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Abstract 

The present thesis aims at using non-invasive and non-destructive NMR techniques to contribute to 

a further understanding of fish tissue composition and its characteristics. Moreover, it aims at 

investigating the water dynamics and the distribution of fat and salt in fish as affected by species, 

raw material quality and processing from both the chemical and the physical angle at the same time. 

The applicability of low-field NMR as a tool for the fish processing industry was investigated. The 

bench top low-field NMR instrument was found suitable for fat and water determination in small 

Atlantic salmon (Salmo salar) samples, whereas the portable low-field NMR surface scanner 

(ProFiler) was appropriate for rapid fat determination in minced muscle. Thus, low-field NMR was 

proven to be good measuring technique, and with the introduction of the NMR surface scanner 

concept, online quality control may become feasible in the future. 

Transversal (T2) NMR relaxometry has been demonstrated to contain valuable information about 

water dynamics in Atlantic salmon and Atlantic cod (Gadus morhua) tissue. The thesis contributes 

to a further understanding of the relationship between water distribution and microstructure of fish 

flesh. It has been established that the method is sensitive to fish species, ante-mortem handling, 

rigor status, freezing/thawing, heating, and brine salting. The tissue T2 relaxation characteristics 

have been linked to microstructure, salt distribution and salt uptake. It is shown that T2 relaxation 

components correlate well with water holding capacity during salting. It has been suggested that 

entrapped and free water, and fat when present, give rise to the main relaxation components in fish 

muscle tissue. The understanding of the tissue water distribution and dynamics has been improved. 

However, the clarification of the relaxation characteristics in fish flesh is still an active area of 

research. 

In fatty fish, both fat and water contributes to the T2 NMR relaxation signal. A two dimensional 

map of the diffusion versus T2 relaxation proved to be a good technique to increase the 

understanding of water and fat distribution in salmon muscle tissue, by clear separation of the NMR 

signals from water and fat components into different populations. 

MR imaging was probed for investigation of fat and salt distribution. 1H MRI was successfully 

applied to produce separate quantitative water and fat images. Combined 1H and 23Na imaging of 

brine salted Atlantic salmon revealed that the uptake and distribution of salt in the tissue was highly 

dependent on the spatial fat distribution. 
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An evident relation was observed between T2 relaxation characteristics of salmon flesh and the 

sodium distribution in salted fillets. T2 relaxaometry and MR imaging gave further insight into the 

microstructure and water distribution of fish tissue of different quality and its effect on salt 

distribution. The combination of these NMR techniques is considered to be a useful tool to increase 

the understanding of the tissue water distribution and dynamics and for optimization of salting 

processes. 
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PART 1 

1 Introduction 

Strong focus on freshness and high product quality is an essential strategy of fisheries and 

aquaculture. Nowadays, consumers are becoming increasingly aware of all the dietary benefits of 

marine foods for human health. Maintaining the quality through the whole value chain is one of the 

most important challenges for the fish industries. Therefore, it is of importance to develop basic 

knowledge about the effects of treatment along the value chain such as preslaughter conditions, 

processing and storage on product quality. 

Furthermore, there is a clear trend in the international market towards labelling products with 

information about their composition and quality. This brings about the need to develop standardized 

analytical techniques to either confirm the information given by the label or to uncover fraud. The 

composition such as the fat content, and the life-history of the products (the storage and processing 

conditions to which it was subjected), are amongst the main issues for which no accepted analytical 

methods have been discovered yet. Modern rapid non-destructive measuring techniques such as 

nuclear magnetic resonance (NMR) can be important elements on the way to overcome technical 

challenges towards reliable and verification of the product composition and quality and, last but not 

least, to create an economically healthy industry. NMR proton relaxometry can provide information 

about the mobility and compartmentalisation of water and fat in tissues, whereas proton and sodium 

MR imaging can provide information about spatial distribution of water/fat and salt, respectively. 

These features, in addition to their non-destructiveness, make them excellent tools in the work of 

establishing basic knowledge about effects of raw material properties, storage and processing on 

fish product quality. 

In this thesis, low-field proton NMR coupled with proton and sodium MR imaging have been 

applied to study raw material quality and processing of Atlantic salmon (Salmo salar) and Atlantic 

cod (Gadus morhua). In the first section of the thesis (Paper I and II), the composition of salmon 

muscle tissue is studied, and a non-invasive determination of fat and water of Atlantic salmon 

(Salmo salar) is approached. The second section (Paper III, IV and V) is dedicated to specific cases 

typical for the Norwegian fish processing industry such as preslaughter conditions, rigor status, 

freezing-thawing and processing (heating and salting), and their effect on water and salt 

distributions in the product. The obtained results are enclosed as 5 submitted or published papers in 

Part 2 of the thesis. 
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2 Objectives 

The main objective of the present thesis was to use non-invasive and non-destructive NMR 

techniques to contribute to a further understanding of water dynamics and fat and salt distribution, 

as affected by raw material quality and processing. The specific goals were: 

 To investigate the applicability of low-field NMR techniques for determination of total 

water and fat content for the fish processing industry. 

 To apply low-field NMR T2 relaxation as a tool to increase the understanding of the tissue 

water distribution in Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) as 

affected by raw material quality and processing. 

 To apply MR imaging to non-invasively study distribution of fat, water and salt in Atlantic 

salmon (Salmo salar) muscle tissue as affected by raw material quality and processing. 

 To broaden the understanding of water and salt dynamics in fish tissue as affected by ante-

mortem handling, post-mortem status and processing by combining different NMR 

techniques. 
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3 Background 

Different fish muscle tissues display both structural and compositional complexity, and the spatial 

heterogeneity can range from the molecular to the macroscopic. There is an obvious relationship 

between structural complexity and dynamic changes associated with processing and storage. This 

chapter is intended to give a brief overview of the fish flesh composition and the effects of 

freezing/thawing and processing such as heating and salting. 

 

3.1   Fish muscle structure 

Fish muscles are divided into myotomes separated from each other by thin sheets or membranes 

made up of connective tissues (myocommata). Within each myotome, the muscle fibres run 

approximately parallel to each other, but at varying angles to the myocommata sheets to give the 

necessary moment for swimming during contraction. The muscle cells are oriented roughly parallel 

to the longitudinal axis of the fish (Dunajski, 1979), Figure 1. 

 

 
                   (A)              (B) 

Figure 1: The metameric structure of a fish muscle. The pattern of the lines on the cross (A) and longitudinal (B) 

sections represents the arrangement of the sheets of connective tissue in the muscles (Dunajski, 1979). 
 

Fish muscle tissue consists of bundles of cylindrical multinucleated muscle cells. Each muscle cell, 

also called muscle fibre, is comprised of bundles of myofibrils arranged longitudinally within the 

muscle cell. In the periphery of the fish cell, the fibrils are elongated with, in cross-section a ribbon-

like shape, whereas fibrils in the interior of the cell are roughly polygonal (Howgate, 1979; Bello et. 

al, 1981; 1982), Figure 2. 

 



 4 

plasma membrane

myofibril

transverse tubules
formed from invaginations

of plasma membrane

sarcoplasmic 
reticulumnucleus

myofibril

plasma membrane

myofibril

transverse tubules
formed from invaginations

of plasma membrane

sarcoplasmic 
reticulum

plasma membrane

myofibril

transverse tubules
formed from invaginations

of plasma membrane

sarcoplasmic 
reticulumnucleus

myofibril

nucleus

myofibril

 
Figure 2: Muscle tissue structure (Alberts et al., 1998). 

 

A fine network of collagen surrounds each muscle fiber and proceeds into the myocommata 

(Bremner and Hallett, 1985; Bremner, 1992). The collagen content of fish muscle varies 

considerably between species, and is found in increasing proportion in the tail region. 

Concentrations of 0.3-3% are common in the main edible proportion, depending on season and 

nutritional status (Bremner, 1992). 

 

3.2 The principal components of fish flesh 

 
3.2.1 Proteins 

The muscle proteins can be divided into three groups, based on solubility properties (Haard, 1992; 

Foegeding et al., 1996). These are water-soluble or sarcoplasmic proteins (mainly enzymes), salt 

soluble or myofibrillar proteins (the contractile network) and the insoluble proteins (primarily 

collagen). Fish flesh contains a relatively high concentration of myofibrillar proteins (70 – 90 %) 

compared to muscle from land animals (39 – 68 %) (Haard, 1992). This implies that the 

myofibrillar proteins are important for the water-holding properties of fish muscle. Furthermore, 

myofibrils occupy around 70% of the volume of lean muscle. Therefore, most of the tissue water is 

located in the myofibrils (Hamm, 1986). Thus, lateral expansion or shrinking of the filament lattice 

is expected to greatly influence tissue water distribution and holding capacity, and thus the water 

mobility. Processing steps such as freezing, salting and cooking are all known to affect the 

myofibrillar lattice. 
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3.2.2 Water 

Water is the principal component of the fish flesh and the water content is typically in the range of 

70 - 80 %. Fresh Atlantic cod (Gadus morhua) and Atlantic salmon (Salmo salar) contain up to 

approx. 80 % and 70 % water, respectively. As a key component, water heavily determines the 

physical characteristics, technological properties, microbial stability, shelf-life and sensory 

properties. The water-holding is also of great importance, because gains or losses of water affect the 

weight and therefore the commercial value of fish products. 

The majority of the water in muscle tissue is located within the structure of the muscle and the 

muscle cells. Water is found within and between the myofibrils and between the myofibrils and the 

cell membrane (sarcolemma), between muscle cells and between muscle bundles (groups of muscle 

cells) (Offer and Cousins, 1992). The distribution of water in the muscle may be described as 

divided into three compartments. The ‘first’ compartment is often named bound water, which 

contains less than 10% of the water in the muscle. This water is very closely bound to proteins, has 

reduced mobility and can not easily move to other compartments. The amount of bound water 

changes very little, if at all, in post-rigor muscle (Offer and Knight, 1988a;b) and it is very resistant 

to freezing and heating (Fennema, 1990). The ‘second’ compartment, often called “entrapped” 

water, is the most affected by the rigor process and the conversion of muscle to meat. This water 

can eventually escape as drip loss (Offer and Knight, 1988a;b). The ‘third’ compartment, called 

“free water”, is mainly held by weak surface forces, and is not readily seen in pre-rigor meat, but 

can gradually develop during and after the rigor process (Fennema, 1990). Together, the 

“entrapped” and the “free” water, describe approximately 90% of the water in muscle (Offer and 

Knight, 1988a;b; Fennema, 1985; Cole et al., 1993; Huff-Lonergan and Lonergan, 2005). 

The distribution of the water in the muscle tissue 3D network is generally believed to be affected by 

the physical and biochemical changes in the muscle which occurs during e.g. rigor mortis, 

freezing/thawing or processing. Water properties in muscle tissue have traditionally been assessed 

by measuring e.g. changes in total water content, water holding capacity (WHC), drip loss, and 

water activity. However, in recent years the non-invasive low-field NMR transversal (T2) relaxation 

technique has been taken into use, examples of such studies are summarized in Chapter 5. 

 

3.2.3 Lipids 

Lean fish such as Atlantic cod (Gadus morhua) store lipids mainly in the liver, whereas fatty fish 

such as Atlantic salmon (Salmo salar) store lipids in fat cells distributed in other body tissues. 
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The white muscle of cod contains less than 1 % lipids. The lipid content of fatty fish varies 

considerably and is dependent on species, age, feed, season, etc. The variation in the percentage of 

fat is reflected in the percentage of water, since fat and water together make up around 80 % of the 

fillet. As a rule of thumb, this can be used to estimate the fat content from an analysis of the amount 

of water in the fillet (Katikou et al., 2001). The fatty fish species store lipids in fat cells throughout 

the body. Fat cells are typically located in subcutaneous tissue, in the belly flap muscle and in the 

white and red muscles. Fat depots are typically found spread throughout the muscle tissue structure. 

The concentration of fat cells appears to be highest close to the myocommata and in the region 

between the light and the dark muscle (Kiessling et al., 1991). Figure 3 shows water and fat 

distribution of a salmon white muscle cube obtained by 1H MR imaging. 

 

 
(A)                                                                                       (B) 

Figure 3: Three dimensional 1H MR imaging of an Atlantic salmon white muscle cube. (A) Fat and connective tissue 

and (B) water images based on 1H MRI contrast (SINTEF Fisheries and Aquaculture, unpublished data). 

 

Examples of the variation in muscle composition of cod, salmon, mackerel, herring and pork are 

given in Table 1. 

 
Table 1: Proximate composition of edible muscle tissue from different species. 

Chemical composition (%) Species Name 
Water Protein Lipid Ash 

References 

Atlantic cod Gadus morhua 76-83 15.0-19.4 0.1-0.9 1 1-4 
Atlantic salmon Salmo salar 57-77 15.4-21.8 3.3-21.4 1-5 1-5 
Mackerel Scomber scombrus 60-74 16.0-20.0 1.0-23.5 - 2 
Herring Clupea harengus 60-80 16.0-19.0 0.4-22.0 - 2 
Pork meat Musculus longissimus dorsi 50-79 13.6-22.2 1.8-37 1.4 1, 4 

1Watt and Merrill, 1963, 2Murray and Burt, 1969, 3Venugopal and Shahidi 1996, 4NFSA, 2008, 5NIFES, 2008 
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3.3   Post mortem changes 

In live animals, contraction and relaxation of the striated muscle occurs by the sliding action of the 

thin actin filaments and the thick myosin filaments with the length of the filaments staying the same 

(Alberts et al., 1998). When muscle stimulation occurs, the myosin head interacts with actin 

resulting in a contraction forming actomyosin and using one molecule of ATP. Subsequently, the 

actin releases itself from the myosin and the muscle returns to its resting state. When the animal 

dies, the ATP-level gradually declines, and as a consequence action cannot be released from 

myosin. At this stage the muscle enters the state of rigor mortis (the conversion of muscle to meat 

starts). Simultaneously, muscle pH drops as glycogen degrades to lactic acid (Huff-Lonergan and 

Lonergan, 2005). As pH approaches the isoelectric point (pI) of the major proteins, especially 

myosin (pI = 5.4), the net charge of the protein becomes zero, meaning the number of positive and 

negative charges on the proteins are essentially equal. The positive and negative groups within the 

protein will attracted to each other, and the amount of water that can be held by that protein is 

reduced. Additionally, the repulsion between opposite charges within the myofibrillar protein 

ceases, allowing structures to pack more closely together. This, together with partial denaturation of 

myosin at low pH, results in a reduction of space within the myofibril (Offer, 1991; Huff-Lonergan 

and Lonergan, 2005). 

The rigor process consists of an initial contractile phase (Tornberg et al., 2000), during which the 

muscle fibres contract, and a second stiff phase that is traditionally considered to be signified by a 

permanent binding of the contractile proteins myosin and actin. During the development of rigor, 

the diameter of muscle cells decreases (Hegarty, 1970; Swatland and Belfry, 1985) as a result of the 

lateral shrinkage of the myofibrils (Diesbourg et al., 1988). Additionally, during rigor development 

sarcomeres can shorten; which further reduces the space available for water within the myofibril. 

Honikel et al. (1986) showed that drip loss can increase linearly with a decrease in sarcomere length 

in muscle cells. Furthermore, Offer and Cousins (1992) found that a reduction in the muscle cell 

diameter occurred post mortem. Huff-Lonergan and Lonargan (2005) suggested that the rigor 

process could result in mobilization of water out not only out of the myofibril, but also out of the 

extramyofibril spaces as the overall volume of the cell is constricted. The sliding filament model of 

a muscle contraction is shown in Figure 4. 
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Figure 4: The sliding filament model of a muscle contraction. Upper panel: Relaxed muscle. Lower panel: During 

contraction, the actin and myosin filaments slide past each other (Alberts et al., 1998). 

 

The water that is expelled from the myofibril and the muscle cell eventually gathers in the 

extracellular space. Several studies have shown that gaps develop between muscle cells and 

between muscle bundles during the post-rigor period (Offer et al., 1989; Offer and Cousins, 1992). 

Figure 5 shows micrographs of the transverse sections of Atlantic salmon muscle pre and post 

rigor. A beginning widening of the extracellular matrix typical for post-rigor muscle structure is 

seen (Paper IV).  

 

 

 
(A)     (B) 

Figure 5: Light micrographs of transverse sections of salmon muscle, sampled from the tail region of a fillet, (A) 3 h 

post mortem (pre rigor) and (B) 72 h post mortem (post rigor). A beginning widening of the extracellular matrix typical 

for post-rigor muscle structure is seen in the latter sample (Paper IV). 

 

The location of water can be affected by changes in volume as the muscle undergoes rigor, leading 

to water being expelled from the intramyofibrillar space (Offer and Trinick, 1983). Consequently 

100 μm 
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one should expect a change in water mobility during the development of rigor mortis and in the 

post-rigor muscle. 

 

3.3.1 Preslaughter conditions and development of rigor mortis 

Present routines for the harvesting of Atlantic salmon commonly induce handling stress (excessive 

muscle activity) which in turn will shorten the time to onset of rigor mortis. In exhausted salmon, 

rigor onset typically occurs after 2 to 4 h post mortem (Erikson, 2001; 2008). If antemortem stress 

is avoided altogether, rigor onset is delayed for another 20 to 25 h (Erikson, 2001), and processing 

of in rigor fish can more easily be avoided. Ante-mortem stressed fish may develop stronger rigor 

mortis compared to rested harvested fish (Nakayama et al., 1992). This may also affect quality 

attributes such as fillet texture and water binding (Robb et al., 2000; Kiessling et al., 2004; Paper 

III). Figure 6 shows typical rigor development for Atlantic salmon exposed to two extremes of 

ante-mortem handling; excessive stress until exhaustion and anaesthetization. 

 

 
Figure 6: Development of rigor mortis of anaesthetized and exhausted Atlantic salmon during ice storage. Mean ± SD 

(n=25) (Misimi et al., 2008). 

 

The concept of pre-rigor filleting is currently a goal for several salmon processors in Norway. To 

achieve this, it is essential to avoid preslaughter stress since this can delay the rigor onset. Pre-rigor 

fillets have several properties that differ from their post-rigor counterparts (Sørensen et al., 1997; 

Rørå et al., 2004; Kristoffersen et al., 2006). Mostly, these properties are considered favourable in 

terms of flesh quality (Skjervold et al., 2001a;b; Stien et al., 2005). 
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3.4 Processing 

 
3.4.1 Freezing 

Freezing is an important method in preserving and storing of fish products. During the freezing 

process, free water is transformed into ice crystals which cause mechanical damage to the muscle 

cell structure. Frozen storage gives rise to mechanical damage through ice crystal formation (Bello 

et al., 1982; Ayala et al., 2005) and protein denaturation (Fennema, 1990). As the structure of the 

meat is altered, properties including water holding capacity are affected (Ngapo et. al, 1999), which 

may have an impact on final product quality (Sigurgisladottir et al., 2000). A light micrograph of 

the transverse section of a salmon muscle before and after freezing and thawing is shown in Figure 

7. An evident widening of the extracellular matrix is seen for the frozen/thawed muscle indicating 

muscle degradation as a function of freeze-damage. 

 

 
(A)                                                                 (B) 

Figure 7: Light micrographs of transverse sections of salmon muscle, sampled from the tail region of a fillet (A) post-

rigor (3 days post mortem) and (B) frozen/thawed (Paper IV). 

 

3.4.2 Heating 

Meat undergoes considerable structural changes upon heating both regarding microstructure and 

protein structure. Response to thermal treatment depends on species, post-mortem aging, pH and 

ionic strength (Wright and Wilding, 1984; Offer et al., 1989; Fennema, 1990). An extensive review 

of the effects of heat on muscle proteins and its implications on structure and quality has been 

written by Tornberg (2005). 

 

100 μm 
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3.4.3 Brine salting 

Since ancient times and up to now salting of muscle foods has been one of the most important food 

preservation methods. Addition of salt induces swelling of myofibers, a schematic illustration of the 

swelling is described by Offer et al., 1989 (Figure 8). Salt uptake resulting in swelling is coupled 

with an increase in water holding capacity (Hamm, 1960; Offer and Trinick, 1983; Offer and 

Knight, 1988a;b; Honikel, 1989). In meat tissue, salt (NaCl) contributes to water binding by 

expanding the filament lattice of myofibrils (Offer and Knight, 1988a;b) and by partially 

solubilizing the myofibrillar proteins (Hamm, 1986). 

 

gain (swelling)

loss (shrinking)

gain (swelling)

loss (shrinking)

 
Figure 8: Illustration of myofiber swelling/shrinking due to water gain/loss (Offer et al., 1989). 

 

Salting in brines leads to either water uptake or dehydration of the muscle depending on the brine 

concentration applied (Gallart-Jornet, 2007a). When salt molecules dissolve in water, a shell of 

bound water molecules is formed around the ions. As the concentration of salt increases, more and 

more water will be bound around the ions. This changes the water distribution in the tissue, and 

thereby most probably its mobility. 

Addition of salt (NaCl) also influences the pH in the fish meat. When salt was added, the pH values 

of raw pork and beef decreased about 0.1 pH-units per %-unit of NaCl (Puolanne et al., 2001). 

When a neutral salt is added to an acidic solution, pH decreases linearly with increasing salt 

concentration provided the solution has no significant buffer capacity in the relevant pH range. In 

food the pH reduction will depend upon the buffer capacity of the food product, which can be 

substantial. Thus, it is not easy to predict the effect of adding salt in a product, except that pH will 

decrease. The effects of pH on meat quality have been thoroughly reviewed, e.g., by Hamm (1986), 

Bendall and Swatland (1988) and Offer and Knight (1988a;b). 
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4 Methodology 

Nuclear magnetic resonance (NMR) opens up possibilities to study foodstuffs non-destructively and 

non-invasively. The technique was discovered independently by Bloch (Bloch et al., 1946) and 

Purcell (Purcell et al., 1946), for which they were given the Nobel prize in Physics in 1952. Since 

then, NMR has been applied to a wide variety of fields within many fields such as medicine, 

biology and food science. NMR-based methods have several advantages such as relatively rapid 

non-destructive and non-invasive measurements, and in some cases, a potential feasibility of being 

integrated into a process line. The use of NMR in the food science and industry has been 

extensively reviewed (Belton, 1990, Ruan and Chen, 2001; Hills, 1995; 1998). However, the use of 

NMR in food science is far from fully exploited, and lots of knowledge is still to be gained. 

Application of NMR methods in food research may be divided into three main groups according to 

the type of equipment used, which provide useful information about the chemical composition and 

structure of biological systems at various levels. These are: high-resolution NMR (HR NMR) 

spectroscopy, magnetic resonance imaging (MRI) and low-field NMR relaxometry. The two latter 

modalities have been applied in the work of the present thesis. The following chapter gives an 

introduction to the basic concept of NMR. The methodologies of low-field 1H NMR and 1H/23Na 

MRI techniques are given a particular attention. 

 

4.1 The principle of NMR 

The NMR phenomenon is based on the fact that nuclei of atoms have magnetic properties that can 

be utilized to yield chemical information. From a quantum mechanical point of view subatomic 

particles (protons, neutrons and electrons) possess a property called nuclear spin. These spins can be 

paired in some atoms (e.g. 12C, 16O, 32S), cancelling each other out so that the nucleus of the atom 

has no overall spin. However, in certain atoms the nucleus does possess an overall spin (1H, 13C, 
31P, 15N, 19F, 23Na, etc.). Nucleus with a non-zero overall spin generates a magnetic moment. Like a 

normal magnet bar, this magnetic moment has a north and a south pole. When the nucleus 

possessing magnetic moment is placed in a static magnetic field, it will interact with this field 

resulting in a wobbling or angular spinning which is called nuclear precession. The frequency of 

this precession of the nucleus is called Larmor frequency defined by the Larmor equation; 

 0Bγω −=        (Eq 1) 

where ω is the frequency of precession, B0, is the strength of the static magnetic field, and γ is 

termed the magnetogyric ratio (often named gyromagnetic ratio) and has a precise value 

characteristic for each nuclear species. Physically the magnetogyric ratio of a nucleus is the ratio of 
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its magnetic dipole moment to its angular momentum. Proton has a γ of 42.576 MHz/T and sodium 

has a γ of 11.262 MHz/T (Ruan and Chen, 2001). 

According to quantum mechanical principles, the nuclear spins can only preceess around the 

direction either along or opposite to the static field B0. Populations of the corresponding energy 

levels will be slightly different, and a small but detectable net magnetization along B0 will be 

created. The frequency of the nuclear precessing ω0 is typically in the radio frequency (RF) range 

(megahertz). Therefore, by using an RF coil operating at exactly the same frequency ω0, one can 

transfer energy of the external RF radiation to the nuclei causing a resonant absorption. This 

phenomenon is called nuclear magnetic resonance (NMR). Having absorbed the extra energy, the 

nuclear system will no longer be in the energetic equilibrium and will re-emit RF radiation and 

return to the lower-energy state. This process is called spin-lattice relaxation and is characterized by 

a time constant, T1. Spins taken out of the equilibrium at a certain time moment by an RF pulse will 

first precess coherently and there will be a non-zero component of the net magnetization in the 

plane transversal to B0. The oscillating at the resonance frequency magnetic field will induce current 

in the same RF coil, which can be detected as an NMR signal. Small differences in the precessing 

frequency in the ensemble of nuclei will cause loss of the transversal coherence, a process called 

spin-spin relaxation or transversal relaxation with its characteristic time T2. 

 

4.2 NMR relaxometry 

Whereas longitudinal (T1) relaxation causes a loss of energy from the spins, transverse (T2) 

relaxation occurs by a mutual swapping of energy between spins, i.e. longitudinal relaxation is thus 

an enthalpic process whereas transverse relaxation is entropic. 

T2 is proportional to the rate of rotational motion of the molecules. A larger T2 generally means 

greater mobility. T2 relaxation is affected by a chemical exchange process, which is especially true 

in muscle food systems. Chemical exchange takes place between different sites of different 

mobilities. Protons of water exchange with protons of macromolecules, and protons of more mobile 

water exchange with protons of less mobile water molecules, etc. The rate of exchange has great 

influence on the T2 value. If the exchange is very fast, the difference in T2 of the two exchanging 

sites is averaged. On the other hand, if the exchange rate is low, a broad distribution of T2 or several 

separate T2 compartments can be expected. While the proton intensity is related to the concentration 

of proton-containing compounds in foods, relaxation times provide information about the motional 

properties of food systems. The most widely used pulse experiment for determination of T2 is the 
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Carr-Purcell-Meiboom-Gill (CPMG) sequence (Carr and Purcell, 1954; Meiboom and Gill, 1958) 

shown in Figure 9. A good introduction to NMR spectroscopy was written by Farrar (1987). 

 
Figure 9: CPMG pulse sequence. 

 

4.3 Low‐field NMR 

Low-field NMR (often also called time-domain NMR) is a fast and powerful method that can be 

used for non-invasive determination of water and fat content as well as to study water and fat 

mobility in e.g. muscle foods. The application of low-field 1H NMR to fish and fish products opens 

up a possibility to relate the state and dynamics of water to various technological parameters, such 

as raw material quality, storage and processing conditions. Furthermore, the structure of muscles 

can be studied indirectly using low-field 1H NMR. Different tissue water populations can be studied 

because protons in different environments exhibit different T2 relaxation properties. Different 

approaches exist to extract useful information from raw CPMG curves. In the following, an 

overview of the data analysis methods used in this thesis is given. 

 

4.3.1 Low‐field NMR T2 relaxation data analysis 

In general a T2 relaxation curve from an object containing N relaxation populations can be 

mathematically described by a sum of N discrete exponential functions given by; 

∑
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ieAtS

1

2)(       (Eq 2) 

where )(tS  is the recorded CPMG signal, iA2  is a partial amplitude of the i-th relaxation component 

present in the curve and iT2 is its corresponding relaxation time. 

In fish tissue a limited number of components have been identified in fresh (Andersen and Rinnan; 

2002; Jepsen et al.; 1999), frozen/thawed, chilled and processed (Lillford et al.; 1980; Steen and 

Lambelet, 1997; Løje et al., 2007; Jensen et al., 2002; Lambelet et al., 1995) tissue and mince. In 

order to extract information from the relaxation curves several methods are available, each with 

their own strengths and weaknesses. The methods may be classified into single sample algorithms 

and multivariate data analysis. In the work of this thesis four different methods were combined. 
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The classical way of extracting information from relaxation curves is by exponential curve fitting. 

This is a single sample algorithm based on a predefined assumption of the number of components in 

the data set. This simple and robust method has traditionally been used to interpret T2 relaxation 

data. However, one should remember that this form of data processing forces the curve to be fitted 

by a chosen number of exponentials. Therefore, it is important to thoroughly investigate the 

residuals of the exponential fittings, to make sure that the right number of exponents is chosen. A 

general rule is to find a minimal number of exponentials satisfactorily describing the experimental 

curve, such that additional exponents would not substantially improve the fit. In fish, two 

(biexponential) or three (triexponential) exponents are usually chosen (Eq 3 and Eq 4, respectively). 

Denote the signal amplitude Si, where i is the number of exponential terms. Then, the biexponential 

and triexponential functions describing signal strength may be written as: 

2221
212

TtTt eAeAS −− +=      (Eq 3) 

232221
3213

TtTtTt eAeAeAS −−− ++=    (Eq 4) 

 

Figure 10 shows typical residuals for mono-, bi- and triexponential curve fittings of T2 relaxation 

data obtained on raw post-rigor Atlantic salmon (Salmo salar). The residuals are normalized with 

respect to the number of echoes. Approximately the same residual values were obtained for two and 

three exponents. This indicates that the main information stored in the data set is described by two 

components, i.e. the larger part of the tissue water is described by two main populations. 

Number of echoesNumber of echoes  
Figure 10: Normalized residuals of mono-, bi- and three exponential fitting to varying number of echoes (500 – 4000) 

of T2 relaxation curves obtained on post-mortem Atlantic salmon muscle exposed to ante-mortem stress (n=6). Mean ± 

max/min. 
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Another single sample algorithm to extract information from the T2 data is inverse Laplace 

transformation. A commonly used implementation is the computer algorithm called CONTIN 

developed by Provencher (1982). This involves an iterative optimization-based search algorithm. 

Assume that the T2 signal S(t) is represented by Eq 2. Then, the Laplace transformation F(s) may be 

written: 

  ∫
∞ −=

0
)()( dtetSsF st       (Eq 5) 

 

The method gives an overview of the characteristics of the different water populations in the studied 

samples. The Inverse Laplace Transformation (ILT) is a highly ill-posed problem and is therefore 

intrinsically affected by numerical instability. The CONTIN algorithm searches for a F(s) that fits 

the recorded S(t). Data sets obtained from the experiments are affected by some noise, and this will 

have influence on the search algorithm. Numerical differentiation is involved in a regularization 

process during the search, and this is an operation very sensitive to noise. Thus, one should apply 

this algorithm with care. Its solution may not be unique, may not exist or may not depend 

continuously on the data. The output of the algorithm is only one of the possible solutions, and this 

limitation is unavoidable. Changing the parameters, the solution may change too. Despite these 

challenges, the use of ILT may be really successful if used together with other methods like for 

instance traditional exponential fitting. The latter results can be used to choose reasonable guess 

values for the inverse Laplace transformation calculations, and thereby give a more reliable 

convergence. Furthermore, noise may be reduced by low-pass filtering of the relaxation signal S(t), 

providing a more robust input to the optimization search necessary for ILT estimates. Although 

such use of related methods will give dependency between results obtained by Inverse Laplace 

transformation and exponential curve fitting, the results are found to be important to support and 

elaborate the information found in the data set. In that way, more reliable results can be achieved. 

Multivariate data analysis is another way of treating the relaxation data. By making use of the full 

data set from several samples at the same time, new possibilities arise. Principal component 

analysis (PCA) (Jolliffe, 1997; Martens and Martens, 2001) aims at reducing a large number of 

variables in the data matrix X, to a smaller number of uncorrelated “latent” variables or principal 

components (PCs). The PCs comprise linear combinations of the original variables. The first PC 

accounts for the main variation, while the second PC contains second most variation. That is, each 

new variable that follows, explains as much of the remaining variation as possible (Næs et al., 
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2002). The method is robust and rapid and can be performed directly on the raw T2 relaxation 

curves to investigate differences between sample groups etc. Partial least square regression 

(PLSR) is a multivariate statistical method that attempts to find the relationships between two 

matrices X and Y. The X matrix can i.e. consist of T2 relaxation curves and the Y matrix of physico-

chemical data. Like in PCA, the guiding principle for PLSR is a decomposition of the X matrix into 

scores and loadings. However, in PLSR the decomposition is governed by the variables of the Y 

matrix. In PLSR the response variables Y are expressed as a linear function of the variables; 

Y = B0 + XB + F      (Eq 6) 

where B0 is the matrix of offsets with identical values in every column, B is the matrix of regression 

coefficients and F the matrix o residuals (Martens and Martens, 2001).The directions in this new 

co-ordinate space are given by the loading vectors and the new variables are ordered according to 

the magnitude of their co-variance to Y. The first PLS component contains the largest co-variance, 

the second PLS component has the second largest variation, and so forth (Næs et al., 2002). PLSR 

can be used for prediction of quality parameters, without having to pre process the raw relaxation 

curves to extract specific relaxation components explicitly. The technique has e.g. been applied in 

the determination of sensory attributes of potatoes (Thybo et al., 2000; Thygesen et al., 2001) The 

PCA and PLSR techniques are useful in the investigation of differences between groups, the 

location of potential outliers, or e.g. as a basis for calibration models in determination of quality 

parameters. However, these calculations can not directly extract T2 relaxation components. 

Table 2 gives a summary of the T2 relaxation data analysis methods used in the work of this thesis, 

their advantages and disadvantages. 
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Table 2: Low-field 1H NMR T2 relaxation data analysis methods, their advantages and disadvantages. 

Data analysis method Advantage Disadvantage 

Single sample algorithms 
Exponential fitting T2 relaxation times and populations can be 

calculated. 
Classical robust method. 
Easy to compare results with data in literature. 

Risk of overfitting, close 
investigation of residual is essential. 

Continuous distributed 
curve fitting / Inverse 
Laplace transformation 

T2 relaxation times and populations can be 
calculated. 
Results in a curve from which N is directly 
determined as the number of peaks. 
Dynamic changes in relaxation populations are 
easy to follow. 

Highly affected by numerical 
instability. 

Multivariate data analysis 
Principal Component 
Analysis (PCA) 

Robust and rapid method. 
Good tool for building calibration models. 
Good performer when linear relationships are 
present. 
Most of the original variance is captured in a 
few principal components. 
Allows detection of underlying patterns and 
trends. 

Sensitive to outliers in the data set. 
Can be hard to interpret the PCs. 
T2 relaxation times and populations 
can not be directly calculated. 
 

Partial Least Squares 
Regression (PLSR) 

Good tool for building calibration models. 
Can be used for prediction of quality parameters. 
Calibrations are generally robust provided that 
calibration set accurately reflects range of 
variability expected in unknown samples. 

Sensitive to outliers in the data set. 
Models are more abstract, thus more 
difficult to understand and interpret. 
Generally, a large number of samples 
are required for accurate calibration. 
T2 relaxation times and populations 
can not be directly calculated. 
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4.4 MR imaging 

MR imaging (MRI) is an extension of NMR. It provides additional spatial information about 

nuclear spins in the investigated object. The first published MR image is credited to Paul Lauterbur 

(1973). As a research tool, MRI can give us basic insight into i.e. structure of tissues as well as 

distribution of fat and water. MRI can also be used as a tool in the optimization of various processes 

such as freezing-thawing and salting (Hills, 1998). 
 

4.4.1 1H MR imaging 

The fact that water and lipid distributions can be imaged non-invasively accounts for the impact that 

MRI has had in medical diagnosis. Similar anatomical details are important when monitoring the 

physiological changes in muscle foods. For instance, differences in fat distribution in the flesh of 

brown trout due to low- or high-energy diets have been demonstrated by using MRI (Toussaint et 

al., 2005). Furthermore, it is possible to produce ‘diffusion weighted’ MR images showing only 

molecules with low mobility (Mulkern and Spencer, 1988) or high-resolution images of connective 

tissue (Bonny et al., 2001). MRI methods based on double-quantum filtering can suppress the signal 

from isotropic fluids and only detect molecules associated with ordered tissue structures (Tsoref et 

al., 1998). An overview of different fat and water selective MRI techniques was written by Tingle et 

al. (1995). 

 

4.4.2  23Na MR imaging 

The distribution of salt (NaCl) in the fish tissue during salting is important, partly because a 

homogeneous distribution in the final product is desired. It is also important in the development of 

salting procedures and in the choice of salting technique. Numerous studies have been performed on 

the salting of foods by using standard physicochemical methods. Investigations of  the stability, 

degradation, or denaturation of muscle proteins (Duerr and Dyer, 1952; Thorarinsdottir et al., 2002; 

Martínez-Álvarez and Gomez-Guillen, 2005; Sannaveerappa et al., 2004), effects of additives and 

salting procedure (Jittinandana et al., 2002; Thorarisdottir et al., 2004; Esaiassen et al., 2005), 

process modelling and mass transfer kinetics (Wang et al., 1998; Wang et al., 2000; Barat et al., 

2002; Barat et al.; 2003; Gallart-Jornet et al., 2007a;b), as well as raw material quality (Rørå et al., 

1999; Lauritzen et al., 2004) have been made. Common features of all these techniques were that 

they were destructive for the sample. 23Na MRI, however, can be used to non-destructively 

visualize variations in the sodium distribution of similar raw materials salted or processed by 

different methods, and thus serve as a tool for the process optimization. Moreover, theoretical 



 20 

transport models can in turn be used to interpret the images. This technique has earlier been used to 

study i.e. salting and desalting of cod (Erikson et al., 2004), and the salting process of cod (Gallart-

Jornet et al., 2007b) and salmon (Foucat et al., 2006; Gallart-Jornet et al., 2007b). 

 
4.5 Instrumentation 

Low-field NMR instruments are based on use of permanent magnets covering a range of proton 

resonance frequencies from about 2 to 60 MHz. Magnet bore openings of typical low-field NMR 

equipment range from 5 to 52 mm in diameter. Furthermore, a single-sided NMR instrument, 

Bruker ProFiler, has been developed. This is a low-field mobile NMR analyzer for near-surface 

volume measurements of samples unrestricted in size. A basic diagram of a typical low-field NMR 

instrument is shown in Figure 11. The main advantages of the low-field NMR method compared 

with the other NMR techniques are low investment costs, small size, no maintenance costs 

(permanent magnet), excellent stability, high degree of automation and easy operation. Low-field 

NMR can be implemented at-line to operate under rather harsh industrial conditions. 

 
Figure 11: NMR instrument. 

 

A typical MRI scanner consists of the following main elements; a superconducting magnet 

generating a static magnetic field, an RF coil used to transmit radio-frequency excitation into the 

material to be imaged. Gradient coils are used to spatially encode the positions of protons by 

varying the magnetic field linearly across the imaging volume. This excites a component of 

magnetization in the transverse plane which can be detected by the same RF coil or a separate 
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reception coil. The signals are transduced and conditioned prior to image reconstruction. A basic 

block diagram of a typical MRI data-acquisition system is shown in Figure 12. Current MRI 

scanners generate images with sub-millimetre resolution of virtual slices through the sample. The 

thickness of the slices is often of a millimetre, although thicker slices can be imaged in special 

cases. Contrast resolution between materials depends strongly on the strength of the magnetization, 

T1, T2, and movement of the nuclei during imaging sequences. 

 
Figure 12: A block diagram of a typical MRI data-acquisition system (Sun and Zheng, 2007). 

 

Due to the high investment costs, often small magnet bore opening, the requirement of trained 

personnel and the necessary related infrastructure, MRI is not a standard measuring technique in the 

food industry. However, the rapidly decreasing cost of electronic components, combined with the 

increasing need for innovation in the food industry, indicate that in the future, MR imaging may be 

used for food quality control industrially. In fact, instruments have already been implemented in the 

baby-food industry for quality control of the final product (Hills, 1998). However, today, these 

types of instruments have their main advantages as a research tools. 

The low-field NMR and the MRI instruments applied in the present thesis are shown in Figure 13, 

and instrumental details are given in Table 3. 
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Figure 13: Picture of the low-field NMR and MR imaging instruments used in the research of the present thesis (A) 

low-field NMR surface scanner, (B) low-field NMR bench top instrument, (C) 100 MHz MRI instrument, (D) 300 MHz 

MRI instrument. Technical details are given in Table 3. 

 

Table 3: Instruments and probes/coils used in the work of this thesis. 

Instrument Technical characteristics Probes/Coils 
Bruker ProFiler 
 

Highly inhomogeneous magnetic field with a constant 
gradient in the order of 10 T/m at the surface. 
Measuring volume about 5×5 mm in-plane and 2.5 mm in-
depth 

Surface probe 

Bruker minispec 
mq 20 
 

20 MHz 1H spectrometer equipped with:  

- 225 W power amplifier 

- Quadrature detection receiver system 

- 12 bit ADC (1 MHz) 

- 1 axis gradient z (2 T/meter) 

- 10 mm coil with z-gradient 
for diffusion measurement. 

- Variable temperature in the 
range -70 to +200 ºC. 

Bruker Avance 
DBX 100, Biospec 

100 MHz 1H multinuclear spectrometer equipped with: 
- 2 broad banded 1 KW power amplifier  
- 3 axis gradient controller  
- 2 gradient coil sets, 200 mT/meter, and 50 mT/meter 
- Quadrature detection receiving system, 16 bit HR ADC 

and 12 bit FAST ADC 

- 1H birdcage coil (200 mm) 
- 1H birdcage coil (70 mm) 
- In-house made 23Na probe 

(70 mm) 

Bruker Avance 
AV 300, 7 T small 
animal magnet 
 

System: 300 MHz 1H multinuclear spectrometer equipped 
with: 
- 2 broad banded 500 W power amplifier 
- 1 KW power amplifier 
- gradient coil set, 400 mT/meter 
- Quadrature detection receiving system, 16 bit FAST ADC 

- 1H Birdcage coil (72 mm) 
- 1H/23Na double tuned 

birdcage coil (72 mm) 
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5 Low‐field NMR and MRI studies on fish 

This chapter summarizes examples of applications of low-field NMR and MRI on fish tissue. Table 

4 gives an overview of application examples including the contributions of the present thesis. 

Table 4: Overview of fish application using low-field (LF) NMR and MRI. 

Application NMR method Fish species Reference 
Raw material characteristics   

Distinguishing organs 1H MRI Embryonic fish Blackband and 
Stockopf, 1990 

Blood flow 1H MRI Eelpout (Zoarces viviparous) 
Atlantic cod (Gadus morhua) 
in vivo studies 

Bock et al., 2002 

Anatomical defects 1H MRI Atlantic salmon (Salmo salar) Veliyulin et al., 2006a 
Fat and collagen 
distribution 

1H MRI Frozen-thawed rainbow trout 
(Salmo gairdneri) 

Nott et al., 1999b 

Fat distribution 1H MRI  Collewet et al, 2001 
Water and fat 
distribution 

1H MRI Atlantic salmon (Salmo salar) Veliyulin et al., 2006a 

Water and sodium 
distribution 

1H/23Na MRI Atlantic cod (Gadus morhua) Veliyulin et al., 2006a 

Fat content and 
distribution 

LF NMR and 1H MRI Atlantic salmon (Salmo salar) Paper II 

Liver fat content 1H MRI Live burbot (Lota lota) Alanen et al, 1991 
Fat and water content LF NMR Salmon Bechmann, et al., 1998 
Fat and water content LF NMR Atlantic salmon (Salmo salar) 

Atlantic cod (Gadus morhua) 
Jepsen et al., 1999 

Fat content LF NMR Brown trout (Salmo trutta) Toussaint et al., 2001 
Fat content LF NMR ProFiler Live Atlantic salmon (Salmo 

salar) 
Veliyulin et al, 2005 

Fat content LF NMR Herring (Clupea harengus L) Nielsen et al., 2005 
Fat content LF NMR mobile surface 

scanner 
Atlantic salmon (Salmo salar) Paper I 

Fat and water content LF NMR Atlantic salmon (Salmo salar) Paper I 
Preslaugher handling 
stress 

LF NMR and 1H/23Na MRI Atlantic salmon (Salmo salar) Paper III 

Rigor status LF NMR and 1H/23Na MRI Atlantic salmon (Salmo salar) Paper IV 

Quality attributes   
Texture during frozen 
storage 

LF NMR Frozen mince of Atlantic cod Steen and Lambelet, 
1997 

WHC LF NMR Atlantic salmon (Salmo salar) 
Atlantic cod (Gadus morhua) 

Jepsen et al., 1999 

Water content and 
distribution  

LF NMR Atlantic cod (Gadus morhua) Andersen and Rinnan, 
2002 

WHC LF NMR Atlantic cod (Gadus morhua) Andersen and 
Jørgensen, 2004 

Water distribution 
Seasonal variation 

LF NMR Herring (Clupea harengus) Jensen et al., 2005 
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Table 4 continued: Overview of fish application using low-field (LF) NMR and MRI. 

Application NMR method Fish species Reference 
Changes during processing and storage   

Salting and desalting  LF NMR and 1H/23Na MRI Atlantic cod Erikson et al., 2004 
Salting 1H /23Na MRI Atlantic salmon (Salmo salar) Foucat et al., 2006 
Brine salting 1H/23Na MRI Atlantic cod (Gadus morhua) 

Atlantic salmon (Salmo salar 
Gallart-Jornet et al., 
2007b 

Brine salting, sodium 
MRI visibility 

1H/23Na MRI Atlantic cod (Gadus morhua) 
Atlantic salmon (Salmo salar) 

Veliyulin and 
Aursand, 2007 

Smoking LF NMR Atlantic salmon Løje et al., 2007 
Brine salting  LF NMR and 1H/23Na MRI Atlantic salmon (Salmo salar) Paper III and Paper 

IV 
Brine salting  LF NMR Atlantic cod (Gadus morhua) 

Atlantic salmon (Salmo salar) 
Paper V 

Frozen storage  
Heating            
Pressure treatment 

LF NMR Atlantic cod (Gadus morhua) Lambelet et al., 1995 

Frozen storage 1H MRI Atlantic cod (Gadus morhua) Howell et al., 1996 
Frozen storage 1H MRI Atlantic cod (Gadus morhua) 

Mackerel (Scomber scombrus) 
Nott et al., 1999a 

Frozen storage 1H MRI Trout Foucat et al., 2001  
Frozen storage and 
chilled storage (MAP) 

LF NMR Atlantic cod (Gadus morhua) Jensen et al., 2002 

Freezing 1H MRI Atlantic salmon (Salmo salar) Veliyulin et al., 
2006a 

Frozen storage LF NMR Atlantic salmon (Salmo salar) Paper II 
Frozen storage LF NMR and 1H/23Na MRI Atlantic salmon (Salmo salar) Paper IV 

 

Low-field NMR and MRI have also been applied in the study of meat. Low-field NMR has been 

used for the determination of water holding capacity (Renou et al., 1985a, Tornberg et al., 1993; 

Brøndum et al., 2000; Brown et al., 2000,; Bertram et al., 2001a) and for the determination of fat 

content (Renou et al., 1985b; Pedersen et al., 2001). Furthermore, the technique was used for 

studying the conversion of muscle to meat (the rigor process) (Bertram et al., 2002a; b), cooking 

(Micklander et al., 2002; Bertram et al., 2004), and freezing/thawing (Yano et al., 2002). MR 

imaging has been applied to meat to estimate whole carcass composition (Mitchell et al., 1991; 

Scholz et al., 1995) and muscle/meat composition (Bonny et al., 2001; Ballerini et al., 2002). 

Furthermore, sodium MRI has been used in the study of meat curing (Foucat et al., 1995; Guiheneuf 

et al., 1995; Guiheneuf et al., 1996) and freezing/thawing (Guiheneuf et al., 1997; Hall et al., 1998; 

Kerr et al., 1998). 
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6 Main results and discussion 

The results of this thesis are enclosed in Part 2. In this chapter, a short summary of the obtained 

results is given. Furthermore, the relevance for fish research and industry is discussed. 

 
6.1 Non‐destructive water and fat determination 

Low-field NMR methods for rapid determination of water and fat have earlier been developed for 

different foodstuffs (Table 4). However, we wanted to build a calibration model for rapid 

determination of fat and water in Atlantic salmon muscle. Moreover, we wanted to investigate the 

applicability of the single sided NMR ProFiler (sometimes referred to as NMR mouse) for rapid 

determination of fat. Both methods proved to be rapid and accurate (Paper I). A similar approach 

developed at SINTEF (Veliyulin et al., 2006b) has been successfully implemented at-line with one 

of the largest Norwegian fish feed companies. For the fish processing industry, an on-line 

application would be preferable. However, there are still some practical concerns to be concidered 

before NMR technology can be integrated into a fish processing line (Hills, 1998; Ruan and Chen, 

2001). For instance, one needs custom made magnets tailored to the size of fish. Inherent low 

sensitivity of the NMR technique imposes certain problems on the speed of the NMR measurement 

(a Norwegian salmon processing plant typically slaughter 100 - 150 tons of fish a day, and the 

speed of measurements should at least be 1 fish/sec). Furthermore, other measuring techniques such 

as NIR are already implemented on-line in the salmon processing industry for fat measurements. 

However, on-line implementation of NMR in the fish processing industry might happen in the 

future. 

Proton MRI has been applied to many kinds of seafoods (Table 4) e.g. to investigate the 

distribution of fat and water in the tissue. In Paper II, MR images of water and fat separately was 

obtained based on a chemical shift selective (CHESS) imaging protocol. Quantification of fat and 

water in the images gave good correlation with values obtained by chemical analysis. Information 

about spatial fat and water distribution is important factors especially in the optimization of 

processing such as salting. 

 

6.2 T2 relaxation ‐ Tissue water dynamics 

The number of T2 populations reflecting tissue water is a topic of discussion. In fish and meat, two 

components, T21 and T22, with relaxation times of 35-50 ms and 100-250 ms, respectively, are often 

reported (Tornberg, 1993; Lambelet et al., 1995; Erikson et al., 2004). These two relaxation 
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components represent 80-95% and 5-15% of the relaxation, respectively (Tornberg, 1993). Other 

studies report three (Steen and Lambelet, 1997) or four components (Jensen et al., 2002). Studies on 

pork (Bertram et al., 2002b) have reported three peaks thought to reflect protein bound (T2b), 

intramyofibrillar (T21) and extramyofibrillar (T22) water, respectively. The work of this thesis does 

not aim at investigating the exact number of water populations, but rather to examine the changes in 

the main water populations in fish flesh, since this water is known to be determining for functional 

properties such as e.g. water holding capacity and drip loss of tissues. A summary of the obtained 

changes in T2 relaxation as affected by raw material quality and fish processing are shown in the 

following paragraphs. 

 

6.3 Spatial fat distribution and T2 relaxation 

Many T2 relaxation studies on fish have been performed on lean species such as Atlantic cod. 

However, when working with fatty tissues one must remember that both water and fat protons give 

rise to the NMR T2 relaxation signal. In the study of water dynamics of fatty tissues it is important 

to have a clear picture of the relaxation behaviour of fat. In Paper I and Paper II, two-dimensional 

diffusion weighted T2 relaxation experiments were performed. By use of this technique, we were 

able to separate fat and water into distinct populations. It was found that in Atlantic salmon tissue, 

both fat and parts of the tissue water is reflected by the T22 component. 

 

6.4 Tissue microstructure and T2 relaxation 

The relationship between tissue structure and T2 relaxation has mainly been studied on meat. It has 

been suggested that transverse relaxation reflects structural features of the material, as the relaxation 

rate will depend on the probability of a water molecule to meet a surface and thereby also the 

anatomical features (Lillford et al., 1980). Later on, Bertram et al. (2002b), who studied pork 

muscle, found correlations between the T21 relaxation time and the sarcomere length. Studies 

investigating the relationship between fish tissue microstructure and the T2 relaxation have not been 

reported earlier. In Paper IV different Atlantic salmon tissue microstructures were designed by 

controlling the rigor status of the samples (pre and post), by freezing/thawing and by brine salting. 

The study revealed that T2 relaxation is linked to changes in tissue microstructure as affected by 

rigor status, freeze-thawing and salt-induced swelling. An example of how the differences in 

microstructure can be observed by T2 relaxation is seen in Figure 14. A shift towards longer T21 

relaxation times and larger T21 populations (Paper IV) were coupled to the salt-induced swelling of 

myofibers in frozen/thawed salmon tissue. 
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Figure 14: Light micrographs of salmon muscle tissue frozen/thawed (left) and frozen/thawed salted (right) and 

corresponding continuous distributed T2 relaxation times of the same two samples. 

 

In paper IV pronounced changes in T2 relaxation characteristics were seen between pre- and post-

rigor salmon. Lower relaxation times were observed for pre-rigor muscle indicating lower tissue 

water mobility. These observations were linked to striking differences in microstructure. The pre-

rigor muscle displayed a dense architecture, and it was hard to discriminate the myofibers from each 

other, whereas the post-rigor muscle showed a less dense structure, and the myofibers were 

separated by a well-noticeable endomysium. T2 relaxation proved to be a useful tool for 

investigation of post mortem events such as rigor mortis. 

 

6.5 Raw material quality, 23Na MRI and T2 relaxation 

As described in Chapter 3.4, factors like ionic strength and pH influence the microstructure and 

water binding of muscle (Offer and Knight, 1988; Offer and Trinick, 1983). This is especially 

reflected by salt-induced swelling of myofibers or by a change in pH. The amount of the muscle 

swelling depends on the salt concentration. At low salt concentrations above 0.1 M (physiological 

ionic strength) the muscle swells. Maximum swelling and maximum water holding capacity occur 

around 1 M (≈5.8% salt). Several authors have studied these changes by use of physico-chemical 

methods (Fennema, 1990; Offer and Trinick, 1983; Sigurgisladottir et al., 2000; Thorarinsdottir et 

al., 2002; 2004). Low-field NMR was applied to study salted pork meat (Wu et al., 2006; Andersen 

et al., 2007). However, the knowledge of T2 relaxation dynamics during salting of meat is very 

limited at present, and even less research has been done on fish. A recent investigation showed that 

major changes in T2 relaxation characteristics took place during salting of fatty (Atlantic salmon) 

and lean (Atlantic cod) fish in 15 and 25% NaCl (Paper V). An evident difference in water mobility 

shifts was observed between the two brine concentrations and species. Figure 15 gives a summary 

of the changes in T2 relaxation during salting. 

100 μm 
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Figure 15: (a) Low-field NMR T2 relaxation curve measured by CPMG pulse sequence; (b) PCA score plot of T2 

relaxation raw data obtained from salmon (S) and cod (C) fillets salted in 15 and 25% (w/w) brines (S15, C15, S25 and 

C25, respectively) for 14 days; samples were taken along the salting period (Aursand, M. et al., 2009, data from Paper 

V). 

 

A clear tendency towards longer relaxation times was seen in 15% brine salted fillets, whereas a 

shift towards shorter relaxation times was seen in 25% brines. The most pronounced changes were 

seen in 15% brines, and changes tended to be faster in cod than in salmon. It was suggested that the 

“salting in” and “salting out” mechanisms for 15% brines and saturated brines, respectively, was 

reflected in the T2 data. The knowledge of the biophysical effect of salting is limited at present, and 

this study must be considered as useful in the progress of obtaining a better understanding water 

dynamics and structural effects of salting. In the same study good linear correlations between 

physico-chemical analyses (WHC, centrifugation loss, water activity and salt content) and the T2 

relaxation data was obtained, and it was suggested that low-field NMR might be a useful 

supplement to the physico-chemical methods for analysis of product quality. 

The progression of salt uptake is important because an even salt distribution is preferable as regards 

sensorial attributes, safety and water binding. A few 23Na MRI studies have been performed on the 

salting of fish (Gallart-Jornet et al., 2007b, Foucat et al., 2006). Erikson et al. (2004) studied the 

salting and dehydration of Atlantic cod by use of 23Na MR imaging and low-field NMR T2 

relaxation. However, the coupling of 1H and 23Na MRI with T2 relaxation to study salting of fish is 

not common. In paper IV, pre-rigor, post-rigor and frozen/thawed fish constituted a model system 

in the investigation of water distribution and salt uptake and distribution affected by raw material 

quality. It was found that both post mortem status and freeze-thawing had a pronounced effect on 

salt distribution. These observations were coupled to differences in T2 relaxation properties, hence, 

in general, shorter relaxation times and smaller T21 populations in unsalted raw material were linked 

to a lower salt uptake and sodium being more poorly distributed in the tissue. In Paper III 
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anaesthetized and exhausted fish were used as a model system to investigate the coupled effect of 

raw material quality on salt uptake and T2 relaxation characteristics. An evident relationship 

between preslaugher conditions, salt uptake and tissue T2 relaxation was obtained. As can be seen in 

Figure 16, clear differences in the T21 relaxation component was seen in the unsalted raw materials. 

Preslaugher stress clearly lead to a broader distribution of the T21 relaxation time constant and a 

shift towards longer relaxation times. These characteristics were coupled to a higher salt uptake and 

a more even distribution of NaCl within the muscle tissue. The results indicate that a combination 

of these two NMR techniques is a promising working method for obtaining further insight into the 

microstructure and water distribution of fish tissue and its effect on the salting process. 
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Figure 16: Distribution of T2 relaxation times of white muscle tissue of anaesthetized (black curves) and exhausted (red 

curves) Atlantic salmon and the corresponding 23Na MR images of the same fillets after brine salting, anaesthetized and 

exhausted to the left and right respectively (data from Paper III). 

 

6.6 Freezing/thawing, heating and T2 relaxation 

Earlier T2 relaxation studies on fish have been performed on lean cod muscle (Lambelet et al., 1995; 

Jensen et al 2002) and mince (Steen and Lambelet, 1997). Lambelet (1995) and Steen and Lambelet 

(1997) reported changes in water distribution during frozen-storage, whereas Jensen et al (2002) did 

not observe any changes due to freezing or chilled storage. In Paper II, a 2D diffusion weighted T2 

relaxation study was performed to compare the water distributions in fatty salmon muscle. A 

pronounced redistribution of water, reflected in the T2 data as a decrease in T21 population, was seen 

as an effect of freezing/thawing. In paper IV, the same changes were observed, and they were 

linked to changes in the microstructure due to freeze-damage (Bello, 1982; Böcker, 2008).  

 

Heating influences muscle foods with respect to its functional properties and its microstructure. A 

T2 relaxation study of Atlantic salmon white and red muscle (Paper I) revealed pronounced changes 
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in water distribution at different temperatures from 4˚C to 55˚C. The changes in water mobility 

were suggested linked to structural alterations and denaturation of proteins as an effect of heating. 

Low-field NMR provided information about several features occurring as a result of heating. 

However, further studies needs to be done to fully understand the dynamics of water during heating 

of fish muscle. 

 

6.7 Spatial fat and sodium distribution – 1H and 23Na MRI 

Combined 1H and 23Na imaging of brine salted Atlantic salmon (Paper III and IV) revealed that the 

uptake and distribution of salt in the tissue was highly dependent on the spatial fat distribution. 

Subcutaneous fat acted as a barrier for the salt to diffuse into the tissue and salt uptake increases 

with decreasing fat content backwards the fillet. These findings are in agreement with earlier studies 

of brine salted Atlantic salmon (Foucat et al., 2006; Gallart-Jornet et al., 2007) and cod (Gallart-

Jornet et al., 2007). Furthermore, MR imaging revealed that less sodium was distributed in the fatty 

areas located along the connective tissue (myocommata) (Paper III). 

Today, one of the discussions concerning 23Na MRI is the sodium visibility. In the work of this 

thesis a spin-echo based 23Na MR imaging was applied. This technique is not fully quantitative, due 

to the partial MRI sodium invisibility (Springer, 1987; Bonny et al., 2001). However, the sodium 

MRI visibility is found to increase approximately linearly with water content in salmon and cod 

(Veliyulin and Aursand, 2009), and a negative correlation between the visibility and the protein 

content in minced meat was found (Veliyulin et al., 2009). Furthermore, the sodium visibility 

decreases with increasing tissue salt content (Veliyulin and Aursand, 2009; Veliyulin et al., 2009). 

In the studies of this thesis, MRI was applied on fillets with salt contents in the lower range (1-3 % 

NaCl). Furthermore, the technique was used for comparison of salt distribution between raw 

materials. It is therefore our opinion that the effect of sodium invisibility did not influence our 

conclusions. 
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7 Conclusions and future prospects 

This thesis hopefully demonstrates that low-field NMR and MR imaging are methods of high 

potential as tools in the research of raw material quality, and fish processing. The techniques do not 

have a long history in the research of fish quality, and their applications are far from fully exploited. 

Despite that, low-field NMR and MR imaging has shown to give useful information about 

composition and raw material quality at different fish processing steps. 

Regarding T2 relaxation, this thesis has shown that the method can contribute to a further 

understanding of water dynamics in fish tissue. It is shown that T2 relaxation components correlate 

well with traditional water analyses such as water holding capacity, centrifugation loss and water 

activity (Paper V). Furthermore, it has been established that the method is sensitive to fish species 

(Paper V), preslaughter stress (Paper III), rigor status (Paper IV), freezing/thawing (Paper II and 

IV), heating (Paper I) as well as brine salting with different NaCl concentrations and salting times 

(Paper III, IV and V). The tissue T2 relaxation characteristics have been linked to microstructure, 

salt distribution and salt uptake. It has been suggested that entrapped and free water, and fat when 

present, give rise to the main relaxation components in fish muscle tissue. Further research needs to 

be conducted to understand the nature of the relaxation components. However, some day a full 

understanding of water interactions in muscle tissue may be obtained, and this will undoubtedly 

open many new doors in the research of water distribution and tissue structure. 

Combined 1H and 23Na imaging of brine salted Atlantic salmon revealed that the uptake and 

distribution of salt in the tissue was highly dependent on the spatial fat distribution. Furthermore, an 

evident link was observed between T2 relaxation characteristics and sodium distribution of salmon 

flesh. The combination of T2 relaxaometry with MR imaging was proven to be a promising working 

method for obtaining further insight into the microstructure and water distribution of fish tissue and 

its effect on the salting process. 

In this work, salting experiments were set up as simulation of industrial processes. By choosing this 

approach, results regarding i.e. salt uptake as a function of raw material quality can easier be 

transferred to the processing industry. However, it excludes the possibility to control the pH of the 

flesh during processing. Addition of salt is known to influence the muscle pH, and as earlier 

discussed, pH influences microstructure. To gain further knowledge on the link between 

microstructure and relaxation characteristics in fish tissue during salting, addition of buffers to 

adjust pH should be considered. 
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In the recent years, new 23Na MRI techniques have been developed to overcome the problem of 

sodium invisibility. Using single-point ramped imaging with T1 enhancement (SPRITE) MRI 

Romanzetti et al. (2006) were able to obtain 23Na spin density maps of human brain. Later, the 

technique has been applied with success to salmon and cod (Veliyulin et al., 2007) as well as meat 

minces (Veliyulin et al., 2009). The technique makes it possible to study the bound fraction of 

sodium, and this issue should undoubtedly be considered for further work. 
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 1 INTRODUCTION 
 
Development of non-destructive methods for studying the interactions of water and fat 
with the structure changes occurring during fish processing may provide the insight 
necessary to improve the quality of such products.   
 Various modalities of Nuclear Magnetic Resonance (NMR) offer several non-
destructive applications that can provide with versatile information about the structure of 
various biological systems. Low field (LF) NMR has mainly been used for relaxation time 
studies and quantification of various components such as water and fat in foods. The 
microscopic structure of biological systems consists of a network of macromolecules that 
interact with water protons. Also, water is physically localized in various compartments in 
the tissues. 1H NMR relaxation spectra of such systems may be complicated as the NMR 
responses from different 1H pools are usually observed simultaneously and it is not always 
possible to separate relaxation contributions originating from different pools or different 
substances (for example fat and water). Interpretation of the NMR relaxation spectra is still 
a matter of discussion due to the complexity biological systems. For instance, in pork the 
simple intra-/extracellular compartmentalization theory suggested earlier1 could not 
satisfactory explain all features of the multiexponential transverse relaxation. Three 
commonly observed relaxation components are attributed to the water tightly associated 
with macromolecules (the fastest relaxation component at 1–10 ms), water located within 
highly organized protein structures (the intermediate component at 40-60 ms), and water 
between fiber bundles (the slowest component at 150-400 ms)2. In fatty fish  such as  
Atlantic salmon, the interpretation of relaxation spectra is complicated by the fact that the 
fat relaxation components interfere with those of water3.  
 Magnetic Resonance Imaging (MRI) is a technique that offers a unique opportunity to 
produce cross-section images of intact whole fish. Depending on the particular task, MRI 
instruments can produce different types of visible contrast in the MR images. This is 
achieved by programming and running specific MR sequences that can differentiate the 
NMR response of the protons localized in molecules with different mobility or chemical 
environment. For example, it is possible to obtain MR images of 'water' and 'fat'4, 
'diffusion weighted' images where only molecules with low mobility are visible5 or high 
resolution images of connective tissue6. A newly developed method based on double-
quantum filtered MRI detects only molecules associated with ordered tissue structures, 



suppressing the signal from isotropic fluids7. MRI is also a powerful technique to visualize 
and monitor various dynamic processes, allowing to dynamically follow processes non-
destructively and with high spatial resolution. For instance combined with NMR 
spectroscopy MRI can be a valuable tool for studies of fresh and frozen fish8.  
 The goal of the present study was to separate fat and water in fatty fish by: (1) 
showing the advantages of the 2D diffusion weighted T2 relaxation method compared with 
the conventional 1D relaxation method, and (2) to develop MRI protocols to produce 
separate, quantitative 'fat' and 'water' images.  
 
 
 2 EXPERIMENTAL 
 
2.1 LF NMR: Diffusion weighted transversal relaxation time studies 
 
A farmed Atlantic salmon (Salmo salar) fillet was bought at the local fish market three 
days post mortem. Three parallel samples of the white muscle close to the belly flap area 
were stamped out of the fillet using a specially designed coring tool. Then the samples 
were transferred to NMR tubes (10 mm in diameter). The tube filling height was about 1 
cm and the approximate sample weight was 0.4 g. After the LF NMR measurements, the 
NMR tubes containing samples were frozen at –25 °C (24 h) and thawed at 5 °C before 
repeating the measurements at 10 and 25 °C. 
 The LF measurements were performed using the minispec mq NMR analyzer (Bruker 
Optik GmbH, Germany) with a magnetic field strength of 0.47 Tesla corresponding to a 
proton resonance frequency of 20 MHz. The instrument is equipped with gradient coils 
producing magnetic field gradients of up to 3.2 Tesla/m. A water bath (Haake UWK 45, 
Germany) was connected to the probehead to make measurements at 10 or 25 oC regulating 
the sample temperature with an accuracy of 0.1°C. Before measurements, all samples were 
thermostated to 10 or 25 oC for 1 hour in a separate water bath (Julabo F10, Germany). 
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Figure 1 The PGSE-CPMG pulse sequence for 2D diffusion vs. transversal relaxation 

time studies 
 



To obtain a two-dimensional data set of diffusion weighted transversal relaxation curves, a 
modification of the well-known Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was 
used. A pulsed field gradient spin echo sequence (PGSE) was combined with a train of 
180° refocusing pulses (Figure 1). The amplitude of the PGSE gradients was incremented 
in steps (0.16 Tesla/m) from 0 to about 3.2 Tesla/m, increasingly suppressing the 
contribution of the most mobile components to the resulting echo. Corresponding 
relaxation curves were acquired at each gradient step. The following acquisition 
parameters were used: echo-time (TE) of the PGSE part of the sequence was set to 20 ms, 
duration of the gradient pulses was 1 ms, TE of the CPMG train was 0.2 ms, relaxation 
delay (RD) was 2 s and 4000 even echoes were acquired in 8 scans. Thus, a 2D data set 
with 4000 rows (dimension of relaxation) and 21 columns (dimension of diffusion) was 
obtained for each sample. In addition, conventional CPMG relaxation curves were 
measured for all samples with the same acquisition parameters as the CPMG echo train in 
the 2D experiment. 
 The 2D data were processed by the newly developed 2-D Inverse Laplace Transform9, 
using software package10 implemented in MatLab (The MathWorks, Inc., USA). The same 
software was used for processing of the 1D relaxation curves. 
 
2.2  MRI: Quantification of  white muscle fat and water  

 
The MRI studies were performed using a Bruker Avance DBX100 instrument (Bruker 
BioSpin, Germany). The instrument has a horizontal wide bore opening suitable for 
imaging of comparatively large objects (1H imaging area - sizes up to 15 cm in diameter 
and 15 cm in length).  

The chemical shift selective (CHESS) imaging protocol makes use of the fact that 
the protons in fat and water molecules have slightly different NMR resonance frequency. 
Hence they have different chemical shifts. When using the technique, a special frequency 
selective RF pulse with a predefined bandwidth is applied to excite either the fat or the 
water component only. This makes it possible to achieve an acceptable degree of 
separation. Thus, separation of fat and water in MR images can be achieved. 

A piece of frozen-thawed Atlantic salmon white muscle (approximately 3 × 3 × 4 
cm) was placed in the iso-center of the magnet. In addition, two reference samples 
containing 100 % fish oil and 100% distilled water were placed within the imaged area. 
The water reference was doped with 0.0001 m/l MnCl2 to shorten the proton relaxation 
time to T2 = 260 ms. Three types of MRI images were acquired: 'a proton density' image, 'a 
fat image'  and 'a water image'. The following acquisition parameters were used: RD = 2 s, 
number of excitations (NEX) = 40, field of view (FOV) = 5 x 5 cm and TE = 16.2 ms (fat 
images) and 26.4 ms (water images). Images of 20 slices with a slice thickness of 1.5 mm 
were acquired. For fat excitation, a selective sinc-shaped pulse with a bandwidth (BW) of 
700Hz was centered (CF) -600 Hz away from the water frequency to avoid signal 
contribution from water. For water signal excitation, a similar sinc pulse with a bandwidth 
of 480 Hz was centered +200Hz away from the water resonance frequency to avoid signal 
contribution from the fat (Figure 2). The ‘proton density’ image was acquired using a 
Multi-Spin Multi-Echo (MSME) protocol with TE = 4.1 ms, TR = 2 s and NEX = 4.  
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Figure 2 Selective water (CF = +200 Hz, BW =480 Hz) and fat (CF = -600 Hz, BW = 

700 Hz) excitation in the CHESS MRI protocols 
 
 
The obtained ‘fat’ and ‘water’ images were quantified with an in-house made MRI 
software package using the Interactive Data Language (Research Systems Inc., UK). Prior 
to calculation, the original images were scaled in the intensity range from 0 to 255. A 
histogram of all pixel intensities from the ‘water’ image is shown in Figure 3a. In this 
histogram the first peak (approximate intensity range 0 – 43) represents the noise in the 
image, the second peak (intensity range 43 – 150) originates from the salmon sample and 
the third one (intensity range 150 – 255) originates from the water reference. In order to 
quantify the water content, the ‘noise’ peak was first filtered out using the minimum 
between the ‘noise’ and the ‘water’ peaks (see Figure 3a) as a cut-off value. After that, the 
average intensity of the reference oil sample was set to 100 and the rest of the image pixel 
intensities were rescaled accordingly, resulting in a histogram as shown in Figure 3b. 
When calculating the mean intensity for all sample pixels of the modified image, the water 
content in the corresponding MRI slice could be determined. By averaging the water 
content of all slices (covering practically the whole sample), the mean water content of the 
whole sample was determined. Since the T2 relaxation time of the sample (≈ 44 ms) was 
different from that of the water reference (260 ms), the calculated intensities had to be 
corrected correspondingly. An identical algorithm was used to determine the sample fat 
content. The programmed automated calculation routines could calculate fat and water 
contents in all image slices in about 20 s. After the MRI experiment, the salmon sample 
was divided in two equal parts, one for fat content determination by chemical  extraction11, 
while the other part was used for total water content determination by weight change after 
drying at 105 °C for 24 h. 
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Figure 3 a) Pixel intensity histogram as acquired from the original ‘water’ image;  
  b) Same histogram after noise filtering and rescaling 
 
 
 
 3 RESULTS AND DISCUSSION 
 
3.1 Diffusion weighted transversal relaxation time studies 
 
Figure 4 shows diffusion vs. T2 relaxation time distribution maps for  fresh (10°C) and 
frozen-thawed  muscle at 10 or 25 °C, respectively. The corresponding 1D T2 distributions 
are the shown above the maps. From the 2D distribution maps the relaxation times and 
corresponding diffusion constants for the observed peaks could be roughly estimated. A 
water peak (T2 ≈ 44 ms, D ≈ 1.0×10-9 m2/s ) and a fat peak (T2 ≈ 100 ms, D ≈ 2.7×10-11 
m2/s) were observed in the fresh sample at 10°C. No clear changes was observed between 
fresh and frozen-thawed tissues when measured at 10°C. An advantage of the 2D 
distribution map approach compared with the conventional 1D is seen by inspecting the 
longer relaxation peak (T2 ≈ 140 ms) from the frozen-thawed sample measured at 25 °C. 
While the respective water and fat peaks completely overlap on the 1D distribution, the 2D 
map clearly shows the presence of the two phases at this relaxation time. At relaxation 
times about 140 ms, the diffusion constants at 25°C were 2.0×10-9 (water) and 2.6×10-10 
m2/s (fat), respectively. The water component with the longer relaxation time corresponds 
to that observed in cod12,13 and pork muscle2,14, which is thought to represent extra-
myofibrillar water. After increasing the temperature from 10 to 25 °C a shift towards 
slightly shorter relaxation time and higher diffusion constant was observed for the major 
water component (T2 ≈ 37 ms, D ≈ 2.0×10-9 m2/s). In a marine coldwater species such as 
Atlantic salmon, the tissues contain polyunsaturated fatty acids. This fraction of the total 
fat content is mobile even at very low temperatures. Therefore, more research is needed to 
elucidate the "NMR-behavior" of this fat as seen in relation to changes in the 
extramyofibrillar water pool. 
 The technique may be improved in order to further minimize the effect of Eddy-
currents on the observed CPMG echo train. This would allow running the PGSE pulse 
sequence at substantially shorter echo times making it possible to obtain information about 



the fast relaxing components such as water bound to macromolecules and immobile fat. 
Further development of the data processing software would allow separate quantification 
of various water pools and lipids by 2D integration of the corresponding peaks. The 
method can be valuable for investigation of several types of complex food systems, 
detecting the presence of different water and fat phases in the sample. Furthermore, 2D 
diffusion weighted relaxation experiments performed under different food processing 
conditions (temperature, pressure, humidity, salt content etc.) may be useful to provide a 
better understanding of the system. In turn, this information can be used to optimize 
various food unit operations.  
 

10 100

T2, ms
10 100

T2, ms
10 100

T2, ms

Fresh 10°C                    Frozen-thawed 10°C            Frozen-thawed 25°C 

Extramyofibrilar
water + fat

 
 
Figure 4 Diffusion vs. T2 relaxation time distribution maps (image resolution: 15 × 15 

pixels) for fresh (10°C) and frozen-thawed (10 and 25°C, respectively) Atlantic 
salmon muscle. Corresponding 1D T2 distributions are shown at  the top of 
each map. 

 
 
3.2 Quantification of fat and water by MRI 
 
Figure 5 shows three types of MRI images acquired in the experiment: 'proton density' 
image (a), 'fat image' (b) and 'water image' (c). In the 'proton density' image both fat and 
water components exhibited their maximal intensity. The doped water reference was 
almost invisible on the 'fat image' - and vice versa - the fat reference was almost invisible 
on the 'water image' proving a high degree of separation of fat and water. Satisfactory 
suppression of either the fat or water spectral component could only be achieved in a 
region with a highly homogeneous magnetic field and RF pulses. Therefore, the MRI 
instrument had to be carefully shimmed prior to image acquisition. An even better 
separation between fat and water could be expected when using an NMR instrument with a 
higher magnetic field due to the increased spectral separation in the frequency domain 
between fat and water. 



 The water and fat contents were calculated from the respective MRI images. The 
average of all slices in case of water and fat were 57 ± 3 % and 19 ± 2 %, respectively. The 
corresponding values obtained from chemical extraction-based analyses of the same 
sample were 59 % and 21 %, i.e. within the estimated error of the MRI method. Slightly 
lower MRI values of both fat and water may be explained by partial suppression of the 
signal from the observed component and by the roughness of the cut-off algorithm for 
noise filtering. A possible improvement of the noise filtering method should include 
extrapolation of the left shoulder of the main peak (see the histogram in Fig.3b) by fitting it 
with an appropriate model function.  
 

    
           (a)                                            (b)                                             (c) 
 
Figure 5 Three types of MR images: a) 'proton density' image, b) 'fat image' , and c) 

'water image'. Two NMR tubes filled with  MnCl2-doped distilled water (upper 
right) and 100% fish oil (upper left) were used as references  

 
 
 
 4 CONCLUSIONS 

 
Compared with conventional 1D relaxation studies, a 2D diffusion weighted relaxation 
experiment can provide with additional information regarding the presence and mobility of 
different compounds in biological tissues. At 10oC, we did not observe significant 
differences in the 2 D diffusion-relaxation map when fresh and frozen-thawed Atlantic 
salmon muscle was compared. Subsequent heating to 25 ºC revealed an additional water 
component with approximately the same relaxation time as the fat component.   
 A Chemical Shift Selective MRI protocol (CHESS) was successfully applied to 
produce separate water and fat images of an Atlantic salmon white muscle. The images 
were quantified using a simple intensity histogram-based approach. However, more 
advanced MRI protocols should be evaluated for possible reduction of the magnetic field  
and RF pulse inhomogeneity effects. 
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Abstract 

A low-field (LF) 1H NMR T2 relaxation and 23Na/1H MRI study was performed on Atlantic 

salmon to study the effect of ante-mortem handling stress and rigor mortis on muscle water 

properties and subsequent postrigor salting. Compared to rested fish, exhausted fish 

exhibited a more rapid and stronger development of rigor mortis. This resulted in 

significant differences in postrigor water holding capacity and salt uptake. By LF NMR T2 

relaxation analysis significant differences in water distribution according to (1) antemortem 

handling, (2) fillet location, and (3) brine salting were detected. Furthermore, 23Na MRI 

revealed differences between the two treatments in fillet salt distribution, where the salt 

penetration in exhausted fillets was more pronounced. By combining 1H and 23Na MR 

images, the salt diffusion and distribution seemed to be highly affected by the distribution 

of fat. 

 

Key words: low field NMR, T2 relaxation, 1H MRI, 23Na MRI, Atlantic salmon, handling 

stress, water mobility, brine salting, salt distribution 
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1. Introduction 

Present routines for the harvesting of Atlantic salmon (Salmo salar) commonly induce 

handling stress (excessive muscle activity) which in turn will shorten the time to onset of 

rigor mortis (Erikson, 2001; 2008). In exhausted salmon, rigor onset typically occurs after 2 

to 4 h post mortem. If antemortem stress is avoided altogether, rigor onset is delayed for 

another 20 to 25 h (Erikson, 2001). Stressed fish also develop stronger rigor mortis 

(Nakayama, Da-Jia & Ooi, 1992) which in turn may also affect quality attributes such as 

fillet texture (Sigholt, Erikson, Rustad, Johansen, Nordtvedt & Seland, 1997). Due to the 

rigor contractions, the shape prerigor filleted fillets is different from the postrigor filleted 

ones, and the irreversible shrinkage in length for anaesthetized and exhausted fillets is 10 % 

and 7 %, respectively (Misimi, Erikson, Digre, Skavhaug & Mathiassen, 2008). 

 

Water is the major constituent of muscle foods, and the interactions between water and 

macromolecules determine the water holding properties (Offer & Knight, 1988). The 

muscle water properties are therefore seen as important quality aspects of muscle food, and 

the distribution of water in the muscle 3D network is believed to be affected by the physical 

and biochemical changes in the muscle which occur during for example rigor mortis and 

subsequent processing such as salting. 

 

Addition of small amounts of NaCl are known to induce swelling of meat (Offer & Trinick, 

1983; Offer et al., 1988) and fish muscle (Böcker, Kohler, Aursand & Ofstad, 2008), which 

is accompanied by changes in muscle water properties such as an increased water holding 

capacity. The salting process is known to be influenced by raw material characteristics, 
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such as whether the fish are salted in the pre or postrigor state (Böcker et al, 2008; Aursand, 

Veliyulin, Böcker, Rustad, & Erikson, 2009), fat and water contents (Gallart-Jornet, Barat, 

Rustad, Erikson, Escriche & Fito, 2007), and frozen storage (Böcker et al, 2008; Aursand et 

al, 2009). 

 

Magnetic resonance imaging (MRI) is a powerful imaging modality that can produce high-

quality cross-section images of biological systems. Thus, the method can be used for 

studying chemical and physical properties, anatomical structure, and dynamic processes in 

foods (Hills, 1998). Many types of contrasts can be produced by the MRI technique using 

specific MR pulse sequences. This allows differentiation of protons in molecules of 

different mobility or chemical environment. For example, one can obtain MR images of 

‘water’ and ‘fat’ (Tingle, Pope, Baumgartner & Sarafis, 1995), or high-resolution images of 

connective tissue (Bonny, Laurent & Renou, 2001). For fish, MRI is a promising technique 

that can give a better understanding of in situ changes during different processing steps 

such as freezing, thawing, salting, drying and rehydration. MRI gives a high spatial 

resolution that allows characterisation of tissue morphology by 1H-MRI. MRI can therefore 

be useful for the determination of food composition. 23Na MR imaging have been used to 

follow brine diffusion in cured meat (Renou, Benderbous, Bielicki, Foucat, Donnat, 1994) 

and in salted cod (Erikson, Veliyulin, Singstad & Aursand, 2004). Earlier 23Na MRI studies 

on salted lean cod and fatty salmon fillets (skin on) revealed that salt diffusion took place 

only from the flesh side of the salmon fillets, whereas the cod fillets were salted from both 

sides suggesting that subcutaneous fat in salmon served as a diffusion barrier (Gallart-

Jornet et al, 2007). By the same token, Foucat, Ofstad and Renou (2006) showed by using 
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23Na MRI that varying fat content along the salmon fillet influenced salt uptake where the 

anterior part of the fillet gained more salt than the leaner, posterior part. 

 

In recent years, the non-invasive low-field (LF) 1H NMR transversal relaxation (T2) 

technique has been used to study water properties in fresh (Jepsen, Pedersen & Engelsen, 

1999; Andersen & Rinnan, 2002) frozen/thawed, chilled and processed fish muscle and 

mince (Jensen, Guldager & Jørgensen, 2002; Løje, Green Petersen, Nielsen, Jørgensen & 

Jensen, 2007). Nevertheless, few LF NMR studies have been performed on salting of fish 

(Erikson et al., 2004; Aursand, Gallart-Jornet, Erikson, Axelson & Rustad, 2008; Aursand 

et al, 2009), and as far as we know, no previous LF NMR studies have investigated fillet 

water properties as effected by antemortem handling and rigor mortis. 

 

The aim of the present study was to apply non-destructive NMR techniques to improve the 

understanding as to how ante-mortem handling stress might affect postrigor muscle water 

properties and salt uptake. 
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2. Materials and methods 

2.1 Fish 

Farmed Atlantic salmon (mean weight 4.7 kg, n = 44) fasted for 22 d were netted from the 

seacage and transported live to our laboratories. At arrival, the fish were transferred in 

seawater filled 1000-L tubs to 2 holding tanks (4000 L) where the fish, equally distributed 

among the tanks, were kept for 6 d without feeding. Before slaughter (Day 0), the fish in 

one of the tanks were anaesthetized. The water supply was stopped and oxygen gas was 

added. A predefined amount of AQUI-STM (AQUI-S Ltd., Lower Hutt, New Zealand) was 

added to give a final concentration of 17 μg L-1. After 16 min, all fish were judged as being 

fully anaesthetized since they were lying motionless at the bottom of the tank and they did 

not exhibit regular opercular movements. No vigorous muscle activity took place during the 

treatment. In the other tank, the fish were chased to exhaustion (30 min). For more details 

concerning of sampling of fish from the fish farm, transport and keeping the fish at our 

facilities refer to Erikson, Misimi & Fismen (in press). 

 

Three fish from each treatment were randomly selected and killed by using an iki jime tool 

(AQUI-S, New Zealand), gutted, cleaned (the fish were not bled) and tagged. The white 

muscle pH, muscle twitches, body temperature, body weight, and fork length were 

measured. The pooled round weight, length, body temperature, and fillet weight were 4.95 

± 0.13 kg, 77 ± 2 cm, 9.8 ± 0.4 ˚C and 1.50 ± 0.09 kg (mean ± SD, n = 6), respectively. 

After the assessments, the fish were put on ice in styrofoam boxes for evaluation of rigor 

mortis. The fish were filleted post-rigor (Day 3) and briefly washed under running tap 
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water before they were weighed. Samples for different analyses were taken from the 

anterior (A), mid (B) and posterior (C) parts of the left fillets as shown in Figure 1. 

 

2.2 Muscle twitches  

Early postmortem muscle contractions were determined using a Twitch Tester Quality 

Assessment Tool (AQUI-S Ltd, New Zealand). The instrument measures the electrical 

excitability of muscle tissues. An electrical pulse was generated (9V DC) by the instrument 

every 0.6 s. One or a few (< 4) measurements were performed on 1 side of each fish. For 

each measurement, the electrodes were in contact with the fish for about 1 s. The following 

scale was devised: 

3 - Strong tail twitch (electrodes placed along the entire sideline behind the head and near 

the caudal fin) 

2 - Weak tail twitch (electrodes placed as above) 

1 - Minor muscle contractions in (small) restricted areas of the fish surface (electrodes 

placed a few cm apart) 

0 - No contractions whatsoever 

 

2.3 Muscle pH 

The pH was measured directly in white epaxial muscle between the sideline and the dorsal 

fin immediately after killing and after 72 h post-mortem (just before salting). A shielded 

glass electrode (WTW SenTix 41) connected to a portable pH meter (model WTW 315i; 

WTW, Weilheim, Germany). 
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2.4 Body temperature 

The fish body temperature was measured immediately after killing in the epaxial muscle 

using a Testo 110 thermometer (Testo AG, Lenzkirch, Germany). 

 

2.5 Rigor mortis 

The development of rigor mortis of gutted fish on ice was carried out using the Rigor Status 

method with a scale as follows:  0 = pre- or postrigor; 1 = rigor onset (first sign of stiffness, 

for instance in neck or tail region); 2 = rigor (a larger area is clearly in rigor); 3 = whole 

fish in rigor; 4 = stronger rigor; [5 = very strong rigor (the fish is extremely stiff, rod-like)] 

(Erikson, 2001). We wanted to reproduce the extremes of rigor developments, typical of 

anaesthetized and exhausted fish (Erikson 2001; Misimi et al, 2008). These stress levels are 

known to produce large differences in myofibrillar tensions during rigor (Nakayama et al. 

1992). Our goal was to study whether muscle structure (shrinkage during rigor) would 

affect salt uptake in salmon fillets (first step in the production of smoked salmon). 

 

2.6 Salting 

After postrigor filleting, right fillets (skin on) were immediately immersed in a brine 

solution of 7.4 % NaCl (w/w) (80 g L-1) at a ratio 1:10 (fish:brine) in closed plastic tanks 

and kept there for 72 h at 4 ± 1 °C. The brine consisted of ordinary commercial refined salt 

(Jozo salt, Akzo Nobel Salt, Göteborg, Sweden) and distilled water. 

 



 9

2.7 Water content 

The water content before (72 h post mortem) and after salting was calculated after drying 

duplicates of approximately 2 g of muscle at 105˚C for 24 h. The weight difference of the 

homogenates before and after drying was considered equal to the total water content of the 

sample. Samples were taken as shown in Figure 1. 

 

2.8 Water holding capacity 

The water holding capacity (WHC) and centrifugation loss were determined on minced 

muscle by low-speed centrifugation as described by Eide, Børresen and Strøm (1982) with 

a centrifugation force of 210 g. The WHC is expressed as the percentage of water retained 

in the mince after centrifugation for 5 min. The analyses were run in quadruplicate, and the 

calculated mean is reported here. The centrifugation loss was calculated from the same 

analyses, and is expressed as the difference in weight before and after centrifugation, i.e. 

total weight loss. Samples were taken as shown in Figure 1. 

 

2.9 Salt content 

The NaCl content of the salted fillets was determined using the Volhard method (AOAC, 

1990), 2-5 g was weighed accurately into a conical flask, and distilled water (200 mL) was 

added before the flask was placed in an electric shaker for 45 min. The supernatant (20 mL) 

was pipetted into Erlenmeyer flasks, and the chloride ions precipitated by adding AgNO3 

(0.1 M; 5 to 10 mL). The AgNO3 excess was backtitrated with a NH4SCN (0.1 M) solution. 
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A ferric indicator (FeNH4(SO4)2) × 12 H2O in diluted HNO3) was added for the 

determination of the endpoint. Samples were taken as shown in Figure 1. 

 

2.10  1H and 23Na magnetic resonance imaging 

After salting, 1H and 23Na MRI measurements were done after salting of anaesthetized and 

exhausted fillet pieces (Figure 1). Within 3 h after salting the fillet pieces were scanned 

together with three reference solutions containing 2, 4 and 6 % NaCl w/w. The MRI 

analyses were carried out at 15°C using a Bruker Avance AV300 multinuclear spectrometer 

(Bruker Biospin GmbH, Rheinstetten, Germany) with a magnetic field strength of 7 Tesla 

(300 MHz resonance frequency for 1H). The imaging was performed using a 72 mm double 

tuned probe 1H/23Na and a multi-slice-multi-echo (MSME) imaging protocol. The 1H 

imaging parameters were the following; echo time = 10 ms, field of view = 6.4 cm, 1 echo, 

9 slices, slice thickness = 2 mm, slice separation = 3 mm, number of acquisitions = 1, 

relaxation delay = 500 ms and a 128 x 128 matrix. The 23Na imaging parameters were the 

following: echo time = 5.6 ms, field of view = 6.4 cm, 1 slice, 5 echoes, slice thickness = 

10 mm, number of acquisitions = 128, relaxation delay = 240 ms and a 64 x 64 matrix. In 

order to see the effect of the chosen slice thickness on the sodium distribution in the 23Na 

MR image, one of the samples was additionally imaged with a thinner slice of 2 mm. 

Thinner slice produced much lower signal to noise level which was compensated by 

increasing the number of acquisitions to 2000 to obtain 23Na image of good quality. 
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2.11 Low-field 1H NMR 

LF 1H NMR measurements were carried out on fillets pieces before (72 h post mortem, Day 

3) and after salting (144 h post mortem, Day 6). Three cubes were excised from all fillets 

(Figure 1). Three subsamples (about 1 × 1 × 3 cm, approximately 2-3 g) were then cut out 

from each cube, and placed in NMR tubes (diameter 10 mm). The tubes were immediately 

placed in ice for about 30 min before they were equilibrated to 1˚C in a thermostated water 

bath (Julabo Labortechnik GmbH, Seelbach, Germany) before analysis. The measurements 

were performed on a minispec mq 20 (Bruker Optik GmbH, Rheinstetten, Germany) with a 

magnetic field strength of 0.47 T corresponding to a proton resonance frequency of 20 

MHz. The instrument was equipped with a 10 mm temperature-variable probe. A built-in 

heating element was connected to the temperature control unit (BVT3000, Bruker Optik 

GmbH). The temperature in the probe was regulated to 4˚C by blowing compressed air 

through the sample holder. Transversal (T2) relaxation was measured using the Carr-

Purcell-Meiboom-Gill pulse sequence (CPMG) (Carr & Purcell, 1954; Meiboom & Gill; 

1958). The T2 measurements were performed with a time delay between the 90˚ and 180˚ 

pulses (τ) of 150 μs. Data from 6000 echoes were acquired from 16 scan repetitions. The 

repetition time between two succeeding scans was set to 4 s. All even echoes were sampled. 

2.12  Low-field NMR data processing 

 The NMR transverse relaxation data were analyzed using two different calculation 

methods. (1) Multivariate data analysis was performed for all raw relaxation (CPMG) 

curves. These curves were normalized by setting the first sampled echo to a value of 100, 

and thereafter scaling the rest of the echo-train. The first 1000 data points were used for the 
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principal component analysis (PCA) (Jolliffe, 1997) using an in-house made program 

written in Visual Basic. Each row (n) represented a single fish sample and each column (m) 

represented a signal amplitude from an echo in the CMPG echo train. Four principal 

components (k) were used. The input matrix was not mean-centered. (2) Biexponential 

analysis of T2 relaxation data was performed by fitting of the following equation to the 

experimental CPMG curves, similar to that reported by Erikson et al. (2004): 

2221
2221

TtTt eAeASignal −− +=       (Eq. 1) 

where T21 and T22 were the relaxation components, and A21 and A22 were the corresponding 

amplitudes. The calculations were made using MatLab (The Mathworks Inc., Natric, MA). 

Since the absolute relaxation amplitudes are proportional to the amount of sample (or water 

and fat) present, the relative amplitudes within samples were used. T21 populations were 

calculated as: A21/(A21 + A22). For the biexponential fitting, the T21 and T22 populations sum 

up to 100%, therefore, only T21 population values are given. Three parallel samples from 

each fish were averaged at both sampling time points. The residuals for the exponential 

fittings with one, two and three exponents were calculated for varying numbers of sampling 

points (echoes) (500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000 and 4000 

data points). 

 

2.13 Statistical analysis 

Means and standard deviations (SD) are generally shown. The differences in relaxation 

time between the two raw materials were analyzed by use of ANOVA at a significance 

level of 95%. 
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3. Results and discussion 

3.1 Defining stress, development of rigor mortis and ultimate pH 

The indicators of antemortem stess (muscle twitches and pH) are shown in Table 1. They 

exhibited the expected differences between treatments in muscle pH (Kieffer, Currie, Tufts, 

1994; Erikson, Hultmann & Steen, 2006; Misimi et al, 2008) and muscle twitches (Misimi 

et al. 2008; Erikson et al, in press) (P<0.05). Thus, we had obtained two clearly defined 

groups that would in turn exhibit two different developments of rigor mortis. Indeed, very 

different rigor patterns are shown in Figure 2. Rigor onset of the rested fish started after 

about 25-30 h post mortem and rigor peaked at around 45-50 h, before the fish were in the 

postrigor state after 55-60 h. In contrast, strenuous antemortem muscle activity lead to rigor 

onset after about 2 h. Probably, rigor peaked somewhere between 5-10 h, and course of 

rigor was completed after about 40 h. Notably, anaesthetized fish never attained the strong 

rigor mortis exhibited by exhausted fish. The different rigor patterns were similar to what 

we have observed before where salmon were subjected to the same treatments (Erikson 

2001; Misimi et al, 2008). Since fish muscle tensions after such treatments are known to be 

very different during rigor (Nakayama et al., 1992), we hypothesized that flesh 

microstructure might be altered which in turn would affect fillet salt uptake. 

 

After 3 days post mortem, just before salting,  the pH in anaesthetized fillets was still 

slightly higher than in exhausted fillets (P<0.05; Table 1). 
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3.2 Water content, water holding capacity and salt content 

The water contents at fillet locations A, B and C, before (Day 3) and after (Day 6) salting 

are shown in Table 1. Antemortem stress did not seem to have any affect water contents, 

except for in the anterior part (location C), where the water content of exhausted fish was 

significantly higher (P<0.05). However, due to the uneven fat distribution in salmonids 

(Katikou, Hughes & Robb 2001), such comparisons must be done with caution unless both 

fat and water contents in the same sample is known. Since we did not analyse the fat 

content in our samples, it is likely that our water data basically reflected the fat distribution 

pattern rather the potential effects of stress. For both treatments however, there seems to be 

a trend towards higher water contents after salting. In this comparison, the samples were 

taken from exactly the same area of right and left fillets from the same fish, one unsalted, 

the other one after addition of salt. Using the fat-water correlations given by Katikou et al. 

(2001), the total fat contents of our unsalted fillets were around 9, 6 and 2 % for location A, 

B and C, respectively. 

 

At location A, before salting, the anaesthetized fillets had a significantly higher WHC (96.5 

%) than their exhausted counterparts (94.9 %, Table 1). After salting, the WHC of 

anaesthetized and exhausted fillets increased by 1.0 and 2.5 % points, respectively, and the 

difference was no longer significant. The exhausted fillets gained significantly more salt 

(1.6 % NaCl) at location A than the anaesthetized fillets (1.2 % NaCl, Table 1). 

 

Taken together, both the WHC data and the salt contents support our hypothesis that the 

stronger rigor contractions in stressed fish affected the muscle cell structure or the protein 
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network in such a way that the mobile water was easier lost when a physical force was 

applied during centrifugation. This might also have altered the salt diffusion rate into the 

fillets. 

 

3.3 MRI – macroscopic structure and salt distribution 

Figure 3 shows the 1H and 23Na MR images of the same slice of anaesthetized and 

exhausted fillet pieces excised from the anterior region (location C) of the fillets. In the 1H 

MR images (b, d and f), the subcutaneous fat layer is evident (top of fillet piece) along with 

the myocommata, containing both collagen (invisible in our MR images) and fat (light 

stripes). These features were most clearly visible in Figure 3 (a) where a 23Na MR image of 

a thinner slice (2 mm) was acquired with considerably longer acquisition time to improve 

sodium resolution. When comparing the 23Na and the 1H MR images (image a and b, 

respectively) it is evident that the myocommata area with a high fat content (shown as 

‘light stripes’), were not significantly invaded by sodium, since in the 23Na MR image, the 

area of myocommatas are visible as ‘black stripes’, indicating low salt areas. Furthermore, 

the 23Na MR images (Figure 3 (a) (c) and (e)) show that the highest salt content was 

observed near the surface of the fillet with a gradual decrease inwards. This was partly 

because of the presence of the skin, acting as a diffusion barrier (Gallart-Jornet et al, 2007). 

It was evident that the salt had penetrated deeper into the exhausted fillets than into the 

anaesthetized fillets. These results are well supported by a higher salt content in exhausted 

fillets found by chemical analysis (Table 1). The fact that the 23Na MR images revealed a 

deeper salt penetration into the exhausted fillets compared to the anaesthetized ones support 

our hypothesis that stronger rigor contractions in exhausted fish had an effect on the muscle 
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microstructure. This assumption is also supported by an earlier study (Aursand et al, 2009), 

where prerigor, postrigor and frozen-thawed salmon flesh was compared. It was shown by 

light microscopic analyses that a more open muscle microstructure found lead to a more 

rapid salt uptake. 

 

Sodium concentration profiles of the salmon fillets along with a reference solution 

containing 4% NaCl are presented in Figure 4. The calculation of sodium profiles was 

based on averaging of 23Na intensities in the MR images in a direction perpendicular to the 

fillet thickness within a selected rectangular region of interest (ROI) (as shown in Figure 3). 

The minor displacements along the axis “position” were due to the difference in fillet 

thicknesses at each sampling time. Considering the absolute values of NaCl, it should be 

realized that the MRI approach used here (spin-echo) detected mainly free sodium. A 

fraction of bound sodium is not detected (Veliyulin & Aursand, 2007). However, our 

samples contained relatively low amounts of salt, and sodium invisibility is known to 

increase with increasing salt content (Veliyulin & Aursand, 2009). Moreover, in the present 

study, a comparison of sodium distribution was the main aim, and it is our belief that 

sodium invisibility does not affect our conclusions. Small differences in the average salt 

uptake between the three fillet pieces were observed, but still significant differences in the 

salt uptake of the two treatments was observed. 

 

3.4 Low-Field 1H NMR – water dynamics  

To examine water mobility and water distribution in the fillets, the LF 1H NMR T2 

relaxation times were measured. The data was processed in two different ways. 
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3.4.1 Principal Component Analysis 

The overall variation in the NMR relaxation data of the anaesthetized and exhausted fillets 

were analyzed by performing a principal component analysis (PCA) on samples taken 

before and after salting separately (Figure 5). The relaxation curves were normalized 

against the maximum amplitude. In this way, potential differences in total water content did 

not contribute to the weighting of samples in the PCA score plot. In the comparison of 

unsalted anaesthetized and exhausted fillets, an evident separation between T2 relaxation 

data of the two treatments was seen. Subsequently, the effect of salt uptake (1-2 %) was 

much stronger than the effect of antemortem stress, as the separation due to different 

treatments in the T2 relaxation data were not seen after brine salting. In both cases, 

dispersion within each group was observed. This might be explained by varying fat content 

along the fillet. Location on the fillet had an effect on T2 relaxation both before and after 

salting, the posterior part (location C) separated from the anterior and mid part of the fillets 

(location A and B, respectively). 

 

3.4.2 Exponential fitting 

In Table 2, relaxation times and corresponding populations found by biexponential fitting 

are shown. When examining these data, one should remember that this form of data 

processing forces the curve to fit to two exponents. However, the method is simple and 

robust, and it has traditionally been used to interpret T2 relaxation data. Mono- and 

triexponential fitting of the data set was also approached. The residuals of fittings to one, 

two and three exponents are presented in Figure 6. As can be seen, one exponent gave the 
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poorest fit. Increasing to two exponents gave an evident improvement, whereas no visible 

improvement of the fit quality was seen after including of the third exponential component, 

indicating that a biexponential model was sufficient to adequately describe the relaxation 

curves. 

 

The fastest relaxing component (T21) revealed mean relaxation times in the range of 46-56 

ms before salting and 51-74 ms after salting, whereas the slower relaxing component (T22) 

had mean relaxation times between 155-216 and 134-152 ms before and after salting, 

respectively. These values are in agreement with our earlier T2 relaxation studies of 

Atlantic salmon postrigor muscle (Aursand et al, 2008, Aursand et al, 2009). Jepsen et al 

(1999) reported a similar value for the T21 relaxation component (49 ms) and a longer T22 

relaxation time (252 ms) in postrigor salmon muscle. Løje et al (2007) reported three T2 

components with values of 39, 85 and 353 ms in raw salmon by using PARAFAC 

modelling. The differences in the reported values might be due to differences in fillet 

composition (fat) and structure as affected by factors such as feed composition, feeding 

regimes, ante- or postmortem handling and storage time or the method of T2 data analysis. 

 

3.4.3 T2 relaxation and microstructure 

The majority (92 – 98 % in unsalted fillets; Table 2) of the population of water molecules 

revealed relaxation behaviour characterized by the T21 relaxation time constant. An earlier 

study on pork, Bertram, Purslow and Andersen (2002) reported correlation (r = 0.84) 

between the T21 time constant and the muscle tissue sarcomere length. They suggested that 

the structural features associated with changes in sarcomere length directly affected the 
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water mobility characterized by the T21 time constant. Based on these results, they 

suggested that the T21 component reflected water located within highly organized 

myofibrillar protein structures. Compared with our unsalted salmon fillets, the 

anaesthetized ones had a significantly larger T21 population, and a corresponding lower T22 

population than the exhausted fillets. If we suppose that the assumptions based on pork 

tissue are applicable to salmon muscle, our T21 values indicate that in the anaesthetized 

tissues, more water was kept within such organized protein structures than in the exhausted 

tissue. These results are in agreement with our hypothesis that excessive antemortem stress 

with subsequently stronger rigor contractions (Figure 2) resulted in pronounced changes in 

tissue structure. In turn, this affected water distribution within the tissue network in such a 

way that the overall water mobility was increased. 

 

In an earlier study on cod fillets, Andersen & Rinnan (2002) reported a larger T21 

population in the anterior region of the fillet, whereas samples from the tail part had a 

larger T22 population. It was suggested that this might be due to decrease in cell and fibre 

size backwards the fillet. These differences in T2 populations were not seen in our data. 

However, it must be taken into account that in salmon tissues, the T22 relaxation time 

constant reflects both fat and water protons (Veliyulin, Aursand & Erikson, 2005), whereas 

in lean cod tissue, only water protons give rise to the NMR signal. For both treatments, we 

observed a significantly higher T21 relaxation time in the tail region (location C) compared 

to the anterior and mid region (locations A and B). This indicates increased water mobility, 

possibly due to the higher water content in the tail region. 
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After salting, a shift towards longer T21 relaxation times coupled with a decrease in the T21 

population was observed both for both treatments. The observations are in agreement with 

earlier studies of cod and salmon (Aursand et al, 2008), and pork (Wu et al, 2006) 

demonstrating a coupling between increased T21 relaxation times and salt-induced swelling 

of the myofibers. 

 

After salting, no significant differences in the T21 relaxation time constants due to 

antemortem handling were observed. Consequently the anticipated differences in muscle 

structure were smoothed out by the uptake of salt. However, sampling location was still an 

issue for both treatments. After salting, the longest T21 relaxation component was still 

observed in the posterior part of the fillet (location C). This effect was even more 

pronounced than in unsalted fillets. In a previous studies (Foucat et al, 2006; Aursand et al, 

2009), a higher salt uptake in the posterior part has been reported. Both in pork (Wu et al, 

2006), and cod and salmon (Aursand et al, 2008; 2009), an increase in the relaxation time 

constant as a function of addition of small amounts of NaCl has been found. The changes in 

the T21 relaxation time constant were coupled with salt-induced swelling of the myofibers. 

Consezuently, we may assume that, a higher NaCl uptake in the posterior part of the fillet 

resulted in a higher degree of swelling, which in turn resulted in a pronounced shift towards 

a longer T21 relaxation times. 

 

3.5 Conclusions 

By LF NMR T2 relaxation analysis we were able to significantly detect differences in water 

distribution according to (1) antemortem handling, (2) fillet location, and (3) brine salting. 
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23Na MRI revealed in salt distribution differences between anaesthetized and exhausted 

fillets, where the salt penetration in the latter fillets was more pronounced. By combining 

1H and 23Na MR images, the salt diffusion and distribution was shown to be highly affected 

by the distribution of fat. 
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Figure captions 

Figure 1: Sampling locations for the various analyses of the Atlantic salmon fillets: anterior 

(A), mid (B) and posterior (C) fillet regions. For details, see text. 

 

Figure 2: Development of rigor mortis of anaesthetized and exhausted Atlantic salmon 

during ice storage. 

 

Figure 3: Sodium (23Na) and proton (1H) magnetic resonance images from the same cross-

sectional slice of brine salted anaesthetized and exhausted Atlantic salmon fillet pieces. 

Reference solutions (2, 4 and 6 % NaCl) are shown as circles (10 mm tubes cross sections) 

in the lower part of each image. Lighter areas in the 1H MR images correspond to fat rich 

areas. The image slice thicknesses were 2 mm for image (a) and (b), and 10 mm for the 

latter ones. The selected region of interest (ROI) indicates the area used for calculation of 

profiles in Figure 4. 

 

Figure 4: 23Na MRI concentration profiles through brine salted anaesthetized and exhausted 

Atlantic salmon fillets after brine salting in 7.8 % NaCl for 3 days. The skin side of the 

fillet pieces were in all cases placed opposite to the reference glass container with a 4 % 

NaCl solution (to the right in the figure). The selected region of interest (ROI) for 

calculation of the profiles is shown in Figure 3. 

 

Figure 5: PCA score plots of T2 relaxation data of anaesthetized and exhausted fillets before 

and after salting separately. In the upper panel of the figure, samples are labelled by ante-
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mortem handling (exhausted unsalted (E0), anaesthetized unsalted (U0), exhausted salted 

(SS) and anaesthetized salted (US)). In the lower panel, samples are labelled by fillet 

sampling location (anterior part unsalted (A0), mid part unsalted (B0), posterior part 

unsalted (C0), anterior part salted (AS), mid part salted (BS) and posterior part salted (CS)). 

 

Figure 6: Normalized residuals of mono-, bi- and three exponential fitting to varying 

number of echoes (500 – 4000) of T2 relaxation curves obtained from post-mortem Atlantic 

salmon muscle (anterior region, A) exposed to ante-mortem stress (n=6). Maximum and 

minimum residuals for each sample are indicated. 
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Table captions 

Table 1: Definition of two levels of handling stress in Atlantic salmon white muscle 

twitches and initial pH. Postrigor pH, salt content, water content and water holding capacity 

of unsalted (0) and salted (S) anaesthetized and exhausted fillets are also shown. 

 

Table 2: Transversal relaxation times, T21 and T22 and corresponding relative T21 

populations obtained from unsalted (0) and salted (S) anaesthetized and exhausted Atlantic 

salmon fillets.  Mean (SD, n= 9 - 12). 
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Figure 5 
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Figure 6 
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Tables 

 

Table 1 

treatment  

(fillet location) 

twitch tester 

(range: 0-3)I 

initial 

pHI 

ultimate 

pHII 

H2O(0)  

(%) 

H2O (S)  

(%) 

WHC(0) 

(%) 

WHC(S) 

(%) 

NaCl 

(%) 

anaesthetized (A) NA NA NA 68.8(1.4)CD 69.0(1.9)BC 96.5(0.7)B 97.5(0.8)* 1.2(0.1)A 

anaesthetized (B) 3.0(0.0)A 7.3(0.1)A 6.5(0.0)A 70.3(0.2)C 73.1(0.5)B* NA NA NA 

anaesthetized (C) NA NA NA 74.2(0.5)B 78.0(0.9)A* NA NA NA 

exhausted      (A) NA NA NA 68.0(0.8)D 69.2(0.6)C* 94.9(1.2)A 97.4(1.0)* 1.6(0.3)B 

exhausted      (B) 0.7(0.9)B 6.7(0.0)B 6.4(0.0)B 70.8(0.9)BC 73.6(0.9)B* NA NA NA 

exhausted      (C) NA NA NA 76.1(1.0)A 76.9(1.0) A NA NA NA 

(I) analyses were performed less than 1 min post mortem 

(II) analyses were performed 3 days post mortem, before salting 

Water content subscript ‘O’ or ‘S’ refer to before and after salting, respectively. Different letters 

(A, B, C or D) indicate significant differences between treatments (P<0.05).  The  asterisk (*) indicates 

significant differences between unsalted and salted fillets (P<0.05). NA = Not Analyzed. 
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Table 2 

 

treatment 

(fillet location) 

T21(0) (ms) T21(S) (ms) T22(0) (ms) T22(S) (ms) T21 pop(0) (%) T21 pop(S) (%) 

anaesthetized (A)  48.1(3.2)A 52.9(6.1)A 169.6(16.1) 144.7(10.8)A 95.7(0.8)A 83.2(14.7) 

anaesthetized (B) 46.0(2.8)A 52.4(7.4)A 159.6(10.5) 144.0(12.6)A 95.7(0.9)A 84.3(14.0) 

anaesthetized (C)  52.6(3.5)BC 74.4(13.4)B* 216.1(47.3) 152.3(32.1)B* 97.6(0.7)A 69.8(12.3)* 

exhausted      (A) 48.8(0.9)AB 50.9(8.0)A 160.7(23.9) 134.0(19.9)A 95.5(1.6)A 78.7(14.6)* 

exhausted      (B) 49.1(1.2)AB 51.9(5.2)A 187.0(26.7) 137.9(12.9)AB* 96.3(1.1)A 85.9(11.5) 

exhausted      (C) 56.2(1.0)C 67.6(13.2)B* 154.9(30.5) 143.3(34.3)A 92.2(3.9)B 77.3(12.1)* 

Subscripts ‘O’ or ‘S’ refer to before and after salting, respectively. Different letters (A, B, C) indicate 

significant differences between fillet locations and antemortem stress (P<0.05) The asterisk (*) indicates 

significant differences between unsalted and salted fillets (P<0.05) 
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