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Abstract

The isolation of microbial producers of bioactive natural products from environmental 

samples has historically been a great success and laid the foundation for the modern 

medical science we enjoy the fruits of today. To sustain and further improve the 

treatment of diseases, we rely upon the continued discovery and development of new 

bioactive compounds.

The work presented in this thesis describes the screening of more than 4000 

actinomycete isolates recovered from sediment and neuston layer samples collected in 

the Trondheimsfjord. The objective was to discover producers of new compounds with 

antifungal or cytotoxic activity. The primary screening approach based on assays with 

Candida strains uncovered a large number of isolates producing bioactive compounds, 

however, spectroscopic analyses of extracts from these isolates revealed that a high 

percentage of the isolates were potentially producing the same compound. LC-MS-TOF 

analysis of the extracts identified the compound in question as the polyene macrolide 

candicidin. A genetic analysis of eight isolates showed that they all contained the 

candicidin biosynthetic gene cluster and that the cluster was present on a large plasmid 

in one of the isolates. The plasmid’s ability for transfer to other Streptomyces strains 

was investigated, but interspecific transfer could not be detected. A “cured” strain 

unable to produce candicidin was obtained by incubation of the plasmid-containing 

isolate at a high temperature and reintroduction of the plasmid restored the candicidin 

production, thus indicating that the plasmid is transmissible by conjugation. It is 

possible that the plasmid may have been responsible for the dissemination of the 

candicidin biosynthetic gene cluster among actinomycetes in sediments and neuston 

layer of the Trondheimsfjord, although the results from this study were not conclusive.  

Candidates selected based on the primary screening against Candida strains were 

further evaluated in assays with different cancer cell lines. A compound displaying good 

cytotoxic activity was identified as the previously described macrolactam antibiotic BE-

14106 by LC-MS-TOF analysis and NMR spectroscopy. A genomic library was 
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constructed for the BE-14106 producer and screened with a molecular probe targeting 

polyketide synthase genes. The biosynthetic gene cluster was successfully identified and 

sequenced and the biosynthetic pathway leading to production of BE-14106 was 

elucidated. The proposal for the biosynthetic pathway is supported by results from gene 

inactivation experiments, enzyme assays with heterologously expressed proteins and 

feeding studies with isotope labeled components.  

A second macrolactam, ML-449, was identified in the primary screening against the 

Candida strains. LC-MS-TOF analysis indicated structural resemblance to BE-14106. 

The complete structure of ML-449 was obtained by NMR spectroscopy, showing that 

BE-14106 and ML-449 only differ in the length of the acyl side chain. The ML-449 

biosynthetic gene cluster was subsequently cloned, sequenced and compared to the BE-

14106 biosynthetic gene cluster. The two clusters were found to be remarkably similar, 

differing only in the genes encoding the polyketide synthases synthesizing the acyl side 

chain. Phylogenetic analyses pointed to common ancestry for the two clusters as well as 

an evolutionary relationship with other macrolactam biosynthetic gene clusters. 
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INTRODUCTION 

1 Introduction 

One cannot overestimate the importance of natural products in modern medicine. 

Without them, all of us would be at risk of succumbing to infectious diseases, organ 

transplantations would not be feasible and cancer chemotherapy would be lacking some 

of its most potent and important agents. The number of bioactive natural products is 

difficult to estimate, but it is thought to exceed at least 200.000, including contributions 

from prokaryotes and the animal, fungi and plant kingdoms (Bérdy, 2005). 

1.1 A brief history of actinomycetes and antibiotic discovery 

The first actinomycete was discovered in 1874 when a Norwegian doctor described the 

causal agent of leprosy, Mycobacterium leprae. The name Actinomyces stems from 

1877, when a German botanist described the microorganism responsible for lumpy jaw 

in cattle as a fungus and gave it the name Actinomyces bovis (Hopwood, 1999). In the 

following decades, many more actinomycetes were discovered, but the true nature of 

these microorganisms remained a mystery for some time. Often they were thought to be 

fungi or an intermediate of bacteria and fungi, and this is not surprising as many 

actinomycetes produce mycelium and spores superficially similar to that of moulds. The 

phylogenetic confusion is well reflected by the names given to the microorganisms 

(Actinomyces = ray fungus, Mycobacterium = fungus bacterium, Streptomyces = twisted 

fungus) (Hopwood, 2007). The issue was finally settled in the 1970s after Carl Woese 

developed the method of ribosomal RNA sequencing to establish evolutionary 

relationships (Woese and Fox, 1977). The actinomycetes were found to be true bacteria 

and the resemblance to fungi seems to be a matter of convergent evolution perhaps due 

to similar habitats. 

At the beginning of the 20th century, research on actinomycetes was scarce, with only a 

few scientists working with this group of peculiar microorganisms. This was soon to 

change. One scientist interested in the actinomycetes, although initially not as a source 
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INTRODUCTION 

for antimicrobial agents, was Selman A. Waksman (Hopwood, 2007). The discovery of 

penicillin in 1928 by Alexander Fleming (Fleming, 1929) and René Dubos’ isolation of 

tyrocidin/gramicidin in 1939 (Hotchkiss and Dubos, 1940), was probably Waksman’s 

inspiration for initiating a search for antibiotic producers among soil microbes 

(Hopwood, 2007). His former research interest, the actinomycetes, soon proved superior 

to the other bacteria and fungi tested with respect to production of antimicrobial agents. 

The breakthrough for Waksman’s group came in 1943 with the discovery of 

streptomycin production in a Streptomyces griseus strain (Schatz and Waksman, 1944). 

Streptomycin turned out to be the first effective treatment for tuberculosis and 

Waksman was awarded the Nobel Prize for Physiology or Medicine in 1952. With the 

pioneering work of Fleming, Dubos and Waksman, the interest in antibiotic discovery 

was sparked. During the 1950s and 60s, screening programs were initiated by all major 

pharmaceutical companies as well as many academic groups around the world 

(Hopwood, 2007). During these two decades, hundreds of new antibiotics were 

discovered every year, with streptomycetes being the major contributors. This period is 

often called the golden age of antibiotic discovery. By the end of the 1970s, however, 

the number of new antibiotics discovered each year was already declining, and during 

the 1980s and 1990s, most of the screening programs were discontinued, partly because 

of diminishing success in discovering new types of antibiotics, but also due to the 

increasing R&D (research and development) expenditure. Instead, the pharmaceutical 

companies turned their attention to the more profitable drug market of lifestyle 

problems and chronic diseases. Such agents often require daily use for the rest of a 

patient’s life and the short one-time cures of antibiotics cannot compete with respect to 

justifying the R&D expenditure for new drug candidates (Finch and Hunter, 2006; 

Overbye and Barrett, 2005). The use of antibiotics has not declined, however, and has 

even found a new niche of use as a feed-additive in farming, selecting for an ever 

increasing amount of resistant strains. By now, the problems with antibiotic resistant 

pathogens have become quite evident (Boucher et al., 2009; Finch and Hunter, 2006) 

and contrary to earlier beliefs, the fight against infectious diseases is far from over. 
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INTRODUCTION 

1.2 Natural products 

Since the discovery of penicillin, the value of microorganisms as producers of bioactive 

natural products has truly been revealed. Natural products find their use in a wide range 

of applications, such as antibacterial and antifungal antibiotics, anticancer agents, 

immunosuppressants, hypolipidemic agents and anthelminthics (Table 1. 1).

Table 1. 1 Examples of bioactive natural products. Adapted from Singh and Pelaez (2008), 
Gredi ak and Jeri  (2007), Amyes (2001). 
Application Example Producing organism 

Antibacterial Penicillins Penicillium spp., Aspergillus spp. 

Cephalosporins Acremonium spp., Amycolatopsis

spp. Streptomyces spp. 

Tetracyclines Streptomyces spp., Actinomadura

spp.

Aminoglycosides Streptomyces spp., Micromonospora

spp.

Macrolides Saccharopolyspora spp.

Vancomycin Streptomyces spp.

Antifungal Polyene macrolides Streptomyces spp. 

Echinocandins Glarea spp. 

Anticancer Bleomycins Streptomyces spp. 

Anthracyclines Streptomyces spp. 

Enediynes Streptomyces spp., Micromonospora

spp., Actinomadura spp. 

Immunosuppressant Cyclosporin A Tolypocladium spp. 

Rapamycin Streptomyces spp. 

Hypolipidemic Lovastatin Aspergillus spp. 

Mevastatin Penicillium spp. 

Anthelminthic Avermectin Streptomyces spp.
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INTRODUCTION 

Among the most prolific producers of bioactive compounds are the actinomycetes. The 

total number of bioactive metabolites isolated from actinomycetes is estimated to 

10100, with antibiotics as the major group of 8700 compounds. One genus, 

Streptomyces, accounts for over 75 % of both numbers (Bérdy, 2005). With the total 

number of antibiotics discovered estimated to around 25.000-30.000 (Bérdy, 2005), this 

makes Streptomyces the biggest single contributing genus (20-25 %). When considering 

the antibiotics in practical use, the impact of the streptomycetes becomes even clearer: 

of a total of 140-160 antibiotics in use, approximately 100-120 is of actinomycete 

(mostly Streptomyces) origin (Bérdy, 2005). The reason for this may be that 

pharmaceutical companies have targeted actinomycetes, and in particular Streptomyces,

in their screening programs. On the other hand, it seems clear that the streptomycetes 

constitute one of the most versatile genera of all the bacteria, biochemically speaking. 

Genome sequencing has been completed for three streptomycetes, S. avermitilis, S.

coelicolor, and S. griseus (Õmura et al., 2001; Bentley et al., 2002; Ohnishi et al., 2008) 

and has revealed that these streptomycetes have a much greater potential for secondary 

metabolite production than first assumed as they contain many more secondary 

metabolite biosynthetic gene clusters than the number of actually identified metabolites 

would suggest.

1.2.1 Antibacterials 

The kind of bioactive natural product that people most commonly encounter is the 

antibacterial antibiotics, which include the huge group of -lactams. Since the discovery 

in 1928, penicillins have been semi-synthetically modified into many different 

derivatives. In contrast to the acid-unstable original penicillin, which Fleming struggled 

to isolate from the producing organism and with treatments consisting of intravenous 

injections several times a day (Amyes, 2001), penicillins are now prescribed in tablet 

form and able to pass through our digestive system. This revolution has come about 

through semi-synthetic modifications of the penicillin side chain (Figure 1. 1). Another 

feat accomplished in this way by natural drug scientists is an increased spectrum of  
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Figure 1. 1 Chemical structures of important antibacterials and modifications of the penicillin side 
chain. The penicillin core structure is shown on top. Penicillin G with a phenylacetyl chain is acid-
unstable, while penicillin V with a phenoxyacetyl chain has better acid stability. Ampicillin with a 
phenylglycyl chain is acid stable and active against gram-negatives. Adapted from Walsh (2003). 
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activity for penicillins. Naturally occurring penicillins have little or no effect on gram-

negative bacteria as the molecules often cannot pass through their outer cell membrane, 

but by introducing new side chains, the permeability can be increased (as for e.g. 

ampicillin, amoxicillin) (Walsh, 2003). The -lactams also include the cephalosporins, 

another hugely successful group of antibacterials, which has been subjected to semi-

synthetic modifications analogous to the penicillins, as well as the carbapenems, 

monobactams and clavams (Walsh, 2003). Although -lactams is the biggest and most 

widely used group of antibacterials, there are also several other important groups. The 

tetracyclines, aminoglycosides, macrolides, streptogramins and lincomycins all target 

the bacterial protein synthesis, while rifampicin inhibits RNA synthesis. The 

glycopeptide vancomycin interferes with bacterial cell wall synthesis, but in a different 

way than -lactams and vancomycin is therefore vastly important in the treatment of 

infections caused by certain resistant gram-positive bacteria (Amyes, 2001). Synthetic 

antibacterials include the sulphonamides, which target folic acid synthesis, and the 

quinolones, which affect DNA synthesis. Actinomycetes represent important producers 

of antibacterial antibiotics and e.g. cephalosporins, tetracyclines, aminoglycosides, 

macrolides and vancomycin are among the bioactive metabolites produced by this group 

(Table 1. 1).

Almost all of the antibacterial antibiotics were discovered during the 1950s, 60s and 70s 

and new additions have mostly come about by semi-synthetic modifications of the 

original molecules. The only truly new antibacterial antibiotics launched in the last 35 

years are linezolid and daptomycin (Overbye and Barrett, 2005). The uprise and 

dissemination of antibiotic resistant pathogens such as methicillin/vancomycin resistant 

Staphylococcus aureus (MRSA/VRSA) and multiresistant Mycobacterium tuberculosis

in later years, makes this fact particularly worrying and necessitates a continued search 

for new natural products possessing antibacterial activity (Jones, 2008; Zumla and 

Grange, 2001).
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1.2.2 Antifungals 

While the antibacterials are (for the most part) benign molecules with mild side-effects, 

the antifungals are another story. The eukaryotic fungal cells resemble our own cells so 

much that finding a selective target has proved difficult. Amphotericin B, the “golden 

standard” of antifungal treatment, has such adverse side-effects as nephrotoxicity and 

thrombophlebitis (Chen and Sorell, 2007). The seriousness of a fungal infection 

depends on its nature, as infections can be superficial or invasive. Superficial infections, 

which involve the skin and mucous membranes, are generally easier to cure than the 

invasive type. Invasive infections are potentially life-threatening, and although they are 

rare in healthy individuals, different types of immunocompromised patients (HIV 

infected, undergoing organ transplantations or chemotherapy) are at great risk. As the 

number of such patients steadily increase (Gupte et al., 2002), the need for better 

antifungal antibiotics is becoming ever more urgent. There are four main classes of 

antifungal antibiotics currently in use, polyene macrolides, azoles, allylamines and 

echinocandins (Chen and Sorell, 2007). The polyene macrolides and the echinocandins 

represent natural products synthesized by actinomycetes and fungi (Figure 1. 2), while 

azoles and allylamines are synthesized chemically.  

The prospects for antifungal treatment look better now than in a long time, with new 

lipid formulations of amphotericin B and the safer, less toxic echinocandins (Chen and 

Sorell, 2007). However, the agents used in antifungal therapy are rather few and as with 

the antibacterials, the development of antibiotic resistant strains always represents a 

serious threat.
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Figure 1. 2 Chemical structures of antifungal antibiotics. Adapted from Caffrey et al. (2008), 
Letscher-Bru and Herbrecht (2003). 

1.2.3 Anticancer agents 

Many of the most important anticancer agents are natural products of microbial origin 

and chemical analogs of the molecules we usually think of as antibiotics. The very first 

antibiotic identified by Selman Waksman’s group (Waksman and Woodruff, 1940) had 

in fact anticancer activity, although this was not realized at the time of discovery. It was 

given the name actinomycin, but to Waksman’s despair it proved to be too toxic for 

antibacterial treatment and was not pursued further (Hopwood, 2007). Decades later, it 

found its right place among the agents approved for anticancer therapy. Actinomycin 

remains today an important drug in pediatric oncology (Willems et al., 2006). Among 

the natural products of anticancer treatment, the bleomycin glycopeptides are perhaps 

the best known (Figure 1. 3). They find their application in the treatment of several 
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types of cancer, e.g. Hodgkin’s disease and testicular cancer (Lazo and Chabner, 2006). 

Another clinically important group are the anthracyclines (Figure 1. 3), mainly 

daunorubicin (daunomycin) and doxorubicin, which are among the most widely used  

Figure 1. 3 Chemical structures of anticancer agents. Adapted from Fujii and Ebizuka (1997), 
Gredi ak and Jeri  (2007), Chen and Stubbe (2004). 
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antineoplastic agents today (Doroshow, 2006). Actinomycin, bleomycins and 

anthracyclines are all natural products of actinomycetes and so are the new exciting 

molecules of the enediyne group of anticancer agents. The characteristic structural 

component of the enediyne compounds is the enediyne moiety (Z-hexa-1,5-diyn-3-ene), 

which is often described as a “warhead” (Gredi ak and Jeri , 2007). An example of the 

enediyne structure is shown in Figure 1. 3 for calicheamicin. The enediyne moiety and 

its interactions with DNA make enediynes extremely potent molecules and therefore 

generally quite toxic (Gredi ak and Jeri , 2007). Coupling of the enediyne to a 

monoclonal antibody has proven to be a successful approach for calicheamicin by 

keeping the molecule inactive until it is delivered at the right place (the cancer cells). 

Such coupling of active molecules to cancer cell-specific antibodies may represent the 

future of anticancer therapy, although the cost of making monoclonal antibodies 

complicates the issue (Harris, 2004).     

1.2.4 Other bioactive natural products  

There are important natural products that find their use in areas other than anti-infective 

and cancer treatment, but it is beyond the scope of this thesis to give a thorough 

description of those. Among the most important metabolites are the 

immunosuppressants, such as cyclosporin A and rapamycin, which make organ 

transplantations possible, and the hypolipidemic agents, which are important 

cardiovascular agents.  

1.3 Discovering new bioactive natural products 

For decades, natural products were the most important source for new drugs and drug 

leads, but from the early 1990s things began to change (Harvey, 2008; Rouhi, 2003). 

With new technical advancements such as automation and use of robotics, the rate of 

screening was no longer the limiting step, but rather finding new chemical entities to be 

tested. To meet this new demand, and to avoid the problems of intellectual property 
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issues associated with natural products, many pharmaceutical companies switched to 

combinatorial chemistry and in the process often terminating all efforts in natural 

product screening (Rouhi, 2003; Ortholand and Ganesan, 2004). In retrospect, this 

turned out to be a rather unfortunate decision as combinatorial chemistry has not been 

able to live up to the expectations. For the period 1981-2006, combinatorial chemistry 

produced only one de novo chemical entity that has been approved by the U.S. Food and 

Drug Administration (Newman and Cragg, 2007). In general, combinatorial synthesis 

seem to produce less variety and cannot compete with respect to structural complexity, 

e.g. regarding the number of chiral centers (Feher and Schmidt, 2003; Grabowski and 

Schneider, 2007). In later years, there has therefore been a renewed interest in natural 

product screening, as well as exploiting the complexity of natural products as scaffolds 

in combinatorial chemistry (Ortholand and Ganesan, 2004; Harvey, 2008).  

1.3.1 Prospects for discovering new bioactive natural products 

Culture-independent methods have demonstrated that a large number of bacterial 

species are present in soil and marine environments and that successful cultivation has 

only been achieved for a low percentage of the species present. (Amann et al., 1995; 

Torsvik et al., 1996; Venter et al., 2004; Yooseph et al., 2007). These bacteria represent 

a huge resource with respect to production of natural products if their biosynthetic 

capacities can be exploited.

As actinomycetes are known to be prolific secondary metabolite producers, natural 

product screening has often targeted this particular order. With an estimated 8700 

antibiotics of actinomycete origin (Bérdy, 2005), one might wonder if this group, and 

particularly the streptomycetes, are exhausted as a source for new drug candidates? In 

an effort to calculate the antibiotic producing potential of the streptomycetes, it was 

estimated that only 3 % of the compounds produced by this genus has been 

characterized (Watve et al., 2001). So in that respect, even streptomycetes can be worth 

pursuing. The screening programs from the 1950s and up until recently have mostly 

focused on actinomycetes of terrestrial origin and the existence of purely marine 
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actinomycetes has not been widely accepted (Jensen and Fenical, 2005). More recent 

isolations of marine-derived actinomycetes that are phylogenetically unique compared 

to their soil-derived relatives (Magarvey et al., 2004; Jensen et al., 2005; Pathom-aree et 

al., 2006), have shaken this perception. In addition, the new taxa have turned out to be 

good sources for compounds of novel, unique structures, such as the salinosporamides 

and sporolides from Salinispora spp. (Williams et al., 2005; Buchanan et al., 2005) and 

the marinomycins from Marinispora spp. (Kwon et al., 2006) (Figure 1. 4). Several of 

these compounds have anticancer activity and salinosporamide A has made it into 

preclinical development as an anticancer agent (Jensen and Fenical, 2005). Several 

studies have come to the conclusion that there is a great diversity of actinobacteria in 

marine environments and with the world’s oceans covering 70 % of the earth’s surface, 

the prospects for finding new drug leads among compounds produced by marine 

actinomycetes look promising (Fenical and Jensen, 2006; Bull and Stach, 2007).

Figure 1. 4 Novel structures from Salinispora spp. and Marinispora spp. Adapted from Jensen and 
Fenical (2005).  
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1.3.2 Methods for discovering new bioactive natural products 

Several approaches have been proposed and utilized to harness the “unculturable” 

microbes present in soil and marine environments. Through application of new methods 

for isolation and cultivation, bacterial species previously assumed to be unculturable 

have been recovered from environmental samples (Zengler et al., 2002; Joseph et al., 

2003; Maldonado et al., 2005). The cloning of “environmental DNA” (so-called 

metagenomics) can also be used to exploit microbes that have so far not been cultivated 

(Handelsman et al., 1998; Gillespie et al., 2002). The isolation of microbial organisms 

from different types of ecosystems and locations is still considered a very important 

approach in the search for new bioactive molecules (Zhang, 2005), and the time of 

sampling may be of significance as there appear to be temporal differences in the 

diversity of species (Morris et al., 2005). The presence of viruses in samples may also 

influence the outcome and removal of such factors can greatly increase yield (Bouvier 

and del Giorgio, 2007).

Although the outcome from combinatorial chemistry in number of drug leads has been 

rather poor, the technical advancements achieved in the last 20 years have had important 

consequences for natural product screening. Development of high throughput methods 

for isolation, cultivation and screening of microorganisms have greatly reduced the time 

and effort needed to be invested in such measurements (Bruns et al., 2003; Gich et al., 

2005; Casey et al., 2004). Combined with new sensitive methods, such as liquid 

chromatography mass spectrometry (LC-MS) and two-dimensional NMR spectra 

arrays, active compounds can be identified more rapidly (Schroeder et al., 2007; Koehn, 

2008). Such methods may also be used for metabolic profiling and can thus be an aid in 

dereplication. Genome sequencing has opened up a new way for discovering bioactive 

natural products. Actinomycete genome sequences studied so far contain far more 

secondary metabolite clusters than the number of identified metabolites would suggest 

(Bentley et al., 2002; Udwary et al., 2007). Activation of pathways for such orphan 

clusters, either in the original strain or in a heterologous host, may lead to isolation of 

new interesting metabolites (Zazopoulos et al., 2003; McAlpine et al., 2005).
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1.4 Biosynthesis of polyketide and nonribosomal peptide natural 

products

Thousands of bioactive natural products are polyketides (PK), nonribosomal peptides 

(NRP) or hybrids of polyketides and nonribosomal peptides. These include for example 

the polyketides amphotericin B and nystatin (antifungals) (Caffrey et al., 2001; 

Brautaset et al., 2000), the nonribosomal peptides penicillin and vancomycin 

(antibacterials) (Martín, 1998; Süssmuth and Wohlleben, 2004), and the hybrid PK-

NRPs bleomycin (anticancer) (Shen et al, 2002) and cyclosporin A 

(immunosuppressant) (Weber et al., 1994).  

Both polyketides and nonribosomal peptides are synthesized by large enzyme 

complexes through condensation of specific building blocks (Fischbach and Walsh, 

2006). The identity and order of domains in these enzymes determine which building 

blocks are incorporated and in what order, and what chemical modifications the blocks 

are subjected to.

1.4.1 Polyketide synthases (PKS) 

There are three types of PKS (polyketide synthase) systems (type I, II and III), but only 

the modular type I PKS will be described in detail. Type II and III will be considered 

briefly below. Both PKS and NRPS (nonribosomal peptide synthetase) systems make 

use of thioesters to perform condensation reactions (Fischbach and Walsh, 2006). PKS 

systems are based on the condensation of short chain organic acids to form a long 

polyketide chain (Donadio et al., 1991). The simplest unit that can be utilized as a 

starter is acetyl-CoA, but also longer chain acids such as malonyl-CoA or 

methylmalonyl-CoA can serve as starter units (Brautaset et al., 2000; Leadlay et al., 

2001; Waldron et al., 2001). As the condensation reaction releases CO2 in the process, 

the simplest extender unit that can be incorporated is malonyl-CoA. Other possible 

extender units are e.g. methylmalonyl-, ethylmalonyl-, and methoxymalonyl-CoA 
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(Haydock et al., 1995; Reeves et al., 2001; Haydock et al., 2005). Units to be

incorporated are selected by an acyltransferase (AT) domain and transferred to a 

prosthetic phosphopantetheinyl group of an acyl carrier protein (ACP) domain, 

generating the activated thioester (Fischbach and Walsh, 2006). The ACP domain does 

not itself possess any catalytic activity, but represents a platform that brings the 

substrates and the catalytic centers together. A Claisen condensation is carried out by a 

ketosynthase (KS) domain, linking together a new extender unit with the growing 

polyketide chain. This reaction starts with transfer of the acyl chain from the upstream 

ACP domain to the conserved cysteine of the KS domain active site (Fischbach and 

Walsh, 2006). The KS decarboxylates the downstream extender unit to form a thioester 

enolate, which then performs a nucleophilic attack on the upstream acyl thioester 

(Figure 1. 5 A).

The KS, AT and ACP domains constitute a minimal extender module, but other 

domains may also be present (Khosla and Harbury, 2001). A ketoreductase (KR) 

domain will modify the ketogroup of the extender unit incorporated by the preceding 

module. The hydroxyl group resulting from the ketoreduction by the KR domain can be 

further modified by a dehydratase (DH) domain and the presence of a third domain, 

enoyl reductase (ER), will result in formation of a fully saturated -  bond (Figure 1. 5

B).
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Figure 1. 5 A) The condensation reaction in polyketide synthesis. The upstream acyl chain is 
transferred to the conserved cysteine of the KS domain. The KS domain decarboxylates the 
downstream extender unit to form the thioester enolate, which attacks the upstream acyl thioester. 
Adapted from Fischbach and Walsh (2006). B) Modifications by the KR, DH and ER domains. The 
minimal KS-AT-ACP module will leave a ketogroup. An additional KR domain will result in a 
hydroxyl group, a KR and a DH domain will produce a double bond and a KR, a DH and an ER 
domain will yield a fully saturated -  bond. Adapted from Jenke-Kodama et al. (2006). C) The 
condensation reaction in nonribosomal peptide synthesis. The C domain catalyzes a C-N bond 
formation between the downstream nucleophilic aminoacyl amine group and the upstream 
electrophilic peptidyl thioester. Adapted from Fischbach and Walsh (2006).   
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Initiation and termination modules are somewhat different from the elongation modules. 

Initiation modules often lack a KS domain and the starter unit is simply selected by the 

AT domain and loaded on the first ACP domain. Initiation modules may, however, 

contain KS-like domains lacking condensing, but retaining decarboxylating activity for 

processing dicarboxylic acid starters prior to the subsequent chain elongation (Bisang et 

al., 1999, Long et al., 2002). The last module in the polyketide synthesis is the 

termination module, which is responsible for releasing the mature polyketide chain. The 

termination module contains a thioesterase (TE) domain, which hydrolyzes the thioester 

bond between the last ACP domain and the mature polyketide chain, and is also 

responsible for the chain cyclization (Fischbach and Walsh, 2006).   

In type II PKS systems, individual domains are separate proteins and interact in trans. 

The growing polyketide chain remains tethered to the same ACP domain and the KS 

and AT domains act iteratively. Chain length is determined by the chain length factor 

(CLF), which forms a heterodimer with the active subunit KS  (Fischbach and Walsh, 

2006). Type III PKS systems also work iteratively, but in contrast to type I and II 

systems, there are no ACP domains and acyl-CoA substrates are used directly (Shen, 

2003).

1.4.2 Nonribosomal peptide synthetases (NRPS)  

NRPS systems perform condensation of amino acids to form peptide chains (Sieber and 

Marahiel, 2005), and are involved in the biosynthesis of many important antibiotics 

(e.g. vancomycin, bleomycin). Available loading and extender units constitute the 

common 20 amino acids in both L-and D-form as well as other amino acids and 

carboxylic acids. More than 300 different units have been described (Kleinkauf and von 

Döhren, 1990). In analogy to the PKS systems, NRPSs can also be divided into modules 

and domains, where each module is responsible for incorporation and modification of 

one specific amino acid (Schwarzer et al., 2003). Instead of AT domains, the NRPSs 

will have adenylation (A) domains responsible for selecting and activating the amino 

acid units to be incorporated into the peptide chain. The amino acids are activated 
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through adenylation by the A domain and transferred to the prosthetic 

phosphopantetheinyl group on a peptidyl carrier protein (PCP) domain, which is 

analogous to the ACP domain of the PKS (Sieber and Marahiel, 2005). 

Transpeptidation of the amino acid substrates is carried out by the condensation (C) 

domain (Figure 1. 5 C). As for PKS systems, there are also other domains present in 

NRPS systems in addition to the core C-A-PCP module. Peptide antibiotics often 

contain D-amino acid residues and since D-amino acids are generally not exploited in 

the microbial antibiotic producers’ primary metabolism, NRPSs often contain 

epimerization domains (Stein et al., 2005). Some peptide antibiotics have N-methylated 

peptide bonds generated by N-methylation domains (Nishizawa et al., 1999; 

Schauwecker et al., 2000). Additional NRPS domains include e.g. specialized 

condensation domains with heterocyclization activity, oxidation domains and reduction 

domains (Gehring et al., 1998; Du et al., 2000; Reimmann et al., 2001).  

1.4.3 Hybrid PKS/NRPS systems 

PKS and NRPS systems are also compatible with each other and several hybrid PKS-

NRPS assembly lines have been reported (Shen et al., 2002; O’Connor et al., 2002; Wu 

et al., 2000). While most hybrid PKS-NRPS systems involve direct contact between 

PKS and NRPS modules, there are also systems that are not true hybrids and where the 

PKS and NRPS parts are synthesized separately (Du et al., 2001). Such a system 

operates in the coronatine biosynthesis, where the polyketide and amino acid-derived 

parts are presumably joined together by a discrete ligase (Bender et al., 1999). In true 

hybrids, there will be transfer of the growing chain across PKS-NRPS and/or NRPS-

PKS interfaces (Figure 1. 6). At an NRPS-PKS interface, the downstream KS domain 

must then accept a peptidyl chain rather than an acyl chain and vice versa for an NRPS-

PKS interface (Fischbach and Walsh, 2006).   
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Figure 1. 6 Hybrid polyketide and nonribosomal peptide synthesis. A) NRPS/PKS interface: KS 
domain catalyzed C-C bond formation. B) PKS/NRPS interface: C domain catalyzed C-N bond 
formation. Adapted from Shen et al. (2001). 

1.4.4 Precursors and post-PKS/NRPS modifications 

Both PK and NRP synthesis make use of special monomer units that are not part of the 

common biosynthetic machinery of the cell. Synthesis of such precursors requires 

dedicated enzyme systems and genes encoding such enzymes are usually clustered with 

the PKS and NRPS genes (Fischbach and Walsh, 2006). In the biosynthesis of 

chloroeremomycin, five out of seven amino acids are nonproteinogenic and 11 

additional enzymes are required to convert precursors into the corresponding substrates 

for the NRPS assembly line (van Wageningen et al., 1998; Hubbard and Walsh, 2003). 

Many PKSs use amino acids, derivatives of amino acids or other amines as starter units, 

e.g. in the biosynthesis of the ansamycin antibiotic rifamycin, 3-amino-5-

hydroxybenzoic acid (3,5-AHBA) is utilized as a  starter (Moore and Hertweck, 2002; 
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Admiraal et al., 2001), while 3-methylaspartate is incorporated in the biosynthesis of the 

macrolactam vicenistatin (Ogasawara et al., 2004).

PKs and NRPs often require post-assembly modification to achieve full activity. The 

most common post-PKS/NRPS modifications are hydroxylation, glycosylation and 

methylation and genes encoding enzymes performing these modifications are usually 

found clustered with the PKS/NRPS genes. Hydroxylations are often performed by 

P450 monooxygenases and P450 monooxygenases are commonly found encoded within 

PKS biosynthetic gene clusters (Weber et al. 1991; Betlach et al., 1998; Byrne et al., 

2003). PKs and NRPs can be decorated with sugar moieties and genes involved in the 

biosynthesis of these sugar moieties, as well as the glycosyltransferases responsible for 

attaching the sugar molecules to the aglycone scaffolds, are clustered within the 

PKS/NRPS biosynthetic gene clusters (Losey et al., 2001; Nedal and Zotchev, 2004). 

NRPSs often contain methyltransferase (MT) domains, but MTs can also be found as 

separate enzymes performing methylation in trans, such as the N-MT in the 

chloroeremomycin biosynthesis and the O-MT in the saframycin Mx1 biosynthesis 

(O’Brien et al., 2000; Pospiech et al., 1996).

1.4.5 Other aspects of PKS and NRPS systems 

Recent literature indicates that polyketide synthesis and nonribosomal peptide synthesis 

cannot be confined to the strict categories of type I, II and III systems. Variations on the 

theme seem to be abundant (Shen, 2003; Wenzel and Müller, 2005). As described 

above, the conventional minimal or core extender module consists of three domains 

(KS-AT-ACP or C-A-PCP), but several cases have been described were a domain is 

missing from this trio. In the biosynthesis of yersiniabactin, three NRPS modules are all 

supplied with substrate by the same A domain present in only one of the modules 

(Keating et al., 2000) and in the biosynthesis of leinamycin and disorazols, the PKS 

modules lack the AT domain. Extender units are supplied in trans by a discreet AT 

(Cheng et al., 2003; Carvalho et al., 2005). Domains may be skipped, as in the 

biosynthesis of pikromycin and myxochromides (Beck et al., 2002; Wenzel et al., 
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2005), or used more than once, so called stuttering (He and Hertweck, 2003; Gaitatzis et 

al., 2002). Modules may be split so that domains belonging to the same module are 

present on separate proteins (Kopp et al., 2005; Silakowski et al., 2001). As more and 

more PKS and NRPS clusters are being discovered, these heretofore unusual systems 

seem to represent more of a norm than an exception and the well-known “textbook 

examples” no longer seem to adequately portrait the full extent of PK and NRP 

synthesis.

1.4.6 Genetic engineering of PKS/NRPS and combinatorial biosynthesis 

The realization that PKS systems are amenable to modifications in a way that facilitates 

production of new types of molecules followed shortly after the isolation of the first 

PKS gene cluster (Malpartida and Hopwood 1984; Hopwood et al., 1985; Õmura et al., 

1986). The sequencing and characterization of the first gene cluster for a modular type I 

PKS, established erythromycin biosynthesis in Saccharopolyspora erythraea as a model 

system for polyketide synthesis and represented the first example of genetic 

modification of a complex PKS (Cortes et al., 1990; Donadio et al., 1991). Since then, 

genetic engineering has produced numerous derivatives of well-known antibiotics 

through manipulation of both PKS and NRPS systems (Baltz, 2006).  

The modular nature of many PKS and NRPS systems make them particularly suitable 

for genetic engineering as predicted structural changes in a compound can be introduced 

by removal of specific domain functionalities or introduction of new domains, e.g. 

modification of KR, DH and ER domains allow for changes in the reduction of the -

carbonyl at particular sites in the structure of a compound (Donadio et al., 1991; 

Donadio et al., 1993; Tang et al., 2005; Borgos et al., 2006) and swapping of domains 

or site-specific mutations can alter the substrate specificity of both A and AT domains 

(Ruan et al., 1997; Schauwecker et al., 2000; Reeves et al., 2001; Eppelmann et al., 

2002). Knowledge about how PKS subunits interact through docking domains, as well 

as the presence of intrapolypeptide linkers, have improved the possibilities for 

combining individual domains and modules of different origin into new functional 
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enzyme complexes (Menzella et al., 2005; Weissman, 2006; Menzella et al., 2007). This 

bodes well for the future generation of large compound libraries through combinatorial 

biosynthesis, however, at the moment it is difficult to combine just two or three 

modules efficiently and the generation of large, complex systems resides somewhat 

further down the line (Menzella and Reeves, 2007).

1.5 Horizontal gene transfer 

Organisms can obtain their genetic material in two ways; by vertical gene transfer or 

horizontal/lateral gene transfer (HGT/LGT). Vertical gene transfer is the passing on of 

genes from ancestors to descendants, while horizontal gene transfer is the direct passage 

of genetic material from one organism to another, independent of descent.

Horizontal gene transfer in bacteria was first described in 1928, when transfer of 

virulence determinants between pneumococci in infected mice was detected (Griffith, 

1928). In the 1960s, it became clear that antibiotic resistance genes could be transferred 

between pathogenic strains of bacteria (Watanabe and Fukasawa, 1961; Watanabe, 

1963). The extent of HGT in bacteria and archaea and what role it has played/plays in 

the evolution of prokaryotes has been heavily debated since the first bacterial genomes 

were sequenced in the 1990s and comparison of whole genomes was made possible. 

Complete sequencing of several Streptomyces genomes and subsequent genome 

comparisons, as well as the species specific distribution of secondary metabolite 

biosynthetic gene clusters among actinomycetes point to a possible role for HGT in the 

evolution and dissemination of such clusters (Chater and Kinashi, 2007).

1.5.1 Ways of acquiring foreign DNA 

There are essentially three ways a cell can acquire foreign DNA; transformation, 

conjugation and transduction. All three processes are well documented. Uptake of DNA 

by natural transformation has been described for many bacterial strains and while some 
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strains are perpetually competent, others can acquire competence at certain stages in 

their life cycle (Ochman et al., 2000). Conjugation usually involves plasmids or 

transposable elements. Such elements may also integrate into chromosomal DNA and 

can in that way mobilize chromosomal segments (Thomas and Nielsen, 2005). While 

conjugation requires direct contact between the donor and recipient cells, transduction is 

not dependent on direct contact and the donor and recipient cells may even be separated 

in time. Phages can package random DNA fragments (general transduction) or include 

DNA adjacent to their chromosomal attachment site (specialized transduction) (Ochman 

et al., 2000). However, functional phages usually package their own genome and more 

seldom host chromosomal DNA fragments. Derivatives of tailed bacteriophages, called 

gene transfer agents (GTAs), have recently been discovered in several groups of 

bacteria and archaea (Stanton, 2007; Lang and Beatty, 2007). GTAs preferentially 

package random fragments of chromosomal DNA rather than parts of their own genome 

and may represent specialized HGT devices (Stanton, 2007; Koonin and Wolf, 2008).    

Having entered the recipient cell, there are more obstacles to overcome for a foreign 

DNA fragment. In order not to be eliminated from the new host, it must either be able to 

replicate autonomously (plasmids) or it must integrate into the chromosome of the host. 

Integration into chromosomal DNA may be mediated by e.g. homologous 

recombination. A homologous region of 25-200 bp is necessary for homologous 

recombination to occur and the process is therefore most successful when the donor and 

recipient are quite closely related (Thomas and Nielsen, 2005). Insertion sequence (IS) 

elements and other repeated sequences can mediate homologous recombination.  

1.5.2 How to detect HGT 

There are several methods that can be applied to detect HGT. One common approach is 

to look for atypical phylogenetic distributions (Ragan, 2001). If two distantly related 

species both contain highly similar nucleotide regions, invocation of HGT as the cause 

is usually unproblematic, such as in the extreme case of Pyrococcus furiosus and 

Thermococcus litoralis, which share a transposon-like sequence of 16 kb that is 99 % 
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similar (DiRuggiero et al., 2000). However, for less conserved DNA regions or protein 

sequences, establishing the right set of homologs can be difficult. The term “homology” 

implies common ancestry and a certain level of sequence identity between two protein 

sequences does not ensure a common ancestral relationship (Ragan, 2001). Another 

possibility is to look for regions of deviant composition, such as differences in GC 

content, different patterns of codon usage or dissimilar frequencies of oligonucleotides 

(Ragan, 2001). However, one cannot rule out the possibility that such regions may arise 

by other processes than HGT. Association of factors common in mobile genetic 

elements with an atypical genomic region would strengthen the suspicion that HGT has 

occurred. Such factors can be insertion sequence elements, transfer origins of plasmid or 

attachment sites of phage integrases. A more recent approach to detecting HGT, 

particularly among closely related species, is comparison of whole genomes. That 

aspect will be covered in more detail below. Incongruence among phylogenetic trees is 

another indication of HGT. If one can construct well-resolved trees for two or more 

gene families and the trees are incongruent, then HGT is considered the most likely 

explanation. Caution should be taken, however, as inference of phylogenetic trees are 

subject to bias and methodical artifacts (Ragan and Charlebois, 2002).

What can be considered the best approach will vary with each individual case, e.g. 

differences in GC content would not be applicable for investigating HGT between two 

distantly related GC-rich species. In addition, one can say that ancient transfer events 

are difficult to detect as well as transfer between closely related species.

1.5.3 Comparison of genomes 

Sequencing of the first bacterial genome (Haemophilus influenzae) was completed in 

1995 (Fleischmann et al., 1995). Since then, the genomes of hundreds of other 

prokaryotes, as well as eukaryotes, have been sequenced. At the moment, 788 bacterial 

and 56 archaeal genomes have been completed while 1538 more are in the pipeline 

(http://www.ncbi.nlm.nih.gov, March 2009). Ever since the first genomes became 

available for comparison, a debate on the extent of horizontal gene transfer has raged. 
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Opinions have ranged from HGTs being so frequent that phylogeny is rendered useless 

to the view that HGTs are rare and account for only minor noise when inferring 

phylogeny (Philippe and Douady, 2003). As more and more genome sequences have 

been published, the picture has become more clear, but also much more complex.   

One early study compared the genomes of non-pathogenic Escherichia coli K12 and its 

pathogenic relative O157:H7 (Perna et al., 2001). The two strains diverged from a 

common ancestor some 4.5 million years ago. O157:H7 contains 1387 genes distributed 

among several different pathogenicity islands that are not present in K12, while K12 has 

528 genes not found in O157:H7. This means that as much as 30 % of the pathogen’s 

genome may have been acquired by recent HGT. Further studies on E. coli has shown 

that recent additions to the metabolic network are mostly due to HGT rather than gene 

duplications and that genes encoding coupled enzyme pairs are often transferred 

together as parts of operons (Pál et al., 2005).

A recent study of 312 bacterial and 26 archaeal genomes found that the distribution of 

orthologous genes among prokaryotes points to the major trends in prokaryotic 

evolution being “extensive horizontal transfer of genes, pervasive gene loss and 

functional plasticity of many cellular systems” (Koonin and Wolf, 2008). Another study 

of 181 prokaryotic genome sequences found that approximately 80 % of the genes in 

each genome at some point in time had been involved in HGT (Dagan et al., 2008). This 

necessarily has consequences for the Tree of Life paradigm, as the tree would only fit 

for a small part of the prokaryotic genome. Thus, the Tree of Life is no longer 

considered enough to truly represent the evolution of prokaryotes (Doolittle and 

Bapteste, 2007). Instead, a dynamic network including both vertical and horizontal gene 

transfer would represent a more accurate picture (Koonin and Wolf, 2008).  

1.5.4 Horizontal gene transfer in Streptomyces

Comparison of Streptomyces genomes has revealed a central conserved region with high 

synteny and highly variable terminal regions (Ikeda et al., 2003). The terminal regions 

vary considerably even between closely related species such as S. ambofaciens and S.
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coelicolor and the central conserved region decreases in size with increasing 

phylogenetic distance (Bentley et al., 2002; Choulet et al., 2006). Moreover, the 

terminal regions contain few essential genes and a much higher proportion of 

transposable elements than the rest of the chromosome (Bentley et al., 2002; Chen et al., 

2002), suggesting that the variability of the terminal regions is a result of HGT events 

and DNA rearrangements (Choulet et al., 2006). In addition, gene clusters related to 

secondary metabolism are often found to be species specific, e.g. the spiramycin 

biosynthetic gene cluster in S. ambofaciens is not present in S. coelicolor, while the 

actinorhodin, undecylprodigiosin and cda gene clusters have no counterparts in S.

ambofaciens (Choulet et al., 2006). Comparison of the 23 gene clusters related to 

secondary metabolism in S. coelicolor with the 30 gene clusters found in S. avermitilis

show that many are present only in one genome and not in the other (Ikeda et al., 2003; 

Ventura et al., 2007). The terminal regions are usually rich in gene clusters for 

secondary metabolism, especially clusters that are species specific. Gene clusters that 

are present in several species are more often found in the core region, such as those for 

the biosynthesis of siderophores and geosmin (Ikeda et al., 2003; Ventura et al., 2007). 

The sporadic occurrence of gene clusters for secondary metabolite production in 

Streptomyces suggests that some of them may have been acquired through HGT (Chater 

and Kinashi, 2007), although evidence seem to have been provided only for the 

streptomycin biosynthetic gene cluster (Egan et al., 1998; Egan et al., 2001). The 

mechanism of transfer was, however, not addressed. 

There seem to be no reason to doubt that HGT occurs among streptomycetes, however, 

the extent of their promiscuity and what consequences it has for their evolutionary 

development, remains to be elucidated. The sequencing and comparison of more 

Streptomyces genomes may provide better answers in the following years. 

1.5.5 Linear plasmids in Streptomyces

Linear as well as circular plasmids are abundant in Streptomyces (Hopwood and Kieser, 

1993). While the size of circular plasmids is usually quite small, linear plasmids up to 1 
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Mb in size has been described (Gravius et al., 1994). Where studied, most linear 

plasmids appear to be transmissible by conjugation (Vivian, 1971; Hopwood et al., 

1983), but since not all carry genetic markers, the phenomenon cannot be studied in all 

cases. Linear plasmids can mediate transfer of chromosomal DNA by integration into 

the chromosome or possibly by protein-protein interactions between the terminally 

bound proteins (Hopwood and Wright, 1973; Hopwood and Wright, 1976; Hopwood, 

2006), but as this has only been shown for laboratory-grown strains, it is uncertain if 

this is a naturally occurring mechanism.     

Perhaps the best studied linear plasmid is SCP1 from S. coelicolor. The early work of 

D. A. Hopwood and his coworkers demonstrated that S. coelicolor carries a plasmid 

fertility factor (SCP1) capable of integrating into the chromosome and giving rise to 

high-fertility variants analogous to the E. coli F-factor (Hopwood, 1967; Hopwood et 

al., 1969; Vivian and Hopwood, 1970; Vivian, 1971; Vivian and Hopwood, 1973; 

Hopwood and Wright, 1973; Hopwood and Wright, 1976). SCP1 resisted isolation for 

many years as it was thought to be circular, but the invention of pulsed field gel 

electrophoresis in the 1980s demonstrated its linear nature (Kinashi et al., 1987). SCP1 

was, however, not the first linear plasmid to be discovered as Hayakawa et al. described 

the linear plasmid pSLA2 from S. rochei already in 1979 (Hayakawa et al., 1979). 

In the 1970s, it was speculated that antibiotic biosynthetic gene clusters might in 

general be carried by plasmids (Okanishi et al., 1970), and the discovery that SCP1 

harbors the gene cluster for methylenomycin biosynthesis further fueled the 

speculations (Kirby et al., 1975). The supposition was later disproved and only a few 

other examples of plasmid encoded gene clusters related to antibiotic biosynthesis have 

been found (Kinashi et al., 1987; Kinashi et al., 1988; Mochizuki et al., 2003; Jia et al., 

2006; Migita et al., 2009). Rather interesting is the fact that the methylenomycin gene 

cluster has also been found on a large circular plasmid, pSV1, from S. violaceoruber

SANK95770 (Okanishi et al., 1980). The two gene clusters are 99 % identical, but the 

rest of the plasmid sequences share little homology, suggesting recent horizontal 

transfer of the cluster (Yamasaki et al., 2003).   
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Another well-studied linear plasmid is pSLA2-L from S. rochei, carrying several 

clusters for secondary metabolite production, including the antibiotics lankamycin, 

lankacidin and an unknown aromatic polyketide (Mochizuki et al., 2003). The plasmid 

sequence itself did not reveal any explanation for the dense concentration of such 

clusters on pSLA2-L, however, it has been speculated that linear plasmids might 

provide a platform for bringing several gene clusters together for a natural type of 

combinatorial biosynthesis or for “selection of synergistic cooperations” (Chater and 

Kinashi, 2007).

Besides biosynthetic gene clusters for secondary metabolites, Streptomyces linear 

plasmids may provide the ability for growth in toxic environments. Ravel et al. isolated 

several Streptomyces strains carrying large linear plasmids conferring resistance against 

mercuric compounds (Ravel et al. 1998; Ravel et al., 2000). Two of the plasmids were 

shown to be transmissible to another Streptomyces strain in sterile soil microcosms, 

indicating that mercury resistance may spread among streptomycetes via conjugative 

linear plasmids (Ravel et al., 2000). 

Both the linear plasmids and the linear chromosomes of Streptomyces have terminal 

inverted repeats (TIRs) and terminal proteins attached to the ends. The plasmid and 

chromosome ends appear to be rich in transposable elements, which may facilitate 

recombinatorial exchanges between the plasmids and chromosomes (Chater and 

Kinashi, 2007). Exchange between a linear plasmid and the chromosome has been 

reported for S. rimosus, where the linear plasmid apparently had acquired the 

oxytetracycline biosynthetic gene cluster from S. rimosus’ chromosome (Gravius et al., 

1994). It is possible that exchanges can also occur between plasmids. SCP1 has internal 

regions that resemble plasmid ends, indicating earlier integration of other linear 

replicons, and the methylenomycin gene cluster may have been acquired from a 

precursor of the circular plasmid pSV1 of S. violaceoruber (Bentley et al., 2004). 

Combined with the highly transmissible nature of at least some linear plasmids, it is 

possible that such processes have played an important part in the evolution of 

Streptomyces genomes, perhaps particularly in relation to the distribution of gene 
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clusters for secondary metabolite production, and may account for the streptomycetes 

great success in colonizing the soil (Chater and Kinashi, 2007).  



AIMS OF THE STUDY 

2 Aims of the study 

The initial aim of this study was to discover new antifungal agents through 

bioprospecting of marine actinomycete bacteria. As described in the introduction, there 

is a critical need for new antifungal antibiotics as there are few options available to treat 

systemic fungal infections, and there are problems with toxicity and resistance. Isolation 

of bioactive natural products from actinomycete bacteria has historically been a great 

success and marine environments have remained largely unexplored as a source of 

actinomycete isolates. To achieve the goal of discovering new and preferably less toxic 

antifungal antibiotics from actinomycete isolates, several strategies were employed: 

Use of various production media to induce secondary metabolite production in a 

majority of isolates. 

Screening against two different clinical isolates of Candida differing in the 

resistance pattern to known antifungal agents. 

Spectroscopic screening of extracts for comparison of the UV-profiles.   

In parallel with the screening for antifungal compounds, a selection of extracts from 

some of the isolates were also screened against several cancer cell lines with the aim of 

identifying new cytotoxic compounds.  

Discovery of a potentially new, or in an other way interesting, compound, would make 

the candidate a subject for further studies aimed at isolating the biosynthetic gene 

cluster involved in production of the compound as well as elucidation of the 

biosynthetic pathway. A full genetic and biosynthetic overview is important if a 

compound is to be considered as a new drug candidate, but even if the compound would 

not be further pursued, the study could provide important information about enzymes 

involved in biosynthetic pathways and contribute to the accumulating knowledge about 

biosynthesis of natural products in general. 
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4 Summary of results and discussion 

4.1 Screening for producers of antifungal antibiotics and limited 

cytotoxic screen

(Basis for paper I, II and III) 

At the time this study was initiated, a strain collection of actinomycete bacteria isolated 

from the Trondheimsfjord had already been established in our research group. A 

screening procedure for identifying producers of antifungal antibiotics was established 

with the prospect of discovering potentially new compounds. Extracts made from all 

isolates were assayed using two Candida species, one sensitive for polyene macrolides 

(C. albicans) and one resistant to amphotericin B (C. glabrata). Inhibition of C. 

albicans, but not C. glabrata, could therefore indicate the presence of polyene 

macrolides in the extract. In addition, all extracts were subjected to UV/VIS scans, as 

polyenes usually produce characteristic UV spectra due to having several conjugated 

double bonds (Õmura and Tanaka, 1984). As polyene macrolides are in general quite 

toxic, discovery of new (or old) polyene macrolides was seen as undesirable. Designing 

the screen in this way would hopefully allow for a quick way of detecting extracts 

containing such compounds. Cultivation of strains in a 96 well plate format and robotic 

handling of extraction samples, made it possible to screen more than 4000 isolates.  

Evaluation of the UV/VIS spectra in connection with the inhibition pattern in the 

bioassay revealed a great number of putative polyene producers as well as several 

promising candidates presumed to be synthesizing non-polyenes. Of the latter, the 

candidates displaying the highest level of inhibition for both strains were chosen for 

further studies. A secondary screen was performed for 32 promising candidates to verify 

the bioactivity observed in the primary screen and the most interesting extracts were 

subjected to fractionation by HPLC. LC-MS-TOF performed on the bioactive fractions 

made it possible to identify the accurate mass of the putative active compound in several 

cases. Searching the Dictionary of Natural Products (http://dnp.chemnetbase.com/) 

using the accurate mass made it possible to assess whether the compound was new or 
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already described. In addition, extracts made from all 32 candidates were sent to the 

University in Bergen for a cytotoxic screen at the Department of Biomedicine. Results 

obtained in the antifungal screen, the cytotoxic screen and the LC-MS-TOF analysis 

formed the basis for selection of candidates for further studies.

4.2 Candicidin biosynthetic gene cluster is widely distributed among 

Streptomyces spp. isolated from the sediments and the neuston layer in 

the Trondheimsfjord 

 (Paper I) 

As mentioned above, a large number of putative polyene producers were identified in 

the initial antifungal screen. A closer inspection of the UV/VIS spectra, revealed that 

over 70 % of the spectra indicating polyene production were of the same pattern and 

displayed exactly the same absorption maxima. To investigate if all these extracts 

contained the same compound, an LC-DAD-TOF-MS analysis was performed on 51 

randomly chosen extracts of this kind. 11 extracts displaying different spectra were also 

included in the analysis. A compound with the accurate mass of 1108.5703 Da was 

shown to be present in 52 of the extracts and a search in the Dictionary of Natural 

Products (DNP) using a ± 5 ppm range returned the result of candicidin D, an aromatic 

polyene macrolide with antifungal activity first isolated in 1953 from a Streptomyces

griseus strain (Lechevalier et al., 1953). In addition, two other extracts were shown to 

contain potentially new polyene macrolides, as none of the identified accurate masses 

returned a hit in DNP. Further work with these two compounds was not pursued, 

however.

4.2.1 A group of streptomycetes isolated from the Trondheimsfjord harbors the 

candicidin biosynthetic gene cluster

Such a high frequency of potential candicidin producers among the isolates prompted 

speculation about horizontal gene transfer and 8 morphologically diverse candidates 
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were chosen for a genetic study (Streptomyces spp. MP47-06, MP47-91, MP18-04, 

MP15-36, MPS08-73, MPS08-39, MPS05-43 and MPS05-34). Partial 16S rDNA 

sequences were obtained for the 8 isolates and S. griseus IMRU 3570 (original 

candicidin-producer). S. griseus and 7 out of the 8 isolates turned out to have very 

similar 16S rDNA sequences, indicating that they are probably closely related, whereas 

one isolate (Streptomyces sp. MPS05-43) was significantly different from the rest. To 

verify that the isolates were indeed harboring the candicidin biosynthetic gene cluster 

(can), 3 different gene fragments (from canRA [ABC transporter], pabAB [p-

aminobenzoic acid synthetase] and canP3 [PKS]) were amplified from 2 of the isolates 

with primers designed for the can cluster from S. griseus IMRU 3570 (Campelo and 

Gil, 2002). PCR products were obtained for all three primer sets and two of the PCR 

products (from pabAB and canP3) were cloned and sequenced to verify that they 

belonged to the can cluster. Both fragments were found to be 99 % similar to the 

corresponding S. griseus sequences. To check for the presence of a can cluster in the 

remaining 6 isolates, a Southern blot analysis was performed using total DNA isolated 

from all 8 candicidin-producing isolates, S. griseus, a putative non-polyene producer

(Streptomyces sp. MPS07-63) and a putative producer of a different polyene

(Streptomyces sp. MPS07-67). Labeled versions of the sequenced PCR products were 

used as probes (pabAB and canP3). The results are presented in Figure 4. 1.
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Figure 4. 1 Southern blot analyses with probes pabAB (A) and canP3 (B). Both: Lane 1 and 14, 
Fermentas GeneRuler™ 1 kb DNA Ladder, lane 2, S. griseus, lane 3, Streptomyces sp. MP47-06; 
lane 4, Streptomyces sp. MP47-91; lane 5, Streptomyces sp. MP18-04; lane 6, Streptomyces sp. MP15-
36; lane 7, Streptomyces sp. MPS08-73; lane 8, Streptomyces sp. MPS08-39; lanes 9 and 10, 
Streptomyces sp. MPS05-43; lane 11,  Streptomyces sp. MPS07-63; lane 12, Streptomyces sp. MPS07-
67; lane 13, Streptomyces sp. MPS05-34. DNA was digested with BamH I. 

For the pabAB probe, hybridization to a fragment of the same size was obtained for 7 of 

the 8 candicidin-producing isolates (lanes 3-8 and 13) as well as for S.griseus (lane 2). 

The hybridization pattern for Streptomyces sp. MPS05-43 (lane 9 and 10, same isolate 

included twice) was different, indicating a different organization of the gene cluster, at 

least in the pabAB-containing region. Interestingly, Streptomyces sp. MPS05-43 

differed phylogenetically from the rest (see above). The pattern of hybridization was a 

bit more varied for the canP3 probe, perhaps indicating the presence of more than one 

PKS cluster in several of the isolates. As the pabAB probe appeared to be specific for 

the can cluster, the presence of this gene cluster in the 8 isolates could be said to have

been verified.
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4.2.2 Candicidin biosynthetic gene cluster is located on a linear plasmid in one of 

the isolates 

To examine the possibility that the candicidin gene cluster may have been transferred 

among isolates by the means of a mobile genetic element, the same isolates included in 

the Southern blot analysis were subjected to a pulsed field gel electrophoresis (PFGE). 

Such an experiment would show the presence of large plasmids in the chosen isolates. 

Pulsed field gels were blotted to allow hybridization with the pabAB and canP3 probes. 

The results are presented in Figure 4. 2.

Large plasmids, presumably linear, were identified in 6 of the candicidin producing 

isolates and hybridization to one of the plasmids (lane 7) was obtained for both probes. 

The can-specific probes did not hybridize to plasmids present in the other isolates and 

hybridization to chromosomal DNA was observed for these isolates as well as S.

griseus. Integration of plasmids into chromosomes has been described in at least two 

cases for Streptomyces strains (Kinashi et al., 1992; Gravius et al., 1994), and it is 

possible that the can-plasmid may be integrated into the chromosomes for some or all of 

the isolates.   
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Figure 4. 2  (A) PFGE, size of linear plasmids indicated with arrows (B) Southern hybridization 
analysis with probe pabAB and (C) Southern hybridization analysis with probe canP3. Lane 1, 
MidRange II PFG Marker; lanes 2 and 15, Yeast Chromosome PFG Marker (markers not shown 
on Southern hybridization); lane 3, S. griseus; lane 4, Streptomyces sp. MP47-06; lane 5, 
Streptomyces sp. MP47-91; lane 6, Streptomyces sp. MP18-04; lane 7, Streptomyces sp. MP15-36; 
lane 8, Streptomyces sp. MPS08-73; lane 9, Streptomyces sp. MPS08-39; lanes 10 and 11, 
Streptomyces sp. MPS05-43; lane 12,  Streptomyces sp. MPS07-63; lane 13, Streptomyces sp. MPS07-
67; lane 14, Streptomyces sp. MPS05-34. 
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4.2.3 Mating and plasmid curing experiments

Many Streptomyces plasmids are known to be conjugative (Hopwood and Kieser, 1993) 

and mating is facilitated by mixing spores from the donor with that of the recipient and 

allowing them to develop mycelium and sporulate. To investigate the can-plasmid’s

ability for conjugative transfer to other Streptomyces strains, several mating 

experiments were undertaken. In a first attempt, S. lividans TK64 (pSET152) was 

chosen as a recipient, but transconjugants could not be detected. A second experiment 

was attempted with S. noursei (unpublished), but the results were again negative. In a 

third attempt, a Trondheimsfjord isolate was used as the recipient, considering the 

possibility that the “native” strain might be more suitable as a host for the plasmid. 

Screening for candicidin production among 100 random colonies of the recipient, 

resulted in two putative transconjugants. A Southern blot analysis of the putative 

transconjugants could, however, not confirm any transfer of the plasmid. 

Next, a “curing” experiment of the can-plasmid-containing strain was attempted. It has 

been shown that growth at elevated temperatures can induce loss of linear plasmids in 

Streptomyces (Pang et al., 2002). The can-plasmid strain was incubated at several 

different temperatures and candidates with no candicidin production was observed after 

growth at 37°C. A subsequent Southern blot analysis showed no hybridization to the 

pabAB probe for one of the candidates, thus indicating loss of the plasmid. A mating 

experiment with the original can-plasmid strain and the “cured” strain resulted in 

reintroduction of the plasmid in the plasmid-free strain and restoration of the candicidin 

production. This experiment indicated that the can-plasmid is transmissible by 

conjugation, although transfer to strains other than the “cured” strain could not be 

achieved. The failure to demonstrate transfer to other strains may be due to several 

factors, such as instability of the plasmid in the chosen hosts or a transfer frequency 

below the detection limit of the chosen screening method. However, the study 

demonstrated that biosynthetic gene clusters for candicidin production seem to be wide-

spread among marine sediment derived streptomycetes and the presence of such a gene 
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cluster on a transmissible plasmid in one of the isolates suggests that the can cluster can 

be spread to other strains via horizontal gene transfer.

4.3 Biosynthetic pathway for the cytotoxic macrocyclic lactam BE-

14106 involves two distinct PKS systems and amino acid processing 

enzymes for generation of the aminoacyl starter unit 

 (Paper II) 

From the antifungal screen described in section 4.1, 6 producers of a compound 

identified as Antibiotic BE-14106 in the Dictionary of Natural Products were 

recognized. As the compound displayed particularly good activity in the cytotoxic 

screen performed at the University of Bergen, it was decided that the compound should 

be further pursued. The 6 producers were found to be morphologically similar and 16S 

rDNA sequencing of 3 of the producers showed that they most likely represented 

replicates of the same strain. The isolate denoted Streptomyces sp. DSM 21069 

displayed the highest level of production and was chosen for further characterization. 

To verify the identity of the isolated compound, structure determination by NMR was 

undertaken and confirmed that the compound was indeed BE-14106. The structure of 

BE-14106 is shown in Figure 4. 3.

Figure 4. 3 The structure of BE-14106. 
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4.3.1 Cloning and sequencing of the BE-14106 biosynthetic gene cluster 

A genomic cosmid library was constructed for Streptomyces sp. DSM 21069 and 

screened with a probe targeting PKS genes. The probe was generated using degenerate 

primers targeting the conserved KS domain-encoding regions of PKS genes. DNA 

fragments obtained by PCR were cloned, sequenced and compared to known PKSs by 

BLAST analyses. A fragment encoding part of a KS domain with strong homology to 

VinP1 involved in the biosynthesis of the macrolactam vicenistatin was judged to be the 

most promising as the structure of vicenistatin resembles that of BE-14106. The 

fragment was used for a gene inactivation experiment to verify involvement in the BE-

14106 biosynthesis and the production of BE-14106 in the mutant was found to be 

severely affected. 2304 cosmid clones from the genomic library were screened with the 

KS probe, resulting in isolation of 3 positive clones, which were end-sequenced. Cross-

sequencing with primers designed for the end-sequences established the degree of 

overlap between the 3 cosmids and a new probe was generated for one of the end-

sequences to facilitate a search for the missing part of the biosynthetic gene cluster. 

Hybridization with the new probe resulted in isolation of two new cosmid clones, and 

one of them was found to cover the missing part. Before full sequencing of the cosmids 

was initiated, involvement of the gene cluster contained in the four cosmids in the 

biosynthesis of BE-14106 was confirmed by gene inactivation experiments using PCR 

generated fragments from two of the cosmids. All tested transconjugants were found to 

be deficient in BE-14106 biosynthesis and the four cosmids were fully sequenced. 

4.3.2 Sequence analysis and gene inactivation experiments 

The gene cluster contained in the four cosmids was annotated using Frameplot and 

BLAST analyses and 27 complete and 1 incomplete open reading frames (orfs) were 

identified in the 85 kb DNA region (Figure 4. 4 and Table 4. 1). Based on the sequence
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Figure 4. 4 Organization of the BE-14106 biosynthetic gene cluster in Streptomyces sp. DSM 21069 
and the coverage of the four sequenced cosmids.  

Table 4. 1 Description of orfs identified in and around the BE-14106 biosynthetic gene cluster. 
Gene designation Product

  (aa) 
Putative function 

orf1 135 Putative secreted metal-binding protein 
orf2 199 Putative lipoprotein 
orf3 144 Hypothetical protein 
becH 951 LuxR-type transcriptional regulator 
becA 5582 Polyketide synthase type I 
becI 362 Glycine oxidase/FAD-dependent oxidoreductase 
becC 694 Polyketide synthase type I 
becU 187 Putative NRPS accessory protein  
becB 3527 Polyketide synthase type I 
becJ 532 AMP-dependent acyl-CoA synthetase/ligase 
becK 323 Acyltransferase 
becS 78 Peptidyl carrier protein 
becL 505 NRPS adenylation domain 
becM 198 TetR-type transcriptional regulator 
becN 524 MFS-type efflux pump 
becO 411 P450 monooxygenase 
becD 3372 Polyketide synthase type I 
becP 313 Putative L-amino acid amidase/proline iminopeptidase 
becG 1986 Polyketide synthase type I 
becF 3377 Polyketide synthase type I 
becE 1631 Polyketide synthase type I 
becT 95 Hypothetical protein, SimX2-like protein 
becQ 257 Thioesterase type II 
becR 237 PlsC-type phospholipid/glycerol acyltransferase 
orf6 537 Putative tripeptidylaminopeptidase 
orf7 256 Putative urease accessory protein 
orf8 231 Putative urease accessory protein 
orf9 incomplete Putative urease accessory protein 
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analysis and functional assignment of domains for the PKS enzymes, a hypothesis for 

the biosynthetic pathway was proposed involving 21 of the orfs present in the gene 

cluster (region from becH to becR). In the proposed scheme, the putative PlsC-type 

phospholipid/glycerol acyltransferase, BecR, would be linking the C20-C25 acyl side 

chain to the macrolactam ring. To test this hypothesis, a mutant containing a deletion in 

becR was created and verified by a Southern blot analysis. The mutant was tested for 

BE-14106 production by fermentation and subsequent LC-MS-TOF analysis of 

fermentation extracts. The production of BE-14106 was found not to be influenced by 

the deletion in the becR gene and the proposed pathway for the BE-14106 biosynthesis 

was revised. Following the new hypothesis, the C20-C25 acyl side chain would be 

linked to an amino acid or an amino acid derivative at an early point in the biosynthesis, 

forming an aminoacyl starter for the macrolactam ring biosynthesis. The C20-C25 acyl 

chain was presumed to be made by the BecA PKS enzyme, while the macrolactam ring 

was assumed to be synthesized by the BecB, BecD, BecE, BecF and BecG PKS 

enzymes. The gene inactivation experiments described above involving PCR amplified 

fragments from two of the cosmids, where upon comparison of sequences found to 

affect BecA, and thus verifying a role for BecA in the biosynthesis. Of the remaining 

genes in the cluster, there were uncertainty about the role of becI, becP and becC,

encoding a putative glycine oxidase/FAD-dependent oxidoreductase, L-amino acid 

amidase/proline iminopeptidase and a truncated PKS, respectively. In addition, the role 

of BecO as a P450 monooxygenase modifying the macrolactam ring by hydroxylation 

needed to be verified. becI, becP, becC and becO mutants were constructed, 

verified by Southern blot analyses and tested for BE-14106 production. The becI,

becP and becC mutants were found to be deficient in BE-14106 production, while 

the becO mutant produced the expected deoxy-BE-14106. The remaining genes in the 

cluster were not subjected to inactivation experiments and their putative role will be 

addressed below in connection with the proposed biosynthetic pathway for BE-14106. 
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4.3.3 Heterologous expression of BecI and BecP and enzyme assays 

To explore further the role of BecI and BecP in the biosynthesis of BE-14106, both 

enzymes were heterologously expressed in Escherichia coli as His-tag fusion proteins, 

purified and used for enzyme assays. BecI’s role in the biosynthesis was presumed to be 

modification of an amino acid substrate, which would subsequently be joined together 

with the acyl side chain. The activity of BecI-6xHis was tested in an assay designed for 

D-amino acid oxidases using several different L-and D-amino acid substrates. Highest 

activity was achieved with glycine and D-asparagine, however, the overall activity level 

was rather low. BecP-6xHis was tested in an assay designed for proline iminopeptidases 

using L-proline-pNA (p-nitroanilide) as a substrate. High activity was achieved with 

this substrate and to verify that proline was BecP’s preferred substrate the assay was 

repeated with L-alanine-pNA and L-lysine-pNA as negative controls. Surprisingly, L-

ala-pNA turned out to be a better substrate. The assay was repeated also with glycine-

pNA, but L-ala-pNA was found to be the best substrate of those tested. In addition, 

purified BE-14106 was incubated with BecP-6xHis and subjected to an LC-MS-TOF 

analysis to detect potential enzymatic degradation of the molecule, but such an effect 

could not be detected. The latter experiment was performed to evaluate the possibility 

that BecP might have a role in the BE-14106 resistance mechanism by causing an 

enzymatic cleavage of the macrolactam ring. Since no degradation of BE-14106 could 

be demonstrated, BecP most likely has a role to play in the biosynthesis of the 

macrolactam. This is also consistent with the observation that the becP mutant does 

not produce BE-14106. 

4.3.4 Feeding experiments 

Judging from the results of the enzyme assay for BecI, glycine or D-asparagine were 

considered the most likely candidates for the starter unit of the biosynthesis and feeding 

experiments were initiated to investigate the potential incorporation of these amino 

acids. A setup involving 15N isotope labeled medium components and feeding with 14N-

containing amino acids were chosen, as 15N isotope labeled D-asparagine could not be 
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obtained. L-glutamate and no addition of amino acid were included as controls. LC-MS 

characterization of fermentation extracts showed an increased incorporation of 14N in 

BE-14106 when glycine was added, thus indicating that the nitrogen in BE-14106 

originates from the amino group of glycine. A second feeding experiment was 

performed with 13C isotope labeled medium components and feeding with 12C-

containing amino acids to determine if the complete glycine molecule is incorporated 

into BE-14106. There was no enrichment of 12C in BE-14106 when feeding with 

glycine compared to the control, thus demonstrating that only the amino group from 

glycine is incorporated into BE-14106. 

4.3.5 Proposed biosynthetic pathway for BE-14106 in Streptomyces sp. DSM 21069  

Based on the results from the gene inactivation experiments and enzyme assays, several 

hypothetical pathways for synthesis of the aminoacyl starter were evaluated that 

involved incorporation of glycine, however, no pathway could be constructed that 

resulted in the synthesis of the correct starter. Instead, a scheme was proposed involving 

the truncated PKS BecC and recruitment of the glycine amino group. Inactivation of 

becC abolished the production of BE-14106 in Streptomyces sp. DSM 21069, thus 

confirming a role for BecC in the biosynthesis. Subsequent feeding experiments showed 

that only the nitrogen atom, and not the carbons, from glycine is incorporated into BE-

14106, supporting the hypothesis that the glycine amino group is recruited to generate 

the starter unit. The proposed biosynthetic pathway for BE-14106 is presented in Figure

4. 5. The pathway is thought to start with the synthesis of the acyl chain by BecA and 

BecC. The third module of BecA is truncated and lacks the ACP domain necessary for 

completion of the third extension. BecC, which constitutes a KR and an ACP domain, is 

presumed to supply the terminal ACP. The resulting acyl chain is assumed to be further 

modified while still tethered to the ACP domain of BecC. The discrete adenylation 

domain, BecL, presumably activates glycine through adenylation and subsequent 

loading on the discrete PCP domain, BecS. The BecU protein of unknown function may 

mediate the interaction between the PCP domain and the BecC ACP domain. Putative 

glycine oxidase, BecI, is thought to catalyze oxidative deamination of glycine, releasing 
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Figure 4. 5 Proposed pathway for the biosynthesis of BE-14106. A) Synthesis of the aminoacyl 
starter. B) Synthesis of the macrolactam ring. Certain domains are indicated by use of color: 
malonyl-CoA specific AT domains: orange, methylmalonyl-CoA specific AT domains: blue, loading 
module ACP domain: green, KSQ and TE domains: yellow. 
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ammonium, which then performs a nucleophilic attack on the acyl C-19 carbonyl, 

forming a C-19 imino group. The deaminated glycine residue is assumed to be released 

as glyoxylate. Reduction of the C-19 imino to an amino group may cause the 

migration/elimination of the acyl double bonds. The aminoacyl is presumably released 

by the thioesterase type II, BecQ. Putative acyl-CoA synthetase/ligase BecJ presumably 

activates the aminoacyl through ligation with CoA, making the starter an acceptable 

substrate for loading on BecB by the discrete acyltransferase BecK. After loading of the 

aminoacyl starter on the first ACP domain of BecB, the polyketide synthesis is assumed 

to proceed through all modules of the BecB-BecG PKS enzymes with subsequent 

release and cyclization of the macrolactam by the terminal TE domain of BecG. The 

putative L-amino acid amidase/proline iminopeptidase BecP may aid in this process, but 

no experimental results have been obtained that can verify this role. The resulting 

deoxy-BE-14106 is hydroxylated by the P450 monooxygenase BecO, presumably at the 

C-8 position. The biosynthesis of BE-14106 is thought to be regulated by the two 

regulators BecH and BecM and the efflux/resistance mechanism is presumed to involve 

the MFS-type efflux pump BecN. 

4.4 Insights into the evolution of macrolactam biosynthesis: cloning 

and comparative analysis of the biosynthetic gene cluster for a novel 

macrocyclic lactam ML-449 

(Paper III) 

The antifungal screen described in section 4.1 resulted in detection of another “hit” 

compound exhibiting antifungal activity. Fractionation and LC-MS-TOF analysis of 

fermentation extracts from the producer Streptomyces sp. MP39-85, revealed a putative 

active compound with the accurate mass of 449. The compound subsequently dubbed 

ML-449 (ML = macrolactam), was subjected to NMR spectroscopy for structure 

elucidation and found to be remarkably similar to BE-14106, differing only in the 

length of the acyl side chain (Figure 4. 6).
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Figure 4. 6 The structures of BE-14106 and ML-449. 

MIC50 was determined for ML-449, but the compound was found to be less active 

against Candida than BE-14106. The ML-449 biosynthetic gene cluster (mla) was 

identified and sequenced following the same procedure as for the BE-14106 gene 

cluster (bec).

4.4.1 Comparison of the ML-449 and the BE-14106 biosynthetic gene clusters

Annotation of the sequenced gene cluster revealed a high similarity with the BE-14106 

biosynthetic gene cluster described in section 4.3. Homologs of all genes present in the 

bec cluster were identified in the mla cluster and the organization of the two gene 

clusters was found to be identical (Table 4. 2 and Figure 4. 7). Similarity on both 

protein and nucleotide level was in the range of 80-90 % for most of the orfs.
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Table 4. 2 Description of proteins encoded by the mla cluster and corresponding homologs from the 
bec cluster. 

Protein Size (aa) Homolog from 
BE-14106
cluster

% positives/ 
% identity 

Proposed function 

MlaH 951 BecH 94/88  LuxR-type transcriptional 
regulator

MlaA1 6383 BecA 91/86 Polyketide synthase type I 
MlaA2 1043 - - Polyketide synthase type I 
MlaI 363 BecI 89/79 Glycine oxidase/FAD-

dependent oxidoreductase 
MlaC 695 BecC 90/84 Polyketide synthase type I 
MlaU 187 BecU 95/88 Putative NRPS accessory 

protein
MlaB 3530 BecB 92/87 Polyketide synthase type I 
MlaJ 532 BecJ 91/86 AMP-dependent acyl-CoA 

synthetase/ligase 
MlaK 313 BecK 89/83  Acyltransferase 
MlaS 78 BecS 94/88  Peptidyl carrier protein 
MlaL 504 BecL 90/83  NRPS adenylation domain 
MlaM 198 BecM 89/86  TetR-type transcriptional 

regulator
MlaN 523 BecN 94/87  MFS-type efflux pump 
MlaO 411 BecO 97/92 P450 monooxygenase 
MlaD 3365 BecD 92/88 Polyketide synthase type I 
MlaP 311 BecP 91/84  Putative L-amino acid 

amidase/proline iminopeptidase 
MlaG 1992 BecG 90/85 Polyketide synthase type I 
MlaF 3373 BecF 93/88 Polyketide synthase type I 
MlaE 1637 BecE 92/87 Polyketide synthase type I 
MlaT 88 BecT 82/74  Hypothetical protein, SimX2-

like protein 
MlaQ 256 BecQ 93/86 Thioesterase type II 
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Figure 4. 7 Comparison of the bec and mla clusters. Genes encoding PKS enzymes involved in 
synthesis of the acyl side chain is shown in orange, remaining PKS genes in green. Genes encoding 
regulators and an efflux pump are shown in blue. The P450 monooxygenase-encoding gene is 
shown in yellow, while genes encoding enzymes presumed to be involved in activation/modification 
of the aminoacyl starter are shown in red, as are the cryptic bec/mlaT and the iminopeptidase-
encoding bec/mlaP.

The only difference between the two clusters was represented by the mlaA1 and mlaA2

genes. MlaA1 appeared to be the complete version of BecA, with a full third module, 

while MlaA2 is truncated in the same way as BecA and lacks the terminal ACP domain. 

All in all, MlaA1, MlaA2 and MlaC constitute four complete modules, while BecA and 

BecC represents three modules, and thus the former presumably incorporates one extra 

acetate unit into the acyl chain. The elucidated structure of ML-449 is in agreement with 

this proposal. All other aspects of the ML-449 biosynthesis are assumed to be in 

correspondence with the proposed pathway for the biosynthesis of BE-14106 (described 

in section 4.3.5). To confirm the involvement of the sequenced gene cluster in the ML-

449 biosynthesis, a gene inactivation experiment was performed using a DNA fragment 

covering the KR2-, ACP2-, KS3- and AT3-encoding part of mlaA1. The mutant was 

found to produce less than 1 % of wildtype level, thus confirming the involvement of 

the gene cluster in the biosynthesis of ML-449.
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4.4.2 Evolutionary analysis 

A phylogenetic analysis was undertaken for the KS domains of the PKS enzymes 

encoded in the two gene clusters. For comparison, KS domains from 9 other 

characterized PKS clusters were included in the analysis, including the biosynthetic 

gene clusters for the structurally related macrolactams vicenistatin and salinilactam. The 

phylogenetic tree generated for the 151 KS domains demonstrated a split between the 

KS domains involved in the synthesis of the acyl side chain and the rest of the KS 

domains from the mla and bec clusters (Figure 4. 8). KS domains belonging to one 

particular gene cluster usually form a separate group, indicating that the individual

modules were generated by duplication of a single ancestor module (Lopez, 2003; 

Ginolhac et al., 2005; Jenke-Kodama et al., 2006). The splitting of the mla/bec KS 

domains into two separate groups thus indicates a different origin for the mlaA1/becA

and mlaA2 genes than the remaining PKS genes in the cluster. As to the process by 

which mlaA1/becA and mlaA2 ended up in the mla/bec cluster, one can only speculate, 

but a recombinatorial event involving a different PKS gene cluster could be a plausible 

explanation. All Mla/BecB-G KS domains (except KS1 from Mla/BecB) formed a 

subclade together with all KS domains from the vicenistatin biosynthetic gene cluster 

(except KS1 from VinP1) and some KS domains from the salinilactam biosynthetic 

gene cluster, indicating a common origin for at least some of the PKS genes from these 

macrolactam biosynthetic gene clusters. KS1 domains from Mla/BecB, VinP1 and 

Strop_2768 formed a separate group from the other KS domains included in the study. 

Earlier studies have shown that KS domains accepting amino acid derived substrates 

usually form a separate clade and do not group with the KS domains from their 

respective gene clusters (Moffitt and Neilan, 2003; Ginolhac et al., 2005). As KS1 from 

Mla/BecB, VinP1 and Strop_2768 presumably accept amino acid derived/aminoacyl 

substrates, the formation of a separate group by these KS domains is consistent with the 

above-mentioned observation. All KSQ domains formed a separate group and this is 

consistent with earlier studies (Moffitt and Neilan, 2003; Ginolhac et al., 2005). The 

analysis also revealed that the KS domains from the mla cluster were always direct
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Figure 4. 8 Phylogenetic analysis of ketosynthase (KS) domains. The tree was reconstructed using 
maximum likelihood. aLRT statistic values are indicated at each node. The scale bar indicates 0.2 
substitutions per amino acid position. The tree is unrooted. Green box: KS domains involved in 
macrolactam ring synthesis; orange box: KS domains involved in acyl side chain synthesis; blue 
box: KS domains accepting amino acid/aminoacyl; yellow box: KSQ domains.  
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neighbors of their bec homologs from the same module, and this strongly suggests a 

common origin for the two gene clusters. 

4.4.3 Enzymes presumed to be involved in activation/modification of the aminoacyl 

starter

In the central region of the mla/bec clusters is a small subcluster of four genes and 

similar subclusters of putative homologs can be found in the vin and slm clusters, 

although the organization of the genes is different (Figure 4. 9 A). The four genes 

presumably encode a discrete NRPS adenylation domain (mla/becL), a discrete PCP 

domain (mla/becS), an AMP-dependent acyl-CoA synthetase/ligase (mla/becJ) and a 

discrete acyltransferase (mla/becK). In contrast to the mla/bec, vin and slm clusters, the 

lnm cluster contains only two of the putative homologs.

Figure 4. 9 A) The subclusters of putative homologs from the mla, bec, slm, vin and lnm clusters. 
Potential homologs are indicated by use of the same color: encoding putative NRPS adenylation 
domains: yellow, AMP-dependent synthetases/ligases: orange, acyltransferases: red, PCP domains: 
green. Phylogenetic trees for adenylation domains/AMP-dependent acyl-CoA synthetases/ligases 
(B) and acyltransferases (C) are shown on the right.  Phylogenetic trees were generated using 
PhyML (maximum likelihood). aLRT statistic values are indicated at each node. Trees are 
unrooted.  
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To establish the evolutionary relationship between these potential homologs, 

phylogenetic trees were reconstructed for the putative NRPS adenylation (A) domains, 

AMP-dependent acyl-CoA synthetases/ligases (Figure 4. 9 B) and acyltransferases (AT) 

(Figure 4. 9 C). The NRPS A domains and AMP-dependent acyl-CoA 

synthetases/ligases were included in the same tree reconstruction as they all contain the 

10 core motifs of the adenylate-forming superfamily of enzymes and are presumed to 

represent homologs. The analysis showed that the discrete A domains and AMP-

dependent acyl-CoA synthetases/ligases both formed separate groups distinct from the 

other A domains included in the study, thus indicating a closer relationship between 

these enzymes than other A domains. The same phenomenon was observed for the 

discrete ATs, as they formed a subclade separate from the other AT domains included in 

the analysis.  

In addition to these four genes, there are several other putative homologs present in the 

vin and slm clusters. The slm cluster contains a total of 9 potential homologs (not 

counting PKS genes) of genes from the mla/bec clusters, although the overall 

organization of the slm cluster is quite different from the mla/bec clusters. The 

phylogenetic analyses of the KS, A and AT domains suggest common ancestry for these 

four gene clusters, however, several rearrangements of the clusters as well as 

deletions/insertions must be postulated if all should stem from the same ancestor cluster. 

Earlier studies have shown that individual modules and domains in PKS and NRPS 

genes may have been exchanged through a natural type of biocombinatorics (Jenke-

Kodama et al., 2006; Fewer et al., 2007). In that respect, it does not seem unlikely that 

also other genes in such gene clusters are exchangeable and that new gene clusters for 

secondary metabolites are generated through recombinational events with other clusters 

or within the same cluster, loss or acquisition of genes as well as gene duplications.
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5 Concluding remarks 

The work presented in this thesis has focused on discovering new compounds with 

antifungal or cytotoxic activity, genes for their biosynthesis and elucidation of 

biosynthetic pathways. In addition, potential mechanisms behind distribution and 

evolution of these biosynthetic gene clusters have been suggested. 

Screening of more than 4000 actinomycete isolates from sediment and neuston layer 

samples, revealed a high number of putative heptaene producers and LC-MS-TOF 

analysis identified the heptaene in question as the polyene macrolide candicidin. A gene 

cluster for the biosynthesis of candicidin was located on a linear plasmid, suggesting 

involvement of horizontal gene transfer in the dissemination of the gene cluster among 

actinomycetes in marine sediments and the neuston layer. The plasmid was, however, 

only discovered in one isolate and more work remains to be done before a full 

understanding of the phenomenon can be obtained. Further study involving a larger 

number of isolates as well as full sequencing of selected genes from the can cluster 

could potentially provide a more defined conclusion. 

Following the screening of actinomycete isolates, several compounds exhibiting both 

antifungal and cytotoxic activity were identified, including the previously described 

macrolactam antibiotic BE-14106. Cloning and sequencing of the BE-14106 

biosynthetic gene cluster (bec) has been accomplished and revealed a rather unusual 

cluster consisting of genes encoding both PKS and NRPS-related enzymes. Two of the 

genes were found to encode truncated PKSs lacking some of the core domains usually 

present in such enzymes. The proposed pathway for the production of BE-14106 

involves synthesis of the acyl side chain by a separate PKS system and recruitment of 

an amino group from the amino acid glycine to generate the aminoacyl starter unit for 

the macrolactam ring synthesis. Such a mechanism for synthesizing a starter unit for 

macrolactam biosynthesis has to our knowledge never been described before. Although 

a defined role for most of the enzymes encoded in the gene cluster could be suggested, 

experimental work to verify some of these functions remains to be carried out. In that 
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respect, the role of the putative L-amino acid amidase/proline iminopeptidase BecP may 

be the most puzzling and in dire need of verification. 

Sequencing of the biosynthetic gene cluster for a second macrolactam, ML-449, 

revealed a gene cluster with high similarity to the bec cluster. The two compounds, ML-

449 and BE-14106, were shown to be structurally similar, only differing in the length of 

the acyl side chain. The structural differences appear to be due to the incorporation of 

one extra acetate unit during the synthesis of the ML-449 acyl side chain as the PKS 

system performing this synthesis contains one extra module compared to the enzymes 

encoded by the bec cluster. Phylogenetic analyses of KS, A and AT domains involved 

in the biosynthesis of the two compounds pointed to common ancestry for the two 

clusters as well as an evolutionary relationship with the vicenistatin and salinilactam 

biosynthetic gene clusters.

The sequencing of the BE-14106 and ML-449 biosynthetic gene clusters provides an 

important starting point for biosynthetic engineering of these compounds into a possible 

anticancer drug candidate. Derivatives with improved activity or better pharmacological 

properties can potentially be generated through genetic manipulation of the genes found 

within these clusters. In that respect, the elucidation of the biosynthetic pathways 

provides vitally important information for predicting the structural changes resulting 

from such genetic engineering. In addition, the work has provided more knowledge 

about macrolactam biosynthesis in general as well as insight into the underlying 

processes governing the evolution of macrolactam biosynthetic gene clusters. 
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