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Abstract:  

Monopile foundations is the most popular foundation type for offshore wind turbines, with over 

80 % of the substructures being monopile foundations. When placed in a marine environment 

monopiles is prone to scour around the pile. This can influence the eigenfrequency of the wind 

turbine, which is a major design driver. To prevent scouring it is possible to place scour 

protection around the pile, normally consisting of a filter and armor layer.  

 

The effect of scour protection has been investigated with a 3D-FEM analysis in Plaxis with a 

real size model with characteristic properties for a monopile pile placed in sand. Hardeing Soil 

Small (HSS) soil model has been used for the sand. The results from the simulations have been 

used to calculate p-y curves representing the soil response along the pile. Three different cases 

have been investigated, 1) a benchmark case without scour protection, 2) scour protection as 

surface load and 3) a full scour protection layer. The lateral load on the monopile were divided 

into 5 load steps, 10 kN, 100 kN, 1000 kN, 2000 kN and 5000 kN. Also, a simple 1-DOF 

approximation has been used to compare the eigenfrequencies of the three cases.  

 

The results from the simulations show a 1 % increase in eigenfrequency for the case with surface 

load at load step 100 kN and the case with a full scour protection layer show 10 % increase in 

eigenfrequency. Also, a comparison with DNV/API design codes for p-y curves have been done 

for the benchmark case, giving a good match for shallow depths, but for larger depths the 

DNV/API formulations give higher stiffness. This is mainly due to the linear increase in 

stiffness with depth in the DNV/API formulations where HSS have parabolic increase with 

dept.  
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market, with more than 3.200 offshore wind turbines installed. The trend in the offshore wind 

industry is towards bigger turbine size, deeper-seated turbines and increased focus on cost 

optimization. The monopile foundation is the most common foundation type with over 80 % 

of the installed wind turbines using monopile foundations. When a structure is placed in marine 

environment it is prone to erosion of the seabed materials surrounding the structure, so called 

scour. This can affect the lateral response of the structure. To prevent scouring, a scour 

protection is placed around the structure, usually a filter and armour-layer consisting of 

medium and coarse sized rocks.  
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Preface

This is a master’s thesis in geotechnics at NTNU as part of the MSc in Geotechnics and Geo-
hazards, it was carried out during the spring semester of 2017. The idea for this project was
brought up by the geotechnical group at NTNU.

The topic of this master’s thesis is monopile foundations for offshore wind turbines. The aim
of this project is to quantify the effect of the scour protection on the eigenfrequency of off-
shore wind turbines by conduction simulations with 3D finite element (FEM) software Plaxis
to evaluate the lateral response of the soil and scour protection layer. The results from the
simulations have been used to calculate p-y curves and compare them with current design
codes like those given by DNV GL and American Petroleum Institute (API). The change in
eigenfrequency have also been investigated.

Trondheim, 2017-06-07
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Summary and Conclusions

Offshore wind energy i.e. offshore wind turbines have become a large supplier of clean re-
newable energy to the European energy market. By the end of 2015 it was installed over 3.200
offshore wind turbines in 84 offshore wind farms in 11 European countries, delivering over
11.000 MW of clean renewable energy to the grid. For offshore wind turbines 80 % of the
substructures are monopiles.

The main principle for designing offshore wind turbines with monopile foundation is to fit
the natural frequency of the structure within a section of frequencies that is not interfering
with the natural frequencies from wind, waves and the rotor and blade passing frequencies.
This is done by modelling the pile as beam element with non linear springs, an so called
Winkler foundation with p-y springs. These springs simulate the response of the soil.

The development of the natural frequency of the offshore wind turbine is also dependent of
the bed condition over time. When a structure is placed in a marine environment the flow
around the structure changes. The structure represents an obstacle that the current or waves
(also combined wave and current) have to pass. The presence of the structure can induce
wakes and vortexes that increase the shear stress on the bed surface, and when the shear
stress is higher than the shear strength (τ> τ f ) erosion of bed material will start around the
pile (scouring).

Scour can have a substantial impact on the natural frequency of an offshore wind turbine,
and with frequency reduction comes possibility of resonance with other prominent dynamic
loads on the structure, this can lead to increased fatigue, shorter operational lifetime and in
worst case total breakdown of the structure. To protect a structure from the possibility of
scour it is normal to place scour protection around it. The scour protection normally con-
sists of a filter and armour layer consisting of medium and coarse sized stones.

The effect of scour protection on the lateral stiffness of monopiles for offshore wind turbines
has been investigated through 3D-FEM analysis in Plaxis. The results from the simulations
were used to calculate p-y curves for different depths and situations. The results were also
compared to the American Petroleum Institute recommended and DNV GL recommended
practice for calculating p-y curves for offshore purposes.

The 3D-FEM calculations were done with a model representing a real situation, with real
sizes and parameters. The pile was 60 m long with a diameter of 6 m. The pile was em-
bedded 30 m in sand. The sand selected was Hokksund sand, a model sand used at NTNU
for laboratory tests. The FEM simulations was divided into three cases, 1) benchmark case
without scour protection, 2) scour protection as surface load and 3) scour protection as a in-
dependent layer on top of the subsoil. Within these three cases the lateral load was divided
in to 5 load steps, 10 kN, 100 kN, 1000 kN, 2000 kN and 5000 kN. The intervals of the load
were chosen to give values from both small and larger loads to be able to evaluate the devel-
opment of the p-y curves.

The results from the 3D-FEM simulations show a clear effect of both the surcharge load of
the scour protection and the extra layer that the scour represents. The p-y curves from the
Plaxis simulations fit well with the p-y curves from the API formulation down to about -3,12
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m for the benchmark case, but with larger depths the API formulation predicts higher stiff-
ness than what is observed in the simulations. This is in accordance with findings by among
others Hanssen (2016). The frequency for the case with only surcharge load is found to be
up to 1 % higher for load step of 100 kN than for the benchmark case. For the case with
scour protection as a independent layer the frequency was found to be 10 % higher than the
benchmark case. This indicates that the scour protection has a substantial impact in the
eigenfrequency of a offshore wind turbine, and most impact has the stiff extra layer that the
scour protection represents.

The conclusion to this master’s project is that the design codes used in the industry for esti-
mating the soil response do not adequately embrace the effect the scour protection has on
the lateral behaviour of a monopile foundation. An effect of up to 10 % increase in eigen-
frequency is observed when the SP is fully included in the numerical simulations. Both the
surcharge component of the SP and the extra layer has an effect on the eigenfrequency.
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Chapter 1

Introduction

Offshore wind energy, primarily offshore wind turbines, have become a large supplier of
clean renewable energy to the European energy market. By the end of 2015 it was installed
over 3.200 offshore wind turbines in 84 offshore wind farms in 11 European countries, deliv-
ering over 11.000 MW of energy to the grid.

1.1 Background

Table 1.1: Overview of European offshore wind industry, EWEA (2015, 2014)

2015 2014
New number of turbines 419 408
Total number of turbines 3230 2488
Average output 4,2 MW 3,7 MW
Combined output 11027 MW 8045 MW
Average water depth 27,1 m 22,4 m
Average distance to shore 43,3 km 32,9 km
Monopile foundation 80 % 78,8 %

Monopiles is the most common foundation type where around 80 % of the substructures are
monopiles. The average turbine size is 4,2 MW, the average water depth is 27,1 m and the
average distance from shore is 43,3 km. The trend is an increasing turbine size (14 % larger
from 2014 to 2015) and even bigger water depths and distance from shore, see table 1.1.

2
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Figure 1.1: Foundation design principles for offshore wind turbines, from Kallehave (2015).

Design of support structure depends on in-situ conditions, specially water depth can be a
limiting factor when deciding what type of support structure (foundation) is feasible. There
are many different foundation types (principles) for offshore wind turbines, see figure 1.1:

(a) Gravity based foundation

(b) Monopile foundation

(c) Cassion foundation

(d) Multiple foundation

(e) Multiple cassion foundation

(f) Jacket foundation

These different foundation designs have different advantages and disadvantages, but the
monopile foundation has proven to be the most versatile and cost effective solution. With
the increasing demand for renewable energy, the industry is continuously striving to reduce
manufacturing and operational cost. The trend is towards bigger and deeper seated turbines.
This effort has resulted in optimisation of support structure and foundation design. Today
there is plans to install 6-8 MW turbines in water depths of 20-40 m on large monopiles up
to 7,5 m in diameter. Monopiles is also suitable for mass production and standardisation,
which illustrates that monopiles also in the future will be the preferred support structure for
offshore wind turbines (Kallehave, 2015b).
Scour protection
When a structure is placed in a marine environment it is prone to scour (erosion of bed
sediments around the structure) caused by the increased shear stress on the seabed due to
change in flow around the structure. The main design criterion of a offshore wind turbine
is the eigenfrequency (natural frequency). This is to prevent resonance with wind, wave and
rotor excitation frequencies which the structure is exposed to. To prevent scour it is common
to place scour protection around the structure. The scour protection normally consists of a
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filter- and armour layer. Just as scour, the scour protection can influence the eigenfrequency
of the structure. The extra layer acts as a surcharge on the subsoil, and the scour protec-
tion (rocks) also have a high lateral stiffness when it is in contact with the monopile. This
will change the dynamic response of the monopile foundation, and ultimately the dynamic
response of the whole structure.

1.1.1 Problem Formulation

As described earlier the monopile foundations is widely used in the offshore wind industry
as foundations for offshore wind turbines. The dynamic response of the structure is very
much governed by the interaction between the monopile and the surrounding soil. The soil
response is in most cases modelled as springs along the structure (Winkler foundation) with
varying stiffness, this gives an opportunity to calculate the dynamic response for many load
combinations. The soil response is stress dependent, i.e. the soil gets stiffer in higher stress
situation.

In some areas, the monopile foundation is exposed to scour (erosion of material around the
structure). This can have an impact on the eigenfrequency of the structure. To prevent this
from occurring it is possible to place scour protection around the structure, normally con-
sisting of a filter layer (small rocks) and an armour layer (rocks). The scour protection will
act as an surcharge load on the surface of the soil surrounding the structure, and as an extra
layer with lateral stiffness acting on the structure. This will lead to a stiffening of the sub-
soil caused by the extra vertical stress and an increased lateral stiffness around the monopile
caused by the extra layer of rocks.

The aim of this project is to quantify the effect of the scour protection on the lateral response
of an offshore wind turbine, to tell more what effect the scour protection have on the eigen-
frequency of a offshore wind turbine. The main approach to solving this problem will be to
conduct a 3D simulation in finite element (FE) software Plaxis with a real size model. The
simulations will be divided in to three cases: no scour protection, surface load and scour
protection layer.

1.1.2 Literature Survey

This master’s thesis is based upon a project thesis done in the fall of 2016, which was a lit-
erature study on scour and scour protection around monopiles. Most of the background
material used in this master’s thesis is from this project.

1.2 Objectives

The objectives of this master’s thesis is to:

• Review design procedures for offshore wind turbines with monopile foundation based
on design codes.

• Present a method for using FEM software for estimating soil response.

• Evaluate the effect of scour protection on the lateral response of offshore wind tur-
bines.
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Questions that need to be answered:

• What is the main design approaches for design of offshore wind turbines with monopile
foundations?

• Does the scour protection effect the lateral response of a offshore wind turbine?

• If so, what is the main contribution to this effect, the surcharge load or the scour pro-
tection layer?

1.3 Limitations

This project only considers the monopile foundation for offshore wind turbines. There is
multiple other foundation types (see figure 1.1). There is multiple improved formulas (ap-
proaches) to evaluate the lateral response of the soil. This thesis only considers the proce-
dures describes in design codes by DNV (2014); API (2011). The model used in the simu-
lations is based on installed structures described in Kallehave (2015), and the soil model is
similar to the model sand used at NTNU with Hardening Soil Small properties calculated
from shear wave velocity measurements done by Hanssen (2016) and soil test described in
Sandven (1992). The model used in the simulations represent half of a pile with symmetry
boundary conditions in Plaxis. The results from the simulations is then valid for half of a pile.
When comparing the p-y curve from the Plaxis simulations with DNV/API formulations the
results is adjusted to represent a full pile. This is because DNV/API formulations gives p-y
curves for a full pile.

1.4 Approach

The approach of this thesis has been to:

1. Establish a theoretical background for design of substructures for offshore wind tur-
bines based on formulations by DNV (2014); API (2011) and the use of p-y curves to cal-
culate the soil response and eigenfrequency of offshore wind turbines with monopile
foundations.

2. Gather relevant properties of the soil and scour protection layer to be used in subse-
quent simulations.

3. Simulate the monopile foundation without any scour protection to establish a bench-
mark for comparison with subsequent simulations.

4. Simulate the monopile foundation with a realistic surface load to evaluate the effect of
the scour protection on the stiffness and response of the sub-soil.

5. Simulate the monopile foundation with an scour protection layer with realistic unit
weight and high lateral stiffness.

6. Use results from the simulations to calculate p-y curves along the monopile for the
different cases to evaluate the change in soil response and eigenfrequency for the dif-
ferent cases.

7. Use the results from the simulations to compare the findings with results given by de-
sign codes by DNV (2014); API (2011).
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1.5 Structure of the Report

This report is divided in to 6 chapters:

Introduction

This chapter presents the background for this project with some introduction to offshore
wind statistics and a brief overview of the monopile design. This chapter also outlines the
framework for this project.

Design of monopile foundations for offshore wind turbines

This chapter presents the basic design principles for monopiles for offshore wind turbines
with reference to relevant design codes and recent research in this area. The theoretical back-
ground for the simulations is also described here. Also research on the effect of cyclic loading
on the lateral response of offshore wind turbines is presented.

Model used in simulations

This chapter describes the model used in the simulations with the different cases.

Results from simulations

This chapter presents the results from the simulations.

Discussion

This chapter discusses the results from the simulations and compares the results for the dif-
ferent cases. Also a comparison with design codes by DNV (2014); API (2011) are presented
here.

Conclusion, Summary and Recommendations for Further Work

This chapter summarise the results from the simulations and present a conclusion regarding
the effect of scour protection on the lateral response in relation to the objectives outlined in
this chapter. This chapter also present suggestions for further work.



Chapter 2

Design of Monopile Foundation

This chapter is an introduction to the design principles of monopile foundations for offshore
wind turbines and principles for scour protection. This chapter is the theoretical background
for the simulations described in chapter 3. The main design approaches for offshore wind
turbines is described in DNV (2014); API (2011) which is guidelines and design coded for
design of offshore wind structures. This is the most common guidelines used in the world.
Recent research done by Kallehave (2015); Hanssen (2016) concludes that the current design
approaches and industry standards does not fully capture the soil behaviour, and conse-
quently the structure is in most cases over-designed, i.e. "bigger" than it needs to be or the
factor of safety is bigger than required. Considering the industry wide search for cost re-
duction this concludes that there is room for a more efficient design of the structure with
resulting cost reductions.

2.1 Design principles

Structures and structural elements shall be designed to (DNV, 2014):

• Sustain loads liable to occur during all temporary, operating and damaged conditions
if required.

• Ensure acceptable safety of the structure during the design life of the structure.

• Maintain acceptable safety for personnel and environment.

• Have adequate durability against deterioration during design life of the structure.

When designed all the parts of the structural system shall as far as possible satisfy the follow-
ing requirements:

• Resistance against relevant mechanical, physical and chemical deterioration.

• Fabrication and construction complies with relevant, recognised techniques and prac-
tises.

• Inspection, maintenance and repair is possible.

7
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To achieve this goals and requirements DNV (2014) incorporates Limit States for the design
of the structure. The following limit states is described in the guideline:

• Ultimate Limit State (ULS) which is the maximum load carrying resistance.

• Fatigue Limit State (FLS) which represents failure due to the effect of load cycling.

• Accidental Limit State (ALS) which is (1) maximum load carrying capacity for (rare)
accidental loads or (2) post-accidental integrity of damaged structure.

• Serviceability Limit State (SLS) which is the tolerance criteria for normal use.

DNV (2014) uses the partial safety factor format to obtain the target safety level. This is done
by implementing load and resistance factors to characteristic values of the governing vari-
ables. The partial factor method is widely used in all geotechnical engineering and is also
implemented in Eurocode.

2.1.1 Loads

Offshore wind turbine is exposed to dynamic loads in form of wind load, wave load and rotor
excitation (blade passing the tower and instability in the rotor). These loads have different
frequencies and amplitudes which interacts with the overall structure. To prevent amplifica-
tion of the structural response of the structure, the design is optimised to allow the natural
frequency of the structure to be between the excitation frequencies and the blade passing
frequency.

Figure 2.1: Example of dimensions and forces action on a wind turbine, from Byrne (2011).

Lombardi et al. (2013) divide the loading conditions on a wind turbine in to three categories:

(a) Environmental dynamic loads from wind and waves.

(b) Rotor loading frequency (1P) generated from instability in the rotor.

(c) Blade passing frequency (3P) generated from the wind deficiency when a blade passes
through the shadow of the tower.
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Figure 2.2: Overview of frequencies for a 3,5 MW turbine with 5-13 rpm operational interval,
from Lombardi et al. (2013).

When considering the design codes, DNV (2014) recommends that the natural frequency of
the structure is at least ± 10% away from the 1P and 3P frequencies. When considering these
recommendation Lombardi et al. (2013) defines three different design approaches:

(a) soft-soft where the natural frequency is lower that the rotor loading frequency, f0 < 1P ,
where f0 is the natural frequency if the system.

(b) soft-stiff where the natural frequency is between the rotor loading frequency and the
blade passing frequency, 1P < f0 < 3P .

(c) stiff-stiff where the the natural frequency is higher than the blade passing frequency,
f0 > 3P .

The most common design approach is the soft-stiff approach, likely due to the fact that a
stiffer design will need stiffer elements i.a more materials used and a softer design will be
close to the frequency of the environmental loads. In figure 2.2 the frequency spectrum for a
3,5 MW turbine is shown.
DNV (2014) states that the geotechnical design of the foundation shall consider both the
strength and deformation of the foundation and the foundation soil. The failure modes of a
foundation might be:

• Bearing failure

• Sliding

• Overturning
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• Pile pull-out

• Large settlement or displacements

2.2 Design Criteria for Monopile Foundations

According to DNV (2014) both ultimate limit state (ULS) and serviceability limit state (SLS)
shall be considered when designing monopile foundations for offshore wind turbines. The
strength and deformation properties of the pile as well as the soil shall be the basis of the
load-carrying calculations. The evaluation of soil resistance against the loads from the pile
should consider the following factors:

• Shear strength characteristics

• Deformation properties and in-situ stress conditions of the foundation soils

• Method of installation

• Geometry and dimension of the pile

• Type of loads

For monopile foundations the data base of existing methods for calculation of soil resistance
to axial and lateral pile loads are often not covering all conditions relevant for offshore piles.
DNV (2014) states that that when determining the soil resistance to said pile loads extrapola-
tion between the data base of a chosen method shall be made with evaluation of all param-
eters involved. It is also stated that the selected foundation method is feasible with respect
to installation of the pile, and that the stability of the whole structure shall be assessed with
respect to stability for both operation and temporary design conditions.
For calculating the ULS and SLS the following material parameters shall be considered unless
otherwise is specified:

ULS SLS
Type of geotechnical analysis γm γm

Effective stress analysis 1.15 1.0
Total stress analysis 1.25 1.0

Table 2.1: Partial factors for ULS and SLS, from DNV (2014).

For laterally loaded piles the ULS may be based on theory of plasticity based on the assump-
tion that the lateral displacement of the pile is sufficient to plastify the soil completely. The
characteristic resistance in the soil shall be in accordance with recognised plastic theorems
to avoid non-conservative estimates. When analysing piles stress and pile head displace-
ments DNV (2014) states that the lateral resistance shall be modelled using characteristic soil
strength parameters with material factor equal to γm = 1,0. Also the non-linear response of
the soil and effects of cyclic loading shall be accounted for.
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2.3 Scour Around Large Diameter Monopiles

Generally offshore structures connected to the seabed is exposed to scour around the struc-
ture due to change in the velocity in the water stream around the structure. Scour can have
an dramatic effect on the structure, and can lead to loss of bearing capacity, fixity and/or
stiffness. Offshore wind turbines are sensitive to change in stiffness because of it’s design.

2.3.1 Development of scour

Scour is the name for erosion of sediment around a structure. The interaction between the
structure and the flow causes the sediments at the bed to be transported away. The amount
of sediments that is transported is dependent of many factors i.a. the velocity of the flow and
the sediment size, Centen (2015).
Sumer and Fredsøe (2005) describes seven phenomenons that can occur when a structure is
placed in a marine environment:

1. the contraction of flow;

2. the formation of a horseshoe vortexes in front of the structure;

3. the formation of lee-wake vortices (with or without vortex shedding);

4. the generation of turbulence;

5. the occurrence of wave breaking;

6. the occurrence of reflection and diffraction waves; and

7. the pressure differentials in the soil that may produce "quick" conditions (liquefaction)
allowing material to be carried off by currents.

These phenomenons can cause an increment in sediment transport, but transport of sedi-
ments does not mean that scouring will occur. Only when local sediment transport exceeds
the supply of sediments from upstream, scour will develop. The difference in supply and
erosion can occur due to the difference in velocity and/or turbulence.

2.3.2 Scour around a single slender pile

As described in earlier sections a structure placed in an marine environment it will change
the flow around the structure. A single slender pile placed in an marine environment will be
exposed to force from flow and waves which also interacts with the bed sediment. Research
done by Sumer and Fredsøe (2005), Hoffmans and Varheij (1997) and others shows empirical
relationships between the change in flow around an structure and the increase in bed shear
stress close to the structure. The increase in shear stress is found to originate from a so called
Horseshoe Vortex and Lee-Wake Vortices which develops around and behind the structure
because of the change and rotation of the flow. Illustration of the horseshoe and Lee-wake
vortexes is given in figure 2.3.
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Figure 2.3: Development of horseshoe and Lee-wake vortexes around a pile, from DNV
(2014)

.

Horseshoe Vortex

The Horseshoe Vortex is caused by the rotation of the incoming flow due to the presence
of the structure. The separated boundary layer "rolls-up" around the structure and form a
spiral vortex around the structure hence the name "horseshoe vortex". Both laminar and
turbulent horseshoe vortexes exist and the horseshoe vortex is also present in waves. Sumer
and Fredsøe (2005) states that the shear stress on the bed can be as high as 5 times the undis-
turbed bed shear stress, and as much as 11 times midway between the front an the side edges
of the pile.

Lee-wake Vortices

The Lee-wake vortices is caused by the rotation of the boundary layer over the surface of the
pile, where the shear layers of the flow roll up from the side of the pile in to the lee wake of
the pile (i.e. the flow in the "back" side of the pile).

The scour in waves is governed by the horseshoe and lee-wake vortices. These are prelimi-
nary governed by the Keulegan-Carpenter number (KC) which is defined as:

KC = Umax ·T
D

(2.1)

Where:

Umax : maximum orbitary velocity at the bed

T: wave period

D: diameter of pile
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The maximum orbital velocity at the bed is given as:

Umax = π·H

T sinh(kh)
(2.2)

Where:

H: wave height

h: water depth

k: wave number

The wave number can be found by rearranging the following equation:(
2π

T

)2

= g ·k tanh(kh) (2.3)

Where:

g: the acceleration of gravity, 9,81m/s2

Clear water and live bed scour

Clear water scour is the name of the condition where there is no sediment movement far
from the structure, e.i. there is only erosion (scour) close to the structure. Live bed scour is
the name of the condition where there is sediment transport over the whole bed, e.i. erosion
(scour) of the whole bed. This is described by Sumer and Fredsøe (2005) as the ratio between
the undisturbed Shields parameter (θ) and the critical Shields parameter (θcr ). The critical
shields parameter is the shields parameter where the bed starts to erode (τo = τcr ). The crit-
ical shear stress (τcr ) can be found with a Shieleds diagram.

Clear water scour:
θ < θcr (2.4)

Live bed scour
θ > θcr (2.5)

The Shields parameter θ is described as:

θ =
U 2

f

g (s −1)d
(2.6)

By DNV (2014) the bed shear velocity, U f , is defined by:

Uc

U f
= 6,4−2,5· ln

(
2,5·d

h
+ 4,7·ν

h·U f

)
(2.7)

Where:

d: grain size

h: height

ν: kinematic viscosity (10−6m2/s)
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U f : steady current base velocity

Uc : current velocity

For waves the base velocity is given as:

U f =
√

fw

2
·umax (2.8)

Where fW is the frictional coefficient given by:

fw =
{

0,04· (a/kN )−0,25 f or a/kN > 100

0,4· (a/kn)−0,75 f or a/kN < 100
(2.9)

and

a = umax ·T
2π

(2.10)

Here kN is the bed roughness which is equal to 2,5·D50 and d50 is the median grain size
in the particle size distribution of the bed material. DNV (2014) states that the equilibrium
scour depth can be used for structural design, but may de supplemented with an extra safety
margin.

2.3.3 Calculation of scour depth

The scour depth is dependent on the material around the pile, the shape of the pile and
whether it is exposed to current only, waves or both current and waves. DNV (2014) gives
guidelines for the calculation of scour depth and the following procedure is recommended
in situations where no model data is available.

The equilibrium scour depth can be expressed by:

S/D = 1,3{1−exp[−0,03(KC −6)]} KC ≥ 6 (2.11)

Where:

KC: Keulegan-Carpenter number

S: scour depth

D: diameter of pile

This expression is valid for live bed scour i.e θ > θcr . For steady currents where KC → ∞,
the ratio S/D → 1,3. From equation 2.3.3 there will not be any scour when KC < 6 due to no
formation of horseshoe vortex.

Extension of the scour hole

The scour hole extension can be calculated when considering the friction angle of the mate-
rial assuming that the slope of the scour hole is at the angle of repose:

r = D

2
+ S

t anφ
(2.12)
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Where:

r: radius of the scour hole from the centre of the pile diameter

D: diameter of the pile

S: scour depth

φ: friction angle of the material

2.4 Theoretical Background for Foundation Design

This chapter explains the background theory of the foundation design and includes the for-
mulation of the p-y curves used in the current design approach. Foundations for offshore
wind turbines has been subject to a lot of research in recent years. Work done by Kallehave
(2015); Hanssen (2016) intend to improve the formulation for calculating the response of the
foundation. The approach described in the standard for designing foundations for offshore
wind turbines relies on p-y curves for determining the lateral response of the monopile foun-
dation, but the current formulation of p-y curves is based on slimmer and slender piles than
those used in the offshore wind industry, and Kallehave (2015) has measured that when using
the formulation in DNV (2014) there is up to 20 % difference when comparing the calculated
eigenfrequency of a wind turbine with the measured value.

2.4.1 Formulation of p-y curves

The current design approach is based on p-y curves representing the lateral response of the
soil surrounding the pile when exposed to a lateral load. The method is described in DNV
(2014); API (2011) and is widely adopted in the offshore wind industry. The p-y analysis is
an numerical model that simulates the soil as non-linear springs where p is the soil pressure
per unit length of pile and y is the pile deflection. From this model the soil can be illustrated
with a series of non-linear p-y curves that can vary with depth and soil type (DFI, 2013).

The model was first developed in the 1940’s and 50’s when oil companies needed to build off-
shore structures that could withstand heavy horizontal loads from wind and waves. Matlock
(1970) conducted a series of experiments on piles in soft clay and came up with an empirical
relationship between the soil pressure and lateral displacement.
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Figure 2.4: Stress distribution in a laterally loaded pile. from Rocscience (2016).

Figure 2.4 shows a pile under lateral loading. When unloaded there is a uniform stress dis-
tribution normal to the pile as shown in figure 2.4b. When the pile is subject to a lateral load
the pile deflects a distance y1 at a depth z1 and the stress on the backside of the pile has de-
creased and the stress on the front of the pile has increased, inducing the resistance force p1

which consists of both normal and sharing components as the soil tries to move around the
pile. The new stress situation is shown in figure 2.4c (Rocscience, 2016).

Figure 2.5: Concept of soil response curves for a laterally loaded pile, from FHWA (2010).

The formulation of p-y curves has been divided in to two formulations for respectively soft
clay and sand with different formulations for static and dynamic loading in clay.

Lateral capacity in soft clay

The principle of p-y curves has been adopted by the American Petroleum Institute (API) and
DNV GL which have included this in their standards for offshore structures.

The unit lateral capacity, pr , of soft clay, in units of force per unit length is found to vary be-
tween 8·cu ·D and 12·cu ·D except for shallow depth where the failure mechanism is different
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due to low stress from the overburden (ISO, 2007).

pr increases from 3·cu ·D to 9·cu ·D as X increases from 0 to XR according to equation 2.13:

pr = 3·cu ·D = p ′
0·D + J ·cu ·X (2.13)

pr is limited by equation 2.14:

pr = 9·cu ·D for X > XR (2.14)

where:

pr : is the representative lateral capacity in units of force per unit length;

cu : is the undrained shear strength in stress units;

D : is the diameter of the pile;

p ′
0: is the effective overburden stress at depth X ;

J : is a dimensionless parameter with values ranging from 0,25 to 0,5 having been de-
termined by field testing. If no other information is available common practise is to
use 0,5;

X : is the depth below the sea floor;

γ′: is the submerged unit weight of the soil;

XR : is the depth below the sea floor to the bottom of a reduced resistance zone given
by equation 2.15;

XR = 6·cu ·D
γ′·D + J ·cu

(2.15)

In the case of non-uniform soils equation 2.13 and 2.14 can be solved by plotting the two
equations for pr against depth. The first point where the two equations intersect is then XR .
In general XR is 2,5 times the pile diameter (ISO, 2007).

p-y curves for soft clay

The relationship between soil resistance and displacement for piles in soft clay is generally
non-linear. P-y curves is by ISO (2007) generated from a given set of values for p/pr and
y/yc , these values changes for static and dynamic loading.

Short term static loading

where:

pr : lateral capacity in units force per unit length

p: mobilised lateral resistance in unit force per unit length

y : local lateral displacement

yC : 2,5·εC ·D
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Table 2.2: Mobilised lateral resistance - displacement for short-term static loading, from ISO
(2007)

p/pr y/yC

0,00 0,0
0,23 0,1
0,33 0,3
0,50 1,0
0,72 3,0
1,00 8,0
1,00 ∞

D : pile diameter

εC : strain at 0,5 of maximum deviatoric stress in uniaxial compression test

In the case where equilibrium has been reached under cyclic actions p-y curves can be gen-
erated from table 2.3.

0 1 2 3 4 5 6 7 8 9 10

y/yc

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
/p

r

Sort term static loading

Figure 2.6: Short term static loading, after ISO (2007).
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Short term dynamic loading

Table 2.3: Mobilised lateral resistance - displacement for short-term cyclic loading, from ISO
(2007)

X > XR X < XR

p/pr y/yC p/pr y/yC

0 0 0 0
0,23 0,1 0,23 0,1
0,33 0,3 0,33 0,3
0,50 1,0 0,50 1,0
0,72 3,0 0,72 3,0
0,72 ∞ 0,72X /XR 15,0

0,72 X /XR ∞

where:

X : depth below sea floor

XR : depth below the sea floor to bottom of reduced resistance zone (see equation 2.15)

pr : lateral capacity in units force per unit length

p: mobilised lateral resistance in unit force per unit length

y : local lateral displacement

yC : 2,5·εC ·D
D : pile diameter

εC : strain at 0,5 of maximum deviatoric stress in uniaxial compression test

0 1 2 3 4
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0

0.2
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0.8
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y/yc

0
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0.4

0.6

0.8

p
/p

r

X>Xr

Figure 2.7: Short term dynamic loading, after ISO (2007).

These equations and tables can be used to construct a p-y curve for a given condition.
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Lateral capacity in sand

By following the API standard the lateral soil resistance, p, as a function of the lateral deflec-
tion, y, is assumed to be (Kallehave, 2015):

p(y) = Apu t anh

(
kz

Apu
y

)
(2.16)

Where:

k: initial modulus for sub-grade reaction

z: depth

pu : modified ultimate soil resistance

The empirical strength parameter A is given by the following statement:

A =
{

0,9 c ycl i c

(3−0,8 X
D ) ≥ 0,9 st ati c

(2.17)

The modified ultimate resistance, pu is:

pu = mi n

{
(c1z + c2D)γz

c3Dγ′z
(2.18)

Where:

c1,c2,c3: factors depending on internal friction of the sand (see figure 2.8a)

D: diameter of the pile

γ′: effective soil weight

c1,c2,c3 can also be found with the following equations:

c1 = (tanβ)2 tanα

tan(β−φ′)
+K0·

[
tanφ′·sinβ

cosα· tan(β−φ′)
+ tanβ· (tanφ′·sinβ− tanα)

]
(2.19)

c2 = tanβ

tan(β−φ′)
−Ka (2.20)

c3 = Ka · [(tanβ)8 −1]+K0· tanφ′· (tanβ)4 (2.21)

where:

α= φ′

2

β= 45+ φ′

2
K0 = 0,4

Ka = 1− sinφ′

1+ sinφ′
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(a) Coefficients as function of friction angles. (b) Initial modulus of subgrade reaction k as func-
tion of friction angle φ.

Figure 2.8: Graphs to determine the c and k coefficients, from API (2011).

The k from equation 2.16 can be found by plotting the table with the rate of increase on
the initial subgrade reaction with depth from API (2011) and calculating an equation for the
graph.

φ′ [◦] k [M N /m3]
25 5,4
30 11
35 22
40 45

Table 2.4: Rate of increase with depth of initial modulus of subgrade reaction, from API
(2011).

The data in table 2.4 can be fitted by the eq. 2.22:

k = 0,1589e0,0832φ (2.22)

From the p-y curves it is possible to find the stiffness of the soil layer by looking at the initial
slope of the p-y curve:

E py
0 = p ′(0) = kz (2.23)
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2.4.2 Modification of p-y curve formulation

Kallehave (2015) states that the current procedure for calculating p-y curves based on API
and DNV GL standards underestimates the stiffness of the soil. After evaluation a series of
instrumented offshore wind turbines Kallehave (2015) found that the natural frequency of
the structures was 5-7 % higher than predicted using the standard methods. The difference
in design and observed natural frequency concludes that the methods used in current design
codes is a crude approximation and is not very accurate for large diameter, short piles used
in the offshore wind industry.

To assess the possibility of modifying the current formulation, Kallehave (2015) investigated
the governing parameters of the shape of the p-y curve, effects from strain level and stiffness
profile. The findings was used to modify the formulation to take into account the difference
in size and depth when comparing the basis for the p-y formulation from Matlock (1970);
DNV (2014) with the size and depth of monopiles used in the offshore wind industry.
Since σ′

v is proportional to Z Kallehave (2015) suggested that the depth effect could be for-
mulated as:

E py
0 ∝ z0

(
z

z0

)n

(2.24)

Where:

z0: the reference depth from the original formulation (2,5 m)

n: a site specific parameter expected to be in the range of 0,4-0,7

For the strain level effect Kallehave (2015) suggest to use a formulation by Stevens and Au-
dibert (1979):

E py ∝ E py
o

(
D

D0

)m(y)

(2.25)

Where:

• D0: reference diameter (0,61m)

• E py
o : initial soil stiffness

• m: diameter exponent

Stevens and Audibert (1979) suggest using m = 0,5 for clay. For larger diameter monopiles
Kallehave (2015) gives some realistic values for y (see table 2.5). The nonlinear formulation
of the stiffness degradation leads to the change in m, this is why the highest value of m are
applied in the top layers of the soil and the smaller values are applied in the lower layers of
the soil.

Table 2.5: Diameter exponent for varying displacement, from Kallehave (2015).

y [mm] 1,0 2,5 5,0 7,5 10,0
m 0,29 0,41 0,52 0,58 0,63

Kallehave (2015) states that the use of m = 0,5 give an underestimating of the stiffness of the
top soil layers and overestimating the stiffness of the lower layers.
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Modified formulation

To take in to account the physical differences between the test done by Matlock (1970), Kalle-
have (2015) modifies the original formulation in equation 2.4.1 to include the effects of strain
and depth formulated in equation 2.4.2 and 2.4.2:

E py
mod = kz0

(
z

z0

)n(
D

D0

)0,5

(2.26)

To evaluate the new formulation Kallehave (2015) conducted a benchmark study against full-
scale measurements from the offshore wind turbines mentioned earlier. The result was an
deviation in the natural frequency of 2-4% compared to the observed values. This shows an
improvement over the 5-7% deviation from the original API formulation.

2.5 Effect of Cyclic Loading on Lateral Response

This chapter present recent research on the effect of cyclic loading on the lateral response of
monopile foundations for offshore wind turbines. Monopiles placed in an marine environ-
ment is exposed to many different cyclic loads from both rotor and environmental loads. To
adequately assess the performance of the structure it is important to take in to account the
effect of cyclic loading on the fatigue of the structure and surrounding soil. Under-prediction
of the effect of cyclic loading on the degradation of the surrounding soil can effectively in-
crease the fatigue on the structure and in worst case lead to total breakdown of the structure.

Cyclic loads on offshore wind turbines

As stated in section 2.1.1 an offshore wind turbine is exposed to cyclic loads, 1P and 3P, which
is used to tune the eigenfrequency of the structure to fit in between these frequency ranges.
Achmus et al. (2009) states that the numbers of cyclic loads due to wind and waves could
exceed 108 over the lifetime of the structure. Cyclic loads leads to accumulation of pile head
displacements and rotations which can come in conflict with SLS described in section 2.1.
The standard method for calculation the pile head displacements is by using p-y curves, but
according to Achmus et al. (2009) these are based on field test with less than 200 cycles.

Cyclic degradation of soil stiffness

Recent research done by Achmus et al. (2009); Kim et al. (2015) shows a clear degradation of
soil stiffness over time based on different cyclic loads and amplitudes. Achmus et al. (2009)
states that the accumulation of plastic strain in cyclic triaxial test can be interpreted as a
decrease in soil secant stiffness. Different methods has been applied to evaluate the effect
of cyclic loading on the lateral displacement. Achmus et al. (2009) developed design charts
for offshore wind turbines placed in sandy soils based on a stiffness degradation model. Kim
et al. (2015) used some of the results from Achmus et al. (2009) in their research to evaluate
the effect of cyclic loading, but by using a strain wedge model (SWM). The model is based on
a kinematic model with the formation of a 3-D wedge formed on the passive side of the pile
and is used to calculate the soil resistance against lateral loading. The wedge configuration
is determined by the mobilised friction angle and pile diameter.
The SW model is by Kim et al. (2015) configured according to figure 2.9 where:
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Figure 2.9: Strain wedge in uniform soil, from Kim et al. (2015).

βm = 45◦+φm/2

φm : mobilised friction angle of the soil

D: diameter of the pile

h: height of the passive wedge

∆σh : variation in horizontal force in the wedge face

τ: shear stress at pile side

x: depth below top of passive wedge

P: lateral load

The model is used to evaluate the lateral response of a pile in a given uniform soil layer. The
soil that was chosen had a peak internal friction angle of 37,5◦ and a unit weight of 11kN /m3

and cohesion of 0 kPa. The cyclic load was chosen to be 25%, 50 % and 75 % of Qu , where
Qu was found to be 22.04 MN at 38,1 mm of lateral displacement. After a certain number of
cycles the pile was loaded laterally with Qu to obtain the relationship between the load and
displacement, (Kim et al., 2015).

Results from the SWM analysis is presented in figure 2.10 and show a clear degradation of
soil stiffness with number of cycles and load intensity. The pile was more displaced as the
number of cycles increased. The results of Kim et al. (2015) shows up to 40 % more deflection
with higher number of cycles and lateral load. Compared to the design criteria the partial
factor for lateral resistance γm = 1,0 according to DNV (2014) in section 2.2.
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(a) 25% of Qu (b) 50% of Qu

(c) 75% of Qu

Figure 2.10: Pile deflection curves for 3 cyclic lateral loads: (a) 25%, (b) 50%, and (c) 75% of
the static capacity (Qu), from Kim et al. (2015).

Parametric study

In relation to the work with the degradation stiffness model and design charts for cyclic load-
ing Achmus et al. (2009) conducted an parametric study to quantify the effect of geometry,
subsoil and loads on the response of the monopile.
The following ranges of parameters was considered, from Achmus et al. (2009):

• Pile geometry: embedded length L: 20-40 m, diameter D: 2,5-7,5 m, pile wall thickness
tp = 0,09 m.

• Loading: lateral load H: 5-30 MN, moment arm h: 0-40 m, number of cycles N: 1-
10.000.

• Soil types: dense sand and medium dense sand.
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The results from the parametric study was used to develop design charts for both static and
dynamic loading were developed. Achmus et al. (2009) concludes that the lateral deflec-
tion is very much dependent on the load level, the ratio between the load and ultimate load
capacity. Since the ultimate load is very much dependent on the embedded length, the accu-
mulated deflection for a given load is dependent on the embedded length of the pile. The pile
diameter also effects the ultimate load capacity, but not as much as the embedded length.



Chapter 3

Model Used in Simulations

This chapter describes the model used to simulate a monopile placed in sand with scour pro-
tection. The simulations was done in Plaxis 3D with the Hardeing Soil Small (HSS) soil model
which is included in the software. The HSS model is specialised in capturing the small strain
stiffness of the soil, which is the governing factor in the lateral response of the soil around
offshore wind turbines. The soil properties used in the simulations is similar to Hokksund
sand. This particular sand has been used as models and for the Norwegian University of
Science and Technology (NTNU) for over 30 years (Hanssen, 2016).

3.1 Hardening Soil Small Soil Model

The Hardening soil small (HSS) model is a default soil model in Plaxix 3D and is used to
investigate the stiffness in the small strain area. The main features of the model is, after
Hanssen (2016):

• Stress dependent stiffness according to a power law

• Plastic strains due to deviatoric loading

• Plastic strains due to primary compression

• Mohr-Columb failure criterion

• Small-strain stiffness and a nonlinear dependency on strain amplitude and strain his-
tory

• Threshold strain between small-strains and larger strains

The HSS soil model is developed by Benz (2007) and is a continuation of the HS soil model
with improved formulations in the small strain area.

3.2 Soil properties

The Hokksund sand is a uniform, medium grained quartz sand from a natural deposit in
Hokksund (Norway). The properties of the sand is described in table 3.1.

27
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Figure 3.1: Characteristic stiffness-strain behaviour of soil with typical strain rages for struc-
tures and laboratory tests, from Plaxis (2016).

Parameter Unit Value
Internal friction angle [◦] 38
Porosity (n) [%] 39,9
Min. porosity (nmi n) [%] 36,4
Max. porosity (nmax) [%] 48,8
Relative density (Dr) [%] 76
Density (γ) [kN /m3] 16,0
Specific density (γs) [kN /m3] 27,1
Coefficient of uniformity (Cu) [-] 2,04
Mean grain size (d50) [mm] 0,38

Table 3.1: Key soil parameters of Hokksund sand, after Hanssen (2016).

3.2.1 Linear Elastic Soil with Stiffness from Oedometer Testing

Both Moen (1978); Sandven (1992) have tested the Hokksund sand in oedometer to obtain
the soil stiffness. The stiffness can be described with Janbu’s equation for stress dependent
stiffness:

Ms = m·σa

(
σ′

σa

)1−α
(3.1)

Where:

Ms : constraints modulus of the soil

m: modulus number

σa : reference stress, 100 kPa

σ′: effective vertical stress
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α: stress exponent

From the results obtained by Moen (1978); Sandven (1992) the modulus number m = 500 and
α = 0,5 has been given for the sand. The Young’s modulus, Es , is calculated using elasticity
theory where Possion’s ratio ν is assumed to be 0,2. Figure 3.2 shows the development of the
Young’s modulus with depth.

Es = Ms · (1+ν)(1−2ν)

(1−ν)
(3.2)

Where:

Es : Young’s modulus

ν: Possion’s ratio
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Figure 3.2: Change in Es with depth according to eq. 3.2.

3.2.2 HSS with Stiffness from SWV and Oedometer

The soil parameters used in the HSS model is based on shear-wave velocity measurements
and the oedometer stiffness described in eq. 3.1. The stress dependent stiffness in the HSS
model is given by eq. 3.3, 3.4 and 3.5.

Es = E r e f
s,50

(
c cosϕ−σ′

3 sinϕ

c cosϕ+pr e f sinϕ

)m

(3.3)

Gs,max =Gr e f
s,max

(
c cosϕ−σ′

3 sinϕ

c cosϕ+pr e f sinϕ

)m

(3.4)

Ms = M r e f
s,50

( c cosϕ− σ′
3

K nc
o

sinϕ

c cosϕ+pr e f sinϕ

)m

(3.5)

Share wave velocity measurements

To find the small strain shear modulus Gmax Hanssen (2016) used shear-wave velocity mea-
surements with different vertical stresses from 8-58 kPa. The formula used to calculate the
small strain shear modulus from the shear wave velocities is given in eq. 3.6.
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G = v2
sρ (3.6)

Where:

vs : shear wave velocity [m/s]

ρ: density [kg /m3]

From the SWV results Hanssen (2016) fitted an equation to the points obtained from eq.
3.6 to get an expression for the small strain modulus dependent on the vertical stress. The
expression is given in eq. 3.7.

Gs = g
(
pr e f σ

′
v

)0,5 +k (3.7)

Where:

Gs : small strain modulus

g: 1000

pr e f : 100

k: 39000

The results from the measurements of shear-wave velocity measurements and the calculated
Gmax fitted with eq.3.7 for a σv up to 60 kPa is given in figure 3.3.
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Figure 3.3: (a) Measured shear wave velocity against vertical stress and (b) calculated small
strain modulus against vertical stress, after Hanssen (2016).

The results from the measurements with the corresponding equation is used to calculate the
small strain modulus down to 40 m and the parameters is assumed to be the same as for

Hanssen (2016). In Plaxis the following parameters should be included, E r e f
s,50, M r e f

s,50, E r e f
s,ur ,

Gr e f
s,50 and γ0,7 as given in eq. 3.3 - 3.5. The results for Gmax from the SWV measurements is

used as reference for calculating the parameters, see appendix A.
The HSS model also incorporates a threshold shear-strain γ0,7 which is given by eq. 3.8:
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Figure 3.4: Small strain modulus Gmax with depth

γ0,7 = 1

9Gs,max

[
2c(1+ cos(2ϕ))+σ′

1(1+K0)si n(2ϕ)
]

(3.8)

Where:

Gsm ax : shear modulus at small strains

c: cohesion

ϕ: friction angle

σ′
1: effective vertical stress

K0: earth pressure coefficient at rest

A summary of the input parameters for the HSS model is described in table 3.2.

Table 3.2: Parameters for the HSS model, after Hanssen (2016)

Symbol Unit Value
φ [◦] 38
c ′r e f [kPa] 1,0

E r e f
s,50 [MPa] 64,2

M r e f
s,50 [MPa] 50

E r e f
s,ur [MPa] 190

γ′ [kN /m3] 6
m [-] 0,38
ν′s,ur [-] 0,2
ψ [◦] 0
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3.3 3D-FEM model in Plaxis

Figure 3.5: Model from Plaxis with scour protection layer.

The model used in the simulations is a 3D-FEM model of a pile placed in sand. The size
of the model is chosen to be close to real situation with a 60 m long pile with diameter of
6 m, embedded 30 m in sand. To reduce the calculation time only half of the geometry is
modelled, using symmetry boundary conditions along the symmetry line (x-z plane). The
soil has also been divided into 4 layers of 10 m height to be able to vary the threshold shear
strain (γ0,7) with depth. In the model it’s used medium coarse mesh with mesh refinement
close to the pile and within the pile to prevent numerical errors. Figure 3.5 shows the model
used in the simulations.

3.3.1 Pile Geometry

The pile used in the simulations is selected to represent a real situation with characteristic
size and properties from Kallehave (2015); Hanssen (2016). The pile is modelled with volume
elements with an equivalent Young’s modulus which is given by:

E∗ = E

(
1−

(
r − t

r

)4)
(3.9)

Where:

r: radius of the pile
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t: thickness of the pile walls

E: Young’s modulus of the pile material

E∗: Equivalent Young’s modulus

Table 3.3: Pile properties

Unit Value
Pile diameter (D) [m] 6
Embedded length (L) [m] 30
Total length [m] 60
Wall thickness (t) [mm] 80
Unit weight [kg /m3] 7850
Young’s modulus (Esteel ) [GPa] 210
Equivalent Young’s modulus E∗ [GPa] 21,5
Possion’s ratio (ν) [-] 0,3
Interface roughness (α) [-] 1

The pile is modelled by 10-noded triangular volume elements. The pile elements is modelled
with a linear-elastic material law with equivalent bending stiffness and unit weight as a as a
pile with open centre (pipe-like structure). 10-noded triangular elements of zero thickness
is placed between the pile and the soil as a interface with interface roughness α = 1. An
illustration of the model is shown in figure 3.5. To extract the bending moment from the
model a soft beam is placed in the centre of the pile. The beam has no weight or stiffness
and will not contribute to the overall stiffness of the pile. The idea is that the beam will
mimic the soil behaviour along the pile. In Plaxis the moment distribution along the beam
and deflection of the beam can easily be extracted for further calculations.

3.3.2 Properties of Scour Protection Layer

The properties of the scour protection layer is selected to represent a real situation with char-
acteristic size and properties and is based on conditions described by Kallehave (2015). The
scour protection layer is modelled with HSS soil model with similar properties as the up-
per layer of Hokksund sand. The scour protection layer generally consists of stones placed
around the pile, and the layer is characterised with high stiffness. To accommodate this the
cohesion, C, is increased to 20 kPa to simulate the higher strength of the material compared
to the layer beneath.
Since the cohesion is increased the development of G0,HS and γ07 with depth also changes.
The change is presented in figure 3.6.
The HSS parameters for the scour protection layer is chosen to be the same as for the first
layer of Hokksund sand but with increased cohesion. The HSS parameters for the first layer
of Hokksund sand is taken from a depth of 5 m.

3.3.3 Load characteristics

In operation, the load on the pile is generated from the weight of the tower structure, cyclic
loads from wind and waves acting on the pile and tower structure and cyclic loads from the
rotor (1P and 3P). To assess the soil response the pile is exposed to a range of loads, 10 kN,
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Table 3.4: Parameters for the HSS model of the scour protection layer.

Symbol Unit Value
φ [◦] 38
c ′r e f [kPa] 20,0

E r e f
s,50 [MPa] 64,2

M r e f
s,50 [MPa] 50

E r e f
s,ur [MPa] 190

γ′ [kN /m3] 6
m [-] 0,38
ν′s,ur [-] 0,2
ψ [◦] 0
Radius of filter layer (RF ) [m] 2,5D
Radius of armour layer (RA) [m] 2,0D
Thickness of filter layer (hF ) [m] 0,8
Thickness of armour layer (hA) [m] 1,2
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Figure 3.6: Change in G0, G0,HS , G0,HSSP and γ07 with depth down to 40 m for the scour
protection layer.

100 kN, 1000 kN, 2000 kN and 5000 kN. The load steps is chosen to represent a variation
of load cases from very small loads to bigger loads. The last load step, 5000 kN, is selected
because of computational reasons as bigger load will increase the calculation time and the
loads selected gives satisfactory results and is sufficient to construct p-y curves. The load
steps is applied as static loads at the top of the pile.

3.4 Simulation Staging in Plaxis

The simulation in Plaxis is divided in to three different cases to analyse the effect scour pro-
tection on the lateral behaviour of the pile. First the simulations is done without any scour
protection, second the scour protection is modelled as surface load and finally the scour
protection is modelled as a layer on top of the subsoil.
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3.4.1 Benchmark Study Without Scour Protection

In the first case the monopile and soil is modelled without any form of scour protection
around the pile. This is to simulate a benchmark condition which later will be used to analyse
the effect of the scour protection on the lateral response of the soil. The case is divided into
5 load steps as described in section 3.3.3.

3.4.2 Scour Protection as Surface Load

In the second case the scour protection is modelled as surface load to investigate the effect
of the surcharge load on the stiffness of soil surrounding the pile. The surcharge load is equal
to the weight of the purposed scour protection layer with properties as described in table 3.4.
This case is also divided into 5 load steps as described in section 3.3.3.

3.4.3 Scour Protection as Dedicated Layer

In the final case the scour protection is modelled as a layer on top of the subsoil with prop-
erties as described in table 3.4. This case is also divided into 5 load steps as described in
section 3.3.3.



Chapter 4

Results from Simulations

This chapter presents the results from simulations of a monopile placed in Hokksund sand
done with 3D FEM software Plaxis. The model used in the simulations is according to chap-
ter 3. The resulting bending moment from the simulations have been used to calculate soil
response and p-y curves for different depths along the pile. The simulations have been di-
vided into three cases; pile only, pile with surface load and pile with scour protection layer.
The results from the simulations have been post-processed in Excel and MatLab.

4.1 Bending Moment and Soil Response from Simulations

As described in section 3.3.1 the bending moment is obtained by including a soft beam in the
centre of the pile. Plaxis includes built in tools to generate bending moment distributions for
beams. The results from the simulations is divided into three different cases as described in
section 3.4.

Calculating soil response from bending moment

After obtaining the bending moment, the soil response can be calculated with the following
equation:

P (z) = d 2M(z)

d z2
(4.1)

Where:

P: soil response

M: bending moment

z: depth

When the soil response is known it is possible to extract the lateral deflection from the soft
beam using uilt in tools on Plaxis. The general calculation procedure is described in figure
4.2.
The moment from the soft beam can be scaled up to represent the moment for the whole
pile. To do this the equivalent Young’s modulus and the moment of inertia is needed for
both the soft beam and the pile.

36
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Figure 4.1: Derivatives of the 4th order beam equation, from Hanssen (2016).

Figure 4.2: Flow chart of calculation procedure for p-y curves from Plaxis.
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The soft beam is given as:
E I = 1

The moment of inertia for a pile with radius r and wall thickness t is given as:

I = π

4

(
r 4 − (r − t )4

)
(4.2)

The moment of inertia for a cylinder is given as:

Ic yl =
π

4
r 4 (4.3)

The moment is generally given as:

M = E I
d 2 y

d x2
(4.4)

To find the equivalent moment in the pile the moment from the beam must be multiplied
with E I /E Ibeam :

Esteel = 210GPa

I = π

4

(
34 − (3−0,08)4

)
= 6,52m4

E I

E Ibeam
= 210.000.000kPa·6,52

1

= 13,69·108

With the equivalent Young’s modulus for the pile with volume elements the result should be
the same as for the original hollow pile:

Eequ = 210·108
(
1−

(3−0,08

3

)4)
= 21.500.000kPa

Ic yl =
π

4
34

= 63,6m4

E Iequ

E Ibeam
= 21.500.000kPa·63,6

1

= 13,68·108

The formulations seem to fit well. After correcting the moment from Plaxis the soil response
can be calculated with eq. 4.1.

The soil response can also be shown by investigating the normal stress on the interface ele-
ments around the pile in Plaxis. When the soil response p(z) and the lateral deflection y(z) is
known for a given load step and depth, a point in the P(z)-y(z) curve can be constructed. By
simulation different load steps a full p-y curve for a given depth can be constructed.
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4.1.1 Results from Case Without Scour Protection

Figure 4.3: Model from Plaxis with no scour protection and load of 5000 kN.

Figure 4.3 shows a deformed mesh figure from Plaxis illustrating the pile when it’s exposed
to a horizontal load of 5000 kN at the top of the pile. In this model there is no surface load or
scour protection layer. The moment distribution and soil response along the pile for a hor-
izontal load of 1000 kN, 2000 kN and 5000 kN is shown in figure 4.4. The moment increases
linearly from the top of the pile down to the top of the soil. At the top of the pile there is
some distortion due to the horizontal load and the plate element on the top. The moment
at the top of the soil should be equal to the load times the moment arm, around 150 MNm
for load of 5000 kN. This seems to correlate well. The soil response should be zero above
the soil, but due to the load and plate at the top there is some distortion also here. For fur-
ther calculations this does not effect the results, as only the embedded length of the pile is
used to calculate p-y curves. The bending moment and corresponding normal stress on the
interface elements is shown in figure 4.5 - 4.6.
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Figure 4.4: Moment and soil response with depth for case with no scour protection.
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Figure 4.5: Moment distribution from Plaxis along beam for case without scour protection at
load step 5000 kN

Figure 4.6: Interface stress for case without scour protection at load step 5000 kN.
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4.1.2 Results from Case With Surface Load

Figure 4.7: Model from Plaxis with surface load and load of 5000 kN.

Figure 4.7 shows a deformed mesh figure from Plaxis illustrating the pile when it its exposed
to a horizontal load of 5000 kN in the top of the pile. In this model there is a surface load
corresponding to the weight of a scour protection layer. The moment distribution and soil
response along the pile for a horizontal load of 1000 kN, 2000 kN and 5000 kN is shown in fig-
ure 4.8. Also here the moment increases linearly from the top of the pile down to the soil. The
distortions in moment and soil response is present also here, but again only the embedded
length of the pile is used to calculate p-y curves. The bending moment and corresponding
normal stress on the interface elements is shown in figure 4.9 - 4.10.
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Figure 4.8: Moment and soil response with depth for case with surface load.
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Figure 4.9: Moment distribution from Plaxis along beam for case with surface load at load
step 5000 kN

Figure 4.10: Interface stress for case with surface load at load step 5000 kN.
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4.1.3 Results from Case With Scour Protection Layer

Figure 4.11: Model from Plaxis with scour protection layer and load of 5000 kN.

Figure 4.11 shows a deformed mesh figure from Plaxis illustrating the pile when it its exposed
to a horizontal load of 5000 kN at the top of the pile. In this model there is a scour protection
layer around the pile with properties as described in table 3.4. The moment distribution
and soil response along the pile for a horizontal load of 1000 kN, 2000 kN and 5000 kN is
shown in figure 4.12. The moment and soil response show the same behaviour as in the
previous cases, but the linear part of the moment distribution seems to stop a bit higher
than in the previous cases. This fits well with the presence of the SP layer on top of the soil.
There is also a soil response above the soil which indicates that the SP layer responds to the
lateral pressure from the pile. The bending moment and corresponding normal stress on the
interface elements is shown in figure 4.13 - 4.14.
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Figure 4.12: Moment and soil response with depth for case with scour protection layer.
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Figure 4.13: Moment distribution from Plaxis along beam for case with scour protection at
load step 5000 kN

Figure 4.14: Interface stress for case with scour protection layer at load step 5000 kN.
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4.2 Lateral Deflection from Simulations

The lateral deflection of the soil can be found by extracting the lateral displacement of the
centre beam in the x-direction from Plaxis.
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Figure 4.15: Pile deflection at 5000 kN for all cases.

Figure 4.15 presents the pile deflection at 5000 kN for the different cases. For the calculation
of p-y curves the deflection for all load steps is included. The figure shows a clear effect of
both surcharge load and the scour protection layer on the deflection of the pile. The differ-
ence between the deflection with surcharge load and scour protection layer implies that the
scour protection layer has an effect beyond the pure effect of surcharge load. Figure 4.15 also
shows that the pile rotates near the bottom, around -20 m, but with small difference between
the cases.
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4.3 Calculation of p-y curves from Simulations

The p-y curves can be calculated by plotting the soil response p(x) against lateral deflection
y(x) for different load steps at different depths.
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Figure 4.16: p-y curves from -0,61 to -14,4 m.
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Figure 4.16: p-y curves from -0,61 to -14,4 m cont.
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The p-y curves for depth down to -14,4 m is plotted in figure 4.16. Close to the rotation point
of the pile the results are ambiguous. This is due to the fact that when the pile rotates it
pushes the soil, so there will be areas with pressure and no displacement and displacement
without pressure. From figure 4.4, 4.8 and 4.12 the rotation point seems to be around -20 m.
In order to get reliable results the depth from -14,4 to -23,1 is disregarded (1D over rotation
point and 0,5D below rotation point).
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Figure 4.17: p-y curves from -23,1 to -26,7 m.

Figure 4.17 presents the p-y curves below the rotation point from -23,1 m to -26,7 m. The area
beneath -26,7 is disregarded due to ambiguity in the results at the end due to the rotation of
the pile (toe-kick). The negative axis values means that the stress and strain is in the opposite
direction compared to the values above the rotation point.



Chapter 5

Discussion

The main objective of this thesis is to evaluate the effect of scour protection on the lateral
stiffness/response of a monopile foundation. To assess the effect simulations with 3D-FEM
software Plaxis have been done with a real size model placed in a sand material similar to
the model sand used at NTNU. Simulations has been divided in to three cases to adequately
evaluate the effect of the scour protection. In chapter 6 the results from the simulations is
presented. This chapter will discuss the results of the simulations and compares the three
different cases used in this study.

5.1 Comparison of Results

The results for all cases show a clear effect of both the surcharge load and the scour protec-
tion layer itself. From the lateral deflection it is clear that the lateral behaviour of the pile is
effected by the soils increased stiffness caused by the surcharge load and the scour protec-
tion layer. In figure 5.1 the moment distribution and soil response for the load-step of 5000
kN for all cases is presented.

Figure 5.1 shows a clear reduction of the moment along the pile as well as an increase in the
soil response down to a depth of Z<D and lowering of the soil response deeper than Z>D.
Around the rotation point of the pile (∼ 20 m) it is hard to assess the soil response because
when the pile rotate it push on the soil so there will be pressure without displacement and
displacement without pressure and this will not yield any results. The soil response in this
part of the pile can be interpolated between the upper and lower areas where there is reliable
results.

5.1.1 Change in p-y Curves

P-y curves for different depths and cases i presented in section 4.3. The curve are based
on the calculated soil response and lateral deflection from moment distribution along the
pile. From the curves it is clear that the scour protection has a substantial influence on the
stiffness of the upper layers of the soil. Both the SL and SP cases show an increase in the soil
response in the upper 3-4 m. Further down is seems that the effect decreases and the p-y
curves is coinciding. This can be explained by stress distribution theory where the effect of a
surcharge load decreases both with depth and horizontal distance from the load.
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Figure 5.1: Moment and soil response with depth for a load of 5000 kN for all cases.

Comparison with API

As described in section 2.4.1 the design codes by DNV (2014); API (2011) describes formula-
tions for developing p-y curves for different ground conditions. To compare the results from
Plaxis it is made p-y curves for the case without scour protection.
Figure 5.2 shows the p-y curves based on the API formulation from section 2.4.1 with de-
flection corresponding to the results from Plaxis simulations without scour protection. The
figure show a general increase in stiffness with depth and that the lower levels still is in the
elastic range when exposed to the 5000 kN load step.

Figure 5.3 compares the p-y curves from API and Plaxis. From the figure it seems that the
shallow levels correlates well with the API formulations, but with depth API seems to over-
estimate the stiffness. The Plaxis graphs from -0,36 m, -1,88 m and -3,12 m fits well with the
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Figure 5.2: p-y curves based on API formulation for case without scour protection.

API results, but API seems to give higher initial stiffness. This is due to the linear increase in
stiffness with depth in the API formulations. The soil model in Plaxis (HSS) designed to have
a parabolic increase in stiffness with depth. This results in API overestimating the stiffness
at larger depths.
Figure 5.4 is a closer plot of figure 5.3 in the small strain are. From the figure it seems that the
soil response is similar but HSS gives a much higher stiffness with deflection below 0,001 m
for the upper layers of the soil. Also the linear-elastic, perfectly plastic approach idealisation
in the API formulation of p-y curves differs from the parabolic gradual decrease in stiffness
in the HSS formulation, resulting in the difference in the development of the curves with
deflection as shown in figure 5.3.

5.2 Change in Eigenfrequency

The eigenfrequency of a offshore wind turbine is an important design driver, the eigenfre-
quency can be calculated from the secant stiffness extracted from the p-y curves used in a
Winkler foundation model.

f [sec] = 1

2π

√
ks

M
(5.1)

Where:

ks : force/displacement at top of pile

M: top mass
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Figure 5.3: p-y curves based on API formulation (bold text) for case without scour protection
compared with p-y curves from Plaxis.
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Here the eigenfrequency is calculated using a simple 1-DOF approximation described by eq.
5.1. To calculate the eigenfrequency a mass is to be selected. The mass is selected to give a
frequency of 0,3 sec. in the benchmark case with no scour protection and load step of 10 kN.
The mass is kept constant for all cases and load steps. Eq. 5.1 is then used to calculate the
corresponding frequency for SL and SP cases with the same mass. The mass can be found by
rearranging eq. 5.1:

f = 1

2π
·
p

k sp
M

f ·
p

M = 1

2π
·
p

k s

p
M =

p
k s

2π f

M = ks

(2π f )2

For a target frequency of 0,3 sek. for load step of 10 kN in the benchmark case, the top mass
was found to be 8,26·106 kg. This mass is used to calculate the eigenfrequency for all other
cases and load step. Note that the top mass does not represent a full wind turbine, but only
an example mass used to calculate the change in eigenfrequency for the different cases.

Table 5.1: Data used to calculate the frequency for all cases and load steps.

Data from Plaxis
Load step 10 kN 100 kN 1000 kN 2000kN 5000 kN

Deflection at pile top [m]
No SP 3,41E-04 3,63E-03 4,77E-02 1,08E-01 3,64E-01
SL 3,40E-04 3,55E-03 4,41E-02 9,83E-02 3,13E-01
SP 2,92E-04 2,99E-03 3,93E-02 8,90E-02 2,91E-01

Calculation of ks [kN/m]
No SP 2,93E+04 2,76E+04 2,09E+04 1,85E+04 1,37E+04
SL 2,94E+04 2,82E+04 2,27E+04 2,03E+04 1,60E+04
SP 3,43E+04 3,34E+04 2,55E+04 2,25E+04 1,72E+04

Calculation of f [sek]
No SP 2,9609 2,8712 2,5021 2,3502 2,0261
SL 2,9656 2,9025 2,6030 2,4658 2,1858
SP 3,2011 3,1589 2,7586 2,5913 2,2656

Calculation of d f [%]
SL 0,16 % 1,09 % 4,03 % 4,92 % 7,88 %
SP 8,11 % 10,02 % 10,25 % 10,26 % 11,82 %

The results and intermediate results from frequency calculations is presented in table 5.1
and the results is shown in figure 5.5. Note that the values is for half of a pile. The change in
eigenfrequency d f is defined as ( f − f0)/ f0 where f0 is the eigenfrequency from the bench-
mark case.
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Figure 5.5: Change in eigenfrequency for a pile with mass on top.

Figure 5.5a shows the deflection at the pile top at different load steps. From the figure it
is clear that both the surcharge load and the scour protection layer has an influence on the
deflection of the pile. The deflection is then used to calculate the stiffness of the whole struc-
ture, where ks is the force applied divided by the lateral deflection:

ks = F [kN ]

y[m]
(5.2)

Figure 5.5b show the change in ks with different load steps. From the figure it seems that
the spring stiffness is lower at higher lateral force. This correlates well with the p-y curves
where the secant stiffness is lower at higher load steps, and the fact that the soil is stiffer in
the small strain area. The figure also shows a difference between the different cases where
the case with a scour protection layer gives the highest stiffness.
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Figure 5.5c shows the change in eigenfrequency for the different load steps. Here the eigen-
frequency for the case without scour protection is used as a benchmark case where the eigen-
frequency is set to be f = 0,3sek. From the figure it is clear that the scour protection has an
influence on the eigenfrequency of the structure, both as a surcharge load and an indepen-
dent layer. In figure 5.5d the change in frequency is normalised to the benchmark case. From
the figure it is clear that the scour protection gives a increase in eigenfrequency from about
1-10 % and the difference is highest in the biggest load steps.

5.2.1 Stiffness of Scour Protection Layer

The eigenfrequency is an important design driver, and deviation in the eigenfrequency com-
pared to the designed value could lead to decreased lifetime of the structure due to fatigue
or in worst case breakdown on the structure. Structural monitoring and back calculations
on installed offshore wind turbines done by Kallehave (2015) have indicated that there is an
deviation in the designed eigenfrequency from the measured eigenfrequency on site. Kalle-
have (2015) also did assessment on the stiffness of scour protection layer necessary to give
the measured eigenfrequency and found the required stiffness to be from 200-350 MPa.

Figure 5.6: Deformation of scour protection layer with horizontal load of 5000 kN.

Figure 5.6 shows the deformed mesh of the pile with scour protection layer under a hori-
zontal load of 5000 kN. From the figure it is clear that the SP is deformed under the pressure
from the deflected pile, but the SP layer has also experienced lateral movement. In this the-
sis the SP layer have not been investigated in detail regarding the properties, but the result
seems legitimate when considering large stone fills under lateral pressure. Some of the pres-
sure leads to compaction of the stone fill, and some of the pressure is translated through the
whole structure, and the shear strength of the stone fill - subsoil interface governs the lateral
movement on the passive side of the pile. From figure 5.6 it also seems that gaping is occur-
ring on the active side of the pile. This is also in accordance with observed soil behaviour
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when large lateral deflection is occurring, e.g. storm events. Measurements done by Kalle-
have (2015) shows a drop in eigenfrequency after storm events, likely due to gaping between
the pile and SP and/or subsoil. The observed drop in eigenfrequency is temporary, so the
effect of the gap is reduced over time as the SP and subsoil is again settling in to the pile.
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Figure 5.7: p-y curve for SP layer at 0,66 m.

Figure 5.7 shows the p-y curve for the SP layer at 0,66 m height. From the figure it is possible
to calculate the stiffness of the layer under different load conditions. The secant stiffness at
load step 1000 kN gives a stiffness of around 100 MPa. The stiffness is even higher at lower
load steps.
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Summary and Conclusion

Offshore wind energy i.e. offshore wind turbines have become a large supplier of clean
renew-able energy to the European energy market. By the end of 2015 it was installed over
3.200 offshore wind turbines in 84 offshore wind farms in 11 European countries, delivering
over 11.000 MW of clean renewable energy to the grid. For offshore wind turbines 80 % of the
substructures are monopiles, with an average turbine size of 4,2 MW of output, with average
water depth of 27,1 m and 43,3 km from the shore. The trend is an increasing turbine size
(14 % larger from 2014 to 2015) and even higher water depth and distance from shore EWEA
(2015).

Design principles of large diameter monopiles

The main principle for designing offshore wind turbines with monopile foundation is to fit
the natural frequency of the structure within a section of frequencies that is not interfering
with the natural frequencies from wind and waves and the rotor and blade passing frequen-
cies. This is done by modelling the pile as beam element with non linear springs, an so
called Winkler foundation with p-y springs. These springs simulate the dynamic response of
the soil. The p-y approach was originally developed by Matlock (1970) for longer and slender
piles used in the oil industry.

The development of the natural frequency of the offshore wind turbine is also dependent of
the bed condition over time. When a structure is placed in a marine environment the flow
around the structure changes. The structure represents an obstacle that the current or waves
(also combined wave and current) have to pass. The presence of the structure can induce
wakes and vortexes that increase the shear stress on the bed surface, and when the shear
stress is higher than the shear strength (τ> τ f ) erosion of bed material will start around the
pile (scouring). There is different scour conditions where clear water scour is the condition
where the erosion only happens around the structure and live bed scour where the erosion
happens over the whole bed. The scour phenomena has been subject to a lot of research and
is well understood within smaller diameter structures like bridge peers etc.

Scour can have a substantial impact on the natural frequency of an offshore wind turbine,
and with frequency reduction comes possibility of resonance with other prominent dynamic
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loads on the structure, this can lead to increased fatigue, shorter operational lifetime and in
worst case total breakdown of the structure. To protect a structure from the possibility of
scour it is normal to place scour protection around it. The scour protection normally con-
sists of a filter and armour layer consisting of medium and coarse sized stones.

Influence of scour protection on lateral stiffness

The effect of scour protection on the lateral stiffness of monopiles for offshore wind turbines
has been investigated through 3D-FEM analysis in Plaxis. The results from the simulations
were used to calculate p-y curves for different depths and situations. The results were also
compared to the American Petroleum Institute recommended practice for calculating p-y
curves for offshore purposes.

The 3D-FEM calculations were done with a model representing a real situation, with real
sizes and parameters. The pile was 60 m long with a diameter of 6 m. The pile was embed-
ded 30 m in sand. The sand selected was Hokksund sand, a model sand used at NTNU for
laboratory tests. Previous testing on this sand done by Sandven (1992); Hanssen (2016) made
it possible to obtain parameters for the Hardening Soil Small (HSS) soil model to be used in
the simulations. The HSS soil model is specially developed to model the soil stiffness in the
small strain area, making it perfect for modelling monopiles for offshore wind purposes, as
the lateral behaviour is generally in the small strain area.

The FEM simulations was divided into three cases, 1) benchmark case without scour protec-
tion, 2) scour protection as surface load and 3) scour protection as a independent layer on
top of the subsoil. The reason for making three cases were to have a benchmark to compare
the results from the two other cases with, isolate the effect of just the surcharge load on the
stiffness of the subsoil and the effect of the scour protection layer on the lateral deflection of
the pile. Within these three cases the lateral load was divided in to 5 load steps, 10 kN, 100
kN, 1000 kN, 2000 kN and 5000 kN. The intervals of the load was chosen to give values from
both small and larger loads to be able to evaluate the development of the p-y curves. Also
the simulation-time increased with the load, and 5000 kN was found to be sufficient when
considering the time.

The 3D-FEM model of the soil was divided in to four layers to be able to change the threshold
shear strain γ0,7 in the HSS soil model. Each soil layer was 10 m deep, giving a total soil depth
of 40 m. The pile was placed in the middle of the model with 50 m of soil on each side. Only
half of the model was simulated, and symmetry boundary condition was used. The pile was
modelled with volume elements with equivalent Young’s modulus as for a monopile with 80
mm wall thickness. In the middle of the pile a soft beam was placed, from the beam it was
possible to extract the bending moment along the pile which then was used to calculate the
soil response.

The results from the 3D-FEM simulations show a clear effect of both the surcharge load of
the scour protection and the extra layer that the scour represents. The p-y curves from the
Plaxis simulations fit well with the p-y curves from the API formulation down to about -3,12
m for the benchmark case, but with larger depths the API formulation predicts higher stiff-
ness than what is observed in the simulations. This is in accordance with findings by among
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others Hanssen (2016).

The frequency for the case with only surcharge load is found to be up to 1 % higher for load
step of 100 kN than for the benchmark case. For the case with scour protection as a indepen-
dent layer the frequency was found to be 10 % higher than the benchmark case. This indi-
cates that the scour protection has a substantial impact in the eigenfrequency of a offshore
wind turbine, and most impact has the stiff extra layer that the scour protection represents.
The stiffness of the scour protection layer was also investigated and was found to be around
100 MPa with the secant stiffness for a load step of 1000 kN, and even higher with lower
load steps. This is in accordance with back-calculations of measured eignfrequencies done
by Kallehave (2015) where the stiffness of installed scour protection layers around offshore
wind turbines was found to be around 200-350 MPa.

The conclusion to this master’s project is that the design codes used in the industry for esti-
mating the soil response do not adequately embrace the effect the scour protection has on
the lateral behaviour of a monopile foundation. An effect of up to 10 % increase in eigen-
frequency is observed when the SP is fully included in the numerical simulations. Both the
surcharge component of the SP and the extra layer has an effect. The method used gives
a good indication on the effect of the SP, and the observed results fits well with theoretical
assumptions and estimation done with the API formulation. Tho the method for extracting
the soil response from the 3D-FEM model gives in some cases ambiguous results, specially
in the pile rotation point and in the ends of the pile.
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6.1 Recommendations for Further Work

This master’s project has investigated the effect of SP on the eigenfrequency of offshore wind
turbines by conducting a 3D-FEM analysis on a idealised case with parameters from model
sand, therefore this model has not been verified or compared against measured values.

• The eigenfrequencies obtained from the model is calculated with a simplified method.
The p-y curves should be included in a Winkler model and the eigenfrequency should
be calculated and compared to the values found in this thesis.

• The model used in a idealised case with a model sand. The next step would be to apply
the method to existing structures to evaluate the procedure and verify results. Some
deviation should be expected as the as built/installed properties of a offshore wind
turbine could wary from the assumptions done in the design phase.

• In this thesis the soil mechanical behaviour of the SP layer has not been investigated in
detail. The SP layer is found to be very important and the behaviour under lateral load
should be investigated. The SP is in a crossing between both soil and rock mechanics
so both disciplines should be considered.

• The dynamic response of the soil and SP layer has not been investigated. As described
in section 2.5 the cyclic loading has an effect on the lateral stiffness of the soil. This
degradation should be investigated for both the soil and SP layer. Also the time ef-
fect of the soil stiffness degradation should be investigated as measurement done by
Kallehave (2015) shows that a drop in eigenfrequency after a storm event (stiffness is
degraded) is in most cases temporary. This indicates that the soil regain stiffness over
time.
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Appendix A

Determination of HSS Parameters for
Hokksund Sand

The sand properties used in the FEM simulations is based on Hokksund sand which is a
model sand used in laboratory tests at NTNU. The sand is a uniform, medium grained quartz
sand from a natural deposit in Hokksund (Norway). The simulations is done in FEM software
Plaxis 3D with Hardeing Soil Small (HSS) soil model, a soil model included in the software.
The HSS model is a modification of the original HS model, specially developed to capture
development of small strains (10−6 - 10−5) and small strain stiffness. The HSS model was
developed by Thomas Benz at University in Stuttgart and the full description of the model is
described in (Plaxis, 2016).

Table A.1: Key soil parameters of Hokksund sand, after Hanssen (2016).

Parameter Unit Value
Internal friction angle [◦] 38
Porosity (n) [%] 39,9
Min. porosity (nmi n) [%] 36,4
Max. porosity (nmax) [%] 48,8
Relative density (Dr) [%] 76
Density (γ) [kN /m3] 16,0
Specific density (γs) [kN /m3] 27,1
Coefficient of uniformity (Cu) [-] 2,04
Mean grain size (d50) [mm] 0,38

Hokksund sand is a sand used in model experiments at NTNU and has been subject to many
investigations over the years. The soil parameters used in this simulations has been deter-
mined by Moen (1978); Sandven (1992) and is summarised in table A.1.
The oedometer stiffness can be described by the Janbu equation for stress dependent stiff-
ness:

Ms = m·σa

(
σ′

σa

)1−α

Where:

Ms : constraints modulus of the soil

A-1



APPENDIX A. DETERMINATION OF HSS PARAMETERS FOR HOKKSUND SAND A-2

m: modulus number

σa : reference stress, 100 kPa

σ′: effective vertical stress

α: stress exponent

Oedometer test done by Sandven (1992) found that the constraint modulus of the soil m =
500 and Possion’s ratio is assumed to be ν= 0,2. The Young’s modulus of the sand can then
be determined by:

Es = Ms · (1+ν)(1−2ν)

(1−ν)

Where:

Es : Young’s modulus

ν: Possion’s ratio

For the HSS model there is a need for more soil parameters, E r e f
s,50, M r e f

s,50, E r e f
s,ur , Gr e f

s,50 and γ0,7.
The parameters are given for a reference pressure of -100 kPa (compression is negative in
HSS) with the following equations:

Es = E r e f
s,50

(
c cosϕ−σ′

3 sinϕ

c cosϕ+pr e f sinϕ

)m

Gs,max =Gr e f
s,max

(
c cosϕ−σ′

3 sinϕ

c cosϕ+pr e f sinϕ

)m

Ms = M r e f
s,50

( c cosϕ− σ′
3

K nc
o

sinϕ

c cosϕ+pr e f sinϕ

)m

Calculation of Gr e f
s,50 and γ0,7

Gr e f
s,50 is selected to fit the results from shear wave velocity measurements (Gmax) done by

Hanssen (2016), but for a depth of 40 m. To get a reasonable fit between the SVW mea-
surements and the parameters used in this simulation, c and m in eq. A - A was varied. A
cohesion of 1 kPa and exponent m of 0,38 gave a good fit. The equation for Gs,max from HSS
documentation is:

Gs,max =Gr e f
s,max

(
c cosϕ−σ′

3 sinϕ

c cosϕ+pr e f sinϕ

)m

From the results from the shear-wave velocity measurements Hanssen (2016) fitted an equa-
tion:

Gs = 1000
(
pr e f ·σ′

v

)0,5 +39.000

When determining the Gr e f
s,50 value the reference pressure is 100 kPa. That gives a Gs value of:
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Gs = 1000
(
100·100

)0,5 +39.000

Gs = 139.000kPa = 139MPa

Then Gr e f
s,50 can be calculated:

139.000 =Gr e f
s,max

(
1cos38− (−100(1− sin38))sin38

1cos38+100sin38

)0,38

Gr e f
s,max = 139.000

0,701

Gr e f
s,max = 198.571,4kPa = 198,75MPa

The threshold shear strain, γ0,7, can be calculated with the following equation:

γ0,7 = 1

9·GS,max

[
2c(1+cos(2ϕ))+σ′

1(1+K0)sin(2ϕ)

]
The calculated G0, G0,HS and γ07 with depth is presented in figure A.1. Here m = 0,38 and
c = 1,0kPa is chosen to give a reasonable fit with the shear stiffness from the shear wave
velocity measurements. The fit was favouring the upper layers (>15 m) as they have most
influence on the lateral movements of the monopile.
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Figure A.1: Change in G0, G0,HS and γ07 with depth down to 40 m.

Calculation of M r e f
s,50

The reference constraint modulus M r e f
s,50 can be found by introducing a reference stress of

-100 kPa in the equation for HSS constraint modulus, where:

K0 = 1− si n(ϕ)
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And

σ′
3 =σ′

1·K0

The value of Ms is set to be equal to he value from Janbu’s formulation at reference pressure
(100 kPa):

Ms = 500·100

(
100

100

)0,5

= 50.000kPa = 50MPa

When using this in the HSS formulation for modulus number:

Ms = M r e f
s,50

( c cosϕ− σ′
3

K nc
o

sinϕ

c cosϕ+pr e f sinϕ

)m

50.000 = M r e f
s,50

(
1,0cos38− (−100)sin38

1,0cos38+100sin38

)0,38

M r e f
s,50 =

50.000kPa

1

M r e f
s,50 = 50.000kPa = 50MPa

Calculation of E r e f
s,50

The reference Young’s modulus in HSS is set be be the same as from the oedometer, where
the oedometer stiffness is given as:

Es = Ms · (1+ν)(1−2ν)

(1−ν)
, Ms = 50.000kPa

Es = 50.000· (1+0,2)(1−2·0,2)

(1−0,2)
= 45.000kPa = 45MPa

Es is then used to calculate E r e f
s,50:

Es = E r e f
s,50

(
c cosϕ−σ′

3 sinϕ

c cosϕ+pr e f sinϕ

)m

45.000 = E r e f
s,50

(
1,0cos(38)− (−100· (1− si n(38)))sin(38)

1,0cos(38)+100sin(38)

)0,38

45.000 = E r e f
s,50·0,701

E r e f
s,50 = 64.194kPa = 64,2MPa
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