVx network-

id 1 network-cost 10","sdpMid":"video","sdpMLineIndex":1}

6.4. ANALYSIS OF DATA 57

Implementation 6.4 Received Candidates

{"candidate":"candidate:2636380675 1 udp 2122262783
2001:700:300:4010:8095:f72a:29d8:30b5 51873 typ host
generation 0 ufrag RhUW network-id 2 network-cost 10","
sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:2782990128 1 udp 2122194687 10.22.67.94
49691 typ host generation 0 ufrag RhUW network-id 1

network-cost 10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:213811429 1 udp 1685987071
129.241.228.97 63125 typ srflx raddr 10.22.67.94 rport
49691 generation 0 ufrag RhUW network-id 1 network-cost
10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:3550480115 1 tcp 1518283007
2001:700:300:4010:8095:f72a:29d8:30b5 9 typ host tcptype
active generation 0 ufrag RhUW network-id 2 network-cost
10","sdpMid":"audio","sdpMLineIndex":0}

{"candidate":"candidate:3949130688 1 tcp 1518214911 10.22.67.94
9 typ host tcptype active generation 0 ufrag RhUW network-

id 1 network-cost 10","sdpMid":"audio","sdpMLineIndex":0}

Chapter7Conclusion

WebRTC as a new technology based on Web is becoming more and more mature. W3C
de�nes the standard of WebRTC APIs used for establishing connection to remote peers,
sending and receiving tracks from remote peers and sending arbitrary data directly to
remote peers. IETF de�nes a set of standards for WebRTC communication between peers.
Even though the standard for WebRTC signaling has not been de�ned yet, there are many
good solutions for it. XMPP as a mature protocol, which is open standard for messaging
and presence, is one of those proposed signaling solutions for WebRTC.

After studying on WebRTC, on signaling and on XMPP as a solution for WebRTC
signaling, this research �rst designed one model that WebRTC supported browser connects
to XMPP server directly which is the basic way to design. As thinking of that XMPP is a
heavy text based protocol which may lead to too much tra�c through the Internet, this
research designed another model that building a middleware server on the same sever as
XMPP server, so that WebRTC browser communicates with the middleware sever with
core information and the middleware server communicates with XMPP server with XMPP
supported message, and thus the majority of tra�c are moved from Internet to local. It then
assumed that the latter model may improve performance of delay for WebRTC signaling.

In order to validate the assumption, two models have been implemented. In addition, to
analyze two models, the validation methods have also been implemented. Many technolo-
gies have been used during implementations. JavaScript is used as the main development
language for front end and Java for back end. Angular is chosen as front end framework
and Spring is chosen as back end framework. Ejabberd is used as XMPP server. For the
model with direct connection to XMPP server, StrophJS is used to establish WebSocket
connection between WebRTC supported browser and Ejabberd, while for the model with
middleware, SockJs and STOMP are used to transfer data over WebSocket and Smack is
used for back end communicating with Ejabberd.

Even though many challenges were faced during implementation such as echo problem,
advanced con�guration for Ejabberd, strict order of signaling process and security of

59

60 7. CONCLUSION

signaling process, it is an exciting work and in the end both models work. Therefore, it
convinced that XMPP as WebRTC signaling method can be a valid solution. In addition,
methods of measurement also work �ne.

Analysis was then followed by experiments after implementation. Three experiments
have been done according to di�erent situations such as location, operation system, process,
memory, browser and signaling types. The analysis of delay performance based on the
three experiments has been conducted to �nd out in quantity that building a middleware
server together with XMPP server can move most data from Internet to local. However,
building a middleware server can not guarantee less delay. But the delay is more stable in
the model with middlware than in the model with direct connection to XMPP server, since
the delays for the model with direct connection to XMPP server vary over ten seconds
while the delays for the model with middleware vary less than one second.

From �gures about delay and number of candidates, it looks that they may have certain
relationship between each other, thus additional research and experiment on ICE candi-
date have been conducted. It �nds out that number of candidates does a�ect the delay
performance of WebRTC signaling. The less the number of candidates is, the less delay it
will be. ICE candidate message consists of many elements including candidate, sdbMid,
sdpMLineIndex, foundation, priority, ip, protocol, port, type, tcpType, relatedAddress, relat-
edPort and ufrag. As long as any of these elements has new parameters, a new candidate
would be generated, the number of candidates thus would increase. In addition, process
of ICE candidates is a complex process with six core steps which take time. Therefore, as
condition of network becomes more and more complex, the number of candidates will be
greater, leading to longer delay of WebRTC signaling process.

WebRTC is a nice technology for peer to peer communication, and XMPP works �ne as
a solution for WebRTC signaling. ICE candidate as an important role in WebRTC signaling
a�ects much on delay performance of WebRTC signaling. More research on ICE candidate
can help to improve the delay performance of WebRTC signaling.

References

[1] S. Loreto, Realtime Communication with WebRTC : Peer-to-Peer in the Browser. Salvatore
Loreto and Simon Pietro Romano: O’Reilly Media, 2014.

[2] C. J. A. N. B. A. Adam Bergkvist, Daniel C. Burnett, “Webrtc 1.0: Real-time commu-
nication between browsers (w3c editor’s draft 13 march 2017).” https://w3c.github.io/
webrtc-pc/archives/20170313/webrtc.html, 2017. Online; accessed 1 May 2017.

[3] I. T. U. I. Telecommunication Development Bureau, “Ict facts and �gures 2005, 2010,
2016.” http://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx, 2016. Online;
accessed May 24th 2015.

[4] W3C, “What is the di�erence between the web and the internet?.” W3C Help and FAQ,
2009. Retrieved 16 July 2015.

[5] webrtc.org, “Webrtc is a free, open project.” Home page, 2016. Retrieved 1 October 2016.

[6] S. Dutton, “Getting started with webrtc.” https://www.html5rocks.com/en/tutorials/
webrtc/basics/, 2016. Online; accessed 1 Sepetmber 2016.

[7] B. Sredojev, D. Samardzija, and D. Posarac, “Webrtc technology overview and signaling
solution design and implementation,” in Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2015 38th International Convention on, pp. 1006–
1009, May 2015.

[8] M. Adeyeye, I. Makitla, and T. Fogwill, “Determining the signalling overhead of two
common webrtc methods: Json via xmlhttprequest and sip over websocket,” in AFRICON,
2013, pp. 1–5, Sept 2013.

[9] P. Saint-Andre, “Jingle: Jabber does multimedia,” IEEE MultiMedia, vol. 14, pp. 90–94,
Jan 2007.

[10] J. Paik and D. H. Lee, “Scalable signaling protocol for web real-time communication
based on a distributed hash table,” Computer Communications, vol. 70, pp. 28–39, 2015.

[11] xmpp.org, “An overview of xmpp.” https://xmpp.org/about/technology-overview.html,
2016. Online; accessed 1 Sepetmber 2016.

61

https://w3c.github.io/webrtc-pc/archives/20170313/webrtc.html
https://w3c.github.io/webrtc-pc/archives/20170313/webrtc.html
http://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://xmpp.org/about/technology-overview.html

62 REFERENCES

[12] J. G. van Bosse, Signaling in Telecommunication Networks. Northeastern University:
Wiley, 2002.

[13] Wikipedia, “Signaling protocol.” https://en.wikipedia.org/wiki/Signaling_protocol, 2016.
Online; accessed 1 Sepetmber 2016.

[14] N. W. Group, “Extensible messaging and presence protocol (xmpp): Core.” https://xmpp.
org/rfcs/rfc3920.html, 2004. Online; accessed 1 Sepetmber 2016.

[15] N. W. Group, “Extensible messaging and presence protocol (xmpp): Instant messaging
and presence.” https://xmpp.org/rfcs/rfc3921.html, 2004. Online; accessed 1 Sepetmber
2016.

[16] I. E. T. F. (IETF), “Extensible messaging and presence protocol (xmpp): Core.” https:
//xmpp.org/rfcs/rfc6120.html, 2011. Online; accessed 1 Sepetmber 2016.

[17] I. E. T. F. (IETF), “Extensible messaging and presence protocol (xmpp): Instant messaging
and presence.” https://xmpp.org/rfcs/rfc6121.html, 2011. Online; accessed 1 Sepetmber
2016.

[18] I. E. T. F. (IETF), “Extensible messaging and presence protocol (xmpp): Address format.”
https://tools.ietf.org/html/rfc7622, 2015. Online; accessed 1 Sepetmber 2016.

[19] e. a. Rosenberg, “Sip: Session initiation protocol.” https://www.ietf.org/rfc/rfc3261.txt,
2002. Online; accessed 1 Sepetmber 2016.

[20] R. Sparks, “Sip: Basics and beyond,” Queue, vol. 5, pp. 22–33, Mar. 2007.

[21] P. S.-A. R. M. S. E. J. H. Scott Ludwig, Joe Beda, “Xep-0166: Jingle.” https://xmpp.org/
extensions/xep-0166.html, 2016. Online; accessed 1 Sepetmber 2016.

[22] P. Krill, “Ajax alliance recognizes mashups,” InfoWorld.

[23] C. C. McCarthy, Dennis, Comet and Reverse Ajax: The Next-Generation Ajax 2.0. Apress,
2008.

[24] A. M. I. Fette, “The websocket protocol.” https://tools.ietf.org/html/rfc6455, 2016. Online;
accessed 1 Sepetmber 2016.

[25] Mozilla, “Webrtc api.” https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API,
2017. Online; accessed 1 May 2017.

[26] Ejabberd, “Ejabberd robust, scalable and extensible xmpp server.” https://www.ejabberd.
im/, 2016. Online; accessed 1 Sepetmber 2016.

[27] STOMP, “Stomp the simple text oriented messaging protocol.” https://stomp.github.io/,
2016. Online; accessed 1 Sepetmber 2016.

[28] Smack, “Smack overview.” http://download.igniterealtime.org/smack/docs/latest/
documentation/overview.html, 2016. Online; accessed 1 Sepetmber 2016.

https://en.wikipedia.org/wiki/Signaling_protocol
https://xmpp.org/rfcs/rfc3920.html
https://xmpp.org/rfcs/rfc3920.html
https://xmpp.org/rfcs/rfc3921.html
https://xmpp.org/rfcs/rfc6120.html
https://xmpp.org/rfcs/rfc6120.html
https://xmpp.org/rfcs/rfc6121.html
https://tools.ietf.org/html/rfc7622
https://www.ietf.org/rfc/rfc3261.txt
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0166.html
https://tools.ietf.org/html/rfc6455
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://www.ejabberd.im/
https://www.ejabberd.im/
https://stomp.github.io/
http://download.igniterealtime.org/smack/docs/latest/documentation/overview.html
http://download.igniterealtime.org/smack/docs/latest/documentation/overview.html

REFERENCES 63

[29] J. Mo�tt, “Strophe.js an xmpp library for javascript.” http://strophe.im/strophejs/, 2016.
Online; accessed 1 Sepetmber 2016.

[30] Angular, “Angular.” https://angularjs.org/, 2016. Online; accessed 1 Sepetmber 2016.

[31] Spring, “Let’s build a better enterprise.” https://spring.io/, 2016. Online; accessed 1
Sepetmber 2016.

[32] J. Rosenberg, “Interactive connectivity establishment (ice): A protocol for network
address translator (nat) traversal for o�er/answer protocols.” https://tools.ietf.org/html/
rfc5245, 2016. Online; accessed 1 Sepetmber 2016.

http://strophe.im/strophejs/
https://angularjs.org/
https://spring.io/
https://tools.ietf.org/html/rfc5245
https://tools.ietf.org/html/rfc5245

ChapterAFront End Implementation

A.1 Component Layer

A.1.1 AppComponent
import {Component, AfterViewInit, NgZone} from ’@angular/core’

import {SignalService} from "../service/signal2";
import {SettingService} from "../service/setting";
import {DirectConnectionService} from "../service/

directConnection";
import {IndirectConnectionService} from "../service/

indirectConnection";

@Component({
selector: ’my-app’,
template: ‘
<div class="video-background">

<div class="video-background" *ngFor="let video of
videos; let first = first; let i = index;">
<my-video [(videoId)]="video.videoId" [(isMuted)]="

video.isMuted" [(isLoaded)]="video.isLoaded" [(
source)]="video.source"></my-video>

</div>
</div>
<div class="chat-background">

<my-chat #msgs></my-chat>
</div>
‘,
providers: [SettingService, SignalService,

DirectConnectionService, IndirectConnectionService]
})

export class App implements AfterViewInit {

65

66 A. FRONT END IMPLEMENTATION

videos = [
{videoId: ’localVideo’, isMuted: ’muted’, isLoaded: true,

source: null}
];

constructor(private signal:SignalService, private setting:
SettingService, private zone:NgZone) {
this.signal = signal;

}

ngAfterViewInit():void {
this.setting.setVideos(this.videos);
this.setting.videosUpdated.subscribe(

(videos) => {
this.zone.run(

()=> {
this.videos = videos;

}
);

}
);
this.signal.onInit();

}
}

A.1. COMPONENT LAYER 67

A.1.2 VideoComponent
import {Component, Input} from ’@angular/core’;

@Component({
selector: ’my-video’,
template: ‘
<div class="video-content" *ngIf="!isLoaded">

<my-video-loader></my-video-loader>
</div>
<div class="video-content" *ngIf="isLoaded">

<video autoplay id="{{videoId}}" muted="{{isMuted}}"
class="video-container" src="{{source}}"></video>

</div>
‘,
providers: []

})

export class Video {
@Input() videoId:string;
@Input() isMuted:string;
@Input() isLoaded:boolean;
@Input() source:any;

}

68 A. FRONT END IMPLEMENTATION

A.1.3 ChatComponent

import {Component, NgZone} from ’@angular/core’;
import {SettingService} from "../service/setting";
import {SignalService} from "../service/signal2";

@Component({
selector: ’my-chat’,
template: ‘
<div class="chat-container">

<div class="form-group">
<div class="message-container">

<p *ngFor="let msg of msgs; let first = first;
let i = index;">
{{ msg }}

</p>
</div>
<textarea class="form-control" rows="3" id="comment"

placeholder="Press Enter To Send Message"
(keyup.enter)="onEnter()" [(ngModel)]="inputValue"></

textarea>
</div>

</div>
‘,
providers: []

})

export class Chat {
msgs = [];
inputValue:string;

constructor(private signal:SignalService, private setting:
SettingService, private zone:NgZone) {
this.signal = signal;
this.setting = setting;

this.setting.chatsUpdated.subscribe(
(msgs)=> {

this.zone.run(
()=> {

this.msgs = msgs;
this.msgs.reverse();

}
);

}
);

A.1. COMPONENT LAYER 69

}

onEnter() {
console.log(this.inputValue);
this.setting.addChat("Me: " + this.inputValue);
this.signal.sendGroupChat({

’type’: ’chat’,
’from’: this.setting.username,
’roomName’: this.setting.roomName,
’username’: this.setting.username,
’msg’: this.inputValue

});
this.inputValue = ’’;

}
}

70 A. FRONT END IMPLEMENTATION

A.2 Service Layer

A.2.1 SignalService

import {Injectable} from ’@angular/core’;
import {Http} from ’@angular/http’;
import {Cookie} from ’ng2-cookies/ng2-cookies’;
import ’rxjs/Rx’;
import ’webrtc-adapter’;
import {SettingService} from "./setting";
import {DirectConnectionService} from "./directConnection";
import {IndirectConnectionService} from "./indirectConnection"

;

declare let navigator:any;

@Injectable()
export class SignalService {

private remoteVideoId;
private remoteVideoIndex;
private callerPC;
private calleePC;
private localPC;

constructor(private http:Http, private setting:
SettingService, private connection:
DirectConnectionService) {
this.http = http;
this.setting = setting;
this.connection = connection;

}

onInit = ()=> {
this.setting.currentTime = Date.now();
this.setting.currentSize = 0;
this.printTimestamp("Initiating");

// Initiate room attributes
this.setting.roomName = window.location.pathname.split(’/

’)[1];
this.setting.username = Cookie.get(’webrtc_username’);
this.setting.serverUrl = window.location.protocol + "//"

+ window.location.hostname + ":" + window.location.
port;

this.setting.ejabberdUrl = "https://ejabberd.f2f.chat
:5280/http-bind";

A.2. SERVICE LAYER 71

// Configure video attributes
if (this.hasUserMedia()) {

navigator.getUserMedia = navigator.getUserMedia ||
navigator.webkitGetUserMedia
|| navigator.mozGetUserMedia;

//enabling video and audio channels
navigator.getUserMedia(

{video: true, audio: true}, stream => {
let videos = this.setting.getVideos();
this.addStream(videos[0].videoId, stream);
this.setting.setVideos(videos);
this.setting.localStream = stream;
this.printTimestamp("Local stream added");
if (!this.setting.username) {

this.connection.register(this);
}
else {

this.connection.connect(this);
}

}, err => {
console.log(err);

});

} else {
alert("WebRTC is not supported");

}
};

//check if the browser supports the WebRTC
hasUserMedia = () => {

return !!(navigator.getUserMedia || navigator.
webkitGetUserMedia ||

navigator.mozGetUserMedia);
};

addStream = (videoId, stream) => {
let video = <HTMLVideoElement>document.getElementById(

videoId);
video.srcObject = stream;

};

swicher(data) {
console.log(data);

72 A. FRONT END IMPLEMENTATION

switch (data.type) {
case "start":

this.onStart();
break;

case "connect":
this.onConnect(data);
break;

case "offer":
this.onOffer(data);
break;

case "answer":
this.onAnswer(data);
break;

case "candidate":
this.onCandidate(data.candidate);
break;

case "chat":
this.onChat(data);
break;

default:
break;

}
}

onConnect = (data) => {
let videos = this.setting.getVideos();
this.remoteVideoIndex = videos.length;
this.remoteVideoId = ’remoteVideo’ + this.

remoteVideoIndex;
videos.push({videoId: this.remoteVideoId, isMuted: ’’,

isLoaded: false, source: null});
this.setting.setVideos(videos);

};

onStart = () => {
let offerOptions = {

offerToReceiveAudio: true,
offerToReceiveVideo: true

};

this.callerPC = new RTCPeerConnection(this.setting.
peerConnectionConfig);

this.callerPC.onicecandidate = event => {
this.printTimestamp("Iceandidate added to caller");
if (event && event.candidate) {

A.2. SERVICE LAYER 73

this.localPC = this.callerPC;
this.sendGroupChat({

type: "candidate",
from: this.setting.username,
candidate: event.candidate

});
}

};
this.callerPC.onaddstream = event => {

let videos = this.setting.getVideos();
if (videos[this.remoteVideoIndex] !== undefined) {

videos[this.remoteVideoIndex].isLoaded = true;
this.setting.setVideos(videos);
this.addStream(this.remoteVideoId, event.stream);
this.printTimestamp("Remote stream added");
this.printTimestamp("Done!");

}
};
this.callerPC.addStream(this.setting.localStream);

// 1. This is the first step, create offer and send
this.callerPC.createOffer(offerOptions).then(offer=> {

this.resetTimestamp();
this.printTimestamp("Offer created");
this.callerPC.setLocalDescription(new

RTCSessionDescription(offer), () => {

this.printTimestamp("Offer sent");
this.localPC = this.callerPC;
this.sendGroupChat({

type: "offer",
from: this.setting.username,
offer: offer

});
}, err => {

console.log(err);
});

}).catch(err=> {
console.log(err);

});
};

onOffer = (offer) => {
this.resetTimestamp();

74 A. FRONT END IMPLEMENTATION

this.calleePC = new RTCPeerConnection(this.setting.
peerConnectionConfig);

this.calleePC.onicecandidate = event => {
if (event && event.candidate) {

this.printTimestamp("Iceandidate added to callee "
);

this.sendGroupChat({
type: "candidate",
from: this.setting.username,
candidate: event.candidate

});
}

};
this.calleePC.onaddstream = event=> {

let videos = this.setting.getVideos();
if (videos[this.remoteVideoIndex] !== undefined) {

videos[this.remoteVideoIndex].isLoaded = true;
this.setting.setVideos(videos);
this.addStream(this.remoteVideoId, event.stream);
this.printTimestamp("Remote stream added");
this.printTimestamp("Done!");

}
};
this.calleePC.addStream(this.setting.localStream);

// 2. This is the second step, get offer and send answer
this.calleePC.setRemoteDescription(new

RTCSessionDescription(offer.offer), () => {
this.calleePC.createAnswer(answer => {

this.printTimestamp("Answer created");
this.calleePC.setLocalDescription(new

RTCSessionDescription(answer), () => {
this.localPC = this.calleePC;
this.sendChat({

type: "answer",
from: this.setting.username,
to: offer.from,
answer: answer

});
});

}, err=> {
console.log(err);

});

}, err=> {

A.2. SERVICE LAYER 75

console.log(err);
});

};

onAnswer = (answer) => {
let videos = this.setting.getVideos();
this.remoteVideoIndex = videos.length;
this.remoteVideoId = ’remoteVideo’ + this.

remoteVideoIndex;
videos.push({videoId: this.remoteVideoId, isMuted: ’’,

isLoaded: false, source: null});
this.setting.setVideos(videos);

// 3. This is the third step, get answer
this.callerPC.setRemoteDescription(new

RTCSessionDescription(answer.answer), () => {
this.printTimestamp("Answer received");

}, err => {
console.log(err);

});

};

onCandidate = (candidate) => {
this.printTimestamp("Candidate received");
if (candidate)

this.localPC.addIceCandidate(new RTCIceCandidate(
candidate));

};

onChat = (data) => {
this.setting.addChat(data.username + ": " + data.msg);

};

sendChat = (data) => {
this.connection.sendChat(data);

};

sendGroupChat = (data) => {
this.connection.sendGroupChat(data);

};

printTimestamp = (value)=> {

76 A. FRONT END IMPLEMENTATION

this.setting.addChat((Date.now() - this.setting.
currentTime) / 1000 + " s: " + value);

};

resetTimestamp = ()=> {
this.setting.currentTime = Date.now();
this.setting.addChat("Timestamp is reset");

};
}

A.2. SERVICE LAYER 77

A.2.2 DirectConnectionService

import {Injectable} from ’@angular/core’;
import {Http, Headers} from ’@angular/http’;
import ’rxjs/Rx’;
import ’webrtc-adapter’;
import {SettingService} from "./setting";

declare let Strophe:any;
declare let $pres:any;
declare let $:any;
declare let uuid:any;
declare let sizeof:any;

@Injectable()
export class DirectConnectionService {

private connection:any;
private signal:any;

constructor(private http:Http, private setting:
SettingService) {
this.http = http;
this.setting = setting;

}

registerCallback = (status) => {
if (status === Strophe.Status.REGISTER) {

// fill out the fields
this.setting.username = uuid.v4().split("-").join("");
this.connection.register.fields.username = this.

setting.username;
this.connection.register.fields.password = this.

setting.password;
// calling submit will continue the registration

process
this.connection.register.submit();

} else if (status === Strophe.Status.REGISTERED) {
console.log("registered!");
// calling login will authenticate the registered JID.
this.connection.authenticate();

} else if (status === Strophe.Status.CONFLICT) {
console.log("Contact already existed!");

} else if (status === Strophe.Status.NOTACCEPTABLE) {
console.log("Registration form not properly filled

out.")

78 A. FRONT END IMPLEMENTATION

} else if (status === Strophe.Status.REGIFAIL) {
console.log("The Server does not support In-Band

Registration")
} else if (status === Strophe.Status.CONNECTED) {

console.log("Connected");
this.createRoom();
// do something after successful authentication

} else {
console.log("Do nothing");
// Do other stuff

}
};

register = (signal) => {
this.signal = signal;
this.connection = new Strophe.Connection("https://f2f.

chat:5280/http-bind");
this.connection.register.connect("f2f.chat", this.

registerCallback);

};

msg_handler_cb = (msg)=> {
// console.log(msg);
let from = $(msg).attr("from");
let fromUser = from.split(’/’)[1];
let to = $(msg).attr("to");
let toUser = from.split(’@’)[0];
if (fromUser == this.setting.username || fromUser ==

toUser)
return true;

this.setting.currentSize += sizeof(msg);
this.setting.addChat("==================");
this.setting.addChat(this.setting.currentSize);
let data = JSON.parse($(msg).find("body").text());
this.setting.addChat(data.type);
this.setting.addChat("==================");
// console.log(data.type);
this.signal.swicher(data);
return true;

};

createRoom = ()=> {
this.connection.muc.init(this.connection);
this.connection.muc.join(

A.2. SERVICE LAYER 79

this.setting.roomName + "@conference.f2f.chat",
this.setting.username,
this.msg_handler_cb,
this.pres_handler_cb,
null,
null,
{maxstanzas: 0});

this.sendGroupChat({
type: ’connect’,
from: this.setting.username

});
this.signal.swicher({

type: ’start’
});

};

sendChat = (data) => {
// console.log("send" + JSON.stringify(data));
// this.connection.muc.message(data.to + "@f2f.chat",

null, JSON.stringify(data), null, "chat", null);
this.sendGroupChat(data);

};

sendGroupChat = (data) => {
console.log(JSON.stringify(data));
// console.log("send" + JSON.stringify(data));
this.connection.muc.groupchat(this.setting.roomName + "

@conference.f2f.chat", JSON.stringify(data), null,
null);

};
}

80 A. FRONT END IMPLEMENTATION

A.2.3 IndirectConnectionService

import {Injectable} from ’@angular/core’;
import {Http} from ’@angular/http’;
import ’rxjs/Rx’;
import ’webrtc-adapter’;
import {SettingService} from "./setting";

declare let Strophe:any;
declare let SockJS:any;
declare let Stomp:any;
declare let sizeof:any;

@Injectable()
export class IndirectConnectionService {

private stompClient:any;
private signal:any;

constructor(private http:Http, private setting:
SettingService) {
this.http = http;
this.setting = setting;

}

register = (signal) => {
this.signal = signal;
this.http.get(this.setting.serverUrl + "/register")

.subscribe(data => {
if (data != null) {

// console.log(data.text());
this.setting.username = data.text();
// Cookie.set("webrtc_username", this.setting.

username);
this.connect(signal);

}
else {

console.log("Error")
}

});
}

connect = (signal)=> {
this.signal = signal;
let socket = new SockJS(this.setting.serverUrl + ’/call’

);

A.2. SERVICE LAYER 81

this.stompClient = Stomp.over(socket);
this.stompClient.debug = null;
this.stompClient.connect({}, () => {

this.stompClient.subscribe(’/receive/call/’ + this.
setting.roomName + ’/’ + this.setting.username,
msg => {
this.setting.currentSize += sizeof(msg);
this.setting.addChat("==================");
this.setting.addChat(this.setting.currentSize);
let data = JSON.parse(msg.body);
this.setting.addChat(data.type);
this.setting.addChat("==================");
this.signal.swicher(data);

}, err => {
console.log(err);

});

this.sendGroupChat({
type: ’connect’

});
});

};

sendChat = (data) => {
this.stompClient.send("/app/call/" + this.setting.

roomName + "/" + this.setting.username, {}, JSON.
stringify(data));

};

sendGroupChat = (data)=> {
this.stompClient.send("/app/call/" + this.setting.

roomName + "/" + this.setting.username, {}, JSON.
stringify(data));

};
}

82 A. FRONT END IMPLEMENTATION

A.2.4 SettingService

import {Injectable, EventEmitter, Output} from ’@angular/core’
;

@Injectable()
export class SettingService {

videosUpdated:EventEmitter<any> = new EventEmitter();
chatsUpdated:EventEmitter<any> = new EventEmitter();

private videos = [];
private chats = [];

public roomName:string = window.location.pathname.split(’/’
)[1];

public username:string;
public password:string = "12345";
public serverUrl:string;
public ejabberdUrl:string;
public peerConnectionConfig = {

// "iceServers": [{"urls": "stun:stun.l.google.com
:19302"}]

"iceServers": [{"urls": "stun:chun.no:3479"}, {"urls": "
stun:stun.l.google.com:19302"}]

};
public localStream:any;
public currentTime;
public currentSize:number;

getVideos() {
return this.videos;

}

setVideos(value) {
this.videos = value;
this.videosUpdated.emit(this.videos);

}

getChats() {
return this.chats;

}

addChat(value) {
this.chats.reverse();

A.2. SERVICE LAYER 83

this.chats.push(value);
this.chatsUpdated.emit(this.chats);

}
}

ChapterBBack End Implementation

B.1 Controller Layer

B.1.1 CallController
package com.aprilchun.test.controller;

import com.aprilchun.test.service.CallService;
import org.jivesoftware.smack.AbstractXMPPConnection;
import org.jivesoftware.smack.ConnectionConfiguration;
import org.jivesoftware.smack.tcp.XMPPTCPConnection;
import org.jivesoftware.smack.tcp.

XMPPTCPConnectionConfiguration;
import org.jivesoftware.smackx.muc.MultiUserChat;
import org.jivesoftware.smackx.muc.MultiUserChatManager;
import org.jivesoftware.smackx.xdata.Form;
import org.jivesoftware.smackx.xdata.packet.DataForm;
import org.json.JSONObject;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Scope;
import org.springframework.messaging.handler.annotation.

DestinationVariable;
import org.springframework.messaging.handler.annotation.

MessageMapping;
import org.springframework.messaging.handler.annotation.SendTo

;
import org.springframework.messaging.simp.

SimpMessageHeaderAccessor;
import org.springframework.messaging.simp.

SimpMessagingTemplate;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.*;

85

86 B. BACK END IMPLEMENTATION

import javax.servlet.http.HttpServletRequest;
import java.util.Map;
import java.util.UUID;

@Scope("prototype")
@Controller
public class CallController {

@Autowired
private CallService callService;
@Autowired
private SimpMessagingTemplate template;

@RequestMapping(value = "")
public String index(Model model) {

return "index";
}

@RequestMapping(value = "/{urlPath}")
public String webrtc(@PathVariable("urlPath") String

urlPath, HttpServletRequest request) {
//return "webrtc";
return "forward:/static/client/index.html";

}

@ResponseBody
@RequestMapping(value = "/register", method = RequestMethod.

GET, produces = "text/plain; charset=utf-8")
public String register() {

String username = UUID.randomUUID().toString().replaceAll
("-", "");

return this.callService.register(username);
}

@MessageMapping("/call/{roomName}/{username}")
@SendTo("/receive/call/{roomName}/{username}")
public String call(@DestinationVariable String roomName,

@DestinationVariable String username,
SimpMessageHeaderAccessor headerAccessor, String message)
{

try {
Map session = headerAccessor.getSessionAttributes();
XMPPTCPConnection connection;
MultiUserChat muc;
JSONObject messageJSON = new JSONObject(message);
switch (messageJSON.getString("type")) {

B.1. CONTROLLER LAYER 87

case "connect":
connection = this.callService.login(username);
session.put("connection", connection);
muc = this.callService.createOrJoin(roomName,

username, connection, this.template);
muc.sendMessage(message);
session.put("muc", muc);
messageJSON.put("type", "start");
return messageJSON.toString();

default:
muc = (MultiUserChat) session.get("muc");
muc.sendMessage(message);
return null;

}
} catch (Exception e) {

return null;
}

}
}

88 B. BACK END IMPLEMENTATION

B.2 Service Layer

B.2.1 CallService

package com.aprilchun.test.service;

import com.aprilchun.test.websocket.CallMessageListener;
import com.aprilchun.test.util.Constant;
import org.jivesoftware.smack.ConnectionConfiguration;
import org.jivesoftware.smack.SASLAuthentication;
import org.jivesoftware.smack.SmackConfiguration;
import org.jivesoftware.smack.packet.Presence;
import org.jivesoftware.smack.tcp.XMPPTCPConnection;
import org.jivesoftware.smack.tcp.

XMPPTCPConnectionConfiguration;
import org.jivesoftware.smackx.iqregister.AccountManager;
import org.jivesoftware.smackx.muc.DiscussionHistory;
import org.jivesoftware.smackx.muc.MultiUserChat;
import org.jivesoftware.smackx.muc.MultiUserChatManager;
import org.json.JSONObject;
import org.springframework.context.annotation.Scope;
import org.springframework.messaging.simp.

SimpMessagingTemplate;
import org.springframework.stereotype.Service;

import java.util.Calendar;

@Scope("prototype")
@Service("callService")
public class CallService {

XMPPTCPConnection connection;
XMPPTCPConnectionConfiguration config =

XMPPTCPConnectionConfiguration.builder()
.setServiceName(Constant.EJABBERD_SERVER_NAME)
.setHost(Constant.EJABBERD_HOST)
.setPort(Constant.EJABBERD_PORT)
.setSecurityMode(ConnectionConfiguration.SecurityMode.

disabled)
.setDebuggerEnabled(false)
.build();

MultiUserChat muc;

public String register(String username) {
try {

this.openConnection();

B.2. SERVICE LAYER 89

AccountManager accountManager = AccountManager.
getInstance(connection);

accountManager.createAccount(username, Constant.
DEFAULT_PASSWORD);

return username;
} catch (Exception e) {

return null;
}

}

public XMPPTCPConnection login(String username) throws
Exception {
this.openConnection();
connection.login(username, Constant.DEFAULT_PASSWORD);
Presence presence = new Presence(Presence.Type.available)

;
connection.sendStanza(presence);

return connection;
}

public MultiUserChat createOrJoin(String roomName, String
username, XMPPTCPConnection connection,
SimpMessagingTemplate template) throws Exception {
MultiUserChatManager manager = MultiUserChatManager.

getInstanceFor(connection);
this.muc = manager.getMultiUserChat(roomName + "

@conference." + Constant.EJABBERD_SERVER_NAME);
if (!this.muc.isJoined()) {

DiscussionHistory history = new DiscussionHistory();
history.setMaxStanzas(0);
this.muc.createOrJoin(username, null, history,

SmackConfiguration.getDefaultPacketReplyTimeout());
}
this.muc.addMessageListener(new CallMessageListener(

roomName, username, template));

return this.muc;
}

public String init() throws Exception {
JSONObject resultJSON = new JSONObject();
resultJSON.put("type", "init");

90 B. BACK END IMPLEMENTATION

return resultJSON.toString();
}

public void send(String msg) throws Exception {
this.muc.sendMessage(msg);

}

public XMPPTCPConnection openConnection() throws Exception
{

if (this.connection == null) {
this.connection = new XMPPTCPConnection(this.config);

}
if (!this.connection.isConnected()) {

this.connection.connect();
}
return this.connection;

}

public void closeConnection() {
this.connection.disconnect();

}
}

B.3. WEBSOCKET LAYER 91

B.3 WebSocket Layer

B.3.1 WebSocketCon�g
package com.aprilchun.test.websocket;

import org.springframework.context.annotation.Configuration;
import org.springframework.messaging.simp.config.

MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.*;
import org.springframework.web.socket.server.standard.

TomcatRequestUpgradeStrategy;
import org.springframework.web.socket.server.support.

DefaultHandshakeHandler;

@Configuration
@EnableWebSocket
@EnableWebSocketMessageBroker
public class WebSocketConfig extends

AbstractWebSocketMessageBrokerConfigurer {

@Override
public void configureMessageBroker(MessageBrokerRegistry

config) {
config.enableSimpleBroker("/topic");
config.enableSimpleBroker("/receive");
config.setApplicationDestinationPrefixes("/app");

}

@Override
public void registerStompEndpoints(StompEndpointRegistry

registry) {
registry.addEndpoint("/call")

.setAllowedOrigins("*")

.setHandshakeHandler(new DefaultHandshakeHandler(
new TomcatRequestUpgradeStrategy()))

.withSockJS();
registry.addEndpoint("/message")

.setAllowedOrigins("*")

.setHandshakeHandler(new DefaultHandshakeHandler(
new TomcatRequestUpgradeStrategy()))

.withSockJS();
}

}

92 B. BACK END IMPLEMENTATION

B.3.2 CallMessageListener

package com.aprilchun.test.websocket;

import org.jivesoftware.smack.MessageListener;
import org.jivesoftware.smack.packet.Message;
import org.jivesoftware.smackx.muc.MultiUserChat;
import org.springframework.context.annotation.Scope;
import org.springframework.messaging.handler.annotation.

DestinationVariable;
import org.springframework.messaging.simp.

SimpMessagingTemplate;
import org.springframework.stereotype.Service;

public class CallMessageListener implements MessageListener
{

private String roomName, username;
private SimpMessagingTemplate template;

public CallMessageListener(String roomName, String username
, SimpMessagingTemplate template) {
this.roomName = roomName;
this.username = username;
this.template = template;

}

@Override
public void processMessage(Message message) {

String from = message.getFrom();
String to = message.getTo();
String body = message.getBody();
try {

if (!from.split("/")[1].equals(username))
this.sendMessage(this.roomName, this.username, body);

} catch (Exception e) {
e.printStackTrace();

}

}

public void sendMessage(@DestinationVariable String
roomName, @DestinationVariable String username, String
msg) throws Exception {
this.template.convertAndSend("/receive/call/" + roomName

+ "/" + username, msg);

B.3. WEBSOCKET LAYER 93

}
}

94 B. BACK END IMPLEMENTATION

B.3.3 CallWebSocketHandler

package com.aprilchun.test.websocket;

import org.springframework.messaging.simp.stomp.*;
import org.springframework.web.socket.server.standard.

TomcatRequestUpgradeStrategy;
import org.springframework.web.socket.server.support.

DefaultHandshakeHandler;

import java.lang.reflect.Type;

public class CallWebSocketHandler extends
DefaultHandshakeHandler implements StompSessionHandler {
public CallWebSocketHandler(TomcatRequestUpgradeStrategy

tomcatRequestUpgradeStrategy) {
super(tomcatRequestUpgradeStrategy);

}

@Override
public void afterConnected(StompSession stompSession,

StompHeaders stompHeaders) {

}

@Override
public void handleException(StompSession stompSession,

StompCommand stompCommand, StompHeaders stompHeaders,
byte[] bytes, Throwable throwable) {
if (throwable instanceof ConnectionLostException) {

// if connection lost, call this
}

}

@Override
public void handleTransportError(StompSession stompSession,

Throwable throwable) {

}

@Override
public Type getPayloadType(StompHeaders stompHeaders) {

return null;
}

@Override

B.3. WEBSOCKET LAYER 95

public void handleFrame(StompHeaders stompHeaders, Object
o) {

}
}

ChapterCCollected Data

Table C.1: Data from Experiment 1 with Direct Connection to XMPP

Index
Total

Time Cost
(sec)

Total
Data Size

(byte)

Signalling
Time Cost

(sec)

Answer
Size

(byte)

Number of
Generated
Candidate

Number of
Received

Candidate

Candidate
Size

(byte)

1 11.702 717056 11.311 80232 17 4 159206
2 11.538 717006 11.118 80182 17 4 159206
3 11.492 716836 11.078 80220 17 4 159154
4 11.715 717056 11.279 80232 17 4 159206
5 11.649 716946 11.577 80226 17 4 159180
6 11.835 717056 11.763 80232 17 4 159206
7 12.132 716796 11.721 80180 17 4 159154
8 12.302 717016 11.864 80192 17 4 159206
9 12.405 717066 11.991 80242 17 4 159206
10 12.624 716896 12.208 80176 17 4 159180
Average 11.939 716973 11.591 80211.400 17 4 159190.400

97

98 C. COLLECTED DATA

Table C.2: Data from Experiment 1 with Indirect Connection to XMPP

Index
Total

Time Cost
(sec)

Total
Data Size

(byte)

Signalling
Time Cost

(sec)

Answer
Size

(byte)

Number of
Generated
Candidate

Number of
Received

Candidate

Candidate
Size

(byte)

1 7.306 12074 4.436 7580 17 4 1123.5
2 7.254 12064 4.374 7572 17 4 1123
3 7.241 12074 4.388 7580 17 4 1123.5
4 7.278 12074 4.434 7582 17 4 1123
5 7.298 12064 4.461 7572 17 4 1123
6 7.327 12064 4.488 7570 17 4 1123.5
7 7.363 12074 4.523 7582 17 4 1123
8 5.978 12056 4.569 7564 17 4 1123
9 7.462 12064 4.612 7572 17 4 1123
10 8.966 12060 6.132 7568 17 4 1123
Average 7.347 12066.800 4.641 7574.200 17 4 1123.150

Table C.3: Data from Experiment 2 with Direct Connection to XMPP

Index
Total

Time Cost
(sec)

Total
Data Size

(byte)

Signalling
Time Cost

(sec)

Answer
Size

(byte)

Number of
Generated
Candidate

Number of
Received

Candidate

Candidate
Size

(byte)

1 2.483 711662 2.033 79830 5 4 157958
2 2.489 711432 2.059 79808 5 4 157906
3 1.902 711702 1.556 79870 5 4 157958
4 2.298 711622 1.952 79790 5 4 157958
5 2.483 711592 2.096 79864 5 4 157932
6 1.915 711702 1.582 79870 5 4 157958
7 1.913 711642 1.696 79810 5 4 157958
8 2.606 711502 2.233 79774 5 4 157932
9 2.354 711552 2.194 79720 5 4 157958
10 2.48 711592 2.107 79864 5 4 157932
Average 2.292 711600 1.951 79820 5 4 157945

99

Table C.4: Data from Experiment 2 with Indirect Connection to XMPP

Index
Total

Time Cost
(sec)

Total
Data Size

(byte)

Signalling
Time Cost

(sec)

Answer
Size

(byte)

Number of
Generated
Candidate

Number of
Received

Candidate

Candidate
Size

(byte)

1 5.859 12056 4.45 7562 6 4 1123.5
2 5.939 12030 4.392 7536 6 4 1123.5
3 5.988 12056 4.624 7562 6 4 1123.5
4 5.896 12048 4.418 7554 6 4 1123.5
5 5.986 12036 4.46 7542 6 4 1123.5
6 5.944 12056 4.456 7562 6 4 1123.5
7 5.956 12046 4.521 7552 6 4 1123.5
8 7.564 12038 6.166 7544 6 4 1123.5
9 5.982 12056 4.518 7562 6 4 1123.5
10 5.982 12056 4.518 7562 6 4 1123.5
Average 6.110 12047.800 4.652 7553.800 6 4 1123.500

Table C.5: Data from Experiment 3 with Direct Connection to XMPP

Index
Total

Time Cost
(sec)

Total
Data Size

(byte)

Signalling
Time Cost

(sec)

Answer
Size

(byte)

Number of
Generated
Candidate

Number of
Received

Candidate

Candidate
Size

(byte)

1 7.184 447978 5.328 81090 8 3 122296
2 6.716 448018 6.271 81130 8 3 122296
3 5.047 447948 4.505 81060 8 3 122296
4 5.257 447952 4.738 81124 8 3 122276
5 5.134 447928 4.685 81040 8 3 122296
6 5.650 447978 5.130 81090 8 3 122296
7 5.325 447912 4.802 81084 8 3 122276
8 5.126 447952 4.675 81124 8 3 122276
9 5.244 447848 4.778 80960 8 3 122296
10 5.849 447938 5.383 81050 8 3 122296
Average 5.653 447945.200 5.029 81075.200 8 3 122290

100 C. COLLECTED DATA

Table C.6: Data from Experiment 3 with Indirect Connection to XMPP

Index
Total

Time Cost
(sec)

Total
Data Size

(byte)

Signalling
Time Cost

(sec)

Answer
Size

(byte)

Number of
Generated
Candidate

Number of
Received

Candidate

Candidate
Size

(byte)

1 7.591 11436 6.158 7810 6 4 906.5
2 7.591 11446 6.133 7812 6 4 908.5
3 7.460 11438 6.007 7804 6 4 908.5
4 7.460 11448 5.996 7814 6 4 908.5
5 7.473 11428 6.020 7794 6 4 908.5
6 6.009 11448 4.549 7814 6 4 908.5
7 7.506 11430 6.054 8714 6 4 679
8 7.016 11432 5.577 7798 6 4 908.5
9 8.096 11440 6.117 8724 6 4 679
10 7.769 11430 5.837 8714 6 4 679
Average 7.397 11437.600 5.845 8079.800 6 4 839.450

	List of Figures
	List of Tables
	List of Implementations
	Introduction
	Overview
	Problem Statement
	Objectives

	Background and Related Work
	Research on WebRTC
	Research on Signaling
	Existing Signaling Requirements and Solutions for WebRTC
	Message Exchange Process of WebRTC Signaling
	Potential Signaling Solutions for WebRTC
	Integration of XMPP and WebRTC

	Methodology
	Literature Review
	Model Design
	Technology in Use
	Model Implementation
	Validation Method Implementation
	Data Collection
	Results and Analysis

	Model Design
	Design of Architecture
	Architecture Design of Direct Connection to XMPP Server
	Architecture Design of Indirect Connection to XMPP Server

	Design of Signaling Flow
	Design of Data Format
	JSON Format
	XML Format

	Design of Measurement
	Measurement of Data Size
	Measurement of Time Cost
	Measurement of Number of Candidate

	Model Implementation
	Implementation of XMPP Based Server
	Installation of Ejabberd
	Configuration of Ejabberd
	Startup of Ejabberd

	Implementation of WebRTC based Web Application
	Framework
	Core Functions

	Implementation of Signaling for Direct Connection to XMPP Server
	Implementation of Signaling for Indirect Connection to XMPP Server
	Core Functions at Front End
	Core Functions at Back End

	Implementation of Measurement
	Challenges in Implementation
	Echo problem
	Advanced configuration for Ejabberd
	Strict order of Signaling Process
	Security of Signaling Process

	Results and Analysis
	Screen Shots
	Environment of Experiments
	Collections of Data
	Analysis of Data
	Results
	Reasoning
	Additional Experiment on ICE Candidate

	Conclusion
	References
	Front End Implementation
	Component Layer
	AppComponent
	VideoComponent
	ChatComponent

	Service Layer
	SignalService
	DirectConnectionService
	IndirectConnectionService
	SettingService

	Back End Implementation
	Controller Layer
	CallController

	Service Layer
	CallService

	WebSocket Layer
	WebSocketConfig
	CallMessageListener
	CallWebSocketHandler

	Collected Data

