
Doctoral Theses at NTNU, 2008:255

Øyvind Mejdell Jakobsen
Study and engineering of methanol
assimilation and L-lysine production
in the thermotolerant bacterium
Bacillus methanolicus

 ISBN 978-82-471-1204-5 (printed ver.)
 ISBN 978-82-471-1205-2 (electronic ver.)

ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
Th

es
is

 fo
r 

th
e 

de
gr

ee
 o

f
ph

ilo
so

ph
ia

e 
do

ct
or

Fa
cu

lt
y 

of
 N

at
ur

al
 S

ci
en

ce
s 

an
d 

Te
ch

no
lo

gy
D

ep
ar

tm
en

t o
f B

io
te

ch
no

lo
gy

Theses at N
TN

U
, 2008:255

Ø
yvind M

ejdell Jakobsen



Øyvind Mejdell Jakobsen

Study and engineering of methanol
assimilation and L-lysine
production in the thermotolerant
bacterium Bacillus methanolicus

Thesis for the degree of philosophiae doctor

Trondheim, September 2008

Norwegian University of
Science and Technology
Faculty of Natural Sciences and Technology
Department of Biotechnology



NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Natural Sciences and Technology
Department of Biotechnology

©Øyvind Mejdell Jakobsen

 ISBN 978-82-471-1204-5 (printed ver.)
 ISBN 978-82-471-1205-2 (electronic ver.)
ISSN 1503-8181

Theses at NTNU, 2008:255

Printed by Tapir Uttrykk



 

PREFACE 

 

 The work presented in this thesis was carried out at Department of 

Biotechnology, SINTEF Materials and Chemistry, and at Department of Biotechnology, 

Norwegian University of Science and Technology (NTNU). It was financially supported 

by the Research Council of Norway. 

 

 The work has been supervised by Research Director and Adjunct Professor 

Trond E. Ellingsen at SINTEF Materials and Chemistry and Professor Svein Valla at 

NTNU. I would like to thank them both for offering me the Ph.D. position and for 

giving me the opportunity to learn from their knowledge and experience. Specifically, 

I would like to thank Trond for his care and commitment, for trusting me with a 

substantial share of responsibility throughout the project, and for introducing me to 

the challenges of the life behind the scenes of everyday research and development. 

Furthermore, I would like to thank Svein for valuable guiding of an amateur geneticist 

within the field of molecular biology, for his invincible optimism, his good humor and 

his ability to cheer anyone, anywhere, anytime. 

 I would like to acknowledge the ideas and work of Michael C. Flickinger, Arne 

R. Strøm, Kjell D. Josefsen and my supervisors for preparing the applications that 

lead to the initiation of the project “Microbial production of L-lysine from methanol for 

use as feed supplement to fish and animals”, and thus laying the foundations for my 

Ph.D. work and what later was accomplished on this project. 

 

 Throughout my Ph.D. work, I have been in the very fortunate position of 

working in a project group with highly skilled people. In particular, I would like to 

express my gratitude to Trygve Brautaset who has more or less been involved in all 

my Ph.D. work. He has supervised and introduced me to new laboratory techniques, 

new theory and new ideas, and has been a good friend and colleague throughout my 

work. Furthermore, I would like to thank researchers, engineers and students that 

have worked on the lysine project throughout the years for their valuable 

contributions, in particular Kristin F. Degnes and Aline Benichou. 

 I would like to thank all friends at Department of Biotechnology at SINTEF 

Materials and Chemistry. You welcomed me warmly and have treated me as an equal 

 i 



 

colleague ever since, included me in your social and professional lives, and always 

offered time to help. Especially I would like to thank Håvard Sletta for his friendship, 

ideas and help, Kathinka Q. Lystad and Randi Aune for teaching me the secrets of 

everyday laboratory work and Kjell D. Josefsen for his time and willingness to answer 

all thinkable and unthinkable scientific questions. Furthermore, I would like to thank 

Asgeir Winnberg, Geir Klinkenberg and Jan Erik Aastad for sharing their knowledge 

within the art of constructing and programming useful and useless gadgets: If a 

device works, it simply doesn’t have enough features yet! 

  Likewise, I would like to thank the genetics group of the Department of 

Biotechnology at NTNU for guidance and help on the molecular biology laboratory, 

and for including me in their social network. 

 

 My parents and my brother deserve a heartfelt gratitude for being so 

supportive and for teaching me values I have come to appreciate very much. Their 

interest in my field is admirable, and I have yet to see a retired civil engineer with as 

good an insight into microbial production of essential amino acids as my father. 

 

 Halvor; thank you for new perspectives, new values and your enriching 

laughter. 

 Anita; thank you for your smile, and thank you for your support. 

 

 

 

 

 

 

 

 

 

Trondheim, July 2008 

 

Øyvind Mejdell Jakobsen 

 ii 



 

SUMMARY 

 

 Lysine is an essential amino acid and one of the most important 

biotechnological products with respect to production volume and value. 

Traditional feedstuffs normally contain less lysine than required by non-

ruminants such as pigs and poultry. Feedstuffs may therefore be enriched with 

lysine to meet the nutritional requirements of the animals. Today’s production of 

lysine exceeds 800,000 tons per year and is based on fermentation processes 

with the bacterium Corynebacterium glutamicum growing on sugar. 

 The work presented in this thesis was directed towards basic 

understanding of the biology of the candidate bacterium Bacillus methanolicus, in 

addition to the development of a new methanol-based fermentation process for 

lysine by this organism. Methanol is considered an alternative and attractive raw 

material for the biotechnological industry, and B. methanolicus, a Gram-positive, 

aerobic and thermotolerant methylotroph has previously been shown to be a 

potential candidate organism for high-level amino acid production. 

 The thesis presents fundamental results on the organization and 

regulation of genes involved in methanol assimilation by the ribulose 

monophosphate (RuMP) pathway in B. methanolicus. The findings are 

subsequently exploited from an applied point-of-view to improve the strain’s 

methanol tolerance, an important requirement for a robust methanol-based 

microbial process. The latter part of the thesis demonstrates improved lysine 

productivity by overexpressing aspartokinase, a key enzyme of the lysine 

biosynthesis pathway. 

 

 A reliable gene delivery system was required as a basis for metabolic 

engineering of B. methanolicus. The work related to this thesis was therefore initiated 

by the development of such methods, resulting in an improved protocol for protoplast 

transformation and a new protocol for reliable transformation of B. methanolicus by 

electroporation.  

 B. methanolicus was shown to carry a plasmid harboring essential genes for 

methanol metabolism. The natural plasmid isolated from B. methanolicus wild type 

MGA3 was designated pBM19 and carries genes encoding methanol dehydrogenase 
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responsible for methanol oxidation and the five enzymes sedoheptulose-1,7-

bisphosphatase, fructose-1,6-bisphosphate aldolase, transketolase, 6-phospho-

fructokinase and ribulose-5-phosphate 3-epimerase, with assumed roles in methanol 

assimilation by the ribulose monophosphate pathway.  This was the first 

demonstration of plasmid dependent methylotrophy in any microbial system. We 

further demonstrated that both chromosomal and plasmid-borne genes involved in 

methanol metabolism are transcriptionally upregulated in the presence of methanol, 

and that such upregulation is critical for the cell’s methanol tolerance. The methanol 

sensitivity was shown to be caused by accumulation of toxic formaldehyde, and the 

cell’s ability to detoxify this compound depends on the presence of a functional 

ribulose monophosphate pathway. Formaldehyde assimilation is dependent on the 

activity of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase 

encoded by hps and phi, respectively. The copy-number of the plasmid-borne genes 

involved in methanol metabolism was estimated to 10 – 16 per chromosome, while 

hps and phi are chromosomally located. By increasing the copy-number of hps and 

phi, we were able to increase the cell’s methanol tolerance and specific growth rate 

on methanol medium. 

 The key enzyme aspartokinase controls the flow of carbon into the aspartate 

pathway, of which the amino acids lysine, threonine and methionine are end 

products. To investigate the role of aspartokinase on lysine production by B. 

methanolicus, the genes encoding aspartokinase I and III were cloned and 

sequenced. In addition to the previously known gene for aspartokinase II, these 

genes represent three aspartokinase isozymes in this organism. By individual 

overexpression of each of these wild type genes in B. methanolicus, lysine production 

was demonstrated to increase up to 60-fold to 11 g/l (by overexpression of yclM 

encoding aspartokinase III), without similarly increasing the production of threonine 

and methionine. Such an increase in lysine production by overexpression of wild type 

aspartokinase, generally an enzyme efficiently regulated by allosteric feedback 

inhibition, has previously not been reported.  

 The findings related to the understanding and engineering of the methanol 

metabolism and the lysine biosynthetic pathway may contribute towards improved 

understanding of the biology of B. methanolicus and towards the exploitation of this 

organism for a future methanol-based lysine production process. 

 iv 



 

TABLE OF CONTENTS 

 

PREFACE ....................................................................................................... i 
SUMMARY.................................................................................................... iii 
TABLE OF CONTENTS ..................................................................................... v 
LIST OF PAPERS ........................................................................................... vi 
 

1 INTRODUCTION ....................................................................................... 1 
1.1 Biotechnological production of amino acids ............................................. 1 
1.2 Methylotrophic bacteria........................................................................ 7 
1.3 Microbial production of lysine.............................................................. 15 
1.4 Bacillus methanolicus and its potential for amino acid production ............. 22 

 

2 AIMS OF THE STUDY............................................................................... 26 
 

3 SUMMARY OF RESULTS AND DISCUSSION ................................................. 27 
3.1 Theoretical considerations .................................................................. 27 
3.2 Establishment of protocols for gene delivery and high cell density 

 cultivations of B. methanolicus............................................................ 29 
3.3 Study and engineering of B. methanolicus methanol metabolism ............. 34 
3.4 Metabolic engineering of the B. methanolicus aspartate pathway by 

 means of overexpressing aspartokinase ............................................... 41 
 

4 SUGGESTIONS FOR FURTHER WORK......................................................... 47 
 

5 CONCLUSIONS....................................................................................... 50 
 

REFERENCES............................................................................................... 52 
 

Appendix 1. ................................................................................................ 64 
Appendix 2. ................................................................................................ 65 
 

 

 v 



 

LIST OF PAPERS 

 

Paper I 

Trygve Brautaset, Øyvind M. Jakobsen, Michael C. Flickinger, Svein Valla and Trond 

E. Ellingsen. 2004. Plasmid-dependent methylotrophy in thermotolerant Bacillus 

methanolicus. Journal of bacteriology, 186, 5: 1229-1238 

 

Paper II 

Øyvind M. Jakobsen, Aline Benichou, Michael C. Flickinger, Svein Valla, Trond E. 

Ellingsen and Trygve Brautaset. 2006. Upregulated transcription of plasmid and 

chromosomal ribulose monophosphate pathway genes is critical for methanol 

assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus 

methanolicus. Journal of bacteriology, 188, 8: 3063-3072 

 

Paper III 

Trygve Brautaset, Øyvind M. Jakobsen, Kjell D. Josefsen, Michael C. Flickinger and 

Trond E. Ellingsen. 2007. Bacillus methanolicus: a candidate for industrial production 

of amino acids from methanol at 50ºC. Applied microbiology and biotechnology, 74, 

1: 22-34 

 

Paper IV 

Øyvind M. Jakobsen, Trygve Brautaset, Kristin F. Degnes, Michael C. Flickinger, Svein 

Valla and Trond E. Ellingsen. Overexpression of wild-type aspartokinase increases L-

lysine production in methylotrophic Bacillus methanolicus. Submitted to Applied and 

environmental microbiology. 

 

 

Contributions to related publications not included in this thesis: 

Øyvind M. Jakobsen, Trygve Brautaset and Trond E. Ellingsen. 2008. Patent 

application GB0809169: Method of L-lysine production. Sinvent AS. 

 

 

 vi 



INTRODUCTION 

1 INTRODUCTION 

1.1 Biotechnological production of amino acids 

1.1.1 

                                              

Amino acids are essential building blocks for living organisms 

 Amino acids are carboxylic acids with an amino group. They are key 

compounds for living organisms and constitute the building blocks of proteins1). 

Organisms require all the 20 amino acids commonly found in proteins. Higher animals 

need a sufficient supply of the so-called essential amino acids (lysine, methionine, 

threonine, tryptophan, leucine, isoleucine, valine and phenylalanine) which they 

cannot synthesize themselves. Non-ruminants of the food industry such as pig, 

poultry and fish represent a considerable demand for essential amino acids. Sufficient 

amounts of a natural diet will eventually meet this demand as proteins in the 

feedstuffs are broken down and the different amino acids are made available to the 

animal. However, as the content of the amino acids in the feedstuff does not 

necessarily correlate with the animal’s requirements for optimal growth, fine-tuning 

of the amino-acid composition of the feedstuff may be desirable in order to increase 

the nutritional value of the feed. Extensive research has been carried out towards the 

isolation of crops with improved content of essential amino acids, both through 

conventional breeding-programs and targeted genetic engineering. Despite several 

advances within this field, commercial use of such crops has not yet occurred apart 

from the Quality Protein Maize lines with approximately double the amount of lysine 

and tryptophan (0.4% and 0.1% of total dry weight, respectively) compared to 

normal maize (49, 118, 144). The limited commercial success is believed to be due to 

recent legislation and a general concern about the use of genetically modified crops 

(12, 48). 

 In contrast to mammals, microorganisms such as bacteria can synthesize all 

the biologically required amino acids. Crude proteins may constitute 80% of the dry 

weight of bacteria (6), and so-called Single Cell Protein processes have evolved for 

the manufacture of protein-rich biological cell mass. Harvested biomass may be 

 
1 Amino acids can exist as D or L enantiomers, and with some exceptions, life has evolved to 
use L-amino acids rather than D (Madigan, M. T., M. Martinko, and J. Parker. 2002. Brock 
biology of microorganisms, 10th ed. Prentice Hall / Pearson Education, Upper Saddle River, NJ). 
In this thesis, the L enantiomer of amino acids is assumed if not specified. 
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INTRODUCTION 

subjected to downstream processing steps like washing, cell disruption, protein 

extraction and purification (47), and is used as protein supplementation of animal 

feed (6, 124). 

 Alternatively, bacteria may be engineered or mutagenized to overproduce 

specific amino acids so that the products of such processes may be used to balance 

the amino acid content of animal feed (section 1.1.3). 

 

1.1.2 Essential amino acids are used as feed additives 

 Feed additives used by the animal feed industry constitute the majority of the 

global market for amino acids (91). The most important amino acids used as feed 

supplements are lysine and DL-methionine, but also threonine and tryptophan is used 

for this purpose.  

 Lysine is used almost exclusively as a feed additive. This essential amino acid 

is the first limiting amino acid in pig feed and the second limiting amino acid in 

poultry feed. The natural content of lysine in traditional feedstuffs such as corn, 

wheat and barley is less than or around 0.5% of total dry weight (122). For 

comparison, the demand of lysine in piglet feed is more than 1%. Soybean contains 

more than 2% lysine and in order to increase the feed efficiency, such lysine-rich 

crops can be added to traditional feedstuffs. However, as addition of soybean meal 

also supplies amino acids present in the feedstuff in sufficient amounts, direct 

addition of lysine may be a preferred method for rational optimization of the amino 

acid content. To illustrate, a mix of 0.5% pure lysine and 99.5% traditional feed-stuff 

will as an example offer a similar protein quality in regards of lysine content as a mix 

of about 20% soy meal and 80% traditional feed-stuff. 

 The content of methionine in corn, wheat and barley is below or around 0.2% 

of the feed dry weight. Methionine is the first limiting amino acid in poultry feed, and 

the second limiting amino acid in piglet feed (with a preferred DL-methionine content 

of about 0.4%) (122). The D-form of methionine, not commonly found in nature, can 

be converted into the nutritive L-form by the animal by means of an oxidase and a 

transaminase, which allows the direct use of a synthetic racemic mixture (91). 
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1.1.3 

1.1.4 

Towards 100 years of industrial amino acid production 

 A discovery by Dr. Kikunae Ikeda in 1908 (68 and references within) became 

the start of the amino acid industry. Pursuing a traditional Japanese flavoring 

component, he managed to isolate the amino acid glutamate from a brown kelp 

commonly used in Japanese cuisine and recognized that monosodium glutamate 

(MSG) represented a highly desirable flavor to foods. The Japanese company 

Ajinomoto began commercial production of this amino acid by extraction from acid-

hydrolysate of wheat gluten and defatted soybean. This was the start of the first 

industrial scale amino acid production from natural raw material hydrolysates, and 

demonstrated a fundamental process possible also for other amino acids.  

 Increased demand of MSG led to the development of improved bulk 

production technology. During the 1950s, Kinoshita and colleagues of Kyowa Hakko 

Kogyo Co. in Japan discovered that Corynebacterium glutamicum could produce 

significant amounts of glutamate directly from cheap sugar and ammonia (78). C. 

glutamicum is an aerobic, non-spore-forming, Gram-positive bacterium. The 

glutamate-producing Brevibacterium lactofermentum and Brevibacterium flavum 

were earlier regarded as closely related to C. glutamicum (165, 166), but were later 

taxonomically united in C. glutamicum (93). The 1950s discovery of glutamate 

production by C. glutamicum represented the beginning of industrial microbial 

production of amino acid, and caused the world market price of MSG to drop four-fold 

(46). In the late 1950s and 1960s, the use of random chemical mutagenesis and 

screening revealed C. glutamicum’s potential for the production of lysine (46). The 

discovery at Kyowa Hakko Kogyo Co. of a homoserine auxothroph mutant of C. 

glutamicum that produced large amounts of lysine (112) represented an important 

milestone in the history of amino acid production and enabled an industrial 

fermentation process also for this amino acid. Today, the major part of the amino 

acid production is based on microbial fermentation processes, although other types of 

production processes also exist (section 1.1.4). 

 

Industrial amino acid production processes 

 Production processes of amino acids are broadly classified into four types: 

extraction, chemical synthesis, enzymatic synthesis and fermentation (68, 84). The 

method of choice depends on several aspects such as process economics, available 
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INTRODUCTION 

raw materials, market situation and environmental regulation. The preferred methods 

may therefore change both with time and locality.  

 The original extraction method for amino acids from natural raw materials is 

still an industrial process for a few amino acids such as isoleucine, leucine and 

tyrosine (e.g. 36, 133). However, limited availability of natural protein-rich resources 

such as meat, fish protein, hair, keratin, feather, blood meal or soybean has together 

with high purification costs impelled the development of alternative production 

methods. Consequently, the extraction method has been and is being substituted by 

enzymatic and fermentation processes for industrial production of several amino 

acids. 

 Amino acids produced by traditional chemical synthesis are obtained as 

D,L-amino acids and an additional optical resolution step is required to obtain the 

biologically active L-isomers. High production costs are associated with such a step, 

and therefore few amino acids are produced by chemical synthesis. However, 

methionine, of which both the L- and the D-form may be utilized by higher animals 

(section 1.1.2), is currently produced by this method (87). Chemical synthesis is also 

being applied to the production of glycine, the amino acid carrying no asymmetric 

carbon atoms.  

 Aspartic acid is produced in a continuous process from fumarate and 

ammonia with immobilized bacteria expressing aspartase (28). Aspartic acid can be 

further converted to alanine by aspartate β-decarboxylase (27). These examples 

illustrate the enzymatic method of amino acid production which yields optically 

pure amino acids. However, the competitiveness of enzymatic method processes 

relies on the cost of manufacturing the substrates and enzymes, and for most amino 

acid processes the fermentation method is preferred (68). 

 Since the pioneering discoveries of fermentation processes of glutamate 

and lysine, development of mutant strains of Corynebacterium and also Gram-

negative bacteria such as Escherichia coli have made possible new processes for the 

production of amino acids such as phenylalanine, threonine, glutamine and arginine 

(46, 68, 133). Current fermentation processes for amino acids are usually based on 

large scale aerated agitated tank fermentors or airlift tank fermentors typically from 

50 to 500 m3. A representative amino acid batch fermentation process includes an 

inoculum and two seed tanks (1 – 2 m3 and 10 – 20 m3) which provide the inoculum 

for the main tank fermentor (68). The seed tanks ensure a high volumetric 
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fermentation yield in the shortest possible time in the main fermentor as well as 

better reproducibility. Today’s industrial amino acid fermentation is mainly conducted 

using batch or fed-batch processes. Improvement of volumetric yield, substrate yield, 

purification yield and the productivity of the overall processes have over the last 

decades made possible efficient industrial fermentation processes to meet the 

demands from a rapidly growing amino acid market. Today, glutamate and lysine 

represent two of the world’s most important biotechnological products, in respect to 

volume and value (section 1.1.5). 

 

1.1.5 Amino acid production is a major biotechnological industry 

 After antibiotics, amino acids constitute the second most important category 

in the world market for fermentation products, in respect to market value (ethanol 

not included) (91). 

 The annual world production of amino acids in general is said to double every 

decade and was in 2001 estimated at more than 2 million metric tons per year (44, 

46, 63). For a Norwegian comparison, this amount is more than four times the 

national salmon production for the same year (145). The annual market value for 

amino acids was in 2004 estimated to USD 4.5 billion (91). 

 The main applications of amino acids are as feed additives (section 1.1.2) and 

as flavor enhancers (63, 84). In respect to market shares, these applications 

contribute to about 56% and 32% of the total amino acid market value, respectively. 

In addition to flavor enhancers and additives for the food and feed industry, 

applications of amino acids include pharmaceuticals, cosmetics, polymer materials 

and agricultural chemicals (68). 

 In 2003, about 1.5 million tons glutamic acid was reported to be produced 

per year by fermentation processes with coryneform bacteria, mainly to support the 

use of MSG in prepared food, which typically consists of 0.1 to 0.8% MSG (63, 133). 

Major producers of MSG are Ajinomoto, Miwon, Kyowa-Hakko and Cheil Jedang. 

 As mentioned in section 1.1.2, lysine, DL-methionine, threonine and 

tryptophan are used as feed additives. Lysine is the most important 

biotechnologically produced feed amino acid, in respect to volume and value. In 

2001, the world market for lysine was 550,000 tons with a growth rate of 7% per 

year (63), estimating the current lysine market to more than 800,000 tons per year. 
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A lysine world market of 850,000 tons per year was most recently reported by 

Sanchez and Demain (133). Main producers are Ajinomoto, ADM, Kyowa Hakko, Cheil 

Jedang, BASF and Degussa/Cargill (63). China and USA are the leading consuming 

countries, representing 20% and 17%, respectively of the global demand (100). The 

chemically produced DL-methionine represents a world market comparable to that of 

lysine (68). Threonine is primarily produced by E. coli strains and the 2002 world 

market was about 30,000 tons with an approximate annual growth of about 15% 

(63). The 2002 annual market for tryptophan was reported to be approximately 

1,200 tons, produced by fermentation processes. 

 Other applications of amino acids are illustrated by glutamine which is used 

as a therapeutic agent (against gastroenterologic disorders, improvement of liver and 

brain functions, as an immunoenhancement agent, and against gastric ulcer and 

alcoholism) (63). Glutamine is also used as a food sweetener and in cosmetics, and is 

produced for an annual market of about 2,000 tons (87, 169). Phenylalanine, with a 

2002 annual market of 14,000 tons, is used as a building block in the production 

process for the low-calorie sweetener aspartame (50, 63). 

 

1.1.6 Methanol is an alternative substrate for biotechnological production 

 Low cost commodity carbohydrates such as cane molasses, beet molasses 

and starch hydrolysates (glucose) from corn and cassava are widely used as carbon 

sources for the industrial production of amino acids (122). The cost of the carbon 

source accounts for most of the total raw material price, and the choice may depend 

on the locality of the production plant. Starch hydrolysate from corn (corn syrup) is a 

common carbon source in the Unites States while cassava hydrolysates are 

abundantly used in South Asia. Due to cost and availability, the carbon sources of 

European and South American production plants are mainly cane and beet molasses, 

respectively (122). 

 In parallel, researchers have begun the exploration of alternative 

microorganisms utilizing more unconventional substrates for the fermentation 

industry. Methanol is considered as an attractive one-carbon compound both from a 

biotechnological and a bulk chemical point of view (94, 117). Compared to molasses, 

methanol is a pure substrate and can be completely utilized in the fermentation 

process. The price of methanol varies as other commodities according to supply and 
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demand, but has over the last years been comparable to that of raw sugar, as 

discussed in Brautaset et al. (17) (attached as Paper III in this thesis). Furthermore, 

methanol is easily stored and transported, highly water soluble, solutions are not 

explosive and residual methanol can easily be removed after completing the 

fermentation (136). 

 Methanol is a more reduced compound than sugar, and the oxygen demand 

for methanol-based microbial biosynthesis processes are considerably higher than for 

those using glucose as the raw material (section 3.1.1). As heat evolution increases 

proportionally with oxygen consumption, the cooling requirement for a methanol-

based process may represent a significant increase in the production cost. Elevated 

operating temperatures may compensate for the increased cooling requirements as 

the cooling water may be heated to higher temperatures and the driving force for the 

heat exchange increases (83).  

 

1.2 Methylotrophic bacteria 

1.2.1 

1.2.2 

Methylotrophs 

 According to Colby and Zatman (31), microbes that utilize one-carbon 

compounds as sole carbon sources for growth can be divided into two groups. 

Methylotrophs are recognized by their ability to assimilate carbon as formaldehyde or 

a mixture of formaldehyde and carbon dioxide. Bacteria assimilating carbon dioxide 

for growth are on the other hand autotrophs in their terminology. Anthony (5) 

however, simply defines methylotrophs as microbes that are able to grow on one-

carbon compounds irrespectively of the assimilation pathway. Finally, Large and 

Bamforth (88) defined methylotrophy as the ability of a living organism to use, as the 

sole carbon source of growth, compounds other than carbon dioxide containing one 

or more carbon atoms but no carbon-carbon bonds. 

 

One-carbon compounds occur abundantly in nature and support 

methylotrophic growth 

 A large group of microorganisms have evolved in order to utilize one-carbon 

compounds from the most reduced form as methane to the most oxidized form as 

carbon dioxide as carbon and energy sources (88, 94, 117). 
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 Methane exists as abundant fossil deposits and is continuously formed by 

methanogenic bacteria living in habitats such as anaerobic lakes, marshes, and the 

digestive tract of ruminant mammals (88). The ability to grow on methane is referred 

to as methanotrophy, and methanotrophs play major roles in global carbon cycles, 

substantially reducing emissions of biologically generated methane to the atmosphere 

(159). Methane has been reported to be the most important natural reduced one-

carbon compound for methylotrophic growth (88). In this thesis, further focus on 

utilization of one-carbon compounds for growth will be limited to methanol only. 

 In nature, methanol is formed by hydrolysis of methyl esters and ethers 

such as pectin and lignin from plants (41). Methanol is also formed by oxidation of 

methane by hydroxyl radicals in the trophosphere, and descends in low 

concentrations in rain (88). Microbial oxidation of methanol to formaldehyde (FA) is 

catalyzed by methanol dehydrogenase (MDH). Formaldehyde itself is too reactive to 

occur at a significant concentration in nature, but serves as a key intermediate in 

microbial one-carbon assimilation processes. Three types of MDH have been reported 

to exist in methylotrophs (80): An alcohol dehydrogenase using FAD as a cofactor 

operates in yeast (58), while Gram-negative bacteria harbor an NAD(P)-independent 

methanol dehydrogenase (MDH), using pyrroloquinoline quinone as a cofactor (5). 

Finally, Gram positive bacteria employ cytoplasmic MDH with NAD(P) as a cofactor 

(62, 126). Assimilation of FA into cell-carbon is discussed in section 1.2.3. 

 Additionally, several other one-carbon compounds are known to serve as 

growth substrates for various microorganisms. These compounds include, but are not 

limited to, carbon monoxide (formed by oxidation of methane by OH radicals in the 

trophosphere and man-made processes such as incomplete combustion of fossil fuel), 

cyanide (produced by electro-plating, steel and carbonization industry and by plants 

and fungi) and chloromethane (from industrial pollution and microbial activity) (88). 

 

1.2.3 Methylotrophs employ different strategies for carbon assimilation  

 The biological diversity among one-carbon utilizing microorganisms is 

considerable and is reflected by the different assimilation pathways employed within 

this group. Carbon compounds are oxidized by the microorganism itself or by the 

environment to either formaldehyde or carbon dioxide and assimilated into cell 

carbon via certain assimilation pathways. Four different cyclic pathways have been 
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discovered and biochemically described (4, 41). In all these pathways, one-carbon 

compounds are assimilated by condensation to molecules that are regenerated by the 

completion of one cycle (Figure 1). The final outcome of all pathways is the synthesis 

of a three-carbon compound from three one-carbon compounds. The ribulose 

bisphosphate (RuBP) pathway is the main pathway in chemolitotrophic 

(autotrophic) bacteria, and carbon is assimilated from carbon dioxide. Sharing many 

of the RuBP pathway enzymes, the ribulose monophosphate (RuMP) pathway 

assimilate cell carbon from formaldehyde. The third option, the xylulose 

monophosphate (XuMP) pathway, also called the dihydroxyacetone (DHA) 

pathway, is responsible for formaldehyde assimilation in yeast growing on methanol 

and shares many similarities with the RuBP and RuMP pathways. Finally, most distinct 

is the serine pathway, through which cell carbon is assimilated from carbon dioxide 

and formaldehyde. The three former pathways use carbohydrates as intermediates 

while the latter uses carboxylic acids and amino acids. In this thesis, further focus on 

assimilation of formaldehyde will be limited to the RuMP pathway. 

 

1.2.4 The RuMP pathway assimilate formaldehyde into cell-carbon 

 FA is produced by oxidation of methanol by MDH (5, 41, 58, 62, 80, 88, 126) 

(Figure 1 and section 1.2.2). The RuMP pathway assimilates cell carbon through 

synthesis of a three-carbon compound from three molecules of FA (4, 41). The 

pathway can be divided into three parts (Figure 2). In the fixation part, FA is 

condensed with ribulose 5-phosphate (Ru5P) to form hexulose 6-phosphate (H6P). 

H6P is further converted to fructose 6-phosphate (F6P) which then enters the 

cleavage part. Here, F6P is converted to the product of the RuMP pathway (a three-

carbon compound) and glyceraldehyde 3-phosphate (GAP) which enters the 

rearrangement part to regenerate Ru5P. 

 The fixation part (Figure 2) of the RuMP pathway involves two unique 

enzymes, 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-

hexuloisomerase (PHI). Three FA molecules undergo aldol condensation reactions 

with three molecules of Ru5P to form three H6P. One of the H6P molecules is further 

converted to F6P that can enter the cleavage part. 
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CH4
methane

CH3OH
methanol

HCHO
formaldehyde

HCOOH
formate

CO2
carbon dioxide

pectin,
lignin

RuMPXuMP Serine RuBP

C 3   c o m p o u n d s  
 

Figure 1. Four different pathways for one‐carbon assimilation in methylotrophs. Natural carbon sources 
that can be degraded to methanol, such as pectin and lignin from plants, are indicated (41). 
 
 

 
 

Figure  2. Outline of  the RuMP pathway. Upon  the  completion of one  cycle,  three FA molecules are 
converted  into  one  three‐carbon  molecule.  The  enzymes  of  the  fixation  part  are  indicated.  The 
numbers on the reaction arrows relate to the stoichiometry of the reaction.  
  Abbreviations of  intermediates: FA,  formaldehyde; Ru5P,  ribulose 5‐phosphate; H6P, hexulose 6‐
phosphate; F6P, fructose 6‐phosphate; GAP, glyceraldehyde phosphate.  
  Abbreviations  of  enzymes:  HPS,  3‐hexulose‐6‐phosphate  synthase;  PHI,  6‐phospho‐3‐
hexuloisomerase. 
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 The cleavage part (Figure 3) exists as two variants that convert F6P to GAP 

and a three-carbon product of the RuMP pathway. The fate of F6P is the conversion to 

either fructose-1,6-bisphosphate (FBP) or 2-keto-3-deoxy-6-phosphogluconate 

(KDPG). In the FBP aldolase (FBPA) variant, F6P is converted by 

phosphofructokinase (PFK) to FBP at the expense of one ATP. FBP is then cleaved by 

FBPA to GAP and dihydroxyacetone phosphate (DHAP). DHAP can be converted by 

glycolytic steps into pyruvate, generating one NAD(P)H and two ATP. Alternatively, in 

the KDPG aldolase (KDPGA) variant, F6P is converted through three steps similar 

to the Entner-Doudoroff pathway to KDPG, generating one NAD(P)H, and 

subsequently cleaved by KDPG aldolase to GAP and pyruvate.  
 

F6P

ATP

DHAP

ADP

FBP

GAP

PFK

FBPA

F6P

Pyruvate

2ADP, NAD(P)+

2ATP, NAD(P)H

NAD(P)+

NAD(P)H

PGI

G6P

6GP

PGD

KDPG

GPDH

GAP

KDPGA

Pyruvate

FBPA 
variant

KDPGA 
variant

 
 

Figure 3. Two variants of the cleavage part of the RuMP pathway. The FBPA variant converts F6P to 
GAP  and  DHAP.  Further  conversion  of  DHAP  to  pyruvate  by  glycolytic  enzymes  is  indicated. 
Alternatively,  the  KDPGA  variant  converts  F6P  to  GAP  and  pyruvate  using  enzymes  of  the  Entner‐
Doudoroff pathway. 
  Abbreviations of  intermediates: F6P,  fructose 6‐phosphate; FBP,  fructose‐1,6‐bisphosphate; GAP, 
glyceraldehyde phosphate; DHAP, dihydroxyacetone phosphate; G6P, glucose‐6‐phosphate;   6GP, 6‐
phospogluconate; KDPG, 2‐keto‐3‐deoxy‐6‐phosphogluconate.  
  Abbreviations  of  enzymes:  PFK,  phosphofructokinase;  FBPA,  fructose‐1,6‐bisphosphate  aldolase; 
PGI,  phosphoglucose  isomerase;  GPDH,  glucose‐6‐phosphate  dehydrogenase;  PGD,  6‐
phosphogluconate dehydratase; KDPGA, 2‐keto‐3‐deoxy‐6‐phosphogluconate aldolase. 
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 Regeneration of Ru5P is critical in order to maintain the activity of the RuMP 

cycle. In the rearrangement part (Figure 4), GAP from the cleavage part is 

rearranged with two H6P molecules from the fixation part to three molecules of Ru5P. 

Two variants of the rearrangement part exist and they share the three enzymes 

transketolase (TK), ribose-5-phosphate isomerase (RPI) and ribulose-5-phosphate 3-

epimerase (RPE). The difference between the variants is the usage of transaldolase 

(TA variant) or sedoheptulose-1,7-bisphosphatase (SBPase variant). 
 

3 Ru5P 2 H6P

GAP

2 F6PFBP

DHAPGAP

E4PSBPS7P

Ri5P2 X5P

ATPADP
PHI

PFK

FBPA

TKFBPASBPase

TK

RPE RPI

SBPase variant

3 Ru5P 2 H6P

GAP

2 F6P

GAP

E4PS7P

Ri5P2 X5P

PHI

TK

TK

RPE RPI

TA variant

TA

 
 

Figure  4.  Two  variants  of  the  rearrangement  part  of  the  RuMP  pathway.  
  Abbreviations  of  intermediates:  Ru5P,  ribulose  5‐phosphate;  H6P,  hexulose  6‐phosphate;  X5P, 
xylulose  5‐phosphate;  Ri5P,  ribose  5‐phosphate;  FBP,  fructose‐1,6‐bisphosphate;  F6P,  fructose  6‐
phosphate; GAP, glyceraldehyde phosphate; DHAP, dihydroxyacetone phosphate; S7P, sedoheptulose‐
7‐phosphate; SBP, sedoheptulose‐1,7‐bisphosphate; E4P, erythrose 4‐phosphate. 
  Abbreviations  of  enzymes:  RPE,  ribulose‐5‐phosphate  3‐epimerase;  RPI,  ribose‐5‐phosphate 
isomerase;  PHI,  6‐phospho‐3‐hexuloisomerase;  PFK,  phosphofructokinase;  FBPA,  fructose‐1,6‐
bisphosphate  aldolase;  TK,  transketolase;  SBPase,  sedoheptulose‐1,7‐bisphosphatase;  TA, 
transaldolase. 
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 Two possible cleavage variants and two possible rearrangement variants 

make up four theoretical ways to run the RuMP pathway. All variants produce one 

NAD(P)H per pyruvate generated. The most energetically favorable combination is 

the FBPA/TA variant, which in addition yields one ATP, while the least energetically 

favorable KDPGA/SBPase variant requires one ATP per pyruvate generated (41). All 

variants but the latter have been reported in methylotrophic bacteria. 

 

1.2.5 Detoxification of formaldehyde is important in methylotrophs 

 Methanol is oxidized into formaldehyde which represents a key intermediate 

in methanol utilization. As for higher animals, rapid uptake of alcohol can put the cell 

into a toxic state. Methanol toxicity in methylotrophic bacteria is assumed to be due 

to accumulation of formaldehyde (2, 20, 21, 51, 101). This compound is unusually 

reactive; its mode of action is complex and includes a number of biological molecules, 

making it highly toxic to the cell (130). The earliest published use of formaldehyde as 

an antimicrobial agent dates back to 1886. 

 As formaldehyde is a key metabolite for methylotrophs, different strategies 

have evolved to handle this toxic compound. The compound may be assimilated into 

cell carbon by one of the four main assimilation routes outlined in Figure 1. 

Interestingly, RuMP pathways have recently been found in non-methylotrophic 

bacteria, and it has been speculated that they function to detoxify intracellular 

formaldehyde (101, 102, 127, 167). As an alternative to assimilation, methylotrophic 

bacteria may generate energy by oxidizing formaldehyde to CO2 by dissimilatory 

pathways (Figure 5). 

 One of the dissimilatory pathways found in many methylotrophs is a linear 

oxidation of formaldehyde via formate to CO2, generating reducing equivalents (41 

and references therein). The reactions are catalyzed by formaldehyde dehydrogenase 

(FADH) and formate dehydrogenase (FDH), which are present in a large number of 

methylotrophs. The TCA cycle of organisms harboring such a pathway is suggested to 

play a minor role in energy metabolism during growth on one-carbon sources (141, 

171).  
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Figure 5. Linear and cyclic pathways for dissimilation of formaldehyde to CO2. Both pathways produce 
reducing equivalents. The  linear dissimilatory pathway converts formaldehyde to CO2 by the action of 
two  distinct  enzymes.  The  cyclic  dissimilatory  pathway  is  a  combination  of  the  fixation  part  of  the 
RuMP pathway and  the pentose phosphate pathway. The  remaining parts of  the RuMP pathway  for 
assimilation of formaldehyde (Figure 2) are indicated in gray. 
  Abbreviations  of  intermediates:  6PG,  6‐phosphogluconate;  FA,  formaldehyde;  Ru5P,  ribulose  5‐
phosphate; H6P, hexulose 6‐phosphate; F6P, fructose 6‐phosphate; G6P, glucose‐6‐phosphate. 
  Abbreviations  of  enzymes:  PGDH,  6‐phosphogluconate  dehydrogenase;  FADH,  formaldehyde 
dehydrogenase;  FDH,  formate  dehydrogenase;  GPDH,  glucose‐6‐phosphate  dehydrogenase;  HPS,  3‐
hexulose‐6‐phosphate synthase; PHI, 6‐phospho‐3‐hexuloisomerase; PGI, phosphoglucose isomerase. 
 

 An alternative route for oxidation of formaldehyde to CO2 by methylotrophs 

was earlier reported (30, 147). This cyclic dissimilatory pathway has been termed 

dissimilatory RuMP cycle as it shares the enzymes HPS and PHI with the RuMP 

pathway (Figure 5). The cycle is essentially a combination of the fixation part of the 

RuMP pathway (HPS and PHI) and the pentose phosphate pathway. Carbon enters 

the dissimilatory cycle by the action of phosphoglucose isomerase (PGI), converting 

F6P into glucose 6-phosphate (G6P). Reducing equivalents are generated by 

oxidation of G6P to 6-phosphogluconate (6PG) and subsequently to Ru5P by G6P 

dehydrogenase (GPDH) and 6PG dehydrogenase (PGDH), respectively. Ru5P is 

thereby regenerated and can again participate in formaldehyde fixation.   
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1.3 Microbial production of lysine  

1.3.1 

1.3.2 

Lysine is a product of the branched aspartate pathway 

 The carbon for lysine synthesis is derived from oxaloacetate of the central 

carbon metabolism. Oxaloacetate is converted into aspartate, the precursor for the 

so-called aspartate pathway (Figure 6) which includes the biosynthetic pathways for 

lysine, methionine and threonine (119). The two first enzymatic reactions of the 

lysine biosynthetic pathway are common for the biosynthesis of all the end products 

of the aspartate pathway. Threonine is a precursor for isoleucine while methionine is 

converted to S-adenosylmethionine, a common methyl donor (119). meso-

diaminopimelate is a constituent of the bacterial cell wall peptidoglycan, and is a 

component of the spore cortex for sporulating Gram-positive bacteria (98, 119). In 

addition, dipicolinate is an important component of spores. Thus, a complex 

regulation of shared and unique enzymatic steps must allow biosynthesis of 

intermediates, side products and end products in a balanced manner according to the 

changing requirements of the cell. 

 

Prokaryotes harbor different biosynthetic pathways for lysine 

 Three variants of the lysine biosynthetic pathway are recognized in 

prokaryotes (15, 77, 139, 148, 163). At the level of piperideine-2,6-dicarboxylate, 

the carbon flow can follow (i) the succinylase variant involving four enzymatic 

conversions via succinylated intermediates to meso-diaminopimelate, (ii) the similar 

four-step acetylase variant involving acetylated intermediates, and (iii) the 

dehydrogenase variant in which piperideine-2,6-dicarboxylate is converted to meso-

diaminopimelate in one enzymatic step. Bacillus subtilis and most other Bacillus 

species use the acetylase variant (119), while E. coli is reported to use the 

succinylase variant (162). The dehydrogenase variant operates in a few Bacillus 

species such as B. sphaericus, B. globisporus and B. pasteurii (119, 163). Lysine 

biosynthesis in the commercial producer C. glutamicum is reported to be mediated by 

a combination of the succinylase variant and the dehydrogenase variant (143, 161). 

The flux distribution between these two pathways is variable; at the start of a batch 

cultivation about 75% of the lysine is made via the dehydrogenase variant, while at 
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Figure  6. General  overview  of  the  aspartate  pathway  (in  black).  Three  routes  from  piperideine‐2,6‐
dicarboxylate  to meso‐diaminopimelate  are  known  in  prokaryotes  (see  text).  The major metabolic 
functions of the end products are indicated in parentheses. The multi‐step conversion of threonine to 
isoleucine  is  indicated  in  gray.  Likewise  is  the  conversion  of  pyruvate  to  the  aspartate  precursor 
oxaloacetate indicated in gray, represented by the TCA cycle and the anaplerotic reaction catalyzed by 
pyruvate carboxylase.  
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the end of the process lysine is almost exclusively made via the succinylase route 

(44). The use of different pathways has been suggested to facilitate adaptation to 

changing ammonium concentrations. Ammonium is used a substrate in the 

dehydrogenase variant, and at low ammonium concentrations, typically at the end of 

the fermentation phase, the succinylase variant is favored, in which a transaminase 

incorporates an amino group from glutamate. 

 

1.3.3 Aspartokinase controls the flow into the aspartate pathway 

 The flux from aspartate towards the end products of the aspartate pathway is 

controlled by aspartokinase (ATP:4-L-aspartate-4-phosphotransferase, EC 2.7.2.4). 

C. glutamicum harbors one aspartokinase enzyme, while multiple aspartokinase 

isozymes exist in the well characterized strains B. subtilis and E. coli. In general, 

aspartokinase enzymes are highly regulated and both enzyme activity and synthesis 

are controlled by different products of the aspartate pathway. 

 The three aspartokinase isozymes of B. subtilis have been characterized, and 

all isozymes are regulated in a distinct manner (52, 108, 129). Aspartokinase I is 

inhibited by meso-diaminopimelate, aspartokinase II is inhibited by lysine, while 

aspartokinase III is regulated by concerted feedback inhibition by lysine and 

threonine. In addition, lysine and threonine act as corepressors for aspartokinase II 

and III synthesis, respectively. Aspartokinase I cannot substitute for aspartokinase II 

and III, and the same conclusion is valid for the opposite situation under most 

conditions (119, 172, 173), indicating a functional specialization among the 

aspartokinase isozymes. Aspartokinase I is believed to mainly support biosynthesis of 

meso-diaminopimelate and dipicolinate for use in cell walls and spores. Aspartokinase 

II and III, however, are thought to be responsible for supplying aspartate phosphate 

for the subsequent synthesis of the amino acid end products of the aspartate 

pathway, and the functions of these isozymes are believed to be redundant (26, 119, 

172, 173). Aspartokinase isozymes resembling those of B. subtilis have been 

identified in several other Bacillus species. Although not completely characterized, 

strains such as B. stearothermophilus, B. cereus, B. licheniformis and B. brevis have 

been reported to harbor multiple aspartokinase isozymes with similar regulation as in 

B. subtilis (119 and references within). 
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 For comparison, the single aspartokinase of coryneform bacteria is controlled 

by concerted feedback inhibition by threonine and lysine (33, 42), similar to the 

aspartokinase III of B. subtilis.  The three aspartokinase isozymes of E. coli display 

considerable similarity with B. subtilis aspartokinase II (24, 119), but both function 

and regulation differ compared to B. subtilis. Each isozyme is individually controlled 

by one of the end products of the aspartate pathway, lysine, methionine and 

threonine (29). Compared to B. subtilis, no provisions are made for ensuring the 

synthesis of diaminopimelate for the cell wall at conditions of excess amino acids as 

in rich media. Two of the E. coli aspartokinases are bifunctional proteins that also 

have homoserine dehydrogenase activity (29), while in B. subtilis such activity is 

mediated by a single monofunctional enzyme (119).  

 

1.3.4 Aspartokinase is a key target for improvement of microbial lysine production 

 Bacteria do not normally excrete amino acids in significant amounts due to 

regulatory mechanisms that allow amino acid synthesis only to meet the cell’s 

requirement for use in protein synthesis. Deregulation of aspartokinase has been 

reported to be the most important step in the development of commercial lysine 

producing strains (42, 122, 134). Historically, C. glutamicum has been the bacterium 

of choice for industrial production of lysine, and the first era of strain development 

was mainly based on classical mutagenesis followed by selection of mutants with 

desired characteristics. Resistance towards the lysine analogue S-(2-aminoethyl) 

cysteine (AEC) is a key property of classical C. glutamicum lysine-producing mutants 

(131). Several of these mutants have been shown to carry aspartokinases 

deregulated from the original concerted feedback inhibition by lysine and threonine 

(42, 122). 

 By genetic engineering, lysine producing strains have been developed by 

introduction of feedback resistant key enzymes. Introduction of a feedback 

deregulated aspartokinase in C. glutamicum ATCC 13032 increased lysine production 

from 0 to 55 g/l (116). A number of favorable mutations causing feedback 

deregulation have been localized in the gene encoding C. glutamicum’s 

aspartokinase, and all the major lysine companies such as Ajinomoto, Archer Daniels 

Midland, BASF, Degussa and Kyowa Hakko have claimed patents related to this 

enzyme (42). 
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 AEC-resistant lysine excreting mutants were early isolated also among other 

bacterial strains such as B. subtilis, B. licheniformis and B. brevis (23, 54, 66, 103, 

156). For example, AEC-resistant B. subtilis BAEC29 was reported to produce 16 g/l 

of lysine (23), although the responsible mutation(s) were not identified. Mutations 

have been mapped to aspartokinase genes for several other B. subtilis AEC-resistant 

strains investigated (81, 96, 97, 121, 168), but lysine production exceeding 1 g/l has 

not been reported for these strains. 

 

1.3.5 Strain development of C. glutamicum towards high-level production of lysine 

 From the 50-year experience with C. glutamicum strain development, a 

number of key properties of efficient production strains can be highlighted. The 

original C. glutamicum mutants used for large scale production of lysine were amino 

acid auxotrophs. A first generation homoserine auxotrophic mutant yielding 44 g/l of 

lysine was patented already in 1961 (122). Further development of production strains 

was mediated by additional auxotrophies. For example, C. glutamicum ATCC 21513 

requires homoserine, leucine, biotin, thiamin and pantothenic acid (135). However, 

as the number of growth requirements increased upon further mutagenesis, strains 

acquired sensitivity towards temperature and unfavorable pH, and became affected 

by limitations of vitamins and micronutrients. Amino acid auxotrophies resulted in 

increased raw material costs or the use of complex raw materials that increase 

process variation and impair purification. Development of so-called leaky strains 

reduced these problems, as mutants harbor functional but inefficient biosynthetic 

pathways (42). The mutants are able to synthesize components required for growth, 

while intracellular concentrations are kept low to avoid inhibition or repression of key 

enzymes for lysine synthesis (42). For example, reduced activity of homoserine 

dehydrogenase (responsible for the biosynthesis of homoserine, a precursor for 

threonine; Figure 6) increased lysine production up to 20 g/l in prototrophic 

revertants from homoserine auxotrophic C. glutamicum strains (65, 140). 

 The strategy of classical mutagenesis and selection of coryneform bacteria 

proved to be successful. Classical strains accumulate well above 100 gram lysine per 

liter with conversion yields above 0.5 g lysine per g glucose (see 42, 84, 91, 135 for 

overviews). However, along with the development of modern techniques for genetic 

engineering of C. glutamicum (73, 79), considerable effort has been put down to 
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introduce specific genetic alterations for further optimization of lysine production. 

Three major competitors in the lysine industry – BASF, Kyowa Hakko and Degussa – 

launched independent C. glutamicum genome projects and the genome sequence was 

published in 2003 (69, 74). Today, essentially all the genes in the lysine biosynthetic 

pathway of this organism have – more or less successfully - been targeted for 

mutations in the development of lysine producing mutants. 

 In C. glutamicum, the dihydrodipicolinate synthase is believed to act as a 

barrier to control the flux of aspartate semialdehyde towards lysine (Figure 6). 

Enhancement of this activity has shown promising results on lysine production by 

means of regulating the branch point at which carbon flows either towards lysine, or 

towards methionine and threonine (43, 56, 85). Overexpression of genes of the 

succinylase branch of the lysine biosynthetic pathway has also demonstrated 

increased lysine production (59).   

 Identification of the lysine export system in C. glutamicum opened up 

possibilities to decrease intracellular lysine concentration in the cell. Lysine export is 

required when C. glutamicum grows on lysine-containing peptides as carbon source, 

since the bacterium lacks enzymes for lysine degradation (45). Lysine is excreted 

against the membrane potential by a 2 OH-/lysine symport, and is dependent on the 

electron motive force (19). Strains with different lysine productivities have been 

shown to possess different excretion systems, and lysine excretion was enhanced 

fivefold to the wild type by overexpressing the export system (14, 19, 22, 67, 85, 

158).  

 Optimization of central carbon metabolism including anaplerotic reactions to 

increase the availability of oxaloacetate and aspartate has given promising results 

(42 and references within). Pyruvate carboxylase, as a supplier of oxaloacetate, has 

been reported to be a limiting enzymatic step for high lysine production in C. 

glutamicum (116, 120). NADPH, required for several steps within lysine biosynthesis, 

has been considered as another possible limitation to efficient lysine production in C. 

glutamicum (84). A close correlation of lysine yield and the extent of flux through the 

NADPH-generating pentose phosphate pathway as well as the extent of anaplerotic 

flux was observed in a study comparing strains with different lysine yield (164). 

 Recently, modern flux analysis and whole-cell approaches have been 

employed towards further optimization of lysine production (60, 115, 142). 

Improving the tolerance for favorable process conditions such as high operating 
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temperature (to decrease process cooling costs) has also been an important 

contribution to the research on microbial lysine production (114). 

 Ohnishi et al (116) demonstrated that introduction of a minimal number of 

specific mutations in a wild type background could yield high lysine production. 

Simultaneous introduction of mutant aspartokinase, pyruvate carboxylase and 

homoserine dehydrogenase (Figure 6), lead to a production of 80 gram lysine per 

liter with a productivity of 3.0 g/(l·h). 

 

1.3.6 Microbial production of lysine from methanol 

 As described in section 1.1.6, carbohydrates of cane molasses, beet molasses 

and starch hydrolysates from corn and cassava are the carbon sources of choice for 

today’s amino acid industry. However, methanol has become of interest as an 

alternative raw material for industrial biotechnological production (section 1.1.6), and 

several reports on methanol-utilizing bacteria have been presented in the scientific 

literature. Reported microbial methanol-based amino acid production includes 

glutamate (109), lysine (111) and threonine (110), all from Methylobacillus 

glycogenes, and serine (55, 71) from Hyphomicrobium methylovorum and 

Methylobacterium sp. 

 In regards of lysine-production, co-expression of mutant genes encoding a 

lysine-exporter and dihydrodipicolinate synthase in the Gram-negative obligate 

methylotroph Methylophilus methylotrophus resulted in a lysine production of 11 g/l 

at 37ºC (53, 152). A recombinant mutant of the Gram-negative obligate 

methylotroph Methylobacillus glycogenes overexpressing a dihydrodipicolinate 

synthase partly released from lysine inhibition produced 8 g/l of lysine and 37 g/l of 

glutamate at 37ºC (111). As summarized in Table 1 in Brautaset et al. (17) (attached 

as Paper III in this thesis) listing representative methanol-utilizing lysine and 

glutamate overproducers, the methylotroph with the highest volumetric lysine 

production reported in the literature is Bacillus methanolicus (section 1.4). 
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1.4 Bacillus methanolicus and its potential for amino acid production 

1.4.1 B. methanolicus is a thermotolerant methylotroph 

 B. methanolicus is a Gram-positive aerobic thermotolerant methylotroph of 

which several wild type strains have been isolated (1, 9, 21, 40, 136). The bacterium 

can grow at temperatures from 35 to 60°C, with an optimum of 50°C (136). 

Brautaset et al. (17) (attached as paper III in this thesis) presents a mini-review of 

this bacterium as a candidate for industrial production of amino acids from methanol, 

and therefore only a brief description of the bacterium is given in this section. 

 B. methanolicus oxidizes methanol to formaldehyde by an NAD-dependent 

MDH (9-11, 37, 39, 157). Formaldehyde can then be assimilated into cell carbon via 

the RuMP pathway (section 1.2.4) (38, 40, 76). Thermotolerant methylotrophic 

Bacillus bacteria has been reported to use the FBPA/TA variant of the RuMP pathway 

(11, 41). In B. methanolicus C1, SBPase activity could not be detected, and together 

with the presence of a low TA activity in cell extracts, the TA variant of the 

rearrangement part of the RuMP pathway was assumed.  

 Formaldehyde not assimilated through the RuMP pathway may be 

dissimilated to CO2 for energy generation and possible detoxification (section 1.2.5 

and Figure 5). Similar to other methylotrophs, B. methanolicus is reported to be 

highly sensitive to methanol (123). Methanol pulses of less than 10 mM have been 

reported to severely affect the growth rate of cultures under methanol limitation, 

presumably due to formaldehyde accumulation. Activities of all the enzymes of a 

dissimilatory RuMP cycle have been measured in B. methanolicus (11). In fact, as no 

FADH or FDH activity was measured, early reports on B. methanolicus assumed that 

the dissimilatory RuMP cycle was responsible for energy generation in B. 

methanolicus (11). However, later, a linear dissimilatory pathway was proposed for 

B. methanolicus as researchers observed accumulation of formate upon methanol 

pulses, formate consumption, and detection of labeled CO2 upon labeled formate 

addition (123). In sum, these findings suggest that both routes for formaldehyde 

dissimilation may be operative in B. methanolicus. 
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1.4.2 Background for genetic engineering of B. methanolicus 

 Compared to the industrial amino acid producer C. glutamicum, the 

knowledge and available tools for genetic engineering of B. methanolicus have been 

limited. The genome sequences of related species such as B. subtilis (86), Bacillus 

halodurans (149), Bacillus licheniformis (128, 155), Bacillus anthracis (125) and 

Bacillus cereus (70) have been published and offer possibilities for gene mining and in 

silico studies of these related genomes. Nevertheless, lack of the complete B. 

methanolicus genome sequence (or single key genes) has conferred limitations on 

the possibilities for rational metabolic engineering of B. methanolicus.  

 Three B. methanolicus genes have previously been cloned, sequenced and 

reported in the literature, two of those encoding enzymes of the aspartate pathway. 

Schendel and Flickinger (138) reported the cloning of lysC encoding aspartokinase II. 

The enzyme was similar to that of B. subtilis in respect to both primary structure and 

feedback inhibition. Inhibition studies of total aspartokinase activity in B. 

methanolicus wild type strain MGA3 suggested the presence of two additional 

aspartokinase isozymes, with all three isozymes inhibited in a similar manner as 

those of B. subtilis. However, the predicted genes for aspartokinase I and III were 

not cloned. 

 The gene encoding meso-diaminopimelate decarboxylase, lysA, was cloned 

and sequenced from B. methanolicus MGA3 by Mills and Flickinger (105). This 

enzyme, catalyzing the last step in the lysine biosynthetic pathway, was shown to be 

inhibited by lysine and was suggested as a possible limiting step for lysine 

biosynthesis in lysine-overproducing strains of B. methanolicus. Furthermore, the 

cloning and sequencing of B. methanolicus citY encoding citrate synthase II was 

published together with studies on its role in glutamate production (18) (section 

1.4.3). 

 In 1996, a restriction modification system of B. methanolicus was reported 

(35). A gene delivery method for this bacterium using protoplast transformation was 

published a year later (34). This report demonstrated the successful introduction of 

empty shuttle vectors into B. methanolicus and represented the first techniques for 

recombinant manipulation of B. methanolicus. However, although genetic 

constructions for gene overexpression later become available, the report’s authors 

were not able to introduce them into B. methanolicus (M. C. Flickinger, personal 
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communication). Indeed, no reports of recombinant B. methanolicus strains were 

published until 2004 (16, attached as Paper I in this thesis). 

 

1.4.3 B. methanolicus is a candidate for amino acid production 

 As reviewed in Brautaset et al. (17) (attached as Paper III in this thesis), B. 

methanolicus strains may overproduce lysine and glutamate. The bacterium’s 

potential for amino acid production is illustrated by the wild type MGA3 which is 

reported to produce 58 g/l of glutamate when grown on methanol (18, 137). With the 

lack of genetic engineering tools for this organism, previous work on strain 

improvement has relied on random chemical mutagenesis and screening procedures. 

These efforts have resulted in the creation of several lysine-producing strains (57, 90, 

136), for example the B. methanolicus mutant strain 13A52-8A66. This mutant is a 

homoserine auxotrophic mutant that requires the addition of both threonine and 

methionine to the growth medium. It is resistant to AEC and the meso-

diaminopimelate analogue diaminobutyrate, and has been reported to produce 37 g/l 

lysine (57). This is to date the highest lysine production reported by any 

methylotrophic bacterium. 

 Increased oxygen consumption of a methanol-based process compared to 

that of a sugar based process increases heat generation and represents increased 

cost of reactor cooling. The thermotolerant property of B. methanolicus, allowing 

rapid growth at 50°C compensates for this increased oxygen consumption. At about 

200 m3 reactor liquid volume, the cooling water requirements for an organism 

growing on glucose at 35°C and an organism growing on methanol at 50°C are 

reported to be similar (83). Furthermore, at 50°C, B. methanolicus is reported to 

sporulate poorly in growth medium (136), an important property since lysine 

production is dependent on vegetative cells throughout the fermentation process. 

 A high methanol consumption rate and high theoretical product yields by B. 

methanolicus indicate that this organism has the potential of becoming an efficient 

biocatalyst for the production of lysine from methanol. These issues are further 

discussed in Brautaset et al. (17). 

 As discussed in section 1.2.5, the TCA cycle of organisms harboring a linear 

dissimilatory pathway is suggested to play a minor role in energy metabolism during 

growth on one-carbon sources. Glutamate production was abolished in a B. 
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methanolicus mutant deficient in citrate synthase II, a key enzyme of the TCA cycle 

(18). Upon glutamate addition, this mutant grew well in minimal medium. Possibly, 

reduced citrate synthase activity (lowering or abolishing glutamate production) may 

be a key to exclusive lysine overproduction by B. methanolicus mutants deregulated 

in the lysine biosynthetic pathway, enabling a high yield of lysine from methanol. 

 In sum, properties discussed in this section indicate a possible future process 

alternative for the large scale production of lysine from methanol by B. methanolicus.  
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2 AIMS OF THE STUDY 

 B. methanolicus may be regarded as an alternative industrial producer of 

lysine from methanol. Although it has a number of valuable qualities for industrial 

exploitation, several properties such as lysine productivity must be greatly improved 

in order to represent a genuine alternative to today’s industrial production of lysine 

from sugar by C. glutamicum. Additionally, several aspects of the B. methanolicus 

biology, especially its methylotrophic property, are of interest in a basic science 

perspective, and findings within this area could contribute to a better understanding 

of microbial methylotrophy in general. 

 The first aim was to establish a reliable protocol for gene delivery in B. 

methanolicus as a foundation for metabolic engineering of this organism. 

 As other methylotrophs, B. methanolicus has been shown to be sensitive to 

high concentrations of its substrate, methanol (section 1.2.5 and 1.4.1). Such 

sensitivity may pose a problem for industrial use of this organism in large bioreactors 

with incomplete mixing. Additionally, as for any biotechnological production, a high 

substrate uptake rate is a prerequisite for high productivity. An aim for this project 

was therefore to expand the understanding of carbon fixation and assimilation in this 

organism, and possibly use such generated knowledge to improve industrially 

valuable characteristics of this bacterium by genetic engineering. 

 Due to the high degree of regulation of microbial lysine biosynthesis 

pathways, manipulation of key enzymes is normally essential for lysine 

overproduction in any organism. As deregulation of aspartokinase historically has 

been the most important step in the development of industrial lysine producing 

strains, this key enzymatic step was a natural starting point for metabolic engineering 

towards the generation of lysine overproducing recombinant strains of B. 

methanolicus. This study was limited to transcriptional deregulation and did not focus 

on alteration of putative feedback inhibition of the B. methanolicus aspartokinases. 
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3 SUMMARY OF RESULTS AND DISCUSSION 

3.1 Theoretical considerations 

(Paper III) 

3.1.1 Stoichiometric conversion of methanol to lysine 

 Equations for the stoichiometric conversion of methanol to lysine are the 

basis for evaluation of the B. methanolicus lysine production potential in terms of 

product yield. However, different dissimilation mechanism of formaldehyde to CO2, 

characterized by the generation of none, one or two NAD(P)H per formaldehyde 

molecule are reported (88), and the preferred mechanism in B. methanolicus is not 

known. Furthermore, as described in section 1.3.2, three variants of the lysine 

biosynthesis pathway are recognized in prokaryotes, and evidence of which variant(s) 

are active in B. methanolicus is yet not know. 

 Most Bacillus species are reported to use the acetylase variant of the lysine 

biosynthesis pathway (119). By assuming this variant, two equations for the 

stoichiometric conversion of methanol to lysine are presented in Equation 1, based on 

the generation of either one or two NAD(P)H per formaldehyde molecule. 
 
 

 

 
 
Equation  1. Stoichiometric conversion of methanol  (CH3OH)  to  lysine  (C6H14O2N2) by B. methanolicus. 
The  acetylase  variant  of  the  lysine  biosynthetic  pathway  is  assumed. Alternatives A  and  B  indicate 
different  NAD(P)H‐yield  dependent  on  the  dissimilation  pathway  (two  and  one  NAD(P)H  per 
formaldehyde  molecule,  respectively)  (88).  The  synthesis  of  one  lysine  molecule  requires  two 
molecules of NAD(P)H. 
 

 As a comparison to the equations describing lysine production from methanol 

by B. methanolicus (Equation 1), theoretical equations were calculated for lysine 

production by the industrially preferred organism C. glutamicum from glucose. All 

three variants of the lysine biosynthetic pathways have been suggested to exist in C. 

glutamicum (139, 151, 162), although the succinylase and the dehydrogenase 

variants have been reported to be the most important (143, 161). Equations 

assuming the two latter variants are given in Equation 2. 
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Equation  2.  Stoichiometric  conversion  of  glucose  (C6H12O6)  to  lysine  (C6H14O2N2)  by  C.  glutamicum, 
assuming the use of the succinylase or the dehydrogenase variant of the lysine biosynthetic pathway. 
The  synthesis  of  one  lysine molecule  by  the  dehydrogenase  variant  requires  two  NAD(P)H,  while 
synthesis via the succinylase variant is carbon‐limited and requires no additional NAD(P)H. 
 

3.1.2 Theoretical product yield 

 Theoretical maximum lysine yields can be calculated based on the 

stoichiometric equations given in section 3.1.1. For comparison, theoretical maximum 

lysine yields can similarly be calculated for the other variants of the lysine 

biosynthetic pathway. Table 1 compares maximum theoretical lysine yields from 

methanol by B. methanolicus to those from glucose by C. glutamicum. 
 
 
Table 1. Theoretical maximum yields of lysine (grams of lysine‐HCl per gram of methanol or glucose) 
 

Lysine biosynthesis  
variant used 

Acetylase 
variant 

Succinylase 
Variant 

Dehydrogenase 
variant 

Yield of lysine from  
methanol by B. methanolicus 

0.71 / 0.81 1) 0.63 0.71 / 0.81 1)

Yield of lysine from  
glucose by C. glutamicum 

0.78 0.68 0.82 

 
1)  Values  are  dependent  on  the  dissimilation  pathway:    The  two  values  reported  are  based  on  the 
generation of one or two NAD(P)H per formaldehyde molecule. 
 

 As productivity is a function of substrate uptake rate and product yield, the 

methanol consumption rate of B. methanolicus is an important factor for evaluation of 

the lysine production potential of this organism. Based on reported data from a 14 l 

fed-batch fermentation with B. methanolicus MGA3 (50 g/l dry cell weight in 15 h) 

(136), a mean methanol consumption rate of at least 7 g/(l·h) can be calculated. This 

value is similar to glucose consumption rates reported for C. glutamicum (7). 

 Thus, based on high reported methanol conversion rates, theoretical 

maximum lysine yields comparable to those of C. glutamicum and comparable sugar- 
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and methanol-prices (section 1.1.6), B. methanolicus may be a potentially efficient 

biocatalyst for the production of lysine from methanol. 

 

3.2 Establishment of protocols for gene delivery and high cell density 

cultivations of B. methanolicus 

(Papers I, II and IV, and work not described in a manuscript) 

3.2.1 Protoplast transformation 

 A protoplast transformation protocol for B. methanolicus classical AEC-

resistant mutant NOA2-13A5-2 was published in 1997 (34). This was the first report 

of a genetic transformation system, shuttle vectors and integrative vectors for B. 

methanolicus. Using a polyethylene glycol (PEG) mediated transformation protocol, 

the authors reported high transformation efficiencies, demonstrating a presumably 

reliable tool for genetic modification. The amount of DNA used or the actual number 

of true transformants from these experiments was not stated (34). Later attempts by 

the authors to establish B. methanolicus transformants using the reported protocol 

and various genetic constructs for recombinant gene expression in B. methanolicus 

failed (M. C. Flickinger, unpublished results). In fact, no recombinant B. methanolicus 

strains were published by any laboratory in the following years. Our initial attempts 

of obtaining recombinant B. methanolicus by using the published protocol failed. 

These attempts included the use of several B. methanolicus wild type strains and 

various shuttle vectors such as pDQ507 (34), pDQ508 (34) and pTB1.9 (see below). 

 As a gene delivery protocol is a critical tool for metabolic engineering of B. 

methanolicus, substantial effort was devoted to the development of improved and 

new genetic tools for this organism. In brief, the previously published protocol (34) is 

based on lysozyme treatment of exponentially growing cells for the generation of 

protoplasts, PEG-mediated transformation of the protoplasts with plasmid DNA, 

followed by selection and regeneration of transformants on solid medium. Variations 

of the protocol of Cue et al were evaluated in order to develop a more reliable 

protocol for gene delivery. The results from these experiments with B. methanolicus 

wild type strain MGA3 were characterized by poor reproducibility, in accordance with 

the observations of Cue et al (34). Due to the low reproducibility, only general 

observations are summarized in Table 2. 
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Table  2.  General  observations  from  the  optimization  of  a  protoplast  transformation  protocol  for  
B. methanolicus MGA3. The final protocol is given in Appendix 1. 
 
 
Establishment of recombinant strains is dependent on: 
  1)  generation of protoplasts 
  2)  transformation of protoplasts with plasmid DNA 
  3)  regeneration of protoplasts 
Experiments repeatedly demonstrated that the success-rate of point 2) and 3) above were in reverse ratio. 
Intensified lysozyme treatment of the cells (by means of increased lysozyme concentration or incubation 
period) improved point 2) as observed by the number of true transformants per number of regenerated cells 
(without antibiotic selection). However, at the same time this worsened point 3) as observed by the total 
number of regenerated cells (without antibiotic selection) per number of cells entering the protocol. 
 

 
The number of surviving transformants was found to increase by: 
  • Increasing the amount of plasmid DNA (up to 10 µg plasmid DNA to 109 lysozyme-treated cells). 
  • Gentle handling of protoplasts (by means of centrifugation conditions, constant temperature (25°C) during 

all experimental stages, low shear in all mixing steps). 
  • Decreased PEG-concentration during PEG treatment (down to 25% PEG8000). 
  • Dilution of the mixture of protoplast, DNA and PEG after PEG-treatment to facilitate centrifugation. 
 

 

 The highest protoplast transformation frequency reported by Cue et al (34) 

was obtained with the E. coli – B. methanolicus shuttle vector pDQ508 (8.4 kb), 

constructed by cloning an endogenous B. methanolicus DNA fragment into an E. coli 

vector (34, 35). Upon sequencing of the naturally occurring B. methanolicus MGA3 

plasmid pBM19 (section 3.3.1), pDQ508 was found to harbor a 4 kb region of pBM19, 

presumably carrying replication elements, but not including the complete repB gene. 

An alternative E. coli – B. methanolicus shuttle vector, pTB1.9 (6.0 kb), was 

constructed, and included a 2 kb pBM19 region covering the putative origin of 

replication and the complete repB gene of pBM19. In various protoplast 

transformation experiments, transformation with pTB1.9 gave 1.5 to 4-fold higher 

number of transformants than with pDQ508. Whether the improved transformation 

efficiency was due to decreased vector size, insertion of the complete repB gene, or 

some unidentified factor is unknown. 

 After protoplast transformation of B. methanolicus wild type MGA3 with 

pDQ508 or pTB1.9 (both plasmids carrying a neomycin resistance marker), a number 

of candidates (up to 90% in certain experiments) selected on solid regeneration 

medium with neomycin selection (5 µg/ml) were found not to grow after transfer to 
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new, selective medium (solid or liquid). Plating of MGA3 onto solid regeneration 

medium with neomycin did not produce colonies; neither did plating of cultures 

obtained by the completion of the protoplast transformation protocol without plasmid 

DNA. Additionally, transformants that proved to retain their neomycin resistance 

upon transfer to new selective medium did not grow in methanol medium and were 

cured for pBM19 (section 3.3.2). In sum, these results indicate incompatibility 

between pBM19 and pTB1.9 / pDQ508, due to the sharing of one or more elements of 

the plasmid replication or partitioning systems, as has been observed in several 

microbial systems (104, 113). 

 Optimization of the protoplast protocol led to the development of an 

alternative protocol (Appendix 1) that was successfully used for the establishment of 

several recombinant B. methanolicus strains such as MGA3(pTB1.9mdh) and 

MGA3(pTB1.9mdhL) (16). However, the reproducibility of the results obtained from 

this protocol remained poor, and the actual number of viable recombinant strains 

using MGA3 and pTB1.9-based vectors was normally less than 10 colonies. 

Transformation using pHP13 and pHP13-derived vectors did not produce a higher 

number of recombinant strains than using pTB1.9, in agreement with the results of 

Cue et al (34). 

 

3.2.2 Electroporation 

 Transformation by means of electroporation was evaluated in order to 

achieve a more reliable and less laborious protocol for gene delivery than the 

optimized protoplast transformation protocol (section 3.2.1 and Appendix 1). Initial 

attempts were based on electroporation-protocols developed for related bacteria (e.g. 

99, 146). However, in agreement with previous attempts (M. C. Flickinger, personal 

communication), recombinant B. methanolicus strains were not established by using 

these protocols and identified the need for a customized protocol in order to use 

electroporation as means for gene delivery in this organism.  

 A breakthrough in the development of a protocol for electroporation of B. 

methanolicus was extensive incubation in non-selective liquid medium after 

electroporation, followed by selection of recombinant strains in liquid medium: The 

electroporated culture was allowed to grow in rich, non-selective liquid medium over 

night before the culture was transferred to liquid, rich medium with antibiotic 
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selection. After six to eight hours incubation in selective medium, results were scored 

on a growth / no-growth basis. Cultures showing growth in liquid, selective medium 

were plated on selective solid medium in order to obtain single colonies. 

 Further optimization of the electroporation protocol was performed based on 

acquired knowledge on the importance of induced transcription levels of mdh and 

RuMP genes for improved methanol tolerance (section 3.3.5). As a consequence, 

recombinant strains were adapted to methanol by transferring cells from rich medium 

to a liquid medium with low methanol content (30 mM) before the methanol 

concentration in the medium was increased to normal levels (150 to 200 mM). 

 As the developed electroporation protocol (Appendix 2) includes an extensive 

incubation period prior to selection and isolation of recombinant strains, this method 

is not compatible with the generation of numerous unique recombinant strains from a 

single electroporation, such as the establishment of a mutant library. However, the 

protocol has proven to be a reliable method for gene delivery that is routinely used 

for various B. methanolicus strains and shuttle vectors, including the preferred 

cloning vector pHP13. Based on the number of colony-forming units upon plating on 

selective, solid medium and the number of generations during the liquid incubation 

periods, the number of unique transformants obtained by one electroporation 

experiment is estimated to normally vary between 1 and 100. This number is 

typically generated based on 109 cells and 1 µg plasmid DNA, and the variation in the 

transformation efficiency is highly dependent on the plasmid of choice. 

 

3.2.3 High cell density fermentation 

 Existing infrastructure at SINTEF Materials and Chemistry, Department of 

Biotechnology offered a potential for running controlled laboratory-scale high cell 

density fermentations in an efficient manner. Operating conditions such as dissolved 

oxygen level, pH, temperature and air-flow is controlled and monitored online 

together with CO2 evolution rate. 

 However, in order to run fermentation trials with methanol medium, control 

of the methanol concentration in each fermentor was critical. An infrastructure as 

outlined in Figure 7 was built in order to run multiple parallel fermentors with online 

monitoring and individual control of the methanol level. Headspace gas from each 

fermentor is analyzed by a mass spectrometer to determine the methanol 
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concentration in the headspace which is assumed to be in equilibrium with the liquid 

culture. In order to analyze head space gas from multiple fermentors, computer 

controlled valves were installed to multiplex between the headspace gases of the 

different fermentors. Headspace gas is carried from the fermentor, through valves for 

multiplexing and a flow-meter, to the mass spectrometer in stainless steel tubing 

with the overpressure inside the fermentor vessel as the driving force. All steel 

tubings, multiplexing valves and flow-meter are heated to 55 or 65°C and insulated 

in order to prevent condensation of methanol in the headspace gas. Custom software 

handles calibration and analysis of the ion-signals from the mass spectrometer in 

order to report online methanol concentrations for each fermentor. Additional custom 

software with control engineering algorithms evaluates online and historic methanol 

concentrations in the individual fermentors. This software then finally controls pumps 

for feeding of a methanol feed-solution to each fermentor to maintain a desired 

methanol level in the fermentation broth. 
 
 

Fermentation broth, 50°C

CH3OH(g) CH3OH(l)

Head space

Fermentor 1 Fermentor 2 Fermentor 8

Insulated steel tubing, 65°C

(…)

Fermentor 3

(…)
Valve 1 Valve 2 Valve 3 Valve 8

Flow
meter

Mass 
spectrometer 

(MS)

Valve cabinet, 55°C

Insulated steel tubing, 65°C
Custom software

Calculation of 
methanol levels 
based on MS-

signals

Custom software

Calculation of 
methanol feeding 

based on 
methanol levels

Data signal 
controlling pumps 

for methanol 
feeding to each 

individual 
fermentor

 
 
Figure 7. Outline of system for online monitoring of methanol levels and individual control of methanol 
feeding. Computer‐controlled multiplexing of the headspace gases from each fermentor allows online 
analysis of multiple fermentors with one mass spectrometer. 
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3.3 Study and engineering of B. methanolicus methanol metabolism 

(Papers I and II) 

3.3.1 Natural plasmid pBM19 harbors key enzymes for methanol oxidation and 

assimilation 

 A 19 kb plasmid was isolated from wild type B. methanolicus MGA3 and 

designated pBM19. Surprisingly, sequencing of pBM19 unraveled the presence of key 

genes for methanol metabolism, including mdh encoding methanol dehydrogenase 

(Figure 8). In addition to mdh, pBM19 was found to carry genes for the putative 

enzymes sedoheptulose-1,7-bisphosphatase (SBPase; encoded by glpX), fructose-

1,6-bisphosphate aldolase (FBPA; fba),  transketolase (TK; tkt), 6-

phosphofructokinase (PFK; pfk) and ribulose-5-phosphate 3-epimerase (RPE; rpe), all 

with putative roles in the RuMP pathway (section 1.2.4 and Figure 8). 

 B. methanolicus has previously been assumed to use the TA variant of the 

RuMP rearrangement part (section 1.4.1) as a low TA activity but no SBPase activity 

could be detected in cell extracts (Figure 4). It is however, not known whether TA 

activity is crucial for methanol consumption in B. methanolicus. The presence of the 

glpX gene encoding SBPase on pBM19 suggests that the SBPase variant of the RuMP 

rearrangement part may function in B. methanolicus (Figure 8). 
 

 
Figure 8 (next page).  Illustration of plasmid dependent methylotrophy  in B. methanolicus. Genes and 
gene  products  of  plasmid  origin  are  on  gray  background  while  genes  and  gene  products  of 
chromosomal origin are on black background. A: Natural plasmid pBM19 with genes and corresponding 
enzymes  involved  in  methanol  oxidation  and  the  RuMP  pathway  (left),  and  chromosomal  genes 
involved  in  the RuMP pathway  (center). B: Methanol oxidation and overview of  the RuMP pathway.  
C: Fixation part of the RuMP pathway. D: Two possible variants of the regeneration part of the RuMP 
pathway. E: Two possible variants of the cleavage part of the RuMP pathway.  
  Abbreviations:  mdh,  MDH,  methanol  dehydrogenase;  glpX,  SBPase,  sedoheptulose‐1,7‐
bisphosphatase;  fba,  FBPA,  fructose‐1,6‐bisphosphate  aldolase;  tkt,  TK,  transketolase;  pfk,  PFK, 
phosphofructokinase; rpe, RPE, ribulose‐5‐phosphate; hps, HPS, 3‐hexulose‐6‐phosphate synthase; phi, 
PHI,  6‐phospho‐3‐hexuloisomerase; RPI,  ribose‐5‐phosphate;  TA,  transaldolase;  PGI,  phosphoglucose 
isomerase;  GPDH,  glucose‐6‐phosphate  dehydrogenase;  PGD,  6‐phosphogluconate  dehydratase; 
KDPGA, 2‐keto‐3‐deoxy‐6‐phosphogluconate aldolase. 
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 Southern hybridization experiments indicated that no chromosomal copies of 

pBM19-genes exist, and the copy number of pBM19 was estimated to be 10 to 16 

copies per chromosome. Screening of an additionally 13 different B. methanolicus 

wild type strains demonstrated that they all harbor plasmids carrying mdh and RuMP 

genes, with restriction patterns similar but not identical to pBM19. 

 

3.3.2 pBM19 is critical for methylotrophic growth, but represents a metabolic 

burden for B. methanolicus when growing on mannitol  

 After successful transformation of MGA3 with the pBM19-based shuttle vector 

pTB1.9 (section 3.2.1), southern hybridization experiments and PCR analysis 

confirmed loss of the natural plasmid pBM19, probably caused by plasmid 

incompatibility (104, 113). Upon prolonged cultivation of MGA3(pTB1.9) in non-

selective medium, a pTB1.9-cured strain designated MGA3C-A6 was isolated. Neither 

MGA3(pTB1.9) nor MGA3C-A6 could grow on methanol, demonstrating that pBM19 is 

critical for methylotrophic growth by this organism. Introduction of the B. 

methanolicus mdh gene returned mdh transcription to wild type levels, but was not 

sufficient to restore methanol growth of MGA3C-A6, indicating that pBM19 genes 

besides mdh are required for methanol consumption in this organism. To our 

knowledge, plasmid-linked methylotrophy has previously not been reported in any 

organism. Although large plasmids are commonly present in methylotrophic bacteria 

(38, 92), the understanding of the biological significance of these replicons is limited. 

Based on the characterization of pBM19, its function in B. methanolicus and the fact 

that methylotrophy does not correlate well with traditional methods of bacterial 

classification (5, 88), it is tempting to speculate that methylotrophy might be a 

transferable metabolic trait in nature. 

 As mannitol is the only sugar that has been reported to support rapid growth 

of B. methanolicus (16, 136), the pBM19-cured strains were characterized in a 

defined mannitol medium. Interestingly, while the specific growth rates of wild type 

MGA3 in shake flasks cultures on mannitol and methanol medium were similar  

(0.30 h-1 and 0.32 h-1, respectively), the pBM19-cured strain MGA3C-A6 showed a 

higher specific growth rate on mannitol (0.37 h-1) (Table 3). These data indicate that 

the maintenance of pBM19 represents a metabolic burden for B. methanolicus 

growing on mannitol. This was supported by the characterization of a resulting 
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3.3.3 

3.3.4 

population after prolonged growth of the wild type MGA3 in liquid defined mannitol 

medium: After 140 generations, 80% of the colonies tested were cured of pBM19 and 

could no longer grow on methanol. Mannitol may be taken up by the cells as 

fructose-6-phosphate, similar to other Bacillus species (160), indicating that B. 

methanolicus may have isozymes of both PFK and FBPA to metabolize fructose-6-

phosphate (Figure 3). 

 

Methanol metabolism relies on both chromosomal and plasmid-borne genes 

 The hps and phi genes encoding 3-hexulose-6-phosphate synthase (HPS) and 

6-phospho-3-hexuloisomerase (PHI), respectively, were PCR amplified from wild type 

MGA3 total DNA. The genes are critical for the fixation phase of the RuMP pathway, 

and operons including hps and phi have previously been cloned from both 

methylotrophs utilizing the RuMP pathway (107, 132, 170), and non-methylotrophs 

such as B. subtilis (167). The finding of hps and phi being located on the B. 

methanolicus chromosome suggests that methanol oxidation is governed by the 

concerted action of both chromosomally and plasmid-borne genes in this organism. 

This notion is supported by pBM19’s lack of the gene encoding the B. methanolicus 

MDH activator protein ACT (61, 80).  

 

Genes for methanol metabolism are transcriptionally upregulated upon 

methylotrophic growth 

 To further investigate the biological function of pBM19 for methylotrophic 

growth, transcriptional regulation of pBM19-genes in MGA3 grown in mannitol and 

methanol media was analyzed by RT-PCR. The results of these analyses showed that 

the mdh gene was induced about threefold in cells growing on methanol compared to 

those growing in mannitol medium. Also the putative RuMP-genes glpX, fba, tkt, pfk 

and rpe were induced upon methanol growth, supporting the assumed roles of these 

genes for methanol metabolism in B. methanolicus. Induced expression of genes for 

the metabolism of one-carbon compounds have been reported in both autotrophic 

(154) and methylotrophic (3, 11, 75, 89, 170) bacteria. The induction of the pBM19-  
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SUMMARY OF RESULTS AND DISCUSSION 

genes assumed to be involved in methanol metabolism varied from 3-fold (mdh) to 

40-fold (pfk). A low pfk transcription in mannitol medium and a corresponding strong 

induction upon methylotrophic growth may indicate that the pfk gene product is only 

needed during carbon assimilation by the RuMP pathway. This is similar to previously 

reported data on an ATP-dependent PFK activity induced by methanol, whereas a 

pyrophosphate-dependent PFK enzyme is expressed upon growth on sugar (3). 

 The chromosomal genes hps and phi involved in the fixation phase of the 

RuMP cycle were similarly shown to be induced about 6-fold upon methanol growth 

compared to growth on mannitol. In accordance with these data, the corresponding 

increase in in vitro activity of HPS+PHI in MGA3 was measured to be about two-fold.  

 To investigate which one-carbon compound (methanol or formaldehyde) 

induces the RuMP genes in B. methanolicus, HPS+PHI activity was measured in 

mannitol-grown MGA3 and MGA3C-A6 pulsed with either methanol or formaldehyde. 

The in vitro HPS+PHI activity of MGA3 cells grown in methanol was, as stated above, 

about twofold higher than that of mannitol-grown MGA3 cells. We achieved a similar 

twofold increase in HPS+PHI activity when mannitol-grown MGA3 cells were pulsed 

with methanol before cell harvesting. However, in the pBM19-cured strain MGA3C-A6 

lacking mdh, no increase in HPS+PHI activity could be detected upon pulsing of 

methanol to a mannitol culture. However, both MGA3 and MGA3C-A6 displayed a 1.5 

to 2-fold increase in HPS+PHI upon pulsing of formaldehyde to a mannitol-culture. 

These data confirm that formaldehyde, and not methanol, is the inducer of the RuMP 

pathway genes hps and phi, and that this induction is independent of any pBM19 

function. These findings are consistent with induced expression of HPS and PHI upon 

small formaldehyde additions in non-methylotrophic bacteria (106, 167), and earlier 

suggestions that formaldehyde can induce HPS activity in B. methanolicus C1 (8). 

 

3.3.5 Transcription levels of mdh and RuMP pathway genes modulate the cell’s 

methanol tolerance 

 To investigate the cell’s methanol tolerance, wild type strain MGA3 was 

pulsed with methanol in defined methanol and mannitol medium, while growth rate 

was monitored. These experiments showed that cells already growing on methanol 

tolerated pulsing of about 10-fold higher methanol additions than cells growing on 

mannitol (Table 3). Together with the RT-PCR data displaying methanol-induced 
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transcription of mdh and RuMP pathway genes (section 3.3.4), these results indicate 

that the transcription level of mdh and RuMP pathway genes control the B. 

methanolicus methanol tolerance. Previous reports have shown that B. methanolicus 

is highly sensitive to methanol pulses under methanol limitation (Pluschkell and Flick 

2002). Our new data contributes to the understanding of physiological responses to 

fluctuations in methanol levels and should be of high relevance for industrial large-

scale and high-cell-density fed-batch fermentations in which the methanol 

concentrations inside the fermentors may not be uniform. 

 In an MGA3 culture grown in a medium containing both methanol and 

mannitol, about 75 % of the carbon utilized was derived from methanol. The 

methanol tolerance of this culture was similar to that of the culture growing 

exclusively on methanol, suggesting that B. methanolicus can induce its RuMP 

pathway genes as long as methanol is present. 

 

3.3.6 Methanol sensitivity is caused by formaldehyde accumulation 

 To investigate the cause of the toxic effects of methanol pulsing, we grew the 

wild type MGA3 and the pBM19-cured strain MGA3C-A6 in mannitol medium and 

observed the effect of methanol pulsing on growth rate. Interestingly, MGA3C-A6 

cells lacking the mdh gene could tolerate about a 10-fold higher methanol 

concentration than wild type MGA3 (Table 3). Reintroduction of the homologous mdh 

gene into MGA3C-A6 reduced the methanol tolerance down to wild type levels, 

suggesting that the toxic effect in response to methanol addition is largely due to 

accumulation of formaldehyde produced by the MDH-mediated conversion of 

methanol.  

 Furthermore, phenotypic responses of formaldehyde-pulsing to mannitol-

grown cultures revealed that the tolerance of MGA3C-A6 for formaldehyde is 

significantly lower than that of the wild type strain (Table 3). These data support the 

hypothesis that mdh causes the formation of formaldehyde when methanol is pulsed 

into the growth medium and in the absence of a functional RuMP pathway, 

formaldehyde may accumulate to toxic levels.  

 A linear pathway for dissimilation of formaldehyde via formate to CO2 was 

previously reported in B. methanolicus (123) (Figure 5). Additionally, activities of the 

enzymes involved in the cyclic formaldehyde dissimilation pathway via glucose-6-
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phosphate has been measured in B. methanolicus (11). It is plausible to assume that 

both the RuMP pathway, the linear dissimilatory pathway and the cyclic dissimilatory 

pathway play a role in formaldehyde detoxification by B. methanolicus (Figure 5). 

 

3.3.7 

3.4.1 

Methanol tolerance and specific growth rate on methanol can be improved by 

overexpression of hps and phi 

 In contrast to the chromosomally located RuMP pathway genes hps and phi, 

the genes mdh, glpX, fba, tkt, pfk and rpe are located on pBM19 with an estimated 

copy number of 10 to 16 per chromosome. By introduction of a shuttle vector 

containing hps and phi into B. methanolicus, the in vitro HPS+PHI activity of 

methanol-grown cells increased about three-fold. Interestingly, the specific growth 

rate in methanol medium increased from 0.32 h-1 to 0.37 h-1 upon over-expression of 

hps and phi. Furthermore, the recombinant strain’s methanol tolerance improved, as 

demonstrated by improved growth rate after methanol pulsing (up to 1440 mM) to 

cultures growing in methanol medium (originally containing 200 mM methanol). 

These data indicate that methanol assimilation efficiency and methanol tolerance are 

closely connected in B. methanolicus and both traits can be improved by increasing 

the gene dosage of hps and phi. 

 

3.4 Metabolic engineering of the B. methanolicus aspartate pathway by 

means of overexpressing aspartokinase 

(Paper IV and results not described in a manuscript) 

B. methanolicus harbors three genes encoding aspartokinase activity 

 The presence of three different aspartokinase isozymes in B. methanolicus 

inhibited in a similar way as those of B. subtilis was previously predicted based on 

inhibition studies (138). However, only lysC encoding aspartokinase II was previously 

cloned and sequenced. In order to study the role of the B. methanolicus 

aspartokinase isozymes on lysine production, the genes for aspartokinase I (dapG) 

and III (yclM) were cloned based on previously reported DNA sequences of related 

species. 
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 dapG encoding aspartokinase I was shown to be located inside a putative 

operon, similar to what has been found in B. subtilis and other bacteria (25, 64, 

153). Partial sequencing of the putative B. methanolicus dap operon revealed 

putative genes encoding aspartate semialdehyde dehydrogenase, aspartokinase I and 

dihydrodipicolinate synthase, in addition to parts of an upstream putative gene 

encoding dipicolinate synthase, all enzymes of the aspartate pathway (Figure 6). 

 

3.4.2 Individual overexpression of aspartokinase-encoding genes increases lysine 

production in B. methanolicus 

 The three genes dapG, lysC and yclM encoding aspartokinase I, II and III, 

respectively, were overexpressed in B. methanolicus by using a cassette cloning and 

expression vector system. The three coding regions were coupled to the mdh 

promoter and ribosome binding site and introduced into B. methanolicus wild type 

MGA3. The resulting recombinant strains MGA3(pHP13mp-dapG), MGA3(pHP13mp-

lysC) and MGA3(pHP13mp-yclM) all displayed increased in vitro aspartokinase activity 

(4, 42 and 5-fold, respectively). Interestingly, all recombinant strains overexpressing 

individual aspartokinase genes displayed increased lysine production in high cell 

density fermentation trials on methanol, with similar specific growth rates as the wild 

type and the control strain MGA3(pHP13) harboring empty expression vector. The 

wild type MGA3 reached a maximum dry cell weight of 58 g/l in 23 hours with an 

initial specific growth rate of 0.49 h-1 and a final lysine concentration of 0.18 g/l in 

the growth medium (Table 4). The most dramatic increase in lysine production was 

observed with the recombinant strain overexpressing yclM, encoding aspartokinase 

III, which produced over 60-fold more lysine (11 g/l; volume corrected value) than 

the control strain. The recombinant strains overexpressing dapG and lysC displayed a 

2-fold and 10-fold increase in lysine production, respectively (Table 4). The 

glutamate production by all strains was similar (48 – 52 g/l), and the production of 

the other end products of the aspartate pathway remained low (methionine < 0.5 g/l; 

threonine < 0.1 g/l) in all recombinant strains. The lysine overproducing recombinant 

strains showed elevated intracellular lysine concentrations, while the intracellular 

concentration of threonine remained low in all strains (<0.5 mM). 

 Aspartokinase activity is known to be controlled by efficient allosteric 

feedback inhibition in several species, and the reduction of susceptibility of 
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aspartokinase to feedback inhibition has been the most important step in the 

development of L-lysine producing strains. Numerous examples of increased lysine 

production upon allosteric feedback deregulation of aspartokinase exist, especially in 

C. glutamicum (e.g. 32). The 60-fold lysine overproduction of MGA3(pHP13mp-yclM) 

overexpressing wild type aspartokinase III therefore seems surprising, and similar 

lysine overproduction has not previously been reported in the literature. Increasing 

the copy number of a wild type aspartokinase gene in a Brevibacterium flavum 

mutant resulted in a 33% increase in lysine production (from 23.7 to 28.7 g/l) (95), 

while overexpression of wild type aspartokinase in C. glutamicum was detrimental to 

growth in defined medium (32, 82). 
 
 
Table  4.  Initial  specific  growth  rate,  maximum  dry  cell  weight  and  final  lysine  
production  of  B.  methanolicus  wild  type  MGA3,  MGA3  mutant  M168‐20,  and  recombinant  strains 
overexpressing dapG,  lysC and yclM. “+M” denotes methionine‐feeding  throughout  the  fermentation 
trial. 
 

Strain 
Specific growth 

rate [h-1] 
Dry cell  

weight [g/l] 1)

Lysine 
production  

[g/l] 1)

Lysine in growth 
medium [g/l] 2)

MGA3 0.49 58 0.18 0.12 

MGA3(pHP13) 0.49 56 0.18 0.12 

MGA3(pHP13mp-dapG) 0.50 62 0.38 0.23 

MGA3(pHP13mp-lysC) 0.46 61 1.8 1.1 

MGA3(pHP13mp-yclM) 0.50 54 11 7.0 

M168-20 +M 0.40 69 14 7.8 

M168-20(pHP13) +M 0.39 73 15 8.3 

M168-20(mp-yclM) +M 0.33 58 14 9.0 

MGA3(pHP13) +M 0.53 71 0.22 0.15 

 
1)  Reported biomass and  lysine production are corrected for dilution caused by feeding throughout 

the fermentation in order to compare results from different bioreactor trials. 
2)  Actual lysine concentration measured in growth medium. 
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 Although the reason for the exclusive overproduction of lysine by the 

recombinant MGA3-strains is unknown, the resulting low intracellular threonine 

concentration may partly explain the high potential for lysine production by 

MGA3(pHP13mp-yclM). Aspartokinase III is synergistically feedback regulated by 

lysine and threonine in B. subtilis, and regulation of the different aspartokinases is 

suggested to be similar in B. methanolicus (138). Aspartokinase III of B. subtilis 

retained more than 25% of the activity upon addition of 20 mM lysine in vitro (52); 

inhibition was not efficient unless both lysine and threonine were present (>1 mM). 

 

3.4.3 AEC-resistant mutant M168-20 overproduces lysine and harbors no mutations 

in aspartokinase-encoding genes (results not described in a manuscript) 

 After one round of mutagenesis with N-methyl-N’-nitro-N-nitrosoguanidine, 

an AEC-resistant mutant of MGA3 was selected and designated M168-20 (Rick 

Dillingham, unpublished results). This mutant required addition of methionine for 

growth in defined methanol-medium. In a high cell density fermentation trial, M168-

20 produced significant amounts of lysine, reaching a maximum of 14 g/l in 30 hours, 

with an initial specific growth rate of 0.40 h-1 (Table 4). No accumulation of threonine 

or methionine could be detected in the growth medium. The final glutamate 

production (50 g/l) was similar to that of MGA3 (49 g/l). 

 The final biomass concentration of M168-20 was higher than that of MGA3 

(69 g/l and 58 g/l, respectively), suggesting a possible effect of methionine feeding 

on cell growth. To investigate potential effects of methionine feeding, fermentation 

trials of MGA3(pHP13) with and without addition of methionine were compared. 

Indeed, the final biomass concentration of MGA3(pHP13) with methionine feeding 

was higher than without (73 g/l and 58 g/l, respectively) and comparable to that of 

M168-20 (69 g/l) (Table 4). Also the initial specific growth rate increased upon 

methionine feeding of MGA3(pHP13) (from 0.49 to 0.53 h-1), indicating that 

methionine is beneficial for growth of B. methanolicus in defined methanol medium. 

Methionine feeding caused no major effect on lysine production by MGA3(pHP13) 

(Table 4). 

 Remarkably, genetic characterization of M168-20 revealed no mutations in 

the coding regions of dapG, lysC and yclM. Similarly, no mutations were found in 

regions of 350, 594 and 489 bp upstream of asd, lysC and yclM coding regions, 
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respectively. Additionally, in vitro aspartokinase activity of crude extract of M168-20 

was similar to that of MGA3 (both 0.05 U/mg protein). Together, these results 

indicate that mutant M168-20 carries wild type aspartokinase isozymes regulated in 

the same manner as for MGA3. Several studies on both C. glutamicum and B. subtilis 

report AEC resistance being mediated by altered transcription regulation of 

aspartokinase (81, 96, 97, 121) or amino acid substitutions in aspartokinase (e.g. 

116). However, also another lysine overproducing B. methanolicus AEC-resistant 

mutant was previously reported to carry a wild-type aspartokinase II gene (138), 

suggesting that aspartokinase may not be a primary target for AEC-resistance in wild 

type B. methanolicus. 

 To investigate if the mutation(s) in M168-20 was located in other genes 

encoding aspartate pathway enzymes, M168-20 was further genetically 

characterized. Interestingly, these results demonstrated no mutations in the key 

genes asd, dapA and lysA (both coding and upstream regions). The remaining genes 

of the aspartate pathway were not investigated due to unavailable genetic sequences. 

The methionine requirement of M168-20 may suggest that it is affected in 

homoserine dehydrogenase, similar to previously reported homoserine auxotrophs 

and AEC-resistant mutants of B. methanolicus (136), and an AEC resistant mutant of 

B. flavum (95). This could explain the methionine requirement and a potentially lower 

intracellular threonine concentration which would decrease a presumably concerted 

feedback inhibition of aspartokinase III by lysine and threonine. This is in agreement 

with RT-PCR data of shakeflask cultures demonstrating increased yclM transcription in 

M168-20 compared to that of MGA3 (Roman Netzer and Trygve Brautaset, 

unpublished results), as yclM expression is known to be repressed by threonine in 

related organisms such as Bacillus sphaericus and B. subtilis (13, 119). 

 

3.4.4 Overexpression of yclM does not increase lysine production in M168-20 during 

high cell density fermentation trials (results not described in a manuscript) 

 Recombinant M168-20 strains individually overexpressing dapG, lysC and 

yclM were established. Similar to the MGA3 series of recombinant strains, crude 

extracts of the M168-20 recombinant strains overexpressing individual aspartokinase-

encoding genes displayed increased aspartokinase activities (4-fold, 39-fold and 3-

fold, respectively). Unlike for the MGA3 series of recombinant strains, the lysine 
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production of M168-20(pHP13mp-yclM) overexpressing yclM was similar at all times 

during the fermentation trial to that of a control strain carrying an empty expression 

vector. The resulting final lysine production were 14 and 15 g/l, respectively (Table 

4), indicating that under these conditions, potential positive effects of increased AK 

activity on L-lysine production may be suppressed by another, unknown limiting 

factor. Analysis of the growth medium throughout the fermentation trial verified no 

nitrogen limitation (1.7 g nitrogen/l still available at the end of the fermentation 

trial). 

 Shakeflask studies of the M168-20 recombinant strains overexpressing dapG, 

lysC and yclM demonstrated that they all produced more L-lysine than the control 

strain (Ingemar Nærdal and Trygve Brautaset, unpublished results), verifying the 

genetic construction of these strains and illustrating that overexpression of wild type 

aspartokinase-encoding genes may be interesting even in lysine overproducing 

strains. However, the reason for M168-20(pHP13mp-yclM) not yielding increased L-

lysine production under the high cell density fermentations trials remains unknown 

and illustrates the need for further understanding of the control mechanisms of the 

lysine biosynthesis pathway in B. methanolicus. 

 

 

 

 

 46 



SUGGESTIONS FOR FURTHER WORK 

4 SUGGESTIONS FOR FURTHER WORK 

 The development of protocols for gene delivery by means of protoplast 

transformation and electroporation offered the possibility of constructing recombinant 

B. methanolicus strains. However, future metabolic engineering of this organism will 

highly benefit from, and to a certain extent be dependent on further development of 

the genetic toolbox. Protocols for B. methanolicus gene knockout and gene 

replacement by homologous recombination (e.g. by means of suicide vectors or 

temperature-sensitive vectors) would make possible the construction of valuable 

recombinant strains. An extended library of useful promoters (both inducible and 

constitutive promoters of various strengths) would offer the possibility of tuning gene 

expression and preventing potential toxic cell conditions. 

 The major importance of aspartokinase in regards to B. methanolicus lysine 

biosynthesis was illustrated by the increase in lysine production upon overexpression 

of aspartokinase isozymes. To improve the knowledge of the aspartokinase properties 

and to better predict possible effects of manipulations of the aspartokinase isozymes, 

a biochemical characterization of these enzymes would be valuable. Such information 

in combination with the measurement of intracellular metabolites such as 

intermediates and end products of the aspartate pathway should have a significant 

impact on the future strategies for metabolic engineering of B. methanolicus towards 

efficient production of lysine. Furthermore, investigations of the effects of 

deregulated aspartokinase isozymes are motivated by the considerable impacts of 

such approaches in other lysine-producing bacteria such as C. glutamicum. In 

addition, a characterization of the available and dominating lysine biosynthetic 

pathway(s) would improve the understanding of the B. methanolicus lysine 

biosynthesis and serve as a basis for further metabolic engineering of this organism. 

 As discussed in this thesis, several B. methanolicus pathways are believed to 

exist for formaldehyde detoxification. Insight into the split at which formaldehyde is 

being assimilated or dissimilated by various pathways should be valuable for 

improved understanding of methylotrophy in B. methanolicus, and may be an 

important contribution to future genetic engineering towards more efficient 

bioproduction by this organism. Such studies may include flux analysis of the 

assimilation and dissimilation pathways and engineering of both available and newly 
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cloned genes (e.g. formaldehyde and formate dehydrogenase for which gene cloning 

and sequencing has been initiated (Matt Smith, unpublished results)). 

 In the process of cloning and sequencing of yclM, other genes encoding 

aspartate pathway enzymes were fully or partly sequenced. Especially asd and dapA 

are highly relevant candidates for further genetic engineering and evaluation of 

potential effects on lysine biosynthesis in B. methanolicus, possibly in combination 

with overexpression of yclM. 

 As a library of classical lysine overproducing mutants exists (M. C. Flickinger, 

unpublished results), selected genes assumed relevant for lysine biosynthesis can be 

sequenced in such mutants to possibly indicate additional limiting enzymatic steps for 

lysine biosynthesis. Such studies may be supplemented by the analysis of relevant 

intracellular metabolite levels, to generate a broad hypothesis-generating data-pool. 

 Engineering of the lysine export mechanism in C. glutamicum proved to be an 

efficient approach to increase lysine excretion rate in this organism. Identification and 

future improvement of a similar system in B. methanolicus may prove to be a key 

approach for obtaining economically competitive lysine production rates and levels 

also in this organism. 

 Improved osmotolerance of B. methanolicus may be required to maintain or 

increase the lysine production rate at high osmotic pressure caused by e.g. high 

lysine levels. Experiments have indicated that B. methanolicus does not harbor 

uptake systems for common osmoprotectants (Anders Øverby, Øyvind M. Jakobsen, 

unpublished results). Work has been initiated on introduction of heterologous uptake 

systems and biosynthesis routes for osmoprotectants. 

 It is tempting to speculate if methylotrophy as a fundamental physiological 

property can be transferred to other bacteria by the introduction of pBM19-like 

plasmids. Such an approach would be based on the finding of mdh and critical RuMP-

pathway genes on the natural plasmid pBM19, the fact that several non-

methylotrophs already carry the hps and phi genes, and the knowledge that 

methylotrophy does not correlate well with traditional methods of bacterial 

classification. Attempts have been made to engineer C. glutamicum to produce lysine 

from methanol (150), but an organism that can utilize methanol as the sole source of 

carbon and energy, obtained by genetic engineering from a non-methylotroph has 

not been reported. Such a result should have impacts far beyond those of basic 
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science, as selected processes within microbial industrial production could potentially 

be converted from sugar-based to methanol-based processes. 

 B. methanolicus is a natural producer of glutamate. In addition to the focus 

on lysine production, current research in our laboratories is also directed towards the 

use of B. methanolicus for industrial production of glutamate from methanol.  
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5 CONCLUSIONS 

 Improved and new tools for B. methanolicus gene delivery by means of 

protoplast transformation and electroporation were developed. These tools served as 

the basis for the first demonstrations of recombinant gene expression in any B. 

methanolicus strain, and represent today a reliable protocol for establishing 

recombinant B. methanolicus mutants.  

 The naturally occurring plasmid pBM19 of the thermotolerant methylotroph B. 

methanolicus MGA3 was shown to carry the key gene mdh encoding methanol 

dehydrogenase which is responsible for methanol oxidation and critical for methanol 

utilization in this organism. Additionally, pBM19 harbors five genes involved in the 

RuMP pathway for the assimilation of methanol-derived carbon. While pBM19 

represented a metabolic burden when growing on mannitol, B. methanolicus cells 

cured of this plasmid could no longer grow on methanol, demonstrating the first 

example of plasmid-linked methylotrophy in any organism. Transcription of both 

pBM19-borne and chromosomally located genes for methanol oxidation and 

assimilation are induced upon methylotrophic growth, with formaldehyde as the 

inducing compound. Transcriptional upregulation of mdh and RuMP pathway genes 

increases the cell’s methanol tolerance, and an upregulated RuMP pathway is believed 

to improve the cell’s ability to detoxify intracellular formaldehyde. Increased activity 

of the chromosomally located genes hps and phi encoding 3-hexulose-6-phosphate 

synthase and 6-phospho-3-hexuloisomerase, respectively, improved the specific 

growth rate and the cell’s methanol tolerance, indicating HPS+PHI activity as a 

limiting factor for assimilation and detoxification of formaldehyde. 

 dapG and yclM encoding aspartokinase I and III respectively, were cloned 

and sequenced from B. methanolicus MGA3, and represents, together with the 

previously known lysC encoding aspartokinase II, a set of three aspartokinase 

isozymes in this organism. Individual overexpression of these three wild type 

aspartokinase-encoding genes demonstrated improved lysine production. Upon 

overexpression of aspartokinase III in the wild type strain MGA3, the lysine 

production was improved more than 60-fold to 11 g/l in high cell density 

fermentation trials, while the production of the other end products of the aspartate 

pathway, methionine and threonine, remained low. A low intracellular threonine 

concentration may partly explain the high lysine production potential of the mutant 
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overexpressing aspartokinase III, as efficient feedback regulation of this enzyme may 

require the presence of appreciable concentrations of both intracellular lysine and 

threonine. A similar increase in lysine production upon overexpression of wild type 

aspartokinase has not previously been demonstrated in any organism.  
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APPENDIX 1 – PROTOPLAST TRANSFORMATION PROTOCOL 

Appendix 1. 

Protocol for protoplast transformation of B. methanolicus 
 

Starting material 
1. 1 ml ampoules of B. methanolicus are made from SOBsuc cultures (72) which are 

harvested at OD600 = 1.0 - 1.5 and added 15% (v/v) glycerol before freezing at  
-80°C. 

 

Cultivation 
2. Inoculate 100 µl thawed B. methanolicus culture from frozen ampoule in 100 ml 

SOBsuc medium. Grow in 500 ml baffled shakeflask for 16 hours at 50°C, 200 
rpm. 

3. Transfer 1 ml culture to 100 ml SOBsuc medium (pre-warmed  to 50°C) in 500 
ml baffled shakeflask and continue to grow at 50°C, 200 rpm to OD600 = 0.15 -
0.20. 

 

Protoplast generation 
4. Transfer 35 ml culture to a 50 ml centrifugation tube. Centrifuge 10 min, 2000 g, 

25°C. 
5. Pour off supernatant and resuspend in 3.5 ml 1 µg/ml lysozyme in SMMCB (34) 

by pipetting up and down 4 - 5 times. 
6. Incubate for 60 min at 42°C, horizontally, 150 rpm. 
7. Centrifuge 10 min, 1500 g, 25°C, pour off supernatant and resuspend in 3.5 ml 

SMMCB by pipetting up and down 4 - 5 times. 
8. Centrifuge 10 min, 1500 g, 25°C, pour off supernatant and resuspend in 0.7 ml 

SMMCB. Pipette up and down about 25 times to resuspend. 

 

Protoplast transformation 
9. Mix 0.6 ml protoplast suspension with 3 µg plasmid (0.5 – 1 µg/µl DNA) in a 50 

ml centrifugation tube. 
10. Add 1.0 ml 40% PEG8000 in SMMC (34) with a pipette with an opening of 

approximately 4 mm in diameter, mix by pipetting up and down about 10 times 
and incubate at room temperature for 3 min. 

11. Add 10 ml SMMCB. 
12. Centrifuge 10 min, 2000 g, 25°C, pour off supernatant and resuspend in 5 ml 

SMMCB by pipetting up and down about 20 times. 
12. Centrifuge 10 min, 2000 g, 25°C and pour off supernatant. 

 

Protoplast regeneration 
13. Resuspend the protoplast pellet in the 50 ml centrifugation tube in 0.4 ml SMMCB 

by pipetting up and down about 20 times. 
14. Incubate at 50°C for 2 hours, 175 rpm. Pipette up and down about 20 times 

before plating. 
15. Carefully plate 500 µL on a 13 cm Regeneration agar plate (34) with appropriate 

antibiotic pressure (e.g. 5 µg/ml neomycin). 
16. Incubate the plate in plastic at 50°C for 2-3 days. 
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APPENDIX 2 – ELECTROPORATION PROTOCOL 

Appendix 2. 

Protocol for electroporation of B. methanolicus 
 

Starting material 
1. 1 ml ampoules of B. methanolicus are made from SOBsuc cultures (72) which are 

harvested at OD600 = 1.0 - 1.5 and added 15% (v/v) glycerol before freezing at  
-80°C. 

 

Cultivation and generation of electrocompetent cells 
2. Inoculate 200 µl thawed B. methanolicus culture from frozen ampoule in 100 ml 

SOBsuc (72). Grow in 500 ml baffled shakeflask for 16 hrs at 50°C, 200 rpm. 
3. Transfer 1 ml culture to 100 ml SOBsuc medium (pre-warmed  to 50°C) in 500 

ml baffled shakeflask and continue to grow at 50°C, 200 rpm to OD600 = 0.25. 
4. Transfer 35 ml culture to a 50 ml centrifugation tube.  
5. Centrifuge 5 min, 3200 g, 25°C. Pour off the supernatant and resuspend in 4.5 

ml EP buffer (72) by pipetting up and down. 
6. Centrifuge 10 min, 3200 g, 25°C. Pour off the supernatant and resuspend in 4.5 

ml EP buffer by pipetting up and down. 
7. Centrifuge 15 min, 3200 g, 25°C. Pour off the supernatant and resuspend in 200 

µl EP buffer by pipetting up and down. 
8. Aliquot into sterile tubes (100 µl per tube) and freeze at -80°C. 

 

Electroporation 
9. Mix 100 µl thawed electrocompetent cell suspension with 1 µg plasmid (0.5 – 1 

µg/µl DNA) in a 1.5 ml tube. Incubate on ice for 15 - 40 min. 
10. Transfer into cold electroporation cuvette (0.2 cm gap) and electroporate, 200 Ω, 

25 µF and 12.5 kV/cm. 
11. Immediately add 2 ml SOBsuc carefully into the electroporation cuvette and 

invert four times to mix. 
12. Transfer the cells into a 50 ml centrifugation tube and add 3 ml SOBsuc. 
13. Incubate at 50°C, 200 rpm, for about 16 hrs. 

 

Cultivation and selection 
14. Transfer the electroporated culture to 100 ml SOBsuc (pre-warmed to 50°C) with 

appropriate antibiotic pressure (e.g. 5 µg/ml chloramphenicol). Incubate for 6 
hours. 

15. Plate 100 µl on Regeneration agar plate (34) with appropriate antibiotic pressure 
(e.g. 5 µg/ml chloramphenicol). 

16. Additionally, centrifuge 7 ml electroporated culture (3200 g, 5 min, 25°C), pour 
off the supernatant, resuspend the cells in 100 µl SOBsuc and plate out the 
concentrated culture on another Regeneration agar plate with appropriate 
antibiotic pressure. 

17. Incubate the plates in plastic at 50°C over night. 
18. Transfer cells from a colony into 100 ml MeOH30 medium (72) with appropriate 

antibiotic pressure (e.g. 5 µg/ml chloramphenicol). Grow in 500 ml baffled 
shakeflask for 6 – 8 hrs at 50°C, 200 rpm. 

19. Increase the methanol concentration to 200 mM and grow over night. 

 65 



 
 
 

Paper I
 



 
Is not included due to copyright 



 
 
 

Paper II 



 
Is not included due to copyright 



 
 
 

Paper III 



 
Is not included due to copyright 



 
 
 

Paper IV 



 
Is not included due to copyright 


	PREFACE
	 SUMMARY
	TABLE OF CONTENTS
	LIST OF PAPERS
	1 INTRODUCTION
	1.1 Biotechnological production of amino acids
	1.1.1 Amino acids are essential building blocks for living organisms
	1.1.2 Essential amino acids are used as feed additives
	1.1.3 Towards 100 years of industrial amino acid production
	1.1.4 Industrial amino acid production processes
	1.1.5 Amino acid production is a major biotechnological industry
	1.1.6 Methanol is an alternative substrate for biotechnological production

	1.2 Methylotrophic bacteria
	1.2.1 Methylotrophs
	1.2.2 One-carbon compounds occur abundantly in nature and support methylotrophic growth
	1.2.3 Methylotrophs employ different strategies for carbon assimilation 
	1.2.4 The RuMP pathway assimilate formaldehyde into cell-carbon
	1.2.5 Detoxification of formaldehyde is important in methylotrophs

	1.3 Microbial production of lysine 
	1.3.1 Lysine is a product of the branched aspartate pathway
	1.3.2 Prokaryotes harbor different biosynthetic pathways for lysine
	1.3.3 Aspartokinase controls the flow into the aspartate pathway
	1.3.4 Aspartokinase is a key target for improvement of microbial lysine production
	1.3.5 Strain development of C. glutamicum towards high-level production of lysine
	1.3.6 Microbial production of lysine from methanol

	1.4 Bacillus methanolicus and its potential for amino acid production
	1.4.1 B. methanolicus is a thermotolerant methylotroph
	1.4.2 Background for genetic engineering of B. methanolicus
	1.4.3 B. methanolicus is a candidate for amino acid production


	2 AIMS OF THE STUDY
	3 SUMMARY OF RESULTS AND DISCUSSION
	3.1 Theoretical considerations
	3.1.1 Stoichiometric conversion of methanol to lysine
	3.1.2 Theoretical product yield

	3.2 Establishment of protocols for gene delivery and high cell density cultivations of B. methanolicus
	3.2.1 Protoplast transformation
	3.2.2 Electroporation
	3.2.3 High cell density fermentation

	3.3 Study and engineering of B. methanolicus methanol metabolism
	3.3.1 Natural plasmid pBM19 harbors key enzymes for methanol oxidation and assimilation
	3.3.2 pBM19 is critical for methylotrophic growth, but represents a metabolic burden for B. methanolicus when growing on mannitol 
	3.3.3 Methanol metabolism relies on both chromosomal and plasmid-borne genes
	3.3.4 Genes for methanol metabolism are transcriptionally upregulated upon methylotrophic growth
	3.3.5 Transcription levels of mdh and RuMP pathway genes modulate the cell’s methanol tolerance
	3.3.6 Methanol sensitivity is caused by formaldehyde accumulation
	3.3.7 Methanol tolerance and specific growth rate on methanol can be improved by overexpression of hps and phi

	3.4 Metabolic engineering of the B. methanolicus aspartate pathway by means of overexpressing aspartokinase
	3.4.1 B. methanolicus harbors three genes encoding aspartokinase activity
	3.4.2 Individual overexpression of aspartokinase-encoding genes increase lysine production in B. methanolicus
	3.4.3 AEC-resistant mutant M168-20 overproduces lysine and harbors no mutations in aspartokinase-encoding genes (results not described in a manuscript)
	3.4.4 Overexpression of yclM does not increase lysine production in M168-20 during high cell density fermentation trials (results not described in a manuscript)


	4 SUGGESTIONS FOR FURTHER WORK
	5 CONCLUSIONS
	REFERENCES
	Appendix 1
	Appendix 2
	PAPER I
	PAPER II
	PAPER III
	PAPER IV



