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Abstract

The present thesis provides essential insights into surface water waves propagating
atop a horizontal current whose magnitude and direction may vary arbitrarily with
water depth. A comprehensive theory in this regard is developed in the framework
of linear wave theory in three dimensions, being readily applied to a wide range of
realistic circumstances. General theoretical solutions to different boundary value
problems are presented. In particular, explicit expressions with regard to the sur-
face elevation and the vertical velocity are derived. The boundary value problems
include the Cauchy-Poisson problem, surface disturbances generated by an ini-
tial impulsive and a time-dependent pressure, and a steady pressure that normally
works as the model of moving vessels and oscillating travelling sources. Efforts
focus especially on the dispersion relation and the effects of a subsurface shear
current on surface waves. A subsurface shear current is most often found to have
significant effects on surface waves. In particular, the presence of a current of uni-
form vorticity is analysed in detail for the problems of ship waves, an oscillating
advancing source and wave interferences.

A theory is especially presented to calculate waves from a general, time-dependent
applied surface pressure acting on the surface of a horizontally directed shear cur-
rent which may vary arbitrarily with depth in both direction and magnitude. It
is based on deriving the response function in the context of waves generated by
an impulsive applied pressure. Effective approaches to calculate wave resistance
without undue difficulty are presented. Strikingly, a lateral radiation force – that is
defined towards the starboard (right) – is firstly found apart from the well-known
wave resistance along the stern-wise direction due to the presence of a shear cur-
rent when a ship is making an oblique angle with the shear current. The lateral
radiation force may amount to 20 percent of the normal wave resistance in some
specific situations.
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As for waves on a current in arbitrary variation of water depth, an implicit disper-
sion relation is derived, which poses potential challenges in obtaining analytical
solutions. Several semi-analytical approaches to solve/approximate the dispersion
relation are hence derived. In particular, a direct integration approach – that solves
the linearised Rayleigh equation and implicit dispersion relation in a coupled way
– and approximations based on a perturbation method are presented. The proper
criteria under which different perturbed approximate dispersion relations are ap-
plicable are determined. Furthermore, the analytical solutions of the dispersion
relation under limited circumstances are derived, e.g. for a shear current of uni-
form vorticity and stationary waves for a specific class of shear profiles of non-zero
curvature.

Despite the fact that linear waves in the presence of a linear shear current have been
extensively analysed in two dimensions, studies in three dimensions are scarce.
This means that realistic three dimensional effects may be in some cases over-
looked or yet discovered. The present thesis hence attempts to fill this gap based
on theoretical as well as numerical analysis. Effects of a uniform vorticity are spe-
cially analysed in the context of ship waves, waves generated by an oscillating trav-
elling source and interferences of waves generated by a two-point wavemaker of
monohull ships. Fascinating and novel features are found due to the uniform vor-
ticity S that is known either as the ’intrinsic shear Froude number’ Frsb = S

√
L/g

or the ’shear Froude number’ Frs = |V|S/g (L: the reference length; |V|: moving
speed of a wavemaker; g: the gravitational acceleration). In particular, asymmetri-
cal ship wave patterns, the critical shear velocity above which the transverse ship
waves vanish, the transitions between the sub-critical and supercritical situations
due to the complex interplays of the shear current and seabed, non-constant Kelvin
angles, and a somewhat similar effect as a finite water depth on wave interferences
are shown for the problem of ship wakes. All of those novel features would not
have been found if theoretical studies are constrained to 2D. Furthermore, the clas-
sical Doppler resonance occurs when the non-dimensional frequency τ = |V|ω/g
(ω : the oscillating frequency) is equal to 1/4 in the absence of a shear current,
while there may be multiple Doppler resonances – as many as 4 – for Frs > 1/3 in
deep water due to the presence of a linear shear current. It is also indicated that the
Doppler resonance may be profoundly modified even for a linear current of weak
vorticity.
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Chapter 1

Introduction

1.1 Research background

Better understandings of water waves are key to a wide range of areas such as
marine, offshore, ocean engineering and oceanography. Particularly, sea loads due
to waves have remarkable effects on a large number of marine vessels, and fixed,
floating or moored installations. Water waves themselves display fascinating fea-
tures, for instance being capable of carrying energy over long distances, and the
dispersive properties in finite and deep water [1]. A couple of relevant examples
are named here, for instance, the striking V shaped wake generated by a travelling
duck or a marine vessel [2, 3, 4], the beautiful wave ripples formed by winds, and
natural occurring giant waves [5], indicating both rich physics and practical appli-
cations about water waves. There are many factors that may affect the propagation
of waves, including viscosity, gravity, surface tension, the presence of sub-surface
flows, the wind induced force, the seabed, the density of fluid, etc [6]. Interactions
of water waves with those factors may pose potential challenges in terms of both
theoretical analysis as well as real world applications. The present thesis primar-
ily focuses on the complex interactions between waves and a sub-surface shear
current, which are of essential significance, as will be indicated below.

It is well known that water surface waves and currents widely coexist in coastal
and offshore environments, especially in the regions of tidal, ocean, fjord, and
discharge currents [7]. In particular, the interactions between waves and currents
are pivotal to a wide range of applications, such as offshore installations, the design
of large ocean structures and coastal breakwaters, and sea loads on ocean slender
structures [8]. Compared to circumstances in the absence of a current, wave forces
on offshore structures may be considerably different when a current is present.

3



4 Introduction

Dalrymple [8] and Dalrymple et al. [9] indicate that the exclusion of currents,
noticeably due to the wind actions, ocean circulations and tidal forces, may cause
a significant underestimate drag force acting on an under-design offshore structure.
For example, including the current of 12.5% of the maximum speed –16 ft/s– of
a design wave may result in the increase of drag force by 25%, while a current of
18.75% of this maximum speed may lead to an increase over 40%. In addition, the
presence of a sub-surface current may also have a profound effect on data measured
about waves, which may attract particular attention from oceanographers. It is thus
essential to raise awareness concerning the non-trivial interactions between waves
and currents.

Currents have been known for a long time to induce a couple of noticeable effects
on water waves, such as the effects on the refraction in shallow water, the dis-
persed properties, wave height or steepness, exchange of energy and momentum,
etc. There is extensive literature which has indicated a large amount of examples
for the wave-current interactions, e.g. Jonsson [7], Isaacs and Johnson [10], Taylor
[11], Lighthill [12], Jonsson and Skovgaard [13], Jonsson and Wang [14], Hedges
[15], Kirby and Chen [16], Smith [17], Lamb [18], Hjelmervik [19]. For instance,
Isaacs and Johnson [10] reveal a couple of such phenomena observed during nav-
igations, especially with respect to the refraction in areas such as the entrance
channel to estuaries and coastal regions. Furthermore, it is indicated in a series
of references by Longuet-Higgins and Stewart [20, 21, 22, 23] that exchanges of
wave energy between water waves and currents widely exist in real environments.
Meanwhile, one key concept called ’radiation stress’ is introduced that has consid-
erably contributed to explain the close interactions between waves and currents,
especially in terms of its physical interpretation. Waves interacting with horizontal
currents that are uniform over water depth have been extensively studied during
the period from 1940s to 1990s, see references [15, 24, 25, 26, 27] and references
therein. Modelling a current with the uniform profile over water depth is likely
because of the wide recognition with respect to tidal currents and large ocean cir-
culations of the nature that varies negligibly with water depth.

Moreover, several studies, e.g. [7, 28, 29, 30] and references therein, have shown
that the presence of a current may noticeably affect the wave height or steepness.
Especially, it has been indicated that an opposing current may closely relate to
the formation mechanism of giant waves [30]. There are many sources which have
documented notable outcomes or serious accidents that happened while there were
currents present. For instance, Fig.1.1 depicts an accident that occurred due to a
giant wave in the Agulhas current, off the eastern coast of South Africa [7, 31].
The strong tidal currents in Moskenes Sound, Norway, are recorded in Grabbe
et al. [32] for the dangers in pulling ships down and swallowing them up. Other
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Figure 1.1: A picture of the tanker damaged by encountering an advancing giant wave
when going in the Agulhas Current on May. 17, 1974, from [7].

examples of waves encountering currents are documented in Holthuijsen and Tol-
man [33] regarding the Gulf stream, in Mathiesen [34] with respect to the current
whirl in the Norwegian coastal current, and in Isaacs and Johnson [10] about the
ebb and flood currents in the estuaries. As for more extensive literature regard-
ing the wave-current interactions before 1990, readers are directed to some of the
comprehensive reviews, e.g. [6, 7, 8, 27].

There are many types of naturally occurring currents, including for instance the
tidal currents, wind-induced currents, wave-induced flows, the currents induced by
fluid-density gradients,etc.[8, 27]. Normally, the tidal currents or the large scale
ocean currents have negligible variations of water depth and thus are widely mod-
elled as uniform flows in theoretical studies [6, 19]. Primary sites for subsurface
flows are normally in the areas of rivers, continental shelves, ocean areas after nat-
ural hurricanes, ocean delta, or river/ocean mouth (estuaries), ocean areas where
strong winds exist, coastal inlets, fjords (noticeably the fjords in Norway [34]),
harbours, straits, etc.

In terms of the variations with respect to physical space, current models used for
studies may be categorized into the following groups, including uniform currents
independent of physical space [35], horizontal currents uniform over water depth
[14, 36], currents varying linearly with water depth [37], bilinear shear currents
consisting of two layers of linear profile [11], exponential /logarithmic shear cur-
rent [38], depth-dependent shears uniform in the horizontal plane [16] and spiral
currents that may vary both the magnitude and direction with water depth [39]. The
present thesis primarily pays attention to horizontal currents whose magnitude and
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direction may vary with water depth.

1.2 Depth dependent flows

In natural areas either near coastal zones or in continental shelves especially, cur-
rents are normally strongly sheared, particularly due to wind actions, as observed
in [40, 41]. The vertically sheared profiles are primarily due to seabed friction,
density gradient and wind stress at the free surface [6, 27]. Due to its relevance
to various real-world applications, such as submerged slender structures like risers
and pipes, it is important to obtain a deeper understanding of wave interactions
with currents that vary with water depth.

Although the importance of depth dependent flows has been recognised, chal-
lenges have also been widely known in the theoretical, experimental and field-
investigation perspectives, due to the unsteady/complicated nature of flows in real
environments. Above all, there is a lack of proper models of fully and general 3D
flows. Theoretical solutions in this regard are thus currently not available. It is not
only because of the complicated nature of the flows, but also due to the difficulty
in solving the fully 3D governing equations for waves in the presence of a sub-
surface shear current of a general form with respect to water depth. What makes
the problem even more challenging is that experimental and field data is scarce,
resulting in a lack of validation/verification data to the theoretical results.

Theoretically, much simpler models have been widely used. Not only may each
simpler model embrace the virtue of being more straightforward to obtain ana-
lytical results, but also it provides essential insights into the nature of a problem
and thus contributes to draw the complete picture of a more complicated natural
case. A large body of literature hence exists in this regard . A couple of the com-
prehensive literature reviews regarding waves propagating atop a shear current in
variation of water depth can be noticeably found in the second half of the 20th
century, e.g. [6, 7, 8, 27, 42].

1.2.1 Linear and bilinear shear currents

Above all, the simplest model is to describe the shear that varies linearly with
water depth, either of zero vorticity – uniform flow – or of a non-zero constant
vorticity. The effect of a uniform flow on surface waves as a Doppler shift has been
well recognised [12, 36]. Relevant reviews in this regard are thus excluded in this
subsection. A somewhat modified model of a uniform current is to use multiple
layers of uniform flows of different velocities within each layer, noticeably aiming
at modelling currents in stratified fluids [43, 44].

The interplays of a linear shear current and surface linear waves have been exten-
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sively studied in two dimensions. Especially, analytical solutions to describe the
system of linear waves atop a linear shear current can be obtained. In particular,
the dispersion relation is first derived in Thompson [45] where a piecewise linear
approximation (PLA) to analyse linear waves propagating on a depth varying shear
current is also introduced, having led to extensions to more general circumstances,
e.g. the study made in Zhang [46]. The dispersion relation obtained in Thomp-
son [45] agrees with the results independently derived in Biesel [47]. Tsao [48]
has derived the expressions of surface elevation and particle velocities for waves
in the presence of a linear shear current. Taylor [11] analyses the effects on wave
stopping from two special bilinear shear profiles that may work as breakwaters.
This study is extended by Brevik [49] where the additional effect from a seabed is
taken into consideration. Parameters, e.g. wave length and wave height, of waves
on a linear shear current and a surface jet are studied in Kantardgi [50] where
agreement with previous studies is shown. Dalrymple [8] derives a comprehen-
sive theory about small amplitude waves when a current of uniform vorticity is
present. In recently, the roles of surface tension and shallow water and the wave
stopping effect in the presence of a linear shear current are studied in Ellingsen
and Brevik [51]. Furthermore, a classical problem of waves generated by an os-
cillating source with a background one-line shear profile is studied in Tyvand and
Lepperød [52], which is extended via the additional consideration of a Doppler
effect in Tyvand and Lepperød [53]. The problem of an oscillating point source is
analysed in Ellingsen and Tyvand [54].

Currently, linear waves in the presence of a current of uniform vorticity have yet
been studied extensively in 3D and there are only a few limited references, e.g.
[55]. Particularly, small amplitude waves propagating in an oblique angle with a
shear is analysed for the first time in Dalrymple [8] on a 2D basis. It is confirmed
in Peregrine [6] that the effect of a linear shear on linear waves making an oblique
angle θ with the shear current can be simply considered in a manner that applies the
projection of the shear in the wave-vector direction, i.e. by a factor of cos θ. Never-
theless, although simple and straightforward enough, this approach may overlook
the 3D effects in realistic circumstances. Recently a general solution to 3D linear
waves on a vertically sheared current of uniform vorticity was derived in Ellingsen
[56] where effects of the uniform vorticity on the 3D propagation of linear waves
are analysed. The theory derived in Ellingsen [56] is of essential significance in
revealing valuable insights and its extensions to a wide range of real world appli-
cations are readily obtained in this regard. The results obtained in Ellingsen [56]
are later confirmed by Li and Ellingsen [57] in which the solution to linear waves
generated by an initial impulsive pressure is derived. Furthermore, the theory is
applied to solve problems of ship wakes both in infinite water [58] and finite water
[59, 60], an oscillating travelling source [61], an oscillating point source [62] and
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wave interferences [63]. Detailed analysis regarding the effects due to a current of
uniform vorticity on 3D linear water waves is further presented in the following.

The presence of a linear shear current has been found to have profound effects on
the surface linear waves and novel features are introduced due to the uniform non-
zero vorticity, as especially indicated in recently based on studies in 3D [58]. The
degree to which a train of progressive linear wave is affected by the vorticity de-
pends on a couple of factors, including the seabed, parameters of the wave and the
surface tension. Particularly, Ellingsen [56] indicates an asymmetric effect on the
ring waves whose directions following or opposing the current are the mostly af-
fected by the shear. A side-on shear shows no effect on a single train of progressive
wave. Fascinating and novel features are introduced to the problem of ship wakes
as a consequence of the presence of a uniform vorticity [58, 60]. Previous observa-
tions and a recent study by Rabaud and Moisy [64] regarding ship waves have led
to the revival of studies in the classical problem of ship wave pattern. There has
been many times that the semi-angle of the wake sector generated by a wavemaker
is observed to be smaller than the one of a striking V-ship wake whose semi-angle
is predicted to be constant – 19.47o independent of the moving speed and scales
of a wavemaker – by Thomson [2] in ideal and deep water, which have aroused
the interests in seeking theoretical explanations, as shown in [65, 66, 67, 68, 69].
It is also shown that the presence of a linear shear may considerably modify the
ship wave pattern [58, 60]. In particular, asymmetric ship wakes and non-constant
Kelvin angles are introduced due to the uniform vorticity [58, 59, 60]. Transitions
between a sub-critical and supercritical situation are found when the shear Froude
number Frs = |V|S/g (V : velocity of the ship motion, S : vorticity of the shear,
g : gravitational acceleration) increases in finite water [59, 60]. Furthermore, a
critical intrinsic shear Froude number Frsb = S

√
b/g (b : the reference length

) above which the transverse waves vanishes is found in Ellingsen [58], Li and
Ellingsen [60]. The classical problem of waves generated by an oscillating and
travelling surface disturbance is considered in Li and Ellingsen [61]. Particularly,
a striking feature that multiple Doppler resonances - as many as 4 - may exist is
found due to the constant vorticity while the classical nondimensional frequency
τ = |V|ω/g (ω : the frequency of an oscillating disturbance) is equal to 1/4 when
the Doppler resonance occurs in the absence of a shear current. Additionally, it is
also shown that even a current of weak vorticity may have profound effects on the
Doppler resonance. This work is extended to finite water depth and to a bilinear
shear current in [70] which confirms the result that a current of weak vorticity may
show significant effects on the Doppler resonance.

Studies also exist regarding nonlinear waves propagating on a linearly sheared
current, e.g. [37, 71, 72, 73]. Dalrymple [8] and Dalrymple [74] derive the solu-
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tions to finite amplitude waves on a linear current, the latter of which additionally
works on a bilinear shear profile whose effects on wave forces calculated by the
Morrison equation are analysed. Brevik [75] extends the study in Brevik [49] to
obtain higher-order solutions of nonlinear waves in the presence of a current of
uniform vorticity in deep water. Jonsson and Skovgaard [13] additionally consider
effects of a slowly varying bed and solve the waves to the second order of the
wave amplitude. Via a weakly nonlinear approximation, numerical studies regard-
ing the properties of gravity waves are presented in Simmen [76] and Simmen and
Saffman [77]. Nevertheless, studies in 3D in this regard are scarce with only a few
scattered exceptions, e.g. [78, 79].

1.2.2 Shear profiles of non-zero curvature

Realistic currents normally possess a much more complicated form than a linear
profile. As was noted previously, challenges exist in terms of fully solving prob-
lems of 3D waves in the presence of a general depth varying current. More ad-
ditional efforts are thus demanding. Studies have been made especially regarding
much more simplified situations, which gradually form an in-depth understanding
in this regard. In particular, extensive literature exists for 2D cases. Abdullah [80]
attempts to, for the first time, obtain the dispersion relation for waves atop a wind-
drift shear current that decreases exponentially with water depth. Liu et al. [81] in-
vestigate the interactions of progressive waves of different parameters in the pres-
ence of an exponentially sheared current. Other attempts are made towards other
shear profiles, including a one seventh power of depth [38, 82], a hyperbolic sine
varying current [83], a cosine velocity profile [84], vertically logarithmic steady
currents [85], etc. Burns [86] is a classical paper where an approximate approach
to the problem of long waves on an arbitrary shear current is derived.

Perturbation techniques are widely used when trying to seek solutions of waves
on a vertically dependent flow. Stewart and Joy [87] derive an approximation to
the dispersion relation based on the assumption of a weak shear / fast propagat-
ing waves in deep water, which is further analysed and also extended to a finite
water depth by Skop [88] where several examples of different shear profiles are
shown. Kirby and Chen [16] generalize the theories developed in Stewart and Joy
[87], Skop [88] to obtain higher-order approximations to the dispersion relation
of linear waves on a depth dependent shear current, which have been widely used
and tested for vertically sheared currents of weak vorticity. The theory in Kirby
and Chen [16] is applied in Dong and Kirby [89] where numerical results are ob-
tained for real circumstances where a current is strongly sheared at the Columbia
River mouth. Based on the ’near-potentiality condition’ that assumes the leading
behaviour of waves on a depth dependent flow follows potential theory, Shrira [90]
derives exact solutions to short waves via a Neumann series in the presence of a
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current in arbitrary variation of water depth. Different from Kirby and Chen [16],
Swan and James [91] presents a perturbation analysis which shows a good agree-
ment with the experimental results in Swan et al. [92] for small amplitude waves
on shear currents of considerable strong vorticity.

Apart from perturbation methods a piecewise linear approximation (PLA) has also
been widely used for the problem of waves when in the presence of a current in
variation of water depth. It is, however, also accompanied with spurious solutions
at the layer interfaces, which may lead to challenges in numerical implementa-
tions and additional computational cost [46]. Thompson [45] firstly proposes this
approach. More recent references where PLA is used include Zhang [46], Caponi
et al. [93], Smeltzer and Ellingsen [94] in which Smeltzer and Ellingsen [94] is
one of the scarce 3D references. Modelling a shear flow with the bilinear profile
essentially implies the nature of the PLA, e.g. [8, 11].

In addition, Dalrymple and Cox [95] have derived theories about finite amplitude
waves atop a current of vorticity that varies with the stream function. Mellor [96]
obtains the wave equations on a depth-averaged basis and in particular the radiation
stress and Doppler velocity are defined in 3D in the presence of a depth dependent
current. Other references regarding waves interacting with a vertically sheared
current can also be found, for instance, [97, 98] and the references therein.

1.2.3 Stability

Especially for strongly sheared currents, instability may take place due to a possi-
ble critical layer that exists below the water surface as a consequence of interac-
tions between waves and currents, possibly resulting in profound effects on surface
waves when the critical layer is near enough to the water surface [90, 99]. There
is extensive literature that has studied the instability of a shear flow, e.g. a series
made by Miles [100, 101, 102, 103], Rayleigh [104], Velthuizen and Van Wijn-
gaarden [105], Morland et al. [106] and references therein. The piecewise linear
model is widely used in the stability analysis [107, 108]. A few references that
have applied smooth shear models for instability are Ellingsen and Li [99] and
[90], where it is found that instability of the flow is considerably affected by the
sign of the curvature of a shear profile. Numerical analysis regarding unstable
models can be found in [106].

1.2.4 Experimental investigations

There are quite limited references where experimental and field studies regarding
waves on vertically sheared flows are presented. Investigations in the 1960s can be
found in Yu [109], Sarpkaya [110]. Experimental data for several current profiles is
present in Thomas [111, 112] where linear and nonlinear waves opposing currents
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are analysed, respectively. Efforts have been made towards laboratory investiga-
tions regarding waves interacting with a shear current of a time-averaged vorticity
in Cummins and Swan [113] in which a good agreement with results from a piece-
wise linear model is shown. Swan [114] has experimentally investigated waves on
a strongly shear current, whose data has been applied for analytical models, e.g.
[92]. In addition, wave lengths and frequencies are observed in a laboratory flume
when a current in variation of water depth is present. The parameters of unsteady
waves on the breaking onset are experimentally observed in Yao and Wu [115]
when negative and positive sheared currents are present separately.

1.3 Thesis motivations and objectives

As was noted above, waves are of essential importance in realistic circumstances,
having motivated numerous studies in order to acquire a better understanding. The
presence of a subsurface shear current may be a key factor that profoundly affects
wave propagations and thus leads to considerable effects on wave forces acting on
offshore structures. This reveals that interactions between waves and currents are
non-trivial both in the theoretical and realistic regard. Nevertheless, problems of
surface water waves in the presence of a subsurface flow that possesses a general
profile with respect to water depth have yet been fully understood. In particular,
waves propagating on a depth dependent current are insufficient in three dimen-
sions, even to a linear order, which has motivated the studies made in the present
thesis.

The present thesis primarily aims at providing essential insights into complex in-
terplays of linear surface water waves and a depth dependent flow. In particular,
in order to achieve this goal, the following attempts have been made, which are
briefly depicted in Fig.1.2 that gives a general idea about what the papers are about
as well as the primary work that has been included in the present thesis. It includes
two key parts – a current that varies linearly with water depth and a more general
case regarding a flow whose magnitude and direction may vary with water depth.
Detailed information is shown in the following section.

1.4 Summary of thesis articles

Fig.1.2 depicts how the papers are structured and organised. Two primary parts
are included regarding linear surface water waves on a linear current as well as on
a depth dependent flow, which are respectively introduced in §1.4.1 and §1.4.2.

1.4.1 Linear waves on a general depth dependent flow

Efforts focus on a comprehensive theory regarding surface linear water waves
propagating on a vertically sheared current, forming a fundamental basis to fur-
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ther extensions and applications. In particular, different approximate methods to
the dispersion relation are derived for which appropriate criteria are also given
based on a perturbation method. Moreover, a direct integration method (DIM) is
further introduced d to obtain numerical solutions to the linearised Rayleigh equa-
tion and the implicit dispersion relation in a coupled way. The DIM is found of
distinctive advantages, capable of obtaining the velocity and pressure of the entire
fluid field and of dealing with cases where a critical layer exists in a straightfor-
ward approach. General solutions for implementing the DIM are also derived.
The primary work in this regard is especially given in Paper I, Paper II, and Paper
VI where the effects of a vertically sheared current are analysed on surface wa-
ter waves, indicating that the effects closely relate to the varying depth of a shear
below water surface in relative to the wavelength of a train of progressive wave.

1.4.2 Linear waves on a current of uniform vorticity

Attempts have been made especially towards linear waves atop a linear shear cur-
rent. It embraces the virtue of being possible to obtain explicit theoretical solu-
tions, which is somewhat a benchmark in this sense.

A general solution to the linear waves generated by an initial impulsive pressure
is derived in the presence of a current of uniform vorticity, given in Paper VII.
The solution obtained works as a response function that is readily extended and
applied for more realistic circumstances. For instance, it is a classical way to
form steady ship wakes by considering the accumulated ring waves generated by
continuous impulses that advances along a certain course. Especially, this provides
an alternative to develop the theory in Paper IV, Paper VI and Paper VIII.

Efforts also focus on ship waves as well as wave resistance when a linear shear
current is present, as shown in Paper IV, Paper V, Paper VI and Paper VIII. It is
particularly found that the interplays of ship wakes, seabed and the uniform vor-
ticity are non-trivial. Novel and fascinating features have been introduced due to
the additional consideration of uniform vorticity while compared to cases in the
absence of a linear shear current. In particular, asymmetrical ship wakes whose
semi-angle may be as large as 180 degrees for a side-on shear current are intro-
duced for ships moving in an oblique angle with the shear, denoting non-constant
Kelvin angle that is widely known as 19.47 degrees, independent of the moving
speed and length scales, for the wakes generated by a wavemaker advancing in
ideal deep water . Moreover, a critical velocity above which the transverse waves
vanish is derived, below which is called sub-critical situation while above is called
supercritical situation. Transitions between the sub-critical and supercritical situ-
ations are found for different combinations of the parameters including the mag-
nitude of the uniform vorticity, the angle between the motion axis and the current,
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moving speed, and the water depth. Particularly due to the vorticity, a lateral wave
resistance normal to the motion axis is found as a consequence of the asymmet-
ric waves radiated from a wavemaker. Moreover, a transient feature that transient
waves vanish at different rates when a ship is making different angles with the
shear current is also introduced, posing potential challenges to manoeuvring of
a ship. In addition, effects of a linear shear current on the interferences between
waves generated by a two-point wavemaker of monohull ships are shown in a man-
ner that is somewhat similar to a finite depth.

A fundamental problem of waves generated by an oscillating and advancing sur-
face disturbance atop a linearly sheared flow is considered in Paper III. A general
dispersion relation is analysed. In particular, wave sectors due to the vorticity of a
linear shear current exist, in which waves may vanish for stronger vorticity in rel-
ative to the oscillating frequency of an oscillating disturbance. A striking feature
that multiple Doppler resonances - as many as 4 - exist is also introduced due to
the constant vorticity while the classical nondimensional frequency τ = |V|ω/g is
equal to 1/4 when the Doppler resonance occurs in the absence of a shear current.
Additionally, it is shown that even a current of weak vorticity may have profound
effects on the Doppler resonance. The study in Paper III is further extended to a
more general case in [94] where a linear surface jet or a finite water is considered.
Studies for the case in a finite water can also be found [94] when a linear shear
current in present.

1.4.3 The appended articles

Paper I Direct integration method for surface waves on a depth depen-

dent flow

This paper introduces a direct integration method (DIM) that is used to seek
solutions of problems of linear surface water waves on a current whose magnitude
and direction may vary with water depth. As essentially a numerical method, it is
capable of fully describing the entire fluid field for the problems of interest and of
dealing with cases where a critical layer exist in a straightforward way. Different
from other approximations whose criteria required for applicability considerably
depend on the wavelength range and the shear profile, this approach shows no
limitation in this regard. Compared to the piecewise linear approximation, the
DIM provides equivalent, if not higher, accuracy, introduces no spurious solutions
and deals with the critical layer in a simple approach. General solutions for a
couple of typical boundary conditions are derived for implementing the DIM. Error
estimates of different approximate dispersion relations are made. The validation
and verification are also presented for the DIM.
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Paper II Approximate dispersion relations for waves on an arbitrary

shear flow

This article derives an approximate dispersion relation for linear surface waves
propagating on a shear current that may vary arbitrarily with depth in both the
magnitude and direction. Based on the perturbation method, both the first- and
second- order approximation to the dispersion relation are derived, the former of
which is shown to be good at all wavelengths for a wide range of naturally oc-
curring shear flows as well as widely used model flows, while the latter of which
can provide significantly improved accuracy especially for the long and medium
wavelengths. In addition, this article extends a widely used approximation by
Kirby & Chen [1989] in 2D to 3D. The (3D generalisation of) first-order Kirby &
Chen approximate method provides equivalently good applicability and accuracy
as the newly derived 1st-order model, while the exact criteria for its applicabil-
ity has yet been known for it may work for cases where its assumption based on
which the approximation is derived is strongly violated. The article thus comes up
with the reasonable criteria that explain the wide application of the Kirby & Chen
approximation. In addition, the article also argues that the newly derived approx-
imation is more robust for it succeeds in cases where the Kirby & Chen model
fails. When compared to the second-order of the Kirby & Chen model, the newly
derived 2nd-order scheme embraces advantages such as an explicitly known crite-
rion of accuracy, arguably significantly simpler and more physically transparent in
terms of the implementations.

Paper III Multiple resonances of a moving oscillating surface distur-

bance on a shear current

This article extends a classical problem by considering waves generated by an
oscillating pressure source that advances at a constant speed when a shear flow is
present with uniform horizontal vorticity of magnitude S. This article starts with
a detailed analysis of the dispersion relation for the wave-current interactions and
focuses on how the presence of a linear shear profile may affect the dispersion
relation in both finite and infinite water depth. For the latter case, different far-
field waves that exist in different sectors of wave-vector space are shown under
difference circumstances. It is well known that a Doppler resonance occurs when
τ = |V|ω0/g is equal to the critical value 1/4 (V : velocity of disturbance, ω0 :
oscillation frequency, g : gravitational acceleration), which is shown to be con-
siderably different due to the presence of the shear. Not only does the resonant
value of τ depend strongly on the angle between V and the current’ s direction
and the ’shear-Froude number’ Frs = |V|S/g, multiple resonant values - as many
as four- can occur for some directions of motion when Frs > 1/3. The minimum
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resonance frequency tends to zero at sufficient large Frs for most of the directions
of motion, denoting the critical velocity of ship waves.

Paper IV Ship waves on uniform shear current at finite depth: Wave

resistance and critical velocity

This article extends the work of Ellingsen (2014) [58] to a more general case
and presents a comprehensive theory for linear gravity-driven ship waves when a
shear current of uniform vorticity is present in finite water. The critical velocity
at which the transverse waves become vanishing is derived, showing non-trivial
interplays of the seabed and the shear. Especially, the transition between the sub-
critical situation where both transverse and divergent waves exist, and the super-
critical situation under which the transverse waves vanish, are found when the
’shear-Froude number’ Frs = |V|S/g increases for different water depths and
angles between the ship motion and the current (V : velocity of the ship motion,
S : vorticity of the shear, g : gravitational acceleration). Moreover, this article
calculates the wave resistance in the presence of a linear shear for the first time, by
which a non-zero lateral component is found due to the shear for oblique angles
between the shear and the ship motion. In particular, the lateral component can
amount to 10-20% of the normal wave resistance for a side-on shear and S

√
b/g –

b : the characteristic length of the ship – of order of unity. Furthermore, this article
presents theory that properly deals with ship waves from the far-field contributions
by the Cauchy’ s integral theorem, exposing potential pitfalls with respect to a
slightly different method (Sokhotsky-Plemelj) used in several previous works.

Paper V Wave-interference effects on far-field ship waves in the pres-

ence of a shear current

This article presents wave-interference effects in the presence of a shear current
for a 2-point wavemaker model of monohull ships. Interesting and non-trivial
effects on ship waves are shown, as also found in the analysis of wave interferences
in finite water depth. The effect of shear on the far-field waves created by a 2-
point wavemaker model of a monohull ship greatly depends on the shear Froude
number V S/g, where V is the speed of the ship, S is the uniform vorticity of the
shear and g is the gravitational acceleration, as well as the angle between the shear
current and the direction of motion of the ship. There are various circumstances
under which the ray angles of the highest waves that result from constructive wave
interferences are much narrower than the Kelvin angles (the angles of the cusps or
the asymptotes) of the wave patterns formed by a 1-point wavemaker. In particular,
Kelvin shear Froude numbers FrsK for which the ray angles of the highest waves
are equal to the Kelvin angles are determined. The ray angles of the highest waves
for Frs > FrsK are considerably smaller than the Kelvin angles.
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Paper VI Transient wave resistance upon a real shear current

This article presents a general theory to calculate waves and wave resistance
in the presence of a depth dependent flow and studies the wave radiation forces,
including wave-making resistance, for different model ships in a real, measured
current in the Columbia River delta. The theory allows for calculation of waves
from a general, time-dependent applied surface pressure acting on the water sur-
face. Because momentum is imparted to radiated waves a well-known resistance
force is experienced by the ship, yet for ships moving at oblique angles with the
sub-surface shear, the wave radiation force also has a lateral component, since
wave momentum is radiated at different rates to starboard and port. We focus here
on the transient ship waves and the corresponding wave resistance and lateral wave
radiation for a ship which suddenly appears and moves steadily thereafter. We con-
sider both a simple model current with linear depth dependence, and a reasonably
realistic model “ship” travelling on a real, measured shear current with a compli-
cated velocity profile. The simple, linear profile has the virtue of allowing analyti-
cal results, which is used to compare to a numerical study of the more general case.
Ship waves on an arbitrary shear currents are calculated via a piecewise-linear ap-
proximation. Close correspondence is found between the two shear currents at a
qualitative and, with appropriately selected shear, quantitative level. Of particular
interest is the initial peak wave resistance shortly after appearance. The lateral
radiation force peaks more strongly than does the resistance force and for a short
period reaches values comparable to the stern-wise resistance. It is concluded that
the transient lateral force can be of considerable importance during manoeuvring
in sheared conditions, especially for slender ships.

Paper VII Initial value problems for water waves in the presence of a

shear current

This paper derives a general solution for the initial value problems of linear
water waves that are generated by an initial impulsive pressure in the presence of
a shear current of uniform vorticity beneath the surface. The analytical solution
obtained in the paper is fundamental and can be applied in a wide range of real-
istic problems, e.g. forming the solution for the problems of both transient and
stationary waves generated by a moving disturbance. Numerical results based on
the analytical solution agrees with the results in the absence of a shear current, and
asymmetry between upstream and downstream is shown.
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Paper VIII Effect of Anisotropic Shape on Ship Wakes in Presence of

Shear Current of Uniform Vorticity

This paper extends the work of Li & Ellingsen (2016) [60] to a more general
case where a more realistic ship model is used. It primarily presents interactions
between a subsurface shear current of uniform vorticity and gravity surface waves
generated by a moving wavemaker of an anisotropic shape. Different from the
model used in [60] where only one dominant length is used for modelling a ship,
the paper additionally considers the aspect ratio of a ship. Waves contribution from
far fields and expression of Mach angle based on the asymptotic approximation at
high Froude numbers are derived. In addition, the Kelvin and Apparent wake angle
at moderate Froude numbers under different combinations of the shear strengths
and the aspect ratio are also calculated by numerical approach.



Chapter 2

Theory and numerical results

This chapter focuses on the fundamental theory regarding linear waves atop a hor-
izontal current whose magnitude and direction may arbitrarily vary with water
depth. The geometry of a wave-current system is initially introduced. Next, the
linearised Rayleigh equation and boundary conditions both at the free surface and
seabed are derived to describe waves atop a vertically sheared current. General so-
lutions, especially of the surface elevation and vertical velocity, are obtained. The
resistance due to waves generated by an advancing and oscillating wavemaker is
thereafter described in a general form.

The dispersion relation to describe linear surface waves atop a depth dependent
flow is derived in an implicit form. Due to the challenges in obtaining analyt-
ical solutions to the implicit dispersion relation, a couple of approximate tech-
niques to solve the dispersion relation, e.g. the direct integration approach and
different approximations based on a perturbation method, are thereafter presented.
Under which situations each approximation may embrace distinct advantages are
explained in detail and the applicability criteria, if there is any, are also derived.
Analytical solutions to the dispersion relation under limited circumstances are pre-
sented, including when in the presence of a shear current that possesses a linear
shear profile and problems of stationary waves atop a special class of nonlinear
shear profiles.

Next, particular solutions under different classical boundary conditions at the free
water surface are derived. In particular, two initial cases – that include the Cauchy-
Poisson problem and waves generated by an initial impulsive disturbance on the
water surface, transient waves generated by a time-dependent pressure disturbance
and stationary waves either in the context of ship wakes and waves generated by

19
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h

k

Figure 2.1: Geometry of a three-dimensional wave and current system in a uniform water
depth h.

an oscillating and travelling source are presented. In addition, a few examples that
show novel features due to the presence of a shear current are given.

Only part of the numerical solutions from the thesis articles are presented either
for convenience or for further references such that unnecessary repetitions may
be avoided. This chapter ends with the recommendations to future researches.
Readers are directed to different thesis articles for more detailed information.

2.1 Geometry and description of the system

Three dimensional water waves in the presence of a vertically sheared flow are
considered in the framework of linear wave theory. Assume incompressible and
inviscid flow. Geometry of a wave-current system is depicted in Fig. 2.1 where a
flat seabed of depth h is considered. The Cartesian coordinate system is used. The
free water surface is lying at z = 0 when everything is at rest such that the surface
elevation ζ̂(r, t) is depicted z = ζ̂(r, t) due to disturbances, where z is the vertical
axis, r = (x, y) is the position in the horizontal plane, and t is the time. Con-
sider a plane progressive wave with wave vector k = k(cos θ, sin θ) (k = |k|)
propagating atop a depth dependent shear current – U(z) = (Ux(z), Uy(z)).
It is assumed that waves may be affected by the presence of a shear current,
but not vice versa. The velocity and pressure field are described respectively by
(û(r, z, t), v̂(r, z, t), ŵ(r, z, t)) and P̂ (r, z, t) due to waves. Let p̂ = P̂ − ρgz
where p̂ is the dynamic pressure, ρ is the fluid density and g is the gravitational
acceleration. All of the physical quantities are assumed to be small so that all
solutions are obtained to the linear order.
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2.1.1 Governing equations

Before seeking general solutions, we may make the ansatz that all of the physical
solutions depend on an overall oscillating factor e−iωt where ω is the frequency of
a plane wave propagating in the θ direction. The Fourier transform is taken for all
of the physical quantities in the horizontal plane

[
û, v̂, ŵ, p̂, p̂ext(r, t), ζ̂

]
=

∫
d2k

(2π)2
[
u, v, w, p, pext, ζ

]
ei(k·r−ωt), (2.1)

where p̂ext is the external pressure on the free surface; u, v, w, p, pext and ζ are
independent of t.

As for the particular wave-current model considered in the present thesis, the con-
tinuity and Euler equation in the physical plane are

∇ · û = 0, (2.2a)

(∂t + û · ∇)û = −∇P̂ /ρ+ g. (2.2b)

where û = (û + Ux, v̂ + Uy, ŵ), the nabla operator is defined ∇ = (∂x, ∂y, ∂z)
and the gravitational acceleration vector g = (0, 0,−g) .

Next, (2.2) is linearised and the Fourier transform is thereafter taken. It then yields

ikxu+ ikyv + w′ = 0, (2.3a)

i(k ·U− ω)u+ U ′xw = −ikxp/ρ, (2.3b)

i(k ·U− ω)v + U ′yw = −ikyp/ρ, (2.3c)

i(k ·U− ω)w = −p′/ρ, (2.3d)

where the prime is the derivative with respect to z.

Reorganising u, v, wand p in (2.3) yields

(∂2
z − k2)w =

k ·U′′

k ·U− ω
w, (2.4)

(k ·U− ω)w′ − k ·U′w = ik2p/ρ, (2.5)

ikx[k ·U′w − (k ·U− ω)w′]− ik2U ′xw = k2(ω − k ·U)u, (2.6)

iky[k ·U′w − (k ·U− ω)w′]− ik2U ′yw = k2(ω − k ·U)v. (2.7)

(2.4) is called the Rayleigh equation (or the inviscid Orr-Sommerfeld equation).
Noticeably, an analytical solution to (2.4) may only be obtained under quite lim-
ited circumstances as the solutions are considerably dependent on the shear current
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profile U. [6, 56, 58, 60, 61] and references therein present most of the limited
cases where analytical solutions are available. Despite that challenges exist in ob-
taining the analytical solutions to (2.4) in the presence of a general shear current,
other alternatives are possible, for instance the direct integration method that is
essentially a numerical method, as will be indicated later in §2.2.1. It is worth
to notice that analytical solutions of problems of waves in the presence of a lin-
ear shear current in 3D are somewhat a benchmark in the manner that analytical
solutions and extensive applications are readily available for references.

2.1.2 Boundary conditions

Before seeking general solutions under various occasions, the boundary conditions
both at the free surface and at the seabed should be specified. The former boundary
condition includes the kinematic condition that states fluid particles remain on
the free surface and the dynamic condition that denotes pressure right above the
free surface equals to the pressure just below. Hereby, the linearised boundary
conditions read

k2pext/ρ = −i(k ·U− ω)w′ + ik ·U′w − (gk2 + σk4/ρ)ζ, at z = 0 (2.8a)

w = i(k ·U− ω)ζ(k, t), at z = 0, (2.8b)

w = 0, at z = −h. (2.8c)

where σ is the surface tension coefficient.

For later references and convenience, we make

U0 = U(0),U0 = U′(0), c̃(k) = ω(k)/k−k·U0/k,ΔU = U−U0, w0 = w(k, 0).

The kinematic and dynamic boundary conditions at the free surface z = 0 together
yield the combined boundary condition

(k ·U0−ω)2w′0− [k ·U′
0(k ·U0−ω)+gk2+σk4/ρ]w0 = i(k ·U0 − ω)k2pext/ρ.

(2.9)

2.1.3 General solutions

As was noted, when a shear current is of a linear profile, i.e. U′′ = 0, analytical
solutions (2.3) are available. Particularly, the solution of the vertical velocity is of
a form with unit amplitude - G(k, z) = sinh k(z + h)/ sinh kh that satisfies the
boundary condition at the seabed (2.8c) and the linearised Rayleigh equation (2.4)
(or Laplace Equation for this specific case).
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Performing Green’s formula on the quantities w and G yields

w′0G0 −G′0w0 =

0∫
−h

dz
k ·U′′wG

(k ·U− ω)w0
. (2.10)

Inserting the combined boundary condition (2.9) into (2.10) further gives

w0(k)ΔR(k, ω(k)) =
i(k ·U0 − ω)kpext tanh kh

ρ
, (2.11)

where

ΔR = (1 + Ig)k
2c̃2+c̃k ·U′

0 tanh kh−
(
gk +

σk3

ρ

)
tanh kh, (2.12a)

Ig =

0∫
−h

dz
k ·U′′w̄(k, z) sinh k(z + h)

k(k ·ΔU− kc̃) cosh kh
, (2.12b)

(2.12c)

in which w̄(k, z) = w(k, z)/w0, called the unity vertical velocity, will be analysed
more in detail in §2.2.1. Possible poles may occur in the integrand in (2.12b) due
to possible critical layers that need careful treatment, as will be indicated in §2.3.
When the current has no curvature, we have Ig = 0. Thereby, ΔR is explicit with
respect to c̃. More analysis can be found in §2.2.4 where a linear shear current is
considered.

The general solutions of amplitude of the vertical velocity and the surface elevation
are, respectively

w0(k) =
i(k ·U0 − ω)kpext tanh kh

ρΔR(k, ω(k))
, (2.13)

ζ(k) =
pextk tanh kh

ρΔR(k, ω(k))
. (2.14)

The inverse Fourier transform as described in (2.1) may then be taken to obtain
the solutions in the physical plane. Despite that analytical expressions have been
derived, the system is not fully described since the dispersion relation and how to
solve w̄ are yet determined. Discussions in this regard will be presented in §2.2
where possible approaches to approximate/solve both the dispersion relation and
the Rayleigh equation are presented.
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2.1.4 Wave resistance

When a travelling disturbance is advancing at a constant speed on the water sur-
face, the wavemaker feels a resistance force due to the energy that is conveyed
to radiate waves. The present thesis focuses on the wave resistance due to wave
making while the friction resulting from viscosity is neglected. The wave resis-
tance acting on an advancing pressure distribution due to wave making is defined
in [116, 117]. It is equivalent to the resultant force acting on an imagined rigid
cover that perfectly fits the elevated water surface due to small amplitude waves.
Strikingly, the force vector may have two non-zero components along both the
stern-wise and starboard-wise for a symmetric disturbance while a sub-surface
shear current is present [60, 118] and the wavemaker is making an oblique angle
with the shear current. As for the particular wave-current system described here,
the wave resistance R‖ – that is along the stern-wise direction – and the lateral ra-
diation force R⊥ – that is towards the starboard (right) – are defined, respectively,
where(

R‖
R⊥

)
=− 1

|U0|
∫

d2rp̂ext

(
U0

ez ×U0

)
· ∇ζ̂

=− 1

|U0|
∫

d2k

(2π)2
ik ·

(
U0

ez ×U0

)
p∗extpext tanh kh

ρΔ(k)
ei(k·r−ωt)

(2.15)

in which the asterisk denotes the complex conjugate. Particularly, different ω may
represent different situations. For instance, ω = 0 normally solves the wave resis-
tances of a vessel advancing at constant velocity and implies a stationary condition
that the waves propagate at the phase speed that equals to moving speed of the ves-
sel such that the waves can keep up with the vessel.

2.2 Dispersion relation

As was noted above, additional conditions are required in order to fully describe
the system introduced in §2.1. The eigenvalue problem given by the linear homo-
geneous conditions for the system described by (2.4), (2.5) and (2.8) then gives
c̃(k) (or ω(k)) via the implicit dispersion relation

ΔR(k, c̃(k)) = 0, (2.16)

which itself is not closed since both c̃ and w̄ are unknown but is indeed a fruitful
starting point for further approximate methods presented below.

Based on the homogeneous conditions obtained from (2.9), (2.12a), (2.12b) and
the dispersion relation (2.16), we yield

w′0(k) = k(1 + Ig(k))w0(k) coth kh, (2.17)
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(a) (b) (c)

Figure 2.2: Stationary waves in different propagating directions θ [119]. In the figure, (a)
the current is with the parameters |U|0/

√
gh = 0.5 and

√
αh = 4; (b) The phase velocities

approximated by three different methods: the DIM, (2.30)(E&L) and (2.32)(K&C); (c) the
phase velocity as function of the discrete number N for θ = π.

which may be used for further applications, as will be used in §2.4.2.

2.2.1 Semi-analytical approaches

Several attempts have been made to seeking the solutions of (2.16). As was noted
previously, analytical solutions are only available in special cases. For instance,
the linear shear profile [50, 56] and a class of specific shear profiles of the form
U′′ = αU where α is a constant. The latter is introduced in [6] for steady waves.

The present work has no ambition to achieve the completeness in solving analyti-
cally the dispersion relation with respect to plane waves propagating atop a depth
dependent flow that possesses a general form. Nevertheless, a few of the 3D ap-
proaches are presented, which provide essential insights into how the dispersion
relation may be properly solved based on, if there is any, reasonable criteria. The
author argues that the approximate dispersion relations presented here are good,
or to some extent excellent, for a wide range of naturally occurring shear flows
as well as much-used theoretical model flows. Comments regarding which is su-
perior under some specific situations will be made in the following, despite that
it is, to some extent, a point of preference under some circumstances. It is nev-
ertheless worth to point out that the DIM is capable of giving exact solutions to
the dispersion relation (2.16) and of solving the fluid field completely, as will be
indicated below. The author argues that the DIM is most often superior than the
piecewise linear approximation (PLA) for several reasons. The former requires
less computational cost as the latter introduces spurious solutions and extra com-
putation efforts are needed in order to obtain the two physical eigenvalues out of
an amount of solutions that increases with the layers used. Additionally, the DIM
is capable of easily dealing with specific cases where a critical layer exist while
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(b) (c)

(e) (f)

(a)

1 2 3

(d)

kh kh

N N N

kh

Figure 2.3: Phase velocities in variation of the dimensionless wave number kh while
three natural appearing wind-induced shear currents (a)-(c), whose data is from [92], are
presented [119]. In the figure, solutions of the DIM, the first-order approximation from
[16] (K&C) and [99] (E&L) are scaled by the solutions obtained from the piecewise linear
approximation in [94]; (d), (e), and (f) are calculated when U1(z), U2(z) and U3(z) are
present, respectively.

the PLA needs much more complicated numerical techniques.

The corresponding methods are presented in the following to solve the implicit
dispersion relation. The readers are directed to relevant thesis articles for more
details.

(i) Direct integration method

As noticed and introduced above, w̄ – the unity vertical velocity – is described by
the following equations

(∂2
z − k2)w̄ = k ·U′′w̄/(k ·U− ω), for − h < z < 0, (2.18a)

w̄0 = 1, w̄(k,−h) = 0. (2.18b)

Provided that both k and ω are prescribed, the above second-order ordinary differ-
ential equation (ODE) (2.18a) with respect to z are readily solved with the Dirich-
let boundary condition described by (2.18b).
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Despite that there are only limited cases where an analytical expression to w̄ is
available, a direct numerical approach under a general circumstance to obtain so-
lutions of w̄ described by (2.18a) and (2.18b) is possible, owing to the rapid devel-
opment of computational science. To the best knowledge of the author, [89] is one
of the scarce exceptions that have used a numerical method to solve the problem
of interest here, although the derivations are constrained to a narrow banded wave
train. It is worth to note that when a uniform/linear shear current is present, w̄ is
expressed w̄ = sinh k(k + z)/ sinh kh.

The Direct Integration Method (DIM) obtains numerical solutions of w̄ and c(k)
simultaneously for a prescribed shear current based on the boundary value problem
described by (2.18) and the implicit dispersion relation (2.16). Paper I [119] has
introduced more details regarding the DIM.

Different from the approximations introduced below and [16], where limitations
for each approximate method exist due to the close dependence of a realistic shear
profile and wavelength regions and where theoretical error may not be avoided,
the DIM contains no theoretical error and is independent of wavelengths and of
whatever a shear profile that is present. In this sense, the DIM shows surely a
competitive edge. Moreover, solutions from the DIM in the Fourier k plane may
form a database of c(k) and w̄(k) with respect to k in the frequency domain,
which are readily for further references and transforms to the physical plane. This
suggests that a one-time calculation in the Fourier plane for a prescribed shear
profile is sufficient for use, independent of boundary conditions at the free surface.

Moreover, as an implicit form of which (2.16) possesses, the DIM is generally open
to all of the reasonable initial guesses of c(k) as well as to numerical techniques to
solve w̄, although approximate methods introduced in [99] may serve as an initial
guess of ω(k) while using the DIM. As for a specific case where a critical layer
exists – that introduces a pole in the integration path of the integral (2.12b), using
the DIM is also straightforward to give exact solutions, as will be indicated in §2.3.

Additionally, as for steady waves where ω = ω0 is understood as a prescribed
condition, solving (2.18a) after inserting ω = ω0 into (2.18a) is sufficient when
using the DIM

Figs.2.2 – 2.4 verify the DIM with the results from the piecewise linear approxi-
mation in the presence of different shear profiles. In particular, extremely strongly
sheared profiles are considered in Fig. 2.4 . It is shown that the DIM is capable of
giving exact solutions and meanwhile provides solutions with an accuracy in order
of N−2 where N is the discrete number, despite that the accuracy essentially de-
pends on the numerical approaches adopted. For more detailed analysis, one may
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kh kh
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NN

k/

a

Figure 2.4: Phase velocities in variation of the dimensionless wave number in the presence
of Ua(z), Ub(z) and Uc(z), respectively [119].

refer to Paper I [119].

(ii) Perturbation method

It is natural to seek approximations to either c̃ or w̄ when it is challenging to obtain
the analytical solutions to (2.16) in the presence of a general depth dependent flow,
provided the corresponding criteria can be met. Under this circumstance, a pertur-
bation method is an option to proceed if it begins with a reasonable assumption.
In particular, the near-potentiality assumption that is introduced in [90] is made
so that the leading order and higher orders of the approximations to w will be ob-
tained via recursion relations. The fundamental point of the assumption states that
the term in the right-hand of the Rayleigh equation (2.4) (or (2.18a)) is relatively
small compared to the other terms, indicating that the system is nearly a potential
one and that the presence of a shear current provides small corrections to all of the
physical quantities due to the linear waves. In this sense, iterative solutions can be
made to obtain successively better approximations [120].

A small ordering parameter ε is introduced in the beginning and will be determined
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later. The perturbation expansion of w̄ can now be written in powers of ε

w̄ =
∞∑
n=0

εnw̄(n). (2.19)

Substituting (2.19) in (2.18a) and then collecting the same order of ε yields

w̄(0)(z) =
sinh k(z + h)

sinh kh
, (2.20)

w̄(1)(z) =

∫ z

−h
k ·U′′(ξ)

k ·ΔU(ξ)− kc̃

sinh k(ξ + h) sinh k(z − ξ)

k sinh kh
dξ. (2.21)

Next, inserting w̄ = w̄(0) + εw̄(1) +O(ε2) to (2.16) gives

c̃2 + 2c0c̃δ − c20 + c20Δ(c̃) + ... = 0 (2.22)

with

δ(k) =

∫ 0

−h
k ·U′(z) sinh 2k(z + h)

kc0 sinh 2kh
dz, (2.23)

Δ(c̃) =− 2c̃

kc20

∫ 0

−h
k ·U′′(z)

k ·ΔU(z)− kc̃

sinh k(z + h) sinh kz

sinh kh

[
Ũ(k)− ũ(z)

]
dz,

(2.24)

Ũ(k) =

∫ 0

−h
2k ·U(z) cosh 2k(z + h)

sinh 2kh
dz, (2.25)

ũ(z) =− sinh kh

sinh kz

∫ 0

z

2k ·U(ζ) cosh k(2ξ + h− z)

sinh 2kh
dξ, (2.26)

and c0 =
√

(g/k) tanh kh+ σk/ρ tanh kh.

Equations from (2.20) ∼ (2.26) are derived and presented in more details in the
appendix A.1.1 in Paper II [99]. In accordance with the ’near–potentiality’ as-
sumption we essentially presume |Δ(c̃)| � 1. Now we know naturally that
O(ε) = O(Δ).

After eliminating the higher orders in (2.22), we yield

c̃ ≈ c0(
√

1 + δ2 −Δ− δ). (2.27)

Before proceeding to different approximate expressions, it is understood that the
criterion for an approximation c̃app to be good is |c̃ − c̃app| � |c̃app| which is the
fundamental point to obtain criteria (2.30) and (2.32).
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(ii-1) the EL approximate method.

The criteria for this approximate method is now quite straightforward. Assume
that

|Δ(c̃)| � 2|δ
√
1 + δ2 − 1− δ2|, (2.28)

whose sufficient and far simpler criterion is that

|Δ(c̃)| � 1 (2.29)

Hence it reads c̃ ≈ c̃EL + εc̃EL,2nd where

c̃EL(k) = c0

(√
1 + δ2 − δ

)
, (2.30)

c̃EL,2nd = − c0Δ(c̃EL)

2
√
1 + δ2

. (2.31)

To calculate Δ(c̃) in practice for (2.31), the first order estimate is inserted for
c̃, as indicated in (2.31). Generally speaking, (2.31) is good to provide essential
improvement to (2.30) for most of the natural appearing current flows. (2.30) and
(2.31) suggest that the leading order involves the slope contributions of a shear
while the second-order approximation includes the curvature contributions of a
flow over the whole water depth.

(ii-2) the 3DKC approximate method.

As was noted previously, KCA is good at all wavelengths for a wide range of shear
currents while the exact criteria to explain this phenomenon are only introduced in
[99] where it is explained why KCA may work for a number of cases where the
assumption of KCA is strongly violated.

Here the three dimensional generation of KCA (3DKCA) is derived. The 3DKCA
gives

c̃KC(k) = c0(1− δ). (2.32)

The criterion that works for (the 3D generation of) KCA is

O(
δ2 −Δ

2(1− δ)
) � 1, (2.33)

assuming δ < 1.

A sufficient criterion for this to hold is the double criterion

|Δ| � 1 and δ2 � 1. (2.34)
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(a)

(f)

(g) (h) (i)

(b) (c)

(d) (e)

Figure 2.5: Approximate dispersion relations applied to different wind-drift shear currents
[99] (The data of the shear profiles is from [92]). Results for the shear profiles in panels
(a,b,c) are found in their respective columns. (d,e,f) show calculated estimates of intrinsic
velocity c̃ relative to the “exact” value calculated with the piecewise–linear method (PLA)
from [94]. Results are calculated for the 1st and 2nd order approximations found herein in
(2.30) and (2.31), respectively, and those due to Kirby and Chen [16]. Panels (g,h,i) show
the parameters relevant to applicability of the approximations. Δ(c̃) was calculated from
the PLA value of c̃.
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Particularly, in cases where |Δ| � 1 is satisfied but O(|δ|) ∼ 1, (2.30) is most
often superior. Nevertheless, circumstances exist where (2.32) works good even
when δ is not so small due to another sufficient criterion implying (2.33) that is

|δ2 −Δ| � 1 and 2(1− δ) ∼ O(1). (2.35)

In such cases cancellation occurs in the next order correction to (2.32), indicating
it may be accurate even when δ2 and Δ are not so small respectively.

Examples in Paper II [99] have showed that the criterion (2.33) indeed provides a
reasonable explanation of KCA that works for wave regions where its assumption
is strongly violated.

(ii-3) the second-order extended KC approximate method.

The 2nd-order extended KC approximation slightly differs from the 2nd-order ap-
proximation derived in [16] in two aspects. The former is based on a more well-
defined assumption and the latter arguably holds a much more complicated form.
Again, based on the criterion (2.33), we yield that c̃ ≈ c̃KC + c̃

(2)
e where

c
(2)
e = c0[δ

2 −Δ(c̃KC)]/2, (2.36)

which is supposed to have an equivalent accuracy as (2.31).

Before proceeding to the next subsection, it is worth to notice that the approxima-
tions (2.30) and (2.32) are essentially equivalently good in terms of the complexity,
the computational effort and the accuracy. As for a wide range of shear flows, the
first order approximations, e.g. (2.30) and (2.32), are sufficient. As for which of
the two is to use, it is somewhat a point of preference. Nevertheless, it has in-
dicated in Paper II [99] that (2.30) is superior for strongly sheared flows and for
cases where δ is not small when compared to O(1). Especially when |δ| > 1, the
results given by (2.32) is physically unacceptable, as indicated in Fig. 2.6.

Moreover, compared to the second order approximate scheme derived in [16],
(2.31) (or (2.36)) is, in the author’s opinion, of a much simpler form. Meanwhile, it
contains essential physical implications. Note that criteria (2.33) only explain why
(2.32) has a wide range of applicability while the criteria for which the second
order approximation derived in [16] works have yet been known.

All of the discussions in the previous two paragraphs are confirmed by Figs. 2.5
and 2.6. Detailed analysis with respect to Figs. 2.5 and 2.6 is, however, not pre-
sented to avoid too much repetition, and readers are directed to Paper II [99].
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(a)

(g) (h)

(b)

(d) (e)

N N
k/

k/

(f)

(i)

(c)

Figure 2.6: Comparison of different approximation models for three strongly sheared
velocity profiles [99]. (a,d,g) pertain to profile 1, e.g. U1(z) = 3

√
gh exp(z/h) ,

(b,e,h) to profile 2, e.g. U2(z) =
√
gh exp(10z/h) , and (c,f,i) to profile 3, e.g.

U3(z) = 3
√
g/α exp(αz) . (a,b,c): Velocity profiles. (d,e,f): 1st and 2nd order esti-

mates using the present model to first and second order, respectively EL1st [(2.30)], and
EL2nd [(2.31)], as well as the 1st and 2nd order approximations of Kirby and Chen [16]
(3DKC1st and 3DKC2nd, respectively), relative to the high accuracy calculation with the
piecewise linear approximation (PLA). (e) and (f): applicability parameters for the models
as discussed in this subsection.
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2.2.2 Error estimates

We may find the Taylor series for (2.16) about c = c≈ where c≈ represents any of
the approximations to the phase velocity, provided that c̃≈ is a good approximation
to the accurate c̃. It thus yields

ΔR(k, c̃≈ + c̃− c̃≈) = ΔR(k, c̃≈) + (c̃− c̃≈)
∂ΔR

∂c

∣∣∣∣
c̃=c̃≈

+O((c̃− c̃≈)2) = 0.

(2.37)

The relative error of the leading order then reads

Rerr =
c̃− c̃≈

c̃
� −∂ΔR/∂c

c̃≈ΔR

∣∣∣∣
c̃=c̃≈

(2.38)

As for approximations (2.30) and (2.32), error estimates can be roughly made by
the next order in relative to the leading order. Hence the rough errors are expressed,
respectively,

errEL =
c0|Δ(c̃EL)|
2c̃EL

√
1 + δ2

, errKC =
|δ2 −Δ(c̃KC)|

2(1− δ)
. (2.39)

2.2.3 Phase and group velocity

As was noted and introduced above, the phase velocity describes the speed at
which the crest or phase of a progressive wave propagates. Here, we further derive
the group velocity which denotes the speed at which the wave energy propagates.
Based on the implicit dispersion relation (2.16), we yield

cg = ∇kω(k) = − ∇kΔR

∂ΔR/∂ω
(2.40)

in which the operator ∇k =
∂

∂k
ek +

∂

k∂θ
eθ . (2.40) is an implicit expression but

uncomplicated to obtain numerical results.

2.2.4 The analytical solutions to special cases

(i). a linear shear current.

Waves atop a linear shear current have been extensively studied. An analytical
approach to solve the 3D linear waves propagating on a current of uniform vorticity
is initially introduced in [56, 58]. The linear shear profile is expressed U = U0 +
(Sz, 0) where S (S > 0 is normally assumed for convenience) is the uniform
vorticity. As for the particular case, the dispersion relation reads

ω − k ·U0 = ±
√

k2c20 +

(
k ·U′

0 tanh kh

2k

)2

− k ·U′
0 tanh kh

2k
, (2.41)
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The physical implications of (2.41) either for different strengths of vorticity or for
different water depths are introduced in detail in paper III [61]. In infinite water
depth, the dispersion relation is readily given by taking the limit kh → ∞

ω − k ·U0 = ±
√

k2c20 +

(
k ·U′

0

2k

)2

− k ·U′
0

2k
= Σ±(K)

√
g

b
, (2.42)

where b is a reference length that can be chosen for better reference and K = kb.
(2.42) yields an explicit solution of k for a given oscillating frequency ω = ω0,

KC,E =
τ cos γ − 0.5(1− Frs cos θ cos γ) +

√
Dk

Fr2 cos2 γ
,

KB,D =
τ cos γ − 0.5(1− Frs cos θ cos γ)−

√
Dk

Fr2 cos2 γ
,

(2.43)

in which τ = |U0|ω/g, Frs = |U0||U′
0|/g, Fr = |U0|/

√
gb, γ is the angle be-

tween the propagating direction of a wave train and U0 (U0 = |U0|(cosβ, sinβ)),
Dk = (1−Frs cos γ cos θ)

2 − 4τ cos γ is the discriminant of (2.42) as a quadratic
function of k after a little bit effort of reorganising, the subscribes B,C,D and E
are marked in Fig. 2.7. Fig. 2.7 depicts the graphical solutions of (2.42). More
detailed information can be found in Paper III [61] where more physical impli-
cations are also presented. (2.43) agrees with [36] when the shear current is not
present.

Physically, a Doppler resonance occurs when

cg = 0, (2.44)

which implies that wave energy is held stationary in space. The resonance condi-
tion described by (2.44) and together with the dispersion relation (2.41) or (2.42)
is sufficient to yield the Doppler resonance τres. More discussions regarding the
dispersion relation and Doppler resonance can be found in Paper III [61]. A figure
that depicts the multiple Doppler resonances is shown in Fig.2.8.

(ii). steady waves on a special class of shear profiles.

There is a special class of shear profiles for which the analytical solutions to prob-
lems of steady waves can be obtained. Generally, this class of shear current is
expressed U′′(z) = αU(z). When steady waves are the problem of interest, it
gives c(k) = 0 (or ω = 0). Under this specific situation, the Rayleigh equation
(2.4) yields

w(k, z) = sinh kα(z + h)/ sinh kαh, (2.45)
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Figure 2.7: Graphical solutions of dispersion relation in deep waters [61]. In the figures,
slope of the tangent of curve Σ±(K) denotes component of non-dimensional and intrinsic
group velocity, CgK(K) = ∂Σ±/∂K; Slope of the line connecting one point on curve
Σ±(K) and origin denotes intrinsic phase velocity, C(K) = Σ±/K; Slope of the straight
line Ω0 +KFr cos γ is the projected component of non-dimensional moving speed of the
source along direction of wave propagating - Fr cos γ.

where kα =
√
k2 + α.

Hence, the dispersion relation now reads

(k ·U0)
2kα coth kαh− [k ·U′

0k ·U0 + gk2 + σk4/ρ] = 0; (2.46)

which is not complex to seek solutions.

2.3 Critical layer

As was noted above, a critical layer may exist at a critical depth zc that satisfies the
relation k ·U(zc) = kc. If zc is close enough to the water surface, the critical layer
may have profound effects on surface water waves. Otherwise the effects could
be somewhat neglected when the critical layer exists in a deep depth in relative
to the wavelength. A critical layer normally introduces an imaginary part of the
eigenvalues, possibly resulting in instability of the flow. The instability depends
on the sign of the imaginary part of the phase velocity. A piecewise linear model
is widely used to study the instability of the flow [106, 107, 108]. Additional con-
sideration of the viscosity brings a more realistic model, which shows nontrivial
effects on the unstable modes [105, 121].

When a critical layer exists, c̃ becomes complex that can be written as c̃ = c̃r+ici.
we may obtain the leading behaviour of ci from the implicit dispersion relation
(2.16). It reads

ci ≈ −c̃≈Ii/(2
√
1 + δ2). (2.47)
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Figure 2.8: Doppler resonant frequencies τres as a function of Frs for different direc-
tions of motion β with the shear current [61]. Where two panels show the same β
((b, c), (d, e), (f, g)), the first is a zoom of behaviour for small and moderate Frs while
the second shows the full picture appearing at large Frs.
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where

Ii =
2πk ·U′′

c sinh
2 k(zc + h)

k|k ·U′
c| sinh 2kh

,

which is the imaginary part of Ig due to the critical layer after using the Sokhotski-
Plemelj theorem. (2.47) implies that instability occurs when k · U′′

c < 0 and its
deep-water version agrees with the result in [90]. More detailed analysis can be
found in the appendix in Paper II [99].

Additionally, it is straightforward to yield ci by the DIM. The only difference
is that the DIM obtains only c(k) that is real when there is no critical layer but
it solves c(k) that additionally includes an imaginary part when a critical layer
exists. For more details in this regard, one may refer to Paper I[119].

2.4 Boundary value problems

2.4.1 The Cauchy-Poisson problem

As for a Cauchy - Poisson problem, the initial surface elevation relevant quantities
– ζ̂(r, t = 0) = ζ̂0 and its derivative with respect to the time - ˙̂

ζ(r, t)|t=0 =
˙̂
ζ0 –

are understood to be prescribed conditions. For this particular initial condition, we
may assume the solution of surface elevation of the form

ζ(k, t) = D+(k)e
−iω+t +D−(k)e−iω−t, (2.48)

in which ω± should satisfy the dispersion relation (2.16) that gives two roots of ω,
satisfying the relation ω+(k) = −ω−(−k) that indicates an identical ω propagat-
ing in two opposite directions, i.e. k and −k .

Next, we insert (2.48) into the initial condition introduced here and then yield

D+ +D− =ζ0; (2.49a)

−iω+D+ − iω−D− =ζ̇0. (2.49b)

where ζ0 and ζ̇0 are the Fourier transform of ζ̂0 and ˙̂
ζ0, respectively. The kine-

matic and dynamic conditions at the free surface then give the vertical velocity
distribution w and hydrodynamic pressure p, respectively.

Until now, the Cauchy-Poisson problem has been solved, in which D±(k) and ω±
are the primary physical unknowns. The inverse Fourier transform then yields the
solutions in the physical plane.

2.4.2 Initial impulsive pressure

The solution obtained from an initial impulsive pressure works as an impulse re-
sponse function which can be widely applied in realistic situations [122]. For
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instance, this is one of the classical ways to form the steady ship waves [35, 36].
Similar to §3.5 discussed in [118], an initial impulsive pressure on the water sur-
face is normally considered of the form pI(k, t) = I(k)δ(t) where δ is the Dirac
delta function and I is normally equal to unity in units of pressure.

Before proceeding to seeking the impulse response function of the surface eleva-
tion, [w̃, ζ̃] = [w, ζ]e−iωt is defined. Rewriting the boundary conditions at the free
surface now yields

−(∂t + ik ·U)w̃′ + ik ·U′w̃ − (gk2 + σk4/ρ)ζ̃ = k2pI/ρ, at z = 0, (2.50a)

(∂t + ik ·U)ζ̃(k, t) = w̃, at z = 0, (2.50b)

It is physically reasonable that all of the physical quantities are assumed to be finite
at t = 0+. The integration of both sides of (2.50a) and (2.50b) over an infinitesimal
interval t = 0− to 0+ yields

w̃′ =− k2I/ρ, at t = 0+and z = 0, (2.51a)

ζ̃0 =0, for z = 0, (2.51b)
˙̃
ζ0 =w̃, at t = 0+and z = 0. (2.51c)

Based on (2.17) and (2.51a), we yield

w0(k)(1 + Ig) = −kI tanh kh/ρ (2.52)

which gives the expression of w0(k). In addition, I is normally set to 1. From
(2.51b) and (2.51c), we notice that an initial impulsive pressure gives an initial
vertical velocity distribution or the initial ζ̇0. (2.52) together with the dispersion
relation (2.16) – that provides an additional condition – are sufficient to fully solve
the problem. Further solutions of ζ(k, t) and ω± can be thereafter obtained by
referring to §2.4.1.

For convenience, a H(k, t) function is used from now on to represent a general
solution obtained for the particular boundary condition considered here and a sub-
script is added to denote different physical quantities. For instance, Hζ denotes
the response function of the surface elevation obtained here. As was noted previ-
ously, solutions obtained in this subsection may serve as a response function that
may be directly used to form solutions in different boundary conditions. This is
straightforward and physical transparent. Here, Hζ reads

Hζ(k, t) =
ikI tanh kh

2ρωdiv(1 + Ig)

(
e−iω−t − e−iω+t

)
(2.53)

where I is normally in units of pressure, ωdiv = ω+−ω− and ΔR = (1+ Ig)(ω−
ω+)(ω − ω−) = 0 that denotes the dispersion relation.
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2.4.3 Transient waves generated by a time dependent pressure distur-

bance

When an external pressure disturbance is depressing on the free water surface,
solutions can be formed based on the response function obtained in the previous
subsection. It then yields

G(k, t) =

∫ t

−∞
dτpext(k, τ)HG(k, t− τ), (2.54)

where G(k, t) may represent any of the physical quantities for an external time
dependent pressure disturbance.

Fig.2.9 depicts one example regarding how waves – that are generated by a sud-
denly starting ship – develop as time advances in the presence of a linear shear
current with the shear Froude number Frs equal to 0.8. For more details regarding
the transient waves generated by a time dependent wavemaker, readers are directed
to Paper VI [118].

2.4.4 Steady waves

As for stationary waves, it is understood that ω = ω0 is known. Particularly,
ω0 = 0 denotes the ship waves, indicating the stationary condition [60]. When
ω 	= 0, it may be used to represent waves generated by a source oscillating with
a single frequency ω0. In particular, it is a well-known approach to deal with the
radiation problem of a floating structure in the sea.

A. Radiation condition.

With a readily known ω, (2.13) and (2.14) should be sufficient to give solutions.
Nevertheless, the uniqueness of the physical problems requires an extra condition
that serves to meet the boundary condition in the infinite far field, or to gradually
develop the initial transient waves into the, somewhat, artificial stationary ones.
The radiation condition discussed in [12] is simple and extensively used. It simply
replaces ω = ω0 with ω = ω0 + iε, where ε is an infinitesimal positive parameter
which will ultimately set to zero. This constrains the direction of wave propa-
gating to a one-way oriented, i.e. waves are limited to be radiated away from a
wavemaker instead of the other way around. This is physically transparent and
quite straightforward to understand.
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T = 5.00 T = 10.00 T = 30.00 T = inf

T = 5.00 T = 10.00 T = 30.00 T = inf

T = 5.00 T = 10.00 T = 30.00 T = inf

T = 5.00 T = 10.00 T = 30.00 T = inf

Figure 2.9: Wave patterns of modelling ship suddenly set in motion from rest at T = 0, at
increasing nondimensional time T = t

√
g/L where L is the ship length [118]. The ship

is modelled as a super-Gaussian of aspect ratio L/b = 6. First row: no shear; second row:
β = 0; third row: side-on shear β = π/2; fourth row: β = π. The shear Froude number
Frs = 0.8.
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Hence, we obtain

ŵ(r, z, t) =

∫
d2k

(2π)2
i(k ·U0 − ω)kpext tanh kh

ρΔR(k, ω0 + iε)
ei(k·r−ω0t), (2.55)

ζ̂(r, t) =

∫
d2k

(2π)2
pextk tanh kh

ρΔR(k, ω0 + iε)
ei(k·r−ω0t), (2.56)

which gives the solutions of problems in the context of ship wakes when ω0 = 0
and U0 	= 0 in a relative coordinate system that is fixed on a moving wavemaker.

(2.56) can also be obtained by inserting (2.53) and pext(k) into (2.54).

The wave resistance is readily obtained by replacing ω with ω0 + iε in (2.15). In
particular, ω0 = 0 for ship wave resistance. A general expression of the wave
resistance of a ship moving atop a current of an arbitrarily vertically sheared form
is derived in [98] in 2D. However, the expression derived in [98] is not closed itself
for one unknown exists and no approach is suggested to solve this in a general case.
Regarding this particular point, the present work has not only indicated an proper
approach but also derived the expression in a far more general case – finite water
depth in 3D.

B. Ship waves ω0 = 0.

When ω0 = 0, (2.56) solves the problem of stationary ship waves on a depth
dependent flow. This means that (2.56) can be directly used for further studies in
the context of ship waves on a subsurface flow. Moreover, a stationary condition
is satisfied by nature from ω0 = 0, stating that the waves that can keep up with a
ship propagate at the speed of the ship’s motion.

Next, we proceed to the special cases associated with ship waves in the presence
of a linear shear current in finite water depth. Here follows a summary of novel
features that are introduced due to the uniform vorticity, which are found in paper
IV[60] and paper V [63] where more details are presented.

� Asymmetric ship wakes and non-constant Kelvin angles – as large as 180o

– are introduced. Fig.2.10 and Fig.2.11 depict the ship wakes and Kelvin
angles under different combinations of the parameters Frs and Frh for dif-
ferent values of β, respectively. Detailed analysis can be found in paper IV
[60].

� A critical velocity is found above which the transverse waves vanish. Phys-
ically, this means that the fastest transverse waves cannot keep up with
the ship any more. Generally a situation refers to a supercritical situation
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Frh  = 0.8, ¯ = ¼/2: Subcritical to supercritical when Frs increases
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Figure 2.10: Increasing the shear S (and therefore Frs) can cause transition from subcrit-
ical to supercritical situation (top 6 panels) or from supercritical to subcritical (bottom 6
panels) depending on the value of Frh = |U0|/

√
gh and β [60]. In deep waters (Frh = 0)

only the former transition is possible. In all graphs Fr = 0.8. Arrows indicate direction of
shear flow in the system where the surface is at rest, Frh = |U0|/

√
gh and Frs.
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Figure 2.12: Critical lines as function of Frs and Frh for different values of β. The shaded
regions below the critical lines are sub-critical [60].

when no transverse waves exist, otherwise it denotes a sub-critical situa-
tion. When both a finite water depth and a current of uniform water depth
are present, the critical velocity reads

Frcrit =
Vcrit√
gb

=

√
Fr2sb + 1/H − Frsb cosβ

1/H + Fr2sb sin
2 β

. (2.57)

where H = h/b. Fig.2.12 shows the critical lines for different values of β
as function of Frs and Frh, below which a sub-critical situation is shown.

� The transitions between sub-critical and supercritical situations can be ob-
served as Frs increases when the ship is moving in different angles with the
shear current, as shown in Fig.2.10.

� Interplays between the shear current and wave-interference effects, for deep
water, are found to be complex and to result in different wave-interference
regimes, in a manner that is somewhat similar to the complex interplays
between the seabed and wave-interference effects, as depicted in Fig.2.13.
Detailed analysis can be found in Paper V [63].
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Figure 2.13: Wave-interference regimes when a ship is moving in the directions
0, π/4, π/3, π/2, 2π/3 and π with the shear current [63].

2.4.5 Wave resistance

Due to the asymmetric ship wake in the presence of a shear current, a lateral ra-
diation force is firstly introduced. Compared to the normal wave resistance along
the stern-wise direction, the lateral radiation force is defined towards the starboard
(right) and equals to zero for a symmetric ship hull in the absence of a shear cur-
rent.

The forces felt by a moving wavemaker due to the energy conveyed for radiating
waves are analysed at two stages, including the transient stage of a ship suddenly
set in motion and the stationary phase when wave pattern generated by a wave-
maker advancing at constant speed is relatively steady to its motion. The former is
considered in paper VI [118] and the latter in paper IV [60].

The thesis does not intend to cover every detail found about the wave resistance in
the thesis articles. Hence, detailed analysis with respect to each relevant figure is
not present here and only primary findings associated with the wave resistance for
different applications are listed below.

� The lateral radiation force can amount to 10 ∼ 20 percent of the wave resis-
tance under some circumstances, as indicated in Figs.2.14 and 2.15.
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Figure 2.14: Lateral radiation force felt by a ship modelled as a Gaussian pressure distri-
bution varies with Fr [60]. In the figure, Frsb = S

√
l/g, (a) H = h/l = 0.1 (shallow

water); (b) H = 0.5 (finite water); (c) H = ∞.

� The presence of a linear shear current tends to increase wave resistance for
upstream ship motion and decrease it for downstream motion, although in-
terference effects between bow waves and stern waves can alter this for cer-
tain Froude numbers. Also the value of Fr at which R‖ is maximal is low-
ered for upstream and increased for downstream directions of ship motion,
as indicated in Fig.2.15.

� The presence of a shear current can noticeably moderate the rate – at which
the transient wave resistance R‖(t) dies out – and alter its oscillating fre-
quency, as depicted in Fig.2.16. This is due to the fact that both the phase
velocity and phase velocity depend significantly on the shear current that is
present.

For more information, one may refer to paper IV [60] and paper VI [118].
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Figure 2.15: Wave resistance felt by a ship modelled as a Gaussian pressure distribution
varies with Fr [60]. In the figure, depth H = 0.1 (a,b), 0.5 (c,d) , ∞ (e,f) for Frsb = 0.25
(a,c,e) and 0.5 (b,d,f). The vertical lines show the critical Froude numbers as given in
(2.57).
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Figure 2.16: Transient wave resistance on a ship set suddenly in motion as a function
of nondimensional time T = t

√
L/g, for different cases where a linear shear current

is present in deep water [118]. The "ship" is modelled as an ellipsoidal, super-Gaussian
surface pressure of aspect ratio 6 and L = 1 (arbitrary units), moving with Fr = 0.3. Note
that the abcissa is scaled differently for T > 20.

2.5 Recommendations for future topics

In the author’s opinion, a couple of topics suggested below are beneficial for ap-
plications and thus can be used for future studies.

1. Applications based on the fundamental theory derived in the thesis. For
instance, Doppler resonance affected by a realistic shear flow, energy flux,
and etc.

2. Nonlinear waves on a depth-dependent flow in three dimensions. Especially,
how the presence of a vertically sheared current may affect the wave steep-
ness.

3. Laboratory and field observations are required, necessary, and desirable;

4. Engineering applications, such as the design of offshore structures, effects
from the shear current on sea loads on offshore installations, larger structures
such as the floating platforms, drilling and transporting vessels, etc.
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Transient wave resistance upon a real shear current
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Abstract

We study the waves and wave–making forces acting on ships travelling on currents which vary as a function of depth.
Our concern is realism; we consider a real current profile from the Columbia River, and model ships with dimensions
and Froude numbers typical of three classes of vessels operating in these waters. To this end we employ the most general
theory of waves from surface sources on shear current to date, which we derive and present here. Expressions are derived
for ship waves which satisfy an arbitrary dispersion relation and are generated by a wave source acting on the surface,
with the source’s shape and time-dependence is also being arbitrary. Practical calculation procedures for numerically
calculating dispersion on a shear current which may vary arbitrarily with depth both in direction and magnitude, are
indicated.
For ships travelling at oblique angle to a shear-current, the ship wave pattern is asymmetrical, and wave–making

radiation forces have a lateral component in addition tot he conventional wave resistance, the sternward component. No
corresponding lateral force exists in the absence of shear. We consider the dependence of wave resistance and lateral force
for upstream, downstream and cross–stream motion on the Columbia River current, both in steady motion and during
two different maneouvres: a ship suddenly set in motion, and a ship turning through 360◦. We find that for smaller ships
(tugboats, fishing–boats) the wave resistance can differ drastically from that in quiescent water, and depends strongly on
Froude number and direction of motion. For Froude numbers typical of such boats, wave resistance can vary by a factor
3 between upstream and downstream motion, and the strong Froude number dependence is made more complicated by
interference effects. The lateral radiation force is approximately 20% of the wave resistance for cross–current motion
for these ships, and can reach more than 50% for short periods during maneouvring; this is by no means a small force,
and will have an effect on seakeeping, economy and optimal choice of route. For an example ship (tugboat) doing a
turning motion, both the lateral force and wave resistance are predicted to undergo variations whose amplitude amounts
to approximately 100% of their constant values in quiescent water.

Keywords: Wave resistance, Shear flow, Transient ship waves

1. Introduction

Typically, more than 30% of the fuel consumption of
ocean–going ships is from making waves [1]. A resistance
is felt due to the work done by the ship on the surrounding
water, which propagates away in the form of wave energy.
While going back over a century [2, 3, 4, 5, 6, 7, 8], wave
resistance on ships has also been the focus of recent inves-
tigations [9].

Two of us recently showed that the wave resistance act-
ing on a ship in steady motion can be significantly al-
tered by the presence of a shear current beneath the wa-
ter surface [10]. In conditions with no shear, wave re-
sistance typically becomes important for Froude numbers
around 0.3 and peaks in the vicinity of 0.5 before decreas-
ing again as the wake becomes dominated by diverging

∗Corresponding author.
∗∗YL and BKS are to be considered joint first authors, in alpha-

betical order.
Email address: yan.li@ntnu.no (Yan Li)

waves. When a sub-surface shear current is present, how-
ever, both the Froude number at which wave resistance
sets in, and the value at which it peaks, are in general
changed, with opposite effects whether the ship travels
along, against, or across the current [10]. Moreover, sub-
surface shear causes the angle made by the ship waves to
differ from Lord Kelvin’s classic 19.47◦, being smaller for
shear-assisted and larger for shear-inhibited motion, and
asymmetric around the line of motion when the angle with
the current is oblique [11]. In the latter case momentum is
imparted to the water at different rates to starboard and
port, and the corresponding wave radiation force experi-
enced by the ship obtains a lateral component in addition
to the conventional sternward wave resistance [10]. No
corresponding phenomenon exists in rectilinear motion if
the current has depth-uniform velocity profile.

Our concern in this paper is to introduce realism, com-
pared to previous studies which have considered idealised
models. We study how the shear of a real, measured cur-
rent may affect the wave radiation forces on actual ships.
We use an example shear profile measured in the Columbia

Preprint submitted to Elsevier July 6, 2017



River delta. These waters are crossed by thousands of
ships each year, and we study model ships with dimen-
sions and velocities typical of different vessel types op-
erating there. This includes not only the forces acting
during steady motion, but also transient forces from ma-
noeuvring motions. To this end, the most general theory
of linear ship waves (or waves from surface sources more
generally) to date has been developed, and is presented
here, allowing a shear current to vary arbitrarily with re-
spect to depth both in direction and magnitude, as long
as it may be considered uniform in horizontal directions.
We demonstrate in Section 3 how a real shear current

can have a very significant effect on the wave–making
forces acting on real ships. At typical Froude numbers we
find for smaller boats (tugboats, fishing boats) that the
wave resistance can differ by a factor 3 or more between
upstream and downstream motion at the same velocity
relative to the surface. The lateral radiation force acting
when travelling across the shear is also very significant; it
is typically around 20% of the sternward resistance force
in steady motion, but can momentarily reach more than
50% of the wave resistance during maneouvring. These are
by no means small effects, and will affect the seakeeping
and the optimal choice of velocity and route of travel.
This paper contains two major sections, one theoretical,

one of an applied nature. The reader primarily interested
in what the practical effect of shear in real–life situations
might be, may wish to refer directly to the numerical re-
sults in Section 3 bearing in mind the system definitions
in Section 1.2. The theoretical foundations and framework
is laid out in Section 2; it has been presented, as far as we
have been able to, so as to be useful to readers who wish
to employ the formalism for their own purposes.
Studies of transient wave resistance go back a long time.

Whenever a ship undergoes changes in velocity during ac-
celeration or manoeuvring, transient waves are emitted,
and the wave radiation force correspondingly will be time
dependent for the duration during which the created tran-
sient ring-wave remains in the immediate vicinity of the
ship. A century ago, Havelock studied the wave resistance
in 2 dimensions due to a suddenly appearing ship, mod-
elled as a distribution of additional pressure at the water’s
surface, suppressing the surface approximately as would a
ship [12]. The resistance force was found to increase from
zero to a peak value before relaxing in an oscillatory man-
ner to its static value. The speed of relaxation was found
to depend closely on the aspect ratio of the disturbance,
since the bow and stern waves from a more slender ship
tend to cancel, causing a quicker relaxation to steady con-
ditions and a more stable steady wave resistance. On the
other hand a circular “ship” with little such interference,
experienced a very slow relaxation rate. A study of the
resistance felt by a submerged cylinder starting suddenly
from rest revealed similar results [13]. Studies of ships in
various kinds of acceleration is a related classical problem
[14, 15].
Approaching the problem of waves in three–dimensional

systems in the presence of sheared flows, standard meth-
ods to calculate waves and motions of floating bodies must
be immediately discarded, based as they are on potential
theory. No satisfactory theory of creating bodies from sub-
merged sources and sinks exist even in the simplest shear
currents exists, not to mention advanced panel methods
[16]. A feasible approach for our purposes is however to
create a “ship–shaped footprint” in the surface by intro-
ducing an external surface pressure. The approach goes
back over a century [17] and has recently been employed
in wave resistance studies [9]. Such a model, only affects
the dynamic boundary condition, not the equations of mo-
tion, thus does not in principle pose any restrictions on the
flow vorticity.

1.1. Outline

The investigated system is presented in Section 1.2 along
with the basic formalism. Section 2 then goes on to de-
velop the general theory of waves from moving, time–
dependent surface disturbances upon a horizontal back-
ground current which may vary arbitrarily with depth,
both in direction and magnitude. In particular, a suit-
able formalism for working with a general (not explicitly
known) dispersion relation is derived in Section 2.1, and
applied to the general problem in Section 2.2. In Section
2.3 practical considerations are presented concerning nu-
merical evaluation of the dispersion relation for arbitrary
velocity profiles, and the formalism for calculating wave
resistance and lateral radiation force is derived and dis-
cussed in Section 2.4.
Section 3 is of a more applied nature and presents nu-

merical results for particular situations. A measured ve-
locity profile from the Columbia River estuary is used, and
pressure distributions modelling ships of realistic dimen-
sions are employed in order to provide reasonably realistic
estimates of the effect of shear in these waters while re-
taining some generality. For comparison, and to illustrate
the effect of shear without the large number of lengthscales
and parameters, corresponding results for the simple case
of a linearly depth–dependent current are given in Section
3.1 before conclusions are drawn. Some further details on
derivation and numerical procedures are found in appen-
dices.

1.2. System definition

In this section the system under scrutiny is defined,
along with general formalism used in the paper. The sys-
tem is a generalisation of that considered in Ref. [18].
We consider infinitesimal wave amplitudes described by

the surface elevation function ζ̂(r, t) with horizontal posi-
tion r = (x, y) = r(cosϕ, sinϕ) and time t. The waves are
superimposed on a depth-varying background flow U(z).
In our general theory in Section 2, U(z) may vary both
in magnitude and direction, although our numerical ex-
amples in Section 3 will all be unidirectional. We use the
shorthand U(0) = U0. A sketch of the system is seen in
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Figure 1: Schematic sketch of the system: a ship travelling with
arbitrary, time–dependent velocity atop a shear current of arbitrary
depth–dependence. Here a “lab” coordinate system is shown, fixed
relative to the sea–bed.

Fig.1. We assume incompressible and inviscid flow. The
three velocity components and pressure perturbation due
to the waves we name û, v̂, ŵ, and p̂, respectively, all func-
tions of r, z and t. Hatted quantities are considered small,
and we linearise with respect to these. The flow field is
thus [V, P ] = [U(z)+ ûex + v̂ey + ŵez,−ρgz+ p̂], with V
and P the total velocity and pressure fields, respectively,
g the gravitational acceleration, and ρ the density of the
water. The flow obeys the Euler equation

∂tV + (V · ∇)V = −∇P/ρ− gez. (1)

We neglect surface tension. The physical quantities
are defined in Fourier space of the horizontal plane as
[ζ̂ , û, v̂, ŵ, p̂](r, z, t) ↔ [ζ, u, v, w, p](k, z, t) as

[ζ̂ , û, v̂, ŵ, p̂](r, z, t) =

∫
d2k

(2π)2
[ζ, u, v, w, p](k, z, t)eik·r

(2)
so that k = (kx, ky) = (k cos θ, k sin θ) is the wave vector

(It is understood that ζ̂ and ζ do not depend on z). The
water depth h is constant, and may be allowed to tend to
∞.
In the system sketched in Fig. 1 no less than three differ-

ent reference frames are natural, depending on the ques-
tion under consideration. Fig. 1 shows the “lab” reference
frame, i.e., as seen by an observer on shore. A second frame
of reference which we use in Section 2.2 is that which is
fixed on the moving model ship. Finally, in section 3 we
will sometimes work in the frame of reference in which the
water surface is at rest.
For this reason the oft used terms ‘upstream’ and ‘down-

stream’ are ambiguous as denotations of directions of mo-
tion. We will instead use the terms ‘shear–assisted’ and
‘shear–inhibited’ to describe directions of ship motion or
wave motion relative to the sub-surface current. The mo-
tion is assisted by the current if, in a reference system
where the water surface is at rest, the sub-surface cur-
rent has a component along the direction of motion (this
corresponds to the ship travelling upstream in the case of
e.g. a river). Correspondingly, for shear–inhibited motion
the sub–surface current has positive component against
the ship’s motion, in a system where the surface is at rest
(corresponds to downstream motion on a river). These
concepts are visualised in Fig. 2a. They are only strictly

U0

¯

k

° x

y

μ

° =   μ { ¯

Shear-inhibited Shear-assisted

a)

b)

Figure 2: (a) Illustration of shear–assisted vs shear–inhibited ship
motion; shown in the “lab” reference frame relative to the sea bed.
(b) Definition of angles ϕ (coordinate angle in r plane), γ (angle
between k and U0), β (angle between U0 and x axis, and θ (angle
between k and x-axis). The reference frame is here at rest with
respect to the ship. Note: β = 0 is the maximally shear assisted
direction of motion, β = π the maximally shear inhibited.

well defined for a monotonically varying velocity profiles,
yet this is sufficient for our present purposes.

In later sections we shall make use of polar coordinates
in the horizontal plane, which we define in figure 2, for a
system in which the ship is at rest. Note carefully that
the angle β differs by π from that used in [11, 10], where
a reference system relative to the water surface was used.
The angle between k and U0 is γ.

2. Theory: linear surface waves from an arbitrary
time–varying wave source, propagating on an
arbitrary shear current

In this section we present a theoretical framework for
calculating waves from arbitrary wave sources on the sur-
face, in flows with arbitrary dispersion relation ω(k), af-
fected by sub-surface currents that may vary both with
depth and direction. To our knowledge no theory this gen-
eral has ever been presented. As a special case the theory
provides a procedure for calculation and analysis of ship
waves on arbitrary horizontal shear currents.

From the linearised Euler equations and continuity
equation in k-space we have the relations (cf. e.g. the pro-
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cedure of [19])

(∂t + ik ·U)w′(z, t)− ik ·U′w(z, t) =− k2p(z, t)/ρ,
(3a)

(∂t + ik ·U)w(z, t) =− p′(z, t)/ρ, (3b)

where a prime denotes differentiation with respect to z,
and the dependence on k of p and w is suppressed here
and henceforth.

2.1. General form of surface wave dispersion relation

We will now present a general, implicit form of the
dispersion relation for a waves atop a general depth–
dependent shear flow U(z). The relation allows us to
derive general expressions for surface waves from an ar-
bitrary surface source in Section 2.2. Determining ω(k)
for a specific situation is the topic of Section 2.3.
We use the physical values ω±(k) to express the surface

elevation for a given k-component as:

ζ(k, t) = Z+(k)e
−iω+t + Z−(k)e−iω−t (4)

where Z± are unknown coefficients to be determined. Also
the other perturbed quantities u, v, w and p will have time
dependence ∝ exp(−iω±t).

If the values of Z± are known from initial conditions, the
full time dependent solution to the free surface elevation
can be found from (4).
The phase velocities ω+(k)/k and ω−(k)/k correspond

to partial waves propagating in directions k and −k, re-
spectively. They satisfy the relation

−ω−(k) = ω+(−k). (5)

Hence there is a unique, positive phase velocity ω+(k) in
propagation direction k, and the integral over all k effec-
tively accounts for each mode twice. The relation (5) is
general and holds for any shear current. We show in Ap-
pendix A.1 that the dispersion relation for a plane wave of
small amplitude on a depth–dependent flow may be writ-
ten

ΔR(k, ω) ≡ (1 + Ig)(ω − k ·U0)
2+

(ω − k ·U0)k ·U′
0tanh kh/k − gk tanh kh = 0, (6)

where ΔR is defined for later reference, and

Ig(k) =

0∫
−h

dz
k ·U′′(z)w(z, 0) sinh k(z + h)

k[k ·U(z)− ω]w(0, 0) cosh kh
. (7)

The implicit dispersion relation (6) is extremely useful for
analytical purposes. It is not itself closed, since both ω(k)
and w(z, t) are unknowns. The two roots of the equation
ΔR = 0 are ω = ω±(k). It is found e.g. in [20] that the
zeros of ΔR are simple, hence Eq. (6) may be written on
the form

ΔR(k, ω) = (1 + Ig)(ω − ω+)(ω − ω−) = 0. (8)

2.2. Waves from an arbitrary, time-dependent pressure
distribution

We wish to find a solution to the surface pattern re-
sulting from a time-dependent externally applied pressure
distribution p̂ext(r, t) ↔ pext(k, t) at the free surface.
The pressure, when positive, depresses the water sur-

face thus modelling a moving wave source such as a ship.
Using an applied surface pressure as wave source rather
than e.g. potential theory with submerged sources such as
are often used in the theory of ship motions [21], is advan-
tageous since only the boundary conditions are directly
affected. This is necessary in our system, since the flow
we consider is inescapably rotational and potential theory
is inapplicable.
By superposition, the response G(k, t) of the system to

an arbitrary time-dependent pressure distribution can be
expressed as a time-integral of pressure pulses emitted at
all previous times,

G(k, t) =

∫ t

−∞
dτpext(k, τ)H(k, t− τ). (9)

H(k, t− t0) is the system’s response to an impulsive pres-
sure rate pI(t) = Iδ(t) which imparts a finite impulse to
the surface during an infinitesimally short time. I equals
unity in units of pressure. G and H physically may rep-
resent any of the perturbation quantities u, v, w, p or ζ.
Mathematically H plays the role of a Green’s function.
We now proceed to finding the response of the free sur-

face to a pressure impulse. In Eq. (9) we let G → ζ, and
the correspondng response function we call Hζ(k, t). The
full time evolution ζ(k, t) for t > 0 is then calculated from
(9) as

ζ(k, t) =

∫ t

−∞
dτpext(k, τ)Hζ(k, t− τ) (10)

with Hζ derived in the following, given in (17).
The prescribed impulsive pressure enters the equation

system via the dynamic free surface boundary condition,
which can be written

ik ·U′
0w − (∂t + ik ·U0)w

′ − k2gζ = k2Iδ(t)/ρ. (11)

(∂t + ik ·U0) ζ = w, (12)

with w,w′ evaluated at z = 0. Here U0 is surface velocity,
and a prime denotes differentiation with respect to z. In-
tegration over an infinitesimal time interval t = 0− to 0+
yields the following relations for w(z, t) and ζ(t),

w′(0, 0+) = −k2I/ρ, (13a)

ζ(0+) = 0, (13b)

ζ̇(0+) = w(0, 0+), (13c)

using the assumptions that the system is completely at
rest for t < 0 and that all physical quantities have finite
values at t > 0, at t = 0+ in particular. We suppress the
dependence of w and ω on k in this subsection.
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When a current of arbitrary depth–variation is present,
the primary challenge is that analytical expressions for
ω±(k) and w(z, t) cannot be found. We show in Appendix
A.1 the relations

w′(0, 0+) = k(1 + Ig)w(0, 0+) coth kh, (14a)

= −k ·U′
0ω̃ + gk2

ω̃2
w(0, 0+), (14b)

=
k

F (k)
w(0, 0+), (14c)

where ω can be either of the roots of ΔR = 0, i.e. ω+ or
ω−, and the intrinsic frequency is ω̃ = ω−k·U0. Eq. (14c)
defines the quantity F (k) for later reference. We note that
F (k) can be written in several different forms,

F (k) =
kw(0, 0+)

w′(0, 0+)
(15a)

=
tanh kh

1 + Ig
(15b)

=
(ω − ω−)(ω − ω+)

ΔR
tanh kh (15c)

=
kω̃(k)2

gk2 − k ·U′
0ω̃(k)

. (15d)

Which form of F (k) is most convenient is different in dif-
ferent cases. The final form (15d) has the advantage that
only the value of ω(k) is required when U(z) is known.

From (4), (13) and (14) then follows

Z+ + Z− =0; (16a)

ω+Z+ + ω−Z− =− iIkF (k)/ρ (16b)

Solving for Z± and inserting into (4) yields the surface
elevation Hζ from an impulsive pressure pulse as

Hζ(k, t) =
ikF (k)

2ρωdiv(k)
(e−iω−t − e−iω+t), (17)

where the “divergence frequency” is, using (5),

ωdiv(k) =
1

2
[ω+(k)−ω−(k)] =

1

2
[ω+(k) +ω+(−k)], (18)

so that ωdiv/k is the phase speed with which oppositely
propagating waves move apart.

2.2.1. Suddenly appearing ship

As a step towards modelling a ship during manoeuvring
or acceleration in a simple manner, we consider the special
case where pext is constant for t > 0 and zero at t < 0,
i.e., a “ship” that is launched at t = 0 already having its
final velocity and continuing in steady motion thereafter.
This is the system considered long ago by Havelock [12].
It is an artificial situation, but one which can be used as a
building block to model more realistic situations. Turning
the arrow of time yields instead a suddenly disappearing
ship, and adding at the same instance the appearence of

the same ship but with a slightly different velocity, say, is
a simple model of a rapidly turning and/or accelerating
ship. In numerical examples we will consider the more
realistic case of a suddenly starting ship.

We use a reference frame following the ship, so that the
motion of the ship relative to the water surface is con-
tained in the surface current velocity U0 as measured in
this system. The time integral in (10) can be solved ex-
plicitly, and ζ splits naturally into a steady and a transient
contribution

ζ̂(r, t) = lim
ε→0

[ζs(r) + ζt(r, t)], (19a)

ζ̂s(r) =
1

ρ

∫
d2k

(2π)2
kpext(k)F (k)

(ω+ − iε)(ω− − iε)
eik·r, (19b)

ζ̂t(r, t) =
1

ρ

∫
d2k

(2π)2
kpext(k)F (k)eik·r

2ωdiv(k)

×
(

e−iω+t

ω+ − iε
− e−iω−t

ω− − iε

)
. (19c)

Subscripts s and t denote stationary and transient, respec-
tively. Upon splitting into ζs and ζt it was necessary to
employ a radiation condition by adding a small imaginary
part −iε to wave frequencies, whereby ω± → ω± − iε (see,
e.g., [10]) assuring that waves can only be radiated away
from the source. Mathematically this moves the poles to
complex values of k, rendering the integrals definite. Phys-
ically, it introduces an arrow of time by implying the time–
independent ζ̂s was “switched on” some time in the far
past, and consequently likewise the transient contribution
which exactly cancels the steady one for t < 0.

Given a value for ω±(k) (using any of various approxi-
mation schemes described below), equation (10) now pro-

duces ζ̂(r, t) at all times; the Fourier transform is taken as
in equation (2), for example using a fast Fourier transform
(FFT) algorithm.

2.2.2. Stationary ship waves

The simplest case is the classical situation of a ship
which has been travelling at constant velocity for a long
time. The wave pattern in this case is readily obtained
from (10) when taking the limit t → ∞, which yields

ζ̂(r) = ζ̂s(r)

= lim
ε→0

∫
d2k

(2π)2
kpext(k) tanh kh

ρΔR(k, ω + iε)
eik·r, (20)

Using ΔR on the form (8) is instructive. Transient waves
described by (19c) vanish at large times t → ∞, as will be
further discussed in §2.2.3. Eq. (20) is exactly the expres-
sion for ship waves from a ship moving with velocity −U0

relative to the water surface, as derived in [10] (note that
angle β differs by π from that of [10, 11]), generalised to
the case of general dispersion.
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Figure 3: Super-Gaussian model ship pressure distributions from
Eq. (21). Aspect ratios (left to right) W = 3, 5, 8.

2.2.3. Suddenly starting ship: wave patterns and asymp-
totics

We consider now the model of a ship which starts sud-
denly from rest. Formally this situation is created from
the “suddenly appearing ship” model in Section 2.2.1 by
superposing the ring wave from a ship at rest suddenly dis-
appearing at t = 0, and reappearing in the same instance
with velocity U0 relative to the water surface.

As a simple model “ship” we use an elliptical super-
Gaussian pressure distribution with length L and beam
(width) b of the form

pext(r, t) = p0 exp

{
−π2

[
(2xβ/L)

2
+ (2yβ/b)

2
]3}

, (21)

where

xβ(t) = [x− x0(t)] cosβ(t) + [y − y0(t)] sinβ(t), (22a)

yβ(t) = −[x− x0(t)] sinβ(t) + [y − y0(t)] cosβ(t) (22b)

expressed along the major and minor axes of the ellipse
in a reference system (e.g. relative to the water surface)
where the ship’s position may be time–dependent. In a
reference system fixed on the ship, x0 = y0 = 0 and
[xβ , yβ ] = r[cos(ϕ − β), sin(ϕ − β)]. The Froude number
is Fr = |U0|/

√
gL. The super-Gaussian is a fairly real-

istic model of the submerged part of a hull shape, while
avoiding having to specialise to a particular type of hull.
Model “ship” pressure distributions for some aspect ratios
are shown in Fig. 3.

When first set in motion, the ship creates an initial ring
wave which propagates away. After some time the tran-
sient ring wave, ζt, has disappeared from sight and only
a stationary ship wave pattern behind the travelling ship,
ζs, remains. This is clear from Fig. 4, where the wave pat-
terns are shown for increasing times after appearence, for
different directions of motion atop a linear shear profile in
deep water.

For large times the transient surface wave ζ̂t at some
point far from the origin will vanish as t−1/2. This can be
shown rigorously with path integral methods and the sta-
tionary phase approximation, but is also physically clear
from noting that the full transient wave energy will eventu-
ally radiate through any circular surface of radius R, and
wave energy must thus fall off as Rr(r)

−1 for a ring wave
of radius ∼ Rr. Since wave energy of each Fourier mode
moves outward in the far-field at a constant, k-dependent
group velocity, Rr ∼ cgt, and since wave energy is ∝ ζ̂2,

the time dependence ζ̂t ∼ t−1/2 follows for large t.

2.3. Practical calculation techiques for arbitrary velocity
profiles

To calculate the surface elevation (10) one needs to find
the roots ω±(k) of (6), which is itself not closed since both
ω and w(z) are unknowns. Analytical results are in gen-
eral not available, except for the simplest current varying
linearly with depth. There are several numerical or semi–
analytical techniques that allow calculation of ω±(k) for
an arbitrary U(z) which we briefly review in this section.

2.3.1. Simplest case: linear profile

Consider first the simplest case of a linearly depth–
dependent current. This is the only known case where an
explicit, analytical dispersion relation is available for all
k. This idealised case is therefore instructive for analysis
since analytical results can be derived.
To calculate ship waves during steady motion, say, one

might work in a frame of reference where the model ship
is at rest, and the ship’s velocity relative to the water
surface is −U0 where U0 = [U0, V0] = |U0|[cosβ, sinβ]
(see also Fig. 2). The current is unidirectional, i.e., U(z) =
U0 + Szex. (This corresponds a ship moving in direction
β + π relative to the water surface. ) We define [11]

Frs =
|U0|S

g
. (23)

For the linear shear profile one obtains [25, 26]

ω± =ω1 ±
√
ω2
1 + ω2

2 ; (24a)

ω1 =k ·U0 − 1
2S tanh kh cos θ; (24b)

ω2
2 =(S cos θk ·U0 + gk) tanh kh− (k ·U0)

2, (24c)

hence ω+ω− = −ω2
2 , and

ωdiv =
√
gk tanh kh+ (S tanh kh cos θ/2)2. (25)

Since Ig = 0 when U′′(z) = 0, (15b) simply gives F (k) =
tanh kh. Determining F and ω± is sufficient for calculating
all cases considered above, the most general case being (10)
with (17).

2.3.2. The piecewise–linear approximation

A useful numerical scheme to this end is the piecewise–
linear approximation (PLA), which was analysed in depth
in [20], and which we will use herein to obtain numeri-
cal results. As described herein the PLA is restricted to
unidirectional U(z); extension to shear currents changing
direction is relatively straightforward. Alternative approx-
imations to the dispersion relation are thereafter briefly
discussed in section 2.3.3.
The piecewise–linear approximation (PLA), sometimes

called the N−layer model, utilises the fact that explicit so-
lutions are available when the velocity profile is linear as
discussed above. A smooth velocity profile u(z) is approx-
imated by a series of linear segments inside N artificial
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T = 5.00 T = 10.00 T = 30.00 T = inf

T = 5.00 T = 10.00 T = 30.00 T = inf

T = 5.00 T = 10.00 T = 30.00 T = inf

T = 5.00 T = 10.00 T = 30.00 T = inf

Figure 4: Wave patterns of model ship suddenly set in motion from rest at T = 0, at increasing nondimensional time T = t
√

g/L where L is the
ship length. The ship is modelled as a super–Gaussian of aspect ratio L/b = 6; see Eq. (21). First row: no shear; Second row: shear–assisted
(β = 0); Third row: side–on shear (β = π/2); Fourth row: shear–inhibited (β = π). The shear Froude number is Frs = S|U0|/g = 0.8 with
U0 the ship velocity relative to the water surface. The reference system is relative to the ship, rotated so that ship motion is the same in all
cases.

layers, allowing the solution to the vertical velocity to be
expressed explicitly within each layer and matched at the
artificial layer boundaries. We provide further details in
Appendix A.2. Following the derivation process in [20],
within the top layer the vertical velocity satisfies

w(k, t) =A1 sinh k(z + h1) +B1 cosh k(z + h1),

for− h1 < z < 0, (26)

in which h1 is the thickness of the top layer and A1 and
B1 are coefficients depending on k and t, which are de-
termined by the matching conditions at the N − 1 layer
interfaces and from surface and bottom boundary condi-
tions. Inserting (26) into the first form of F (k) in (15a)

yields

F (k) =
A1 sinh kh1 +B1 cosh kh1

A1 cosh kh1 +B1 sinh kh1
(27)

evaluated at t = 0.

The next essential step is to obtain solutions for ω±,
exact or approximate, and to determine A1 and B1 via
the PLA procedure [20]. The PLA is particularly suitable
for problems which are solved in the Fourier plane since
it provides a rapid and accurate solution to the dispersion
relation ω(k) equally well for all wavelengths, converging
to the exact value as N increases [20, 22]. For our numer-
ical demonstrations we find that 4-5 layers are typically
enough at the 1% accuracy level.
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2.3.3. Alternative approximations to the dispersion rela-
tion

A simpler approach than the PLA can be obtained by
evaluating ω+(k) using an explicit, approximate disper-
sion relation. The accuracy of such approximations is not
so easily predicted, however, and is different in different
areas of the k plane. A much used approximation which
is accurate to within a few percent for all k in many cases,
is the relation by Kirby & Chen [23]

ω+(k) ≈ ω0(k) +

∫ 0

−h

dz
2k ·U(z) cosh 2k(z + h)

sinh 2kh
(28)

where h is the total depth of the flow and ω0 =√
gk tanh kh (note that this 3D generalization of the Kirby

& Chen expression also allows the direction of U to vary
with z). The approximate value for ω+(k) is inserted into
equations (10) via (15d).
We recently made progress on the question of analyti-

cal approximations to dispersion relations, deriving error
estimates for (28) and also presenting a more robust al-
ternative to (28) in Ref. [24]. Two of us (YL & SÅE)
have also developed and implemented another numerical
method, a simple and promising alternative to the PLA
based on direct integration of (3a) and (6) (manuscript in
preparation).

2.4. Transient wave resistance and radiation force

A travelling ship imparts momentum to the water
around it to create waves, giving rise to a wave radiation
force acting on the ship in the opposite direction. In the
absence of shear the wave radiation force always points
sternwards for ships in rectilinear motion, and is called
wave resistance, or wave–making resistance. Wave resis-
tance typically accounts for more than 30% of the energy
consumption of ocean going vessels [1].
We work in a reference frame where the ship is at rest,

and the water surface moves at velocity U0 as shown in
Fig. 2. Following Havelock [12] the wave radiation force
created by a travelling pressure distribution is the force
exerted by the external pressure p̂ext(r, t) acting on vertical

projections of the moving surface ζ̂(r, t). The force along
unit vector ef acting on horizontal area d2r at r is thus

df(r, t) = p̂ext(r, t)(ef · ∇)ζ̂(r, t)d2r. (29)

A ship travelling at an oblique angle with a sub-surface
shear current will in general radiate waves asymmetrically
around its line of motion, and the radiation force will con-
sequently have both a sternward and a lateral component.
The two components are derived with the methods laid
out in [10], to yield

R‖(t)
R⊥(t)

=− 1

U0

∫
d2rp̂ext(r, t)

(
U0

ez ×U0

)
· ∇ζ̂(r, t)

=− i

∫
d2k

(2π)2

(
k cos γ
k sin γ

)
p∗ext(k, t)ζ(k) (30)

where an asterisk denotes the complex conjugate and ‖
and ⊥ denote sternward resistance and lateral radiation
force towards starboard (towards the right), respectively.
The transient radiation forces may thus be evaluated by

inserting ζt(r, t) from (19c) into (30), giving

R‖,t(t)
R⊥,t(t)

= − i

8π2ρ
lim
ε→0

∫ π

−π

dγI(γ, t); (31a)

I(γ, t) =

∫ ∞

0

dk
k3|pext(k, t)|2F (k)

ωdiv(k)

(
cos γ
sin γ

)

×
(

e−iω+t

ω+ − iε
− e−iω−t

ω− − iε

)
. (31b)

Expressing radiation forces in the form (31a) is useful
for analytical purposes. For numerical purposes we use
(30) more directly using a fast Fourier transform (FFT)
method.
The static part of the wave resistance is obtained by

inserting ζs into (30). We refer to [10] for further details
on the evaluation of the static part of the wave resistance.

Frs=0.5, =
Frs=0.3, =

Frs=0
Frs=0.3, =0

Frs=0.5, =0
Frs=0.8, =0

Figure 5: The intrinsic wave frequency ω̃+(k0(γ), γ), in units of√
L/g, which solves the dispersion relation in direction γ under dif-

ferent conditions of a linear shear profile.

2.4.1. Wave resistance oscillations

The transient behaviour of the wave resistance after the
ship is set in motion, is to oscillate around its ultimate
static value, at a frequency which varies greatly with di-
rection or motion as well as shear strength. We will now
explain what decides the oscillation frequency.
The integral (31b) is given solely by the contribution

from the poles (infinitesimally close to) where ω±(k) are
zero. Since ω+(k) and ω−(k) are related through relation
(5), and we are free to replace k ↔ −k under the integranl
sign, considering the zeros of the positive frequency ω+(k)
is sufficient. Taking the k integral first as written out in
(31a), the pole picks out a value k0(γ) so that

ω+(k0(γ), γ) = 0. (32)
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Thus the particular frequency is picked out which satisfies
the dispersion relation, which is to say that only waves
which are able to propagate towards infinity along direc-
tion γ may contribute to the wave resistance.

When t grows large (while keeping r constant), the ex-
ponential factor exp[−iω+(k0(γ), γ)t] in the integrand of
(31b), and is therefore dominated by the contribution from
the value of γ where the phase is stationary, that is, the
value of γ where

∂γω+(k0(γ), γ) = 0. (33)

Some time after t = 0, the transient contribution to the
wave resistance will therefore oscillate in time with the
frequency of a stationary point, a maximum or minimum
of ω+(k0(γ), γ) with respect to γ.

Let intrinsic frequencies be denoted with a tilde,

ω̃ = ω − k ·U0. (34)

For the case of a linear shear current, we plot ω̃+(k0(γ), γ)
in units of

√
g/L as a functon of γ in Fig. 5; L is a char-

acteristic length of the wave disturbance to be specified in
particular examples below. We see that in all cases there is
a stationary point at γ = −π. In the most shear–assisted
direction (β = 0), this frequency is enhanced compared
to no shear, giving a faster oscillation of the wave resis-
tance, whereas the opposite is the case in the maximally
shear inhibited direction (β = π), where the oscillation
can become very slow. For shear–assisted motion there
are also two other stationary phase points at angles either
side of γ = π, as is evident in Fig. 5. Notably, the presence
of shear which inhibits motion can dramatically decrease
the oscillation frequency compared to still water, even at
moderate shear.

3. Numerical results

In this section we present numerical calculations of tran-
sient wave resistance on different model ships. While re-
taining generality by not specialising to particular real hull
shapes, we have emphasised realism: a reasonably realistic
model is used for the shape of the ship hull, and calcula-
tions are performed for a real velocity profile measured in
the Columbia River estuary, where there is high traffic of
vessels of many types. Parameters for vessel length and
beam are taken from real ships known to travel in these
waters.

The choice of the Columbia River delta for our data
is primarily due to the excellent shear profile data avail-
able [27], although the loacation is also particularly apt
for studies of ship wave effects. Thousands of ships rang-
ing from carrier ships of more than 1000 ft to small boats,
are piloted up and down the Columbia river each year, in
waters which are considered particularly trecherous, some-
times referred to as the Graveyard of the Pacific.

Following [10, 9] we plot wave resistance relative to the
constant

R0 =
p20

2π3ρg
.

3.1. Linear velocity profile

In order to better highlight the underlying physics of the
effect of shear on wave resistance, we begin by considering
the simplest shear flow, which varies linearly as a function
of depth, U(z) = U0 + Sz. Realistic shear profiles are
considered in Section 3.2.

3.1.1. Suddenly starting ship

For the simplest, linearly varying velocity profile consid-
ered in section 2.3.1 we calculate the transient wave resis-
tance for a ship modelled as in equation (21), whose veloc-
ity goes suddenly from zero to a constant value V . While
idealised, this models a starting ship without the need for
further parameterisation of the acceleration phase. An ex-
ample of what the transient wave resistance looks like is
shown in figure 6. The model ship is elliptical with aspect
ratio 6 and length L = 1 (arbitrary units since the problem
is intrinsically scale–free), and calculation is performed for
Fr = 0.3 and shear strengths varying from Frs = 0 to 0.8.

The oscillation frequencies of the transient wave resis-
tance are found to agree well with the stationary phase
values of ω+(k+(γ), γ) in figure 5 as expected.
The transient wave resistance is seen to go through a

sharp peak shortly after the ship is set in motion, and
then relax in an underdamped manner towards its steady–
motion value. For shear–assisted motion (β = 0), the ini-
tial peak can be much higher than its static value, whereas
this effect is weaker in the case without shear (Frs = 0) and
for shear–inhibited ship motion. Letting the shear vary
from strongly inhibiting (high Frs, β = π) via no shear to
fairly strongly assisting, we see that the transient oscilla-
tions increase both in amplitude and frequency, whereas
the static wave resistance decreases. An interesting ob-
servation is that for very strongly motion-assisting current
(Frs = 0.8 in this case), the total wave resistance can ac-
tually be negative during some time intervals, since oscil-
lation amplitudes are large and the static wave resistance
correspondingly small.
Both the difference in oscillation frequency and the mag-

nitude of the steady motion wave resistance can be under-
stood by considering the relative values of phase velocity
and group velocity in different directions of wave prop-
agation. A detailed discussion of this may be found in
Ref. [26]. For a linear shear current, where the disper-
sion relation (24) is known analytically, one finds that in
a reference frame following the surface, the group velocity
is quite similar in all directions of motion, whereas phase
velocity can differ greatly. In shear–inhibited directions
dispersion is weakened and an emitted wave group will re-
tain its initial shape and width to a greater extent than
in quiescent water. The opposite is the case for shear–
assisted wave propagation; here the phase velocity can far
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(Shear-assisted)

(Shear-assisted)

(Shear-assisted)Frs=0 (No shear)

Frs=0.3, =0

Frs=0.5,

Frs=0.8, ¯=0

Frs=0.5, =¯ ¼ (Shear-inhibited)

Frs=0.3, =¯ ¼ (Shear-inhibited) ¯

=0¯

T

Figure 6: Transient wave resistance on a ship set suddenly in motion as a function of nondimensional time T = t
√

L/g, for different cases
where a linearly depth-dependent shear current is present in deep water. The “ship” is modelled as an ellipsoidal, super-Gaussian surface
pressure of aspect ratio 6 and L = 1 (arbitrary units), moving with Fr = 0.3. Note that the abcissa is scaled differently for T > 20. Note
furthermore that R‖ scales linearly with L, which is arbitrary in this scale–free system, hence so is the scaling of the ordinate axis.

Fr=0.3, Frs=0.5

Fr=0.3, Frs=0.3

Fr=0.25, Frs=0.3

Fr=0.25, Frs=0.5

T

Figure 7: Same as Fig. 6, but for the transient lateral wave radiation
force R⊥, for motion normal to a the shear current in a reference
frame following the water surface; β = π/2 (see Fig. 1). The scaling
of the ordinate is arbitrary (see Fig. 6).

exceed group velocity, so wave groups quickly spread and
have a rapidly changing, volatile appearence.

When the ship suddenly starts, an initial ring wave is
emitted, as seen in Fig. 4. Wave resistance will continue
to oscillate for as long as this ring wave remains in the
ship’s near–zone. The fact that group velocity is fairly
isotropic means that it takes approximately the same time
for the ring wave to disappear from sight, matching the
observation that the oscillations in Fig. 6 die off at a sim-

ilar rate in all cases. The frequency of oscillation, how-
ever, depends on the phase speed of the transient waves
within the ring wave group, and the higher phase velocity
for shear–assisted propagation means faster oscillations, as
also observed in Fig. 6, and explained in connection with
Fig. 5.

Finally, we found in Ref. [10] that the effect on shear on
wave resistance is, in a rough sense, to effectively change
the Froude number to a value based on the ship velocity
relative to some depth–average current speed rather than
its surface value. The Froude number is effectively lowered
in shear–assisted motion, and increased in shear–inhibited
motion. A detailed discussion is found in section 3.2.1
where we compare a real velocity profile to a linear ap-
proximation in this respect. Since the general trend is that
wave resistance increases with increasing Fr for Fr ∼ 0.3,
this explains why the resistance in steady motion is typ-
ically decreased for shear–assisted motion and increased
for shear–inhibited motion. However, this does not always
hold true, due to interference effects between waves from
bow and stern.

We go on to calculate the transient lateral radiation
force for the same ship, shown in Fig. 7. The Froude num-
bers 0.25 and 0.3 are chosen as realistic examples. The
ship motion is now across the shear current, β = π/2 as
defined in figure 1. For an aspect ratio of 6 the lateral force
is roughly half the magnitude of the sternward force. We
find the relative magnitude of lateral to sternward force
to vary strongly with Froude number and aspect ratio, as
indicated for the former case by the large effect of lowering
Fr from 0.30 to 0.25.
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Figure 8: Transient wave resistance for motion in the shear as-
sisted (a) and inhibited (b) directions atop the measured current
in the Columbia River delta, as a function of nondimensional time
T = t

√
g/L. Three ships are modelled with equation (21) with

dimensions as given in Table 1. The wave resistance in quiescent
waters is shown for comparison. Inset to (a): measured Columbia
River velocity profile URISE(z) [27] approximated with a 6th order
polynomial, in a reference frame moving with the surface current.
The legend applies to both a) and b).

3.2. General, realistic velocity profiles

We now compute the transient wave resistance using
a real, measured velocity profile. The shear current is
that measured by the RISE project, a tidal current in the
mouth of the Columbia River [27]1. Buoyant fresh wa-
ter from the river creates a strong surface jet as it enters
the salt water of the Pacific Ocean. We approximate the
measured data with a 6th order polynomial which is then
subjected to the piecewise-linear procedure to calculate
the dispersion relation numerically, as described in sec-
tion 2 and detailed in Appendix A.2. The current profile
URISE(z) in a reference frame where the surface current
is zero is shown in the inset of figure 8a. We model var-
ious ships using Eq. (21) with dimensions L (length) and
b (beam) representative of typical vessels traveling at the
Columbia River mouth, tabulated in Table 1.

1Since measurements begin at 2m depth, we presume this point
to be at the surface, thus offsetting all data by 2m. This should be
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Figure 9: Wave resistance force in steady motion for Ship 2 (tugboat)
as a function of Froude number for the maximally shear assisted
(β = 0) and inhibited (β = π) directions of motion. a) The Columbia
River velocity profile, b) Linearly varying profile U(z) = U0+Sz with
Frs ≡ U0S/g = 0.4.

3.2.1. Suddenly starting ship

Results for transient sternward wave resistance for a ship
starting suddenly in maximally shear-assisted and shear-
inhibited directions of motion (corresponding to upstream
and downstream motion in the Columbia delta, respec-
tively) are shown in figure 8. Two ships are modelled, a
bulk carrier ship, and a smaller vessel typical of a tugboat;
Ships 1 and 2 in Table 1, respectively. The wave resistance
in quiescent waters is shown for comparison.

a conservative procedure since shear strength increases closer to the
surface.

ID Ship Type Length Beam Speed Aspect
L [m] b [m] [Knots] ratio

1 Bulk carrier 170 28 11.9 6.07
2 Tugboat 32 10.4 10.3 3.08
3 Fishing boat 19 6 8.0 3.17

Table 1: Parameters of the modeled ships, chosen as repre-
sentative dimensions from boat traffic on the Columbia River.
Real-time data on vessels in these waters is available at
http://www.columbiariverbarpilots.com. Froude numbers for ships
1, 2, 3 are 0.15, 0.3 and 0.3, respectively.
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The behaviour of the smaller ship (’Ship 2’) is similar
to that observed for the simple linear shear current, with
wave resistance exhibiting a sharp peak shortly after the
ship is set in motion, whereupon it relaxes in an under-
damped way to the steady motion value with a frequency
which is higher for shear assisted than for shear inhibited
motion. Fluctuations are stronger for shear assisted (up-
stream) motion as was also noted in Fig. 6, and amount
to transient variations in the order of 10% of the static
value in this case. The wave resistance of the larger ves-
sel (‘Ship 1’) approaches an insignificantly small value at
large times, attributed to the lower Froude number (0.15)
for this modelled vessel.
The most interesting observation made in Fig. 8 might

concern the steady motion value of wave resistance. Un-
typically, wave resistance is increased compared to quies-
cent waters both for shear–assisted and shear–inhibited
ship motion. This appears to run counter to lessons
learned from a previous, much simpler and less realistic
model study [10], where shear–assisted motion was always
found to decrease wave resistance in this Froude number
range. The reason is that our present, more realistic ship
model (21) has a sharper bow and stern than the circu-
lar “ship” considered in [10], leading to interference effects
between bow and stern waves such as are found for real
ships. Indeed these interferences must be taken into ac-
count when choosing optimal operational speed in ship
design [28]. We plot the Froude number dependence of
the steady motion wave resistance for different Fr for the
Colubia current profile in Fig. 9a for the tugboat (Ship
2). The plot clearly demonstrates that wave resistance
in steady motion depends very strongly on direction and
Froude number. Fr = 0.3, the speed of Ship 2 in Fig. 8, is a
special case where shear increases wave resistance in both
directions. Increasing the velocity a little to Fr = 0.33, a
very different conclusion is reached: here, shear-inhibited
wave resistance (ship travelling downstream) is more than
a factor 3 greater than in the opposite direction.
Corresponding results for the lateral radiation force for

motion across the shear current (β = π/2, measured in a
reference frame in which the water surface is at rest) is
shown in figure 10 for the three different ships in Table
1. In order to make the values comparable, we divide the
force by the length of the ship. The lateral radiation force
shows similar oscillations for short times as the sternward
resistance in Fig. 8a, with the exception of the large carrier
ship (Ship 1) which displays far stronger transient oscilla-
tions initially. Indeed, while the sternward resistance force
is likely to be negligible for Ship 1, this needs not be the
case for the early transient shortly after start.
In Fig. 10b we show the lateral radiation force relative

to the sternward resistance force for cross–current motion,
for Ships 2 and 3. The relative strength has very weak
oscillations, but a highly conspicuous trait is how the rel-
ative strength of the transient force is more than twice
as strong just after appearance of the “ship” compared to
its asymptotic value, about 50− 60% percent of the tran-
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Figure 10: a) Transient lateral radiation force per unit ship length
R⊥/(R0L) for motion normal to the measured current in the
Columbia River delta, in a reference system where the surface is
at rest (β = π/2), as a function of nondimensional time T = t

√
g/L.

Three ships are modeled using (21) with dimensions L and b and
Froude number Fr as indicated. b) Transient lateral radiation force
relative to transient wave resistance for the two smaller modeled
ships. The legend applies to both a) and b).

sient sternward force at the time of the initial peak that
is present in both force components. Again this indicates
that the transient behavior of the lateral force could well
have a bearing on seakeeping performance during manoeu-
vering, when transient waves will be emitted by the ship.
We note furthermore that when stationary conditions have
been reached, the radiation force is approximately 20% of
the sternward component. This is a significant laterally
directed force which must be compensated by steering (it
is not to be confused, of course, with the lateral drag force
which will also be present due to the shear flow between
surface level and the ship’s draught, a separate question
not studied here. With no shear there is neither a net
lateral drag nor radiation force when β = π/2.)
The simplicity of working with the linearly dependent

velocity profile as a model for a real current makes it
tempting in practice to eschew the need to calculate ω(k)
for a general shear flow, and instead approximate the real
profile by a linear one with a representative constant shear.
However, if we were to approximate the Columbia pro-
file by a linear profile with a shear approximately that
at the water surface — giving Frs ∼ 0.4 for our param-
eters — one could make a very great error in calculating
the steady-motion wave resistance. In Fig. 9b we plot the
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Figure 11: Transient wave resistance as a function of nondimensional time T = t
√

g/L for a ship beginning a circular manoeuvring motion
atop the measured shear current in the Columbia River delta. The ship dimensions are typical of a tugboat operating in these waters, ‘Ship
2’ in Table 1, initiating a turn of radius 4L at T = 0, from having traveled in a straight path in the shear–assisted direction (upstream). The
path is circular thereafter, as seen in a reference system where the water surface is at rest. The angle the ship has turned is shown above the
figure. The situation at 90◦ is shown in the inset for illustration. Also shown is the same manoeuvre in quiescent waters (U(z) = 0).

steady–motion wave resistance as a function of Fr using
this model. It is clear that while the trend and general
behaviour is similar, the rapid variation of R‖ with Fr for
0.2 � Fr � 0.4 means the error can be several hundred per-
cent. Clearly a better job can be made with a better choice
of Frs, yet choosing a sufficiently good value in practice (if
such exists) will require the use of knowledge of the full
velocity profile and moreover be specific to each vessel. In
our opinion this may not be any simpler nor numerically
cheaper than a full calculation such as we have performed,
and for which an effective calculation tool is already now
developed.

We note, however, the possibility that a two–layer model
might be a compromise which is the best of both worlds.
In such a model a surface layer is given one constant shear
value, and deeper waters another. It is well suited for mod-
elling a surface shear layer due to wind or tides for many
practical purposes. Such a model is analytically tractable
while containing the key parameter of the vertical extent of
the surface shear layer, whose relation to the ship length is
a determining parameter. Analysis of such a model in the
context studied here is beyond our present scope; the dis-
persion relation that can be used directly in the formalism
of Section 2 may however be found in Ref. [29].

3.2.2. Turning ship

Analysis of a suddenly moving ship yields insight into
transient wave resistance forces due to sudden changes in

velocity along a straight course. It is of interest to consider
another example of a ship manoeuvre; a turning motion.
Figure 11 shows the wave resistance for a ship initially
traveling along a straight path upstream in the Columbia
River delta (shear–assisted direction), which begins a cir-
cular turning manoeuvre of radius 4L at T = 0. The
forward velocity Fr = 0.3 remains unchanged through the
manoeuvre. We consider as example a typical tugboat op-
erating in these waters, Ship 2 in Table 1. In order to given
an impresson of all different directions of motion, we let
the ship do a full 360◦ turn; a snapshot at 90◦ is shown in
the inset. The same ship manoeuvre in quiescent waters
is shown for comparison.

All graphs display certain oscillations at different times
during the manoeuvre, due to the sudden change in lat-
eral acceleration after T = 0, and later because the ship
encounters its own previously emitted waves.

In quiescent water the lateral radiation force fluctuates
around a constant value of, in this case, approximately
40R0 due to the now asymmetric wave field; another way
of seeing it is that the turning ship must accelerate water
towards the centre of the arc, resulting in an outwardly di-
rected lateral added mass force. The sternward force with-
out shear also fluctuates around a constant as it should. A
different behaviour is observed for both force components,
however, when the measured Columbia River shear current
is present. Both resistance and lateral force vary greatly
throughout, both peaking at around twice their quiescent
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value, and the lateral force at times dropping to zero and
even small negative values. For a ship to follow such a
path with precision will thus require considerably greater
skill than in quiescent water, having to account for the
changing lateral and sternward forces. The lateral force
can also reach more than 50% of the resistance force for a
part of the circle with our parameters, typical of boat traf-
fic in the area, by no means a small force in a manoeuvring
context.

4. Conclusions

We have studied the wave radiation forces, including
wave–making resistance, for different model ships in a real,
measured current in the Columbia River delta. We calcu-
late transient wave resistance on a “ship” modeled as a
traveling pressure distribution in the form of an elliptic
super–Gaussian. Choosing values of length/beam typical
of smaller vessels (tugboats, fishing boats) we find that
wave resistance can vary drastically depending on direc-
tion of motion, upstream or downstream, showing a strong
dependence on Froude number. For typical Froude num-
bers — Fr ∼ 0.2 to 0.4 — we find that wave resistance
can differ by more than a factor 3 between upstream and
downstream motion. Appropriate choice of vessel velocity
can thus make a large difference to resistance in strongly
sheared waters.
When there is an oblique angle between the ship’s line

of motion and the shear current, the emitted ship wave
pattern will be asymmetric, with more waves propagat-
ing to one side than the other. The total wave radiation
(or wave–making) force then also has a lateral component.
For our example model ships representative of tugboats or
fishing boats, the lateral force was found to be approxi-
mately 20% of the sternward resistance force for a ship in
steady motion.
We also study the transient behaviour of wave radiation

forces acting on ships which change their velocity. As a
simple example we consider ships that are set suddenly
in motion. Both components of the wave radiation force
undergo an initial peak as an initial ring wave is created,
whereupon they oscillate in an underdamped manner to-
wards their steady–motion values. For motion across the
shear current the lateral force is found to have a stronger
initial peak, and the lateral force momentarily reaches
more than 50% of the value of the sternward force just
after motion commences.
The general trend for typical small–ship operational

Froude numbers is that compared to quiescent water, wave
resistance decreases for upstream (shear–assisted) ship
motion, and increases for downstream (shear–inhibited)
motion, although interference effects between bow waves
and stern waves can alter this for certain Froude numbers.
We also considered a circular manoeuvring motion atop

the Columbia River current seen from a reference system
following the water surface, for a small ship (tugboat).
Unlike on quiescent water were both resistance and lateral

force are constant through the motion (modulo small os-
cillations due to encountering the ship’s own waves), these
vary greatly through the circular path on the Columbia
River mouth. Variations of amplitude of approximately
100% of the quiescent values of the forces are found. For a
ship to follow such a path with precision will thus require
considerably greater skill. The lateral force can also reach
more than 50% of the resistance force for a part of the
circle with our parameters, typical of boat traffic in the
area.
The second main achievement reported in this

manuscript is the development of a theory that allows cal-
culation of waves from a general, time-dependent applied
surface pressure acting on the surface of a horizontally di-
rected shear current which may vary arbitrarily with depth
in both direction and magnitude. We present a frame-
work which provides the means to effectively calculate ship
waves and wave resistance without undue difficulty. The
theory is based on deriving the response of a water surface
satisfying an arbitrary dispersion relation, to an impul-
sive applied pressure. The wave pattern is then calculated
as the integral of emitted waves at all previous times. It
is necessary to devise a scheme to obtain the dispersion
relation numerically; in this paper we used the piecewise–
linear approximation [20], but several other options are
available.
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Appendix A. Derivation details

Appendix A.1. The implicit dispersion relation

We here derive in detail the implicit dispersion relations
(6) and (14). We first make the ansatz that for a progres-
sive wave of oscillating frequency ω and wave vector k, w
and p are of the following form,

[w(r, z, t), p(r, z, t)] = [w̃(k, z), p̃(k, z)]e−iωt+ik·r. (A.1)

Eliminating p̃ after inserting (A.1) into (3a) and (3b) yields
the Rayleigh equation

(k ·U− ω)(∂2
z − k2)w̃ = k ·U′′w, (A.2)

We define Hw(k, z) = sinh k(z + h)/ sinh kh, and notice
that since (∂2

z − k2)Hw = 0,

0∫
−h

dz
[
Hw(k, z)(∂

2
z − k2)w̃ + w̃(∂2

z − k2)Hw(k, z)
]

= Hw(k, 0)w̃
′(k, 0)− w(k, 0)H ′

w(k, 0)

=

0∫
−h

dz
k ·U′′w̃Hw(k, z)

k ·U− ω
, (A.3)
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where the seabed condition w̃(k,−h) = 0 was applied. The
homogeneous boundary condition for w at the free surface
is found as

(k ·U0−ω)2w̃0′− [k ·U0′(k ·U0−ω)+gk2]w̃0 = 0, (A.4)

where the subscript 0 denotes the values at z = 0.

Inserting the condition (A.4) into (A.3) then yields (6).
Moreover, (A.4) and the dispersion relation (6) further give
(14) since w′ = w̃′ at t = 0+.

Appendix A.2. The piecewise linear approximation

Figure A.12: Piecewise linear approximation (PLA): The velocity
profile approximated by a piecewise-linear function, dividing the fluid
ito N artificial layers.

Following [20], the fluid is artificially divided into N lay-
ers in the vertical direction each with thickness hj and con-
stant vorticity Sj as shown in Fig. A.12. A vertical coordi-
nate zj is defined within each layer where zj = 0 and −hj

at the top and bottom layer interfaces respectively. The
approximate piecewise linear background velocity profile
in each layer is

UPL
j = Uj−1 + Sjzj .

A spatially uniform velocity V0 in the y direction, cor-
responding to a translation of the frame of reference, can
be added when needed, amounting only to the addition
of a Doppler shift kyV0 to the wave frequencies ω(k) as
calculated with the PLA.

As presented in more detail in [20], solutions
uj , vj , wj , pj to the linearized Euler equations can now be
found within each layer j = 1, 2, ..., N modulo undeter-
mined coefficients, and solutions are matched by requiring
continuity of w and p (kinematic and dynamic boundary
conditions, respectively) across the artificial layer bound-
aries, as well as free surface boundary conditions at z = 0
and vanishing w at z = −h (or z → −∞). To wit one

obtains

(∂t + ik ·Uj)(∂
2
zj − k2)wj = 0, − hj < zj < 0, (A.5a)

p1 − ρgζ = pext, at z1 = 0, (A.5b)

w1 = (∂t + ik ·U1)ζ, at z1 = 0, (A.5c)

wj(zj = −hj) = wj+1(zj+1 = 0), (A.5d)

pj(zj = −hj) = pj+1(zj+1 = 0), (A.5e)

w
N
= 0, z

N
= −h

N
. (A.5f)

where (A.5a) holds for 1 ≤ j ≤ N , and (A.5d) and (A.5e)
hold for 1 ≤ j ≤ N − 1.
In particular, the vertical velocity perturbation and the

dynamic pressure distribution are of the following forms,
respectively

wj = Aj(k, t) sinh k(zj + hj)

+Bj(k, t) cosh k(zj + hj), (A.6a)

−kpj/ρ = (∂t + ik ·Uj)w
′
j − ikxSwj . (A.6b)

Inserting (A.6) into (A.5) and eliminating the B coeffi-
cients yields set of N + 1 linear equations. The eigenval-
ues of ω(k) are found from requiring the determinant of
the system matrix be zero, the criterion for nontrivial so-
lutions of the homogeneous system to exist. This gives, in
general N + 1 eigenvalues, of which two are physical and
an appropriate procedure must be employed to choose the
correct values, as detailed and discussed in [20]. The pro-
cedure moreover automatically provides the coefficients A1

and B1 required in Eq. (27).
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