
Doctoral theses at NTNU, 2017:246

Doctoral theses at N
TN

U, 2017:246
Ivar Eskerud Sm

ith

Ivar Eskerud Smith
A
7-field Lagrangian slug capturing and
slug tracking model with higher order
methods

ISBN 978-82-326-2564-2 (printed version)
ISBN 978-82-326-2565-9 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n 

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

Sc
ie

nc
e 

an
d 

Te
ch

no
lo

gy
De

pa
rt

m
en

t o
f E

ne
rg

y 
an

dP
ro

ce
ss

 E
ng

in
ee

rin
g



Ivar Eskerud Smith

A 7-field Lagrangian slug capturing 
and slug tracking model with higher
order methods

Thesis for the degree of Philosophiae Doctor

Trondheim, August 2017

Norwegian University of Science and Technology
Faculty of Engineering
Science and Technology
Department of Energy and Process Engineering



NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering
Science and Technology
Department of Energy and Process Engineering

© Ivar Eskerud Smith

ISBN 978-82-326-2564-2 (printed version) 
ISBN 978-82-326-2565-9 (electronic version) 
ISSN 1503-8181

Doctoral theses at NTNU, 2017:246

Printed by Skipnes Kommunikasjon as



i 

 

Preface 
 

 

 

This thesis is submitted for partial fulfilment of the requirements for the degree of 

Philosophiae Doctor (Ph.D.) at the Norwegian University of Science and Technology 

(NTNU). 

 

The work has been performed at the Department of Energy and Process Engineering in the 

Faculty of Engineering Science and Technology. Professor Ole Jørgen Nydal has been the 

main supervisor, while Professor Ruud Henkes and Dr. Benjamin Sanderse from the Delft 

University of Science and Technology were co-supervisors. 

 

The work has been financed by Shell, and was carried out from January 1st 2013 to December 

31st 2016. 

 



 
 

 

ii 

 

 



 
 

 

iii 

 

Abstract 
 

In this thesis, a 7-field Lagrangian slug capturing and slug tracking model with higher order 

methods and an adaptive grid is investigated for predicting the behaviour of two-phase gas-

liquid flow in multiphase flow pipelines. The model is capable of simulating both 

compressible and incompressible slugs, and pigs. The model has the possibility to simulate 

gas-liquid flow, including a liquid droplet field in the gas and entrained gas in the liquid. 

Walls consisting of multiple layers of different materials can be added to the pipes, and the 

energy equations for both the pipe walls and the fluids are solved. The mass, momentum and 

energy equations are solved in an iterative manner. Several additional tools and features have 

also been developed, like a steady state solver for the velocity, holdup, pressure and 

temperature, a unit-cell model which can be used as a standalone tool or as a sub-grid model 

in the dynamic model, fully period boundary conditions, curved pipe geometry, usage of 

tabulated PVT-files, and modelling of interfacial mass transfer. Higher order schemes are 

available for both spatial and temporal discretization. Different details in the two-fluid model 

have also been investigated, amongst other how to handle changes in the pipe cross-sectional 

area correctly for the border movement and level gradient. It is also shown how the upwind 

velocity must be modified by scaling factors to obtain the correct Bernoulli effect in the case 

of incompressible flow. 

The work resulted in four papers. In Paper 1 the model was tested against large scale 

experimental data, and was shown to give good predictions of the slugging periods after 

including a liquid droplet field and including the separator in the simulations. In Paper 3 the 

slug capturing capabilities of the model are tested against experimental data from a medium 

scale flow loop, related to a project investigating cleaning of water distribution systems by 

use of slug flow. Paper 2 investigate the ability of higher order spatial and temporal schemes 

in detecting ill-posedness in the two-fluid model. Paper 4 is a continuation of Paper 2, and 

analyse the accuracy, stability and damping properties of different time integration schemes 

for the two-fluid model. 
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1 Introduction 

 

In the petroleum industry, multiphase flow occurs when transporting oil and gas (and possibly 

water) in the same pipe through long multiphase pipeline systems. The behaviour of the flow 

can take many forms (flow patterns), depending on several parameters like fluid velocities, 

pipe diameter, pipe inclination, and the fluid properties. The fluid properties are again 

dependent on the pressure and temperature in the system, especially the gas density and the 

fluid viscosity. Certain flow patterns can cause significantly reduced production, or even such 

operational challenges that the pipeline must be abandoned. It is therefore of crucial 

importance to be able to predict the behaviour of the flow when investigating how to design 

the pipeline. The simplest of the flow patterns is stratified smooth flow, where the gas and 

liquid are separated by a clear and flat interface. Increasing the fluid velocities will increase 

the interfacial friction between the phases and result in waves forming on the interface. This 

flow pattern is referred to as stratified wavy flow. Depending on the conditions, these waves 

might become unstable, and grow large until they bridge the entire pipe cross-section and 

create a liquid plug. The gas pressure can then build up behind the liquid plug and accelerate 

it to high velocities through the pipe. This flow pattern is called hydrodynamic slug flow 

(sometimes just referred to as slug flow), and consists of alternating gas regions (Taylor 

bubbles) and liquid plugs (slugs). Such slugs results in increased wall friction and pressure 

loss, decreased production, and might even cause mechanical damage to the pipes. When a 

liquid blockage of the pipe cross-section occurs because of the pipe geometry, the flow is 

referred to as terrain slugging. Liquid then typically accumulates in low-points due to the pipe 

elevation. When liquid slugs accumulate at the bottom of a riser, the slug might grow 

depending on the gas velocity and upstream gas compressibility. When the pressure 

overcomes the hydrostatic pressure of the liquid in the riser, the gas will start to push the slug 

through the riser, and when the Taylor bubble enters the riser the slug is violently blown out. 

This type of slugging is called severe slugging, or riser-induced slugging. It is important to be 

able to predict the frequency and liquid volume of such severe slugs, especially for the design 

of slug catchers in receiving facilities so that they are not overfilled.  

For a slug being pushed from the left to the right by the preceding Taylor bubble, the velocity 

of the left end of the slug (bubble nose) will be that of the nose of the Taylor bubble. The right 
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end of the slug typically absorbs liquid (slug front) from the liquid below the upstream Taylor 

bubble, but this depends on several parameters like the difference in liquid velocity between 

the slug and the film below the Taylor bubble. It might happen that both ends of a slug are 

fronts absorbing liquid, or both ends might be Taylor-bubble noses. Empirical correlations to 

predict the velocity of a Taylor bubble nose has been extensively investigated; see for 

instance [1-6]. When simulating gas-liquid flow in petroleum pipelines, the so-called two-

fluid model is used [7, 8]. This is a one-dimensional model, which is a result of averaging the 

three-dimensional Navier-Stokes equations since a full three-dimensional simulation of a 

pipeline would take an unreasonably long time. In the two-fluid model the slug velocity is a 

result of a combined effect of amongst others friction models and the numerical scheme. 

Previous work ([9]) has shown how the interfacial friction model in the commercial simulator 

LedaFlow ([10, 11]) had to be tuned at high holdup values to obtain slug velocities that 

corresponds with the aforementioned well-established slug velocity correlations. 

 

This study is an extension of the work of Kjølaas and Kjeldby [12, 13], and presents a 

Lagrangian slug tracking model where the slug control volume velocity is set according to 

well established bubble nose velocity correlations. This automatically gives the desired 

velocities for the Taylor-bubbles, and enables sharp gas-liquid fronts at the slugs with no 

numerical diffusion. This allows for the use of a coarse grid for the slugs, giving fast 

simulations without the need for a sub-grid model like the unit-cell model concept ([14]) 

typically used by commercial simulators, like LedaFlow and OLGA [15]. However, one of 

the biggest challenges in the simulation of multiphase flow is how to initiate the slugs. Two 

different approaches can be used in the Sluggit model: Either initiate slugs on a coarse grid 

using mechanistic initiation criteria, or use a fine grid to resolve the natural growth of waves 

into slugs (so called slug capturing, first presented by Issa [16], and used by among others 

LedaFlow). Both approaches have their advantages and disadvantages. The initiation 

approach is fast, but is dependent of good correlations for when and how often to create a 

slug. The slug capturing approach on the other hand is significantly slower due to the fine grid 

and consequently reduced time step, but has the advantage that the natural growth of waves 

and slugs emerges from of solving the one-dimensional conservation equations for mass and 

momentum on a fine grid. The slug capturing approach however has the disadvantage that the 
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two-fluid model can become ill-posed and yield grid-dependent solutions, which is still an 

unresolved issue. 

 

In this Ph.D., a 7-field Lagrangian slug capturing and slug tracking model with higher order 

discretization methods has been investigated. In Paper 1 the model is compared with large 

scale experimental data. Furthermore, the effect of a droplet field and entrained gas in the 

slugs on the prediction of severe slugging was investigated. The effect of accounting for a 

finite size of the process facilities was also studied and shown to have a significant effect on 

the predicted slugging periods. In Paper 3, a combination of slug tracking and slug capturing 

has been tested and compared to experimental data. In Paper 2 and Paper 4, the effect of 

different higher order temporal and spatial methods on the prediction of the ill-posedness in 

the two-fluid model is investigated. The stability, accuracy and damping properties of 

different time integration methods are also studied, among others by a von Neumann analysis. 

Several details of the two-fluid model are also investigated in this thesis, among others: 

• How to handle changes in the cross-sectional area in a two-fluid model with moving 

borders 

• How to properly integrate the control volumes for a control volume than spans 

different pipes with different properties 

• How to correctly obtain the correct Bernoulli effect when there are area changes 

• How the level gradient term has to be modified when there are area changes 

 

The model has several other capabilities, for some of them unfortunately there was not 

enough time left to use for publications. A unit-cell model that can also be used as a steady 

state solver is presented, used among others in Paper 2. The energy equations for the pipe 

walls and for a two-fluid model with moving borders are implemented, which together with 

the capabilities of periodic boundary conditions, compressible slugs, void in slug and 

interfacial mass transfer can be used to simulate heat exchange systems. This work will be 

continued by another Ph.D. student. The model also has the capability to use a bent pipe 

geometry, tabulated PVT-files, pigging, and several other features explained in Appendix 

Appendix C. A set of test cases that demonstrates and verifies some of the basic physics and 

functionality in the model are presented in Appendix Appendix B. The details of the Sluggit 

model are described in section 2.  
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2 Model description 

 

The model is written in C++, using object oriented programming. Control volumes are 

represented by objects, like bubble section, slug section or pig section objects. Similarly, 

different types of border objects represent the borders (cell-faces) between the section objects 

(cell centres). 

 

There are three different types of sections in the presented model: Bubble sections, slug 

sections and pig sections. There are two different concepts in the model for how the slugs are 

handled that requires different treatment in the equations: One where the slugs are treated as 

incompressible and one where the slugs are compressible. These are be referred to as the 

model with incompressible and compressible slugs respectively throughout the thesis. Pigs are 

treated as incompressible objects, similar to the incompressible slugs. As shown in the 

inheritance diagram in Figure 2, the incompressible slugs and pigs both inherit from a 

common incompressible plug base class, which in turn inherit from the general plug section 

class. The compressible slugs also inherit from the general plug section class, so that a plug 

section might be either compressible or incompressible. 

 

The section and border objects are stored as linked lists, where one object has pointers to the 

previous and next objects in the list. In addition, consecutive sections of the same type 

belongs to the same unit. A unit contains pointers to the first and last section in the unit, and 

each section in the unit contain a pointer to the unit it belongs to. Bubble sections and 

compressible slugs are stored in bubble section units and compressible slug units respectively, 

while all types of incompressible plugs are stored in an incompressible plug unit. The main 

purpose of the unit class is that a consecutive list of incompressible objects will have the same 

velocity, and consequently the momentum equation is solved over the entire incompressible 

plug unit. The other types of units are only used as tools for traversing the lists of linked 

objects. The different sections and the unit concept is illustrated in Figure 1. 
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Figure 1: Illustration of the border, section and unit objects. 

 

The mass, pressure, momentum and energy equations are described in section 2.9, but a short 

description of the momentum and pressure control volume classes will be presented here. 

As shown in Figure 2 the unit class inherits from the momentum control volume class, which 

means that it has the possibility to be a part of the momentum equation system. The same 

applies for the border and section objects, which also inherit from the momentum control 

volume class. Note that momentum is not solved for the sections even though the section class 

inherits from the momentum control volume class. Similarly, the pressure equation is not 

solved for the border objects even though they inherit from the pressure control volume class, 

where the pressure variable is stored. This is done amongst others to have access to the 

velocity and pressure variables for these objects, but these variables are then calculated for 

instance as averages from the neighbouring objects where the respective variables are defined 

and solved. Another reason for the presented inheritance hierarchy is that one has the 

possibility to easily test other types of grids. Depending on the grid, each object that inherits 

from the momentum or pressure control volume classes must implement a function that 

specifies if momentum and pressure is solved or not. If momentum or pressure is not solved, a 

function must be implemented that calculates these variables from neighbouring objects 

where the variables are defined. In addition, a function must be implemented that returns a 

pointer to the next or previous momentum or pressure control volume. These functions are 

used to traverse the list of objects for which momentum or pressure are solved. Currently, 

only a staggered grid is implemented. The momentum and pressure control volume classes in 

turn inherit from a common control volume base class. This is done as there are some 

common variables for all control volumes regardless of type, like mass, length, and the 

absolute position at the start and end of the control volume. 
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Figure 2: Inheritance diagram for the border, section and unit classes. 
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2.1 Phase subscripts and mixture formulations 

 

The Sluggit code has 7 fields implemented. The fields are: 

Gas bubbles in oil (go), gas bubbles in water (gw), continuous oil in mixture liquid (ol), 

continuous water in mixture liquid (wl), continuous gas in mixture gas (gg), oil droplets in 

mixture gas (og) and water droplets in mixture gas (wg). The energy and momentum 

equations are solved for the mixture liquid (l) and mixture gas (g) fields, while the velocities 

for the sub-fields are calculated from slip relations. A sub-field is defined as a field that is not 

a mixture field (the 7 aforementioned fields). The mass equations are solved for all sub-fields. 

The mixture relations are as follows: 

 

Mixture liquid: 

 
l go gw ol wl

go go gw gw ol ol wl wl
l

l

α α α α α

ρ α ρ α ρ α ρ α
ρ

α

= + + +

+ + +
=

  (1) 

Mixture gas: 

 
g gg og wg

gg gg og og wg wg
g

g

α α α α

ρ α ρ α ρ α
ρ

α

= + +

+ +
=

  (2) 

 

Mixture fields are referred to by the subscript k, while sub-fields are referred to by f. Three-

phase flow or oil-water flow has not been in the scope of this thesis, and consequently the oil 

in water and water in oil fields are missing. 

 

2.2 Grid 

 

The employed grid is a staggered grid, where the masses, densities and pressure are stored in 

the section centres, while the velocities are stored at the borders. The mass and pressure 

equations are solved for the sections, while momentum is solved at the borders. For the 

incompressible plugs however, momentum is solved over the entire incompressible plug unit 

(non-staggered). 
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2.3 Indexing convention 

 

The time index for the current and next time step is represented by n and n+1 respectively, 

and is shown as an upper index with the variables. Variables defined between time n and n+1 

are referred to by 1
2

n + , for instance the volume covered by a border as it moves from 

position nx  to 1nx + . Subscript j denotes values defined at the control volume centre, while 

subscripts J-1 and J denote values at the left and right face of the control volume. Subscripts 

j-1 and j+1 represents the values at the previous and next control volumes. 

The indexing convention for the mass, pressure and energy equations is shown in Figure 3. 

 

Figure 3: Indexing convention for the mass, pressure and energy equations. 

 

The momentum indexing convention for bubble-bubble borders and incompressible plugs are 

shown in Figure 4 and Figure 5. 

 

Figure 4: Indexing convention for the momentum equation for bubble-bubble borders. 

 

 

Figure 5: Indexing convention for the momentum equation for incompressible plugs. 

For compressible slugs the momentum is solved at the slug borders, but the momentum 

control volume is modified compared to the bubble-bubble borders. To avoid having any 

continuous gas in the momentum control volume for the compressible slugs, the extent of the 
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left part of the control volume for a bubble-slug border is set to zero (the standard being that 

the control volume extends half way into each neighbouring section). This means that the left 

end and centre of the control volume is the same location, as shown in Figure 6. This also 

means that the velocity at the left end-point is no longer undefined, and there is no need to use 

a convection scheme at this location. Similarly, the extent of the right part of the control 

volume for a slug-bubble border is also set to zero. As will be described further below by 

equation (4), the mass residing in this control volume is then no longer simply the average of 

the neighbouring section masses. 

 

 

Figure 6: Indexing convention for the momentum equation for compressible slugs. 

Since the control volume for the plugs does not extend into the neighbouring bubble sections, 

there will be a part of these bubble sections that is not covered by any momentum control 

volume. If the control volume for instance for a bubble-bubble border to the right of a slug-

bubble border extends only half way into the bubble section to the left, the left half of the 

bubble section (to the right of the slug) would not be included in any momentum equation. 

The momentum leaving one control volume would then not be equal to the momentum 

entering the next, and momentum would not be conserved. One could possibly also miss 

momentum from mass sources if they are located at a location not covered by any control 

volume. Consequently, the control volume for a bubble-bubble border next to a plug border is 

extended all the way to the plug, as illustrated in Figure 5 and Figure 6. 

 

Note that for the regular bubble-bubble border control volumes, the extent into the 

neighbouring sections is not necessarily equal to half of the length of the section, but rather 

the length that gives half of the section volume. For a section with a constant cross-sectional 

area this will be identical to half the section length, but not for a section spanning pipes with 

different diameters as illustrated in Figure 7. This is also described in more detail in the grid 

management section (section 2.15). 
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Figure 7: Illustration of a section spanning multiple pipes. Section J+1 spans two pipes 

with different diameters (but equal lengths). The right part of the border control volume 

for the border at index j+1 will extend a length that corresponds to half of the volume of 

section J+1. 

 

The reason for choosing the control volume length of the borders based on volume is to 

simplify the calculation of properties for the border control volume that are not defined within 

the border control volume. For instance, the mass in a border control volume is calculated as: 

 

 10.5 0.5j J JM M M−= +  (3) 

 

This will only be the case if the left and right half of the control volume spans half of the left 

and right section volumes. 

 

Properties in a border control volume calculated from section values, for instance mass, can 

then be calculated as follows: 

 

 1 1j J J J JM w M w M− −= +  (4) 

 

Here 1Jw −  and Jw  are weighting factors representing the fraction of the section volume 

covered of the left and right section. For instance, if the left part of the border control volume 

extends the entire left section, 1Jw −  equals one, while if the left part has zero extent like for a 

compressible slug border, 1Jw −  equals zero. 
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2.4 CFL criterion 

 

The time step in the simulations can either be constant, or calculated from the Courant-

Friedrichs-Lewy (CFL) condition [17], which is the default option: 

 

 max 1u tCFL
x
∆

= ≤
∆

  (5) 

 

Here maxu is the maximum velocity of all sub-fields. 

Equation (5) can also be written as: 

 maxu t x∆ ≤ ∆   (6) 

 

This means that the fluid in any cell should not move further than the length of the grid cell. If 

not, the fluid in one cell could move past the next cell during one time step, so that the next 

cell would never experience/feel that fluid moving by at all. It is possible to use larger time 

steps than this, but this would result in more diffusion and a less accurate result. The larger 

the CFL number, the closer an answer to a steady state like situation one will get. The CFL-

criterion must be evaluated in all of the sections in the system, and the minimum time step 

obtained must be used.  

Taking into account that the borders might move, the following criterion (using the indexing 

convention for the bubble-bubble borders): 

 

 ( ) ( ) ( )1 , 1 , 1 , 1j b j j f j j b jx u t x u t x u t− − + ++ ∆ ≤ + ∆ ≤ + ∆   (7) 

 

This can be written as two separate criteria: 

 

 
( )

( )

1

, 1 ,

1

, , 1

j j

b j k j

j j

k j b j

x x
t

u u

x x
t

u u

−

−

+

+

−
∆ ≤

−

−
∆ ≤

−

  (8) 
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The two criteria in equation (8) involves three borders (two sections). For a single section, the 

following criteria applies: 

 
( )

( )

1

, , 1

1

, , 1

j j

b j k j

j j

k j b j

x x
t

u u

x x
t

u u

+

+

+

+

−
∆ ≤

−

−
∆ ≤

−

  (9) 

 

 

These two criteria describe that a lump of fluid located near a border should not move past the 

new positions of the neighbouring borders within one time step. Note that these criteria 

should only be included if the result is positive. A negative result simply means that the 

border is moving away faster than the fluid, so that a lump of fluid will never be able to move 

past the neighbouring border regardless of the time step (a negative time step would be 

required, which is unphysical). One can also see from equation (9) that when the fluid 

velocity and border velocity approaches the same value, the time step can be arbitrarily large. 

 

The minimum time step calculated from equation (9) for all sub-field velocities will then be 

the limiting time step. Finally, the time step found from equation (9) is multiplied by a user-

specified constant, which is the applied CFL number.  

 

2.5 Volume fraction error 

 

After solving the mass, momentum and energy equations, the phase fractions (holdups) are 

computed by dividing the specific masses by the densities (found from the associated 

equation of state with the new temperature and pressure): 

 

 f
f

f

M
V

α
ρ

=   (10) 
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When doing so, one will find that the sum of the phase fractions in a cell might not sum 

exactly to 1: 

 1f

f f

M
Vρ

≠∑   (11) 

 

We define the volume calculated from the masses and densities as: 

 

 f

f f

M
Vρ ρ

= ∑   (12) 

 

We define the volume error, which is the difference between the total volume calculated from 

the masses and densities subtracted by the physical volume. 

 

 errV V Vρ∆ = −   (13) 

 

We also define a relative error called the volume fraction error by dividing the volume error 

by the physical volume: 

 

 err
err

VV
V
∆

=   (14) 

 

This reflects the fact that there is a discrepancy between the fluid densities (found from the 

pressure and temperature) and the fluid masses (found from the mass equations). We can try 

to correct for this problem by adding a source term in the pressure equation in the next time 

step:  

 

 1
1

n
n err

n
V
t

+
+

∆
Ψ =

∆
  (15) 

 

This term ensures that mass is conserved over time, and that the sum of the phase fractions 

stays close to one. 
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Note that the volume fraction error is calculated by summing all sub-fields, and not only the 

mixtures fields. 

 

2.6 Spatial convection schemes 

 

Sometimes a variable is needed at a location where it is not defined, for instance the velocity 

at the section centre, or density or holdup at the borders. Advanced methods exists that takes 

into account the characteristic speeds the information in the system will travel with, both the 

pressure waves and fluid waves. This requires the use of a Riemann-solver, for instance a 

Roe-solver [18] which recognizes shock waves and transports all characteristics nicely. This 

is however a much more cumbersome approach and requires the construction of a matrix at 

each cell-face. Instead, the commonly used flux-limiter (convection scheme) approach is used 

in the Sluggit code. Multiple flux-limiters are implemented, amongst others the first order 

upwind scheme (FOU) [19] and the formally third order upwind NOTABLE scheme [20]. 

The remaining limiters are described further below in Table 1. 

Any variable that is calculated from a convection scheme is shown with a "hat" above, for 

instance upwind velocity at a section centre ( û ) or the upwind specific mass at the borders 

( m̂ ). The calculation of a variable with the first order upwind scheme can be performed by 

the use of the upwind coefficient X , which is defined such that it has the value 1 if the 

information at the location travels from left to right, and zero if the information travels from 

right to left.  

 

This can be calculated as follows: 

 

 ( )( )1 1 1
, , ,0.5 1n n n

k j k j k bX sign u u+ + += + −  (16) 

 

The sign function returns the sign of the input. Note that in the current code the sign function 

is designed to return zero if the input is zero, which means that the upwind coefficient will get 

a value of 0.5 if 1 1
, ,

n n
k j k bu u+ +== . This will give symmetric solutions in the rare cases of exactly 

equal velocities.  
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A general variable Φ  can then be calculated at a location J where it is not defined as follows 

(using the indexing convention for the mass equation): 

  

 ( )1 1 1 1 1
, 1

ˆ 1n n n n n
J FOU J j J jX X+ + + + +

+Φ = Φ + − Φ  (17) 

 

The NOTABLE scheme is implemented similarly as the FOU scheme, and consists of a first 

order upwind part using new values plus a third order term using values from time step n: 

 

 ( ) ( )1 1
, , 1

ˆ ˆn n n n n
J NOTABLE J FOU J J j jDWF r+ +

+Φ = Φ + Φ −Φ   (18) 

 

In equation (18) and in the following explanations of the NOTABLE scheme the direction of 

the flow is assumed from left to right. The variable DWF is called the Downwind Weighting 

Factor, and is defined by: 

 

( )
3 2

1 2 3

1

1 1

1
J J

J J
J

J J J J
n n
j j

J n n
j j

rDWF r
r

c r c r c r

r

ϕ

ϕ

−

+ −

−
=

−

= + +

Φ −Φ
=
Φ −Φ







  



  (19) 

 

If the grid size is not uniform, the coefficients c1, c2 and c3 in the NOTABLE scheme are 

functions of the ratios of the grid sizes: 

 
( ) ( )

( )
( )

( ) ( )

( )

1
1

2
1

2
1 2

2 2
2 1 1 1 2 2

1
2

2
2 1 2 1 2 1 2

2
2

1 2 1 2 1 2
3

1 1

4 4 2 4 1
1

2 1 4 2 3
1

2 1 3 5 6

( )

3

j

j

j

j

r r r r

x
r

x

x
r

x

r r

r r r r r

r r r
r

r r r r r r
c

r
c

r

c

+

−

+ + + +

∆
=

∆

∆
=
∆

ϒ = + +

+ + + + +
=

ϒ +

= −
+

+

+ + + + +
=

ϒ

ϒ

  (20) 
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If the grid ratios 1r  and 2r  equals 1 (uniform grid), the coefficients 1c , 2c  and 3c  from 

equation (20) becomes 1, -2.5 and 2.5 respectively. 

 

The Downwind Weighting Factor is similar to the more commonly used flux limiters, and are 

related as shown in equation (24). If the DWF parameter is zero the first order upwind scheme 

is recovered, while a value of one gives the downwind value. If the value of DWF is outside 

the interval 0 – 1, the first order upwind scheme is used. 

 

Note that the ratio r  in equation (19) for the NOTABLE scheme is not the same ratio as is 

typically used in flux limiters (which is the ratio of the consecutive gradients.), but is the same 

ratio as defined by Leonard [21], which introduced the Normalized Variable Formulation 

(NVF). Gaskell and Lau [22] in addition introduced the Convection Boundedness Criterion 

(CBC), specifying the necessary conditions for a limiter to give monotone solutions. 

 

 

A general approach for using a higher order flux limiter Ψ  can be expressed by the first order 

upwind value, plus an anti-diffusive term using values from the previous time step (here the 

flow is assumed to go from left to right): 

 

 ( ) ( )1 1
, 1

1ˆ ˆ
2

n n n n n n
J J FOU J J j jr+ +

−Φ = Φ + Ψ Φ −Φ   (21) 

 

The ratio n
Jr  is the ratio of the consecutive gradients, first introduced by Sweby [23]: 

 

 

1

, 1

1

1,

n n
j j

j jn
J n n

j j

j j

x
r

x

+

+

−

−

Φ −Φ
∆

=
Φ −Φ
∆

  (22) 
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Normally one assumes equal grid spacing, and equation (22) simplifies and can be related to 

the ratio r : 

 

 

1

1

1

or
1

1

n n n
j jn J

J n n n
j j J

n
J n

J

rr
r

r
r

+

−

Φ −Φ −
= =
Φ −Φ

=
+







  (23) 

 

Furthermore, one has the following relation between the DWF factor and the flux limiter Ψ : 

 

 
( ) ( )

( )
( )

1 1

1

1

1
2

2 2

n n n n n n
J j j J j j

n n
j jn n n

J J J Jn n
j j

DWF

DWF r DWF

+ −

+

−

Φ −Φ = Ψ Φ −Φ

Φ −Φ
Ψ = =

Φ −Φ

  (24) 

 

The most commonly used limiters are the so-called Total Variation Diminishing (TVD) 

limiters [24], which ensures to preserve monotonicity and does not create unphysical 

oscillations. That is, if nΦ  monotonically increasing (or decreasing) in space, then so is 1n+Φ .

 
( ) ( )

( )
0 min 2 ,2 0

0 0
r r r

r r
≤ Ψ ≤ ≥

Ψ = ≤
  (25) 

 

From equation (25) we can see that the first order upwind scheme is actually a TVD scheme 

( 0Ψ = ). For a TVD limiter to be second order accurate, the following conditions must be 

satisfied: 

 
( )
( )

1 0 1
1 1
r r r

r r r
≤ Ψ ≤ ≤ <
≤ Ψ ≤ ≥

  (26) 

 

TVD schemes that in addition have a slope of 0.75 at 1r =  are formally third order accurate 

(on a uniform grid). Some limiters are also said to be symmetric, if they fulfil the condition 

( )1r r
r

 Ψ = Ψ 
 

. Physically this means that increasing and decreasing gradients are treated 
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equally. It is important that r is limited to be larger than or equal to zero, as a negative sign 

means a local change of sign of the consecutive gradients, and we revert to the first order 

upwind scheme. If the value of r is one, the gradients are equal and we have a linear slope.  

Several limiters can be chosen in the Sluggit framework, listed in Table 1. Note that some 

limiters use r , and some use r . The limiters have mainly been found in the following places: 

[23, 25-30]. Not all of these limiters fulfil the criteria to be classified as TVD, and not all are 

symmetric. A symmetric limiter is indicated with capital letter S in the comments in Table 1. 

In Figure 8 - Figure 12 the limiter functions are plotted together with the second order TVD 

region. Note that the actual order of accuracy of the presented limiters will not necessarily be 

the same as the formal accuracy listed in Table 1, but will also depend on the truncation error. 

Table 1: Flux limiters implemented in the Sluggit program. 

Limiter Ψ Id Order Comment 

FOU 0 0 1 TVD (First 

order upwind) 

NOTABLE Same as IsNaS, but the formulation in 

equations (18)-(19) will be used instead. 

1 3 TVD (Same as 

IsNaS) 

Central ( )min ,2.0r   3 2 

IsNaS ( )( )
( )2

1.5 0.5

1

r r r

r

+ +

+

4 3 TVD 

(Identical to 

NOTABLE) 

Van Albada 2

2 1
r r
r
+
+

2 2 TVD, S 

Ospre ( )
2

1.5 1
1

r r
r r

+
+ +

5 2 TVD, S 

Van Leer 
1

r r
r
+
+

12 2 TVD, S 

Superbee ( ) ( )( )( )max 0,max min 2 ,1 ,min ,2r r 8 2 TVD, S 

MinMod ( )( )max 0,min ,1r 6 2 TVD, S 
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Monotonized 

Central 
( )( )( )max 0,min min 2 ,0.5 0.5 ,2r r+   14 2 TVD, S 

Sweby ( ) ( )( )( )max 0,max min ,1 ,min ,sweby swebyr rβ β

  

7 2 TVD, S 

Osher ( )( )max 0,min , osherr β   18 2 TVD 

Umist ( )
( )

( )( )

min 2 ,0.25 0.75

min 0.75 0.25 ,2

max 0,min ,

a r r

b r

a b

= +

= +  

13 2 TVD, S 

Koren 2max 0,min min 2 , ,2
3

rr
 +  
      

  
16 2 TVD 

Smart ( )( )( )max 0,min 2 ,min 0.75 0.25,4r r +   10 3  

H_QUICK ( )2
3

r r
r
+

+
  

9 3 TVD 

Charm ( )
( )2

1 3
1

r r
r
+

+
  

11 3 TVD 

HCUS ( )1.5
2

r r
r

+

+
  

15 2 TVD 

Van Albada2 
2

2
1

r
r+

  
17 2  

SOU 0.5 19 2 Second order 

upwind 

Lax Wendroff 1.0 20 2  

Fromm 0.5 0.5r +   21 2 S 

VONOS ( )

( )

( )

( )

2 310 0
74

2 3 31 2 0.5
8 74

2 21.5 1 0.5
3

2 21 1
3

r r r
r

r r r
r

r r r
r

r r
r

− ≤ <

 + − ≤ < 
 

− = ≤ <

− ≤ ≤

  



  



  



 



  

22 2-3  
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QUICK 
( )2 3 1 2

8
r r

r
 + − 
 

 



  
23 3  

SMART ( )

( )

2 310 0
74

2 3 3 51 2
8 74 6

51 1
6

r r r
r

r r r
r

r

− ≤ <

 + − ≤ < 
 

≤ ≤

  



  





 

24 2 Bounded  

QUICK 

ACUTE ( ) ( ) ( ) ( )((1
2 1 1 1 8 0.5 0.75

r
r r r r

r
−

− − − − −


   



 

25 3  

ACUTER ( ) ( )1 19 712 28 15
4 4

r
r r r r

r
−   − + + − +    



   



  
26 3  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Figure 12 shows the limiter functions together with the second order TVD region. 
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Figure 8: TVD region and limiter function for limiters with id 0-3. 

Figure 9: TVD region and limiter function for limiters with id 4-7. 

Figure 10: TVD region and limiter function for limiters with id 8-11. 
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Figure 11: TVD region and limiter function for limiters with id 12-15. 

Figure 12: TVD region and limiter function for limiters with id 16-19. 

Figure 13: TVD region and limiter function for limiters with id 20-23. 
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Figure 14: TVD region and limiter function for limiters with id 24-26. 

The higher order flux limiters are only used when all three variables that are present in the 

calculation comes from bubble-bubble borders (upwind velocity) or bubble sections (upwind 

mass or specific enthalpy). If plugs are involved, a first order upwind value is used. The 

reason for this is that a slug might typically be much longer than the order control volumes 

involved in the calculation. 

The water-faucet test-case as proposed by [31] was tested for the limiters presented in Table 1 

to check their performance and to check that they had been implemented correctly. This test 

case consists of a 12 m long -90° inclined pipe with an inner diameter of 1 m. The initial 

conditions are 0.8lα =  and 10lu =  m/s, with stagnant gas. The liquid velocity at the inlet is 

10 m/s, while the gas flow rate is zero. The wall and interfacial friction is turned off, and the 

gas and liquid densities are 1.16 and 1000 kg/m3 respectively. The liquid is incompressible, 

and the gas compressibility was set to 1e-8 kg/m3/Pa to give an approximately incompressible 

gas phase. Because of the effect from gravity the initial column of liquid with a holdup of 0.8 

will stretch and become thinner, with a volume fraction discontinuity propagating towards the 

exit. 
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Figure 15: Illustration of the water-faucet test case. 

 

This problem has the following analytical solutions for the liquid holdup and liquid velocity: 

 

 ( )
20 0

0 02
0 0

0

0.5
2

otherwise

l l
l

ll

l

u x x u t gt
g x x u

α
α

α

 ≤ + + − += 



  (27) 

 

 ( )2 2
0 0 0 0

0

2 0.5

otherwise
l l

l

l

u g x x x x u t gt
u

u gt

 + − ≤ + += 
+

  (28) 

 

Here 0x  is in the middle of the inlet section (at 0.5 x− ∆ ), while 0lu  and 0lα  are 10 m/s and 0.8 

respectively. The simulated and theoretical values for the gas void fraction at time 0.33 s are 

shown for simulations with 128 and 1024 grid points in Figure 16 and Figure 17. The limiters 

have been plotted sorted on the average deviation from the analytical solution, in decreasing 

order. The default semi-implicit discretization of the Sluggit code was used, with backward 

Euler time integration. 
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Figure 16: Gas void fraction from the simulations and from theory with the different 

flux limiters for the water-faucet test case for 128 grid points, at time 0.33 s. 

 

Figure 17: Gas void fraction from the simulations and from theory with the different 

flux limiters for the water-faucet test case for 1024 grid points, at time 0.33 s. 
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It can be difficult to distinguish the results for the different limiters in Figure 16 and Figure 

17, except for the first and second order upwind schemes and the VONOS limiter in the 

bottom right plot which gives a significantly worse result than the rest. The accuracy of a 

limiter will be affected by the truncation error and is not simply given by the formal order of 

accuracy, and is most likely somewhat dependent on the selected test case. The results will 

also be dependent on the discretization of the framework in which they are implemented. It 

can however be seen that increasing the grid density from 128 to 1024 grid points, the 

simulation results are closer to the theoretical value. Further extensive testing would probably 

be required to distinguish the performance of the different limiters, perhaps also using more 

difficult test cases as robustness is just as important as the accuracy. The results at least 

indicates that the implementation of the different limiters seems to work well in the Sluggit 

framework, and that the higher order limiters gives better results than the basic first order 

upwind scheme as expected. 

 

2.6.1 Special upwind coefficients 

 

For certain cases the upwind coefficients are not calculated according to equation (16). For 

bubble-plug or plug-bubble borders, the upwind coefficients are set to zero and one 

respectively, to make the upwind specific mass point to that of the slug. This is done for both 

slug fronts and slug tails, and for pigs. This is because the velocities at the slug border 

belongs to the slug, and consequently the specific mass of the slug should be used to get a 

consistent mass flux. The same applies for a closed inlet or outlet border, where the upwind 

coefficients are set to one and zero respectively. 

 

These hardcoded upwind coefficients are however only used for the specific mass, while 

upwind velocities and enthalpies needed for the convection of momentum and energy should 

be calculated normally according to equation (16) and (17). 

 

Note that for slugs the use of hardcoded upwind coefficients should only be done for the 

continuous oil and water fields (ol and wl). For the entrained fields one should calculate the 
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upwind coefficients as normal. The only purpose of the forced upwind approach is that the 

slug velocity is associated with the correct phase fractions at the slug borders. 

 

2.7 Time integration schemes 

 

The default numerical scheme in the Sluggit code for time integration is the implicit first 

order backward Euler method (BDF1), though the second order accurate Crank-

Nicolson/trapezoidal (CN) and Backwards Euler method (BDF2) can also be used. These 

three methods are all unconditionally stable and can be presented by equation (29), showing 

the time integration ( )y F y= : 

 

 ( ) ( ) ( )
1 1

10 1 2 1
n n n

n na y a y a y F y F y
t

+ −
++ +

= −Θ +Θ
∆

  (29) 

 

Table 2 shows the different coefficients for the different time integration schemes. 

 

Table 2: Coefficients for the different time integration schemes. 

Method 
0a  1a  2a  Θ  

BDF1 1 -1 0 1 

BDF2 1.5 -2 0.5 1 

CN 1 -1 0 0.5 

 

Note that both the BDF2 and CN methods needs a fully implicit discretization for the entire 

momentum equation to be second order accurate, and that the CN method is only 

unconditionally stable for 0.5 1≤ Θ ≤ . The default discretization in the Sluggit code is semi-

implicit as this gives a relatively simple analytical Jacobian, but using a fully implicit 

discretization is also possible. The Jacobian is then calculated as for the semi-implicit 

discretization, and is updated with the newest available values in the iteration procedure. 

Ideally the correct Jacobian should have been calculated immediately, so convergence issues 

might thus happen in certain cases with the fully implicit schemes. It is however possible to 



 
 

 

28 

 

calculate the Jacobian numerically using finite differences, though this is somewhat slower. 

Using the BDF2 method with the Sluggit code is nevertheless problematic since it requires 

values from two time levels back, and it is not straightforward what these values should be 

after having performed grid management operations. The Crank-Nicolson method should 

however be fine to use as it only uses values from the previous time step, but this has not been 

tested much when plugs and grid management is involved. It should however work fine when 

only bubble sections are involved, like in the test cases presented in Paper 4. An improved 

version of the BDF2 scheme also exists as shown by [32], and is obtained by taking one half 

of the BDF2 and BDF3 coefficients. In this thesis, we refer to this method as the BDF2.5 

method. This method includes one more time level than BDF2, and yields the optimal A-

stable and L-stable BDF method. The BDF2 and BDF2.5 methods have only been used in 

Paper 4, and the BDF2.5 method is only available in the Matlab model used for the 

simulations in Paper 4. 

 

The CN method is however not L-stable, meaning that it does not damp unresolved high 

frequency waves. This means that it can give oscillations in the pressure, unless the time step 

is small enough to resolve the pressure waves (which is typically not the case). Testing with 

the simulations presented in Paper 4 showed that a value of 0.5 for Θ  would typically give 

unstable results, and that a value 0.55 seemed much better to use. The CN method has a lower 

truncation error than BDF2 when Θ  is 0.5, but in the test cases in Paper 4 BDF2 becomes 

slightly more accurate if using a value of 0.55. The local truncation errors for the CN and 

BDF2 scheme are shown in equation (30). 

 

 
( )

( )
( ) ( )

2 3 4

2
3 4

1 1CN
2 2 3

1
BDF2

6 2 1
t

t t

t F t F O t

r
t F O t

r r
∆

∆ ∆

Θ   ′′ ′′′Θ − ∆ + − ∆ + ∆   
   

+
′′′− ∆ + ∆

+

  (30) 

 

Here, tr∆  is the ratio of the previous and current time step. When the time step is constant, the 

leading coefficient of the truncation error of BDF2 becomes 2
9

− . It is interesting to note that 

an increase in the time step causes the leading coefficient of the truncation error of BDF2 to 
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decrease, while a decrease in time step increases the coefficient. It is also interesting to see 

that the coefficient in the limit of r →∞  goes to 1
12

− , which is the same coefficient as that 

of Crank-Nicolson with 0.5Θ = . This is also the optimal possible value for an implicit A-

stable method (second Dahlquist barrier). 

Note that the BDF2 method suffers from a start-up problem, as it uses values from two time 

steps back. Another method must thus be used in the first time step. Furthermore, the 

coefficients for BDF2 as presented in Table 2 are only valid for a constant time step. When 

the time step is not constant, the coefficients becomes functions of the previous time step 

values, see for instance [33-36] who all obtain the same solution: 
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∆
=

∆

  (31) 

 

Furthermore, as shown by [36], the ratio tr∆  must be smaller than 1 2+  for the BDF2 

method to be convergent and stable (for ODE's), while [37] reports an upper bound for PDE's 

of approximately 1.91. Testing with the simulations presented in Paper 4 however showed no 

problems using higher ratios than this. The coefficients for the BDF2.5 scheme are also 

functions of the time step ratios. This derived in the section presenting Paper 4. 

The stability of the different time integration schemes can be illustrated by investigating the 

test equation 

 y yλ=   (32) 

where λ  can be complex. The exact solution to this equation ( ty eλ∆= ) will grow in time if 

( )Re 0tλ∆ > , and decay if ( )Re 0tλ∆ < . A method that has the property that 1G <  for 

( )Re 0tλ∆ <  is called an A-stable method.  
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Furthermore, we can define that amplification G from one time step to the next as: 

 

 
1n

n
yG
y

+

=   (33) 

 

The solution for G for the test equation is a second order polynomial: 

 

 ( ) ( )( )2
0 1 21 0G a t G a t aλ λ− ∆ + − ∆ −Θ + =   (34) 

 

Methods that in addition has the property that 0G →  as ( )Re tλ∆ → −∞  are called L-stable. 

This means, that unresolved high frequency oscillations will be damped. Both the BDF1 and 

BDF2 methods are L-stable, but Crank-Nicolson is not ( 1G →  as ( )Re tλ∆ → −∞ ). This 

means that the Crank-Nicolson method is prone to oscillations in the pressure since the time 

step associated with resolving the acoustic pressure waves is much smaller than the typical 

time steps used with the two-fluid model. Contour plots of the amplification G for the 

different time integration methods are shown in Figure 18. If G is less than 1, the solution will 

be damped in time. 
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Figure 18: Stability plots of the BDF1, BDF2, CN and BDF2.5 time integration methods. 

The plots at the top shows from left to right the BDF1 and BDF2 methods, while the 

middle plots shows the CN method with 0.5Θ =  and 0.55Θ =  respectively. The lower 

left plot shows the BDF2.5 method, and the lower right plot shows the exact solution. 

|G|>1 is shown as a single colour. 
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Depending on the axis limits, the plots shown in Figure 18 can however give a false 

perception that the CN method gives a much more correct amplification compared to the 

BDF2 method. The larger the axis limits, the more pronounced this difference will seem. For 

slug capturing however, the time step is typically controlled by the CFL criterion for the gas 

and liquid velocities, which will result in 
max

xt x
u
λλ ∆

∆ = < ∆ . This also means that the finer the 

grid, the closer to the origin the value of tλ∆  will lie. Zooming in closer around the origin 

gives a different perspective of the BDF2 method, as shown in Figure 19. Note also that a red 

colour in the right half plane just means an amplification larger than 1 (since G > 1 is limited 

to 1), and does not necessarily mean the same amplification as the exact solution. This is 

illustrated in Figure 19, where the colour shows the deviation from the exact solution instead 

of the magnitude of G.  
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Figure 19: The amplification factor for BDF2 (left column) and the Crank-Nicolson 

method with θ  = 0.55 (right column). In the first row the colour shows log(G) − 

log(Gexact )), while the second row shows G with reduced axis limits and with G ≥ 1 given 

a single colour. The colour in the last row shows G − Gexact with reduced axis limits. 
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Increasing Θ  for the CN method can improve the L-stability, at the cost of somewhat reduced 

order of accuracy (see equation (30)). The amplification in the limit of L-stability for the CN 

method as function of Θ  becomes 1G −Θ
=

Θ
 , and is plotted in Figure 20. 

 

Figure 20: Amplification for the Crank-Nicolson method in the limit for L-stability as 

function of Θ , for the presented test equation. 

 

As mentioned, the BDF2 scheme is dependent on the ratio of the previous and current time 

step. This does not only affect the leading coefficient in the truncation error, but also affects 

the stability region as shown in Figure 21. With an increase in the time step ( 1r > ), the region 

of correct instability in the right half planes is improved, and the truncation error decreases.  

However, the method is then no longer A-stable. Instead the method becomes so-called 

A(α )-stable, meaning that the instability region stretches somewhat into the left half plane 

(which is incorrect). The parameter α  describes the angle at the stability boundary at the 

origin, with 90α =  meaning a fully A-stable method. If the time step is decreased ( 1r < ), the 

region of correct instability in the right half plane decreases towards that of backward Euler, 

and the truncation error increases.  
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Figure 21: Stability region of BDF2 as function of the time step ratio r. The white area 

illustrates amplification larger than 1. 

 

2.8 Pipe geometry 

2.8.1 Walls 

 

Different walls with multiple wall layers might be added to the pipeline, to simulate radial 

heat transfer. Each pipeline wall will be divided into a certain number of wall sections, 

calculated from a user-specified length (Lwall). If not specified, the grid coefficient that 

controls the minimum bubble section length is used instead to calculate the number of 

sections.  

The number of wall sections wallsecsn  are then calculated by: 

wallsecs max round ,1pipe

wall

L
n

L
  

=   
  

 , where pipeL  is the length of the pipe. 
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Each wall section will have as many wall layers as there are walls defined for this pipe. It is 

possible to specify different wall options for different pipes in a simulation. One pipe might 

be without walls, another pipe might have one wall, and other pipes can have multiple wall 

layers. See section 2.9.5 for a description of the calculation of the wall heat transfer. 

 

 

Figure 22: Illustration of a single section in the computational grid, with one wall 

divided into 5 wall sections. Each wall section consists of two wall layers. 

 

2.8.2 Curved pipe geometry 

 

It is possible to use bent pipe sections in the Sluggit framework, as illustrated in Figure 23. To 

use a bent pipe in a simulation one must specify both a bend angle (in radians), and a bend 

radius (Rb). The length of the pipe segment will then be calculated as bend radius * bend 

angle. Just as for regular pipe segments, the angle at the start of the pipe must also be 

specified. This is the angle specified as inθ  in Figure 23. 
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Figure 23: Bent pipe geometry. 

 

For a bent pipe, the local inclination in the pipe is a function of position: 

 

 ( ) ( )0in
b

sx x x
R

θ θ= + −  (35) 

 

Here inθ  is the inclination (in radians) at the start of the bent pipe (at 0x x≡ ). The 

coefficient s equals 1 if the pipe has a low-point (is concave), and -1 if the pipe is convex. bR  

is the bend radius of the pipe, and 0x  is the absolute location at the start of the pipe. For bent 

pipes one must then take into account that the inclination is a function of position when 

integrating the basic momentum equation over the momentum control volume. This is 

described in section 2.9.4.1. Testing however showed quite similar results when using bent 

pipe segments compared to just using straight pipe segments, so straight pipe segments has 

mainly been used in the simulations presented in this study. The bent geometry framework is 

however described and taken into account in the derivation of the momentum and energy 

equations, which involves integrals over the pipe inclination. 
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2.8.3 Geometrical relations 

 

The wetted angle lβ  of the stratified liquid layer is required to calculate among others the 

interfacial and wall perimeters, and can be found by solving the following equation: 

 

 
( ) ( )sin cos

0l l lβ β β
α

π
−

− =   (36) 

 

Figure 24: Geometrical relations in stratified flow. 

 

Equation (36) is solved by Newton's method, using the Biberg approximation [38] shown in 

equation (37) as the initial guess. 

 

 
1

1 13
3 3

,
3 1 2
2l biberg l l l g
πβ πα α α α

  = + − + −  
   

  (37) 

 

The interfacial (gl), liquid (l) and gas (g) perimeters and liquid height for stratified flow are 

given by: 

 
( )

sin

1 cos
2

gl l l l g l

l l

S D S D S D S
Dh

β β π

β

= = = −

= −
  (38) 
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For annular flow, the corresponding relations are: 

 

 

1 0
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0 0
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 − === 
>

>
=  ==

==
=  >

  (39) 

 

The film thickness in annular flow is given by: 

 ( )1 1
2l l
Dδ α= − −   (40) 
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2.9 Equations 

2.9.1 Some general comments 

2.9.1.1 Control volume integration 

 

In the derivation of the finite volume representation of the mass, momentum, pressure and 

energy equations, the basic conservation equations are integrated over the control volume. In 

the Sluggit framework, a control volume might span different pipes, with different properties 

like cross sectional area or inclination. To take into account the possibility that the different 

pipes might have different properties, the integration over a control volume is split up into a 

sum of integrals (split at the static borders, which are the borders that separates different pipe 

segments. This is illustrated for a slug control volume in Figure 25. For a general property Φ , 

this can be written as: 

 

 
k k

f fb c d e

k
V A a a b c d e

dV dAdx A dx dx dx dx dx
 

Φ = Φ = Φ + Φ + Φ + Φ + Φ 
 

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫   (41) 

 

We refer to the different parts within the control volume as sub control volumes. For instance, 

the slug control volume shown in Figure 25 consists of five sub control volumes. 

 

Figure 25: The integration locations for a slug control volume. The integral over the slug 

control volume can be split into integrals from positions a-b, b-c, c-d, d-e and e-f. 
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2.9.1.2 Cross sectional area 

 

The cross sectional pipe area is needed many places in the equations to be solved, amongst 

others in the mass and momentum fluxes. For borders located at the junction between two 

different pipes, the minimum area of the area from the pipe to the left and to the right of the 

border is used. For most borders, the pipe to the left and right will be the same pipe. For static 

borders however this will not be the case, as these borders separate different pipes. Unless 

specified otherwise, any cross sectional border area is the minimum of the left and right areas. 

Note that the diameter and perimeter at static borders should also then be the minimum value. 

 

2.9.1.3 Average velocity in a control volume 

 

Since the momentum control volume might consist of pipes with different cross sectional 

areas, the velocity we solve for will be the average velocity within the control volume. This 

can also be defined as the volume flow in the control volume divided by the average cross 

sectional area: 

 ,
,

,

k j
k j

k j

Q
u

A
=   (42) 

 

It is here assumed that the density is constant within the control volume, which gives a 

constant volume flow. The average cross sectional area is defined by: 

 

 ,
,

k j j k
k j j k

j j

V V
A A

L L
α

α= = =   (43) 

 

We can use the following relation between the volume flow at a local point within the control 

volume, and the volume flow through the average area ( ,k jA ) in the control volume to find 

the velocity at any point: 

 
, , , , , ,

,
, , ,

, ,

k j local k j local k j k j

k j
k j local k j

k j local

u A u A

A
u u

A

=

=
  (44) 
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Since the phase fraction is the same everywhere inside a section even if it spans multiple 

pipes, we can simplify further and write: 

 

 , ,
, , , , ,

, , , , ,

k j j k j j
k j local k j k j k j

k j local j local k j j local

A A A
u u u u

A A A
α
α

= = =   (45) 

 

To simplify, we call this area ratio for ja∗ : 

 
,

j
j

j local

A
a

A
∗ =   (46) 

 

For an example, see Figure 7 where the local area at the border represented by index j+1 is 

different than the control volume area for the same border. Assuming no border movement, 

the mass flux though this border is defined as , 1 1 , 1,k j j k j localm A u+ + + . This mass flux is present in 

the pressure equation, but we do not solve for , 1k ju +  and convert to the control volume velocity 

instead which is the velocity we solve for: , 1 1 , 1
,

j
k j j k j

j local

A
m A u

A+ + +  

 

For incompressible plugs, equation (45) will be exact and has to be used since the density is 

constant and the volume flow has to be the same everywhere. This scaling will be used 

wherever the local velocity is needed (like in the momentum fluxes), to convert to the velocity 

through the control volume which is the variable we solve for. 
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2.9.2 Mass equation 

 

The mass/continuity equation integrated over the control volume for sub-field f reads: 

 

 ( )
bf

f src
f f b f bf f

A

dM
dA M

dt
ρ+ − ⋅ =∫ 



u u n  (47) 

 

Some  illustrations of the different control volumes can be found in section 2.3. 

The term ,
src
f jM  represents the contributions from possible mass sources or sinks, and the total 

effect of all types of entrainment and deposition. 

The discretized mass equation reads: 

 

 ( ) ( )
1

, , 1 1 1 1 1 1
, 1 1 , 1 , 1 , , , ,ˆ ˆ

n n
f j f j n n n n n n n n src

f J J f J b J f J J f J b J f j

M M
m A u u m A u u M

t

+
+ + + + + +
− − − −

−
= − − − +

∆
  (48) 

 

The BDF2 and Crank-Nicolson time integration methods can also be used for the mass 

equation, see equation (29). 

 

In equation (48), V the total cell volume, f fV Vα=  is the fluid volume, fM  the fluid mass, A 

the pipe cross sectional area, fu  the fluid velocity, bu  the border velocity, while m is the 

specific mass defined as: 

 

 f f f
f f f

V M
m

V V
ρ

ρ α= = =   (49) 

 

The terms fρ  and fα  represents the fluid density and phase fraction respectively. 

The mass equation is solved for all sections, regardless of type. 
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2.9.3 Pressure equation 

 

The mass and momentum equations for gas and liquid results in as many equations are there 

are unknown masses and velocities. The new pressure in the momentum equation is however 

also unknown, and consequently another equation is needed to close the system of equations. 

The pressure equation is obtained by combining the mass equations, an equation of state of 

the form ( ),p Tρ ρ= , and using the fact that the phase fractions should sum to 1. The 

transient term in the mass equation (equation (47)) is first expanded by the product rule: 

 

 

( ) ( )
bff

f f f f f f f src
f f f f f b f bf

AT p

d VdM p d dT dV
V M dA

dt dt p t dT dt dt
ρ ρ ρ

ρ ρ
 ∂ ∂    = = + + = − − ⋅   ∂ ∂     

∫



u u n

 (50) 

Dividing the resulting equation by the density fρ  and summing over all sub-fields, gives the 

pressure equation: 

 

 ( )1

bff

src
f f f f f fk

f f b f bf
k fk f fAT p

dp dT dV MV dA
p dt T dt dt
ρ ρ

ρ
ρ ρ ρ

  ∂ ∂     + + + − ⋅ =   ∂ ∂       
∑ ∑∫





u u n  (51) 

 

By carrying out the summation of the volume derivative f

f

dV dV
dt dt

=∑ , we get: 

 ( )1

bff

src
f f f f f f

f f b f bf
f f ff f fAT p

V dp dT MdV dA
p dt T dt dt
ρ ρ

ρ
ρ ρ ρ

  ∂ ∂     + + + − ⋅ =   ∂ ∂       
∑ ∑ ∑∫





u u n  (52) 

 

 

Using the Reynold's transport theorem for a variable ϒ : 

 

 
* * *

b
V V A

d dV dV dA
dt t

∂ϒ
ϒ = + ϒ ⋅

∂∫ ∫ ∫ n u  (53) 
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The time derivative of the volume in equation (52) can be written as: 

 

 ( ) ( )
* * *

0

1 1
, 1 , 1

1
1 n n n n

b J b J J b J
V V A

dV d dV dV dA A u A u
dt dt t

+ +
− −

∂
= = + ⋅ = −

∂∫ ∫ ∫ n u



 (54) 

 

We then get: 

 

 

( )

( ) ( )

1 1 1
, , , , 1 1

, 1 , 1
, ,

,1 1 1 1 1 1 1
, , , , 1 1 , 1 , 1 ,

, ,

1 ˆ ˆ

f

n n n n
j j f j f j f j f j f n n n n

J b J J b Jn n
k kf j f j pT

src
f jn n n n n n n n n

f J J f J b J f J J f J b J f jn n
f ff j f j

p p V V dT
A u A u

t p T dt

M
m A u u m A u u

ρ ρ
ρ ρ

ρ ρ

+ + +
+ +

− −

+ + + + + + +
− − − −

 − ∂ ∂ 
+ + −   ∆ ∂ ∂  

 + − − − = + Ψ 

∑ ∑

∑ ∑


  (55) 

 

A source term 1n
j
+Ψ  has also been included to correct for the volume fraction error from the 

last time step (see section 2.5). 

The pressure equation can be rewritten to yield an expression for the new pressure, as 

function of amongst others the old pressure and the new velocities. 

We then get: 

 

 

( ) ( )

( )

1

1 1 1 1 1 1
, 1 1 , 1 , 1 , , , ,

,

1
, ,1 1 1

, , 1 , 1
,

1
, ,

,

1 ˆ ˆ

n n
j j j

n n n n n n n n src
f J J f J b J f J J f J b J f jn

f f j

n
f j f j fn n n n n

f j J b J J b J n
f f j p

n
f j f j
n
f j

p p p

m A u u m A u u M

V T
A u A u

T t
t

V
p

ρ

ρ
ρ

ρ
ρ

+

+ + + + + +
− − − −

+
+ + +

− −

+

− = ∆ =

  − − − + +  
 
 ∂ ∆ 
Ψ − − −   ∂ ∆  ∆

 ∂
∂

∑

∑



f T

 
  
   

∑

 (56) 

 

The BDF2 and Crank-Nicolson time integration methods can also be used for the pressure 

equation. Note that the mass equation written in the form of equation (29) should then be the 

starting point for the derivation of the pressure equation. 
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For BDF2 this will result in the following additional terms: 

 ( )( )1
1 0 21

, ,

,

1 n n
f fnn

f ff j f j
n

f f j T

t a a M a M
V

p
ρρ

ρ

−

+

∆
− + −

  ∂
  ∂   

∑
∑

  (57) 

 

The coefficients 0 1,a a and 2a  are defined in equation (29) . 

 

This was found to give identical results to simulations where no pressure equation was used, 

using instead that the phase fractions should sum to one as a constraint to close the system of 

equations together with a numerical Jacobian. In other words, the extra term presented in 

equation (57) seems to be correct. If the Crank-Nicolson method is to be used, any terms 

originating from the time derivative (volume time derivative and the term including the 

temperature) should not be multiplied by the implicit fraction Θ  (see equation (29)). 

 

Equation (56) now contains the new sub-field velocities ( 1n
fu + ), while we want to solve for 

the new mixture velocities ( 1n
ku + ). We thus express the new sub-field velocities by a linear 

slip-relation with the new mixture velocities: 

 

 1 1
, ,

n n n n
f f slip k f slipu C u U+ += +   (58) 

 

See section 2.10.3 for a description of the coefficients in the slip relation. 

The new border velocity is also related to the mixture velocities by a linear relationship: 

 

 1 1 1
, 0 , , 0 , , 0,

n n n n n n
b j l j l j g j g j ju C u C u U+ + += + +   (59) 

 

See section 2.12 for a description of the border velocity coefficients. 

The new volume and the mass flux terms containing the new masses are evaluated using the 

new values for section volume and mass, which are kept and updated in each iteration on the 

system of equations. These terms will thus be converging to the correct final value in each 

iteration. The iteration procedure is described in more detail in section 2.14. 
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It should be noted that there is an assumption in the pressure equation that the new density 

can be calculated as: 

 1 f fn n
f f fp T

p T
ρ ρ

ρ ρ+ ∂ ∂
= + ∆ + ∆

∂ ∂
  (60) 

 

One can in other words get a slightly different density by using equation (60) than what one 

would get from using the equation of state directly. Consequently, the fluid densities are 

updated using equation (60) in the iteration procedure, to ensure convergence of the volume 

fraction error. However, after the iteration procedure is finished the densities are calculated 

directly from the equation of state. Depending on the equation of state, this might introduce a 

small amount of volume fraction error. For a linear equation of state however the results 

should be exactly the same. This issue is illustrated with an artificial equation of state (could 

be the pressure vs density points from a PVT-file), as shown in Figure 26. The temperature is 

assumed constant in this example. 

 

 

Figure 26: Illustration of an artificial equation of state, showing density calculated using 

the pressure derivative and the density calculated directly from the equation of state. 
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2.9.3.1 Area changes 

 

If a border moves past different cross sectional areas during a time step, the pressure equation 

as presented in equation (56) will not be correct, due to several reasons that will be discussed 

in the following sections. 

 

2.9.3.1.1 Volume time derivative 

 

The terms that originate from the volume derivative will not be correct when a border moves 

through a region with area changes. Equation (61) shows how this should be calculated for 

one of the borders in a section. To account for changes in the cross-sectional area, we can use 

that the average cross-sectional area multiplied by the average border velocity during the time 

step should equal the volume the border will move past: 

 

 
1 1
2 2

n n

b
dV u A
dt

+ +
=  (61) 

 

Here we have defined the average area the border moves by as: 

 

 

1
1 2
2

1
2

n
n

b

n

b

VA
x

+
+

+
=
∆

  (62) 

1
2

n

bx
+

∆  is the distance covered by this border during this time step, 
1
2

n

bu
+

 is the average border 

velocity during this time step, while 
1
2

n

bV
+

 is the total volume the border has moved by from 

time nt  to 1nt + . The time index 1
2

n +  is here used to indicate a property which is defined 

between time n and n+1. 

 

The problem now is that we do not know the distance and volume that the border will move 

by until we have solved the momentum equations. This can however be incorporated as part 
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of the iteration procedure described in section 0, by storing the average area a border moves at 

the end of each volume fraction iteration. 

The average border velocity during the time step is also unknown until we have solved the 

momentum equations, and must also be a part of the iteration procedure. To be able to relate 

the border velocity in the volume time derivative term implicitly to the new mixture velocity, 

we define the average border velocity during one time step as the new border velocity times a 

scaling constant: 

 

 
1

12
n n
b b bu u ω
+ +=   (63) 

 

The scaling constant is updated at the end of each volume fraction iteration, and is defined as: 
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∆
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  (64) 

 

The volume time derivative term will then still be related implicitly to the new mixture 

velocities, and will converge towards the actual volume change per time:  
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2.9.3.1.2 Local velocity vs. control volume velocity 

 

The pressure equation needs the mass flux through the end-points of the pressure control 

volume, which is the area at the borders. The new velocity through the area at the location of 

the borders are needed, but the velocity in the momentum control volume is defined through 

the average momentum control volume area and not necessarily at area where we need the 

mass flux. This is particularly important for incompressible plugs. In other words, the velocity 

in the mass flux that enters the equation is not necessarily the velocity solve for. To fix this 
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we approximate the local velocity through the area where the mass flux is needed by an area-

scaling constant, as described in section 2.9.1.3.  

 

All mixture field velocities in the pressure equation will thus be multiplied by the area ratio 

factor a∗  (see equation (46)), to convert the local velocities to control volume velocities. 

 

To simplify the final expression of the pressure equation that takes into account area changes 

we also define a border velocity which includes the area-scaling factor: 

 

 1 1 1
, 0 , , 0 , , 0,
n n n n n n

b j l j j l j g j j g j ju C a u C a u U∗ + ∗ + ∗ += + +   (65) 

 

2.9.3.1.3 Slug border mass fluxes 

 

The mass flux terms as they are formulated in equation (56) are not correct when a slug 

border moves past area changes (see section 2.12.6). As described in section 2.12, the slug 

border mass fluxes will be calculated differently when there are area changes, and this mass 

flux will be stored at the end of each time step. In the pressure equation however we want to 

relate the mass fluxes implicitly to the new velocities, so we keep the mass flux terms as 

shown in equation (56), but multiply them by a scaling constant ( fκ ) which relates them to 

the actually used and stored slug border mass flux. This scaling constant is updated at the end 

of each volume fraction iteration, and is defined as: 
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  (66) 

 

Here 1
, ,

n
slug k jQ +  is the actually used volume flux for the slug, as described in section 2.12. 
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2.9.3.1.4 Final form of the pressure equation 

 

The final form of the pressure equation, including a correction of the volume time derivative, 

slug border mass fluxes, and the local velocity to control volume velocity conversion 

becomes: 
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  (67) 

 

When there are no changes in the cross-sectional area all of the scaling constants becomes 1, 

and equation (67) reduces to equation (56). 
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2.9.4 Momentum equation 

2.9.4.1 Derivation and discretization 

 

We start by integrating the momentum conservation equation ([39]) for the mixture field k 

over a general momentum control volume (denoted by j): 
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 (68) 

 

We include the hydrostatic variation of pressure in the control volume as follows ([39]): 
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 (69) 

 

Here, ,k jh  is the fluid height of phase k in section j and ,i jp  is the common pressure at the 

interface (from now on just referred to as jp ). 

 

We can then write: 
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 (70) 

 

For straight sections, not spanning multiple pipes with different inclinations, the inclination 

does not change along the section length. For bent pipes however, and for sections spanning 

multiple pipes, the inclination is dependent on the position, and we must evaluate the integrals 

over cosθ  and sinθ  properly. In general, all the integrals over the phase volume in equation 
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(70) are evaluated as a sum over integrals over the different pipes within the control volume, 

as described in section 2.9.1.1.  

For the gravitational term, we get (assuming in this example that the section spans two pipes, 

thus being made up of two sub control volumes with lengths 1L  and 2L , and leaving out the 

gravitational acceleration g): 
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 (71) 

 

When θ  is not a function of the distance x, equation (71) simplifies to: 
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The integral over the sine term for a bent pipe from position 1x  to 2x  is shown in equation 

(73). 
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The wall shear stress term is also split into a sum of integrals over the different pipe 

segments: 
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This will also take into account different pipe properties like roughness and cross-sectional 

area in the different sub control volumes. The friction is weighted between the annular and 

stratified friction models, weighting by ( )2sin θ . The friction models are described in section 

2.10.1. 

The weighting of the friction factor multiplied by phase perimeter becomes (note that if any 

liquid is present, the gas will experience zero wall friction in annular flow, only interfacial 

friction): 

 

 ( ) ( ) ( )( )( )2 2
, , , , , , ,sin 1 sink wall k k wall annu k annu k wall strat k stratS S Sλ θ λ θ λ= + −  (75) 

 

Here, strat and annu are short for stratified and annular respectively. 

Including this in the integration over the control volume, the integration over a sub control 

volume in equation (74) becomes: 
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 (76) 

 

Currently, the same wall friction model is used for both stratified and annular flow. The 

integral over the shear stress in a control volume then becomes: 
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The summation in equation (77) over the index s represents the summation over sub control 

volumes within a control volume.  
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The weighting factors stratW  and annuW  are defined as: 
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For a straight pipe the inclination is not a function of position, and we get: 
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For a bent pipe, we get: 
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Note that for negative inclinations, we use 0annuW =  and 1stratW = . 

 

Similarly to the wall friction, the interfacial friction factor is also weighted between the 

stratified and annular models, and summed over the sub control volumes: 
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Note that the integrated weighting factors W are lengths. 
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For the interfacial shear stress, different friction factors is used for stratified and annular flow 

(see section 2.10.1). 

 

The momentum flux term becomes: 
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The momentum flux terms are summed over all of the sub-fields f for the mixture field k, 

relating the sub-field velocities to the mixture field by slip relations. If there is only one sub-

field, or if no-slip is used between the sub-fields and the mixture field, the result should be the 

same as using the mixture field values directly (some speedup can however be gained if not 

summing up all the sub-fields). 

 

The level gradient term is evaluated as a sum of level gradient terms over each static border 

within a section: 
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  (83) 

 

Here sub-script 12 means between pipe nr. 1 and pipe nr. 2, and so forth. To account for 

variations in cross sectional pipe area, each individual level gradient term in equation (83) is 

evaluated as (here showing the level gradient between pipe 1 and pipe 2): 
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In equation (84) a possible difference in the pipe diameter between the two pipes has been 

included to correct the level gradient, in the term ( )1 1,0.5 0.5i i i i iz D D h− −∆ = − + ∆ . The variable 
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1,i ih −∆ in this term is a possible user-specified height offset between the centres of the two 

pipes. This offset can have values in the range: 

 

 1 2 1 2
1,22 2 2 2

D D D Dh− + ≤ ∆ ≤ +  (85) 

 

The default is 1,2 0h∆ = , so that the pipes are connected at the pipe centres.  

Figure 27 and Figure 28 shows a test case with a change in the pipe diameter (0.1 and 0.2 m), 

to test the implementation of the level gradient term. The first test case use 128 straight pipe 

segments to form an arc starting at -80 degrees and ending at +80 degrees, while the second 

test case utilize the bent pipe framework to create the same geometry using only 2 pipes. The 

total length is 2 m, and a constant time step of 0.01 s is used. Three different offsets between 

the pipe centres at the location of the area change were used: 0.05, 0, and -0.05 m. This 

corresponds to the pipes being connected at the bottom, centre and top respectively. The 

initial condition is some liquid distributed in the middle of the pipe, but not with a horizontal 

interface. It can be seen from Figure 27 and Figure 28 that the proposed level gradient will 

make the gas and liquid level stabilize with a horizontal and flat interface in all cases, as 

expected.  

 

 

 

Figure 27: Fluids at rest in a system with 128 sections and 128 straight pipes, with 

different pipe diameters in the left and right parts of the system. 
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Figure 28: Fluids at rest in a system with 128 sections and two bent pipe segments, with 

different pipe diameters in the left and right parts of the system.  

 

As an alternative to summing up the integrated friction, gravity and level gradient terms over 

the different pipe segments, one could use average values. For instance for a border separating 

two straight pipes with two different inclinations 1θ  and 2θ , the corresponding gravitational 

term for the integration approach and the average values approach would become as shown in 

equations (86) and (87) respectively: 

 

 ( ) ( )( ), 1 1 2 2
1 2

1 sin sing int kF M g L L
L L

θ θ= +
+

  (86) 

 ( )( ), 1 2sin 0.5g avg kF M g θ θ= +   (87) 

 

Similarly one could use the average pipe properties, holdups and phase perimeters in the 

friction terms, and average inclination for the cosine term in the level gradient. A comparison 

between these two methods have been performed, using a pipe geometry with first a negative 

inclination of -3 degrees and then a positive inclination of 60 degrees. Both pipes have an 

equal diameter of 0.05 m, and lengths of 4 m. The initial liquid holdup is set to 0.02 

everywhere. No flow rates are specified, so that after the simulation starts the holdup will start 

accumulating in the low point. Three different test cases were run: One with a constant grid 
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size of 0.125 m, one where the grid size alternates between 0.1 and 0.3 m, and one where the 

grid size alternates between 0.1 m and 0.9 m. The simulations were run for 200 s, and the 

results are shown in Figure 29 - Figure 35. 

 

 

Figure 29: Liquid holdup at time 200 s for the test case with a constant grid size. The left 

image shows the result for the integration approach, while the right result is for using 

average values. The pipe diameter is scaled by a factor of 10 for better illustration. 

 

 

Figure 30: Liquid holdup in the last section in the negative inclined pipe plotted against 

time for a test case with liquid accumulating in a low point. The grid size is 

approximately 0.14 m. 

 

Figure 29 shows that the result obtained with the integration approach looks more physical 

than the result from using average values, with a more linear slope of the liquid level in the 

low point. Furthermore, it can be seen from Figure 30 that the liquid in the low point 

oscillates and never comes to rest when using the average values approach, while the 
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integration approach stabilizes at a constant value. The results from the simulation using a 

grid size of 0.1 m and 0.3 m are show in Figure 31 - Figure 33. 

 

 

 

Figure 31: Oscillating liquid holdup at two different time levels for the test case with an 

alternating grid size of 0.1 and 0.3 m. Both images shows the approach using average 

values. The pipe diameter is scaled by a factor of 10 for better illustration. 

 

Figure 32: Liquid holdup at time 200 s for the test case with an alternating grid size of 

0.1 and 0.3 m for the integration approach. The pipe diameter is scaled by a factor of 10 

for better illustration. 

 

 



 
 

 

61 

 

 

Figure 33: Liquid holdup in the last section in the negative inclined pipe plotted against 

time for a test case with liquid accumulating in a low point. The grid size is alternating 

between 0.1 and 0.3 m. 

 

Figure 31  - Figure 33 shows that the results for the test case with an alternating grid size of 

0.1 m and 0.3 m are similar to the test case with a constant grid size, with a more physical 

looking linear slope of the liquid level in the low point for the integration approach. For this 

test case however the amplitude of the oscillations in the holdup from using the average 

values approach is much larger than in the test case with a constant grid size. 

 

Similar results are seen in the final test case, with the largest grid size ratio (0.1 and 0.9 m), 

shown in Figure 34 - Figure 36. The liquid level stabilizes for the integration approach, while 

oscillations are seen with the average approach with an even larger amplitude than in the 

previous test case. 
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Figure 34: Oscillating liquid holdup at two different time levels for the test case with an 

alternating grid size of 0.1 and 0.9 m. Both images shows the approach using average 

values. The pipe diameter is scaled by a factor of 10 for better illustration. 

 

Figure 35: Liquid holdup at time 200 s for the test case with an alternating grid size of 

0.1 and 0.9 m for the integration approach. The pipe diameter is scaled by a factor of 10 

for better illustration. 

 

 

Figure 36: Liquid holdup in the last section in the negative inclined pipe plotted against 

time for a test case with liquid accumulating in a low point. The grid size is alternating 

between 0.1 and 0.9 m. 
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A more detailed inspection of the presented test cases showed that it is the wall friction term 

that makes the biggest difference between the integration approach and the approach using 

average values. The biggest difference was not surprisingly found at the static border 

separating the pipes with different inclinations. The reason for this is that there will be a very 

small holdup value in the right half control volume of the static border. When integrating up 

the friction from the different parts, the right half has a very low holdup and will obtain a 

quite small hydraulic diameter and Reynolds number. This will lead to a relatively large 

laminar friction factor, which makes the total liquid wall friction for the static border 

relatively large. If using average values however the low liquid holdup value in the right half 

will not be used, and one will get a much smaller friction because the average holdup is used. 

This might sound somewhat counter-intuitive, but seems to lead to a more physically correct 

result. Both approaches however use a quite long time before the oscillations die out, but this 

is a well-known problem in the two fluid model. The friction models are defined for steady 

state flow, and gives a too small value for this highly dynamic test case. This issue is 

discussed for instance in [40], where dynamic friction models are tested for simulations of 

oscillating liquid in a u-tube geometry. 

From reasoning one can also see that the integrated gravitational term is probably better than 

just using the average inclination: If the length of the right half of the control volume goes to 

zero ( 2 0L →  in equations (86) and (87)) the gravitational term using the average inclination 

in equation (87) remains the same, while the integrated gravity term in equation (86) goes 

towards ( )1sinkM g θ . 
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The final (semi-implicit) discretized version of the momentum equation becomes: 
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 (88) 

 

The BDF2 and Crank-Nicolson time integration methods can also be used for the momentum 

equation, see equation (29). 

 

Here the effect on momentum from all types of entrainment and deposition rates has been 

added, and the effect from additional losses like valves, contraction and expansion losses, 

perturbations and user-defined forces (see Appendix C.2 - Appendix C.4). The velocity of the 

field the entrainment is taken from is named 1
,

n
e ju + , while the velocity of the field the 

deposition rate comes from is named 1
,

n
d ju + . Note that the sign of the entrainment and 

deposition terms will be different in the gas and liquid momentum equations. For instance, oil 

droplets in the gas will have a positive sign in the mixture gas momentum equation, and a 

negative sign in the mixture liquid momentum equation. For gas bubbles in oil, the sign is 

positive for mixture liquid and negative for mixture gas. In general, if the entrained sub-field 

belongs to the mixture field for the equation we look at, the sign is positive. 

 

By splitting the new velocities into the old value plus a difference, the momentum equation 

gives a banded matrix for the change in the gas and liquid velocities at the borders. Note that 
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though the momentum equation is solved for velocity, it is still formulated as a conservation 

equation for momentum. 

 

The mass flux terms containing the new masses, volumes and velocities in equation (88) are 

not split up into an old value plus a change term. These terms are instead evaluated using the 

new values for mass, volume and velocity, which are kept and updated in each iteration on the 

system of equations. These terms will thus be converging to the correct final value in each 

iteration. Newton's method can alternatively be used to solve the system of equations. The 

solution procedure is described in more detail in section 2.14.1. 

 

It is also possible to use a fully implicit momentum equation. However, this will result in a 

much more complicated analytical Jacobian, which is not implemented. The new values for 

each non-linear term in the momentum equation will instead be used in each new iteration, 

converging towards a fully implicit solution. This is not the ideal way to solve a fully implicit 

system, and one might encounter convergence issues. It is however also possible to calculate 

the Jacobian numerically, though this will typically be much slower. 

 

2.9.4.2 Explicit momentum equation  

 

To specify the velocity for a momentum control volume explicitly, the coefficients in the 

momentum equation are updated as follows: 

 

 
( )

,

1

1k diag

n n
k k k

c

rhs u u+

=

= −
 (89) 

 

Here ,k diagc  is the diagonal coefficient, while krhs  is the right hand side. 

This will yield a solution ( )1

,

n nk
k k k

k diag

rhsu u u
c

+∆ = = − . 
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This is done for the mass flow boundaries, and for incompressible plugs (the entire 

incompressible plug unit) that are in contact with a mass flow boundary. The mass flow 

boundaries are described in section 2.9.6.2. 

 

2.9.4.3 Section velocities 

 

Section velocities are updated after the velocities for the borders have been solved, and are 

calculated as the average between the neighbouring border velocities. For incompressible plug 

sections however, the velocity is calculated from the volume flow in the plug unit using the 

local cross sectional area, as described in section 2.12.4. 

 

2.9.4.4 Area changes 

 

To take into account variations in the cross-sectional area, let us have a look at the first term 

in equation (68), since a control volume might span pipes with different properties.  

By carrying out the integration over the sub control volumes (denoted by s) for control 

volume j, we get: 

 

 
, ,

, , , , , , , , , ,

k j k j

k j k j k j k j k j k j s k j s j s
sV V

d d du dV u dV A u L
dt dt dt

ρ ρ ρ
    = =      

∑∫ ∫   (90) 

 

As an example to illustrate the use of the sub control volume indexing, s=2 and j=1 would 

mean sub control volume number 2 in control volume number 1. 

 

As described in section 2.9.1.3 in equation (45), we approximate the local velocity to be equal 

to the control volume velocity scaled by the average control volume area to the local area. 
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We then get: 

 

( ) ( ) ( )

, , , , , , , , , , ,
, ,

, , , , , , , , , , , ,

k
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ρ ρ ρ

     = =           
   = = =   

∑ ∑

∑
  (91) 

 

This is the same result as when not taking into account changes in area. 

 

The velocities used when summing up the wall and interfacial friction terms in the momentum 

equation are all scaled by the area ratio factor a∗  (see equation (46)), so that a part of the 

control volume with a smaller cross sectional area will get a larger velocity and higher 

friction. 

 

The other type of velocity scaling is related to the upwind velocities. Instead of calculating the 

upwind velocity at the locations where the new velocities are not defined, the upwind volume 

flow is calculated instead. This is also done for the higher order upwind schemes/flux limiters. 

The velocity can then be calculated from the upwind volume flow, by dividing by the cross-

sectional area at the location where we need the velocity. This was found to give the correct 

pressure profile in a single phase incompressible test case without friction, a case which can 

be calculated using the Bernoulli equation [41]: 

 

 21
2

u gh p constρ ρ+ + =   (92) 

 

As described in section 2.9.3.1.2 regarding the pressure equation, scaling factors to convert 

from local velocity to control volume velocity in the pressure equation are also necessary to 

include to obtain the correct results. This will be illustrated in the following plots. 
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In the case of a horizontal pipe the gravity term drops out of the Bernoulli equation, and the 

pressure at location A2 in Figure 37 can be calculated as: 
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 = + − =    

 
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 

  (93) 

 

It the following calculations it will be shown that using the upwind volume flow and then 

dividing by the local area gives the correct Bernoulli pressure effect in the case of 

incompressible flow without friction. The following derivation is for the default discretization 

in Sluggit, where the momentum fluxes consists of one velocity from a central difference 

multiplied by one velocity from a general flux limiter.  

 

In the following derivation we use the first order upwind scheme, and assume flow from left 

to right. A simulation test case is also presented, showing that the proposed scaling gives the 

desired pressure field. The test case geometry is shown in Figure 37, and consists of single 

phase flow with nearly incompressible gas (compressibility 1e-8 kg/Pa) with a density of 1 

kg/m3, and with a velocity of 1 m/s at the inlet border. The pipe diameter in the large and 

small part of the pipe is 0.1 and 0.025 m respectively, which gives 1 216A A= . Since the flow 

is nearly incompressible, this also gives 1 216u u≈ . A constant pressure boundary of 101300 

Pa is used at the outlet. No additional losses due to expansion/contraction is enabled. 
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Figure 37: Frictionless horizontal test case with an area reduction by a factor of 16. 

 

The result of the simulation is shown below in Figure 38.  

 

 

Figure 38: Pressure field for incompressible gas flow in a geometry with changes in 

cross-sectional area, using the FOU and NOTABLE convection schemes. 

 

It can be seen that the pressure field exactly matches the Bernoulli equation, except for in the 

sections in contact with the area change (sections indicated by J-1 and J in Figure 37) where 

there is an entrance effect. In the other sections with the smaller cross sectional area, the 

pressure field is correct. The results from using the third order NOTABLE scheme is also 

included, which gives the same result as the first order upwind scheme. This indicates that the 
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proposed scaling of the upwind velocities can also be used with higher order schemes. It will 

now be derived analytically how these results are obtained, for the first order scheme (a 

similar derivation can be made for higher order upwind schemes). For the static border 

between 1A  and 2A  denoted by index j, the momentum equation for incompressible flow 

without losses becomes (this expression is general for all borders): 
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  (94) 

 

Here we have replaced the upwind velocities by the velocities in the left control volume, 

assuming flow from left to right. The average area of the control volume for the border at 

index j is named ,j avgA , and becomes: ( ) ( ), 1 2 2 2 20.5 0.5 16 8.5j avgA A A A A A= + = + = . 

Equation (94) will be used to calculate expressions for the pressure at indexes from J-2 to 

J+1, showing that the total pressure drop matches that given by the Bernoulli equation. 

In equation (94) it has been used that the volume flow Q is constant throughout the domain, 

and inserted the scaling of the upwind volume flow divided by local area for the upwind 

velocity. 
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 For the border before the static border at the area change (index j-1) we get: 
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  (95) 

 

This expression gives a pressure drop of 0.4416 Pa, which is exactly what is obtained in the 

simulation. 

 

For the static border between 1A  and 2A , at index j, we get: 
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  (96) 

 

This gives a pressure drop of 14.1319 Pa, also consistent with the simulation. 

For the border to the right of the static border, at index j+1, we get: 
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  (97) 

 

Combining equation (95) and (96), we get for the total pressure drop from index J-2 to J: 

 

2 1 1
1 1

, 2

2 21 1 1
2 1 1

, , 2

2 1 1 1
2 1

, , 2

2
2 1

2 1
, 2

1
2

1 1
2 2

1 1
2

1
2

J J
j avg

J J
j avg j avg

J J
j avg j avg

J J
j avg

A Ap p u
A A

A A Ap p u u
A A A

A A Ap p u
A A A

Ap p u
A A

ρ

ρ ρ

ρ

ρ

−

−

−

−

 
= + − 

 

   
= + − + −       

  
= + − + −     

 
= + −  

 

  (98) 

 

Combining equation (98) and (97), the total pressure drop from index J-2 to J+1 becomes: 
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This expression proves that the total pressure drop from the section in Figure 37 marked by 

index J-2 to the section marked by index J+1 equals exactly that of the Bernoulli equation. 

The proposed scaling only consists of area ratios, which means that there will be no 

modifications when there are no changes in the cross-sectional pipe area. The derivation also 

shows that to obtain the correct Bernoulli pressure drop, the region with the smaller area must 

be split up into a minimum of three sections, as there will be an inlet effect in the first section 

within the region with an area change. Note also that in this derivation it is assumed for the 

momentum fluxes that one velocity is from a general flux limiter, while the other velocity is a 

central difference. If the square value of the upwind velocity is used instead, equations (95) - 

(100) does not apply and other modifications of the momentum flux would be necessary to 

obtain the correct pressure field. 

  

Simulations without the previously discussed scaling factors applied were also run, and the 

results are shown Figure 39. 

 

 

Figure 39: Pressure field for incompressible gas flow in a geometry with changes in 

cross-sectional area, with different settings for the area scaling factors in the 

simulations. 
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From Figure 39 it can be seen that turning off the upwind area scaling factors gives the correct 

result from the outlet and until the middle of the constriction, whereupon the pressure field 

deviates from the analytical result to a too large value. For the case with both the upwind 

scaling and the local velocity scaling in the pressure equation turned off, the result is even 

worse. The pressure field is correct from the outlet pressure boundary and until the location 

with a change in cross sectional area, but from this point the pressure field deviates from the 

Bernoulli equation. In opposite to only disabling the upwind scaling factors, the pressure 

inside the constriction is now wrong. 

 

The same simulations as shown in Figure 39 were also run with a compressible gas, and with 

the friction enabled. The Bernoulli equation for compressible flow reads: 

 

 2 2
1 1 1 1 1 2 2 2 2 2

1 1
2 2 lossu gh p u gh p hρ ρ ρ ρ+ + = + + +   (100) 

 

Here, lossh  is the head loss between points 1 and 2. The same method as for incompressible 

flow was used in the compressible simulations, which will be an ok assumption as long as the 

head loss in equation (101) is relatively small compared to the other terms. 

In these simulations the grid was refined to get more points when plotting to make it easier to 

visualize the pressure field inside the constriction, and the compressibility was set to 1e-5 

kg/Pa. These results are presented in Figure 40. 

 

 



 
 

 

75 

 

 

Figure 40: Pressure field for compressible gas flow in a geometry with changes in cross-

sectional area, with different settings for the area scaling factors in the simulations.  

 

It can be seen from Figure 40 that the first order and third order upwind schemes with all area 

scaling factors enabled give an identical result also in the case of compressible flow. 

Disabling the scaling factors gives the wrong pressure field, just as for the incompressible 

case. In opposite to the incompressible case, the two different scaling settings now give a 

different pressure in the start of the pipe. It can also be seen that the effect from disabling the 

scaling of the local velocities in the pressure equation seems to give a larger error than 

disabling the scaling of the upwind velocity. 

 

The proposed scaling of the upwind velocities are as mentioned derived for the case of one 

central difference multiplied by a general flux limiter value. In the case of using the square of 

the flux limiter value, the scaling needs to be different. 
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2.9.5 Energy equation 

 

The energy equation is solved for the mixture gas and mixture liquid, and for the pipe wall 

segments. The energy equation is solved for the change in specific enthalpy, which is stored 

in the cell centres. The temperature can then be calculated from the heat capacity and the new 

specific enthalpy for an ideal fluid, or from finding the temperature that corresponds to the 

enthalpy in the PVT-file. 

 

We start by integrating the energy equation over the control volume kV  for (phase k): 
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 (101) 

 

Here, h is the specific enthalpy, k is the conductivity, T is the temperature, while sh  and su  

are the specific enthalpy and velocity of a fluid mass source. The heat transfer terms to for 

instance the other fluid and to the pipe walls are introduced as a sum of the different 

contributions in the final form of the energy equation, which is shown in equation (109). 

 

The pressure integral is (to first order): 
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Here, the values in brackets  are averaged values. 
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Removing the averaging brackets to simplify, the energy equation can be written: 
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 (103) 

 

The wall shear stress should not be included as it does not perform any work (velocity is zero 

at surface of the control volume, at the wall), it is only the interfacial shear stress that 

performs work. Following the same integration procedure for the interfacial friction as shown 

section 2.9.4.1, we get: 

 

 ( )1 1 1 1 1 1
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k
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u dA u u u u W uτ ρ + + + + + += − −∑∫   (104) 

 

Here the interfacial friction term has been simplified to make the expression shorter, by using: 

 

 ( ), , , , , , , , , , , , , , , , ,
n n n n

j s strat j s i strat j s i strat j s annu j s i annu j s i annu j sW W S W Sλ λ= +   (105) 

 

It is also assumed that the interface velocity is equal to the liquid velocity ( 1 1
, ,
n n
i j l ju u+ += ).  

 

Just as is done in the momentum equation, the convective terms are summed over all of the 

sub-fields f for the mixture field k, relating the sub-field velocities to the mixture field by slip 

relations. It is also implemented to not sum up the sub-fields and just use the mixture field 

directly. Note that if a slip relation other than no-slip is used for instance for the droplet field 

of for the gas bubbles in liquid, it will be incorrect to not sum up the sub-fields as different 

fields can move with different velocities. In summing up the contribution from the individual 

sub-fields, the energy equation can then no longer be solved directly as a linear system of 

equations for the change in the specific mixture enthalpy. This is because there is no simple 
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way of relating the specific sub-field enthalpy to the specific mixture field enthalpy in a one-

to-one relation (which in opposite is possible with the sub-field velocities in the momentum 

equation). The specific mixture enthalpy is related to all sub-fields, as shown in equation 

(107). 

 

 , , , ,k j k j f j f j
f

M h M h= ∑   (106) 

 

To solve the energy equation properly when slip relations other than no-slip is used, Newton's 

method is applied. The derivative of the specific sub-field enthalpy with respect to the specific 

mixture enthalpy is then needed as we still solve for the change in specific mixture enthalpy, 

and is calculated as follows: 
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  (107) 

 

The enthalpy temperature derivatives in equation (108) are calculated from the tabulated data 

in the specified PVT-files, or as the specified heat capacities for ideal fluids. 

 

The fluid energy equations and the pipe wall energy equations are solved separately and 

repeatedly (due to the fluid-wall heat transfer), until the maximum residual is lower than a 

user-specified tolerance (default being 0.01). 
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The discretized version of the energy equation becomes (including the summation of the 

convective fluxes): 
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The BDF2 and Crank-Nicolson time integration methods can also be used for the energy 

equation, see equation (29). 

The integral that involves the inclination in the gravity term is not shown in discretized form, 

as it depends on the type of pipe being used (straight/bent). 

The section control volume velocity 1
,

n
b ju +  in equation (109) is calculated as the average of the 

section borders. 

 

The different heat transfer terms ,k mQ  are described in section 2.9.5.1. 

 

There is no coupling between the wall layers in the axial direction, and hence the energy 

equation for each wall section can be solved independently.  
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Since we solve one energy equation for each mixture field and not for the individual sub-

fields, we only know the mixture enthalpies. The specific mixture enthalpy itself can however 

not be used to calculate the temperature directly. It is however possible to calculate the 

individual specific sub-field enthalpies from the mixture, by assuming that all sub-fields in the 

mixture field have the same temperature. For instance for oil in mixture gas, water in mixture 

gas and continuous gas in mixture gas we then have: 

 

 og wg gg gT T T T= = =   (109) 

 

Using the definition of the specific mixture enthalpy (equation (107)), we get an equation for 

the unknown temperature: 

 

 ( ) ( ) ( )1 1 1 1 1 1 1
, , , , 0n n n n n n n

g k j k j g f j f j g
f

f T M h T M h T+ + + + + + += − =∑   (110) 

 

Here the masses and specific mixture enthalpy is known; only the individual specific sub-field 

enthalpies are unknown. This equation is easily solved with for instance Newton's method. 

 

2.9.5.1 Heat transfer 

 

The heat transfer terms in the energy equation require some special treatment in terms of 

implementation. One of the main difficulties regarding heat transfer lies in the fact that the 

sections in the pipeline might move during each time step (see section 2.11), while the wall 

sections for the pipeline walls remains fixed. There might then be a mismatch between these 

two grids, and the control volumes will generally have a varying number of neighbours that 

their energy equation is coupled to. 
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 To ease the calculations of the heat transfer coefficients, the following class hierarchy is 

used: 

 

 

Figure 41: Class hierarchy for the thermal boundaries. 

 

The base class ThermalBoundary represents a general heat transfer boundary between two 

control volumes, which may be either the gas or liquid within a section, or a pipe wall layer 

within a pipe wall section. The derived subclasses represent specific types of thermal 

boundaries (the class names are assumed to be self-explanatory). Before the energy equations 

can be solved, each section must perform some management related to FluidWallBoundary 

objects (boundaries between the fluids and the innermost pipeline wall). This management 

makes sure that each overlap (full or partial) between a section and the neighbouring pipe wall 

section is always represented by two ThermalBoundary objects, one for each fluid. This is 

illustrated in Figure 42. 
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Figure 42: Schematic illustration of fluid-wall thermal boundaries. This section is in 

contact with three wall sections (two of them only partially), yielding three thermal 

boundaries between each mixture field and the wall. 

 

The temperature is solved implicitly between the wall layers within one wall section, yielding 

an equation system with 1 lower and 1 upper diagonal, and as many equations are there are 

wall layers. 
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  (111) 

 

Heat transfer is calculated between different wall layers, between the innermost wall layer and 

the fluids, between the outermost wall layer and the ambient, between sections in the axial 

direction, and between the gas and liquid within one section. If no walls are specified, there 

will be no heat transfer with the surroundings. 
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The general formulation for steady state heat conduction between two objects can be 

expressed by the thermal resistivity and the temperature difference: 

 

 1 2
1 2

,cond tot

T TQ Q
R
−

= − =   (112) 

 

Here ,cond totR  is the total combined thermal resistivity, and Q is the heat transfer (in Watt). 1T  

is the temperature of the object to calculate the heat transfer for, and 2T  is the temperature of 

the other object involved in the heat exchange. Note that the heat gained by the first object is 

the same as the heat lost by the second object. The different calculations of the total thermal 

resistivity are shown in sections 2.9.5.1.1 - 2.9.5.1.3. 

 

The heat transfer between the current object (k) and other object (m) is added to the right hand 

side and diagonal in the energy equation matrix as shown in equation (114): 
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  (113) 

 

The same procedure is also done for the other object (subscript m). In equation (114) 

( ),kh p T  is a function that returns the specific mixture enthalpy (see equation (107)) for the 

mixture phase k, as function of pressure and temperature. The parameter kc  is the mixture 

heat capacity, defined by: 

 

 ( ) ( )1 1 1 1
1

1, ,n n n n
k f fn

fk

c p T M c p T
M

+ + + +
+= ∑   (114) 
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The new value for the temperature and pressure is used as shown in equation (114) in each 

iteration, making the heat transfer implicit instead of explicit. 

It is necessary to formulate the heat transfer coefficients as shown in equation (114) both to 

make the heat transfer to be correct when the mixture field consists of multiple fluids, and to 

make the calculations correct when using a real fluid with a PVT-file instead of an ideal fluid. 

When only one fluid is present in the mixture field and when using an ideal fluid (pipe walls 

and pigs will always be a single "fluid" with ideal fluid properties), equation (114) simplifies. 

The heat capacity is then constant, and the specific enthalpy can be calculated from: 

 

 ( ), ,k ideal k idealh T c T=   (115) 

 

We then get:  
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  (116) 

 

This would give a change in specific enthalpy of: 

 

 ( )
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∆ = = = −   (117) 

 

The thermal resistivity is not used in equation (118), but will be used if the diagonal and right 

hand side in the matrix contains values from other parts of the energy equation (which will 

always be the case). The thermal resistance then acts as a weight for the different energy 

exchange processes that are added to the matrix. Note also that the new value for the 

temperature of the other object is used. This is mainly important when the time step is large, 

and will then stabilize the heat transfer process. Testing showed that using the old temperature 

(explicit heat transfer) would give the correct trend for the temperature calculations, but with 
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oscillations when the time step becomes large. Calculating the heat capacity for equation 

(114) based on new or old values for the temperature and pressure however showed little 

differences in the results (the mass should however be new values). 

 

Note that pigs are treated similarly as the mixture liquid in a slug, but with the thermal 

conductance, heat capacity and surface conductivity as specified for the pig material. 

 

2.9.5.1.1 Wall-wall heat transfer 

 

 

Figure 43: Illustration of a pipe with two pipe walls with different temperatures. 

 

  

The heat equation at steady state for radial heat transfer in a cylinder [42] is given by equation 

(119): 

 

 
1 0d dTkr
r dr dr

  = 
 

  (118) 

 

Here k is the thermal conductivity of the wall. 
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The radial temperature distribution can be found by integrating equation (119) twice: 

 

 ( ) 1 2lnT r C r C= +   (119) 

 

Using the boundary conditions ( )1 1T r T=  and ( )2 2T r T=  (see Figure 43) we get: 
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T T rT r T
rr
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 −
= +    

 
 

  (120) 

 

Fourier's law gives the heat transfer as function of the temperature distribution: 

 

 r r
dTQ q A kA
dr

= = −   (121) 

 

Here 2A rLπ=  is the surface area for a wall segment of length L. 

Combining Fourier's law and equation (121), we can find the heat flux between two wall 

layers from: 
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   
   
   = + +

  (122) 

 

Here 1r  is at the middle of the inner wall layer, 12r  is at the connection between the wall 

layers, and 2r  is at the middle of the outer wall layer. contacth is the thermal contact 

conductance, which can optionally be specified for the walls. The contact between two walls 

will typically never be a perfect smooth surface, but consist of gaps and contact points. This 

value typically has to be determined experimentally. 
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Currently there is no heat transfer between walls in the axial direction, but this will typically 

be much smaller than the radial heat transfer. The ratio of the areas where the radial and axial 

heat transfer occur is of order of wall length to wall thickness L/w, which is typically several 

orders of magnitude. 

 

2.9.5.1.2 Fluid-wall heat transfer 

 

For the heat transfer between the mixture gas and the pipe wall the properties of the 

continuous gas field is used, while for the mixture liquid the contributions from the 

continuous oil and continuous water fields are summed up.  

The heat transfer between the innermost wall layer and field f is calculated as follows: 

 

 ,

, ,

ln
1

21
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f wall wall

fcond tot f

D w
D

DLh Lk
SR
D

π π

π

+ 
 
 +

=   (123) 

 

Here wallk  and wallw  are the thermal conductivity and width/thickness of the innermost wall 

layer respectively. The factor fS
Dπ

 is the ratio of the surface area covered by the fluid to the 

total pipe surface area, a factor that should be multiplied by each of the area in each individual 

thermal resistivity. For single phase flow this factor will be one, while it is zero when the 

phase fraction goes to zero. To account for bent pipes and section spanning multiple pipes, the 

perimeters used to calculate the surface area are integrated/summed over the different sub-

control volumes, taking into account the weighting between annular and stratified flow as 

function of inclination. 

The parameter ,k wallh is the surface conductivity between field f and the wall, which can be 

specified by the user.  
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If not specified, the surface conductivity is calculated from the correlation of Gnielinski [43] 

if the Reynolds number is above 2300, and linear interpolation between the laminar value [42] 

and the Gnielinski correlation if the Reynolds number is below 2300: 
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  (124) 

 

Here, Nu is the Nusselt number, the ratio of convective to conductive heat transfer, while fλ  

is the friction factor calculated using the Haaland correlation (equation (145)). hD  is the 

hydraulic diameter, and Pr is the Prandtl number, defined by the ratio of momentum 

diffusivity (kinematic viscosity) to thermal diffusivity: 

 

 Pr f f
f

f

c
k
µ

=   (125) 

 

All variables in equation (125) are evaluated at time step n+1, and the average temperature 

between the fluid and the wall is used in all calculations where the temperature is needed. 

Note that this surface conductance value is for forced convection.  

 

 

 

 

 

 

 



 
 

 

89 

 

For free/natural convection, a correlation found in the LedaFlow user manual is used [44], 

based on correlations for a vertical plate with height H adapted to a circular pipe: 
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Here Gr is the Grashof number, the ratio of buoyancy to viscous forces. 

Finally, the combined surface conductance between the fluid and wall is calculated from: 

 

 2 2
, , , , ,f wall f wall forced f wall freeh h h= +   (127) 
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2.9.5.1.3 Wall-ambient heat transfer 

 

The heat transfer between the outermost wall layer and the ambient is calculated similarly as 

the heat transfer between the fluids and the innermost wall layer: 
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 
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Here ,wall outerD  is the diameter of the outermost wall layer, while ,wall ambh  is the user-specified 

surface conductivity between the wall and the ambient fluid. If specified to not use user-

specified U-values, the wall-ambient heat transfer coefficient is calculated from the 

correlation of Churchill and Bernstein [45]  

 

 

4
11 5 5
32 8

, 1
2 4
3

,

,
,

,

0.62 Re Pr ReNu 0.3 1
282000

0.41
Pr

Re

Nu

amb amb amb
wall amb

amb

amb amb wall outer
amb

amb

wall amb amb
wall amb

wall outer

u D

k
h

D

ρ
µ

 
  = + +         +     

 

=

=

  (129) 

 

Note that equation (130) needs certain variables describing the ambient fluid, in addition to 

the ambient temperature: The density, viscosity, thermal conductivity, heat capacity, and 

velocity of the ambient fluid.  

Since these variables are given constant values, the result from equation (130) will be the 

same constant through the entire simulation. 
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2.9.5.1.4 Radial fluid-fluid heat transfer 

 

For the heat transfer between the mixture gas and mixture liquid the properties of the 

continuous gas field and continuous oil field is used if oil is present. If oil is not present, the 

continuous water field is used for the liquid. 

The gas-liquid thermal resistivity is calculated by: 

 

 ,
,min

1 1max ,cond tot
gl gl gl gl

R
h S L h S L

 
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 
  (130) 

 

Here glh  is the user-specified gas-liquid thermal conductivity glS  is the gas-liquid interfacial 

perimeter and L is the length of the section. ,minglS  is a minimum gas-liquid interfacial 

perimeter calculated from a holdup value of 0.01, used to set a lower limit on the heat 

transfer. This will make a mixture field with a low phase fraction obtain the temperature of 

the other mixture field. 

 

2.9.5.1.5 Axial fluid-fluid heat transfer 

 

Heat transfer is also calculated between continuous fields of the same type in the axial 

direction. 

The thermal resistivity for field k between section j and the next section (j+1) is calculated 

using the average of the neighbouring phase areas as the contact area: 
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This heat transfer will typically be much smaller than the radial heat transfer, but can be 

important for instance if a pipeline is shut down. 
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2.9.6 Boundary conditions 

 

Two types of boundary conditions are available in the presented model: An open boundary 

with a constant pressure (typically the outlet), and a closed boundary with specified mass rates 

entering (typically the inlet).  

The temperature is user-specified and is assumed constant in both the inlet and outlet section 

regardless of the type of boundary condition that is used. 

 

The user can specify the length of the inlet and outlet sections directly. If not specified, the 

lengths are calculated as the average between the minimum and maximum bubble length 

coefficients. It is also possible to update the lengths of the inlet and outlet sections to that of 

the neighbouring sections during the simulation. 

 

2.9.6.1 Constant pressure boundary 

 

The constant pressure boundary needs a user-specified pressure. In the following examples 

the outlet is assumed to be the constant pressure boundary, but the inlet can be treated 

similarly. To obtain a smooth pressure, holdup and velocity profile at the open outlet 

boundary the part of the momentum control volume for the border at the pressure boundary 

has zero extent into the outlet section, which makes the velocity at the control volume end-

point being chosen from the outlet border. This is equivalent to using a Neumann boundary 

condition with a zero derivative for the velocity, holdup and enthalpy, and is just a relatively 

simple way of obtaining this with the functionality of changing the control volume extent. 

The pressure gradient will not be zero, and the specified outlet pressure will be used as the 

pressure at the outlet border. Since the control volume end-point is at a border, the specific 

mass is unknown and must be determined using a flux limiter. If the flow is going out of the 

system the specific mass will be chosen from inside the pipe, and if the flow is going into the 

system the specific mass calculated from the user specified holdup values in the outlet section 

are used (default being an empty cell with only gas). For a description of the extent of the 

momentum control volumes see for instance Figure 6, and for an illustration of the smooth 

profiles obtained with this boundary condition for a horizontal test case see Figure 44 and 
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Figure 53. The test case is described in section 2.16.2. The small deviations from the linear fit 

seen at the outlet in Figure 44 most likely comes from the effect of assuming a zero derivative 

of the holdup at the outlet. 

 

Figure 44: The end of the pipeline in a transient simulation of a horizontal pipe, at 

steady state.  

 

2.9.6.2 Mass flow boundary 

 

For a closed inlet or outlet border the gas, oil and water mass rates needs to be specified 

(default is 0). In the following examples it is assumed that the inlet is the closed mass flow 

boundary, but the outlet can be treated similarly. Since the variable we solve the momentum 

equation for is velocity and not momentum, we need the velocities at the mass flow boundary. 

These are calculated from the mass flow rate, phase area and density as follows: 
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 (132) 
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The mixture liquid velocity is calculated as the mass weighted velocity from the continuous 

oil and water fields (only continuous field mass rates can be specified at the boundary). One 

important question is what density and holdup to use for the inlet section in equation (133), 

for which there are several possibilities. One possibility is to calculate the inlet holdup (and 

pressure) from the steady state solver. Note that this does not mean that the remaining 

sections in the pipeline will start from the steady state solution. Another possibility that is 

implemented is for the user to specify the inlet pressure directly, and calculate the holdups 

from the unit-cell model (this is the default option). There is also a possibility implemented 

where the mass (and holdup and pressure) in the inlet section are copied from the 

neighbouring section at the end of each time step (this is enabled as default as well). The 

phase fractions that are copied into the inlet section are limited not to be too small, to avoid 

unrealistically large velocities (since we divide by the holdup in equation (133)). Each phase 

fraction is limited to be minimum 0.5 times the no-slip phase fraction (ratio of phase volume 

flow to total volume flow). Note that this will only make the phase fraction and velocity 

change at the inlet, while the mass flow rate will remain constant. An option is also available 

where constant user-specified holdups are used in the inlet section. This functionality is 

needed for instance in the water-faucet test case presented in section 2.6. 

 

It is also possible to add multiple mass sources or sinks at any location in the pipe. 

2.9.6.3 Periodic boundaries 

 

It is also possible to use periodic boundaries in the Sluggit code. The inlet and outlet border 

will then be the same border object. This leads to the first and last section in the pipeline 

affecting each other, and one will get coefficients in the corners of the matrix of equations. 

There are two options to deal with such a matrix with corner elements, as the matrix can no 

longer be stored as a banded matrix (at least with the banded matrix format being used in 

Sluggit): 

Either the entire full matrix must be stored, or the procedure of Sherman-Morrison can be 

used, which is faster and requires less storage. The Sherman-Morrison method is described in 

section 2.9.7.1. In a periodic system there will then be no pressure boundaries, and no mass 

flow boundaries. To inject or remove fluids from the pipeline one would thus have to use 
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mass sources or sinks. One might also need a driving force, at least in a horizontal case for the 

fluids to move. The user specified force described in section Appendix C.4 can be used for 

this purpose. 

Figure 45 shows a wave in a periodic system, taken from a test case from Paper 2. 

 

 

Figure 45: Image of a wave in a horizontal pipe with periodic boundaries and a driving 

pressure force. 

 

2.9.7 Generic equation class 

 

To ease the calculation of which index in the matrix system of equations to access when 

updating the different equations, a generic equation class was constructed (named 

NPhaseEquation). The inheritance diagram for this class is shown in Figure 46, showing all 

of the different equation types used in Sluggit. 

 

 

Figure 46: Inheritance diagram for the generic equation class. 
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Both the mass equation and fluid energy equation have their values stored in the sections, and 

derive from the fluid conservation equation, which keeps a pointer to the section they 

represent. Both the fluid conservation equation and the pipe energy equation inherit from the 

conservation equation class, which is used to update the energy equation systems. Both the 

conservation equation and momentum equation classes in turn inherit from the general 

equation class (NPhaseEquation) described in this section. In addition, the momentum 

equation and fluid conservation equation inherit from the field class, which is used to keep 

track of which phase the equation represents (mixture gas, mixture oil, mixture water, or any 

of the sub-fields). The pipe energy equation however does not inherit from the field class, as it 

does not represent any fluid. 

 

The details of how the indexes for the coefficients in the banded matrix are calculated will be 

described here, as it might be of interest for others working on similar problems. 

The generic equation class takes two inputs, the first being the number of variables to solve 

for, which will be referred to by variablesN . This number will be one for the mass equation, two 

for a two-phase momentum equation, three for a three-phase momentum equation, etc. 

Furthermore this class requires an integer input called the variable index, which will be 

referred to by the symbol ,k indexN  for the variable that belongs to this equation, and ,m indexN  for 

the other variables to be solved. The variable index parameter is mainly used to calculate the 

offset in the arrays between different variables. For a three-phase system one can for instance 

give the gas a variable index of 0, oil could be 1, and water 2. The numbers could just as well 

have been 10, 11 and 12, what is important is the offset between the numbers. In the current 

C++ code the variable indexes are simply a list of enumerated values describing the different 

sub-fields and mixture fields. 

In addition, it is possible to specify how many neighbouring cells are affected by this equation 

( neighborN ). The default is one (only nearest neighbours) for both the mass, momentum and 

energy equations, but for higher order convection schemes this number could be higher 

(typically two, meaning next nearest neighbours are included).  
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The number of diagonals in the banded matrix can be calculated from: 

 

 ( )1 1diag variables neihgborN N N= + −   (133) 

 

It is here assumed a symmetric banded matrix with the same number of lower and upper 

diagonals, which will be the case for the two-fluid model.  

 

The number of columns required for storing the non-zero coefficients in the banded matrix 

can now be calculated from equation (135): 

 

 2 1column diagN N= +   (134) 

 

For the mass equation and a two-phase momentum equation affecting only nearest 

neighbouring sections, this gives three and seven columns respectively. 

 

The number of rows must however be calculated by custom functions for each equation type, 

and will depend on the number of control volumes for the different equations (which might 

change in the Sluggit code due to grid management). If the full matrix is stored instead of a 

banded matrix, the number of columns will equal the number of rows. 

Before updating the different equations, each equation must be connected/appended as a new 

row in the system of equations. When doing this, information about which row this equation 

is located at will be stored in the generic class ( rown ).  

The different indexes in the current row to be accessed can now easily be calculated from the 

available information. Note that for some of the coefficients, the variable indexes must be 

specified. An example of this can be when accessing the coefficient for gas from the liquid 

momentum equation, for instance when updating the effect from interfacial friction. 
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Table 3: How to calculate the index in an equation row for different equation 

coefficients. 

Coefficient Index 

Current variable, left equation ( )diag neihgbor variablesN N N−  

Other variable, left equation ( ) , ,diag neihgbor variables k index m indexN N N N N− + −  

Current variable, current equation diag rowN n=  

Other variable, current equation , ,diag k index m indexN N N+ −  

Current variable, next equation ( )diag neihgbor variablesN N N+  

Other variable, next equation ( ) , ,diag neihgbor variables k index m indexN N N N N+ + −  

 

If the full matrix is stored instead of a banded matrix, a banded matrix index bandind  can be 

converted to a full matrix index fullind  from: 

 

 full row band diagind n ind N= + −   (135) 

 

For periodic boundaries, the modulus operator must also be applied to the matrix index: 

 

 ( )mod ,full full columnind ind N=   (136) 

 

 ( )fm lod oor )/( , ) (x y x x y y−=   (137) 

 

An example of how the banded matrix for the change in gas and liquid velocity for the 

momentum equation looks is shown in equation (139). The number of variables to solve for is 

2 and the number of affected neighbours is 1, so the number of upper and lower diagonals 

according to equation (134) will be ( )2 1 1 1 3+ − = . The number of columns in the banded 

matrix to store the non-zero coefficients becomes according to equation (135): 2 3 1 7⋅ + = . 
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Note that the coefficients marked with * will only be non-zero for a system with periodic 

boundaries.  
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2.9.7.1 Matrix solvers 

 

The system of equations is solved by LU-decomposition for both banded and full matrixes. 

According to [46], the number of operations needed to solve a banded system of equations 

with LU-decomposition is 3 2(3 2)( )variables variablesNN N− + , where N is the number of rows. For a 

full matrix on the other hand, the number of operations is of order 32
3

N . When solving a 

system with periodic boundary conditions, corner elements appears as illustrated in equation 

(139). Solving such a matrix would typically result in filling in non-zero values in large parts 

of the matrix, and require similar number of operations as a full matrix. Instead of doing this, 

the Sherman-Morrison algorithm has been implemented to handle periodic systems [47]. This 

method looks at the matrix to be solved ( A ) as a banded matrix, plus the product of two 

vectors containing the corner elements: 

 

 * T= +A A uv   (139) 

 

 

1,1 1, 1

,1 1,

1
0 0
. .
. .

/
/

N N

N N

A A
A A

γ

γ
γ

− −

   
   
   
   

= =   
   
   
   
   

u v   (140) 

 

The matrix *A  contains the banded part of A , slightly modified: The coefficients at (1,1) and 

at ( ),variables variablesN N N N− −  to ( ),N N  are modified. The coefficient γ  can be arbitrarily 

chosen as it only affects the numerical accuracy, and is currently set to 1. 
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The solution to =Ax b  can then be found by first solving * =A y b  and * =A z u , and then 

computing the solution x  as: 

 

 
T

T1
 ⋅

= −  + ⋅ 

v yx y z
v z

  (141) 

 

Note that the two dot-products in equation (142) forms two sums that must be calculated first. 

The method only works to remove one row of the lower left corner elements and one column 

of the upper right corner elements, but can be called recursively to remove larger blocks of 

corner elements. Equation (141) shows the u  and v  vectors after removing the lower left 

row and upper right column of the corner elements. In general, the coefficients γ  and 1 in the 

u  and v  vectors will be at the same position as the row/column of corner elements to be 

removed. Above this index u  and v  are zero, while the bottom coefficients equals the lower 

left and upper right parts of A  to be removed. *A  will be similar to A , but with γ  

subtracted at the same diagonal index as were it is located in u . In addition, the vector 

product of Tuv is subtracted in the bottom right corner. For the matrix shown in equation 

(139), calling the Sherman-Morrison method once will create a matrix *A  with , 1,1l Nc∗
− , , ,1l Nc∗ , 

,1,l Nc∗  and ,1,g Nc∗  removed. When then trying to solve * =A y b  and * =A z u , *A  still contains 

some corner elements, and the Sherman-Morrison method is applied once more. For a system 

of equations where var iablesN  is the number of variables to solve for, the blocks of corner 

elements will be of size var variables iablesN N× . This requires a total of var2 1iablesN −  calls to the 

Sherman-Morrison routine, resulting in approximately 

( )var
va

3 2
r var2 1 (3 2)( )iablesN
iables iablesNN N− − +  operations. This is typically far less than the 

32
3

N operations if using the full matrix.  

Figure 47 shows a comparison of the performance of the Sherman-Morrison method and the 

LU-decomposition method using a full matrix for some test matrixes, and the theoretical 

values. The obtained simulation time ratios does not match exactly the theoretical ones, most 
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likely because the ratio from the simulations are based on the computational time while the 

theoretical ratios are calculated from the number of operations. The results however seem to 

follow the correct trend, showing that it is possible to obtain a gain of several orders of 

magnitude for large periodic systems.  

 

 

Figure 47: Theoretical and simulated values for the relative computational time between 

the Sherman-Morrison method and LU-decomposition using the full matrix. 
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2.10  Closure models 

 

This section presents the necessary closure models required to close the system of equations, 

like friction and entrainment models. 

 

2.10.1 Friction models 

 

Friction models are needed to account for the friction between the gas and liquid phases and 

the pipe wall, and for the friction at the interphase between the gas and liquid. 

 

 

 

The wall shear stress is expressed by the Darcy friction factor definition [48]: 

 

 , ,
1
8k wall k wall k k ku uτ λ ρ=   (142) 

 

Here ,k wallλ  is the friction factor, which is described in more detail by equations (145) and 

(146). The interfacial shear stress is modelled similarly to the wall friction: 

 

 ( )1
8i i g k m k mu u u uτ λ ρ= − −   (143) 

 

For friction factors, we use the Haaland and Hagen-Poiseuille friction factors ([41, 49]), for 

turbulent and laminar flow respectively: 

 

 

21.11
,

, 10

/6.91.8log
Re 3.7

h k
k wall

k

Dε
λ

−
    = − +       

  (144) 

 

 ,
64
Rek wall

k

λ =   (145) 
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Here ε  is the hydraulic roughness, and Rek  is the Reynolds number for phase k: 

 

 ,Re k h k k
k

k

D uρ
µ

=   (146) 

 

The parameter ,h kD  is the hydraulic diameter for phase k, while kµ  represents the dynamic 

fluid viscosity. For the gas phase, we use: 

 

 
2

,h k
g i

DD
S S
π

=
+

  (147) 

 

For the liquid, we use: 

 

 
2

,h k
l

DD
S

π
=   (148) 

 

To achieve continuity, we use the maximum value of the laminar and turbulent friction 

factors, as long as the Reynolds number is above a minimum limit. The minimum limit is set 

to 300 in the Sluggit code. For stratified flow we apply the interfacial friction factor 

correlation of Andritsos and Hanratty [50]: 

 

 
,0 ,

,0 ,
,

1 15 1

i g g g g crit

g gl
i g g g g crit

g crit

u u

uh u u
D u

λ λ α

α
λ λ α

= <

  
= + − ≥      

  (149) 

 

The critical velocity ,g critu  is defined as: 

 ,
, 5 g atm

g crit
g

u
ρ
ρ

=   (150) 

 

Here ,g atmρ  is the gas density at atmospheric pressure. 
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For annular flow, we use the correlation of Moeck [51]: 

 

 
1.42

0.02 1 1458 l
i D

δλ
  = +     

  (151) 

 

Here, lδ  is the mean film thickness in annular flow (see equation (40)). 

Furthermore, we limit the relative film thickness l

D
δ  in equation (152) to be maximum 0.2, 

which is the maximum experimental value the correlation is defined for. 

The interfacial friction factor is weighted between the stratified and annular models by using 

the inclination (see section 2.9.4.1). 

 

2.10.1.1 Pig friction 

 

The wall friction for pigs is modelled after the relatively simple model of Cordell [52], where 

the driving force of the pig equals the friction force: 

 

 

2

4
DP FRICTION D

KP
D

π π∆ = ⋅

∆ =
  (152) 

 

This gives a constant friction force per circumference. The factor K is most likely a function 

of amongst others the pig material, and will be different for different pigs. The pig friction is 

consequently given by: 

 

 pig
fric

pig

VKF
D L

 =  
 

  (153) 
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The wall friction is thus independent of velocity, and will be applied as an explicit term. The 

sign of the friction term is however taken from the current velocity, or from the current 

pressure gradient over the pig if the current velocity is zero: 

 

 
( )
( )

1
,

sign 0

sign otherwise

n n
pig fric pign

wall pig n
pig fric

p F u
F

u F
+

 −∆ === 


  (154) 

 

The wall friction for the pigs will be applied after all other updates has been done to the 

momentum equation. One can then use the current value of the right hand side if the 

momentum equation as an estimate of the other forces acting on the pig. If the wall friction 

force is larger than the other forces (smaller than if it the velocity negative), the equation 

coefficients are reset and the pig is explicitly given a velocity of zero (as described in section 

2.9.4.2). This will typically happen when then simulation starts: The pressure force will build 

up until it overcomes the friction forces on the pig, and first then will the pig start to move. 

 

The mass and velocity of the pig take the same place as the mixture liquid velocity and oil 

mass in the system of equations. The mass of a solid pig should not change during a 

simulation, so the pig borders will travel with the mixture liquid velocity, giving a zero mass 

flux at the borders. 

 

2.10.2 Entrainment and deposition rates 

 

It is possible to include multiple dispersed/entrained fields in the Sluggit model: Both liquid 

droplets in the gas, and gas in liquid in both slugs and in the bubble sections. Note that all 

types of entrainment and deposition described in this section are handled as source terms in 

the mass, momentum, pressure and energy equations. 
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2.10.2.1 Liquid droplets 

 

For entrainment in both horizontal and vertical flow and for deposition in vertical flow we use 

the correlations of Govan [53], presented for entrainment and deposition of oil in equation 

(156). The entrainment correlation for vertical flow has been multiplied by a factor of 2 

compared to the original correlation presented by Govan, as this was found to give better 

predictions of the slugging periods and liquid holdup in testing against experimental data.  

For deposition in horizontal flow a linear relationship with the deposition constant and droplet 

field concentration is used. Like for the wall and interfacial friction, the entrainment rates are 

weighted between the horizontal and vertical models by the weighting factor in equation (78) 

as an attempt to interpolate the entrainment and deposition rates for inclinations between 

horizontal and vertical configurations. 
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  (155) 

 

The entrainment and deposition rates for water are calculated similarly as for oil. In equation 

(156) goσ  is the gas-oil interfacial tension, and ogC  is the droplet field concentration, given 

by: 

 

 og og og
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g og gg

M
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V
ρ α

α α
= =

+
  (156) 
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The deposition velocity constant for horizontal flow ( ,D hk ) is set to 0.1 m/s. Both the 

entrainment and deposition correlations have been multiplied by the control volume length L 

and pipe perimeter S to get entrainment and deposition rates in the correct units (converting 

from mass rate per length and surface area kg/(m2s) to kg/s). 

 

2.10.2.2 Gas bubbles 

 

The entrainment and deposition rates for gas bubbles in the oil film is presented here (the 

rates for gas bubbles in water are be calculated similarly). The entrainment rate of gas bubbles 

into the liquid film is by default zero. Most likely some entrainment will happen due to waves 

breaking, but currently the only way gas bubbles can enter into the liquid film is from the 

mass flux leaving a slug border (bubble-nose). Void in slug must in other words be enabled to 

obtain any gas in the liquid film in the bubble section.  

 

For the deposition rate, we first need to find the terminal velocity of the gas bubbles in the 

liquid. This can be obtained from a force balance on a gas bubble between gravity and drag: 

 

 
( )2

,

4 cos
3

d ol g
T go

D ol

D g
u

C
ρ ρ θ

ρ
−

=   (157) 

 

Here, dD  is the bubble diameter, and ,T gou  is the terminal velocity. 

The drag coefficient can be estimated from the correlation of Clift and Gauvin [54] shown in 

equation (159), valid for 5Re 3 10d < ⋅ . In lack of a better alternative, equation (159) is also 

used above this range, but limited give a minimum value of 0.19. This is a value reported by 

Clift and Gauvin, which the drag coefficient approaches at high Reynolds numbers. 

 

 

 
0.6871 0.15Remax 24 ,0.19

Re
d

D
d

C
 +

=  
 

  (158) 
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The gas-bubble Reynolds number is defined by the bubble diameter and terminal velocity, 

and the continuous liquid density and viscosity: 

 

 Re ol T d
d

ol

u Dρ
µ

=   (159) 

 

Since there will be a distribution of bubble diameters of varying size, we use the Sauter mean 

droplet diameter ( 32dD d= ) in equation (158). The Sauter mean diameter represents the size 

of the larger bubbles that contain most of the volume. This is in many correlations dependent 

on the energy dissipation, but for simplicity we use a more simplified model as presented in 

the TRAC-M theory manual [55] shown in equation (161). This might be a too simple model, 

and could be improved in further work. 

 

 

 
( )

32 0
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gl

l g

d L
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g

σ
ρ ρ

=

=
−

  (160) 

 

Together equations (158) - (161) gives a non-linear equation for the terminal velocity, which 

is solved by Newton's method. After the terminal velocity has been calculated, the mass rate 

of gas bubbles out of the liquid film is calculated from: 

 

 , , ,d go go go T go go go T gom A u m S Luφ = =    (161) 

 

Here goA  is the gas-oil interfacial area. 

In vertical flow, the gravity no longer acts to make the bubbles rise out of the liquid film and 

into the gas. Instead, the gravity acts on the gas bubbles in the direction parallel to the flow, 

which has to be implemented by slip relations between the entrained field and the continuous 

liquid field. Consequently, the deposition rate of gas bubbles from the liquid film in vertical 

flow will be zero due to the cosine term in equation (158). 
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In vertical flow it might still happen that a lot of entrained gas accumulates in a liquid film, 

even if slip relations are applied. To avoid the gas in liquid fraction becoming too large, the 

following adjustment of the deposition rate is made: 

 

 , ,max ,max 0.5 ,0go go
d go go go T go

ol

M
A u

t
α

φ
α

   
= −    ∆   

  (162) 

 

2.10.2.3 Slug front entrainment 

 

Several correlations are available in the literature for the entrainment of gas into a slug front: 

Nydal and Andreussi [56], Ullmann and Brauner [57], Skartlien et al. [58], Manolis [59] and 

Chanson [60]. Based on relatively simple testing and from the results obtained by the tests 

performed by Bonizzi and Issa [61] a modified version of the correlation of Chanson was 

chosen. The model is modified with the inclusion of a critical Weber number as suggested by 

Ullmann and Brauner, and is shown in equation (164). 
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Here Eo is the Eötvös number (see equation (183)), while We is the Weber number. 

The entrainment rate is set to zero if the Froude number is less than one, or if the liquid in the 

film is not going into the slug front. Note also that the resulting entrainment rate was found to 

be too large if using the actual front velocity (border velocity at the slug front), while the 

results seemed more reasonable by using the liquid velocity at the slug front ( ,l frontu ). 

 

Note that void in slug can be enabled even if slug front entrainment is disabled, but gas can 

then only enter slugs either through mass sources, or from when converting a bubble to slug 

by distributing the gas present in the bubble as gas in the liquid slug. 

 

2.10.3 Slip relations 

 

Slip relations relate the velocity of the sub-fields to the mixture fields: 

 

 1 1
, ,

n n n n
f f slip k f slipu C u U+ += +   (164) 

 

By default no-slip is applied ( , 1f slipC = , , 0f slipU = ), except for the gas bubbles in liquid for 

which the Malnes slip relation [62] is default. Equation (166) shows the Malnes slip relation 

(here shown for the gas in oil field). 
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2.11 Hydrodynamic slugs and slug initiation 

 

How to initiate or capture hydrodynamic slugs is still one of the most challenging tasks in 

gas-liquid simulations with the two-fluid model. There are typically three different 

approaches: 

 

1. Using the unit-cell model as a sub-grid model 

2. Applying a fine grid to capture the natural growth of waves into slugs 

3. Initiating slugs on a course grid using mechanistic initiation criteria 

 

All three approaches can be used in the Sluggit framework, though they all have their 

shortcomings. The unit-cell model will only give the average friction terms to use in the 

momentum equation, treating the slug flow in a statistical manner and assuming steady state 

flow in each section. Information like slug length and slug frequency is thus not possible to 

obtain. The unit-cell model is described in section 2.15. 

 

A promising approach is using so-called slug capturing, through the accurate numerical 

solution of the one-dimensional two-fluid model, typically employing higher order 

discretization schemes. This approach is believed to be capable of describing the transition 

from stratified flow to slug flow, see for instance the work by Issa [16, 63] and publications 

from the commercial simulator LedaFlow [9, 64, 65]. If the conditions are correct, small 

instabilities on the gas-liquid interface will become unstable and grow, either to stable waves, 

or to slugs. The downside of this approach is that using a fine grid means increased 

computational time. In addition, there are still some unresolved issues regarding the 

mathematical properties of the two-fluid model: The model can become ill-posed, which 

means that the solution will be dependent on the grid size. In opposite, a well-posed problem 

has the following properties: 

 

1. A solution exists 

2. The solution is unique 

3. The solution's behaviour changes continuously with the initial conditions. 
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The characteristic roots of the mass and momentum equations shown in equation (167) gives 

the Inviscid Kelvin-Helmholtz limit [66] (also called the well-posedness criterion), the limit 

for when the eigenvalues for the system of equations becomes complex and the model is ill-

posed. The model is then no longer hyperbolic, but becomes elliptic (or mixed 

hyperbolic/elliptic). 
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When the model becomes ill-posed, the growth rates increase exponentially as the wavelength 

shrinks to zero, which is unphysical. The reason for why the two-model can become ill-posed 

is that several terms are dropped in the averaging the full three-dimensional equation to the 

one-dimensional two-fluid model. The paper of Sanderse et al. [67] clearly shows how some 

of the skipped terms have to be reintroduced (re-introduced from data from CFD-simulations) 

to get the correct results for a relatively simple simulation of the drift velocity of a Taylor 

bubble in a channel. The commercial simulator LedaFlow used a different approach, and 

showed how the interfacial friction can be tuned to give the correct drift velocity [9]. The 

papers from Sanderse and LedaFlow are not directly related to the ill-posedness of the two-

fluid model, but clearly illustrates that some basic physics has been lost in the averaging. 

Several attempts has been made to try to regularize the two-fluid model to cope with the ill-

posedness, like adding numerical viscosity, surface tension and artificial interfacial pressure. 

For a review of such regularization techniques, see for instance the study of Fullmer [68].  

Another approach is to employ a two-pressure model as investigated by among others 

Munkejord [69], but this method also seems to have its drawbacks. Though some of these 

attempts might help stabilize the two-fluid model, they all have their drawbacks, and some of 

the approaches even lack a good physical justification. In other words, the problem of an ill-

posed the two-fluid model is yet to be solved. 

Using a first order discretization for instance for the convective terms like the first order 

upwind scheme will yield a round-off error of similar form as when adding artificial 

numerical viscosity. This will stabilize the model, but also makes it more diffusive. 

Furthermore, one does not have control of what the numerical viscosity will be, and it will 
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change with the grid size. One could in other words get similar results by using a higher order 

scheme and explicitly adding some numerical viscosity, using a larger grid size and thus also 

a larger time step. 

 

It should also be noted that the two-fluid model is unconditionally ill-posed if the hydrostatic 

level gradient term is not included (which will always be the case in vertical flow). 

 

The third possible way of dealing with hydrodynamic slugs is to use mechanistic initiation 

criteria. Two initiation criteria are implemented in Sluggit to insert slug section objects 

depending on the flow conditions.  

 

One is based on the instability of stratified flow (equation (167)), and the other on the 

existence of slug flow derived by Bendiksen and Espedal [70] which is based on that the slug 

front velocity at steady state must be larger than the nose/tail velocity: 
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Note that in the limit of zero gas in the slug, equation (168) reduces to ,b g bubu u< . This 

criterion is currently only implemented to work with no void in slug. Note also that this is 

only a necessary criterion, but not a sufficient criterion for slug flow to occur. This criterion 

must in other words be used together with for instance the well-posedness criterion. 

 

The slugs that are initiated are created in the middle of the bubble section, with a user-

specified length in multiple of pipe diameters. 

 

The commercial simulator OLGA has until recently initiated slugs in its slug tracking model 

from a user-specified delay constant and initiation frequency, which makes the result 

dependent on the user input and has been subject for criticism. Lawrence et al. [71, 72] 

however recently presented an improved slug initation model for OLGA, where the only 

required user input is the length of a short and stable slug. The initiation model is 
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implemented as a conservation equation for the number of initiated slugs similar to the 

continuity equation, with the birth and death rate of the slugs as the source terms. The model 

is obviously dependent on good correlations for the birth rate and death rate, which are not 

given in full form in the papers. This type of initiation model has not yet been investigated in 

the Sluggit framework, but could be an alternative to investigate in future work. 

 

2.12 Plug boundary movement 

 

Slugs normally have a front and a tail, where liquid is absorbed at the front and shed at the 

tail. Hence, the velocities of the edges of a slug are generally not equal to the slug’s bulk 

velocity. In this simplified approach, where slugs are confined within a single control volume, 

it is necessary to apply closure relations to determine the velocities of slug front and slug tail. 

(i.e. at the borders in Figure 5). The border velocities are expressed by a linear relationship 

with the liquid mixture velocity: 

 0 , 0b l l ju C u U= +   (168) 

 

The purpose of applying a moving grid is to make the grid coincide exactly with the edges of 

the slugs and plugs. Consequently, the border velocity coefficients are computed according to 

the relations supplied below.  

 

The movement of the slug edges is related to the liquid velocity in the slug. If the slug did not 

lose or accumulate liquid in any way, the slug border velocity would simply equal the slug’s 

liquid velocity.  

 

2.12.1 Critical bubble turning velocity 

 

In order to determine whether a slug border is a slug front or a bubble nose, one must apply 

some kind of bubble turning criterion. In the current work, the criterion is based on the 

assumption that bubbles tend to move in the opposite direction of the pressure gradient. This 

criterion has been shown to predict the bubble turning point quite well in [73, 74]. The bubble 

will thus turn when the gravitational forces balance the friction forces over the slug body: 
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Note that this expression gives the absolute value of the critical velocity, for simplicity. The 

correct sign will be applied after calculating the absolute value. 

In laminar flow this equation has a simple analytical solution, by using the laminar friction 

factor from equation (146):  
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For turbulent flow however, when using the Haaland equation (equation (145)), we get a non-

linear equation for the critical velocity: 
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This can be easily solved with for instance Newton's method. 

 

To determine if the laminar or turbulent critical velocity should be used, we first calculate the 

laminar critical velocity, and calculate the corresponding Reynolds number and friction factor. 

We then calculate the turbulent friction factor, using the critical velocity obtained from the 

laminar theory. If this turbulent friction factor is larger than the laminar friction factor, and the 

Reynolds number is above 300, we go on to solve equation (172). If not, we return the critical 

velocity calculated from the laminar theory.  

Finally, the correct sign is of the critical velocity is applied by: 
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A slug border can then be determined to be a bubble nose or a slug front as shown in Table 4. 
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Table 4: How to determine if a slug border is a bubble nose. 

 Slug-bubble Bubble-slug 

Nose criterion crit lu u≥  crit lu u<  

 

2.12.2 Slug front velocity 

 

For slug fronts, the liquid mass balance across the slug front must be fulfilled.  

 

 

Figure 48: A slug front moving to the right, into the neighbouring bubble section. 

 

During a time step t∆ , the slug front will move a distance ,l slugu t∆  into the neighbouring 

bubble section. The slug front will then have absorbed the following liquid volume from the 

neighbouring bubble section: 

 

 ( ), , ,l l slug l bubble l bubbleV u u A t= − ∆   (173) 

 

The slug front must then be moved an additional distance to make room for this volume, as 

illustrated in Figure 48. 
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The velocity of the slug front is calculated by: 

 

 

( )

( )

,
, , ,

,

,
, , ,

,

, ,
,

, ,

1
1 1

l bubble
front l slug l slug l bubble

g bubble

l bubble
l slug l slug l bubble

g bubble

l bubble l bubble
l slug

l bubble l bubble

A
U u u u

A

u u u

u
u

α
α

α
α α

= + −

= + −

  −
= + 

− − 

 (174) 

 

Note that equation (175) is only used if liquid is going into the slug front. If the front is not 

absorbing liquid it is assumed to be a front moving with the mixture liquid velocity, and we 

set 0 1lC =  and 0 0U = . 

 

Note also that the velocity of the liquid going into the slug front is not taken as the liquid 

velocity in the bubble section next to the slug front. The velocity in this section is calculated 

as the average between the velocity at the slug border and the neighbouring bubble-bubble 

border, which means that this section velocity is coupled to the velocity in the slug. In reality, 

the liquid going into a slug front has no information about the velocity in the slug. 

Consequently the value for ,l bubbleu  is taken from the mixture liquid velocity in the 

neighbouring bubble-bubble border. 

 

Equation (175) is a linear relationship with the liquid mixture velocity in the slug, and we get 

the following coefficients: 
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Note that the calculations above are only valid when there are no area changes. How the 

calculations are performed to account for changes in the cross-sectional pipe area is described 

in section 2.12.4. 

 

When moving an incompressible slug front border, an additional movement srcx∆  might be 

necessary to make room for the liquid that enter the slug from possible mass sources inside 

the slug: 
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  (176) 

 

If there are changes in the cross-sectional area, the length needed to distribute the volume 

from the source is calculated numerically. This term is only included for incompressible 

slugs, since no pressure equation is solved. For compressible slugs the mass source terms 

enters as normal through the pressure equation, which again affects the new mixture liquid 

velocity and new border velocity. 

It might happen that both the left and right slug borders are bubble-noses, in other words no 

slug fronts exist. The source term contribution will then be included for one of the bubble-

nose borders. 

 

2.12.3 Bubble nose velocity 

 

A bubble nose velocity relation for inclined pipes has been proposed by Bendiksen [1] on the 

form: 

 

 0 0b l lu C u U= +  (177) 

The drift velocity 0U  can be represented as split up into the vertical and horizontal 

components: 

 0 0 0v hU U U= +  (178) 



 
 

 

120 

 

 

A similar model to that of Bendiksen is implemented in the Sluggit code, on the form: 
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The coefficients 0,1C and 0,2C  varies depending on the conditions of the flow, and are 

described in more detail further below. The variable Fr is the Froude number, which is the 

ratio of inertia to gravitational forces: 
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  (180) 

 

The parameter sgnh  is +1 or -1, depending on the orientation of the bubble-nose. If the nose is 

pointing left it is -1, and +1 if the nose is pointing to the right. The sign of the vertical drift 

velocity is automatically correct since it is multiplied by ( )sin θ  (for inclinations within 

90± °). 

The Taylor-bubble tends to travel along the top of the pipe, instead of being symmetric 

around the pipe centre line. This effect is represented by the first equation in equation (180), 

where the Froude number is low. When the velocity is increased, the bubble nose is forced 

towards the centre of the pipe, and the second equation in equation (180) is used. 
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Instead of using the Froude number directly to calculate the transition from the low Froude 

number to the high Froude number region, the velocity at which the transition occur can be 

calculated by: 
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If the absolute value of the liquid mixture velocity is larger than ,l limu , the high Froude 

number coefficient is used. 

The coefficients rhF  and rvF  in equation (180) are related to the horizontal and vertical drift 

velocity of the Taylor bubble. Benjamin [2] calculated the coefficient for the horizontal drift 

velocity ( rhF ) to be 0.542, but this calculation does not take into account the liquid viscosity. 

Jeyachandra et al [4] performed experiments using different liquid viscosities, and proposed a 

viscosity dependent correlation for the horizontal drift velocity coefficient, which is used in 

the Sluggit framework: 
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Ar  and Eo  are the Archimedes and Eötvös numbers respectively, describing the ratio of 

gravitational to viscous forces, and the ratio of buoyancy to surface tension forces. 

Dumitrescu [3] computed the approximate shape of a bubble rising in a vertical tube from 

theoretical considerations. By ignoring the frictional and capillary effects, and by considering 

only the potential and kinetic energy of the liquid falling around the bubble, the approximate 

solution for the liquid flow around the top of the bubble was determined by both Dumitrescu 

and Davies & Taylor. The solution published by Dumitrescu gives a value of 0.351 for the 

vertical drift velocity coefficient, a value that has been widely used.  
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Joseph [5, 6] presented an analytical expression for the rise velocity of a spherical cap bubble 

to account for the effect of liquid viscosity, which we used for the vertical drift velocity 

coefficient in the Sluggit code: 
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Here, s is a parameter describing the deviation of the free surface from perfect sphericity, in 

other words related to the shape of the bubble. The bubble nose is more pointed when s < 0 

and blunted when s > 0. This factor is not known, and in the Sluggit code we use s=0.2228 

which will give approximately the value of Dumitrescu for zero viscosity (as long as the pipe 

diameter is not too small).  

The parameters 0,1C and 0,2C  in equation (180) captures the effect of the velocity profile, in 

which the fluid velocity at the centre of the pipe is greater than the average velocity, making 

the bubble front propagate faster than the mixture. To calculate these coefficients we use a 

method proposed by Nuland [75]. We define Retr as the transition Reynolds number, 

calculated from where the maximum value of the laminar and turbulent friction factors gives a 

transition from laminar to turbulent flow. The Reynolds number Ret gives the limit for 

turbulent flow and is set to 3000, while Reslug is the Reynolds number in the slug. For 

Reslug<Retr we assume laminar flow, and set 0,1C and 0,2C equal to 2.  

Chen [76] showed that for turbulent flows (Reslug>Retr), the ratio between the maximum 

velocity and the mean velocity in single phase flow can be calculated as: 
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The parameter n represents the inverse exponent in the power law velocity profile: 
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The friction factor f  is the turbulent friction factor using the Darcy friction factor 

formulation, while κ  is the von Karman constant (=0.41). We use the friction factor in the 

slug for f. This expression is valid for both hydraulic smooth and rough regimes. In the 

transitional region between laminar and turbulent flow (Retr <Reslug<Retur) we use the 

following interpolation method: 

 

 
( )0 0 0

Re Re
Re Re

1

slug tr

tur tr

tr tur lam

w

C wC w C

−
=

−

= + −

 (186) 

 

The value of 0lamC  is set to 2. It should be noted that according to Wallis [77], 0lamC can be 

even higher than 2 for fully laminar flow, but the exact behaviour has yet to be determined. 

The user can specify both the value of 0lamC , and the transitional and fully turbulent Reynolds 

numbers. The fully turbulent values of 0,1C and 0,2C  ( 0turC ) are 1.05 and 1.2, respectively, and 

the calculation of the transitional coefficient 0trC  is limited to not be smaller than this. 

 

If however the bubble motion is in the opposite direction of the flow, the mixture velocity 

profile is directed in the opposite direction of the bubble nose, and a lower value for 0,1C and 

0,2C is expected (referred to here as 0,counter currentC − ). This will happen for the following 

conditions: 

1. For a slug-bubble border that has been determined to be a bubble-nose and lu  is larger 

than zero. 

2. For a bubble-slug border that has been determined to be a bubble-nose, and lu is less 

than zero. 

 

Experimental results [78] suggest a value near 1 in such cases. The default value in Sluggit is 

set to 0.98. 

 

To sum up, when the coefficients has been calculated the procedure is as shown in Table 5. 
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Table 5: Summary of cases in nose-velocity calculation. 

Condition Case Coefficients 

Left pointing nose and 0lu >  

or right pointing nose and 

0lu <  

Counter-current flow 0 0,l counter currentC C −=  

0 0, 0,sgnv h hU U U= +  

,l l limu u<  Low Froude number case 0 10lC C=  

0 0, 0,sgnv h hU U U= +  

,l l limu u≥  High Froude number case 0 20lC C=  

0 0,vU U=  

 

Note that the calculations above are only valid when there are no area changes. How the 

calculations are performed to account for changes in the cross-sectional pipe area is described 

in section 2.12.4. 

 

2.12.3.1 Wake effect 

 

It is also possible to include a wake effect on the bubble-nose velocity. The 0lC  and 0U  

coefficients of the bubble-nose border will then be multiplied by the wake effect factor W. 

Currently the correlation of Moissis and Griffith [79] is implemented, where L is the length of 

the slug unit and D is the pipe diameter: 
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2.12.4 Plug-plug border velocities 

 

For plug-plug borders, the border coefficients 0lC  and 0U  are set to 1 and 0 respectively, so 

that the border velocity will equal the mixture liquid velocity. This will be the case for both 

slug-slug borders, pig-pig borders, slug-pig borders and pig-slug borders, for both 

compressible and incompressible slugs. 

 

2.12.5 Incompressible plug unit velocities 

 

As mentioned in section 2.3, the velocities are solved for the slug unit for incompressible 

slugs, and not for the slug borders. If the slug unit consists of different cross sectional areas, 

the velocity we solve for is defined through the average area of the slug unit (V
L

).  

 

Since the slugs are incompressible, we can calculate the volume flow through the slug unit as: 
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The velocity at any point in the slug unit can then be calculated by using the local area at the 

location we want the velocity: 
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If the cross sectional area is the same everywhere in the slug, the velocities are the same at all 

locations in the slug. See also section 2.9.1.3. 
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2.12.6 Plug movement and area changes 

 

After solving the new velocities in the slug and calculating the new border velocities, the 

borders are moved a distance x∆ : 

 1n
bx u t+∆ = ∆   (190) 

 

This is however only valid when there are no area changes. The new border velocity 1n
bu +  is 

the new velocity at the new position, and not the average velocity the borders moves by from 

time n to n+1. If there are area changes in the region the border moves, the mixture liquid 

velocity in the slug and thus also the border velocity might have different values at the 

different cross sectional areas in the region the border is going to move. 

 

Sections 2.12.6.1 and 2.12.6.2 describe how the border movement should be performed to 

account for area changes for a bubble-nose and a slug front respectively. Common for both 

the movement of the bubble-nose and the slug front is that the volume flux in/out of the 

border is stored, and used directly in the momentum and mass equations instead of the regular 

flux terms. The stored volume flux is named , ,k slug storedQ . That is, instead of calculating the 

mass flux from ( )k k bm A u u− , we calculate the mass flux as , ,k k slug storedm Q . The stored fluxes 

are updated in each volume fraction iteration. In the pressure equation however we want to 

keep the original formulation of the mass fluxes and relate them to the change in velocity to 

add implicitness to the momentum equation. If there are area changes, the stored flux will 

typically be different than the original flux formulation, so that a set of scaling constants are 

needed in the pressure equation (described in section 2.9.4.4).  

 

2.12.6.1 Bubble-nose movement and area changes 

 

The velocity at the bubble-nose is defined at the old area ( nA ), where the border velocity 

coefficients were calculated. To be able to calculate how far the border should move, we start 

by calculating the expected volume the border should pass by. This can be done by first 



 
 

 

127 

 

calculating the new mixture velocities in the slug, but using the old cross sectional area where 

the velocity was defined, and then calculate a new temporary border velocity from this: 
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  (191) 

 

The expected volume this border should move past will then be: 

 

 n
bV u A t∗ ∗= ∆   (192) 

 

The length (in the correct direction) from the old position that corresponds to this volume is 

then calculated numerically, and this will be the length this border should move. If the cross 

sectional areas are the same everywhere, this result will be identical to equation (191).  

The volume flux at the bubble-nose border that will be stored for usage in the mass, 

momentum and energy equations will be: 

 

 ( ), ,
n

l slug stored l bQ A u u∗ ∗= −   (193) 

 

The new border velocity defined at the new location of the border must be scaled by the ratio 

of the new area to the old area for the bubble-nose (this is not necessary for the slug-front). 

Since the liquid velocity is already scaled (see equation (190)), only 0U  is left to scale. The 

new border velocity for the bubble-nose can thus be calculated as: 
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2.12.6.2 Slug front movement and area changes 

 

A similar approach as for the bubble-nose is used, where we try to calculate the expected 

volume the border should move past and then find the corresponding length. The calculation 

for the slug front however becomes more difficult, because the different parts of lC  and 0U  

that comes from how much liquid the front will shed or take up will be different for different 

cross sectional areas (see section 0). To get this correct, we calculate and sum up the different 

contributions from the volumes illustrated in Figure 48 in individual steps numerically instead 

of simplifying them analytically into the lC  and 0U  coefficients. Note that these volumes will 

have a sign, so that some volumes are negative. 

 

 

First we calculate the volume the slug front will move past if it moves with the new liquid 

velocity, calculated using the old area: 

 

 ,1
n

front lV u A t∗= ∆   (195) 

 

Next the length (in the direction lu∗  goes) that gives the volume ,1frontV  is calculated 

numerically, which we name ,1frontx∆ . This is the length the front would have moved if it 

moves with the new liquid velocity, and we forget about there being any liquid in the 

neighbouring bubble section. The next step is to calculate the liquid exchange with the 

neighbouring bubble, taking into account that the liquid in the bubble is also moving. Two 

volumes are then needed. The first we call ,2frontV , and is the liquid volume exchange between 

the slug front and the bubble if we assume that the liquid in the bubble is not moving. This 

volume is calculated numerically from position n
frontx  to ,1

n
front frontx x+ ∆ and is assigned the 

same sign as the sign of ,1frontV . This corresponds to the term , ,l bubble l slugA u t∆  in equation (174). 

Note that the positions, holdup and other values used in these calculations should be from 

time step n, and not new values. This is because lC  and 0U are defined using old values, and 

only the new liquid velocity should be from time step n+1. The next term is also related to the 

liquid exchange between the slug front and the bubble, and comes from that the liquid in the 



 
 

 

129 

 

bubble might be moving. This corresponds to the term , ,l bubble l bubbleA u t∆  in equation (174). 

Since this volume calculation is performed in the same region as ,2frontV , we can calculate it 

as: 
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  (196) 

 

The net volume exchange over the slug front border can then be found by summing up the 

three calculated volumes: 

 

 ,1 ,2 ,3front front front frontV V V V= + +   (197) 

 

To make room for this volume, it is distributed in the gas region in the neighbouring bubble 

section. This is also calculated numerically, and gives the final length the front should be 

moved which we name ,2frontx∆ . This calculation corresponds to the term 
,

l

g bubble

V
A

 in Figure 

48. The total length the slug front should move can then be calculated as 

,1 ,2front front frontx x x∆ = ∆ + ∆  . 

 

The volume that will be stored as the volume flux through the slug front can now be 

calculated as the total volume from position ,1
n
front frontx x+ ∆  to n

front frontx x+ ∆ . 

 

This procedure gives the same result as equation (191) if there are no changes in cross 

sectional area (this has been tested). 

 

2.12.6.3 Example of plug movement and area changes 

 

It is easy to see how the plug border movement would become wrong if not using the 

proposed procedure. In this simple example an incompressible slug is in contact with the inlet 

mass flow boundary at time t=0 seconds, with the front of the slug located at 0.499999 m. The 
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geometry consists of two pipes of length 0.5 m, with pipe diameters 0.1 and 0.05 m which 

results in a four times smaller cross sectional area for the second pipe. These two cross 

sectional area will be referred to as A1 and A2 respectively. The liquid density equals 1000 

kg/m3 and is constant, and the water mass flow is set to give a velocity of 1 m/s at the first 

cross sectional area (approximately 7.854 kg/s). This gives a volume flow lQ  of 0.007854 

m3/s. Since this is a slug front not absorbing liquid, the border velocity coefficients lC  and 

0U  becomes 1 and 0 respectively. 

 

 

 

Figure 49: An incompressible slug moving from one cross sectional area into a four 

times smaller area. The top and bottom images correspond to times 0 and 0.1 seconds 

respectively. In the bottom image the slug front has moved a distance 0.4 m to the right. 

 

The time step t∆  in the simulation is set to 0.1 s, which means that a volume of lQ t∆  = 

0.0007854 m3 will enter the pipe during each time step. If we define the new border velocity 

at the cross sectional area at time step n, the new border velocity bu  would equal the new 

liquid velocity lu  at this location (since 1lC =  and 0 0U = ), which would be 
1

l
Qu
A

=


 = 1 m/s. 

This wold result in the border moving a distance bx u t∆ = ∆  = 0.1 m, which would be wrong 

and yield a volume fraction error of 14.3 % in the slug. The correct result would be 

approximately 
2

Q tx
A
∆

∆ =


 = 0.4 m. Defining the border velocity at the cross sectional area at 

time step n+1 would give an approximately correct result for this case, but would in many 

other cases not be correct. For instance in the case where the slug front starts at position 

0.40001 m, and ends up at approximately position 0.50001 m. It is in simply not possible to 

express the distance the border should move as function of a border velocity defined at a 
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single point. Instead, the volume the plug borders should cover are calculated, and the 

distance corresponding to these volumes numerically calculated as described in sections 

2.12.6.1and 2.12.6.2. In addition, the correct scaling constants are applied to transform the 

border velocity used in the pressure equation from a locally defined velocity to the average 

border velocity between times n and n+1. 

 

2.12.7 Pressure gradient over plugs 

 

As shown in Figure 5, Figure 6 and Figure 50, the momentum control volume of the plugs is 

non-staggered and does not extend into the neighbouring bubble sections. Consequently, the 

pressure is no longer defined at the end-point of the plug momentum control volume (at the 

plug borders). The same will be true for the pressure at the end-point of the momentum 

control volume of the neighbouring bubble-bubble border, which is extended all the way to 

the plug.  

 

 

Figure 50: Indexing and pressures for the momentum equations next to a plug. 

 

We will here look at an example for the right border of slug. 

The default approach is to approximate the pressure at the plug border (index J-1) by the 

pressure in the bubble section (P1), but it is also possible to approximate the pressure by 

extrapolation assuming a linear pressure gradient from pressure P2 to P1. 
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The extrapolation for the pressure at index J-1, used both for the pressure gradient over the 

slug at index j-1 and for the bubble-bubble border at index j, becomes: 
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  (198) 

 

New values (from time step n+1) are used for the both the pressure and lengths in equation 

(199), which are updated after each iteration on the system of equations. 

The same interpolation can also be performed for the momentum control volumes next to a 

closed border since the control volume extent is modified also there. After solving the system 

of momentum equations the estimated pressure gradient is compared to the actual pressure 

gradient, and is said to be converged if the absolute value of the difference is less than the 

user-specified tolerance (default value 5 Pa/m). 

Testing has however shown that including this interpolation does not give much difference in 

the results, though this might be case dependent. The cases marked as "case B" in Paper 1 

were simulated with and without the pressure extrapolation enabled, and the slugging periods 

did not change much. The pressure signal at the start of the pipeline is plotted for a selected 

case in Figure 51, and it can be seen that the difference between the two simulations is quite 

small. The simulation run-time is however about 30 % larger when including the pressure 

extrapolation, as the pressure interpolation becomes a part of the iteration procedure to solve 

the system of equations. 
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Figure 51: Simulated and experimental pressure for a selected experiment from Paper 1, 

showing simulations both with and without pressure extrapolation at closed borders and 

at slug borders. 

 

2.13 Interfacial mass transfer 

 

The interfacial mass-transfer model applied in Sluggit is the same as described in [80]. This 

model can treat both normal condensation or evaporation and retrograde condensation, in 

which a heavy phase condenses from the gas phase as the pressure drops. By defining the 

mass fraction at equilibrium as: 

 ,
k

s k
g l

mR
m m

=
+

  (199) 

 

, the mass transfer rate for field f may be computed as: 

 

 ( ), , , ,f s f s f s f s f
g l

T T p p

dm R R R Rdp p x dT T x m m
dt p dt p x t T dt T x t

 ∂ ∂ ∂ ∂       ∂ ∂ ∂ ∂
= + + + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

  (200) 
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The term s

T

R dp
p dt

 ∂
 ∂ 

 represents the phase transfer from a mass present in a section owing to 

pressure change in that section, while the term s

T

R p x
p x t

 ∂ ∂ ∂
 ∂ ∂ ∂ 

 represents the mass transfer 

caused by mass flowing from one section to the next. The gas mass fraction at equilibrium 

( sR ) must be specified, from a PVT-file. 

Including interfacial mass transfer in the simulation is currently only available as a part of the 

volume fraction error iteration procedure, due to the way the computed mass changes are 

handled which will soon be described. Thus the effect on interfacial mass transfer from the 

energy equations will only be included if the energy equations are also a part of the volume 

fraction error iteration procedure. In addition, a minimum of two volume fraction error 

iterations must be used. 

The reason for this is that after mass, pressure, momentum and energy has been solved, the 

interfacial mass transfer is computed and stored in the same arrays as contains the mass 

source terms. The mass, pressure, momentum and energy equations will thus not feel the 

effect from interfacial mass transfer until the next iteration, where it will enter through the 

source terms. At the end of iteration nr. 2 new values for the interfacial mass transfer will be 

computed and replace the current interfacial mass transfer values in the array containing the 

source terms, and this procedure is repeated until convergence. The iteration procedure will 

then converge the interfacial mass transfer as an implicit contribution. 

Interfacial mass transfer will occur because a lump of fluid experience a change in pressure 

and temperature (or just one of them). For a specific section, this effect is computed both for 

fluids that remains in the section, enters the section from the left, or enter the section from the 

right. In addition, the effect is included for all types of source terms entering the section, from 

both mass sources and from other physical processes that are treated like source terms. This 

could be entrainment or deposition, slug front entrainment, slug-tail bubble-disengagement, 

and bubble-disengagement from the liquid film. The interfacial mass transfer for a sub-field 

phase f can then be calculated as follows: 

 

 ( ) ( ), , ,f IFM f s new new s old olddM M R p T R p T= −     (201) 
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Here fM  represents the mass of the lump of fluid that experience a change in pressure and 

temperature from oldp  and oldT  to newp  and newT , while ,f IFMdM  represents the resulting 

mass transfer in kg. 

Note that if the field is a gas field (gas in oil, gas in water or gas in mixture gas), a positive 

change in gas mass fraction (Rs) would mean gas turning into gas. This would in other words 

not represent any interfacial mass transfer, so for the result to be used ,f IFMdM  must be 

negative for the gas phase. Similarly, the mass transfer must be positive for liquid. 

 

Gas mass originating from interfacial mass transfer in a slug section is put as gas in 

liquid/void fraction in the slug. An overview of the field that will receive mass from another 

field during an interfacial mass transfer process is shown in Table 6. 

Note that the interfacial mass transfer is currently computed assuming two-phase flow, and 

will not work if both gas, oil and water are present. This would require that the PVT-file also 

contain information about the water mass fraction. 

 

Table 6: Overview of the receiving field in an evaporation or condensation process. 

Evaporating or condensating field Receiving field 

GG OL or WL 

OG GG 

WG GG 

OL GG (GO for slugs) 

WL GG (GW for slugs) 

GO OL 

GW WL 
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2.14 Computational sequence 

 

The computational sequence in Sluggit is as follows: 

 

List 1: Computational sequence in the Sluggit code 

1. Calculate and store values needed for iteration procedure 

2. Solve equations with iteration procedure 

3. Grid management 

 

First, the current values for most parameters are stored as backup in all of the border and 

section objects. Then the border velocity and slip relation coefficients are computed, and all 

of the explicitly treated terms are calculated and stored to avoid unnecessary re-calculations of 

these (see the momentum equation in equation (88)). 

 

2.14.1 Solving the system of equations 

 

The iteration procedure to solve the system of equations is as follows: 

List 2: Default solution procedure for the system of equations 

1. Insert pressure equation into momentum equation and solve new velocities 

2. Insert new velocities into pressure equation and calculate new pressure 

3. Move borders 

4. Solve mass equation and update holdup 

5. Solve energy equation (if specified as a part of the iteration procedure)  

6. Update densities, other physical quantities and holdup 

7. Calculate and store interfacial mass transfer 

8. If a fully implicit simulation is desired, re-calculate the necessary terms that are 

treated explicitly in the default scheme and stored before the iteration procedure 

9. Repeat until convergence, using new values for the non-linear terms 
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Depending on the settings, the energy equation is solved as a part of the iteration procedure, 

and if the simulation is specified as not being isothermal. If it is specified not to iterate on the 

energy equations, they will be solved after the iteration procedure is finished. The effect of 

temperature will then be felt by the system through the volume fraction error in the pressure 

equation in the next time step. 

 

At the end of each iteration a set of stopping criteria are checked: 

 

List 3: Convergence criteria when solving the system of equations 

1. The maximum volume fraction error in the system must be smaller than the user-

specified tolerance 

2. The maximum equation residual from the pressure and momentum equations must be 

below the limits given by the user (the default is a huge number to disable this check 

and only use the volume fraction error) 

3. Other special criteria, like convergence of the volume flow in incompressible plugs 

which can be an issue for explicitly updated slugs with changes in cross-sectional area. 

If specified to do pressure gradient extrapolation as described in section 2.12.7 this is 

also checked to converge. 

 

If all of the stopping criteria are satisfied, or the maximum number of allowed iterations is 

reached, the iteration procedure is stopped.  

 

Note that the residuals should be computed after all of the different equation systems have 

been solved. If the iteration procedure is not able to converge, the time step is re-evaluated 

using a lower value for t∆ . 

 

It is also implemented to solve the mass, momentum and pressure equations all at once using 

Newton's method, which in certain cases can be significantly faster (for instance in the 

periodic Kelvin-Helmholtz simulations presented in Paper 2). This depends most likely on 

both the case itself and the limit for the convergence criteria. 

The energy equation will however not be included together with mass, momentum and 

pressure, and is solved separately as normal. 
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2.14.2 Grid management and time step control 

 

After the system of equations has been successfully solved, the next thing to do is to convert, 

remove or split sections. Long sections are split into smaller sections depending on user 

specified criteria, and sections might be removed based on different rules. They can be 

merged with similar sections if the length is too small, or converted from one section type to 

another for instance if the holdup in a bubble has become so large that it should be converted 

to a slug. This is all described in more detail in section 2.15. 

The total mass of each phase in the pipeline is now stored, and will be used to check the mass 

conservation in the next time step. The results are now written to the output files, depending 

on the write interval. Next it is checked if any of the commands specified in the input file 

should be executed. 

Finally the next value for the next time step t∆  is calculated from the CFL criterion, as 

described in section 2.4. Depending on the interval specified in the input file, the current state 

of the entire simulation is dumped to a binary restart file, which can be used to restart the 

simulation from this point in time. 

 

2.15 Unit-cell model 

 

A unit-cell model has been implemented in the Sluggit framework, which can be used as a 

sub-grid model when using a large grid, or compiled separately and used as a stand-alone 

point-model. The concept of a unit-cell model was initially introduced by Dukler and 

Hubbard, see [14]. The current model is inspired by the work in Smith et al [81]. 

 

 

Figure 52: Schematic description of slug flow in a circular pipe. 
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The unit-cell model assumes fully developed flow, a train of Taylor-bubbles and slugs in a 

periodic frame of reference moving with the bubble nose velocity. The velocities and 

densities of each phase are assumed constant along the pipe, which gives the following 

equations for the volume flux: 
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Here sα and bα are the void fractions in the slug and bubble regions, Uls and Ugs are liquid 

and gas velocities in the slug, and Ulb and Ugb are liquid and gas velocities in the bubble 

region. In addition, continuity of the volume flux across the Taylor bubble nose gives: 
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Combining equations (203) and (204) one gets the following equation for the superficial 

velocities in the bubble region and slug region: 
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  (204) 

 

The slug fraction SF which describes the ratio of the length of the slug region to the bubble 

region and can be calculated by: 

 sg sgb

sgs sgb

U U
SF

U U
−

=
−

  (205) 
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A slug fraction between 0 and 1 corresponds to slug flow, while a slug fraction larger than 1 

corresponds to bubbly-flow (no bubble-region). Stratified flow corresponds to a slug fraction 

less than 1. At steady state conditions, the following momentum balance for the gas and liquid 

is obtained in the bubble-region: 
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  (206) 

 

Here the effect from losses due to for instance valves and expansion/contraction losses has 

also been added (summing up all K-factors). The term with the K-factor includes a length 

x∆ , which is the length of the section we solve the unit-cell for ( K
x∆

 will then be an 

additional input to the point model). 

 

Combining the two momentum equations and eliminating the pressure gradient, the following 

implicit equation for the liquid holdup in the bubble region is obtained: 

 

 ( ) ( ) ( )1 1 sin 0
2

g l
l wg wl i i l g g g g l l l

g l l g
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 (207) 

 

For consistency, the same friction models as are used in the dynamic model are used in the 

point model framework. Certain additional correlations are needed in the steady state point 

model: The entrained droplet fraction and the slug void fraction at steady state. In the 

dynamic model the entrainment mass rates are needed, while the point model needs steady 

state values. For consistency, the values at steady state given by the correlations used in the 

point model should match the values one would get when reaching steady state in a dynamic 

simulation. Since the entrainment and deposition rates of droplet entrainment are equal at 

steady state conditions, one possibility is to use the equations for the entrainment and 

deposition rates and solve for the entrained fraction that gives equal rates (the same applies 
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for flux of gas entrainment in and out of the slugs). This was tested for the droplet 

entrainment and deposition rate correlation of Govan [53] described in section 2.10, but 

proved to be difficult. It was found that the correlations of Govan has multiple solutions, and 

in certain straight pipe test cases with dynamic simulations the entrained fraction was 

fluctuating between two steady state values. Consequently the point-model does not yet work 

with entrainment enabled. In addition, for void in slug the correlations used in the point model 

will not give the same steady state value as what will be reached at steady state conditions in a 

dynamic simulation. Instead the void in slug is calculated from the correlation of Gregory 

[82], shown in equation (209). Note also that no-slip is assumed in the point model. 

 

 1.39
11

1
8.66

s

mU
α = −

 
+  
 

  (208) 

 

Here mU  is the mixture velocity of gas and liquid. 

Getting the steady state entrainment fraction and slug void fraction consistent with the 

dynamic simulations has simply not been a priority, as the point-model is used mainly as a 

steady state solver to be able to start a dynamic simulation from steady state conditions (see 

section 2.16 regarding the steady state solver). It is however also possible to use the point-

model as a sub-grid model in the dynamic simulations. The point-model will then be solved 

for each sub-section/pipe within each momentum control volume. The wall and interfacial 

friction from the point-model solution is then used instead of the regular friction terms in the 

dynamic simulation. Note that when the point-model predicts stratified flow, the result will be 

the same as for the regular friction terms described in section 2.10.1. 

The wall shear stress integrated over a sub control volume can then be calculated from the 

unit-cell model as shown in equation (210) by using the wall shear stress in both the bubble-

zone and in the slug. 
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The interfacial shear stress integrated over a sub control volume to be used in the dynamic 

momentum equation is back-calculated from the steady state momentum balance, including 

the total wall friction from both the bubble-zone and the slug as shown in equation (211). 
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Note that additional losses from for instance valves are not included in equation (211), but are 

instead included directly in the dynamic momentum equation. Both the wall and interfacial 

shear stress are still treated implicit when calculated from the unit-cell model. The resulting 

wall and interfacial shear stress are divided by the velocity and velocity difference between 

gas and liquid respectively, so that they can be applied to both the diagonal and right hand 

side in the momentum equation instead of only being an explicit term on the right hand side.
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2.16 Steady state solver 

2.16.1 Momentum 

 

The unit-cell model presented in section 2.15 can be used to initialize a simulation with steady 

state holdup, velocities and pressure. The steady state solver currently only works with a 

closed inlet and open outlet, for which the unit-cell model is solved for each section in the 

pipeline, starting from the last cell. The unit-cell model requires superficial velocities as input, 

which can be found from the mass rate, density and cross-sectional area. At steady state the 

mass rate will be constant in each section in the pipeline, so that the mass rate in any section 

can be found by summing the mass rate in each section starting with the mass flow specified 

at the closed inlet border. Mass sources or mass sinks located in the pipeline are also included 

in the calculation. Since the superficial velocity (and fluid properties) is calculated from the 

density, but the density is a function of the pressure which is still unknown, solution of the 

steady state solver becomes and iterative procedure. The iteration procedure to solve for the 

steady state in a section is as follows: 

 

List 4: Iterative procedure to solve pressure, velocity and holdup using the unit-cell 

model, starting at the last section. 

1. Calculate the pressure from the pressure gradient (0 in the first iteration) and the 

pressure in the section to the right 

2. Calculate fluid properties 

3. Calculate superficial velocities from mass rate, density and area 

4. Solve unit-cell model 

5. Update average holdup and slug fraction weighted velocities, and store pressure 

gradient 

6. Set masses from density and holdup 

7. Repeat until change in pressure is below specified tolerance. 
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Since the steady state solver is solved non-staggered for the sections, while the momentum in 

the dynamic solver is solved staggered at the borders, the velocities at the borders are 

calculated from the section velocities after the steady state solver is finished. Note that the 

temperature is not a part of the steady state solver, and will be as specified from the initial 

conditions. It is also possible to force a stratified solution for the steady state solver. 

 

The number of sections used by the steady state solver is set by using a grid coefficient 

calculated as the maximum of the specified minimum bubble coefficient and 100 times the 

mean pipe diameter in the pipeline. However, it is also ensured that no less than 16 sections 

are used. It is also ensured that no sections spans multiple pipes in the steady state solver; 

sections are split at all static borders. After the steady state solver is finished, sections might 

be merged or split again to obtain the grid one will get by using the regular grid coefficients. 

The user can however also specify not to modify the grid when calculating the steady state.  

 

Additional losses due to valves or expansion/contraction losses are also added to the point 

model by K-values (see equation (207)). User-specified forces (see section Appendix C.4) 

does not affect the steady state momentum balance, so there is no point adding them to the 

unit-cell model. The pressure drop is however included in the steady state solver when 

calculating the pressure in one cell by the pressure drop and the pressure in the cell to the 

right. 

 

2.16.2 Energy 

 

The steady state solver can also calculate the steady state temperature profile in the pipe. At 

steady state conditions, and assuming flow from left to right with a first order upwind scheme, 

the energy equation becomes: 
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Here the mass fluxes in and out of the section has been simplified and replaced by the 

symbols 1
, 1

n
k JM +

−
  and 1

,
n
k JM +
  respectively. At steady state the mass flux in and out of a section 

are related as follows:  

 , , 1 ,
src

k J k J k jM M M−= +     (212) 

 

 Equation (212) is a linear equation for the steady state specific enthalpy in section j: 
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Here equation (114) has been inserted for the heat transfer terms, yielding coefficients 

multiplied by the steady state specific enthalpy. Note that in the dynamic energy equation we 

solve for the change in specific enthalpy, which results in an additional term with the specific 

enthalpy from the previous time step on the right hand side. This term is however not 

included in the right hand side in the steady state energy equation, as we solve directly for the 

specific enthalpy (term shown as a zero on the right hand side on purpose). In opposite to 

when solving for pressure, velocity and holdup where we start at the outlet and iterate towards 

the inlet, the steady state energy equation must be solved in the opposite direction. As the 

flow goes from left to right and the temperature and mass flow through the inlet border is 

constant, starting with the first section we can calculate the specific enthalpy 1
,

n
k jh +  from 

equation (214) by using the known specific enthalpy and mass flow in the left section. 
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 The following iterative procedure is used: 

 

List 5: Iterative procedure to solve the specific enthalpy/temperature in the pipeline, 

starting at the first section. 

1. Update the energy equation for the all pipe walls 

2. Calculate the fluid heat transfer terms for all sections 

3. Solve pipe energy equation and update pipe wall specific enthalpy & temperature 

4. For all section starting from the first one, solve equation (214) for the specific 

enthalpy using the specific enthalpy and mass flow in the left section 

5. Repeat until convergence of the specific enthalpy for all sections and pipe walls 

 

If specified to calculate the steady state condition, and the simulation is specified as non-

isothermal, the steady state temperature field will be calculated in addition to pressure, 

velocity and holdup. Together this becomes a nested iterative procedure: 

 

List 6: Iterative procedure to solve the steady state pressure, velocity, holdup and 

temperature. 

1. Converge pressure, velocity and holdup from the point model for all sections as 

described in List 4. 

2. Converge specific enthalpy/temperature for all sections and pipe wall as described in 

List 5. 

3. Repeat until convergence 

 

An example comparing the result from the steady state solver and the dynamic solution is 

shown in Figure 53. Note that the dynamic simulation starts from conditions given by the 

steady state solver. The test case is a horizontal pipe of length 10000 m with inner diameter 

0.146 m and outlet pressure is 10 bar, using water and air mass rates of 20 kg/s and 0.2 kg/s 

respectively. Two wall layers are used (steel and PVC), with an ambient temperature of 350 

Kelvin and an inlet temperature of 260 Kelvin. 128 sections have been used, both for the 

fluids and for the pipe walls. As can be seen in Figure 53, the dynamic result is quite similar 
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to the result of the steady state solver. The temperature can be seen to be increasing from the 

inlet, as the fluids have more time to heat through the pipe walls. 

 

Figure 53: Steady state solution vs dynamic solution for a horizontal pipe test case. 
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2.17 Grid management 

 

Since some of the control volumes are moving, sections can both grow and decrease in length. 

Because of this, certain grid management operations are needed: short sections are merged 

together with neighbouring sections of similar type, and long sections might be split into two 

shorter sections. Sections might also be converted from one type to another, for instance from 

bubble to slug, or slug to bubble. 

 

2.17.1 Splitting 

 

A section might be split into two smaller sections, if its length exceeds a user-specified 

length. There are in total four different user-specified coefficients that controls the splitting of 

slug and bubble sections. These are minimum and maximum coefficients for both bubble 

sections and for slugs. Bubble sections spanning static borders (i.e. bubble sections spanning 

multiple pipes) are tried to always be split at the static borders, unless any of the resulting 

section lengths after splitting is smaller than the specified minimum length. An example of 

this can be seen in Figure 54, where the small bubble section in the middle of the image is 

part of the larger bubble section to the left, since its length is shorter than the specified limit. 

Slug sections are not split at static borders. There is usually no reason to splitting the 

incompressible plugs, since the momentum balance is calculated over the entire plug unit 

anyways. The only reason for splitting incompressible plugs would be to get a better 

temperature profile over the incompressible plug unit. Splitting incompressible slug sections 

is thus not enabled by default. For compressible slugs on the other hand one can obtain a 

better pressure profile and distribution of gas bubbles in the slug by enabling the splitting. 

 

A section will be merged with a neighbouring section of the same type if the length is smaller 

than the minimum grid coefficient, and split in two if the section length is larger than the 

maximum value of twice the minimum grid coefficient and the maximum grid coefficient.  
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Consequently, the length ( x∆ ) of a section is bounded by the range shown in equation (215): 

 

 ( )min min maxmax 2 ,x x x x∆ ≤ ∆ ≤ ⋅∆ ∆   (214) 

 

Since it is possible to specify minimum and maximum coefficients at each different pipe, both 

the minimum and maximum coefficient is taken as the minimum value from all pipes present 

within the section. 

 

 

 

Figure 54: Example of a bubble section not being split at the static border in the middle 

of the image, since the length of the bubble section to the right of the static border would 

have become smaller than the minimum specified length. There is a difference in the 

pipe inclination to the left and right of the static border. 

 

2.17.1.1 Avoiding single bubble sections between slugs 

 

If a bubble section is located between two slugs, it will always be split in two. This is due to 

the fact that the momentum equation for the slugs is evaluated over the entire slug unit, and 

one would then end up not solving the momentum for single bubble sections between slugs. 

Single bubbles between a slug and a closed border will also always be split for the same 

reason. Since the slug border to the left and right of such a bubble-bubble border will typically 

move, one of the bubble sections would typically in the next time step becomes so small that 

it would have been merged with the neighbouring bubble, which would have been split at the 

middle again to avoid a single bubble section between slugs. This will work fine, but lead to 

unnecessary many merging and splitting operations. To avoid this it is possible to apply a 
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velocity also to the bubble-bubble borders located between two slug borders. Ideally, this 

velocity should be so that the bubble-bubble border moves to the middle between the new 

positions of the slug borders. It will however complicate the equations to do this fully 

implicit, so the velocity of the bubble-bubble border is approximated using the current 

velocities of the neighbouring slug borders: 
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This will make the bubble-bubble borders located between two moving slug borders move 

approximately to the middle between the new positions of the slug borders.  

 

 

Figure 55: Illustration of two bubble sections moving between two slug sections. 
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2.17.2 Removal of sections 

 

There are typically two ways a section can be removed as part of the grid management: 

1. The length has become too small 

2. The holdup has reached a specific limit 

 

2.17.2.1 Length related removal 

2.17.2.1.1 Bubble sections 

 

If the length of a bubble section becomes smaller than the user-specified limit and if there is 

another bubble section on either side, they will be merged as long as the holdup in the 

neighbouring bubble sections is below the limit for conversion to slug. Short bubble sections 

between slugs and an open inlet or outlet will only be removed if they are travelling out of the 

pipeline, and if the length is shorter than a certain limit. If there is a slug section on both sides 

of the bubble section, there are several scenarios: If void in slug is enabled and the liquid 

holdup in the bubble section is above the user-specified limit, the bubble section will be 

converted to a slug section and the gas mass set as gas in liquid in the slug. If void in slug is 

not enabled, the gas mass will be removed and the bubble merged with one of the slugs. 

 

2.17.2.1.2 Slug sections 

 

Similar to the bubble sections a slug section will be merged with a neighbouring slug if the 

length is shorter than the minimum slug length coefficient. If there are no slugs on either side 

and the length becomes shorter than the user specified slug-kill limit, the slug section is first 

converted to a bubble section, which is then merged with one of the neighbouring bubble 

sections. The exception is when a slug is between a bubble section and an open inlet or outlet. 

Short slug sections between a bubble section and an open inlet or outlet will only be removed 

if they are travelling out of the pipeline, and if the length is shorter than a user-specified limit. 
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2.17.2.1.3 Merging 

 

When merging two sections together, the middle border separating the two sections are 

removed and a new section created from the original two.  

For bubble sections, the pressure in the new section is calculated as follows from the previous 

pressures and gas volumes: 

 1 ,1 2 ,2

,1 ,2

g g

g g

pV p V
p

V V
+

=
+

 (216) 

 

For compressible slugs however the new pressure is calculated as shown in equation (217), 

but using the liquid volume. 

 

2.17.2.2 Holdup related removal 

 

If the liquid holdup in a bubble section has become larger than the user-specified limit, it will 

be converted to a slug section. If void in slug is enabled, the gas present in the bubble section 

will be put as gas bubbles in the liquid. Otherwise, the gas is distributed in the neighbouring 

sections, and the borders of the section are moved to make the section volume exactly equal to 

the mixture liquid volume (liquid holdup equals 1). 

 

It might happen that the length of a bubble section is too small, and that the holdup has 

become larger than the user-specified limit simultaneously. In this case it is important to 

choose the correct way to remove the bubble section. If there is a slug on either side, or the 

length of the bubble is larger than the minimum specified slug length, the bubble should be 

converted to slug. If not, the bubble will be killed based on the length criteria, and merged 

with a neighbouring bubble section. There can also be several other situations where one will 

have to choose between different removal criteria, but these will not be described here. 
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Figure 56: Illustration of a case when a bubble section has both become shorter than the 

minimum specified length, and has a liquid holdup higher than the specified limit for 

conversion to slug at the same time. 

 

For slug sections on the other hand, the mixture liquid holdup will never decrease and always 

sum to 1 due to the way the slug borders are moved. If liquid is being drained from the slug, 

the slug will just become shorter in length. There is however also a limit for the maximum gas 

in liquid fraction in the slug (0.8). If the phase fraction of gas in liquid is larger than this limit, 

the slug will be converted to a bubble section. 

 

2.17.2.3 Removal of pigs 

 

Like slugs, a short pigs between a bubble section and an open inlet or outlet will only be 

removed if they are travelling out of the pipeline, and if the length is shorter than what is 

specified by a certain limit. Note that the pig typically has a constant mass during the 

simulation, but it is allowed to change mass when in contact with an open inlet or outlet to 

make it move out of the pipeline. If a pig has started to move out of the pipeline and then 

turns to move into the pipeline again, it will also be removed. 
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2.17.3 Inlet or outlet related removal 

 

For the sections in contact with an open inlet or outlet, it is checked if a new bubble section or 

slug section should be inserted between the section itself and the inlet/outlet border. This 

might happen for instance if a slug that was previously moving out of the outlet has turned, 

and the holdup in the outlet section is smaller than the limit for conversion to slug. A bubble 

section will then be inserted between the slug and the outlet. Similarly one might have to 

insert a slug section between a bubble section and the outlet, if the holdup is the outlet section 

is larger than the conversion limit to slug. 

 

2.17.4 Stopping slugs 

When there are diameter changes in the pipeline, it might be unphysical for a slug to survive 

travelling past a large increase in pipe diameter. A typical example of this can be a slug 

entering a separator, which a slug would never survive in real life. This is for instance used in 

the simulations in Paper 1. It is possible for the user to specify certain locations (static border 

locations) in the pipeline where slugs should be killed. Slug borders that move past this 

location will then be stopped at the static border. The slug border will then have a zero 

velocity, so that there will be a net flux out of the slug front. The slug will then typically 

become smaller and smaller until it is so short that it is removed. If the velocity at the slug 

border that is stopped at the static border changes direction, the slug border is allowed to 

move as normal again. 
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Figure 57: Image of a slug entering a separator. The right end of the slug has been 

stopped at the entrance to the separator. 

 

2.17.5 Conservation of momentum and energy 

 

When splitting, merging or converting sections, case is taken to ensure that momentum and 

energy is conserved. 

 

For instance, the specific enthalpy in the new section when merging two sections is calculated 

as shown in equation (218) for each field (numbers 1 and 2 here referring to the two sections 

to be merged): 

 

 ,1 ,1 ,2 ,2

1 2

k k k k
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M h M h
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M M
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 (217) 
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The new temperature for each phase is then calculated from the new specific enthalpy. When 

splitting a section in two parts, the specific enthalpy remains unchanged (since specific 

enthalpy is energy per mass). 

Regarding the conservation of momentum, what is important is that the momentum is updated 

in the momentum control volumes where the momentum is solved. Conserving the 

momentum for the two sections that are merged and updating the velocity in the new section 

would not have any effect, as momentum is not used/solved for the sections. One simple 

example is when only bubble sections exist: When merging two bubble sections a bubble-

bubble border where momentum is solved will be removed, and this momentum is then 

distributed to the neighbouring bubble-bubble borders. The total momentum in the 

momentum control volumes and total mass times specific enthalpy in the sections for each 

mixture field is calculated and stored both before and after the grid management, so one can 

check that these properties are conserved during the grid management. Figure 58 shows the 

difference in total momentum and total mass times specific enthalpy for a selected simulation 

from Paper 1. It can be seen that both momentum and energy is conserved within a quite 

small numerical error though many different types of grid management operations happen 

during this simulation. Note that in opposite to the simulations in Paper 1, this simulation was 

run with the energy equations enabled with an adiabatic pipe wall. 

 

 

Figure 58: Conservation of momentum and energy during grid management for a 

selected simulation from Paper 1. 
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2.18 Fluid properties 

 

Several different fluid properties are needed in the simulations for the gas, oil and water. 

These properties can be specified either as constant user defined values, assuming 

incompressible liquid, or by specifying the path to PVT-files. 

 

2.18.1 Constant fluid properties 

 

The default in Sluggit is to use constant fluid properties, except for the gas density. Assuming 

ideal gas law, the gas density can calculated from equation (219).  

 

 
gas

g

pM
RT

ρ =   (218) 

 

Here, gasM  is a user-specified constant, and R is the ideal gas constant, which equals 

8.3143 J
mol K⋅

. Alternatively, it is possible to specify analytical functions for the fluid 

densities and viscosities in the input file. These functions are specified as text, and will be 

evaluated using the script functionality in the QtScript module in the Qt framework [83]. The 

function must be a text string, and the variables p and T are available in the script, 

representing the pressure (in Pa) and temperature (in Kelvin). 

 

2.18.2 PVT-files 

 

The fluid properties in Sluggit can also be specified by using PVT-files, for instance 

generated from PVT-programs like PVTSim Nova [84]. Note that to simulate incompressible 

slugs, the liquid must be treated as incompressible. The oil and water densities will thus still 

be taken from the global constant variables, even if a PVT-file with compressible densities is 

specified. 
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Appendix A Useful relations 

 

The starting point for derivation of conservation equations in fluid mechanics is the Reynolds 

transport theorem. The transport of an arbitrary property φ  through a control volume *V  

with surface *A  is ([41]) : 

 

 
* * *

b
V V A

d dV dV dA
dt t

φφ φ∂
= + ⋅

∂∫ ∫ ∫ u n   (219) 

 

The outward pointing normal vector of *A  is denoted n, while the surface of the volume 

travels at velocity bu . Another fundamental relation is the Gauss divergence theorem: 

 

 ( ) ( )
V A

dV dA∇⋅ = ⋅∫ ∫F F n   (220) 

 

By dividing the Reynolds transport theorem for phase k by the volume and assuming that V is 

fixed, we get: 

 

 1 1 1

k k k

k
k k b k

V V A

d dV dV dA
V dt V t V

φφ φ∂
= + ⋅

∂∫ ∫ ∫ u n   (221) 

 

We now introduce the concept of a volume averaged quantity (sometimes also called the 

extensive average, kφ ) and intrinsic averaged quantity (
i

kφ ) ([39]): 

 

 1 1

k k

ik
k k k k k

kV V

VdV dV
V V V

φ φ φ α φ= = =∫ ∫   (222) 

 

Here we have also used the definition of the volume phase fraction: 

 k
k

V
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α =   (223) 
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Re-arranging, we can now write equation (222) as: 

 

 1

k

kk
k b k

A

dA
t t V

φφ φ
∂∂

= − ⋅
∂ ∂ ∫ u n   (224) 

 

Equation (225) is useful when volume averaging transient terms. A similar expression for 

spatial derivatives can be obtained by use of Slattery's theorem ([85]). The complete 

derivation will not be shown here, but the result is ([39]): 

 

 1

k

k k k b k
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dA
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φ φ φ∇ = ∇ + ⋅∫ u n   (225) 

 



 
 

 

165 

 

 

Appendix B Demonstration simulations 

 

This section presents simulations that demonstrates different capabilities of the Sluggit code. 

For instance, section Appendix B.2 compares the difference from doing simulations with 

incompressible and compressible slugs. 

 

Appendix B.1  Single phase pressure drop 

 

This case study shows the pressure drop in single phase water and single phase gas flow. The 

fluid enters through a mass flow boundary at the inlet, while a pressure boundary with a 

constant pressure of 101300 Pa is used at the outlet. For the gas, the reverse case is also 

shown just to illustrate that this also works and gives the same result (mass flow boundary at 

outlet and pressure boundary at inlet). For the single phase gas the mass flow is 0.0238 kg/s, 

which gives a velocity of 10 m/s (the pipe diameter is 0.05 m). For the single phase water 

case, the mass flow and corresponding velocity are 1.9618 kg/s and 1 m/s respectively. Note 

that in the water case, the holdup limit for conversion to slug was set to a large number larger 

than one to never convert the bubble section to a slug object. The theoretical and simulated 

pressure gradient is shown in the title in Figure 59 and Figure 60, and can be seen to match 

each other exactly. This is of course not a surprising result, but is nevertheless presented here 

to prove that the basic physics in the code is correct. Figure 60 also shows that the case with 

reversed flow direction gives the same result as the normal case. 
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Figure 59: Pressure drop from single phase water flow, using a pressure boundary of 

101300 Pa at the outlet. 

 

Figure 60: Pressure drop from single phase gas flow, showing results for both flow from 

left to right and flow from right to left.  The simulation with flow from right to left is 

plotted reversed. 
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Appendix B.2  Symmetry test number 1 

 

This case study presents the results from simulations of liquid flowing from left to right and 

right to left, to check that the code handles this symmetrically. Two test cases are presented 

here, one with an open inlet and outlet, and one with closed inlet and outlet. The pipe has an 

inner diameter of 0.2 m and is inclined by 10 degrees (see visualization in Figure 61, Figure 

62, Figure 64 and Figure 65). Figure 63 and Figure 66 shows the holdup in the two cases, 

compared to the holdup from the simulation with reversed flow direction. It can be seen that 

the difference in the holdup when comparing against a simulation performed in the opposite 

direction is quite small, indicating that the code handles the flow symmetrically. Note that the 

weighting between the stratified and annular friction models are handled symmetrically in 

these simulations (see discussion below equation (80)). 

 

 

Figure 61: Visualization of the holdup in a pipe with liquid sliding left at times 0 seconds 

and 2 seconds. The pipe is open in both ends. 
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Figure 62: Visualization of the holdup in a pipe with liquid sliding right at times 0 

seconds and 2 seconds. The pipe is open in both ends. 

 

 

Figure 63: Liquid holdup plotted against time for different positons in the pipe, for both 

flow from left to right and right to left in a pipe with open inlet and open outlet. 
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Figure 64: Visualization of the holdup in a pipe with liquid sliding left at times 0 seconds 

and 1.6 seconds. The pipe is closed in both ends. 

 

 

Figure 65: Visualization of the holdup in a pipe with liquid sliding right at times 0 

seconds and 1.6 seconds. The pipe is closed in both ends. 
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Figure 66: Liquid holdup plotted against time for different positons in the pipe, for both 

flow from left to right and right to left in a pipe with closed inlet and closed outlet. 

 

Appendix B.3  Simulations with gas-oil compared to simulations with gas-water 

This case study presents simulations of two-phase gas-water flow compared to gas-oil flow 

when using the same fluid properties for oil and water (meaning that the results should be 

identical). The simulations were performed with the energy equations and wall-heat transfer 

enabled, droplet entrainment, and with gas in the liquid in the bubble sections and in the slugs 

enabled. The mass rates used for gas and liquid were 0.0021 and 0.295 kg/s respectively. The 

simulations are performed using a s-shaped riser geometry, as shown in Figure 67. Figure 68 

shows a comparison between the gas and liquid temperature in the oil and water case at two 

positions in the pipe. It can be seen that the difference in results are zero, which indicates an 

identical result. The oil and water field are in other words treated similarly, as expected. 
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Figure 67: Geometry of s-shaped riser test case. 

 

 

Figure 68: Comparison of the gas and liquid temperature for the oil and water 

simulations in the s-shaped riser. 
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Appendix B.4  Incompressible vs compressible slugs 

This study presents the results from simulations of a severe slugging experiment from Paper 

1, showing the difference in slugging period using incompressible slugs, compressible slugs, 

compressible slugs with gas in liquid, and compressible slugs with gas in liquid and the 

energy equations enabled. The simulation with the energy equations enabled were run without 

any heat transfer with the pipe walls. For the simulations with compressible liquid, the liquid 

density was modelled by the following equation: 7680 6.75 10p −− ⋅ ⋅  , with p being the 

pressure in Pa. The results from the different simulations are compared to the experimental 

data in Figure 69. 

 

Figure 69: Experimental vs simulated pressure in the start of the pipeline for a selected 

experiment from Paper 1 with USG=0.97 m/s and USL=1.37 m/s. 



 
 

 

173 

 

 

 

Figure 70: Figure showing the riser and separator in a simulation from Paper 1, with 

compressible slugs, gas in liquid and the energy equations enabled. 

 

From Figure 69 it can be seen that there is not much difference in the results, though this 

could probably vary depending in the chosen experiment. The temperature was found to 

fluctuate most at the star of the pipeline due to the pressure fluctuations, but relatively short 

into the pipeline the entrainment, deposition, and gas-liquid heat transfer made the gas and 

liquid obtain quite similar temperatures. These results shows that the model works and runs 

fine also when the more advanced models like gas in liquid and energy equation are enabled. 

 

Appendix B.5  Periodic boundaries with moving borders 

 

This simulation simply illustrates that the model works as it should when there are moving 

borders and periodic boundaries (closed loop). The pipeline is 20 m long, with 0.05 m inner 

diameter everywhere. The initial conditions is gas everywhere, except for a slug or pig from 1 

m to 2 m with initial velocity 1 m/s. Friction is turned off, and the left and right end of the 

slug and pig are forced to move with 1lC =  and 0 0U =  which ensures no mass-flux across 
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the slug border (otherwise the slug would shed liquid and die quite fast). The simulation is run 

using both compressible and incompressible slugs, and a pig. In the case with a pig the 

density of the pig was set to the same as the slugs (1000 kg/m3). Figure 72 shows the holdup 

in the first section and total momentum in the system as plotted against time. It can be seen 

that the momentum is conserved within a small numerical error, and that the three different 

simulations with compressible and incompressible slugs and pigs give the same result. 

 

 

Figure 71: Periodic system with a single slug. The images shows the simulation after 0, 5, 

10, 15 and 20 seconds respectively from top to bottom. 

 

 

Figure 72: Holdup and total momentum as function to time at position 0 m in a periodic 

system. The three rows correspond to the case with a compressible slug, an 

incompressible slug, and pig respectively. 
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Appendix B.6  Symmetry test number 2 

 

This section presents two simulations of terrain slugging in a s-shaped riser. The first 

simulation is run using a mass flow boundary at the inlet and a pressure boundary at the 

outlet, while the second case is run with a mass flow boundary at the outlet and a pressure 

boundary at the inlet, with the geometry reversed. The pressure boundary was set to 

atmospheric pressure, while mass sources with mass rates of 0.295 kg/s and 0.0021 kg/s were 

used for the oil and gas respectively. The two simulations are illustrated in Figure 73 and 

Figure 74, and a comparison of the pressure in the buffer tank between the two simulations is 

presented in Figure 75. It can be seen that the pressure signals are quite similar, and follow the 

same trend with approximately the same slugging period. The small difference most likely 

comes from the grid management. The grid management should be symmetric, but since the 

sections and checked from left to right in both cases slightly different management operations 

might happen (like a section being merged to the left instead of the right). It was also tested 

increasing the gas mass rate to 0.021 kg/s, which resulted in only stratified or annular flow. 

The results then became identical as no grid management operations happened. 

 

Figure 73: Terrain slugging in a s-shaped riser (time = 100 seconds). 
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Figure 74: Terrain slugging in a s-shaped riser, reversed direction (time = 100 seconds). 

 

 

Figure 75: Comparison of the pressure in the buffer tank between the simulations of the 

s-shaped riser in the normal and reversed direction. 
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Appendix C Additional forces 

Appendix C.1 Perturbations 

 

It is possible to add perturbation forces at multiple locations in a simulation. This can be 

useful for instance if using a fine grid to try to capture the growth of waves, by initiating some 

disturbances that will either die, or grow if the conditions for growth are correct. In real-life 

system there will typically always be some disturbance, amongst others from turbulence, so 

adding such perturbation forces should be physically ok to do as long as the force is not too 

large. Note that the perturbation is only applied to the liquid phase. 

The level gradient term is used to give the order of magnitude of the perturbation force. By 

using the mass and average liquid height in a momentum control volume, the perturbation 

force is calculated by: 

 

 l
pert k rand

hF M g
x

= Π Χ
∆

  (226) 

 

Here the number randΠ is a random number between -1 and 1, Χ is a fraction between 0 and 1, 

lh  is the average liquid height and x∆  is the length of the control volume.  

 

A custom random number generator (a simple linear congruential generator) has also been 

created and is used to generate the random numbers for the perturbations. This is done to be 

able to save and restore the state of the generator, for instance when re-evaluating the time 

step or if stopping and restarting a simulation. 

 

Appendix C.2  Valves 

 

Valves can be added to the simulation. Currently the valve works by specifying a constant K-

factor, which determines the pressure loss as shown in equation (228). 



 
 

 

178 

 

 

 21
2valve k kp Kuρ∆ =   (227) 

 

The valve force is included in the momentum equation related implicitly to the new velocity 

as shown in equation  

 

 11
2

n n n nvalve
valve k k k k

pF V M K u u
x x

+∆
= =

∆ ∆
  (228) 

 

Appendix C.3  Expansion and contraction losses 

 

When the flow enters either a contraction or an expansion in the pipe, additional losses can be 

added to the momentum equation. This is done with the use of K-values, similar to what is 

done for valves. Equation (230) and (231) show the K-values for expansion and contraction 

losses, respectively [86, 87]. 

 

 

22

1
expansion

2

1 DK
D

  
 = −     

  (229) 

 

 
2

2
contraction

1

0.5 1 DK
D

  
 = −     

  (230) 

 

In equation (230) 1 2D D> , while in equation (231) 1 2D D< . 

 

Note that a perfect sudden expansion or contraction is assumed here (instant transition from 

1D  to 2D ). 
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The loss from either equation can be calculated similar to the valve losses, from: 

 

 

1
minorlosses , ,min , ,min

1
minorlosses , ,min , ,min

1
2
1

2

n n
k D k D

n n n
k k D k D

p K u u

F M K u u
x

+

+

∆ =

=
∆

  (231) 

 

Note that the loss is defined using the velocity in the part with the smallest diameter. Relating 

the velocity in the small diameter part to the average velocity in the momentum control 

volume by , ,min ,mink k D DAu u A= , we get: 
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minorlosses

,min ,min

1
2

n n n
k k k

D D

A AF M K u u
x A A

+=
∆

  (232) 

 

 

Appendix C.4  User defined forces 

 

It is also possible to add user defined forces that will be added to the momentum equation. 

This can for instance be necessary when performing a simulation with periodic boundary 

conditions, as one will then need a driving force to move the fluids. If a force userforce

x
∂Ρ 

 ∂ 
 is 

specified, it will be applied to both the mixture field as follows: 

 

 userforce
userforce kF V

x
∂Ρ

=
∂

  (233) 
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a b s t r a c t 

This study presents a Lagrangian slug tracking model for prediction of slug flow in multiphase flow 

pipelines. Simulations are compared with severe slugging experiments from the SINTEF Large Scale Mul- 

tiphase Laboratory with 0.189 m inner diameter and a length of about 10 0 0 m. The fluids used in the 

experiments are nitrogen and naphtha, and the system pressure is 25 bar. The model is shown to give 

fast and accurate results within the experimental accuracy without the need for a sub-grid model, as 

long as the grid size is not too large around the riser bottom where the liquid blockage occurs. It is also 

shown that simulations using a constant pressure boundary condition at the outlet are not always ade- 

quate, as the pressure fluctuations in the receiving facilities can significantly affect the flow. Furthermore, 

we show that the inclusion of a droplet field has a significant impact on the predicted slugging periods. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Multiphase flow is the flow of two or more phases in the same 

channel/pipe. The behavior of the flow can take many forms (flow 

patterns), depending on several parameters like fluid velocities, 

pipe diameter, pipe inclination, and the fluid properties. The fluid 

properties are again dependent on the pressure and temperature 

changes in the system, especially the gas density and the fluid vis- 

cosity. The simplest of the flow patterns is stratified smooth flow , 

where the gas and liquid are separated by a clear and flat interface. 

Increasing the fluid velocities will increase the interfacial friction 

between the phases and result in waves forming on the interface. 

This flow pattern is referred to as stratified wavy flow . Depending 

on the conditions, these waves might become unstable, and grow 

large until they bridge the entire pipe cross-section and create a 

liquid plug. The gas pressure can then build up behind the liquid 

plug and accelerate it to high velocities through the pipe. This flow 

pattern is called hydrodynamic slug flow (sometimes just referred 

to as slug flow ), and consists of alternating gas regions ( Taylor bub- 

bles ) and liquid plugs ( slugs ). When a liquid blockage of the pipe 

cross-section occurs because of the pipe geometry, the flow is re- 

ferred to as terrain-slugging . Liquid then typically accumulates in 

low-points due to the pipe elevation. When liquid slugs accumu- 

late at the bottom of a riser, the slug might grow depending on 

the gas velocity and upstream gas compressibility. When the pres- 

∗ Corresponding author. 

E-mail addresses: ivar.eskerud@gmail.com (I.E. Smith), ole.j.nydal@ntnu.no (O.J. 

Nydal). 

sure overcomes the hydrostatic pressure of the liquid in the riser, 

the gas will start to push the slug through the riser, and when the 

Taylor bubble enters the riser the slug is violently blown out. This 

type of slugging is called severe slugging , or riser-induced slugging . 

It is important to be able to predict the frequency and liquid vol- 

ume of such severe slugs, especially for the design of slug catchers 

in receiving facilities so that they are not overfilled. 

For a slug being pushed from the left to the right by the pre- 

ceding Taylor bubble, the velocity of the left end of the slug ( bub- 

ble nose ) will be that of the nose of the Taylor bubble. The right 

end of the slug typically absorbs liquid ( slug front ) from the liq- 

uid below the upstream Taylor bubble, but this depends on several 

parameters like the difference in liquid velocity between the slug 

and the film below the Taylor bubble. It might happen that both 

ends of a slug are fronts absorbing liquid, or both ends might be 

Taylor-bubble noses. Empirical correlations to predict the velocity 

of a Taylor bubble nose has been extensively investigated; see for 

instance ( Bendiksen, 1984; Benjamin, 1968; Dumitrescu, 1943; Jey- 

achandra et al., 2012; Joseph, 2003 ). In the two-fluid model the 

slug velocity is a result of a combined effect of among others fric- 

tion models and the numerical scheme. Previous work ( Kjølaas et 

al., 2013 ) has shown how the interfacial friction models in the 

commercial simulator LedaFlow ( Kongsberg Oil and Gas Technolo- 

gies, 2015; SINTEF, 2015 ) had to be tuned at high holdup values to 

obtain slug velocities that corresponds with well-established slug 

velocity correlations ( Bendiksen, 1984 ). 

This study presents the performance of a Lagrangian slug track- 

ing model, where the slug control volume velocity is set accord- 

ing to well established bubble nose velocity correlations. This 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.06.014 

0301-9322/© 2016 Elsevier Ltd. All rights reserved. 
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Fig. 1. Illustration of the geometry used in the simulations (not correct scale). 

Table 1 

Pipeline geometry for the simulations. The inner diameter used in the sim- 

ulations is 0.189 m for all pipes, and the hydraulic roughness is 29 μm. The 

exception is the separator which was modeled with an inner diameter of 2 m. 

Length [m] 30 ∗ 334 521 65 54 32.85 

Cumulative length (m) 30 364 885 950 1004 1036.85 

Inclination ( °) −5 −1 0 −2 90 −90 

∗ About 107 m of pipe is added to the first 30 m long section, to include 

the volume present in the gas feed line. 

automatically gives the desired velocities for the slugs, and enables 

sharp gas-liquid fronts at the slugs with reduced numerical diffu- 

sion. This allows for the use of a coarse grid, giving fast simulations 

without the need for a sub-grid model like the unit-cell model 

concept ( Dukler and Hubbard, 1975 ) typically used by commercial 

simulators. The model presented in this paper is an extension of 

the model framework described in Kjeldby (2013 ). 

2. Experiments 

2.1. Experimental facility 

Experiments were carried out in the SINTEF Large Scale Multi- 

phase Laboratory in 1988, using nitrogen and naphtha as fluids at 

a nominal pressure of about 25 bar. The data are presented with 

permission from SINTEF. The flow loop consists of pipes with both 

0.189 m and 0.194 m inner diameter, but for simplicity 0.189 m has 

been used for all pipes in the simulations. The pipeline consists 

among others of a 522 m long horizontal section, followed by a 

65 m long -2 ° inclined part, and a 54 m tall riser. A smaller separa- 

tor ( ∼7 m 

3 ) is located at the top of the riser, before the fluids are 

returned to the main separator through the 0.6 m inner diameter 

drop-leg. The total length of the flow loop is about 10 0 0 m. In the 

simulations the volumes of the smaller separator and the drop-leg 

has been combined with the large separator. The pipeline geome- 

try used in the simulations is listed in Table 1 , and illustrated in 

Fig. 1 . The total gas volumes upstream and downstream the riser 

are shown in Table 2. 

2.2. Fluid properties 

The fluid properties for the naphtha and nitrogen used in the 

experiments are shown in Table 3. 

Fig. 2. Positions of gamma densitometers and dp-cells in the pipeline. The gas feed 

line is not included, so that the mixing point of the gas and liquid is located at the 

coordinates (0,0). 

Table 2 

Relevant gas volumes in the experimental facility. 

Section Volume (m 

3 ) 

Upstream mixing point 3 

Flowline upstream riser bottom 26.6 

Downstream riser 51.6 

Table 3 

Fluid properties for nitrogen saturated naphtha and nitrogen at 20 bar 

and 30 °C. 

Density 

(kg/m 

3 ) 

Viscosity 

(cP) 

Gas–liquid 

surface tension 

(mN/m) 

Liquid (naphtha) 680 0.28 15.8 

Gas (nitrogen) 23.6 1.7e-2 

The nitrogen density is modeled after a linear correlation given 

in the experimental report from SINTEF, and is shown in Eq. (1) : 

ρg = 0 . 49 + 1 . 1532 p (1) 

Here p is the pressure in bar, and the resulting gas density is in 

kg/m 

3 . The other fluid properties were modeled as constant values 

(thus incompressible liquid). The temperature was kept at approx- 
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Fig. 3. Comparison of the average slugging period between the experiments and the simulations with 4 m grid size around the riser (case A), plotted against USL for different 

values of USG. The simulations are performed with a constant pressure boundary. The error bars represent 15% deviation. 

imately 30 °C in all experiments, and varied typically with at most 

±1.5 °C within an experiment. 

2.3. Instrumentation 

The gas and liquid flow rates were measured with vortex me- 

ters and turbine meters respectively. Multiple vortex meters and 

multiple turbine meters were used, coupled in parallel in the feed 

lines. The gas and liquid flow meters were calibrated to give su- 

perficial gas and liquid velocities (USG and USL) directly as out- 

put instead of volumetric flow rates. The gas and liquid mass rates 

to be used in the simulations were calculated from the measured 

superficial velocities by using the fluid densities calculated from 

pressure and temperature measurements at the flow meters and 

the cross sectional pipe area. Each experiment was run with a con- 

stant gas and liquid mass flow rate. Automatic control valves were 

installed in the feed lines to try to keep the flow rate constant 

during the subsequent pressure buildup and blowout in the severe 

slugging cycles. Unfortunately these valves did not work as well 

as expected, which resulted in an increase in the flow rates dur- 

ing blowout. The maximum value of both the gas and liquid flow 

rates typically varied with about 5–15% from the average flow rate. 

The flow rates used in the simulations were chosen as the aver- 

age value one would get if removing these peaks. This has to be 

regarded as an uncertainty in the experiments, but how large un- 

certainty this translates to for the slugging period is not known. 

Both holdup and pressure were measured at multiple loca- 

tions along the pipeline. The holdup was measured using both 

Table 4 

Measurement uncertainties. 

Instrument Uncertainty 

USG (vortex meters) 0.65% of measured value 

USL (turbine meters) 0.6% of measured value 

Narrow beam gamma densitometer 0.05 (absolute value) 

Differential pressure cell 0.003 bar (0.1% of range) 

fast volume weight meters and narrow beam gamma densitome- 

ters, giving in total 13 holdup measurements distributed along the 

pipeline. The pressure was measured by differential pressure cells 

(dp-cells) connected to a common reference line filled with nitro- 

gen, so that the absolute pressure at any location could be ob- 

tained by subtracting the differential measurement from the ab- 

solute pressure in the reference line. In total 13 dp-cells were dis- 

tributed along the pipeline. The locations of the gamma densito- 

meters and dp-cells are shown in Fig. 2. 

The uncertainty for the narrow beam gamma densitometers is 

not reported, but from other experimental campaigns the repeata- 

bility of the narrow beam gammas has been reported to be around 

0.02–0.03 in absolute value. The actual uncertainty might be even 

higher than this for intermediate holdup values, so it is estimated 

that the uncertainty can be as large as 0.05 in absolute value. The 

holdup measurements are however not of primary interest in this 

study, as the focus is on the prediction of the severe slugging pe- 

riod. The uncertainty of the dp-cells was 0.1% of the range, approx- 

imately 0.003 bar ( Table 4 ). 
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Fig. 4. Comparison of the average slugging period between the experiments and the closed loop simulations with 4 m grid size around the riser (case B), plotted against 

USL for different values of USG. The error bars represent 15% deviation. 

3. Simulations 

The numerical model is described in detail in Appendix A . 

The experiments are simulated both using an open outlet with 

a constant pressure boundary condition, and as a closed loop sys- 

tem. One of the main concerns in the presented simulations is 

what pressure to use for the constant pressure boundary, since we 

know that the pressure in the separator will fluctuate with the se- 

vere slugging. This is simply a limitation of simulations using this 

type of boundary condition when simulating this type of experi- 

ments. As will be shown, it is not always possible to get correct 

results with a constant pressure boundary condition for the type 

of experiments that is presented in this study. 

In the closed loop system the gas and liquid exit the separa- 

tor by the use of mass sinks, with the same mass flow rates that 

are fed into the start of the pipeline as shown in Fig. 1 . The to- 

tal available volume in the separator and other process facilities is 

reported to be 51.6 m 

3 . However in the simulations the separator 

was made twice as large (103.2 m 

3 ), and filled initially with 75% 

liquid. The reason for this is to avoid that the liquid mass sink in 

the separator is running out of liquid. The exact amount of liquid 

present in the system was not known, but was found by varying 

the initial amount of liquid in the separator until the pressure am- 

plitudes both in the separator and before the riser corresponded 

with the experiments. An initial liquid holdup of 75% in the sep- 

arator showed to give good results for all experiments, indicating 

that the total amount of liquid present in the system is constant. 

The amount of liquid present in the separator at steady state in 

each experiment will however vary, which also means that the 

available compressible gas volume in the separator will vary. To 

Table 5 

Overview of boundary conditions used in simulations. 

Case type Inlet border 

boundary 

Outlet border boundary 

Open outlet Mass flow 

specified 

Constant pressure in outlet section 

(ghost section to the right of the outlet 

border). The unknown velocity in the 

outlet section is extrapolated from the 

outlet border. 

Closed loop Mass flow 

specified 

Mass flow specified 

include the volume of the gas feed line (3 m 

3 ) in the simulations, 

an extra length of about 107 m was added to the first 30 m long 

-5 ° inclined section. The total volume upstream the bottom of the 

riser is then approximately 29.6 m 

3 . An overview of the different 

boundary conditions used in the simulations are shown in Table 5. 

3.1. Boundary conditions 

The constant pressure at the open outlet boundary was set 

equal to the average experimentally measured pressure in the sep- 

arator, while the velocity in the outlet section (ghost cell) was cal- 

culated by extrapolating the velocity in the last cell. The liquid 

holdup in the outlet section was constant and set to 0 in the simu- 

lations with an open outlet. Note that the separator is not included 

in the simulations with the open outlet boundary. The open outlet 

rather represents the entrance to the separator, which has a fixed 

pressure. It should also be noted that when a mass flow bound- 

ary was used for the inlet border and outlet border, the mass flow 
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Fig. 5. Comparison of the average slugging period between the experiments and the closed loop simulations with 1 m grid size around the riser (case C), plotted against 

USL for different values of USG. The error bars represent 15% deviation. 

were in all cases set to 0. Instead the fluids enter and leave the sys- 

tem through mass sources and mass sinks, at the locations marked 

in Fig. 1 . This was done among others to make the liquid enter af- 

ter the gas feed line, and to be able to remove gas from the top 

of the separator as the gas phase in the separator is not in contact 

with the outlet border (which in the simulations is at the bottom 

of the -90 ° inclined separator). 

3.2. Grid size 

A large grid size (grid coefficient �x bubble = 100 m = 529 D ) was 

used for the first 885 m, while a finer grid was used in the -2 ° in- 

clined section before the riser and in the riser, to be able to cap- 

ture the liquid buildup and subsequent blockage. Simulations were 

run with both 4 m and 1 m grid coefficients at these locations. For 

an explanation of the numerical grid see Eq. (10) in Appendix A.1 . 

All cases were also run both with and without liquid droplet en- 

trainment enabled. It is well known that correct modeling of the 

droplet field can be of high importance in multiphase flow simula- 

tions, but this study specifically shows the effect the droplet field 

has on severe slugging. The case with an open outlet with a con- 

stant pressure boundary condition was only run with a 4 m grid 

size. An overview of the simulation setups are shown in Table 6. 

Note that a 4 m grid coefficient means that the grid size can 

vary from 4–8 m, as described by Eq. (10) . The corresponding range 

for the 1 m grid coefficient is 1–2 m, and 10 0–20 0 m for a 100 m 

grid coefficient. 

The closed loop simulations were as mentioned started with 

the separator filled with 75% liquid. When starting a simulation 

the liquid will start to distribute throughout the pipeline, and af- 

ter some time the pressure fluctuations will reach a statistically 

Table 6 

Grid coefficients used in the different simulations. 

Case name First 885 m 65 m long 

-2 ° inclined 

part before 

riser 

Riser Closed 

loop 

A 100 m (529 D) 4 m (21 D) 4 m (21 D) No 

B 100 m (529 D) 4 m (21 D) 4 m (21 D) Yes 

C 100 m (529 D) 1 m (5 D) 1 m (5 D) Yes 

steady state condition with steady amplitude and slugging period. 

The experiments were reported to been run with a minimum of 

45 min stabilization time. All simulations were run for 50 0 0 s (al- 

most 84 min), and the last 10 0 0 s were chosen for comparison 

with the slugging period from the experiments measured at the 

inlet. Shorter stabilization times should be expected with increas- 

ing superficial mixture velocity, but for simplicity all simulations 

were run for the same amount of time. The simulations that were 

simulated with an open outlet were also simulated for the same 

amount of time, with the same stabilization time. 

4. Results without droplet entrainment 

The slugging period from the simulations with an open out- 

let (case A) are compared to the experimental values in Fig. 3 . It 

can be seen that the slugging period is significantly overestimated 

for the experiments with lowest USL. For higher values of USL the 

slugging period is predicted within 15% deviation for most exper- 

iments, though somewhat underpredicted for the largest values of 

USL. 
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Fig. 6. Comparison of the average slugging period between the experiments and the simulations with 4 m grid size around the riser (case A), plotted against USL for different 

values of USG. The simulations are performed with a constant pressure boundary, and with liquid droplet entrainment enabled. The error bars represent 15% deviation. 

Fig. 7. Difference in slugging period (T) between experiments and the case with 

a constant pressure boundary and entrainment enabled, plotted against the mean 

available gas volume in the separator. The gas volume is obtained from the closed 

loop simulations (case C). 

To improve the results, the experiments were simulated as a 

closed loop system as previously described. Fig. 4 shows the com- 

parison of the average slugging period from the experiments and 

simulations, with a 4 m grid coefficient around the riser (case B). 

These results show that though some of the experiments are pre- 

dicted within the estimated uncertainty, the slugging period is sys- 

tematically under-estimated for most experiments. The slugging 

periods for some of the lowest USL values are however significantly 

improved in comparison with the simulations with an open outlet. 

In general, only a few of the experiments can be said to be well 

predicted. 

To check if the results were improved with a finer grid, the sim- 

ulations were also run with a 1 m grid coefficient around the riser 

area (case C). These results are shown below in Fig. 5. 

The results show a similar trend as for the 4 m grid case: The 

slugging period is systematically underpredicted, especially for low 

values of USG. In general, the closed loop simulations without en- 

trainment show a too low slugging period. A too low slugging pe- 

riod means that the liquid blockage at the bottom of the riser oc- 

cur too early, so that the pressure buildup starts too early. It was 

hypothesized that the liquid transport out of the riser was too 

small, leading to too much liquid falling back down the riser and 

creating a liquid blockage too early. This will be investigated in the 

following section. 

4.1. Results with droplet entrainment 

Liquid droplet entrainment was included in the model, to test 

if this would remedy the problem with a too early liquid block- 

age. The correlations for the entrainment and deposition rates are 

presented in Appendix A.1.2 . 

The results from the simulations with entrainment with a con- 

stant pressure boundary condition are shown in Fig. 6. 

For the simulations with medium and high USL the slugging 

periods are predicted quite well, but the slugging periods at low 

USL are severely overpredicted and the results compare even less 

favorable than the results without entrainment. Under certain 

conditions, it is clear that a constant pressure boundary is not 

adequate. In Fig. 7 the difference in slugging period between 

the experiments and the simulations with entrainment and a 
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Fig. 8. Comparison of the average slugging period between the experiments and the closed loop simulations with 4 m grid size around the riser (case B), plotted against 

USL for different values of USG. Liquid droplet entrainment is enabled. The error bars represent 15% deviation. 

constant pressure boundary are plotted against the mean available 

gas volume in the separator (obtained from the corresponding 

closed loop simulations with entrainment). One can clearly see 

that the deviation in slugging period between the simulations 

and experiments increases as the available compressible volume 

in the separator is decreasing. The reason for this is most likely 

that the pressure in the separator will increase faster during 

blowout when the available compressible gas volume is smaller. 

The increasing separator pressure acts as a decelerating force on 

the slug being blown out, and the blowout process stops earlier. 

In addition, after the riser bend has been blocked, gas is drained 

from the separator while no or little gas is allowed to pass the 

liquid blockage. This will result in a decreasing pressure in the 

separator during the buildup period, which acts as a suction force 

on the slug in the riser. These two effects are not captured when 

using a constant pressure boundary, which results in a longer 

blowout time and too large pressure amplitudes and slugging 

periods. 

The results for the closed loop simulations with entrainment 

are shown below in Figs. 8 and 9 respectively. 

The results shown in Figs. 8 and 9 indicate that including liquid 

droplet entrainment improves the predicted slugging periods for 

the closed loop simulations, most likely due to more liquid being 

transported as droplets in the gas phase during blowout. The 

results are more or less independent of the grid size used in 

the simulations. Though the improvement is not as large as the 

improvement found from using the correct boundary conditions, 

a systematic improvement is seen for all experiments (comparing 

Figs. 4 and 5 with Figs. 8 and 9 ). The average deviation from 

the experimental slugging period for simulation cases B and C 

decreases from about 12% without entrainment, to about 4% with 

entrainment. 

Comparing the results with a closed loop system with the re- 

sults with a constant pressure boundary there is a significant im- 

provement of the predicted slugging periods, especially for the ex- 

periments with the lowest values of USL. These are the experi- 

ments with the smallest amount of gas in the separator shown 

in Fig. 7 . The predicted and experimental pressure fluctuations at 

the inlet for the experiment with USL = 0.47 m/s and USG = 1 m/s 

is shown in Fig. 10 , and clearly shows the difference in results be- 

tween a constant pressure boundary and using a closed loop sys- 

tem. 

Including entrainment also acts as increased interfacial friction 

due to momentum exchange between the gas and liquid, acceler- 

ating the liquid. It is therefore possible that a modified interfacial 

friction correlation could have given a similar improvement in the 

results, in combination with including droplet entrainment. It is 

however difficult to quantify the relative contributions of the inter- 

facial friction and the entrainment from the available experimental 

data. The entrainment was not measured in the experiments, but 

comparing the holdup at the top of the riser between the simula- 

tions and experiments indicates that the hypothesis that too much 

liquid falls back down the riser due to the lack of a droplet field is 

correct. Fig. 11 shows the holdup at the top of the riser for a se- 

lected experiment, showing the simulation results both with and 

without entrainment. It is clear that both the predicted holdup 

and slugging period are significantly improved by adding a droplet 

field. With a droplet field the holdup becomes lower during each 

blowout, meaning that more liquid is transported out of the riser 

as hypothesized. 
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Fig. 9. Comparison of the average slugging period between the experiments and the closed loop simulations with 1 m grid size around the riser (case C), plotted against 

USL for different values of USG. Liquid droplet entrainment is enabled. The error bars represent 15% deviation. 

4.2. Simulation speed 

The results presented in this paper shows that the use of a La- 

grangian slug tracking model can give good predictions of the se- 

vere slugging period, also when using a relatively coarse grid. The 

simulation speed of the current model is presented in Fig. 12 . The 

simulations were run on a laptop computer with 16 GB RAM and a 

2.4 GHz Intel i7-4900MQ CPU. The CPU time (time to run a simu- 

lation) is dependent on many other factors than just the specifica- 

tions of the RAM and CPU, but at least give an illustration of the 

order of magnitude of the CPU time compared to real time. The 

volume fraction error tolerance for solving the mass and momen- 

tum equations is 0.001 in all simulations, the same as used in all 

simulations in this study. 

For the simulations with the lowest superficial mixture veloci- 

ties the CPU time is about 900 times faster than real time, mean- 

ing that simulating 50 0 0 s of real time would take approximately 

5.5 s of computational time. The CPU time increases with increas- 

ing mixture velocity, as the gas and liquid velocities in the pipeline 

becomes higher resulting in a lower time step from the CFL cri- 

terion. As the time until stable pressure oscillations are reached 

decreases and the slugging frequency increases with increasing su- 

perficial mixture velocity the CPU time could have been decreased, 

but for simplicity all experiments were run for the same amount 

of time. 

5. Conclusions 

Simulations of a pipeline riser system using a Lagrangian slug 

tracking model have been presented. With the correct boundary 

conditions and inclusion of liquid droplet entrainment, the pre- 

sented model is shown to give fast and accurate predictions of the 

severe slugging period. The results show that modeling the out- 

let as an open boundary with a constant pressure can lead to the 

slugging period being severely overpredicted, especially when the 

available compressible gas volume in the receiving facilities be- 

comes small. The decelerating pressure force from the gas in the 

separator on the slugs being blown out is then not captured, and 

the blowout period will last too long. The importance of including 

liquid droplet entrainment is illustrated, which can significantly af- 

fect the amount of liquid being transported out of the riser during 

blowout. Liquid droplet entrainment also acts as increased interfa- 

cial friction, which also plays an important role in accelerating the 

liquid in the riser during blowout. Together the combined effect or 

entrainment and increased interfacial friction in the riser increases 

the amount of liquid being transported out during blowout. This 

decreases the amount of liquid falling back down the riser, and 

leads to a longer time before liquid blockage in the riser bottom 

occur and a new pressure buildup period starts. Without a droplet 

field the liquid blockage occur too early, and the slugging period is 

predicted too low. 
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Fig. 10. Comparison of experimental and predicted slugging period for the experiment with USL = 0.47 m/s and USG = 0.97 m/s. The simulations were both run with entrain- 

ment, and with a grid size of 4 m. The pressure from the closed loop simulation and the experimental pressure have been shifted to match the first peak of the pressure 

signal of the open outlet simulation for better comparison. 

Appendix A. Model description 

The model presented in this study is a finite volume Lagrangian 

slug tracking model based on a previously published model con- 

cept ( Nydal and Banerjee, 1996 ). The model is written in C ++ , us- 

ing object oriented programming. Control volumes are represented 

by objects, like a bubble-section object and slug-section object. 

Similarly, the borders (cell-faces) between objects are represented 

by different types of border objects. When the liquid holdup in a 

bubble section approaches a user defined limit (set to 0.98 in the 

current study), the bubble section is converted to a slug section 

object. 

A.1. Mass, momentum and pressure equation 

The mass, pressure and momentum equations are all inte- 

grated over the gas and liquid control volumes, and are shown in 

Eqs. (4) –( 11 ). A first order upwind convection scheme ( Courant 

et al., 1952 ) is used where new values are needed at loca- 

tions where they are not defined. These upwind values are 

marked by a “hat” ( ̂ ) above the variable. Superscript n and 

n + 1 represent current and next time index, respectively. Sub- 

scripts j denotes values defined at the control volume cen- 

ter, while subscripts J - 1 and J denote values at the left and 

right face of the control volume. Subscripts j - 1 and j + 1 

represents the values at the previous and next control vol- 

umes. The indexing convention for the momentum equation 

for the bubble-bubble borders and for the slugs are shown in 

Figs. 13 and 14 respectively. The mass equation is solved for all of 

the section objects regardless of type, while the momentum equa- 

tion is solved for the border objects (staggered grid). For slug sec- 

tions however, the momentum equation is solved over the entire 

slug body, and not at the slug borders. Consequently the control 

volumes of the neighboring bubble-bubble borders are extended 

all the way to the slug to make the control volumes start exactly 

at the end of the previous control volume. 

Momentum is solved for the mixture liquid and mixture gas ve- 

locity, while the mass equation is solved for all sub-fields. By sub- 

field is meant the individual fields that together make a mixture 

field, for instance oil droplets and pure gas in mixture gas field. 

The sub-fields are denoted by f , while the mixture fields are de- 

noted by k . The time step is controlled by the Courant–Friedrichs–

Lewy (CFL) criterion ( Courant et al., 1928 ), modified to account for 

the movement of the control volume borders. This yields the fol- 

lowing two criteria to be evaluated for all sub-field velocities at 

each grid cell (using the indexing convention for the borders): 

�t ≤ C CF L ·
�x J 

( u b, j−1 − u f, j ) 
, �t ≤ C CF L ·

�x J 

( u f, j − u b, j+1 ) 
(2) 

Here C CFL is the user specified CFL-number for the simulation 

(0.8 in the current study), while u b is the border velocity. These 

two criteria describe that a fluid particle located near a border 

should not move past the new positions of the neighboring borders 

within one time step. Note that these criteria should only be in- 

cluded if the result is positive. A negative result simply means that 

the border is moving away faster than the fluid, so that a fluid par- 

ticle will never move past the neighboring border regardless of the 

time step (a negative time step would be required, which is un- 
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Fig. 11. Comparison of the predicted and experimentally measured holdup in the riser for a selected experiment. USG = 0.97 m/s, USL = 1.37 m/s. The simulations are run 

with as a closed loop with a 4 m grid coefficient (case B). 

Fig. 12. Real time divided by CPU time as function of superficial mixture velocity. 

The simulations are all run as a closed loop, using a 4 m grid size around the riser 

area (case B). All simulations were run for 50 0 0 s. 

physical). One can also see from Eq. (2) that when the fluid veloc- 

ity and border velocity approaches the same value, the time step 

can be arbitrary large. 

The continuity/mass equation for a sub-field f is obtained from 

the Reynolds transport theorem ( White, 2011 ): 

∂ M f 

∂t 

∮ 
A b f 

ρ f ( u f − u b ) · n f d A b f = 

˙ M 

src 
f (3) 

Fig. 13. Indexing convention for the momentum equation for bubble–bubble bor- 

ders. 

Fig. 14. Indexing convention for the momentum equation for slugs. 

Here ˙ M 

src 
f, j 

represent the contributions from mass sources, sinks, 

entrainment and deposition, while A bf is the boundary area and u b 
the velocity of the boundary. 

The discretized mass equation for sub-field f reads: 

M 

n +1 
f, j 

− M 

n 
f, j 

�t 
= ˆ m 

n +1 
f,J−1 

A 

n 
J−1 

(
u 

n +1 
f,J−1 

− u 

n +1 
b,J−1 

)
− ˆ m 

n +1 
f,J 

A 

n 
J 

(
u 

n +1 
f,J 

− u 

n +1 
b,J 

)
+ 

˙ M 

src 
f, j (4) 

Here V f is the fluid volume, V the total cell volume, M f the fluid 

mass, A the pipe cross sectional area, u f the fluid velocity, u b the 

border velocity, while m is the specific mass defined as: 

m f = ρ f α f = 

ρ f V f 

V 

= 

M f 

V 

(5) 
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The terms ρ f and αf represent the fluid density and phase frac- 

tion respectively. 

The pressure equation is obtained by expanding the time 

derivative of mass in the Eq. (3) by the product-rule: 

∂ M f 

∂t 
= 

∂ ( ρV ) f 
∂t 

= 

[ (
∂ ρ f 

∂ p 

)
T f 

∂ p f 
∂t 

+ 

(
∂ ρ f 

∂T 

)
p 

∂ T f 
∂t 

] 

V f + ρ f 

∂ V f 

∂t 

= 

˙ M 

src 
f −

∮ 
A b f 

ρ f 

(
u f − u b 

)
· n f d A b f (6) 

Eq. (6) is then divided by the density ρ f , and summed over all 

sub-fields. 

Using that the sum of all sub-field volumes should sum to the 

total cell volume, the sum of the individual volume time derivative 

terms becomes: 

∑ 

f 

�V 

f 

�t 
= 

�V 

�t 
= 

(
A 

n 
J u 

n +1 
b,J 

− A 

n 
J−1 u 

n +1 
b,J−1 

)
(7) 

Here the time derivative of the total cell volume has been ex- 

pressed by the movement of the left and right cell borders. The 

final discretized pressure equation is shown in Eq. (8) : 

p n +1 
j 

− p n j = �p j 

= �t 

�n 
j 

+ ∑ 

f 

1 
ρn 

f, j 

[
ˆ m n +1 

f,J−1 
A n J−1 

(
u n +1 

f,J−1 
− u n +1 

b,J−1 

)
− ˆ m n +1 

f,J 
A n J 

(
u n +1 

f,J 
− u n +1 

b,J 

)
+ ˙ M src 

f, j 

]
−

(
A n J u 

n +1 
b,J 

− A n J−1 u 
n +1 
b,J−1 

)
∑ 

f 

V n +1 
f, j 

ρn 
f, j 

[ (
∂ρ

f, j 

∂ p 

)n 

T 

] 

(8) 

In Eq. (8) the variation of density with temperature has been 

left out for simplicity, as no temperature calculations are per- 

formed in the simulations since the experiments were kept at a 

constant temperature; besides, all the sub-fields have a common 

pressure. The term � is the volume error correction term which 

is described in Eq. (12) , while the last term represents the volume 

time derivative. Since we solve for the momentum of the mixture 

fields and not for each sub-field, the velocity of each sub-field is 

related to the corresponding mixture field by a linear slip relation. 

We also express the new border velocities by a linear relation with 

the new mixture liquid velocity: 

u 

n +1 
f 

= C slip, f u 

n +1 
k 

+ U slip, f 

u 

n +1 
b 

= C 
0 l 

u 

n +1 
l 

+ U 0 

(9) 

In the present study we apply C slip, f = 1 and U slip, f = 0 (no- 

slip), meaning that all sub-fields travel with the same velocity as 

the mixture field. 

Since some of the control volumes are moving, sections can 

both grow and decrease in length. Because of this, certain grid 

management operations are needed: short sections are merged to- 

gether with neighboring sections of similar type, and long sections 

might be split into two shorter sections. Sections might also be 

converted from one type to another, for instance from bubble to 

slug, or slug to bubble. The grid management is controlled by a 

grid coefficient for the bubble sections, named �x bubble . A bubble 

section is merged with a neighboring bubble section if the length 

is smaller than the grid coefficient, and split in two if the section 

length is larger than twice the grid coefficient. Consequently, the 

length ( �x ) of a bubble section is bounded by the range shown in 

Eq. (10) : 

�x bubble ≤ �x ≤ 2 · �x bubble (10) 

Slug sections are never split, but are converted to a bubble sec- 

tion when they become smaller than a minimum length (set to 

0.1 m in the presented simulations). Because of these grid manage- 

ment operations, some sections can span multiple pipes that could 

possibly have different properties. As an example, a single slug 

control volume around the riser bend might be located partially in 

the near horizontal part before the riser, and partially in the riser. 

To account for this, the integration over the momentum equation 

control volume is split up into a sum of integrals over each dif- 

ferent pipe segment. This integral is represented by a summation 

over the subscript index s in the momentum equation, which is 

shown below in Eq. (11) . For instance, L j is the length of the entire 

control volume, while L j, s is the length of pipe segment s within 

the control volume. 

M 

n 
k, j 

u 

n +1 
k, j 

− u 

n 
k, j 

�t 
+ 

M 

n +1 
k, j 

− M 

n 
k, j 

�t 
u 

n +1 
k, j 

+ 

[
m 

n +1 
k,J 

A 

n 
J 

(
u 

n +1 
k,J 

− u 

n +1 
b,J 

)
ˆ u 

n +1 
k,J 

− m 

n +1 
k,J−1 

A 

n 
J−1 

(
u 

n +1 
k,J−1 

− u 

n +1 
b,J−1 

)
ˆ u 

n +1 
k,J−1 

]
= −V 

n 
k, j 

(
p n +1 

J 
− p n +1 

J−1 

)
L n 

j 

+ 

˙ M 

src ,n 
k, j,s 

u 

src ,n 
k, j 

− 1 

8 

ρn 
k, j 

∣∣u 

n 
k, j 

∣∣u 

n +1 
k, j 

∑ 

s 

L n j,s 
((

1 − W 

n 
v , j,s 

)
λn 

k,h, j,s S 
n 
k,h, j,s 

+ W 

n 
v , j,s λ

n 
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− 1 

8 

ρn 
g, j 

∣∣u 

n 
k, j − u 

n 
m, j 

∣∣(u 

n +1 
k, j 

− u 

n +1 
m, j 
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s 

L n j,s 
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1 − W 

n 
v , j,s 

)
λn 

i,h, j,s S 
n 
i,h, j,s 

+ W 

n 
v , j,s λ

n 
i, v , j,s S 

n 
i, v , j,s 

)
− ρn 

k, j g 
∑ 

s 

V 

n 
k, j,s cos θ j,s 

h 

n 
k,J,s 

− h 

n 
k,J−1 ,s 

L n 
j,s 

− ρn 
k, j g 

∑ 

s 

V 

n 
k, j,s sin θ j,s 

± φn 
e, j u 

n +1 
l, j 

∓ u 

n +1 
d, j 

φn 
d, j (11) 

The terms on the right hand ride represent: Pressure gradient, 

source/sink terms, wall friction, interfacial friction, hydraulic level 

gradient, gravity, and entrainment and deposition. θ is the pipe in- 

clination, S 
k 

and S 
i 

are the fluid-wall and interfacial perimeters, 

and h k the fluid height. λk and λi are the fluid-wall and interfa- 

cial friction factors, and W is a weighting factor between stratified 

and annular flow which will be described together with the fric- 

tion models in the following section. u src 
k 

is the velocity of the mass 

source or sink. For mass sinks the velocity is set equal to the fluid 

velocity in the cell the sink is located. φe and φd are entrainment 

and deposition rates, while u l and u d are the velocities of the liq- 

uid film and droplet field respectively (related to the mixture field 

velocity by a slip relation as shown in Eq. (9) ). 

The implicit mass, momentum and pressure equations are 

solved by the following iterative procedure: 

1. Insert the pressure equation for the unknown change in pres- 

sure in the momentum equation, and solve for new veloci- 

ties 

2. Back-substitute the new velocities in the pressure equation 

to calculate the new pressure 

3. Calculate new border velocities and move borders to new po- 

sitions 

4. Solve mass equation for change in mass, and update densities 

and holdup 

5. Repeat until the volume fraction error is below specified tol- 

erance, using new values for mass and velocity as a new 

guess for the non-linear terms in the momentum and pres- 

sure equation 

Unless the system of equations is solved exactly within machine 

precision, the volume obtained from the masses and densities will 

not sum exactly to the physical volume (meaning that the holdups 

do not sum exactly to 1). This error is called the volume fraction 

error. This discrepancy is corrected for in the next time step, by 

adding the current volume error in each grid cell as a source term 

in the pressure equation. This ensures that the sum of the phase 
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fractions will stay close to 1. In this study the volume fraction error 

was always ensured to converge below 0.001. The volume fraction 

error ( V err ) and pressure equation correction term ( � f ) are shown 

below in Eq. (12) . 

V 

n 
err = 

∑ 

f 

M n 
f,i 

ρn 
f,i 

−V n 
i 

V n 
i 

, �n +1 
f,i 

= 

∑ 

f 

M n 
f,i 

ρn 
f,i 

−V n 
i 

�t n +1 

(12) 

A.1.1. Friction models 

Both the wall friction factor ( λk ) and interfacial friction factor 

( λi ) are weighted between the horizontal and vertical friction mod- 

els, depending on the inclination: 

λS = W v ( θ ) ( λv S v ) + ( 1 − W v ( θ ) ) ( λh S h ) (13) 

Here S represents the fluid-wall perimeter for the wall friction, 

and the interfacial perimeter for the interfacial friction. Subscripts 

v and h represent vertical and horizontal. This vertical weighting 

factor is defined by: 

W v = sin 

2 
( θ ) (14) 

For negative inclinations we use W v = 0 . The wall and interfa- 

cial shear stress is expressed by the Darcy friction factor definition 

( Moody, 1944 ): 

τk,wall = 

1 
8 
λk ρk u k | u k | τi = 

1 
8 
λi ρg ( u k − u m 

) | u k − u m 

| (15) 

Here u m 

is the velocity of the other mixture field. For the wall 

friction factor, we use the Haaland and Hagen–Poiseuille friction 

factors ( Haaland, 1983; White, 2011 ), for turbulent and laminar 

flow respectively: 

λk = 

( 

−1 . 8 log 10 

[ 

6 . 9 

Re k 
+ 

(
ε/ D hyd,k 

3 . 7 

)1 . 11 
] ) −2 

(16) 

λk,wall = 

64 

Re k 
(17) 

Here, ɛ is the hydraulic roughness, Re k is the Reynolds number, 

and D hyd, k is the hydraulic diameter: 

Re k = 

ρk D hyd,k u k 
μk 

D hyd,g = 

4 A g 
S g + S i D hyd,l = 

4 A l 
S l 

(18) 

where μk represents the dynamic fluid viscosity. To achieve con- 

tinuity between the laminar and turbulent friction factors, we use 

the maximum value of Eqs. (16) and (17) . For the interfacial fric- 

tion factor in horizontal flow we use the following correlation 

( Andritsos and Hanratty, 1987 ): 

λi,h = λg, 0 αg | u g | < u g,crit 

λi,h = λg, 0 

[
1 + 15 

√ 

h l 
D 

(
αg | u g | 
u g,crit 

− 1 

)]
αg | u g | ≥ u g,crit 

u g,crit = 5 

√ 

ρg,atm 

ρg 

(19) 

Here ρg, atm 

is the gas density at atmospheric pressure, h l is the 

liquid height and D the inner pipe diameter. The interfacial friction 

factor for vertical flow ( Moeck and Stachiewicz, 1972 ) is presented 

in Eq. (20) . 

λi, v = 0 . 02 

( 

1 + 1458 

(
δl 

D 

)1 . 42 
) 

(20) 

Here, δl is the mean film thickness in annular flow: 

δl = 

D 

2 

(
1 −

√ 

1 − αl 

)
(21) 

We limit the relative film thickness in Eq. (20) to be maximum 

0.2, which is the maximum experimental value it is defined for. 

A.1.2. Entrainment and deposition rates 

For entrainment in both horizontal and vertical flow and for 

deposition in vertical flow we use the correlations presented in 

Eq. (22) ( Govan, 1990 ). The entrainment correlation for vertical 

flow has been multiplied by a factor of 2 compared to the original 

correlation presented by Govan, as this was found to give better 

predictions of the slugging periods and liquid holdup. The purpose 

of this is not to tune existing correlations to the presented exper- 

imental data, but to illustrate the effect of having a good entrain- 

ment model when simulating severe slugging. 

For deposition in horizontal flow we use a linear relation- 

ship with the deposition constant and droplet field concentration. 

Like for the wall and interfacial friction, the entrainment rates 

are weighted between the horizontal and vertical models by the 

weighting factor in Eq. (14) as an attempt to interpolate the en- 

trainment and deposition rates for inclinations between horizontal 

and vertical configurations. 

φe, v = LS · 2 · 5 . 75 · 10 

−5 

[ 
( max [ Re ol − Re crit , 0 ] ) 

2 μ2 
ol 
ρol 

D σgo ρ2 
gg 

] 0 . 316 

×αgg ρgg | u gg | 
Re ol = 

αol ρol | u ol | D 
μol 

Re crit = exp 

5 . 8504+0 . 4249 
μgg 
μol 

√ 

ρol 
ρgg 

φd, v = 

⎧ ⎨ 

⎩ 

LS · 0 . 18 C og , 
C og 

ρgg 
< 0 . 3 

LS · 0 . 083 

(
C og 

ρgg 

)−0 . 65 

C og , 
C og 

ρgg 
> 0 . 3 

φe,h = 0 . 5 φe, v 
φd,h = LS · k D,h C og 

(22) 

Here the subscript ol refers to oil in mixture liquid, og refers to 

oil in mixture gas , while gg refers to gas in mixture gas. σ go is the 

gas-oil interfacial tension, and C og is the droplet field concentra- 

tion, given by: 

C og = 

M og 

V g 
= 

ρog αog 

αog + αgg 
(23) 

The deposition velocity constant for horizontal flow ( k D, h ) is set 

to 0.1 m/s. Both the entrainment and deposition correlations have 

been multiplied by the control volume length L and pipe perime- 

ter S to get entrainment and deposition rates in the correct units 

(converting from mass rate per length and surface area kg/(m 

2 s) 

to kg/s). 

A.2. Slug border velocities 

The coefficients C 
0 l 

and U 

0 
in Eq. (9) which relate the slug bor- 

der velocity to the mixture liquid velocity are dependent on if the 

slug border is a Taylor bubble nose, or a slug front. For other bor- 

ders than slug borders these coefficients are set to 0, meaning no 

movement. 

A.2.1. Bubble-nose criterion 

In order to determine whether a slug border is a slug front or 

a bubble nose, one must apply a bubble turning criterion. In the 

presented model the criterion is based on the assumption that the 

Taylor bubble tends to move in the opposite direction of the pres- 

sure gradient. This criterion has been shown to predict the bub- 

ble turning point quite well in ( Johansen and Nydal, 2005; Nydal, 

1998 ). The bubble will thus turn when the gravitational forces bal- 

ance the friction forces at the bubble nose. This can be expressed 

as: 

0 . 125 ρl | u crit | u crit λl S l 
A 

= | ρl g sin θ | (24) 

Here, u crit is the absolute value of the critical velocity for which 

the bubble turns while g is the gravitational acceleration. In lam- 

inar flow this equation has a simple analytical solution, by using 

the laminar friction factor from Eq. (17) : 
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Table 7 

Procedure to determine if a slug border is a bubble nose. 

Slug-bubble 

(right slug border) 

Bubble-slug 

(left slug border) 

Nose criterion | u crit | sign (θ ) ≤ u l ,sl ug | u crit | sign (θ ) > u l ,sl ug 

u crit,lam 

= 

ρl g D 

2 | sin θ | 
32 μl 

(25) 

For turbulent flow however, when using the Haaland equation 

( Eq. (16) ), we get an implicit equation for the critical velocity: 

u crit ,t ur + 1 . 8 ( 2 gD | sin θ | ) 1 2 log 10 

[
6 . 9 μl 

ρl D u crit ,t ur 

+ 

(
ε/D 

3 . 7 

)1 . 11 
]

= 0 

(26) 

This equation is easily solved with, for instance, Newton’s 

method. To determine whether the laminar or the turbulent crit- 

ical velocity should be used, we first calculate the critical lami- 

nar velocity, and then calculate the corresponding Reynolds num- 

ber and friction factor using the critical laminar velocity. We then 

calculate the turbulent friction factor, using the critical velocity ob- 

tained from the laminar theory. If this turbulent friction factor is 

larger than the laminar friction factor and the Reynolds number is 

above 300, we assume that the turbulent friction model should be 

used and go on to solve Eq. (26) . If not, we use the critical velocity 

calculated from the laminar friction model. Finally the correct sign 

is applied: for positive inclinations the critical velocity is negative, 

while it is positive for negative inclinations. The procedure shown 

in Table 7 can then be used to determine if the slug border is a 

nose. 

A border that is not a nose is set to be a slug front. Note that 

it might happen that both the left and right borders of a slug are 

fronts, or both might be noses. 

A.2.2. Slug front velocity 

The velocity of a slug front is calculated from a mass balance 

across the front, giving the following linear relation with the slug 

velocity: 

U f ront = u l ,sl ug + 

A l,bubble 

A g,bubble 

(
u l ,sl ug − u l,bubble 

)

= u l ,sl ug 

C 0 l ︷ ︸︸ ︷ (
1 

1 − αl,bubble 

)
+ 

U 0 ︷ ︸︸ ︷ 
−u l,bubble αl,bubble 

1 − αl,bubble 

(27) 

The slug front will absorb liquid both because it is moving and 

because the liquid in the neighboring bubble is moving. To accom- 

modate for this liquid, the absorbed liquid is distributed on top of 

the liquid in the neighboring bubble. 

Note that Eq. (27) is only used if liquid is going into the slug 

front. If we have a slug front that is not absorbing liquid it is as- 

sumed to be a front moving with the mixture liquid velocity, and 

we set C 0 l = 1 and U 0 = 0 . 

A.2.3. Bubble nose velocity 

A bubble velocity relation for inclined pipes has been proposed 

( Bendiksen, 1984 ) of the form: 

u b = C 0 l u l + U 0 v + U 0 h (28) 

Here U 0 v and U 0 h represents the vertical and horizontal compo- 

nents of the drift velocity. A similar model to that of Bendiksen is 

implemented in the presented model: 

u b = C 0 , 1 u l + U 0 , v + sgn h | U 0 ,h | F r < 3 . 5 

u b = C 0 , 2 u l + U 0 , v F r ≥3 . 5 

C 0 , 1 = 

(
1 . 05 + 0 . 15 sin 

2 (θ ) 
)

C 0 , 2 = 1 . 2 

U 0 , v = 0 . 351 sin (θ ) 

√ 

( ρl − ρg ) 

ρl 

gD 

U 0 ,h = 0 . 542 cos (θ ) 

√ 

( ρl − ρg ) 

ρl 

gD (29) 

The parameters C 0, 1 and C 0, 2 in Eq. (29) capture the effect of 

the velocity profile, in which the fluid velocity at the center of the 

pipe is greater than the average velocity, making the bubble front 

propagate faster than the mixture. If the mixture velocity profile 

is directed in the opposite direction of the bubble nose, a lower 

value for C 0, 1 and C 0, 2 is expected. Based on the experimental re- 

sults from Bendiksen (1984 ), a value of 0.98 is used in such cases. 

F r is the Froude number, which represents the ratio of inertia to 

gravitational forces: 

F r = u l 

√ 

ρl 

gD ( ρl − ρg ) 
(30) 

The parameter sgn h in Eq. (29) is -1 if the nose is pointing left, 

and + 1 if the nose is pointing to the right. The Taylor bubble tends 

to travel along the top of the pipe, instead of being symmetric 

around the pipe center line. This effect is represented by the first 

line in Eq. (29) , when the Froude number is low. When the veloc- 

ity is increased, the bubble nose is forced toward the center of the 

pipe, and the second line in Eq. (29) is used. For simplicity, we use 

the maximum value of these two relations. 
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In this paper the capability of the two-fluid model to describe the transition from stratified to 

slug flow is investigated, by employing three different numerical discretization techniques: 

classical finite volume, discontinuous Galerkin, and a Lagrangian finite volume approach 
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Technology and my co-supervisor Benjamin Sanderse. The Sluggit code was in also used for 

the additional simulations presented below the paper. 
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Abstract 

 

In this paper the capability of the two-fluid model to describe the transition from stratified to slug flow is investigated, by 

employing three different numerical discretization techniques: classical finite volume, discontinuous Galerkin, and a Lagrangian 

finite volume approach. It is shown that stratified wavy flow can transition from well-posed to ill-posed following the Kelvin-

Helmholtz instability mechanism. In the ill-posed regime grid convergence cannot be obtained. However, with low order 

discretization methods, or coarse grids and time steps, well-posed numerical solutions can still be obtained. Such solutions should 

however be critically assessed because they seem to be physical while in fact they are meaningless. The conditional well-posedness 

of the two-fluid model therefore requires a careful discretization in order to use it for slug capturing. 

Keywords: two-fluid model, slug capturing, well-posedness, finite volume method 

 

1. Introduction 

In the petroleum industry multiphase flow occurs when 

transporting oil and gas through long multiphase pipeline 

systems. The behaviour of the flow can take many forms, 

depending on parameters like fluid velocities, pipe properties 

and fluid properties. An important flow regime is slug flow, in 

which liquid pockets, separated by gas bubbles, propagate in an 

alternating fashion with high speed along the pipeline. Such 

slugs have a large influence on the sizing of receiving facilities 

such as slug catchers or separators. The industry uses various 

flow models for simulating slug flow, but there is a need for 

increased accuracy. A promising approach is using so-called 

slug capturing, through the accurate numerical solution of the 

one-dimensional two-fluid model. This approach is believed to 

be capable of describing the transition from stratified flow to 

slug flow, see e.g. Ref. [1]. 

One of the issues in the transition from stratified flow to 

slug flow is that the two-fluid model can become ill-posed, see 

e.g. Ref. [2] and Ref [3]. Reference [2] mainly focuses on the 

effect of the spatial discretization and employs an 

incompressible model. Reference [3] also discusses the 

incompressible model and performs linear and nonlinear 

stability analyses. In this paper we instead consider the full 

compressible model and study several spatial and the temporal 

discretization methods and on ill-posedness and on convergence 

and stability. The paper is organized as follows: in section 2 the 

two-fluid model equations are explained, in section 3 the 

different discretization methods are presented, and in section 4 

results are shown for the Kelvin-Helmholtz instability 

2. Governing equations of the two-fluid model 

The governing equations of the one-dimensional two-fluid 

model consist of a mass and momentum conservation equation 

for each phase: 

     0  k k k k kA A u
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 
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 (2) 

supplemented with the constraint  k

k

A A . Here    is the is 

cross-sectional area occupied by phase  . The density and the 

velocity of phase   are denoted by    and    respectively.     

represents the hydraulic level gradient term, which can be 

expressed in conservative form by integrating the hydrostatic 

pressure over the cross-sectional phase area   . The level 

gradient term for the gas and liquid phase will thus read (van 

Zwieten et al., Ref [4]):  

 

31
LG   cos (   )   

12
k k k LGg hA P

x
 

  
  
  

  (3) 

 

Note that this model is more complete than the one in Ref. [2] 

since we take compressibility into account in all terms, 

including the level gradient term. 

 

 
 

Figure 1: Schematic two-phase stratified pipe flow. (a) The 

cross-section shows the definition of the perimeters and the 

interface height   which is defined relative to the pipe center. 

(b) Cross-section indicating the pipe coordinate x and 

inclination angle  . 

 

We assume an isothermal system, so that the density of the gas 

and liquid phases are given by an equation of state which is a 

function of pressure only. 
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2.1. Friction models 

The wall and interfacial shear stress are expressed by the 

Fanning friction factor definition: 
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We model the friction factor    of phase   with the pipe wall 

with Churchill’s relation (Ref [5]): 
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Here   is the hydraulic pipe roughness, Rek  is the Reynolds 

number, 
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and hkD  is the hydraulic diameter: 
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The interfacial friction factor      is calculated by: 

 

max{  ,0.014}int Gf f   (8) 

3. Discretization techniques 

Three different numerical discretization techniques are 

investigated in this paper: classical finite volume (CFV), 

discontinuous Galerkin (DG), and a Lagrangian finite volume 

(LFV) approach. The discontinuous Galerkin method combines 

features of both finite element and finite volume methods. The 

CFV and LFV methods share many similarities, though several 

aspects like discretization, solution procedure and pressure-

velocity coupling are treated differently. The LFV model is also 

capable of employing moving control volumes, though this 

aspect of the model is not of primary focus in this study and is 

thus not described in the LFV model description. All three 

models employ a staggered grid, illustrated in Figure 2. 

 

 
Figure 2: Staggered grid lay-out that is used for the finite 

volume schemes.  

 

The discrete equations for the mass and momentum equations of 

the three aforementioned models are presented in the following 

sections. Super-script n will be used to denote the time index, 

sub-script i represents the spatial index, while sub-script k 

represents the gas or liquid phase. A "hat" symbol (^) is placed 

above unknown new variables where a convection scheme like 

upwind or central difference is used. 

 

3.1. Classical Finite Volume (CFV)  

In this section the discretization of the classical finite 

volume approach will be explained. First the spatial 

discretization is discussed, followed by the temporal 

discretization. Finally, the interpolation of unknown quantities 

is discussed.   

 

Mass conservation equation: 

 

The mass conservation equation is discretized by integrating 

Eqn (1) over the p-volume 
,k iV . In our 1D framework this 

results in an integral in the x-direction which yields:  
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Momentum conservation equation: 

 

In a similar way we integrate Equation (2) over the u-volume (

, 1/2k iV 
) to obtain  
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          is the discrete level gradient. For the gas phase the 

discrete level gradient is calculated as: 
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The level gradient of the liquid phase is approximated in a 

similar fashion. For the central scheme, the unknown variables 

are calculated by: 
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For the FOU scheme, any unknown variable    is taken from 

the direction the flow is coming. Since the velocities are all 

positive in the current test case, we get: 
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Time integration: 

 

In order to advance the two-fluid model in time, a composite 

vector   which contains mass and momentum at all grid points 

is created. If we define                 and          

                         , this vector, for   grid points, will 

have the form: 
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The complete semi-discrete system can be then written as: 

( )
d

F
dt


U

U   (15) 

In this formulation we substituted the constraint to close the 

system. The temporal discretization used for the classical finite 

volume scheme is a BDF scheme: 
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We will consider two BDF schemes. The first one is a BDF1 

scheme, which is essentially a backward Euler scheme. For 

BDF1 the coefficients read:     ,      ,      and   
 . The second scheme we consider is the second order BDF2 

scheme with coefficients      ,        ,         

and       . 

 

For both the BDF1 and BDF2 scheme Eqn (16) constitutes a 

nonlinear system that needs to be solved for     , which we 

achieve by using a Newton approach. The fact that the system is 

solved for     , which contains the mass and momentum at 

each grid point, guarantees mass and momentum conservation 

independent of time step and grid size.  

 

3.2. Lagrangian Finite Volume (LFV) 

The LFV code is also a finite volume method, like the CFV 

code, but features some distinct differences:  

- Possibility to use moving control volumes (not used in the 

current study). 

- The constraint is implemented via a pressure equation. 

- The squared velocity in the convective momentum term 

consists of one central interpolation multiplied by a 

selected convection scheme, like first order upwind. The 

CFV model on the other hand uses the squared value of 

the selected convection scheme. 

Mass conservation equation: 
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Here, 
km  is the specific mass, defined by: 

k
k k k

M
m

V
      (18) 

while 
k  and V are the hold-up fractions and total cell volume 

respectively. 

 

Momentum conservation equation: 

 

The momentum equation is solved for the change in velocity: 
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The level gradient term is discretized identical to what is done 

in the CFV method. 

 

Time integration and pressure-velocity coupling: 

 

In contrast to the CFV code, the LFV code implements the 

constraint by deriving a pressure equation. This equation is 

obtained by expanding the time derivative of mass in the 

continuous mass equation, Eqn (1), by the product rule, dividing 

by the fluid density and summing this equation over all phases:  
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The term n

i  represents a correction for a possible volume 

fraction error from the previous time step: 
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The momentum equation (Eqn (19)) first is solved for the 

change in velocity, using Eqn (20) to eliminate the unknown 

new pressure directly by substitution. After the momentum 

equation has been solved, the new velocity is inserted in the 

pressure equation (Eqn (20)) to obtain the change in pressure. 

The mass equation is then solved for the change in mass, and 

the procedure is repeated the volume fraction error (deviation 

from 1 in the sum of hold-up fractions) drops below 1e-8 in all 

simulations. 
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3.3. Discontinuous Galerkin (DG) 

The third discretization scheme is the space-time Discontinuous 

Galerkin Finite Element Method (short DG) described in Ref 

[4]. A DG scheme is similar to a (continuous) Finite Element 

scheme with the notable exception that basis functions are dis-

continuous at element edges. This enables the use of stabiliza-

tion mechanisms developed for Finite Volume schemes and 

naturally allows for nonconforming meshes. Due to being part 

of the family of Finite Element Methods it is relatively easy to 

construct a high-order scheme by increasing the order of the ba-
sis functions. 

In this paper we use a third-order, piecewise polynomial basis in 

both space and time, which gives a fourth-order accurate 

scheme for linear pde's or non-linear pde's with sufficiently 

smooth solutions. We use a structured, equidistant mesh with 

rectangular elements encompassing the complete space-time 

domain. Due to the structure of the mesh and causality in time, 

it is not necessary to solve the discrete problem on the complete 

mesh at once. Instead we separate the mesh in a sequence of 

time-slabs consisting of all elements with the same time interval 

and solve the discrete problem per time-slab, starting with the 

first. Note that this procedure is very similar to the time step-

ping methods used for the Finite Volume schemes, with the dif-

ference that with DG a solution is obtained for an entire time-

slab at once while with the Finite Volume schemes a solution is 
obtained at a single point in time per iteration. 

The stabilization method is adaptation of Roe's method: as a 

reference state for linearization we use the average solution val-

ue at the element edges and the eigenvalue problem is solved 

numerically. The complete non-linear discrete system for one 

time-slab is solved using Newton's method and the linear 

subproblem using a sparse, direct solver. For more details we 

refer the reader to van Zwieten et al. (Ref [4]). 

4. Results 

4.1. Introduction 

The test case we discuss considers the evolution of 

stratified flow to slug flow according to the Kelvin-Helmholtz 

instability mechanism, and is the same as described in the study 

by Liao et al. (Ref [2]) and van Zwieten et al. (Ref [4]). We 

investigate the effect of the different discretization methods on 

the growth of an initially smooth wave. 

 

The pipeline and fluid properties are given in 

Table 1. L is the pipe length, D is the inner pipe diameter,   is 

the pipe inclination and   the pipe roughness.  

 

Table 1: Pipeline and fluid properties. 

L D        
l  

g   l  

[m] [m] [°] [m] [kg/m3] Pa·s Pa·s 

1 0.078 0 1e-8 1000 1.8e-5 8.9e-4 

 

The liquid phase is assumed to be incompressible with density 

l . The density of the gas phase is given by: 

 
ref

G

ref

p

p


  ,  (22) 

where refp  and ref  are 105 Pa and 1.1614 kg/m3 respectively.  

 

The initial condition is a sinusoidal wave with the mean value 

and amplitude for the primitive variables listed in Table 2. The 

wave number is 2k  1m  and the angular frequency   is 

approximately 8.484 1s . For more information we refer to van 

Zwieten et al. (Ref [4]).  

 

 

 

Table 2: Initial conditions. 

,meanGu

  

,ampGu

  

,meanLu

 

L,ampu  ,meanl

 

,ampl

 

meanP

 

ampP

 

[m/s] [m/s] [m/s] [m/s] [-] [-] [Pa] Pa 

13.82 0.25 1 7e-3 0.5 0.01 105 3.7 

 

The mean values were computed by choosing the gas velocity 

and liquid holdup, and computing the resulting liquid velocity 

and pressure gradient from the steady state momentum balance 

obtained by combining the gas and liquid momentum equations, 

eliminating the pressure gradient (balancing friction and 

gravity). These initial values result in a required pressure 

gradient of 74.23 Pa/m, which was added as driving force 

(source term) to the momentum equations. Periodic boundary 

conditions are applied. 

 

By computing the characteristic roots of the system of mass and 

momentum equations, the following well-posedness criterion 

can be obtained:  
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  (23) 

 

This criterion is identical to the Inviscid Kelvin-Helmholtz 

criterion (IKH) derived by Barnea and Taitel (Ref [6]), and 

gives the inviscid limit at which the two-fluid model becomes 

ill-posed (characteristic roots becomes complex). 

According to Eqn (23), the test case is well-posed at the initial 

conditions specified in Table 2. However, a more detailed 

eigenvalue analysis shows that the initial condition is in the 

(viscous) well-posed unstable region, and consequently the 

initial perturbations will grow.  

 

 
Figure 3: Schematic of stability and well-posedness limits for 

the two-fluid model. 

 

4.2. Convergence behaviour in well-posed and ill-posed 

regions 

Simulations were run with the different codes, with 40, 80 and 

160 grid cells. The time step for each grid is calculated based on 

the CFL criterion for the liquid velocity:
LCFL

L

x
t

u


  . The 

liquid CFL number (
LCFL ) was calculated to be approximately 

0.9875, based on the initial wave number and angular 
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frequency, so that we get an integer cycle of the sinusoidal 

wave after each 60 time steps. 

On the left side of Figure 4 the liquid hold-up at different time 

instances is shown, corresponding to 1, 4 and 7 cycles of the 

wave moving through the domain. In black the exact analytical 

solution to the linearized system is added as a reference (note 

that this is only valid for small times). On the right side two of 

the four eigenvalues of the two-fluid model are shown (the 

other two correspond to fast pressure waves associated with 

acoustics, which are of less importance here). It can be seen that 

when time increases, the amplitude of the hold-up wave starts to 

grow. In Figure 4 (a) and (b) we clearly see convergence upon 

mesh refinement. We also observe that the higher order 

methods are much more accurate, although a fair comparison 

requires that we take into account the effect of computational 

time. In Figure 4 (c) the wave steepens and nonlinear effects are 

important. It can be seen that in the neighbourhood of the 

steepening, the real part of the eigenvalues are becoming equal. 

Closer inspection reveals that the eigenvalues are forming a 

complex conjugate pair. This indicates that the two-fluid model 

is not hyperbolic anymore and it therefore becomes ill-posed; 

Eqn (23) is violated. Related to this is that in the ill-posed 

region the different discretizations do not converge upon mesh 

refinement. This means that in essence the results of the two-

fluid model have become meaningless. It can be noted that the 

fourth-order DG scheme already shows ill-posedness for the 

medium grid N=80, while the other schemes are still well-posed 

for N=80. 

 

 
 

Figure 4: Wave evolution in terms of liquid hold-up and real 

part of eigenvalues after (a) 1, (b) 4 and (c) 7 cycles. LFV 

results are depicted with circles (○), CFV (BDF2) results are 

depicted with squares (□), and DG results are depicted with 

triangles ().  

 

4.3. Influence of discretization method on predicting ill-

posedness 

We further investigate the effect of the discretization on ill-

posedness by comparing the time instance at which complex 

eigenvalues first appear, 
Ct . For this study we focus on 

different discretization techniques using solely the CFV 

scheme. Figure 5 shows that, when the time step goes to zero, 

all methods converge towards the same 
Ct . Note that the grid is 

refined simultaneously with the time step since the CFL number 

is kept fixed.  

When the time step increases, we observe that the lowest order 

methods start to deviate first. 
Ct  rapidly increases, until a time 

step is reached for which complex eigenvalues are not found 

anymore. For time steps larger than this critical time step the 

simulations are well-posed, even though a refined – and 

therefore more accurate – simulation would indicate an ill-

posed problem. 

It is clear that this is an undesirable situation, since one can 

obtain seemingly meaningful results with a coarse grid or a low 

order discretization method, that are in fact meaningless. The 

advantage of higher order methods such as BDF2 instead of 

BDF1 (Backward Euler) is very clear here: with BDF2 we still 

obtain the ‘correct’ ill-posedness at time steps and grid sizes 

that are around 10 times larger than with BDF1. The advantage 

of BDF2 is not only apparent in terms of improved accuracy, 

but also, and maybe more importantly, in capturing the correct 

mathematical properties of the two-fluid model. 

 
Figure 5: Time instance at which complex eigenvalues first 

appear, as function of time step, for different discretization 

methods. 

 

5. Conclusions 

In this paper we have investigated the growth of waves in 

stratified flow as a model for the transition of stratified flow to 

slug flow in multiphase flow pipelines. In particular, we have 

studied the effect of different discretization methods on the 

wave growth and on the onset of ill-posedness. 

By studying the behaviour of the eigenvalues of the system 

of equations in space and time, it appears that during wave 

steepening the eigenvalues become complex. When 

simultaneously refining grid and time step, subsequent solutions 
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do not converge, i.e. they do not become grid independent when 

the eigenvalues are complex. However, given the same initial 

conditions, well-posed solutions can still be obtained when 

using low order discretization methods or coarse grids or time 

steps, although this is undesirable. 

The current paper therefore indicates that initially well-

posed, but unstable, waves in a stratified flow can grow to 

become ill-posed, before they have reached the top of the pipe, 

i.e. before stratified flow has transitioned to slug flow. This 

indicates that the transition from stratified flow to slug flow, at 

least for the conditions investigated in this paper, cannot be 

captured with the two-fluid model, since the model becomes ill-

posed. The ill-posedness of the model manifests itself in a lack 

of convergence upon grid and time step refinement, which 

essentially renders the simulation results in the ill-posed regime 

useless. We have shown in this paper that, depending on the 

discretization method employed, well-posed solutions might 

still be obtained when using low order discretizations or coarse 

grids, as typically used in practical studies with commercial 

simulators. Such solutions should however be critically assessed 

because they can appear to be physical while in fact they are 

meaningless. 

A number of options are available in literature to 

circumvent the ill-posedness of the two-fluid model, e.g. the 

inclusion of surface tension, axial diffusion, a virtual mass 

force, or a momentum flux parameter. For future work we 

recommend to investigate the effect of such terms on the 

transition from stratified to slug flow. 
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Additional simulations presented at ICMF 

 

Some additional simulations that are not included in the conference paper were also presented 

at the ICMF conference. These simulations are of a 10 km straight and horizontal pipe, with 

an inner diameter of 0.146 m. and a pressure boundary at the outlet of 10 bar. The temperature 

remained constant in all simulations. Three flow rate combinations were used, with a gas 

mass flow rate of 0.2 kg/s in all cases, while the water mass flow rate was 20, 5 and 2.5 kg/s. 

The steady state solver was used to specify the initial conditions, and after 1000 seconds the 

gas mass flow rate was increased to 0.4 kg/s over a period of 10 seconds. This creates a 

holdup wave that will move from the inlet to the outlet. All three flow rate combinations were 

run with the first order upwind scheme, and the third order NOTABLE scheme, with grid 

sizes of 128, 256, 512, 1024, 2048, 4096 and 8192 cells. This resulted in a total of 42 

simulations. A constant time step was used in all simulations, keeping the CFL number 

constant ( t∆  = 10 seconds for grid density 128 cells). Figure 76 shows and example of the 

holdup wave moving through the pipeline, for the case of a water mass flow rate of 2.5 kg/s. It 

can be seen that the higher order NOTABLE method gives a sharper front, as expected. As 

the grid density is increased, the results of the lower order and higher order method converges 

to a similar result. Similarly to what was shown in the conference paper for the time 

integration, Figure 77 shows the time it takes until complex eigenvalues occur and the 

simulation becomes ill-posed. The case with a water mass flow rate of 2.5 kg/s stays well-

posed for both schemes at all grid sizes. The case with a water mass flow rate of 5 kg/s 

becomes ill-posed after the gas rate has been increased, while the case with a water mass rate 

of 20 kg/s is ill-posed already from the start. In opposite to what is presented in the 

conference paper, this study focus on the spatial discretization and not the time integration. A 

similar result is however seen: The lower order methods can give a seemingly well-posed 

result in cases where the actual result should be ill-posed. It can be seen that using a higher 

order method will give the correct ill-posed result on a coarser grid than the lower order 

method. It can also be seen that the lower and higher order methods are converging to the 

same results at the finest grid size. 

 



 
 

 

 

 

 

Figure 76: The front of the holdup wave moving through the pipe after the gas mass rate 

has been increased. 

 

 

Figure 77: Time until complex eigenvalues occur as function of grid size, for the first 

and third order upwind schemes. A value of 5000 means that the simulation never 

becomes ill-posed. 
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Abstract 

When transporting gas and liquid in the same pipe, waves might become unstable and grow until they bridge the entire pipe 
cross-section. This flow pattern is called slug flow, and consists of alternating pockets of gas and liquid plugs propagating at high 
speed through the pipeline. Simulation of slug flow is a topic widely investigated in the oil and gas industry, where slug flow is not 
desired due to its chaotic nature and increased wall shear stress. The method for cleaning water mains known as air scouring uses 
this increase of wall shear stress in order to get high efficiency in particle, scale, biofilm and tubercle removal. This is believed to 
be more effective than unidirectional flushing and to use up to 40 % less water. The efficiency of the cleaning depends on the 
characteristics of the slugs such as length, velocity and frequency, which are determined by amongst others the water and air 
superficial velocities, interface friction, fluid properties and pipe properties. The use of slug flow simulation may help to obtain the 
optimal slug flow characteristics for every sequences of air scouring in order to save both time and water, and ensure the most 
efficient cleaning of the water mains.  

Sluggit is a computational slug flow simulator developed at NTNU for the oil and gas industry. The objective of our work was 
to validate its predictions for slug flow characteristics within water distribution systems. Slug flow is generated with tap-water and 
compressed air in a 50 m long PVC pipe with 150 mm of internal diameter. Water distribution system conditions, such as pressure 
and exit diameter are reproduced. The slug characteristics from the experiments are recorded, and compared with the predictions 
of Sluggit. 
© 2016 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the organizing committee of the XVIII International Conference on Water Distribution 
Systems Analysis, WDSA2016. 
 
Keywords: Slug flow; air scouring; water mains 

 
* Corresponding author. Tel.: +1-418-264-0380; fax:+1-418-654-2600. 

E-mail address: florent.pourcel@ete.inrs.ca  

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of the XVIII International Conference on Water Distribution Systems

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.03.276&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.03.276&domain=pdf


602   Florent Pourcel et al.  /  Procedia Engineering   186  ( 2017 )  601 – 608 

Nomenclature 

D Pipe diameter [m]  
g  Gravitational acceleration [m/s2] 
umix Mixture velocity 

1. Introduction 

Maintaining water distribution systems (WDS) in good condition is necessary for many reasons: keeping water 
clear and odorless, preventing disinfectant's concentration from lowering rapidly, and avoiding pressure loss because 
of tubercles or incrustations [1]. Many solutions have been developed through the years such as conventional flushing, 
air scouring or swabbing, but unidirectional flushing remains the most popular thanks to its low ratio of cost to 
effectivity [2]. Yet this method also has limitations in efficiency, especially if the network pressure is low, and uses a 
lot of drinking water [2-4].  

 
Air scouring of water mains is performed in a way close to unidirectional flushing, but compressed air is introduced 

through a hydrant at the beginning of the section to rinse, as shown in Fig. 1 [2, 4, 5]. This method has some advantages 
over unidirectional flushing as it is more aggressive (thus more efficient in particles, biofilm, tubercles and 
incrustations removal due to increased liquid velocity in the slugs and increased wall shear stress), uses as much as 
40% less water and doesn't depend on the network pressure. However, it also has disadvantages such as its 
aggressiveness which doesn't suit to any fragile networks, and the fact that more labor is necessary to close the users' 
valves during the operation. Because of this reason, which may also imply the need of finding an alternative temporary 
source of water, air scouring of water mains has a cost which is two to three times higher than unidirectional flushing 
[2-4, 6]. 

 
Air scouring has existed for decades [5], but its operation mainly remains the same nowadays, only based on the 

manual use of the compressor and the network's valves to generate slug flow within the pipe to be cleaned. Settings 
are based on charts and judging if slug flow is reached or not is only based on the listening of the water exiting from 
the outlet hydrant [2, 4, 5]. 

 
When gas and liquid are flowing together in the same pipe and high enough velocities, the interfacial friction 

between them result in waves forming on the interface. Depending on the conditions, these waves might become 
unstable, and grow large until they bridge the entire pipe cross-section and create a liquid plug (slug) [7]. The gas 
pressure can then build up behind the liquid slug and accelerate it to high velocities through the pipe. This flow pattern 

Fig. 1. Illustration of air scouring of water mains. 
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pattern is called hydrodynamic slug flow (sometimes just referred to as slug flow), and consists of alternating gas 
regions (Taylor bubbles) and liquid plugs (slugs). The modelling of gas-liquid flow and especially the ability to predict 
slug flow has been investigated extensively in both the oil and gas industry and in the nuclear reactor industry. The 
modelling is performed using one-dimensional (1D) averaged conservation equations, as performing a full three 
dimensional CFD (computational fluid dynamics) simulation of an entire pipeline would take an unreasonable long 
time and consume a vast amount of computer memory and hard drive space. The 1D averaged equations for mass and 
momentum conservation of gas-liquid flow are typically referred to as the "two-fluid model". The most commonly 
used approach is using a coarse grid, together with a sub-grid model which treats slug flow in a statistical manner 
based on experimental correlations. This type of modelling is often reffered to as the "unit-cell model" approach, 
based on the concept presented by Dukler and Hubbard [8, 9]. It can only predict the statistical fraction of the pipe 
covered by slugs (slug fraction) but neither slug length nor slug frequency. Another modelling approach is the so-
called slug tracking method [10, 11], which uses Lagrangian tracking of individual slugs and an adaptive grid to avoid 
numerical diffusion. The slug tracking models are typically also used on a coarse grid and typically use mechanistic 
initiation criteria to initiate slugs, like the well-posedness criterion [12]. Though slug tracking has been applied a lot 
in the oil and gas industry, some concerns have been raised with respect to the predictive power of using mechanistic 
initiation criteria [13]. A relatively new approach for modelling of slug flows referred to as "slug capturing" was first 
proposed by Issa [14, 15]. In slug capturing the two-fluid model is solved on a fine grid, eliminating the need for a 
sub-grid model. If the conditions are there for slug flow, it is believed that waves will grow naturally from instabilities 
and develop into slugs. One of the difficulties with the slug capturing approach is that the resulting slug velocities is 
a result of both the numerical methods and friction models. Previous work [16] has shown how the interfacial friction 
models in the commercial oil and gas simulator LedaFlow [17, 18] had to be tuned at high holdup values to obtain 
slug velocities that corresponds with well-established slug velocity correlations [19]. In addition, there are still some 
unresolved issues related to the rate of wave growth and grid convergence when refining the grid [20]. The model 
presented in this study, called Sluggit, is a continuation of the work of [21], and uses a combination of slug capturing 
and slug tracking: a fine grid is applied for waves to naturally develop and grow into slugs, and the resulting slugs are 
then tracked using an adaptive grid. A detailed description of the model can be found in [22]. 
 

Water, air and pipe characteristics influence the slug velocity, length and frequency. These characteristics can in 
turn have an impact on the efficiency of the rinsing. This publication describes a part of a wider project dedicated to 
the comparison of air scouring of water mains versus unidirectional flushing for sedimented and electrostatically 
adhered particles removal. We aim here to validate the accuracy of Sluggit for the prediction of slug characteristics in 
a 150 mm inner diameter (ID) water distribution pipe in a lab setup. The objective is to afterwards be able to use 
simulation tools like Sluggit to predict the optimal air and water settings during real air scouring of water mains 
operations in order to get the optimal slug flow characteristics, yielding the most efficient removal of particles while 
saving both water and time. 

2. Experimental setup 

Experiments were conducted in a PVC loop as shown in Fig. 2. Slugs are formed along a 48 m long (from water 
injection to outlet 90°) horizontal 150 mm ID PVC pipe having a U-shape due to two long 90° radius bends. Water is 
pumped from an open tank with a centrifugal pump while air is injected with a rotary screw compressor through a 
19 mm ID rubber pipe. Water and air mix within a 100-150 mm ID tee: water comes from the bottom through the 
vertical 100 mm ID while air comes from a horizontal 150 mm ID, where the 19 mm ID rubber pipe is connected 
upstream on the top of the PVC pipe. In order to prevent the compressor from introducing oil in the test loop, air is 
cooled then filtered by a three-stage filtration (coarse, fine and active carbon). The final air temperature is measured 
in order to have the best possible estimate of the air mass flow rate. Water flow is measured with a magnetic flowmeter 
(Endress+Hauser Proline Promag 50W, precision 0.5%) while volumetric air flow is measured by a rotameter (Cole-
Parmer Valved Acrylic Flowmeter, 400-3400 LPM, precision 2%). The end of the loop is made of 
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Fig. 2. Illustration of the test loop 

a 6 m long 100 mm ID PVC pipe entering vertically down into an open tank directly connected to the first one. To be 
as close as possible to real network conditions, the outlet valve situated on the 100 mm ID pipe is partially closed in 
order to simulate the same head loss as obtain from a 100 mm to 63.5 mm reduction in diameter, the latter 
corresponding to a standard hydrant outlet diameter in Canada [23]. Also, following recommendations of [2] and [5], 
air pressure right upstream the inlet is set a little less than 0.5 bar below water pressure (see                Table 1 for test  
case conditions). Two test cases, named A and B, were conducted. Note that while performing test case B the 
compressor was at its maximum capacity. Two 2 m long transparent PVC sections were installed in order to observe 
the slugs. The first window is situated 20 m downstream the water injection, while the second window is located at 
44 m. Slugs are studied by recording 15 minute long videos at 120 images per second with a Sony α7s camera. Two 
visual marks were created on each transparent section, separated by 1.165 m at the first window and 1.130 m at the 
second. Slug velocities are calculated by counting the number of images separating the instant their front and the 
bubble nose reach each mark. Considering previous data and that the highest mean velocity observed was 6.76 m/s, 
we estimate the precision of this method as being 5%. Because of the proximity of the second transparent section 
with the 100 mm ID pipe and the outlet valve, we did not consider bubble nose velocities at this section as the slugs 
were disturbed by these changes in diameter. Fig. 3 shows the front of a slug as observed at the second transparent 
section during case A. 

 
Two experiments were conducted at different gas and liquid velocities, and compared with results from the 

simulations. The test cases are described in                Table 1. All experiments were run at a temperature of 10 ºC, and 
the pressure in the outlet tank was atmospheric. The simulations were performed with mass flow rates as input, 
calculated from the measured volumetric flow rates, pipe cross sectional area and fluid densities. A constant pressure 
outlet boundary was used, with atmospheric pressure. Four different grid sizes were tested: 4, 2, 1 and 0.5 times the 
pipe diameter. 

 

 

Fig. 3. A slug front formed at the second transparent window in case A. 
  

Symbols: 

 Ø150 mm PVC horizontal pipe 
 Ø100 mm 
 Ø19 mm 
 Ø150 mm transparent PVC horizontal pipe 

 Centrifugal pump 

 Air compressor 

 Air cooler + filters + thermometers + pressure control 

 Water magnetic flowmeter 

 Air rotameter 
 Valve 
 Ball valve 

 Manometer 

A
ir

 

W
at

er
 

T
es

t l
oo

p Open tanks 
 
 

Outlet valve 

Flow direction 



605 Florent Pourcel et al.  /  Procedia Engineering   186  ( 2017 )  601 – 608 

               Table 1. Experimental test cases. The pressures are differential related to atmospheric pressure. 

Case name Air pressure [bar] Water pressure [bar] Air mass rate [kg/s] Water mass rate [kg/s] 

A 2.4 3.0 0.051 5.5 

B 2.0 3.1 0.092 10.79 

 
The results from the simulations with Sluggit are compared with the experimental measurements in Fig. 4 - Fig. 6. 

Fig. 4 shows the slug frequency, while Fig. 5 and Fig. 6 show the slug velocity for case A and B, respectively. 
Appendix A shows the repartition of front and nose velocity during simulation at finest grid and experiment for each 
case and each position. The theoretical nose velocity included in Fig. 5 and Fig. 6 is calculated from the correlation 
presented in [19], which for a horizontal pipe reads: 
 

 max 1.2 ,1.05 0.542b mix mixu u u gD   (1.1) 
 
Here mixu  is the mixture velocity of gas + liquid, while D is the pipe diameter. 

2.1. Case A 

For the case with the lowest flow rates (case A), it can be seen from Fig. 4 that the slug frequency from the 
simulations does not compare that well with the slug frequency from the experiments. For the case with the larger 
flow rate however, the slug frequency is shown to approach the experimental value at both positions in the pipe when 
refining the grid size. In case A slug flow was observed in the experiments already a few meters after the mixing point 
of gas and liquid by opening and investigating one of the manometer taps on the pipe. This could mean that 

Fig. 4. Slugging frequency from the simulations compared with the experimental values, as function of grid size in units of pipe diameter. 
 

Fig. 5. Comparison of slug velocities between the simulation and experiment for case A as function of grid size in units of pipe diameter. 

Fig. 6. Comparison of slug velocities between the simulation and experiment for case B as function of grid size in units of pipe diameter. 
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that slugs are being formed at the inlet, by the configuration of how the gas and liquid are introduced together into the 
test section. This hypothesis is also supported by the fact that the experimental slug frequency is decreasing from the 
first to the last transparent window (black dashed line in Fig. 4). The slug frequency from the simulations is however 
increasing with increasing distance, as more slugs are allowed to develop from the initial stratified flow introduced at 
the inlet. The two-fluid model is not capable of predicting such inlet generated slug flow, which would probably 
require fine scale modelling with detailed information about the inlet configuration. However, far into the pipeline the 
inlet generated slugs should not matter; the flow should then have developed into a steady state flow statistically 
speaking, with slug frequency and velocities as if the gas and liquid were introduced in a controlled stratified manner. 
It can also be seen in Fig. 4 that the bubble-nose velocity from the simulations and experiments match relatively well 
though they are not close to the theoretical value for fully developed slugs. A possible reason for this discrepancy 
could be that the slugs are still developing and have not reached a steady length and velocity, while the theoretical 
correlation (equation (1.1)) is only valid for fully developed flow. The fact that the experimental front velocity matches 
the theoretical nose velocity quite well is most likely a coincidence; this should only be the case when the front and 
nose velocities are the same, after the slugs have reached a stable length and velocity. 

 
Looking at position 44 m there is a much better correspondence in slug velocity between the experiments and 

simulations. Note that the experimental nose velocity has been left out from the plot at this location, as the slugs have 
entered the vertical outlet pipe and are in contact with the outlet valve when the bubble-nose reaches the second 
window. The theoretical correlation shown in equation (1.1) is only valid for a Taylor bubble in fully developed flow 
in a single straight pipe and can thus not be used. It might then even happen that the left end of the slug is no longer a 
bubble-nose, it could also be a slug front if the liquid behind it is moving faster than the slug since the slug is being 
slowed down by the valve. The slug frequency at 44 m is now closer to the experimental value for case A, but not as 
large. The reason for this could be that slugs created by the inlet configuration still affects the flow so that a fully 
developed flow is not yet reached at 44 m. In the simulations however it can be seen that the front and nose velocities 
are quite similar at the second transparent window, meaning that the slugs in the simulations might have reached a 
steady length.  

2.2. Case B 

For the case with larger flow rates there is a quite good match of the slugging frequency, at the finest grid. This is 
however one of the difficult issues with slug modelling that is yet to be fully understood: the results are dependent on 
the grid size, and previous studies have shown how the wave growth in the two-fluid model changes with the grid size 
[20]. The study of [20] also illustrates how several attempts that has been made over the last decades to try to fix this 
issue, but so far no good solution can be said to exist. Consequently, some testing is required to determine the adequate 
grid size to use for a specific model implementation. 

 
Looking at the velocities at 20 m, one can see that the simulation nose velocity is not that far from the theoretical 

value (from equation (1.1)). Furthermore, the front velocity is not that far off the experimental value. The experimental 
nose velocity is not that close to the simulations or theory, which could be because the slugs are still not fully 
developed at this location. At location 44 m one can see similar results as at 20 m, but the simulation nose velocity is 
even closer to the theoretical value and quite close to the front velocity. 

3. Conclusions 

Experiments with air and water has been presented and compared with simulations from a Lagrangian slug tracking 
model (Sluggit). The results indicate that the slug frequency obtained from the simulations is strongly dependent on 
the grid size, while the slug velocity is less sensitive to this. The experiments also indicate that how the gas and liquid 
are introduced might create slugs directly at the inlet, which can yield a different slug frequency than what one would 
get from introducing the fluids in a stratified and controlled manner. In the latter case, slugs are being created from 
growing instabilities, which should be the dominating mechanism for slug flow far into the pipes.  
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The match in simulated and observed velocity is already encouraging from an air scouring point of view, as shear 
stress, which depends on the water velocity, is a major factor for sediment removal. Further work is needed in order 
to get a more accurate match in frequency, as the number of slugs scouring the pipe might also be an important factor.  

 
Next steps of the project will be the study of the slugs’ characteristics that have the greatest impact on pipe cleaning, 

and their behaviour in real network. 
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Case A Case B 
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a b s t r a c t 

In this paper we analyse different time integration methods for the two-fluid model and propose the 

BDF2 method as the preferred choice to simulate transient compressible multiphase flow in pipelines. 

Compared to the prevailing Backward Euler method, the BDF2 scheme has a significantly better accu- 

racy (second order) while retaining the important property of unconditional linear stability ( A -stability). 

In addition, it is capable of damping unresolved frequencies such as acoustic waves present in the com- 

pressible model ( L -stability), opposite to the commonly used Crank–Nicolson method. The stability prop- 

erties of the two-fluid model and of several discretizations in space and time have been investigated by 

eigenvalue analysis of the continuous equations, of the semi-discrete equations, and of the fully discrete 

equations. A method for performing an automatic von Neumann stability analysis is proposed that ob- 

tains the growth rate of the discretization methods without requiring symbolic manipulations and that 

can be applied without detailed knowledge of the source code. 

The strong performance of BDF2 is illustrated via several test cases related to the Kelvin–Helmholtz in- 

stability. A novel concept called Discrete Flow Pattern Map (DFPM) is introduced which describes the 

effective well-posed unstable flow regime as determined by the discretization method. Backward Euler in- 

troduces so much numerical diffusion that the theoretically well-posed unstable regime becomes numer- 

ically stable (at practical grid and timestep resolution). BDF2 accurately identifies the stability boundary, 

and reveals that in the nonlinear regime ill-posedness can occur when starting from well-posed unsta- 

ble solutions. The well-posed unstable regime obtained in nonlinear simulations is therefore in practice 

much smaller than the theoretical one, which might severely limit the application of the two-fluid model 

for simulating the transition from stratified flow to slug flow. This should be taken very seriously into 

account when interpreting results from any slug-capturing simulations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the petroleum industry multiphase flow occurs when trans- 

porting oil and gas through long multiphase pipeline systems. The 

behaviour of the flow can take many forms, depending on param- 

eters like fluid velocities, pipe properties and fluid properties. An 

important flow regime is (hydrodynamic) slug flow, in which liq- 

uid pockets, separated by gas bubbles, propagate in an alternat- 

ing fashion with high speed along the pipeline. Such slugs have a 

large influence on the sizing of receiving facilities such as required 

∗ Corresponding author at: Centrum Wiskunde & Informatica (CWI), Amsterdam, 

The Netherlands. 

E-mail addresses: b.sanderse@cwi.nl (B. Sanderse), ivar.eskerud@gmail.com (I.E. 

Smith), m.h.w.hendrix@tudelft.nl (M.H.W. Hendrix). 

supports of the pipeline system and on the sizing of the down- 

stream facilities such as separators (or slug catchers), compres- 

sors, pumps, and heat exchangers. The industry uses various flow 

models for simulating slug flow, but there is a need for increased 

accuracy. A promising approach is using so-called slug capturing, 

through the accurate numerical solution of the one-dimensional 

two-fluid model. Although this two-fluid model can become ill- 

posed, this approach is believed to be capable of describing the 

transition from stratified flow to slug flow, see e.g. Issa and Kempf 

(2003) . The use of the compressible two-fluid model is necessary 

to generate slugs at the right frequency ( Issa and Kempf, 2003 ). 

Since the slug capturing approach is based on accurate solu- 

tions of the underlying model, higher order (higher than 1) nu- 

merical schemes or fine meshes are typically employed in both 

space and time. Different spatial discretization schemes have been 

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2017.05.002 

0301-9322/© 2017 Elsevier Ltd. All rights reserved. 
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used for the two-fluid model, for example the second-order cen- 

tral scheme ( Liao et al., 2008 ), the QUICK scheme, a Roe scheme 

( Akselsen, 2016 ), a pseudo-spectral scheme ( Holmås, 2010 ), and a 

Discontinuous Galerkin method ( van Zwieten et al., 2015 ). The sta- 

bility and accuracy properties of several of these schemes have 

been investigated recently by Fullmer et al. (2014) ; Liao et al. 

(2008) ; López de Bertodano et al. (2017) and Akselsen (2016) . In 

all cases the incompressible model is discussed. 

For the time integration of the two-fluid model, the workhorse 

in both industrial and academic codes has been the first order 

Backward Euler method, due to its stability and damping proper- 

ties ( Bendiksen et al., 1991; Danielson et al., 2005; Issa and Kempf, 

2003; Montini, 2011 ). The large numerical diffusion, however, re- 

quires small time steps; the CFL number based on the liquid veloc- 

ity is not on the order of 1 but has to be much smaller ( Issa and 

Kempf, 2003; Liao et al., 2008 ). Only a few sources mention higher 

order time integration methods for the two-fluid model. Kjølaas 

et al. (2013) mention that the slug-capturing module in LedaFlow 

(a commercial pipe flow simulator) uses the second order Crank–

Nicolson method. Zou et al. (2015) employ the BDF2 (Backward 

Differentiation Formula) method for the two-fluid model to sim- 

ulate the water faucet problem and found that it was superior to 

the first order Backward Euler method. However, a temporal accu- 

racy study was only performed for a linear advection case, and for 

the other test cases the ‘basic’ two-fluid model (without level gra- 

dient terms) was used, which is unconditionally ill-posed. Also the 

commercial nuclear safety code RELAP-7 ( Berry et al., 2015 ) advises 

BDF2 as the time integration method. However, almost no details 

are given on the stability, accuracy and damping properties of the 

numerical time integration method. 

The purpose of this paper is to analyse different time integra- 

tion methods for the compressible two-fluid model in terms of ac- 

curacy, stability and damping properties, and to use them to con- 

struct so-called discrete flow pattern maps. In particular, we show 

that BDF2 is preferred over Backward Euler and Crank–Nicolson 

because it combines second order accuracy with L -stability (filter- 

ing of acoustic waves at large time steps). 

The paper is organized as follows: first, in Section 2 the two- 

fluid model is explained in terms of eigenvalues, stability and flow 

pattern maps. Section 3 describes the spatial (central, upwind) 

and temporal (Backward Euler, Crank–Nicolson, BDF2) discretiza- 

tions used in this work. In Section 4 the stability and accuracy 

of the time integration methods are discussed by computing the 

eigenvalues of the spatial discretization and the stability domain 

of the time integration methods. Section 5 presents a von Neu- 

mann analysis applied to the fully discrete problem and a novel 

method to assess the stability without requiring symbolic ma- 

nipulations. Section 6 presents three test cases: linear, nonlinear 

and acoustic wave growth based on Kelvin–Helmholtz instabilities. 

Section 7 provides concluding remarks. 

2. Governing equations and characteristics 

2.1. Compressible two-fluid model 

The two-fluid model can be derived by considering mass and 

momentum balances for the stratified flow of oil and gas in a 

pipeline. The major assumption in the derivation is that of one- 

dimensional, stratified flow, with the transverse hydrostatic pres- 

sure variation introduced via level gradient terms. Furthermore, we 

assume isothermal flow so that no energy equation is required, 

and surface tension is neglected. In contrast to the incompressible 

model, which is commonly discussed in literature, we allow the 

gas phase to be compressible (the extension to compressible liquid 

is straightforward). This leads to the presence of acoustic waves in 

the solution, which in turn has an effect on the choice of time in- 

tegration method, as will become clear later. With these assump- 

tions, the two fluid model consists of the conservation equations 

for mass and momentum for the gas and liquid phase, reading: 

∂ 

∂t 
( ρg A g ) + 

∂ 

∂s 
( ρg u g A g ) = 0 (1) 

∂ 

∂t 
( ρl A l ) + 

∂ 

∂s 
( ρl u l A l ) = 0 (2) 

∂ 

∂t 
( ρg u g A g ) + 

∂ 

∂s 
(ρg u 

2 
g A g ) 

= −∂ p 

∂s 
A g + LG g − τgl P gl − τg P g − ρg A g g s + F body A g , (3) 

∂ 

∂t 
( ρl u l A l ) + 

∂ 

∂s 
(ρl u 

2 
l A l ) 

= −∂ p 

∂s 
A l + LG l + τgl P gl − τl P l − ρl A l g s + F body A l , (4) 

supplemented with the volume equation: 

A g + A l = A. (5) 

s is the spatial coordinate along the centerline of the pipe. The 

driving pressure force F body = − d p body 

d s 
in the gas and liquid mo- 

mentum equations is required for the simulations that involve pe- 

riodic boundary conditions. The friction models are described in 

Appendix A.2 . The level gradient (LG) terms differ from the in- 

compressible case and were derived and shown by us in van Zwi- 

eten et al. (2015) ; a similar form was presented in Masella et al. 

(1998) : 

LG g = 

∂ HG g 

∂s 
, HG g = ρg g n 

[ 
(R − h ) A g + 

1 

12 

P 3 gl 

] 
, (6) 

LG l = 

∂ HG l 

∂s 
, HG l = ρl g n 

[ 
(R − h ) A l −

1 

12 

P 3 gl 

] 
. (7) 

In Eqs. (1) –(7) , the subscript β denotes the phase, either gas ( β = 

g) or liquid ( β = l). ρβ denotes the density of phase βA β the cross- 

sectional area occupied by phase β , R the pipe radius, h the height 

of the liquid layer measured from the bottom of the pipe, u β the 

phase velocity, p the pressure at the interface, τβ the shear stress 

(with the wall or at the interface), g the gravitational constant, ϕ
the local inclination of the pipeline with respect to the horizontal, 

g n = g cos ϕ and g s = g sin ϕ. A l (or A g ) and h are related by a non- 

linear algebraic expression since the pipeline has a circular cross- 

section (for channel flow one simply has h = A l ). Similarly, the wet- 

ted and interfacial perimeters P g , P l and P gl can be expressed in 

terms of the hold-up or the interface height (see Appendix A.1 for 

more details). As a result, the two-fluid model features five equa- 

tions with five unknowns ( A g , A l , u g , u l , p ). Depending on the ve- 

locity difference between the phases, the two-fluid model is well- 

posed or ill-posed ( Barnea and Taitel, 1994; Lyczkowski et al., 1978; 

Stewart and Wendroff, 1984 ), as will be discussed in the next 

section. 

2.2. Characteristics 

The governing equations of the two-fluid model can be writ- 

ten in quasi-linear form in terms of the primitive variables W ∈ R 

q 

( q = 4 ), 

W = 

⎛ 

⎜ ⎝ 

A l 

u l 

u g 

p 

⎞ 

⎟ ⎠ 

, (8) 
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reading 

A (W ) 
∂W 

∂t 
+ B (W ) 

∂W 

∂s 
+ C(W ) = 0 . (9) 

The eigenvalues can be found by substituting wave-like solutions 

in the homogeneous part of the equations ( Drew and Passman, 

1998 ; Hirsch, 1994 ), i.e. W = 

ˆ W e I(n s s + n t t) , leading to 

det (n t A + n s B ) = 0 . (10) 

By letting λ = −n t /n s ( = 

d s 

d t 
) this can be seen as the generalized 

eigenvalue problem 

det (B − λA ) = 0 . (11) 

Compact expressions for the eigenvalues are difficult to obtain an- 

alytically since the characteristic equation is quartic. Evje and Flåt- 

ten (2003) derived approximate expressions using a perturbation 

technique suggested by Toumi and Kumbaro (1996) , but did not in- 

clude the level gradient terms (while their inclusion is essential for 

well-posedness). When considering an incompressible liquid and a 

compressible gas, while neglecting the hydraulic gradient term in 

the gas phase and using the ‘incompressible’ form of the hydraulic 

gradient of the liquid phase, a simple expression for the charac- 

teristic equation can be obtained (see also Figueiredo et al., 2017 ): 

A g (c 2 g − (λ − u g ) 
2 ) 

(
∂ HG l 

∂A l 

+ ρl (λ − u l ) 
2 

)
+ A l c 

2 
g ρg (λ − u g ) 

2 = 0 . 

(12) 

Here c g is the speed of sound of the gas phase ( ρg = p/c 2 g ). In 

our simulations we continuously check the well-posedness of the 

model by computing the eigenvalues from a quartic which is sim- 

ilar to (12) , but which includes all compressibility and hydraulic 

gradient effects. When complex eigenvalues are encountered, the 

simulation is stopped, since we take the view of Drew and Pass- 

man (1998) that the original initial boundary value problem has 

become meaningless. The four eigenvalues are typically ordered as 

follows: 

λ1 ≤ λ2 ≤ λ3 ≤ λ4 , (13) 

where λ1 and λ4 are related to the speed of sound of the gas, and 

λ2 and λ3 are related to the convective wave speeds. The problem 

contains therefore two distinctly different time scales: 

| λ1 | , | λ4 | � | λ2 | , | λ3 | , (14) 

with a typical ratio of O(10 2 ) - O(10 3 ) . For slightly compressible 

flow, the eigenvalues λ2 and λ3 are expected to be close to the 

incompressible expressions, see for example ( Bonizzi, 2003 ). These 

incompressible roots are given by 

λ2 , 3 = 

(ρu ) ∗ ± ξ

ρ∗ , (15) 

where, in the notation from Akselsen (2016) : 

ζ ∗ = 

ζl 

A l 

+ 

ζg 

A g 
, (16) 

and 

ξ = 

√ 

ρ∗(ρl − ρg ) g n 
∂h 

∂αl 

− ρg ρl 

A g A l 

(u g − u l ) 2 . (17) 

The incompressible two-fluid model is therefore well-posed as 

long as the velocity difference between the phases is smaller than 

the ‘inviscid Kelvin–Helmholtz’ limit (IKH) ( Liao et al., 2008 ): 

(u g − u l ) 
2 ≤ �U 

2 
IKH = 

(ρl − ρg ) 

ρ∗ g n 
∂h 

∂αl 

. (18) 

The compressibility of the gas hardly changes this limit ( Bonizzi, 

2003 ). The compressible two-fluid model under consideration is 

therefore conditionally well-posed. Several remedies have been 

proposed to make it unconditionally well-posed: 

• An artificial interfacial pressure term ( Evje and Flåtten, 2003 ); 

this is a mathematical ‘trick’ which eliminates the growth of 

interfacial waves due to Kelvin–Helmholtz instabilities ( Fullmer 

et al., 2014; Liao et al., 2008 ). 
• Surface tension ( Ramshaw and Trapp, 1978 ); next to well-posed 

the model is also stable for small scale perturbations below a 

cut-off wavelength. However, between this cut-off wavelength 

and the IKH wavelength the model is unstable ( Fullmer et al., 

2014 ) and when sufficiently fine grids are used in numerical 

simulations, these short-wavelength instabilities are resolved 

and will grow ( Holmås, 2008 ). 
• Diffusive terms, either artificial ( Holmås, 2008 ) or physical 

( Fullmer et al., 2014 ). Although this has certain advantages, 

such as nonlinear stability, the growth rate for short waves 

is very large, making the model practically ill-posed ( Fullmer 

et al., 2014 ). 

Other approaches are the use of a virtual mass force ( Montini, 

2011 ), a momentum flux parameter ( Song, 2003; Song and Ishii, 

2001 ) and a two-pressure model ( Fitt, 1989; Ransom and Hicks, 

1984; 1988 ). The ‘best’ remedy is still the subject of debate in the 

two-fluid model community. In this paper the focus is on the accu- 

rate time-integration of the conditionally well-posed model (1) –(4) 

and we do not make attempts to make the model unconditionally 

well-posed. 

2.3. Stability 

To investigate the stability of the equations of the two-fluid 

model we take the following approach ( Montini, 2011; Ramshaw 

and Trapp, 1978 ): linearization of the governing equations around 

a reference state, assuming a travelling wave solution for the per- 

turbations, and determining the dispersion relation to identify the 

stability. A similar approach is taken in Liao et al. (2008) and 

Fullmer et al. (2014) . 

We linearize the governing equations by writing W = W 0 + 

˜ W 

(where ˜ W � W 0 ), using the fact that the reference state (indicated 

by (.) 0 ) satisfies the equations, and neglecting products of distur- 

bances. The linearized equations then read: 

A 0 
∂ ˜ W 

∂t 
+ B 0 

∂ ˜ W 

∂s 
= C 0 ˜ W , (19) 

where A 0 = A (W 0 ) , B 0 = B (W 0 ) , and C 0 = 

(
∂C 
∂W 

)
0 
. It is cumber- 

some to determine C 0 analytically due to the presence of the fric- 

tion factors, see Eq. (A.7) , and in general we determine it numeri- 

cally. 

The perturbation is assumed to be of a wave like form: ˜ W = 

ε e I(ωt−ks ) , with ω being the angular frequency and k the wave 

number. This leads to 

( A 0 · (Iω) − B 0 · (Ik ) − C 0 ) ε e I(ωt−ks ) = 0 . (20) 

For non-trivial solutions we need 

det ( A 0 · (Iω) − B 0 · (Ik ) − C 0 ) = 0 . (21) 

This yields the dispersion relation ω( k ). In the absence of source 

terms ( C 0 = 0 ), the condition for stability ( Im (ω) = 0 ) is equiva- 

lent to the IKH well-posedness limit (18) obtained from the eigen- 

value analysis. The dispersion analysis presented here is based on 

the full set of conservation equations and the resulting KH instabil- 

ity is therefore a so-called dynamic instability ( Lopez-de-Bertodano 

et al., 2013 ). When source terms are included, the stability con- 

dition differs from the well-posedness criterion and the stability 
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Table 1 

Parameter values used in the example of the Kelvin–

Helmholtz problem. 

Parameter Value Unit 

αl 0.5 [-] 

u g 13.815 m/s 

u l 1 m/s 

ρ l 10 0 0 kg/m 

3 

R 0.039 m 

p 0 10 5 N/m 

2 

c g 293.43 m/s 

g 9.8 m/s 2 

μg 1 . 8 · 10 −5 Pa s 

μl 8 . 9 · 10 −4 Pa s 

ε 10 −8 m 

F body 74.225 Pa/m 

limit is commonly known as the viscous Kelvin–Helmholtz (VKH) 

stability limit. This ‘viscous’ instability is similar to the kinematic 

waves in shallow water theory ( Whitham, 1974 ) and the continuity 

waves of Wallis (1969) . 

2.4. Flow pattern map 

An example of the IKH and VKH stability boundaries will be 

given here for the compressible equations in terms of a flow pat- 

tern map. We consider the Kelvin–Helmholtz instability problem, 

at the same conditions as proposed and analyzed by Liao et al. 

(2008) . A horizontal pipe with a length of one meter is taken 

( ϕ = 0 ) and its diameter is 78 mm. The density of the gas is given 

by a perfect gas relation, 

ρg = 

p 

c 2 g 

, (22) 

where c g is taken such that for p = p 0 we have ρg = 1 . 1614 kg/m 

3 . 

The density of the liquid is constant (incompressible). The superfi- 

cial liquid velocity is set at 0.5 m/s, and the superficial gas velocity 

at u sg = 6 . 908 m/s. The liquid hold-up, gas velocity, liquid veloc- 

ity and pressure gradient follow from the steady state momentum 

balance and are given, together with other parameters, in Table 1 . 

Note that ε is the hydraulic wall roughness, and μ is the fluid vis- 

cosity. 

Liao et al. (2008) report that the stability limit (18) for the in- 

compressible model is �U IKH = 16 . 0768 m/s. In the compressible 

model the stability limit slightly changes to �U IKH = 16 . 0355 m/s. 

Since at the current conditions �U = 12 . 815 m/s, the model is 

well-posed and stable. Note that we have employed Biberg’s ap- 

proximate relation for αl ( h ), see Eq. (A.5) , which leads to a small 

difference in the stability limit compared to the nonlinear relation. 

We consider a single wave with k = 2 π on a domain 

s ∈ [0, 1] m. The dispersion analysis, Eq. (20) , then leads to 4 waves 

with the following eigenvalues and angular frequencies: 

λ = 

⎛ 

⎜ ⎝ 

−279 . 80 

0 . 69 

1 . 34 

307 . 40 

⎞ 

⎟ ⎠ 

m/s , ω = 

⎛ 

⎜ ⎝ 

−1758 . 05 

4 . 27 

8 . 48 

1931 . 47 

⎞ 

⎟ ⎠ 

+ 

⎛ 

⎜ ⎝ 

4 . 51 I 
0 . 59 I 

−0 . 35 I 
4 . 71 I 

⎞ 

⎟ ⎠ 

1 / s . 

(23) 

The fact that all eigenvalues are real indicates that the initial con- 

dition is indeed well-posed, with λ1, 4 close to the speed of sound 

of the gas and λ2, 3 close to the liquid velocity. The angular fre- 

quencies indicate that out of the four waves there is one unstable 

mode, ω 3 , which will grow in time. 

When repeating this analysis for different superficial liquid and 

gas velocities the neutral IKH and VKH stability boundaries can 

be constructed according to Im (ω) = 0 - see Fig. 1 . These neu- 

tral stability boundaries are independent of the wave number k 

Fig. 1. Flow pattern map based on Kelvin–Helmholtz instabilities. The symbols ◦, �
and � correspond to the lines in Fig. 2 . 

( Barnea and Taitel, 1994; Prosperetti and Tryggvason, 2007 ). In be- 

tween the inviscid and viscous stability curves we have a well- 

posed, unstable solution of the two-fluid model, in which transi- 

tion from stratified flow to slug flow can possibly occur. The condi- 

tions given in Table 1 are indicated by ‘current conditions’ and they 

are in this well-posed, unstable regime. Lines of constant hold- 

up are indicated by dashes in Fig. 1 . The resulting flow pattern 

map and lines are similar to those of Barnea and Taitel (1993) . In 

Fig. 2 the dispersion relation associated to the current conditions is 

shown (square symbol), together with the dispersion relation for a 

point in the well-posed stable regime (round symbol) and a point 

in the ill-posed regime (triangle). On the left ( Fig. 2 a) ω is plotted 

as a function of wavelength λ, in a similar way as in Fullmer et al. 

(2014) . This confirms that for short waves ( λ → 0) the ill-posed 

model possesses unbounded growth, whereas the well-posed un- 

stable model has a bounded growth rate ( Im (ω 3 ) = −0 . 35 / s ). In all 

cases the most unstable ω is shown, which corresponds to ω 3 (for 

the stable case this is the least stable mode). On the right ( Fig. 2 b) 

the same plot is shown, but now as a function of k , similar to 

Liao et al. (2008) . This latter form of the dispersion relation will 

be used in our numerical results. 

3. Spatial and temporal discretization 

3.1. Finite volume method on a staggered grid 

As mentioned in the introduction, many options are available 

for the spatial discretization of the two-fluid model, such as fi- 

nite difference methods ( Fullmer et al., 2014; Liao et al., 2008 ), 

pseudo-spectral methods ( Holmås, 2010 ), and characteristics meth- 

ods ( Akselsen, 2016 ). We discretize the two-fluid model, Eqs. (1) –

(4) , by using a finite volume method on a staggered grid. As in- 

dicated in Fig. 3 , the staggered grid consists of both p -volumes, 

�p , and u -volumes, �u . Each volume consists of a liquid and a gas 

phase: � = �l ∪ �g , for both u - and p -volumes. 

We start with conservation of mass for a phase β ( β is liquid 

or gas). Integration of Eq. (1) in s -direction over a p -volume gives: 

d 

d t 

(
ρβ,i �β,i 

)
+ 

(
ρβA β

)
i +1 / 2 

u β,i +1 / 2 −
(
ρβA β

)
β,i −1 / 2 

u β,i −1 / 2 = 0 , 

(24) 



B. Sanderse et al. / International Journal of Multiphase Flow 95 (2017) 155–174 159 

Fig. 2. Dispersion relation for well-posed stable, well-posed unstable, and ill-posed model, corresponding to the points shown in Fig. 1 . 

Fig. 3. Staggered grid layout. 

with the finite volume size given by 

�β,i = A β,i �s i . (25) 

The term (ρβA β ) i +1 / 2 requires interpolation from neighbouring 

values, which is described below. For conservation of momentum 

we proceed in a similar way. Integration of (3) in s -direction over 

a u -volume gives: 

d 

d t 

(
ρβ,i +1 / 2 u β,i +1 / 2 �β,i +1 / 2 

)
+ 

(
ρβA β

)
i +1 

(u β,i +1 ) 
2 

−
(
ρβA β

)
i 
(u β,i ) 

2 = −A β,i +1 / 2 ( p i +1 − p i ) + LG β,i +1 / 2 

−ρβ,i +1 / 2 �β,i +1 / 2 g s −
∑ 

γ ∈{ L , G , W } 
γ � = β

τβγ ,i +1 / 2 P βγ ,i +1 / 2 �s i +1 / 2 

+ A β,i +1 / 2 F body �s i +1 / 2 , (26) 

where 

�β,i +1 / 2 = A β,i +1 / 2 �s i +1 / 2 , (27) 

and the level gradient terms for the gas and liquid are given by ( + 

for gas, − for liquid) 

LG β,i +1 / 2 = g cos (ϕ) 
((

hA β ± 1 

12 

P 3 gl 

)
i 
−

(
hA β ± 1 

12 

P 3 gl 

)
i −1 

)
, (28) 

Several terms in (24) and (26) require approximation. All terms 

that are not part of the convective terms are interpolated us- 

ing a central scheme, e.g. A β,i +1 / 2 = 

1 
2 (A β,i + A β,i +1 ) . The convec- 

tive terms, on the other hand, require more care in order to 

prevent numerical oscillations. Since the system under consider- 

ation is (conditionally) hyperbolic, the wave directions have to be 

taken into account in the differencing scheme, e.g. by using a Roe 

method ( Akselsen, 2016; Morin et al., 2013 ). In this work the fo- 

cus is on the time integration method and we employ standard 

spatial discretization methods for the convective quantities: first 

order upwind or second order central. The central scheme is accu- 

rate and stable in our computations since the solutions to the test 

cases are sufficiently smooth, i.e. we are not simulating disconti- 

nuities or flow transitions. 

The spatial discretization presented in this section leads to a 

semi-discrete system, only depending on time, which can be writ- 

ten as 

d U 

d t 
= F (U ) , (29) 

where U = U (t) ∈ R 

qN is the vector of conserved variables. For pe- 

riodic boundary conditions, which we will consider, it reads 

U = 

[
(ρg A g �s ) 1 , ... ,N , (ρl A l �s ) 1 , ... ,N , (ρg A g u g �s ) 1 / 2 , ... ,N−1 / 2 , 

( ρl A l u l �s ) 1 / 2 , ... ,N−1 / 2 

]T 
. (30) 

We use U instead of W in a discrete setting to ensure discrete con- 

servation properties. 

3.2. Temporal discretization 

Eq. (29) forms a system of ordinary differential equations which 

can be integrated in time with many different time integration 

methods ( Butcher, 2003; Hairer et al., 2008 ). A common distinc- 

tion is between multi-stage methods (Runge–Kutta) and multi- 

step methods (Adams, Backward Differentiation Formula (BDF)). 

Within both classes there is a distinction between explicit and 

implicit methods. Due to the strong time step restriction for ex- 

plicit methods (caused by the acoustic speeds λ1 and λ4 ), we con- 

sider implicit methods. For the two-fluid model, the Backward Eu- 

ler method is widely applied because of its unconditional numeri- 

cal stability characteristics, although it has the disadvantage of be- 

ing only first-order accurate, which introduces a significant amount 

of numerical diffusion. To construct a second order method that 

keeps the good stability properties, one can see Backward Euler 

as a member of the family of implicit Runge–Kutta methods, as 

a member of the Adams–Moulton methods, or as member of the 

BDF methods. A second order extension of Backward Euler can be 
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Table 2 

Parameter values for time integration meth- 

ods. 

scheme a 0 a 1 a 2 θ

Backward Euler 1 −1 0 1 

BDF2 3 
2 

−2 1 
2 

1 

Crank–Nicolson 1 −1 0 1 
2 

sought in each of these families. We restrict ourselves to Crank–

Nicolson and BDF2, which are both second order accurate and un- 

conditionally stable. Backward Euler, Crank–Nicolson and BDF2 can 

all be gathered under the following expression: 

a 0 U 

n +1 + a 1 U 

n + a 2 U 

n −1 

�t 
= θF (U 

n +1 , t n +1 ) + (1 − θ ) F (U 

n , t n ) . 

(31) 

with the parameter values given in Table 2 . The local truncation 

error for the methods is given by 

τBE , CN = 

(
θ − 1 

2 

)
�t 2 F 

′′ + 

(
1 

2 

θ − 1 

3 

)
�t 3 F 

′′′ + O(�t 4 ) , (32) 

τBDF2 = −2 

9 

�t 3 F 
′′′ + O(�t 4 ) . (33) 

The leading error constant of Crank–Nicolson is 1 
12 , which is 

smaller than that of BDF2. 

Eq. (31) is a system of nonlinear equations and application 

of Newton’s method leads to the following linear system that is 

solved at each time step: [
a 0 
�t 

I − θ

(
∂F 

∂U 

)m 

]
�U = −

[
a 0 U 

m + a 1 U 

n + a 2 U 

n −1 

�t 

−θF (U 

m , t n +1 ) − (1 − θ ) F (U 

n , t n ) 

]
, (34) 

where m is the iteration counter. If the direct evaluation of F in 

terms of U is not possible - for example in the case of a non- 

linear equation of state, when the pressure cannot easily be ob- 

tained from the density - we solve Eq. (34) in terms of W , which 

requires the evaluation of an additional Jacobian. Solving system 

(34) has roughly the same computational cost for Backward Euler, 

Crank–Nicolson and BDF2. This is because the evaluation of the Ja- 

cobian is the most expensive part, which is the same for all meth- 

ods since they are all implicit in time. From an implementation 

point of view, BDF2 can be implemented relatively easily in an ex- 

isting code that uses Backward Euler, because the only extra re- 

quired variable is U 

n −1 . 

The BDF2 method suffers from a start-up problem: U 

n −1 is 

not available at the first time step, which is therefore computed 

with Backward Euler. Note that for variable time steps the coef- 

ficients of the BDF2 method become dependent on the time step 

ratio. Another issue of BDF2 is the fact that it is not uncondition- 

ally monotone (neither is Crank–Nicolson), and therefore under- or 

overshoots can appear near discontinuities ( Hundsdorfer and Ver- 

wer, 2007; Zou et al., 2015 ). Adaptive time stepping or locally us- 

ing Backward Euler are possible solutions to this issue. In the test 

cases reported here this was not required. 

3.3. Reference solution with explicit Runge–Kutta method 

A highly accurate reference solution in time is obtained by em- 

ploying an explicit Runge–Kutta method. Explicit methods are nor- 

mally not of interest for the compressible equations due to the 

time step restriction associated with the acoustic waves, but in the 

case that these waves are to be resolved (as we will do in one 

Table 3 

Case definition for analysis of stiffness of semi-discrete equa- 

tions. 

Case N u sl , u sg [m/s] c g [m/s] Convective terms 

I 40 0.5, 6.908 c g , 0 Central 

IIa 20 0.5, 6.908 c g , 0 Central 

IIb 80 0.5, 6.908 c g , 0 Central 

IIIa 40 0.5, 6.908 0.1 c g , 0 Central 

IIIb 40 0.5, 6.908 10 c g , 0 Central 

IV 40 0.5, 6.908 c g , 0 Upwind 

V 40 0.05, 0.829 c g , 0 Central 

of the test cases), they provide a cheap and highly accurate alter- 

native to implicit methods. A general s -stage explicit Runge–Kutta 

method applied to (29) reads: 

U 

n +1 = U 

n + �t 

s ∑ 

i =1 

b i F (U i , t i ) , (35) 

where 

U i = U 

n + �t 

s ∑ 

j=1 

a i j F (U j , t j ) , t i = t n + c i �t. (36) 

We have used a three-stage, third order strong-stability preserving 

Runge–Kutta method ( Gottlieb et al., 2001 ) with the following non- 

zero coefficients: a 21 = 1 , a 31 = a 32 = 

1 
4 , b 1 = b 2 = 

1 
6 , b 3 = 

2 
3 . 

4. Time scales, stability and stiffness 

4.1. Spectrum of the spatial discretization 

The distinct time scales of the problem, see Eq. (14) , make the 

semi-discrete Eqs. (29) stiff: some terms in the differential equa- 

tions lead to very fast transients, while others are much slower. In 

order to investigate the stiffness induced by the problem and the 

spatial discretization (without including the effect of the temporal 

discretization yet) we look at the eigenvalues of the semi-discrete 

equations. Similar to the stability analysis of Section 2.3 , we lin- 

earize the semi-discrete equations around a background state (for 

example the initial condition): U (t) = U 0 + 

˜ U (t) , which gives 

d ̃

 U 

d t 
= J ̃  U , (37) 

with J = 

(
∂F 
∂U 

)
0 

∈ R 

qN×qN . Diagonalization of J = K DK 

−1 leads to 

the following set of decoupled equations: 

d ̃

 Z 

d t 
= D ̃

 Z , (38) 

where Z = K 

−1 U . The matrix D is a diagonal matrix with the 

eigenvalues μ of J . These eigenvalues μ are the discrete approx- 

imation of the eigenvalues of only the spatial derivatives of the 

two-fluid model equations, based on Fourier analysis. For example, 

a convective term of the form c ∂ 
∂s 

leads to purely imaginary eigen- 

values of the form −cI. Diffusive phenomena on the other hand 

are associated to negative real eigenvalues, and unstable solutions 

to Re( μ) > 0. Therefore, in contrast to the eigenvalues λ of the 

continuous equations, complex eigenvalues μ of the semi-discrete 

equations are not associated to well- or ill-posedness. 

We investigate the behaviour of the eigenvalues μ of the spa- 

tial discretization by performing parametric studies on the well- 

posed, unstable Kelvin–Helmholtz problem for which the condi- 

tions where given in Table 1 . The considered cases are specified 

in Table 3 . Case I in Table 3 with N = 40 finite volumes and a cen- 

tral discretization of the convective terms is considered as the base 

case. Four additional cases are defined, in which the effect of the 

grid size, gas compressibility, upwind scheme and VKH stability on 
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Fig. 4. Eigenvalues for case I. 

the eigenvalues is investigated. The eigenvalues μ( J ) are computed 

numerically with Matlab for all cases. 

The 4 N ( = 160) eigenvalues for case I are shown in Fig. 4 , with 

zoomed-in details for the ≈ 2 N acoustic modes and ≈ 2 N con- 

vective modes in Figs. 5 a and 5 b, respectively. Some convective 

modes have a positive real part, indicating that certain solution 

components will grow in time. The central discretization thus cap- 

tures the fact that the initial condition is in the well-posed unsta- 

ble regime. The real part of the acoustic eigenvalues corresponds to 

the imaginary part of the angular frequencies ω 1 and ω 4 (see Eq. 

(23) ). Similarly, the real part of the convective eigenvalues corre- 

sponds to the imaginary part of ω 2 and ω 3 . The imaginary parts 

of the acoustic and convective eigenvalues differ by several or- 

ders of magnitude. This corresponds to the fact that the acoustic 

modes have a much higher frequency than the convective modes. 

The semi-discrete equation system is therefore stiff and requires a 

suitable time integration method, as will be detailed in Section 4 . 

The stiffness of the problem depends on the grid size. This is 

shown in Fig. 5 , which compares the eigenvalues for 20 grid points 

( 6 a) and for 80 grid points ( 6 b). The finer the grid, the larger 

the imaginary part of the eigenvalues, and the higher the frequen- 

cies that can be represented numerically. The scaling of the imagi- 

nary part of the eigenvalues is linear in the number of grid points, 

and when an explicit time integration method is used this leads 

to a CFL-type stability condition: �t = O(�s ) . The fact that the 

real part of the eigenvalues is not affected by the grid size con- 

firms that there is no numerical diffusion added when the central 

scheme for the convective terms is employed. 

Next to the grid size, the gas compressibility has a large effect 

on the stiffness of the problem. Figs. 7 show the results for a more 

compressible ( Fig. 7 b) and a less compressible ( Fig. 7 b) case. The 

larger the degree of incompressibility, the higher the ratio between 

the imaginary part of the eigenvalues of the acoustic and convec- 

tive modes. The effect of making the gas more incompressible is 

similar to refining the grid: the scaling of the imaginary part of 

the eigenvalues is linear in the speed of sound of the gas. 

It is now interesting to see how the eigenvalues change when 

the first-order upwind spatial discretization, instead of the central 

discretization, is considered. Fig. 8 shows that the real part of the 

eigenvalues of both the acoustic and convective modes has grown 

enormously, indicating the numerical damping caused by the up- 

wind scheme. The damping of the first order upwind method is in 

fact so large that almost all unstable modes have shifted to the left 

half of the complex plane. These observations are in line with Liao 

et al. (2008) , who favour the central discretization for the accurate 

prediction of the stability of the two-fluid model. 

Lastly, we consider the case where the superficial velocities 

are reduced so that the initial condition is in the well-posed sta- 

ble regime. Fig. 9 shows that, employing once again the central 

scheme, all eigenvalues have a negative real part. This indicates 

a stable solution, in agreement with its position in the flow pat- 

tern map. The eigenvalues are organized in two ellipses, which is 

typical for travelling waves that are damped in time. Note that all 

the eigenvalues fall on the imaginary axis when the source terms 

are switched off (giving the inviscid two-fluid model) and the cen- 

tral scheme is used; this means that the solution consists of pure 

travelling waves. Thus, the friction terms in the equations are re- 

sponsible for the damping of both the acoustic and the convective 

waves. 

4.2. Stability properties of the time integration methods 

For a stable time integration of the semi-discrete two-fluid 

model, the eigenvalues of the spatial discretization shown in 

Figs. 4 –9 should fall inside the stability region of the time in- 

tegration method. This stability region follows by application of 

the time integration method described by Eq. (31) to a linear test 

equation (as derived from Eq. (38) ): 

˙ v (t) = μv (t) , μ ∈ C , (39) 

and computing the amplification factor: 

G (z) = 

∣∣∣∣v n +1 

v n 

∣∣∣∣, z = μ�t. (40) 

This amplification factor indicates whether the numerical solution 

will grow in time. The exact solution to Eq. (39) is stable when 

Re( μ) < 0. A time integration scheme that inherits this property 

is called unconditionally stable or A -stable when stable solutions 

to the ODE (39) are obtained in a stable manner by the time in- 

tegration method, for all choices of �t . This can be expressed as: 

$ A $ -stable: G (z) ≤ 1 for Re (z) ≤ 0 . (41) 

Next to A -stability, the concept of L -stability is important since 

we are dealing with a stiff system. L -stability indicates whether 

unresolved (very high) frequencies are damped by the numerical 

method. In terms of the amplification factor G it reads 

$ L $ -stable: G (z) → 0 when Re (z) → −∞ . (42) 

Application of the time integration method expressed by Eq. 

(31) to the test Eq. (39) leads to the following equation for G : 

(a 0 − μ�tθ ) G 

2 + (a 1 − μ�t(1 − θ )) G + a 2 = 0 . (43) 

The amplification factor can be displayed as a contour in the com- 

plex z = μ�t space (see any standard textbook on time integra- 

tion methods, e.g. Butcher (2003) ; Hairer et al. (2008) ). Here we 

take a slightly different approach: we set a certain time step and 

display G in complex μ space instead of μ�t space. This allows 

direct comparison with the eigenvalues of the semi-discrete equa- 

tions (see case I in Fig. 4 ). For the specific case that the time step is 

based on the liquid velocity ( �t = 1 / 40 s), and not on the speed of 

sound, Figs. 10 a–10 c show the eigenvalue locations and the corre- 

sponding amplification factor. The vertical axis is on log-scale and 

only the positive imaginary part is shown (all eigenvalues appear 

as complex conjugates). Fig. 10 shows that all the three consid- 

ered methods are A -stable, since G < 1 in the left half part of the 

complex plane. Crank–Nicolson is the only method which will give, 

independent of �t , the correct unstable solutions to (39) for all z 

when Re( z ) > 0. For BDF2 and Backward Euler the time step has to 

be sufficiently small so that the eigenvalues move into the region 

G > 1. Since the two-fluid model with friction terms can exhibit 

unstable solutions ( Fig. 5 b), with eigenvalues in the right-half of 

the complex plane, this is a desirable feature. 
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Fig. 5. Details of Fig. 4 . 

Fig. 6. Case II: grid size effects. 

Fig. 7. Case III: compressibility effects. 

However, the amount of damping that Crank–Nicolson has on 

the acoustic modes is not favourable. Consider the largest μ (in ab- 

solute sense), then the amplification factors for �t = 1 / 40 s are: 

G exact = 0 . 8914 , G CN = 1 . 0 0 0 0 , (44) 

G BDF2 = 0 . 0304 , G BE = 0 . 00174 . (45) 

Although the amplification factor of Crank–Nicolson is closest to 

the exact solution (due to its lowest truncation error), it does not 

possess any damping. At a time step based on the liquid velocity, 

which in the 1 m long pipe can track the liquid velocity but not the 

acoustic velocity, the acoustic waves are not resolved and damping 

is a necessity to prevent unphysical oscillations. 
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Fig. 8. Eigenvalues for case IV: upwind discretization. 

Fig. 9. Eigenvalues for case V: well-posed stable. 

5. Von Neumann analysis on the fully discrete equations 

5.1. Introduction 

In the previous sections the eigenvalues of the continuous and 

semi-discrete equations were discussed. In the fully discrete case 

a stability analysis can be performed that is very similar to the 

one applied to the continuous case ( Section 2.3 ). This is known as 

von Neumann stability analysis ( Morton and Mayers, 2005 ), which 

can be seen as the discrete counterpart of the Kelvin–Helmholtz 

stability analysis ( Akselsen, 2016 ). It is applicable in case of lin- 

ear, constant coefficient partial differential equations with periodic 

boundary conditions. We employ therefore the linearized equa- 

tions (37) in order to be able to apply the von Neumann analy- 

sis. As an example, we first consider the equations that result from 

applying the Backward Euler method: 

˜ U 

n +1 − ˜ U 

n 

�t 
= J ̃  U 

n +1 , (46) 

where ˜ U contains the conservative variables defined on the stag- 

gered grid as shown in Fig. 3 . 

In the von Neumann analysis, which is essentially a discrete 

Fourier analysis ( Morton and Mayers, 2005 ), the solution is as- 

sumed to consist of a finite sum of discrete waves, each with a 

different wave number: 

˜ U 

n 
i = 

∑ 

m 

(V 

n 
i ) m 

, (47) 

(V 

n 
i ) m 

= e Ik m s i v n m 

= e Ik m s i G 

n 
m ̂

 v m 

, (48) 

where m indicates the mode number, k m 

the wave number of 

mode m , G ∈ C 

q ×q the amplification matrix of mode m , and 

ˆ v m 

∈ 

C 

q the Fourier coefficients of mode m of the initial condition. q = 4 

is the dimension of the problem. The fact that we employ an am- 

plification matrix is similar to the approach followed by Fullmer 

et al. (2014) , but slightly different from the scalar amplification fac- 

tor considered by Liao et al. (2008) . We will comment later on the 

relation between the two. Note that for simplified problems (such 

as a scalar convection-diffusion equation), the matrix J is circulant, 

which means that there is a direct connection between the discrete 

Fourier transform and the eigendecomposition (38) . Unfortunately, 

the spatially discretized two-fluid model equations do not result in 

a matrix with circulant structure. 

Since Eq. (46) is linear it suffices to consider a single mode 

(V 

n 
i 
) m 

(consisting of solution components at grid points i and 

i + 1 / 2 due to the staggering) to analyse the stability properties of 

the discretization method: ⎛ 

⎜ ⎝ 

V 1 ,i 

V 2 ,i 

V 3 , i +1 / 2 

V 4 , i +1 / 2 

⎞ 

⎟ ⎠ 

n +1 

m 

−

⎛ 

⎜ ⎝ 

V 1 ,i 

V 2 ,i 

V 3 ,i +1 / 2 

V 4 ,i +1 / 2 

⎞ 

⎟ ⎠ 

n 

m 

= �t 

N ∑ 

j=1 

J i j 

⎛ 

⎜ ⎝ 

V 1 , j 

V 2 , j 

V 3 , j+1 / 2 

V 4 , j+1 / 2 

⎞ 

⎟ ⎠ 

n +1 

m 

. (49) 

Since J contains the spatial discretization it is very sparse. Substi- 

tuting the Fourier expansion (48) into Eq. (49) , omitting the sub- 

script m , and dividing each equation by the complex exponential 
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Fig. 10. Amplification factor G for different time integration methods when superimposed on the eigenvalues of Fig. 4 . Contour lines are 0.05 apart; thick black lines indicate 

G = 1 . 

in space, yields the compact expression ⎛ 

⎜ ⎝ 

v 1 ,i 
v 2 ,i 

v 3 , i +1 / 2 

v 4 , i +1 / 2 

⎞ 

⎟ ⎠ 

n +1 

−

⎛ 

⎜ ⎝ 

v 1 ,i 
v 2 ,i 

v 3 ,i +1 / 2 

v 4 ,i +1 / 2 

⎞ 

⎟ ⎠ 

n 

= �tM(e Ik m s i ) 

⎛ 

⎜ ⎝ 

v 1 ,i 
v 2 ,i 

v 3 ,i +1 / 2 

v 4 ,i +1 / 2 

⎞ 

⎟ ⎠ 

n +1 

. (50) 

Eq. (50) is useful in a fully analytical point approach, whereas Eq. 

(49) is the equation that can be used when performing symbolic 

operations in our coding environment. The notation M(e Ik m s i ) in- 

dicates the action of the spatial discretization on a complex expo- 

nential and is called the discrete Fourier symbol; it follows when 

substituting a discrete exponential in the discretization method 

and subsequently dividing it by this discrete exponential. For ex- 

ample, if a central discretization is used for the convective term in 

the mass equation for the gas, i.e. 

V 

n +1 
1 ,i 

− V 

n 
1 ,i = −�t 

V 

n +1 
3 ,i +1 / 2 

− V 

n +1 
3 ,i −1 / 2 

�s 
, (51) 

then the Fourier representation is 

v n +1 
1 ,i 

− v n 1 ,i = −�t 
v n +1 

3 
e Ik m s i +1 / 2 − v n +1 

3 
e Ik m s i −1 / 2 

e Ik m s i �s 
, (52) 

and the matrix entry is 

M 1 , 3 = − I sin (k m 

�s/ 2) 

�s/ 2 

. (53) 

The full matrix is similar to the one presented by Liao et al. (2008) , 

but much more elaborate due to the fact that we employ a 4 × 4 

system including compressibility effects. In Section 5.3 a method 

will be proposed which circumvents the explicit formulation of 

this matrix. We write Eq. (50) in the following generic form, us- 

ing a notation similar to Fullmer et al. (2014) : 

N v n +1 = O v n , or v n +1 = N 

−1 O v n , (54) 

where for Backward Euler: N = I − �tM, and O = I. The amplifica- 

tion matrix is given by 

G = N 

−1 O . (55) 

Stability depends on the spectral radius of G , i.e. the maximum ab- 

solute value of the (complex) eigenvalues λG of G . These eigenval- 

ues λG follow from the eigenvalue problem 

det (NλG − O ) = 0 , (56) 

and a scalar amplification factor can be defined as G = max i | λG,i | . 
The amplification matrix G is the one used by Fullmer et al. (2014) , 

whereas the amplification factor λG is used by Liao et al. (2008) . G 

contains the growth and frequency components of all waves, which 

allows the reconstruction of the full solution, which is not possi- 

ble with λG . In Section 5.3 we will obtain the amplification factors 

from simulation data only, and this requires the use of the full G . 

Once the amplification matrix G and the Fourier coefficients v 

of the initial condition are known, the solution at a time instance 

t n in terms of Fourier coefficients is obtained from 

v n m 

= G 

n 
m ̂

 v m 

, or v n +1 
m 

= G m 

v n m 

. (57) 

G contains information about the growth of the solution (diffusive 

errors), and about the shift (dispersive errors) of the solution in 

time. 
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5.2. Extension to BDF2 and Crank–Nicolson 

For the BDF2 scheme, Eq. (50) becomes 

N v n +1 + O v n + P v n −1 = 0 , (58) 

where N = a 0 I − �tM, O = a 1 I, P = a 2 I. This equation can be writ- 

ten as (
a 0 I − �tM 0 

0 I 

)(
v n +1 

v n 

)
= 

(
−a 1 I −a 2 I 

I 0 

)(
v n 

v n −1 

)
, 

or: ˆ N w 

n +1 = 

ˆ O w 

n , (59) 

from which the definition of G follows: 

G = 

ˆ N 

−1 ˆ O = 

(
−a 1 (a 0 I + M) −1 −a 2 (a 0 I + M) −1 

I 0 

)
. (60) 

This is a particular case of the more generic linear multistep meth- 

ods analysed in Hundsdorfer and Verwer (2007) . The eigenvalues 

of G follow from the determinant equation 

det ( ̂  N λG − ˆ O ) = det ((a 0 I − �tM) λ2 
G + a 1 λG I + a 2 I) = 0 . (61) 

Note the similarity with the scalar amplification Eq. (43) . When 

including the Crank–Nicolson method this can be generalized to 

det 

(
a 0 + a 1 G 

−1 + a 2 G 

−2 

�t 
I −

(
θM + ( 1 − θ ) MG 

−1 
))

= 0 , (62) 

where we write G instead of λG . 

5.3. Amplification factor from simulation data 

In this section we propose an alternative, novel method to ob- 

tain the von Neumann amplification factors without the need of 

doing symbolic manipulations, as this can be cumbersome for non- 

linear models with elaborate closure relations, such as in the case 

of the two-fluid model. The idea is to perform a simulation with 

a small-amplitude harmonic as initial condition and to derive the 

amplification matrix by comparing the Fourier transform of the so- 

lution at a certain time level to the Fourier transform of solutions 

at previous time levels. We call this the automatic von Neumann 

analysis, in contrast to the classical symbolic von Neumann analy- 

sis that uses symbolic manipulations. First, the Fourier coefficients 

v m 

of mode m are determined from the numerical solution V by a 

discrete Fourier transform, similar to Eq. (48) : 

v n m 

= 

∑ 

i 

V 

n 
i e Ik m s i �s i . (63) 

Given the solutions v n +1 and v n , the coefficients of the matrix can- 

not be determined from (57) , since we have q equations for q 2 un- 

knowns. We therefore perform q time steps and write ⎛ 

⎝ v n +1 
m 

v n m 

. . . v n +2 −q 
m 

⎞ 

⎠ = 

˜ G m 

⎛ 

⎝ v n m 

v n −1 
m 

. . . v n +1 −q 
m 

⎞ 

⎠ , 

(6 4) 

or 

Q 

n +1 
m 

= 

˜ G m 

Q 

n 
m 

, (65) 

from which the matrix ˜ G m 

can be readily determined: 

˜ G m 

= Q 

n +1 
m 

(Q 

n 
m 

) −1 . (66) 

We write ˜ G instead of G to distinguish between the symbolic and 

the automatic von Neumann analysis. For the BDF2 scheme, ˜ G ∈ 

C 

2 q ×2 q , and the system of equations is extended to 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

v n +1 
m 

v n m 

. . . v n +2 −2 q 
m 

v n m 

v n −1 
m 

. . . v n +1 −2 q 
m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

˜ G m 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

v n m 

v n −1 
m 

. . . v n +1 −2 q 
m 

v n −1 
m 

v n −2 
m 

. . . v n −2 q 
m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

(67 ) 

In order to construct Q 

n +1 
m 

and Q 

n 
m 

, it suffices to take 2 q time steps 

and to store the Fourier coefficients at each time step (of course, 

one can also store the entire solution and calculate the Fourier 

coefficients afterwards). Once ˜ G is determined, the absolute value 

of its eigenvalues can be investigated. This has to be done for all 

wavenumbers, either by rerunning the simulation with an initial 

condition for each different wave, or performing one simulation 

with a single initial condition composed of all wavenumbers. This 

is a simple and fast procedure given that only 2 q = 8 time steps 

are necessary to reconstruct ˜ G . In practice, we have noted that due 

to the high condition number of Q 

n inaccurate results are some- 

times obtained. This can be resolved by increasing the number of 

time instances in the analysis to for example 4 q , which works well 

in our simulations. The matrices Q 

n and Q 

n +1 then become non- 

square and the solution of (67) should be interpreted in a least- 

squares sense. 

To summarize, in this section we have explained two tech- 

niques, symbolic and automatic von Neumann analysis. This will 

be demonstrated for the Kelvin–Helmholtz instability case in 

Section 6.1 . The first is the classic analysis: substitution of a Fourier 

series in the discretization matrix and investigating the resulting 

amplification matrix and its eigenvalues. We have done this by 

using the symbolic toolbox of Matlab and by direct substitution 

of the complex exponentials into our code to arrive at symbolic 

expressions for the amplification matrix. The second technique is 

based on substituting sinusoidal wave perturbations in the initial 

conditions, and running the code for several time steps. This can be 

used to check the outcome of the first technique, but also to obtain 

amplification matrices for black-box solvers (for instance commer- 

cial codes). 

6. Results for various test cases 

In this section we report the results of four test cases. The first 

three are related to the Kelvin–Helmholtz instability: the first one 

considers steady state flow with a small but unstable perturbation 

in a single wave to validate the linear stability (von Neumann) and 

accuracy of the time integration methods. The second case con- 

siders the same instability but with a much larger perturbation 

to study the nonlinear wave growth and the identification of ill- 

posedness. The third case considers stiffness by including pertur- 

bations in both the convective and acoustic waves, and we inves- 

tigate how the time integrators resolve the acoustics. Lastly, in the 

fourth test case the propagation of a hold-up wave is investigated, 

and all the previously investigated concepts of stability, accuracy, 

ill-posedness and resolution of acoustics are considered. The four 

cases will be referred to as A, B, C, and D, respectively. 
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6.1. Kelvin–Helmholtz: Linear wave growth 

6.1.1. Modified wave number analysis 

We consider the Kelvin–Helmholtz instability for the test prob- 

lem described in Section 2.4 and with the conditions given in 

Table 1 . The exact solution to the linearized system of equations 

(19) is given by 

W (s, t) = W 0 + 

∑ 

j 

Re 
[
ε j e 

I(ω j t−ks ) 
]
. (68) 

The initial condition is obtained by a small perturbation in the liq- 

uid hold-up: ˜ αl = 10 −6 . The perturbation vector ε 3 is taken to be 

the eigenvector associated to the angular frequency ω 3 ( Liao et al., 

2008 ): 

ε 3 = 10 

−4 

⎛ 

⎜ ⎝ 

1 · 10 

−2 

7 . 005 · 10 

−3 − 1 . 1025 · 10 

−3 I 

2 . 497 · 10 

−1 + 1 . 186 · 10 

−3 I 

−3 . 619 − 6 . 550 · 10 

−1 I 

⎞ 

⎟ ⎠ 

. (69) 

First we perform a consistency check: simultaneous grid and 

time step refinement for a fixed wave number k = 2 π with 

C l ≈ 1 → �t ≈ �s = 

1 

N 

, (70) 

where C is the dimensionless time step, similar to the CFL num- 

ber (which strictly is a stability condition). k = 2 π is the smallest 

wave number that can presented on our periodic simulation do- 

main. The exact growth rate, Im (ω 3 ) = −0 . 35 , is compared to the 

numerically computed growth rates as obtained from the symbolic 

and the automatic von Neumann analysis: 

ω vN = 

ln ( min ( Im ( λ(G m 

) ) ) ) 

�t 
, ˜ ω vN = 

ln 

(
min 

(
Im 

(
λ( ̃  G m 

) 
)))

�t 
. 

(71) 

Even though only a single wave is triggered due to the initial per- 

turbation in ε 3 , the discrete amplification matrix G still has four 

eigenvalues. This is because the Fourier transform of the initial 

condition does not consist of a single wave, but of four waves. We 

are interested in the one that is largest in magnitude, since it indi- 

cates whether the numerical solution is stable or not. However, in 

contrast to the classical von Neumann analysis, in this study un- 

stable solutions are not necessarily unwanted, since the differen- 

tial equation itself has an unstable behaviour ( Fullmer et al., 2014 ), 

which might be associated to slug flow. 

Fig. 11 shows the comparison of ω 3 to ω vN and ˜ ω vN , for dif- 

ferent grids and discretization schemes. Fig. 11 a shows that all 

time discretization methods converge to the exact growth rate 

upon grid refinement. However, for coarse grids, the Backward 

Euler method predicts a positive ω (damped solutions), whereas 

BDF2 and Crank–Nicolson correctly predict growing solutions (al- 

beit with a reduced growth rate). In Fig. 11 b this is made more 

quantitative by computing the error of the discrete models com- 

pared to the exact value: 

η = | ω 3 − ω vN | . (72) 

It is clear that the use of Backward Euler or the use of the first 

order upwind scheme limits the accuracy to first order. Fig. 11 b 

also indicates that for very fine meshes there is a slight discrep- 

ancy between the symbolic and automatic von Neumann analysis. 

This is related to the matrix inversion required for the reconstruc- 

tion (66) in the automatic von Neumann analysis, which can suf- 

fer from numerical inaccuracies. For the main purpose of the von 

Neumann analysis, namely investigating the behaviour of the nu- 

merical growth rate or dispersion error as function of phase angle 

( φ = k �s ), this is not an issue. 

Secondly, we investigate how waves grow in time, depending 

on the wave number k and the spatial and temporal discretization. 

The number of grid points is fixed ( �s = 1 / 160 m). The shortest 

wavelength that can be represented on the grid is 2 �s (Nyquist 

limit), corresponding to the wavenumber k = π/ �s, and phase an- 

gle φ = π . The wave number analysis provides insight into how 

well waves of different frequency are resolved by the time inte- 

gration method. It is similar to the analysis for spatial discretiza- 

tion methods done by Liao et al. (2008) . Fig. 12 a shows the growth 

rate G = max | λ(G) | which compares well with the results of Liao 

et al. (2008) . In addition, Fig. 12 b shows the growth rate ω vN in- 

stead of the amplification factor, which includes the exact solution 

(denoted by the black dashed line). This line corresponds to the 

dashed line previously shown in Fig. 2 b. It is perhaps not surpris- 

ing to see that Crank–Nicolson (‘central in time’) with a central 

scheme in space leads to an accurate prediction of G . In fact, when 

performing the analysis without friction terms (in the well-posed 

stable regime), the Crank–Nicolson / central combination leads to 

G = 1 independent of the wavenumber . This is a well-known result 

for advection equations and also holds for the two-fluid model 

without source terms. However, the presence of source terms leads 

to unstable solutions; their growth rate can be captured by the nu- 

merical scheme though, with the accuracy of the time integration 

method. Furthermore, G = 1 does not mean that the numerical is 

exact, but that there are only dispersive errors and no diffusive er- 

rors. 

For each wavenumber k the corresponding growth rate ω 3 

is negative. This agrees with the stability-hyperbolicity theorem 

( Prosperetti and Tryggvason, 2007 ) which says that the neutral sta- 

bility limit is independent of the wavenumber. The case of k = 2 π
from Fig. 11 is highlighted as the black vertical line in Fig. 12 . For 

φ < 10 −2 all numerical methods perform well - this corresponds 

to long, low frequency waves which are well resolved. For larger 

φ the numerical damping of all methods becomes apparent. The 

kinks in the amplification factor and the growth rate are due to 

the fact that a different eigenvalue (see Eq. (71) ) becomes domi- 

nant. 

6.1.2. Linearized discrete flow pattern map prediction 

In this section we propose a novel way for displaying the 

performance of numerical methods, which we call ‘Discrete Flow 

Pattern Maps’ (DFPM), that uses the growth rate determination 

method developed for the automatic von Neumann analysis ( Eq. 

(66) ). Whereas traditional flow pattern maps, such as the one in 

Fig. 1 , display stable and unstable regimes based on the properties 

of the differential equations, the DFPM displays the effective stabil- 

ity regions that result when the discrete equations are solved, with 

a certain numerical method and a certain grid and time resolution. 

Such a map is of crucial importance as an indication whether a dis- 

cretization method is able to correctly capture the well-posed un- 

stable regime (and the potential transition to slug flow) or whether 

numerical diffusion overwhelms the physical growth of instabili- 

ties. 

The DFPM can be constructed in the same way in which we 

constructed the flow pattern map in Fig. 1 . We employ a sequence 

of superficial liquid and gas velocities, solve the discrete equations 

with a small perturbation as initial condition and determine the 

growth rate ˜ ω vN from (66) and (71) . The stability boundary is given 

by Im ( ̃  ω vN ) = 0 . Fig. 13 a shows the VKH stability boundary for 

Backward Euler and BDF2 for two different grids (and associated 

time steps). It can be seen that BDF2 captures the exact stabil- 

ity boundary very accurately on all grids. On the other hand, the 

effective stability region given by Backward Euler is much larger 

(note the log scale) than the actual stability region of the differen- 

tial equations, due to the large amount of artificial diffusion added 

by Backward Euler. For example, for N = 40 , and at a superficial 



B. Sanderse et al. / International Journal of Multiphase Flow 95 (2017) 155–174 167 

Fig. 11. Comparison of the growth rate and the error in the growth rate for different discretization methods as a function of the grid size. Squares: automatic von Neumann 

analysis, lines: symbolic von Neumann analysis. Dashed lines: first order upwind, solid lines: second order central. 

Fig. 12. Comparison of the growth rate and the error in the growth rate for different discretization methods as a function of the wave number. Dashed lines: first order 

upwind, solid lines: second order central. 

Fig. 13. Discrete flow pattern maps (DFPM). 
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gas velocity of u sg = 10 m/s, the two-fluid model predicts growing 

waves at a superficial liquid velocity of u sl = 0 . 15 m/s, but with 

Backward Euler the wave growth is only apparent when the super- 

ficial liquid is increased to u sl = 0 . 6 m/s (already at the ill-posed 

boundary). 

Any simulation starting above the ill-posedness boundary will 

directly be marked as ill-posed, because our ill-posedness indica- 

tor is based on the evaluation of the eigenvalues of the differen- 

tial equations, see Eq. (12) . However, it is possible that, due to 

nonlinear effects, simulations that start in the well-posed unsta- 

ble regime grow into the ill-posed regime. This is investigated in 

the next section. 

6.2. Kelvin–Helmholtz: Nonlinear wave growth 

In this section the simulation from Section 6.1 is repeated, but 

with a larger perturbation: ˜ αl = 10 −2 , and 

˜ ε 3 = 10 4 ε 3 . This causes 

the simulation to quickly enter the nonlinear regime, in which 

waves steepen, possibly leading to slug formation but potentially 

also to ill-posedness. Based on the results of the previous section, 

we select BDF2 with N = 80 to assess the growth of initial per- 

turbations into the nonlinear regime and whether this leads to 

ill-posed results. Note that this is different from a previous paper 

( Hendrix et al., 2016 ), in which we have assessed the ‘time to ill- 

posedness’ as a metric to compare different time integration meth- 

ods. In the present study the focus is on whether well-posed un- 

stable solutions can be obtained for long time integration periods. 

Similar to the linear case, we perform simulations with the 

two-fluid model with a central discretization for a range of superfi- 

cial gas and liquid velocities but now until t = 100 s and only with 

a central discretization of the convective terms. Ill-posedness is in- 

vestigated by checking if the eigenvalues of the differential equa- 

tion are real or complex at the conditions predicted by the nu- 

merical simulation. If a complex eigenvalue occurs at any point in 

space or time the corresponding point in the flow pattern map is 

marked ill-posed. Fig. 13 b shows that the resulting numerical ill- 

posedness boundary has shifted significantly into the well-posed 

unstable regime as compared to the ill-posedness boundary of the 

differential equations (indicated by IKH in Fig. 13 b). It appears that 

a large part of the well-posed unstable regime of the flow pattern 

map gives ill-posed solutions when actual numerical simulations are 

performed . An example of a simulation which turns ill-posed is 

case A in Fig. 13 b, which corresponds to the conditions studied in 

Section 6.1 for linear perturbations. The nonlinear behaviour of the 

hold-up fraction αl in space and time is shown in Fig. 14 for this 

case. The solution becomes ill-posed already after approximately 5 

s. The liquid hold-up fraction as a function of time at s = 1 m is 

shown in Fig. 15 a. 

In addition to case A, three other cases (B, C, and D) are indi- 

cated in Fig. 13 b which exhibit qualitatively different solution be- 

haviour. Case B in Fig. 15 b starts in the well-posed unstable regime, 

like case A, but after initial growth (as predicted by linear theory) 

stabilizes and forms a wave with a constant amplitude and fre- 

quency. Its shape and position in the flow pattern map indicate 

that this could be a so-called continuous ‘roll wave’: a particu- 

lar solution to the two-fluid model which is constant in a refer- 

ence frame moving with the flow ( Barnea and Taitel, 1993; Holmås, 

2010; Johnson, 2005 ). To check that this is not a numerical artefact, 

we have confirmed the roll wave presence with a simulation on a 

much finer grid ( N = 640 ). Case C and D are both in the well-posed 

stable regime, where initial perturbations are damped according to 

the linear theory. This happens indeed for case D. However, for 

case C, the damping is very small ( Im (ω 3 ) = 0 . 01 ) and nonlinear 

effects lead to wave growth and the appearance of new harmon- 

ics. The oscillation frequency is now lower because the real part of 

ω 3 has decreased. Within the time period of 100 s displayed in the 

Fig. 14. Solution in space and time for case A, simulated with BDF2: well-posed 

unstable solution becoming ill-posed (indicated in red). The blue curve is shown 

in Fig. 15 a. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

plot it is unclear if the wave damps out. Continued simulation un- 

til 10 0 0 s reveals that the wave eventually damps out, like in case 

D. 

We note that the current simulation results are obtained based 

on a number of simplifications compared to pipeline simulations 

on actual geometries. First, we employed initial perturbations ac- 

cording to the eigenvector ε 3 . This means that the perturbations 

immediately grow according to linear theory until nonlinear ef- 

fects take over. Second, we used a single wave with wavenumber 

k = 2 π . Other wavenumbers will have different frequencies and 

growth rates and can lead to qualitatively different behaviour (al- 

though the VKH and IKH boundaries are independent of wavenum- 

ber). Furthermore, the periodic boundary conditions and size of the 

domain limit the frequencies that can be represented on the do- 

main. Lastly, we note the black region in Fig. 13 b, which indicates 

the region where the liquid reaches the top of the pipeline. This 

is not necessarily ill-posed, but outside the scope of our investiga- 

tion. 

6.3. Kelvin–Helmholtz: Acoustic wave problem 

In this test the Kelvin–Helmholtz instability problem from 

Section 6.2 is extended to take into account acoustic waves, which 

were not present in previous studies (e.g. Fullmer et al., 2014; Liao 

et al., 2008 ) as these used the incompressibility assumption. We 

propose this acoustic wave problem as test case for pipeline sim- 

ulation codes that solve the compressible two-fluid model. In or- 

der to demonstrate the acoustic filtering capabilities of BDF2 we 

choose two waves (see Eq. (23) ): (i) a slow, right moving, un- 

stable (growing) wave with frequency ω 3 = 8 . 48 − 0 . 35 I, and (ii) 

a fast, left moving, stable (damped) wave with frequency ω 1 = 

−1758 . 05 + 4 . 51 I. This extends Section 6.1 where only a single 

wave was considered. The hold-up fraction for the slow wave is 

again 10 −6 , whereas the hold-up fraction for the fast wave is 10 −2 . 

As before, the perturbations ε 1 and ε 3 are taken as the eigenvec- 

tors that follow from the dispersion analysis: 

ε 1 = 

⎛ 

⎜ ⎝ 

1 · 10 

−6 

−5 . 616 · 10 

−4 + 1 . 435 · 10 

−6 I 

−4 . 624 · 10 

−1 + 4 . 876 · 10 

−3 I 

1 . 577 · 10 

2 − 1 . 276 I 

⎞ 

⎟ ⎠ 

, 
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Fig. 15. Numerical solutions for cases A–D as indicated in Fig. 13 b, simulated using BDF2. 

ε 3 = 

⎛ 

⎜ ⎝ 

1 · 10 

−2 

7 . 005 · 10 

−3 − 1 . 1025 · 10 

−3 I 

2 . 497 · 10 

−1 + 1 . 186 · 10 

−3 I 

−3 . 619 − 6 . 550 · 10 

−1 I 

⎞ 

⎟ ⎠ 

. (73) 

The particular choice for hold-up fractions leads to the following 

combined wave system: 

• A slow, right moving, growing liquid hold-up fraction wave. 
• A fast, left moving, pressure wave, which is damped in time, so 

that after long periods a slow, right moving, growing pressure 

wave becomes dominant. 
• A slow, right moving, growing wave in the liquid velocity, per- 

turbed by a smaller amplitude, fast left moving wave, which is 

damped out. 
• A fast, left moving, damped wave in the gas velocity, per- 

turbed by a smaller amplitude, slow right-moving, growing 

wave, which becomes dominant for long periods. 

A qualitative impression of the behaviour of the numerical solu- 

tion for short and long time periods, for different integration meth- 

ods, is given in Figs. 16 –18 . A central scheme has been used to dis- 

cretize the convective terms. The short time scale is closely related 

to the speed of sound in the gas and we define a dimensionless 

time step of 1 
2 based on this time scale: 

C c = 

1 

2 

→ �t = 

1 

2 

�s 

c g 
≈ 4 . 26 · 10 

−5 s , t end ,c = 400�t ≈ 0 . 017 s . 

(74) 

The long time period is based on the initial liquid velocity, and we 

define a dimensionless time step and end time based on this time 

scale: 

C l = 1 → �t = 

�s 

u l 

= 0 . 025 s , t end ,l = 0 . 25 s . (75) 

Note that the gas velocity is around 14 m/s, which gives a dimen- 

sionless time step based on the gas velocity of approximately 14. 

First, we investigate the resolution of the acoustic waves on the 

short time scale. Fig. 16 displays the solution obtained with BDF2 

until t end, c . The liquid hold-up fraction αl clearly shows the slow 
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Fig. 16. Solution of acoustic wave problem in s − t diagrams. BDF2, C c = 0.5. 

right moving wave associated with ω 3 . The pressure, on the other 

hand, displays the fast wave moving to the left. The liquid and 

gas velocity show predominantly the left and right moving wave, 

respectively, but with perturbations in the other wave. The solu- 

tion is quantitatively the same as the solutions obtained with the 

Crank–Nicolson scheme and with the Runge–Kutta method (refer- 

ence solution) at this C c = 

1 
2 : both BDF2 and Crank–Nicolson are 

well able to resolve acoustic waves at a time step based on the 

speed of sound in the gas. 

Secondly, we increase the time step and take C l = 1 , which is 

common in many practical computations in which the accurate 

resolution of acoustic waves is not important. Fig. 17 shows that 

BDF2 effectively kills the acoustic waves during the first time steps, 

and only the hold-up wave remains. This corresponds to the ampli- 

fication factor (45) and the results in Fig. 10 b. On the other hand, 

Fig. 18 shows that when Crank–Nicolson is employed with this in- 

creased time step, a non-physical oscillation in the pressure ap- 

pears which is not damped in time. This oscillation also becomes 

apparent in the gas velocity and to a lesser extent in the liquid 

velocity. The hold-up wave is hardly affected. Therefore, although 

Crank–Nicolson gives stable results (it is an A -stable method), it 

does not damp out unresolved transients (it is not L -stable). This 

confirms the results from Eq. (44) and in Fig. 10 c. 

Fig. 19 compares the results for different time integration meth- 

ods in a single plot at t = 1 s and C l = 1 . The reference solution has 

been obtained with the explicit Runge–Kutta method with C c = 0 . 5 

and its temporal error can be considered negligible. The BDF2 and 

CN schemes are both giving an accurate prediction for the liquid 

hold-up fraction and the liquid velocity. However, in both the pres- 

sure and the gas velocity, the prediction of Crank–Nicolson is very 

far off. This renders the Crank–Nicolson scheme essentially useless 

in these situations. Slightly increasing the value of θ (for example 

to 0.55), will improve the long time behaviour since some damping 

is introduced. However, this does not work on short time scales, 

and comes at a price of reduced accuracy. Backward Euler does not 

suffer from oscillations, though it has severely damped the ampli- 

tude of the wave. Overall, BDF2 performs best for this test case 

since it has the best balance between acoustic damping properties 

and accuracy. 

7. Conclusions 

In this paper we have analysed several time integration meth- 

ods for the compressible two-fluid model with the goal to simulate 

stratified wavy flow and slug flow in pipelines in a so-called ‘slug 

capturing’ approach. The study was focussed on obtaining insight 

into the numerical pitfalls and requirements. Thereto a theoretical 

analysis on the differential equations and the discretized equations 

was given, in particular with respect to their stability properties. 

The analysis has been demonstrated for a number of test cases. 

We conclude that the BDF2 method is a robust time integra- 

tor for the two-fluid model and it outperforms the commonly 

used Backward Euler method and the second order Crank–Nicolson 

method. This is due to a combination of its second order accu- 

racy, A -stability and L -stability. These properties make that BDF2 

can be used for the time integration of unsteady problems with a 

CFL number of 1 based on the liquid velocity, while not suffering 

from numerical oscillations that arise from acoustic wave propaga- 

tion. 

To facilitate the comparison and understanding of the time in- 

tegration methods, several techniques have been proposed which 

have not been applied to the two-fluid model before. First, the 

eigenvalues of the spatial discretization have been investigated and 

it is shown how the stiffness depends linearly on the speed of 
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Fig. 17. Solution of acoustic wave problem in s − t diagrams. BDF2, C l = 1. 

Fig. 18. Solution of acoustic wave problem in s − t diagrams. Crank–Nicolson, C l = 1 . 
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Fig. 19. Comparison of time integration methods at t = 1 s for double wave problem with C l = 1 . 

sound and on the number of grid points. The central scheme is 

more accurate than the upwind scheme and captures the unstable 

region accurately. The comparison of the stability regions of the 

time integration methods shows the difference in damping prop- 

erties between Backward Euler or BDF2 and Crank–Nicolson. Sec- 

ond, a new automatic von Neumann analysis technique has been 

developed as tool for direct evaluation of the stability of the dis- 

crete models by running a computer code without requiring sym- 

bolic manipulations. This makes it very flexible since it can be di- 

rectly applied when more physics (e.g. surface tension or axial dif- 

fusion) or other spatial discretization methods are included. Third, 

we have proposed the use of Discrete Flow Pattern Maps (DFPM) to 

indicate to what extent discretization methods (for a certain choice 

of the number of grid points and the size of the time step) are able 

to reproduce the flow pattern maps that are based on the stability 

of the differential equations. 

Several test cases have been used in which these techniques 

are used to compare BDF2 to other time integration methods: lin- 

ear, nonlinear and acoustic Kelvin–Helmholtz instabilities. Accuracy 

tests and von Neumann analysis have shown its second order accu- 

racy and comparable stability properties as Crank–Nicolson. BDF2 

is slightly more diffusive than Crank–Nicolson but much more ac- 

curate than Backward Euler. The acoustic wave test shows that 

BDF2 is able to give accurate solutions, whether acoustic waves are 

resolved or not, whereas Crank–Nicolson leads to non-physical so- 

lutions. The ability of BDF2 to handle unresolved transients will 

also be important when dealing with other types of stiffness, for 

example caused by terms with small time scales (e.g. phase tran- 

sition) or algebraic equations (e.g. the drift-flux model). 

The Discrete Flow Pattern Map reveals that the effective well- 

posed unstable region is well captured by BDF2 but completely 

missed by Backward Euler, at least for the considered grid and time 

step resolutions. Simulations in the nonlinear regime furthermore 

have indicated that ill-posedness can occur when starting from the 

unstable regime. The implication is that the actual well-posed un- 

stable regime for nonlinear simulations can be much smaller than 

the theoretical one, which can limit the application of the two- 

fluid model for simulating the stratified-slug flow transition. 

We note that the DFPM as presented here is based on simula- 

tions in an idealized setting, with a simple geometry, initial condi- 

tions, and boundary conditions. In future work we plan to employ 

the BDF2 method to further study the formation of slug flow and 

ill-posedness issues under actual pipeline conditions. 

In this paper we have relied on relatively standard spatial dis- 

cretization techniques, since the focus is on the time discretization 

methods. Improvements in the spatial discretization (for example a 

method based on a Roe linearization) are needed to resolve discon- 

tinuities accurately and to capture the transition to locally single 

phase (slug) flow. Since the analysis in this paper does not require 

special properties of the spatial scheme, we expect that BDF2 can 

be applied to such discretization schemes without difficulty. 
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Fig. A.20. Stratified flow layout and definitions. 

Appendix A. Two-fluid model details 

A.1. Geometry 

The following geometric identities are used to express the wall 

perimeters, interfacial perimeter, and liquid height in terms of the 

wetted angle γ l ( Fig. A.20 ): 

P gl = D sin γl , (A.1) 

P l = D γl , (A.2) 

P g = D ( π − γl ) , (A.3) 

h = 

1 

2 

D ( 1 − cos γl ) . (A.4) 

We use Biberg’s approximation ( Biberg, 1999 ) to express αl in 

terms of γ l (this avoids the iterative solution of a nonlinear equa- 

tion): 

γl = παl + 

(
3 π

2 

) 1 
3 
(

1 − 2 αl + α
1 
3 

l 
− α

1 
3 

g 

)
. (A.5) 

A.2. Friction models 

The wall (subscript w ) and interfacial (subscript gl ) shear stress 

are expressed by the Fanning friction factor definition: 

τ = 

{ 

1 
2 

f βρβu β | u β | wall 

1 
2 

f gl ρg ( u β − u γ ) | u β − u γ | interfacial 
(A.6) 

The friction factor f β of phase β with the pipe wall is modeled 

with the Churchill relation ( Churchill, 1977 ): 

f β = 2 

( (
8 

Re β

)12 

+ ( A + B ) 
−1 . 5 

) 

1 
12 

, (A.7) 

A = 

⎛ 

⎝ 2 . 457 ln 

⎛ 

⎝ 

( (
7 

Re β

)0 . 9 

+ 0 . 27 

ε

D hβ

) −1 
⎞ 

⎠ 

⎞ 

⎠ 

16 

, (A.8) 

B = 

(
37530 

Re β

)16 

. (A.9) 

Here ε is the hydraulic pipe roughness, Re β is the Reynolds num- 

ber, 

Re β = 

ρβu βD hβ

μβ
, (A.10) 

and D h β is the hydraulic diameter: 

D hβ = 

{ 

4 A l 
P lw 

if β = l 

4 A g 
P gw + P gl 

if β = g 
(A.11) 

The interfacial friction factor f gl is calculated by ( Liao et al., 2008 ): 

f gl = max { f g , 0 . 014 } . (A.12) 
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Additional work and comments to Paper 4 

 

For the simulations in this paper, a relatively simple and lightweight implementation of the 

two-fluid model was created in Matlab without any tracking functionality. The reason for 

doing this is that the Sluggit model is mainly implemented with a semi-implicit discretization, 

with an analytical Jacobian. It is also possible to do fully implicit simulations with Sluggit, 

but this functionality was developed along with this paper and is not as well tested. The 

simulations in this paper are focused on a fully implicit discretization in a straight pipe and a 

periodic domain. Consequently, it was faster and simpler to create a lightweight Matlab model 

for the simulations for this study. 

The Matlab model is made for a single pipe with a constant inclination, with periodic 

boundary conditions. The model can use the same spatial and temporal schemes as described 

in this thesis in sections 2.6 and 2.7. In addition, the Matlab model can use the third and 

fourth order explicit Runge-Kutta time integration methods. Furthermore, the Matlab model 

utilize the concept of Automatic Differentiation [88] to calculate the Jacobian, which were 

found to give a significant speedup compared to calculating the Jacobian by finite differences 

in Matlab. The remaining details of the Matlab model is given by the model descriptions in 

the paper.  

 

A significant amount of work was done when writing Paper 4, but in the end the paper ended 

up having too much material and some had to be left out. This material is briefly presented 

here (using the same notations as in the paper). Some background information from Paper 4 is 

also required to fully understand this following material. All of the following simulations are 

for the Kelvin-Helmholtz test case described in Paper 4. 

 

A von Neumann analysis was performed, as described in the paper. This analysis was done in 

a general manner, without assuming anything about the spatial convection schemes. 

Furthermore the analysis in general in the sense that both the BDF1, BDF2 and CN methods 

are accounted for. The resulting matrix ( ′M ) for the amplification factor G is shown in 

equations (235) and (236) (the matrix was split in two as it became quite large). Depending on 

if BDF1 or BDF2 is used, and if the gas-compressibility is included, the matrix results in a  
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In these expressions, the liquid is assumed incompressible while the gas is compressible. Note 

however that the terms in ( )4,4′M , which include the gas compressibility ( 2

1

gc
 ) typically 

are small compared to the first term ( gα ), which arises from the pressure gradient. If the 

terms including the gas compressibility are ignored, a similar expression as ( )3,4′M  for the 

incompressible liquid is found.  

 

 



 
 

 

 

 

The friction terms, gravitational force and driving pressure force are gathered in Fβ : 

 

 ( )sin body
w gl

dp
F sP sP g A s A s

dsβ β β βγ β β βτ τ ϕ ρ= ∆ ± ∆ + ∆ − ∆   (236) 

 

The derivatives of Fβ  are determined by numerical differentiation. The linearized level 

gradient term is given by (minus for gas, plus for liquid): 
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  (237) 

 

The flux limiters for the mass and momentum equation massΨ  and momΨ  are described in 

equation (21), and takes a normalized variable r as input (equation (22)). Inserting a mean 

value plus a perturbation in equation (21), we get for r: 

 

 ir eφ=   (238) 

 

This is independent of the time level the values for Φ  are taken from (as long as they are all 

from the same time step). The flux limiters Ψ  to be inserted in the amplification matrix ′M  

are shown below for the FOU, central and NOTABLE schemes. 
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It should also be straightforward to add more time levels to the time integration: Including the 

BDF3 (or BDF2.5) method, the brackets containing the a-coefficients in matrix simply reads 
1 2 3

0 1 2 3a a G a G a G− − − + + +  . This could more conveniently be expressed by the general form 

0

n
i

i
i

a G−

=
∑  for n time levels. 

 

The amplification factor G obtained from the von Neumann analysis for the Kelvin-

Helmholtz test case described in Paper 4 are shown in Figure 78 - Figure 80 for different 

spatial and temporal methods, as function of 22k x x
N
πφ π= ∆ = ∆ = . The analytical 

amplification factor for the wave equation used in the test case is also shown. 

 

 

Figure 78: Amplification factor G for the first order upwind scheme, for different time 

integration methods. From top left to bottom right: N=20, 80, 320 and 1280 grid cells. 



 
 

 

 

 

 

Figure 79: Amplification factor G for the NOTABLE scheme, for different time 

integration methods. From top left to bottom right: N=20, 80, 320 and 1280 grid cells. 

 

Figure 80: Amplification factor G for the central scheme, for different time integration 

methods. From top left to bottom right: N=20, 80, 320 and 1280 grid cells. 



 
 

 

 

 

 

From Figure 78 - Figure 80 it can be seen that the FOU scheme is much more diffusive than 

the NOTABLE and central schemes, as expected. It is also evident that the BDF1 time 

integration method is more diffusive than the BDF2 and CN methods. Furthermore on can see 

that the FOU scheme is the only scheme that can give a too large amplification (see for 

instance N=80). This is somewhat counter-intuitive, as the FOU scheme is typically thought 

of as being too diffusive. This effect was however also observed in the simulations. The CN 

method with 0.5Θ =  is the most accurate time integration method, while BDF2 and CN with 

0.55Θ =  are nearly identical. 

 

The results from the von Neumann analysis were also compared with the amplification 

obtained from the simulations, to check that the results are consistent. This comparison is 

shown in Figure 81 and Figure 82. Instead of comparing with the amplification factor G, these 

plots shows the amplification factor G', which is the amplification per second: 
1

' tG G ∆= . The 

von Neumann analysis is seen to accurately predict the amplification factor in the simulations, 

as expected. 

 

Figure 81: Comparison between the amplification factor G' from the von Neumann 

analysis for the Kelvin-Helmholtz test case and the amplification obtained from the 

simulations for the BDF1 and BDF2 methods. 



 
 

 

 

 

 

Figure 82: Comparison between the amplification factor G' from the von Neumann 

analysis for the Kelvin-Helmholtz test case and the amplification obtained from the 

simulations for the BDF1 and CN methods. 

 

Similarly to what was presented in Paper 3, the time until the simulation becomes ill-posed 

are presented as function of time step. The CFL number is kept constant, so that plotting 

against the time step is similar to plotting against the grid size. 

 

 

Figure 83: Time instance at which complex eigenvalues first appear, as function of time 

step, for different discretization methods (BDF1 and BDF2).  



 
 

 

 

 

 

Figure 84: Time instance at which complex eigenvalues first appear, as function of time 

step, for different discretization methods (BDF1 and CN).  

From Figure 83 and Figure 84 one can see that most of the different discretizations converge 

to the same solution as the grid is refined. For the first order upwind convection scheme 

however, it can be seen that the simulations with higher order time integration methods 

(BDF2 and CN) does not seem to converge to the same value as the remaining simulations. 

When using the BDF1 time integration method however, the simulations with the FOU 

scheme seems to converge to the correct value. Furthermore one can see that the CN method 

with 0.5Θ =  shows the worst performance, and gives ill-posed results too early in the 

simulations. The reason for this is most likely that this method has amplification 1 for the 

unresolved pressure waves, so that unphysical inaccuracies that occurs in the pressure are not 

damped, and affects the gas density and holdup creating a growing disturbance. One can also 

see that by using higher order methods one will get the correct ill-posed results at a much 

coarser grid/time step than with the lower order methods. 

 

A comparison was also made between the BDF2, CN ( 0.55Θ = ) and BDF2.5 time 

integration methods, by plotting the holdup at location 0 m against time as shown in Figure 85 

and Figure 86 (zoomed to well-posed region). These plots shows that all schemes are 

predicting the wave growth quite well in the well-posed regime. The CN method is slightly 

worse than the others in predicting the wave growth/amplitude, while it is slightly better than 

the others at predicting the wave speed (see the location of the peaks in the holdup signal). It 

can also be seen that the BDF2.5 method predicts a slightly too large wave growth. It is also 



 
 

 

 

 

worthwhile noting the differences between BDF2 and CN in the ill-posed regime: BDF2 

predicts a larger amplitude than CN for the waves, which looks more similar to the analytical 

result (which is only valid the well-posed regime). The bottom of the wave crests from the 

CN method are seen to have a higher holdup value. The wave speed is also seen to change for 

the CN method as it enters the ill-posed regime, while the BDF2 method keeps a similar wave 

speed as in the well-posed region. It is however not known how the exact solution should look 

like in the ill-posed regime... 

 

 

Figure 85: Holdup at location 0 m as function of time, for the BDF2, CN and BDF2.5 

time integration methods. The NOTABLE scheme was used for convection of both mass 

and momentum, and the number of grid points are 40. 

 

 



 
 

 

 

 

 

Figure 86: Holdup at location 0 m as function of time, for the BDF2, CN and BDF2.5 

time integration methods showing only the time-region where the simulations are well-

posed. The NOTABLE scheme was used for convection of both mass and momentum, 

and the number of grid points are 40. 

 

Furthermore, many different discretizations of the two-fluid model was simulated and 

compared. The following properties were varied:  

 

List 7: Discretization parameters that were varied  

1. The time integration method for mass (CN with 0.45Θ =  or BDF2) 

2. The time integration method for momentum (CN with 0.45Θ =  or BDF2) 

3. Fully implicit or fully explicit momentum fluxes 

4. Fully implicit or semi-explicit source terms (using one new velocity or velocity 

difference for wall and interfacial friction if semi-implicit). The level gradient and 

gravitational force were either fully implicit or explicit. 

5. Using the mass flux in the momentum equation as an average of the mass equation 

fluxes, or using the specific mass defined at the momentum control volume end-

points. 

 

The number of grid points used was 40, and the pressure gradient, driving pressure force and 

the mass equation were treated as normal (that is, fully implicit for BDF2 and weighted 



 
 

 

 

 

between implicit and explicit for CN). The time step was based on both fluid velocities, which 

in practice means that the gas velocity controls the time step. Note that this is in opposite to 

most of the simulations presented in Paper 4, where the time step is based on the liquid 

velocity. The CFL number used was 0.8, which resulted in the fluid-CFL criterion always 

being obeyed (which is necessary when using explicit momentum fluxes). In total List 7 

results in 52 32=  unique discretization combinations. The NOTABLE scheme was used for 

convection of both mass and momentum. For explicit momentum however, the FOU scheme 

was used as experience showed that higher order limiters could be problematic to use with 

explicit convection. The simulations focused on capturing the correct wave growth in the 

well-posed part of the simulation. If the results became ill-posed, or the holdup level became 

larger than 0.8 or smaller than 0.2 the simulation was stopped. The results are shown in 

Figure 87 - Figure 94. 

 

 

Figure 87: Results for the simulations with explicit momentum fluxes, explicit source-

terms, and using the average mass flux from the mass equation in the momentum fluxes. 

 

 

 

 



 
 

 

 

 

 

 

Figure 88: Results for the simulations with explicit momentum fluxes, explicit source-

terms, and using the specific mass defined at the control volume end-point for the 

momentum fluxes. 

 

Figure 89: Results for the simulations with explicit momentum fluxes, implicit source-

terms, and using the average mass flux from the mass equation in the momentum fluxes. 



 
 

 

 

 

 

 

Figure 90: Results for the simulations with explicit momentum fluxes, implicit source-

terms, and using the specific mass defined at the control volume end-point for the 

momentum fluxes. 

 

Figure 91: Results for the simulations with implicit momentum fluxes, explicit source-

terms, and using the average mass flux from the mass equation in the momentum fluxes. 



 
 

 

 

 

 

 

Figure 92: Results for the simulations with implicit momentum fluxes, explicit source-

terms, and using the specific mass defined at the control volume end-point for the 

momentum fluxes. 

 

Figure 93: Results for the simulations with implicit momentum fluxes, implicit source-

terms, and using the average mass flux from the mass equation in the momentum fluxes. 



 
 

 

 

 

 

 

Figure 94: Results for the simulations with implicit momentum fluxes, implicit source-

terms, and using the specific mass defined at the control volume end-point for the 

momentum fluxes. 

 

The results from Figure 87 - Figure 94 shows that most of the simulations fail at capturing the 

well-posed wave growth, which indicates that those discretizations might not be a good idea 

to use as they do not represent an accurate and stable solution of the two-fluid model. The 

only discretizations that are able to capture the correct wave growth are the fully implicit 

simulations in Figure 93 and Figure 94. The difference between these two figures is the 

calculation of the mass-fluxes used in the momentum fluxes, which for this test-case only 

results in a negligible difference. Comparing the four different combinations of time 

integration methods within one figure, one can see that using BDF2 for the mass equation and 

CN for momentum seems to give a somewhat smaller wave growth than for the other cases. In 

opposite, it seems that using BDF2 for momentum and CN for mass seems to result in a too 

large wave growth. Using the same time integration method for both mass and momentum 

however seems to give the best results. Furthermore, one can see that using CN for both mass 

and momentum gives a slightly better prediction of the wave speed, while BDF2 is slightly 



 
 

 

 

 

better at predicting the wave growth/height. The differences between using a pure BDF2 or 

CN method are however quite small. 

 

The BDF2.5 time integration scheme (taking the average of BDF2 and BDF3) was initially 

also used in this paper, but was left out. To obtain the coefficients for the blended BDF2.5 

method for a varying time step, we need expressions for the coefficients for both the BDF2 

and BDF3 methods as function of the time step ratios. The coefficients for BDF2 are easily 

found in the literature, and are shown in equation (31). The coefficients for the BDF3 method 

with a varying time step are however not typically described in the literature, but can be 

obtained in a similar way as for BDF2. We start by expressing the BDF3 method as: 

 

 1 1 2 1
1 2

n n n n n n
n n n tα α α β+ − − +

− −= − − − + ∆U U U U U   (240) 

 

The local truncation error nd  is given by: 

  

 ( ) ( )1 1 1 2 1 1
1 2 1

n n n n n n n n n
n n n nt t tα α α β α+ + − − + +

− − −= − = − − − + ∆ − −d U U U U U U U   (241) 

 

We now do a Taylor expansion about step n, and for third order accuracy we require that 

the derivatives up to third order should vanish. This gives four equations and four unknowns, 

as shown in equation (243): 
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  (242) 

Here the time step ratios are defined by equation (244): 
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This gives the following coefficients: 
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Dividing equation (241) by β  and re-arranging gives the coefficients for BDF3 of the same 

form as has been used for the other time integration methods in this thesis: 

 

 1 1 2 1
0 1 2 3

n n n n n na a a a tβ+ − − ++ + + = ∆U U U U U   (245) 

 

The a coefficients for BDF3 are given by equation (247). 

 

 1 2
0 1 2 3

1 , , ,n n na a a aα α α
β β β β

− −= = = =   (246) 

For a constant time step equation (247) gives 0
11
6

a = , 1 3a = − , 2 1.5a =  and 3
1
3

a = − . The 

coefficients for the BDF2.5 scheme for a varying time step can now also be calculated, by 

taking half of the BDF2 and BDF3 coefficients given by equations (31) and (247) (with 

3 0a =  for BDF2).  




