
Implementation of GARTO as an
infiltration routine in a full hydrological
model

Even Nyhus

Civil and Environmental Engineering

Supervisor: Knut Alfredsen, IBM

Department of Civil and Environmental Engineering

Submission date: June 2017

Norwegian University of Science and Technology

NTNU

NORGES TEKNISK NATURVITENSKAPLIGE UNIVERSITIET

Institutt for Vann- og miljøteknikk

Masteroppgåve i vassdragsteknikk

Kandidat: Even Nyhus

Tema: Infiltrasjonsmetode i hydrologisk modell.

1. Bakgrunn

Å kunne simulere infiltrasjon er viktig i mange samanhengar i hydrologi, og ikkje minst i

samband med dimensjonering i småfelt eller felt der det skjer arealbruksendringar. I dei fordelte

modellane som er vanleg i bruk i Norge har ikkje spesifikke infiltrasjonsmetodar, og det er difor

ønskjeleg å få laga ein slik modell. Det er gjennom forprosjektet gjort ei grundig vurdering av

moglege metoder for å implementere ei slik metode, og i denne oppgåva skal denne metoda

implementerast i det hydrologiske rammeverket SHyFT (Statkraft Hydrological Forecasting

Toolbox). Dette er eit fordelt modelleringssystem som er laga for at det skal enkelt kunne

leggast til metodar og for å teste prototypar av nye hydrologiske verkty

2. Arbeidsoppgåver

Oppgåva vil ha følgjande hovuddelar:

1. Utvikle ei prototyp av metoda som er spesifisert i prosjektoppgåva. Denne skal vere

frittståande og eigna for testing mot ulike oppsett. Køyre test av metoda mot

litteraturdata og måledata for å sjekke funksjonalitet. Rutina skal dokumenterast både

på kodenivå og for bruk.

2. Ein detaljspesifikasjon av den nye rutina må lagast med utgangspunkt i SHyFT sitt

rammeverk. Dette gjeld algoritma, koplinga mot grensesnitt og naudsynte data og

parametrar for rutina. Det er spesielt viktig å formulere arealbruksdata slik at dei

passar med det eksisterande systemet.

3. Implementere metoda i SHyFT. Sjølve simuleringsalgoritma må kodast i C++ som ein

del av simuleringsbiblioteket, medan grensesnittet må kodast i Python. Etter

implementering skal testrutiner byggast etter SHyFT sin mal, og kode skal

dokumenterast både med tanke på implementering, grensesnitt og krav til data og

modellparameterar.

4. SHyFT skal no køyrast med den nye rutina implementert. Funksjon og resultat må

sjekkast mot data frå 1) for å sjå om implementeringa fungerer om den skal.

5. Køyre testsimuleringar av den nye rutinar for eit par tilfelle:

ii

iii

a. Eit område med kjend infiltrasjon, t.d. eit grønt tak om slike data er

tilgjengelege.

b. Det skal gjerast arealbrukssimuleringar for å systematisk vurdere korleis

modellen reagerer på endringar i areal.

3. Rettleiing, data og informasjon

Faglærar vert professor Knut Alfredsen ved institutt for vann- og miljøteknikk, NTNU.

Kandidaten er elles ansvarleg for innsamling, kontroll og bruk av data. Hjelp frå ovannemnde

eller andre må refererast i rapporten.

4. Rapport

Struktur og oppsett av rapporten er viktig. Gå utifrå at det målgruppa er teknisk personell på

seniornivå. Rapporten skal innehalde eit samandrag som gir lesaren informasjon om bakgrunn,

framgangsmåte og hovudresultata. Rapporten skal ha innhaldsliste og referanseliste.

Referanselista skal vere formatert etter ein eksisterande standard.

Denne oppgåveteksta skal vere inkludert i rapporten.

Data som er samla inn skal dokumenterast og leverast på digital form.

Formatet på rapporten skal følgje standarden ved NTNU. Alle figurar, kart og bilete som er

inkludert i rapporten skal vere av god kvalitet med tydeleg tekst på akse og teiknforklaring.

Kandidaten skal inkludere ei signert fråsegn som seier at arbeidet som er presentert er eins eige,

og at alle bidrag frå andre kjelder er identifiserte gjennom referanser eller på andre måtar.

Frist for innlevering er __. juni 2017.

Insitutt for vann og miljøteknikk, NTNU

Knut Alfredsen

Professor

iv

v

Abstract

Climate change is expected to give more intense rainfall events, while urbanisation leads to

more impervious surfaces. This combined with growing cities, increase the stress on the

existing storm water infrastructure, and may result in more frequent flooding in urban areas.

The land use in urban catchments affects the stormwater runoff patterns. More impervious

surfaces lead to runoff hydrographs reaching the flood peaks faster, and having higher peaks.

Having green spaces and water retention on the other hand, results in hydrographs with a shape

more similar to natural conditions: smaller peaks reaching maxima later.

To do urban hydrology assessments, e.g. for understanding the effects of land use changes,

modelling of the hydrological processes in an urban area might be beneficial. Hydrological

models can simulate the runoff patters from a catchment based on input parameters such as soil

properties and rainfall patterns. Spatially distributed hydrological models are hydrological

models that divides a catchment into smaller cells, each with its own properties and input

parameters.

Spatially distributed hydrological models used in Norway today do not consider the

mechanisms of infiltration and are therefore not applicable for urban hydrology assessments.

This thesis therefore suggests including infiltration by implementing an infiltration routine in a

hydrological model. The infiltration model Green-Ampt with redistribution Tablot and Ogden

(GARTO) was chosen to create the base of the routine. Further, the widely used hydrological

model Hydrologiska Byråns Vattenbalansavdelning (HBV) model was chosen for

implementation of the infiltration routine. The HBV model already exists in open source

database gihub, under Statkraft Hydrological Forecasting Tools (SHyFT).

The routine was coded separately in C++ and the results were compared to results from Lai et

al. (2015). The routine was also tested against infiltration and soil moisture data of a green roof

in Trondheim. The code was then implemented in SHyFT.

The comparison to the results from Lai et al. (2015) gave satisfactory results. The routine also

managed to match parts of the results from a green roof. A sensitivity analysis on the soil

properties shows that saturated conductivity is the most sensitive soil moisture constant. Further

the routine match good with expected infiltration responses.

vi

vii

Sammendrag

Klimaendringene forventes å kraftigere nedbørshendelser. Samtidig fører urbanisering fører til

flere tette flater. Dette kombinert med voksende byer, øker presset på den eksisterende

overvannsnettet, og kan føre til hyppigere flom i byområder.

Areal bruk i byområdene påvirker flom avrenningen. Mer ugjennomtrengelige overflater gir en

hydrograf med økte flomtopper som når maksimalverdier raskere. Å ha grønne områder og

fordøyingsbassenger, resulterer i mer naturlig hydrograf med mindre topper som når maksima

senere.

For å gjøre urbane hydrologiske vurderinger, f.eks. for å forstå effekten av endringer i arealbruk,

kan modellering av hydrologiske prosesser i et byområde være en god løsning. Hydrologiske

modeller kan simulere avrenningen fra et nedbørsområde basert på inngangsparametere som

jordartsegenskaper og nedbør. Fordelte hydrologiske modeller er hydrologiske modeller som

deler et nedbørsfelt i mindre celler, hver med sine egne egenskaper og inngangsparametere.

Fordelte hydrologiske modeller som brukes i Norge i dag, inneholder ikke egne infiltrasjons

rutiner og er derfor lite anvendelige for urbane områder. Denne masteroppgaven foreslår derfor

å inkludere infiltrasjon ved å implementere en infiltrasjonsrutine i en hydrologisk modell.

Infiltrasjonsmodellen Green-Ampt with redistribution, Tablot and Ogden (GARTO) ble valgt

som utgangspunkt for rutinen. Videre ble det valgt å implementere infiltrasjonsrutinen i den

populære hydrologiske modellen Hydrologiska Byråns Vattenbalansavdeling (HBV). HBV-

modellen eksisterer allerede i opensource databasen gihub, under Statkraft Hydrological

Forecasting Tools (SHyFT).

Rutinen ble kodet separat i C ++, og resultatene ble sammenlignet med resultater fra Lai et al.

(2015). Rutinen ble også testet mot infiltrasjon og jordfuktighetsdata fra et grønt tak i

Trondheim. Koden ble deretter implementert i SHyFT.

Sammenligningen med resultatene fra Lai et al. (2015) ga tilfredsstillende resultater. Rutinen

klarte også å matche deler av resultatene fra det grønne taket. En sensitivitetsanalyse på

jordartsegenskaper viser at mettet hydraulisk konduktivitet er den mest følsomme

jordartsparameteren. Videre samsvarer rutinen godt med forventede infiltrasjonsresponser.

viii

ix

Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU). It is

a product of the course TVM4910 Hydropower engineering, Master’s Thesis. The thesis

describes the development and implementation of an infiltration routine in a full hydrological

model.

The study was conducted at the Department of Civil and Environmental Engineering. I would

like to express my gratitude to my supervisor Professor Knut Alfredsen. Thank you for good

advices regarding infiltration processes and hydrological models. I would also like to thank

Knut Alfredsen, Sigbjørn Helset and Kuganesan Sivasubramaniam for the help with

implementing the infiltration routine in SHyFT. Alfredsen and Sivasubramaniam have helped

me understanding how implement the infiltration routine, while Helset has supported me by

correcting debugging errors as well as giving me helpful tips on how to build the routine in

SHyFT.

I would also like to thank:

• Birgitte Gisvold Johannessen for providing infiltration data from the green roof

• Guro Heimstad Kleiven for correcting of both technical issues and spelling errors

• Jenny Kahrs Henriksen for spelling errors

The work in this thesis is done by the Author, Even Nyhus. References are included on all

collected data and citations that are not the work of the author.

Trondheim, 2017

Even Nyhus

x

xi

Table of Contents
1. Bakgrunn .. i

2. Arbeidsoppgåver .. i

3. Rettleiing, data og informasjon .. iii

4. Rapport ... iii

Abstract .. v

Sammendrag ... vii

Preface ... ix

List of figures ... xv

List of tables ... xvii

List of Acronyms ... xix

1 Introduction ... 1

Theory .. 3

2 Urban surface water and infiltration ... 3

3 Infiltration ... 5

3.1.1 Infiltration during a rainfall event .. 5

3.1.2 Soil moisture redistribution .. 7

3.2 Infiltration calculation methods ... 7

3.2.1 Richards Equation .. 8

3.2.2 Green-Ampt with Redistribution (GAR) .. 8

3.2.3 Talbot-Ogden (T-O) ... 9

3.2.4 GARTO .. 10

4 Hydrological models ... 13

4.1 The HBV model ... 14

4.1.1 Applicability in urban environments .. 15

4.2 A new infiltration routine .. 16

4.2.1 Input data in the infiltration routine ... 17

xii

4.3 Statkraft Hydrological Forecasting Tools (SHyFT) .. 17

4.3.1 C++ programming language... 18

Method ... 19

5 Code development .. 19

5.1 The prototype ... 19

5.2 Developing the final code from the prototype ... 20

5.2.1 Mistaken interpretation of the capillary drive. ... 21

5.2.2 Classes .. 21

5.2.3 Redistribution and advance of wetting fronts... 22

5.2.4 Infiltration ... 23

6 Code structure ... 25

6.1 Main ... 26

6.1.1 New wetting front ... 28

6.1.2 Situation C .. 29

6.1.3 Situation B .. 29

6.1.4 Situation A .. 30

6.2 Classes ... 31

6.2.1 The class “getPrecipitation” ... 31

6.2.2 The class “Parameters” ... 32

6.2.3 The class “Infiltration” ... 32

6.2.4 The class “Ponding” ... 34

6.2.5 The class “Infiltration_depth” .. 35

6.2.6 The class “soilMoisture” .. 36

6.3 Error messages ... 36

7 Implementation of the code in SHyFT .. 39

7.1 Compiling SHyFT and including the infiltration routine .. 39

xiii

7.1.1 Changed files .. 39

7.1.2 Basic infiltration routine ... 40

7.2 Implementation of the code ... 40

7.2.1 Modification of the code to match the SHyFT framework 40

7.3 The structure of the code in SHyFT .. 41

7.4 Further work with SHyFT ... 42

Results and discussion .. 43

8 The code’s performance .. 43

8.1 Test 1 ... 43

8.1.1 Infiltration rate .. 44

8.1.2 Wetting front depth .. 45

8.1.3 Overall results from Test 1 ... 46

8.1.4 Ponding ... 47

8.1 Test 2 ... 48

8.1.1 Infiltration rate .. 48

8.1.2 Runoff predictions test 2 .. 51

8.1.3 Number of wetting fronts ... 51

8.2 Comparison against Green Roof .. 52

8.1 Sensitivity analysis of parameters ... 54

8.2 Steady state rainfall ... 55

9 Performance of the infiltration routine in SHyFT ... 57

Conclusion .. 59

References .. 61

Appendix A: User manual .. 63

Appendix B: The code .. 65

Main .. 65

xiv

Infiltration ... 69

getPrecipitation ... 73

Infiltration_depth .. 75

Parameters .. 79

Ponding ... 83

soilMoisture .. 85

Appendix C: Changes in SHyFT files .. 87

Appendix D: SHyFT .. 89

xv

List of figures

Figure 2.1 The effect of urbanisation on the stormwater runoff (Butler and Davis, 2004) 3

Figure 2.2 Illustration of the effect of urbanisation on a hydrograph (Rodgers and Hasselmann,

1997) ... 4

Figure 3.1 Infiltration rate for situation A,B,C and D (Mein and Larson, 1973) 6

Figure 3.2 Redistribution of water (Corradini et al., 1997) .. 7

Figure 3.3 Schematic illustration of the T-O model (Talbot and Ogden, 2008) 9

Figure 3.4 Comparison of the GA, GAR and GARTO methods (Lai et al., 2015) 10

Figure 4.1 Schematic setup of the HBV-model (Hundecha and Bárdossy, 2004) 15

Figure 4.2 The HBV-model with and without an infiltration routine 16

Figure 5.1 Flow-chart of the prototype C++ code. From the specialisation project 20

Figure 6.1 Flow-chart of “main” .. 28

Figur 6.2 Flow-chart describing the creation of a new wetting front 29

Figure 6.3 Flow-chart describing situation C ... 29

Figure 6.4 Flow-chart describing situation B ... 30

Figure 6.5 Flow-chart describing situation A ... 31

Figure 6.6 Flow-chart of the class “Infiltration” .. 34

Figure 6.7 Flow-chart describing the class “Ponding” ... 35

Figure 8.1 Test 1: Infiltration rate with ponding Loam on the top and clay at the bottom. Dotted

line is RE FUCG (Lai et al., 2015) ... 44

Figure 8.2 Test 1: Wetting front infiltration depth (Lai et al., 2015) 46

Figure 8.3 Test 1: Ponded water for clay and loam ... 47

Figure 8.4 Infiltration rate in loam. Produced results on the top and results from Lai et al. (2015)

on the bottom (Lai et al., 2015) .. 49

Figure 8.5 Test 2: Infiltration rate in clay. Produced results on the top and results from Lai et

al. (2015) on the bottom (Lai et al., 2015) ... 50

Figure 8.6 Runoff prediction and soil moisture content for loam test 2 51

Figur 8.7 Soil moisture profile for loam after 42,5 hours, test 2 .. 52

Figure 8.8 Soil moisture content green roof and infiltration routine.. 53

Figure 9.1 Infiltration curve and infiltrated depth in SHyFT compared to the code 57

xvi

xvii

List of tables

Tabell 4.1 Input parameters in the infiltration routine ... 17

Tabell 6.1 Parameters, States, and responses ... 25

Table 6.2 Other variables in the code ... 26

Tabell 6.3 Parameters and state stored in the class “Parameters” .. 32

Table 6.4 Error messages built into the program ... 37

Table 8.1 Soil properties. ... 43

Tabell 8.2 Duration and rainfall intensity, Test 1 .. 44

Table 8.3 Comparison of results from Lai et al. (2015) and the developed code for loam, clay,

sand ... 47

Tabell 8.4 Start of rainfall event (ti) and duration (di) .. 48

Tabell 8.5 Sensitivity analysis on the parameters .. 54

Tabell 9.1 Comparison of ponding and deponding time and infiltrated water depth 58

xviii

xix

List of Acronyms

Physical description Acronym Symbol in the code Unit

Precipitation Pe Pe
[LT-

1]

Green Ampt wetting front soil suction Hc Hc [L]

Bubbling pressure/air entry pressure 𝜓𝑏 Yb [L]

Pore distribution index Λ lambda [-]

Saturated volumetric soil moisture content 𝜃𝑠 Os [-]

Residual volumetric soil moisture content 𝜃𝑟 Or [-]

Initial volumetric soil moisture content 𝜃𝑖 Oi [-]

Saturated hydraulic conductivity 𝐾𝑠 Ks
[LT-

1]

Initial hydraulic conductivity 𝐾𝑖 Ki
[LT-

1]

Relative volumetric initial water content Θ𝑖 ORi [-]

Relative volumetric water content Θ OR0 [-]

Number of wetting fronts K k [#]

Current hydraulic conductivity 𝐾(𝜃) K0
[LT-

1]

Current volumetric soil moisture content 𝜃 O0 [-]

Infiltrated physical depth Z Z [L]

Actual infiltration f f
[LT-

1]

Infiltrated water depth F Freal [L]

Water demand for wetting front 0-(k-1) Pek [L]

Residual rain water PeR [L]

Porewater volume for wetting front 0-(k-1) Vzk [L]

Unsaturated capillary drive G G [L]

Infiltration rate if Pe > f since the start ftest
[LT-

1]

Infiltrated water before the start deltaF [L]

Rainfall rate in last timestep PeL [L]

Soil water content during iteration O0test [-]

Wetting front depth during iteration Ztest [L]

Infiltrated water during iteration Ftest [L]

Traditionally Green-Ampt infiltration model GA

Richards Equation RE

Green-Ampt with Redistribution GAR

Modified GAR MGAR

Tablot and Ogdens infiltration model TO

Combination of GAR and TO GARTO

GA with Mein Larson modification GAML

xx

1 Introduction

Rainwater that hits the ground either evaporates, transpires, infiltrates or creates surface runoff

(Horton, 1933). Urbanisation as we know it today has been shown to shift the allocation of

water between these three processes. More of the rainwater creates runoff, due to higher density

of impervious surfaces. On top of this, rainfall amounts and intensities are expected to increase

in Norway in the future, due to climate change (NKSS, 2015).

Urban stormwater management is therefore of increasing concern in the context of urban

planning. To avoid flooding, the infrastructure needs to be designed for future climate.

Hydrological models can be used for forecasting the need for stormwater capacity in urban

drainage systems, or to anticipate the effects of land use changes.

Distributed hydrological models divide the catchment into smaller cells, each with its own input

parameters and properties. The majority of the spatially distributed hydrological models are

developed for natural watersheds. Simulating infiltration is important in hydrology, and it

becomes even more important in urban areas, due to the varying perviousness of the land cover

and the complexity of the urban soils. The already-existing spatially distributed hydrological

models do not have an infiltration routine and are therefore not applicable in urban watersheds.

(Salvadore et al., 2015).

Including an infiltration routine could enhance the hydrological models and make them more

applicable for handling the complexity of urban watersheds. The aim of this thesis is therefore

to include infiltration by developing an infiltration routine and implementing it in a full

hydrological model.

Finding the right infiltration method for implementation in a hydrological model is important.

A thorough analysis of possible infiltration methods was conducted in TVM4520 Specialization

project, fall 2016. The method Green-Ampt with redistribution (GAR) (Ogden and Saghafian,

1997) was found best suited. In this thesis, an infiltration routine based on GAR is coded in

C++ before it is implemented.

2

3

Theory

2 Urban surface water and infiltration

Urbanized areas are constantly growing. In 2009, more than half the world’s population lived

in urban areas, and an increase to more than 80% by 2030 is expected. The rainfall amounts

and intensities are expected to increase in Norway in the future due to climate change (NKSS,

2015) and urban areas have been found vulnerable to heavy rainfall (Salvadore et al., 2015)

and

In nature, a substantial portion of the rainfall that hits the ground is infiltrated into the ground

or evaporated as shown in Figure 2.1.a. The remaining water becomes surface runoff. Both

groundwater and surface runoff drains to the nearest river or reservoir. Groundwater transport

is a slow process that retains the water. Surface runoff is a faster process. Urbanisation as we

know it today involves piping of rivers, removal of vegetation, modification of natural soil

and large areas being covered by impervious surfaces. This changes the allocation of water to

the evapotranspiration, infiltration, and surface runoff. The consequence is less water returned

to the atmosphere and infiltrated to the ground and more water occurring as surface runoff as

shown in Figure 2.1.b. In addition to larger amounts of runoff, will the velocity of the runoff

increase due to less friction in pipes and on surfaces, compared to natural conditions.

Figure 2.1 The effect of urbanisation on the stormwater runoff (Butler and Davis, 2004)

The natural hydrograph will have a low peak and a large lag time from the precipitation event

starts until the runoff peak is reached. The urbanized hydrograph, on the contrary, will have a

high flow peak which will come fast (Butler and Davis, 2004).

4

As an example of this, it was found in a study in Korea that for a specific rainfall event, the

hydrograph peak is 15% higher than before urbanization. The lag time (Figure 2.2) was found

to be reduced with 70 minutes (Kang et al., 1998). The combination of more water passing a

point in a shorter time interval, results in a greater maximum flow (Butler and Davis, 2004).

Figure 2.2 Illustration of the effect of urbanisation on a hydrograph (Rodgers and

Hasselmann, 1997)

The traditional way of handling stormwater and wastewater with piped systems can be referred

to as “hard engineering solutions” (Butler and Davis, 2004). However, the combination of

expanding cities and increased precipitation leads to overloading of the wastewater system,

which again leads to flood events causing great harm to cities. A new philosophy of

“sustainability” has therefore grown during the last years within stormwater management. The

system should not depend as much on “hard engineering solutions”, but recover some of the

natural mechanisms by reopening rivers and creating green spaces (Butler and Davis, 2004).

Water is again allowed to infiltrate, and to move as groundwater to the rivers. This way the

hydrograph is stretched out and the peak runoff is decreased. The goal is to move from situation

(b) back to situation (a) (Figure 2.1) by utilizing the infiltration capacity of the soil and retaining

water to avoid the highest hydrograph peaks.

5

3 Infiltration

The key solution in sustainable urban planning regarding stormwater management is to utilize

the soil’s ability to infiltrate and retain water. Therefore, mechanisms of infiltration will be

described in the following sections.

Darcy found a relationship describing flow through a porous medium:

𝑄 = −𝐾𝐴

𝑑ℎ

𝑑𝐿
 (1)

He discovered that infiltrated water, Q [L3T-1], is proportional to the cross section A [L2] and

the head loss dh [L] and inversely proportional to the flow length dL (m). K [LT-1] is the

hydraulic conductivity constant which describes the rate the water can flow through a porous

medium (Dingman, 2015). Modifications of Darcy’s law is the basis for several of the

infiltration models described later.

3.1.1 Infiltration during a rainfall event

Two important terms when working with infiltration of water into soils are infiltration capacity

and actual infiltration rate. There is a slight difference between these two terms. Infiltration

capacity, denoted in this thesis as fc [LT-1], is the maximum speed in which the water can enter

the soil at a certain state. Actual infiltration rate, denoted as (f) [LT-1] in this thesis, describes

the speed of the which water is entering the soil at a certain state. f equals fc when the rainfall

intensity equals or is larger than fc. Otherwise the f equals the rainfall rate. .fc is affected by the

soil moisture content and the capillary drive (G). G is the integrated capillary head across the

wetting front (Horton, 1933).

The hydraulic conductivity Ks of a soil will vary, depending on the soil moisture content. When

the soil is fully saturated, the term saturated hydraulic conductivity is used. This is the

maximum hydraulic conductivity a soil can have, and it is dependent on the soil type. Any lower

soil moisture content will result in a lower hydraulic conductivity (Lai et al., 2015).

Infiltration occurs if there is available surface water. Surface water can occur as ponded water,

or rainfall water. Situations A-D shown in Figure 3.1 describe the infiltration rate depending on

infiltration capacity and rainfall intensities (Mein and Larson, 1973).

6

In situation (A), the rainfall intensity is less than the saturated hydraulic conductivity. All the

rain water will infiltrate into the soil and no ponding will occur. The hydraulic conductivity of

the soil will be greater than the rainfall intensity so the soil moisture content will decrease.

In situation (B), the rainfall intensity is greater than the hydraulic conductivity, but lower than

fc. In this situation too, all the rain water will infiltrate. In situation B, the hydraulic conductivity

of the soil will be lower than the rainfall intensity, so the soil moisture content of the upper

layer of the soil will gradually increase until it reaches full saturation.

When the soil reaches full saturation and the same rainfall intensity continues, situation (C) will

occur. Because fc has been decreasing during situation B, the rainfall intensity is now greater

than fc, and the upper layers of the soil become saturated. Ponding will occur.

If the rainfall intensity is greater than fc at the beginning of a rainfall event, Situation (D) will

be present. f will in this case equal fc during the rainfall event, or until the rainfall intensity drops

below fc.

Figure 3.1 Infiltration rate for situation A,B,C and D (Mein and Larson, 1973)

Different infiltration situations are now explained. The infiltration process is, however,

complex. The conditions impacting the infiltration capacity can differ severely over small

distances. Layers in the soil column, types of soil, vegetation and the soil moisture distribution

affects the infiltration capacity of the soil. Even a soil profile with several layers and with an

evenly distributed soil moisture content can be complex to calculate (Mein and Larson, 1973).

7

3.1.2 Soil moisture redistribution

After a rainfall event, when all the surface water has infiltrated, the soil moisture will start to

move downwards in the soil column, due to gravitational and capillary forces. This process is

called redistribution (Ogden and Saghafian, 1997). Figure 3.2 presents the shape and location

of a wetting front through a soil column at two different points in time. The total water volume

in a soil column at a given time is the area of the graph multiplied with the surface area of the

soil column.

Figure 3.2 Redistribution of water (Corradini et al., 1997)

The y-axis represents the depth (Z) [L] and the x-axis represent the soil moisture content (𝜃0).

If no water is added to the soil column and evapotranspiration is neglected, the total water

volume will be constant. Over time, the soil moisture will redistribute form situation (1) to

situation (2) in Figure 3.2. When the wetting front percolates to an increased depth form Z(1)

to Z(2), the soil moisture content will decrease from 𝜃0(1) to 𝜃0(2) to maintain mass balance

(Ogden and Saghafian, 1997).

Many studies have described the infiltration process through saturated soil, but few studies have

been conducted on unsaturated soil and the redistribution process (Bunsri et al., 2008). The

following methods for calculation of infiltration capacity do all consider redistribution.

3.2 Infiltration calculation methods

In the specialisation project mentioned in section 1, several infiltration methods were evaluated.

The GAR method was found to be the best fitted method for describing infiltration in a full

hydrological model. In the following sections, Richards Equation and several modifications of

the GAR method are presented.

8

3.2.1 Richards Equation

Richards Equation (RE) is an infiltration model with steady linear flow and a 1-D system that

can be expressed as:

𝐾

𝑑2𝜓

𝑑𝑧2
+

𝑑𝐾

𝑑𝑧

𝑑𝜓

𝑑𝑧
+ 𝑔

𝑑𝐾

𝑑𝑧
= 0 (2)

where K is the hydraulic conductivity, z is the depth of the soil, g =
𝑑𝜃

𝑑𝑧
 is the change in soil

moisture over the depth z, and 𝜓 [L] is the capillary drive. RE is developed from Darcey’s law

Equation 1, but Richard also includes capillary drive and gravity forces (Richards, 1931).

RE is commonly accepted as the most accurate description of infiltration and is often used as a

reference for development of new infiltration models (Ross, 1990). There are several proposals

for solving RE. Flux-Updating Iterative Conjugate Gradient (FUCG) is an algorithm for solving

the RE for saturated soil, based on the two-dimensional pressure-based form of Richards’

Equation (3).

𝐶

𝑑ℎ

𝑑𝑡
 =

𝑑

𝑑𝑦
(𝐾 − 𝐾

𝑑ℎ

𝑑𝑦
) −

𝑑

𝑑𝑥
(𝐾

𝑑ℎ

𝑑𝑥
) (3)

C is
𝑑𝜃

𝑑ℎ
 and K is the saturated hydraulic conductivity. FUCG is able to calculate soil moisture

content in a two-dimensional system and performs with high accuracy (Kirkland et al., 1992).

Soil hydraulics are highly nonlinear, which causes the RE to be computational expensive. RE

also struggle with some conditions like overly dry soil, near saturation and nonuniform porous

media (Lai et al., 2015).

3.2.2 Green-Ampt with Redistribution (GAR)

The Green-Ampt with redistribution (GAR) is an infiltration model developed by Ogden an

Saghafian (1997) which describes the redistribution of soil moisture content 𝜃 during a rainfall

hiatus. GAR uses two wetting fronts that develop separately to describe the soil moisture

situation in a soil column. GAR uses a redistribution equation, Equation 7, based on the model

of Smith et al (1993) and combines it with the Green-Ampt infiltration model (Green and Ampt,

1911). The Green-Ampt model (GA) calculates the infiltrated water depth and the infiltration

capacity during heavy rainfall with initial soil moisture content and infiltrated water depth as

input values, as shown in Equation 4. During a hiatus, Smith et al. (1993) continuously

9

calculates the change in 𝜃 which again is used as input values by GA for the next rainfall event

(Ogden and Saghafian, 1997):

 𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
= 𝐾𝑠 [

(𝜃𝑠 − 𝜃𝑖)𝐻𝑐

𝐹(𝑡)
+ 1] (4)

Where f(t) is the infiltration capacity, F(t) is the infiltrated depth, Ks is the saturated

conductivity, 𝜃𝑠 and 𝜃𝑖 is saturated and initial soil moisture content respectively and Hc is the

Green-Ampt soil suction parameter. Lai et al. (2015) tested GAR against FUCG RE and the

results were satisfactory. However, for coarse soils, the evolution of surface soil water moisture

content in subsequent long periods of redistribution was not accurately predicted (Lai et al.,

2015). The Modified GAR (MGAR) model is an enhancement of GAR which uses multiple

wetting fronts. MGAR also introduces a coefficient. MGAR reduces the error in surface water

content predictions (Gowdish and Muñoz-Carpena, 2009). However, neither GAR or MGAR

can consider shallow water table conditions, which limits the model to catchments with deep

unsaturated soil profiles.

3.2.3 Talbot-Ogden (T-O)

The Talbot-Ogden (T-O) model describes an infiltration model where the redistribution

equation, Equation 7, in GAR is calculated with respect to depth Z and not with respect to soil

moisture content 𝜃, as in the GAR and MGAR models. The model also divides the soil profile

into several bins with a size of ∆𝜃 as shown in Figure 3.3.

Figure 3.3 Schematic illustration of the T-O model (Talbot and Ogden, 2008)

The T-O model considers both the advance of a wetting front starting at the soil surface and the

development of a water table further down in the soil profile. Each bin therefore considers two

10

Z-values. One Z-value describes the depth of the wetting front and one Z-value describes the

depth of the water table for this bin. When the wetting front reaches the water table, the bin is

saturated throughout the soil column like for the first four bins in Figure 3.3 (Talbot and Ogden,

2008).

3.2.4 GARTO

GARTO is a model that combines the GAR model and the T-O model. The model is efficient

and guaranteed stable (Lai et al., 2015). Like the T-O method, GARTO controls several wetting

fronts and can also control a groundwater table. Each wetting front is controlled by defining 𝜃𝑖,

𝜃 and Z of the wetting fronts. 𝜃𝑖 coincides with the 𝜃-value of the last wetting front. The figure

below illustrates the differences between GA, GAR and GARTO.

Figure 3.4 Comparison of the GA, GAR and GARTO methods (Lai et al., 2015)

GARTO uses GA under ponded conditions to calculate total infiltration depth (F) and fc. For

the last wetting front, under ponded conditions, 𝜃 equals 𝜃𝑠.

11

𝐹(𝑡) = 𝐾𝑠𝑡 + 𝐻𝑐∆𝜃 ln [1 +

𝐹(𝑡)

𝐻𝑐∆𝜃
] (5)

𝑓𝑐(𝑡) = 𝐾𝑠 [1 +

𝐻𝑐∆𝜃

𝐹(𝑡)
] (6)

where Ks is saturated hydraulic conductivity [LT-1], t is time [h], Hc is the wetting front suction

head [L], ∆𝜃 = 𝜃𝑠 − 𝜃𝑖 where 𝜃𝑠 and 𝜃𝑖 is the saturated and initial volumetric soil moisture

content respectively [-]. The redistribution equation, Equation 7, is used between precipitation

events to control the developing soil moisture content:

 ∆𝜃

𝑑𝑡
=

1

𝛽𝑍
[𝑟 − 𝐾(𝜃) −

𝑝𝐾𝑠𝐺(𝜃𝑖, 𝜃0)

𝑍
] (7)

where r is the rainfall intensity, K(𝜃) is the conductivity at current soil moisture content [LT-1],

𝛽 is a shape constant [-] set to 1, p is a constant [-] set to 1,0 when r > 0 and 1,7 when r = 0. By

controlling the soil moisture content (𝜃), GARTO applies the 𝜃-value of the last wetting front

as 𝜃𝑖 in GA for a new rainfall event.

For the first timestep in a new rainfall event, a maximum advance during a timestep or “dry

depth” is approximated as:

ℎ𝑑𝑟𝑦 = 0,5 (√𝜏2 + 4𝜏𝐺(𝜃𝑖, 𝜃𝑠)) : 𝜏 =

∆𝑡𝐾𝑠

𝜃𝑠 − 𝜃𝑖
 (8)

where ℎ𝑑𝑟𝑦 is the first Z-value for the new wetting front and G is the capillary drive. Variations

of Equation 12 and 13 calculate further advance of the wetting fronts as explained later.

The soil moisture content 𝜃 changes only in the last wetting front during redistribution. The

other wetting fronts keep a constant 𝜃. Water needed to continue the advance in Z direction is

taken from ponded water, or from the last wetting front if there is no ponded water.

If the depth of one wetting front exceeds the depth of the adjacent wetting front to the left, the

wetting fronts are merged together by the given equation:

𝑍𝑘−1

𝑛𝑒𝑤 =
(𝜃𝑘, 𝜃𝑘−1)𝑍𝑘 + (𝜃𝑘−1 − 𝜃𝑘−2)𝑍𝑘−1

(𝜃𝑘 − 𝜃𝑘−2)
: 𝜃𝑘−1

𝑛𝑒𝑤 = 𝜃𝑘 (9)

Where k is the number of wetting fronts considered counting from the left in Figure 3.4.d.

12

GARTO provides a numerical stable method that it is proven to match well with the RE method

in several situations. It also allows for continuous calculations of infiltration capacity by

evaluating redistribution. GARTO is therefore chosen to establish a base method for an

infiltration routine in a full hydrological model.

13

4 Hydrological models

When designing stormwater managing infrastructure, hydrological models are potentially

powerful tools. they can e.g. predict how changes in a watershed will affect the runoff. The

impact of future urbanisation, climate change and changing rainfall patterns can all be simulated

by hydrological models and be used as design criteria for new water infrastructure (Jacobson,

2011). However, the application in urban areas are limited today as few models suited for urban

assessments exist. This thesis suggests implementing GARTO as an infiltration routine in a full

hydrological model. This will make the model better equipped to handle stormwater predictions

in urban areas.

To set a suitable scope for the hydrological model is important. Hydrological models are

developed and used within weather forecasting, irrigation modelling, hydropower economical

assessments, water quality simulations, flood protection and other fields. The scope for the

models within these fields varies. A large scope with a need of detailed data mapping is more

computational expensive to run. Weather forecast models are example on models with a large

scope. Choosing a scope that provides accurate enough results on a reasonable amount of

computational power is important. “Watershed hydrology” is a term that deals with

hydrological processes on a watershed scale to determine the watershed response (Singh, 1995).

A watershed provides accurate boundaries for input values and responses. A watershed is also

a suitable size for hydrological models and is therefore a suitable scope for hydrological models

simulating urban stormwater.

Hydrological models can be categorized into three groups: physically-based, conceptual, and

empirical models. Empirical models analyse observed input and output to obtain a statistical

relationship between them. This requires only simple mathematical computations and provides

fast results. Empirical models will however not provide very accurate results. Physically-based

models consider mass balance equations of water through the watershed. This requires high

computational power and detailed knowledge of the watershed parameters. If the input data is

good, these models provide accurate results. Conceptual models describe hydrological

processes and uses simple mathematical equations to describe the mass balance in each process

e.g. evapotranspiration, snowmelt, surface runoff, surface storage and percolation. Parameters

baked into these equations are used to calibrate conceptual models by using historical data.

Hydrological models are also divided into distributed or lumped models. The difference is

14

whether the model divides the watershed in smaller subbasins or considers the watershed as one

single unit (Aghakouchak and Habib, 2010).

Around the world, several models describe the movement of water at watershed level. The

HBV-model is the standard model for flow forecasting in Scandinavian countries (Singh, 1995).

It will therefore be used as a reference model for implementation of an infiltration routine. The

principal of an infiltration routine could however be implemented in several hydrological

models.

4.1 The HBV model

The HBV model was originally developed as a lumped conceptual model, but was modified to

a distributed model using subbasin division in 1996. The model setup is simple and the data

demand is low. Nevertheless, the model is robust and gives precise results, e.g. demonstrated

by a study where the model returned results with the coefficient of determination (R2) around

89%, for seven different test areas (Lindström et al., 1997). The HBV-model is a continuous

model, meaning that it can simulate several rainfall events following each other. The time series

with data are divided into incremental timesteps.

A schematic setup for a modified HBV model is shown in Figure 4.1. This setup was used in a

study researching the effect of urbanisation and more impervious surfaces in a subbasin of

Rhine (Bunsri et al., 2008). The model takes three input parameters and runs them through some

“boxes” simulating hydrological processes. The input parameters are precipitation, air

temperature and potential evaporation. Each “box” is called a routine and contains

mathematical equations that describe a specific hydrological process. Each routine takes input

and generate output values. The output values are calculated inside the routine. All the routines,

except impervious surfaces, can also store water. The output from the snow routine becomes

the input in the soil moisture routine and so on. For each new timestep, an algorithm runs

through all the routines and produces a subbasin response, Q [L3T-1]. Q is the total runoff

generated from lower reservoir, upper reservoir, and surface runoff in Figure 4.1. If the model

is distributed, the algorithm will run through all the subbasins with respective input values and

produce a Q for each subbasin.

15

Figure 4.1 Schematic setup of the HBV-model (Hundecha and Bárdossy, 2004)

4.1.1 Applicability in urban environments

The original HBV model was developed for natural fields, e.g. large river systems with a sub-

basin size of 40 km2. The original version of the HBV model does not distinguish between

surface water runoff and soil water runoff (Lindström et al., 1997). The setup in Figure 4.1

shows a modified version of the HBV-model which considers all the water that hits impervious

surfaces to generate runoff. For pervious surfaces, it sets a threshold-value. Rainfall intensity

exceeding this value will generate runoff (Hundecha and Bárdossy, 2004).

The latter approach is better to describe the hydrology in urbanized watersheds than the original

HBV model. However, the mechanisms of infiltration make it hard to set a threshold value for

infiltration. As described in section 0, the infiltration capacity, and therefore the magnitude of

runoff generated from pervious surfaces, varies greatly depending on the soil moisture content

level. Several hydrological models use an approach like the one in Figure 4.1. This thesis

suggests an improvement to the HBV model by adding an infiltration routine between the snow

routine and the soil moisture routine calculating the runoff, instead of setting a constant

threshold value.

16

4.2 A new infiltration routine

The original HBV model considers runoff only form the soil routine as shown in Figure 4.2.a.

Because of great variations in infiltration capacity in urban surfaces, consideration of the

infiltration process becomes more important in urbanized watersheds than in natural dominated

watersheds. An implementation of an infiltration routine is therefore suggested as shown in

Figure 4.2.b.

a) b)

Figure 4.2 The HBV-model with and without an infiltration routine

Input precipitation will normally go through the snow routine, or if no snow, directly to soil

moisture routine. The new infiltration routine will be placed between the snow routine and the

soil moisture routine as shown in Figure 4.2.b. The infiltration routine will have two output

values; infiltrated water, and runoff water. Infiltrated water will be forwarded as input to the

soil moisture routine. Further calculations through the other routines will proceed as in the

original model but with less water due to the loss of runoff water in the infiltration routine.

Depending on the properties of the evaluated subbasin, runoff water could either pond on the

surface and infiltrate when the rainfall intensity drops, or it can flow to the neighbouring

downstream subbasin.

17

4.2.1 Input data in the infiltration routine

For the infiltration routine to be useful in a full hydrological model, it should be feasible to

obtain the input data for the routine without investing too much time. Table 4.1 displays the

input parameters necessary to implement the GARTO approach. All these parameters are

additional parameters to the already existing-parameters in the HBV model.

Tabell 4.1 Input parameters in the infiltration routine

Physical description Symbol Unit

Bubbling pressure/air entry pressure 𝜓𝑏 [L]

Pore distribution index Λ [-]

Saturated volumetric soil moisture content 𝜃𝑠 [-]

Residual volumetric soil moisture content 𝜃𝑟 [-]

Initial volumetric soil moisture content 𝜃𝑖 [-]

Saturated hydraulic conductivity 𝐾𝑠 [LT-1]

The bubbling pressure (𝜓𝑏) and the pore distribution index can be found using a technique

described by Brooks and Corey (1966) (Brooks and Corey, 1966). Saturated and residual

volumetric soil moisture content (𝜃𝑠 and 𝜃𝑟) and saturated hydraulic conductivity (Ks) can be

decided by field observations and lab tests. Initial volumetric soil moisture content (𝜃𝑖) can be

guessed without further investigations. This is because initial soil moisture content will change

during the simulations, and the start value I therefore not of significantly importance for a longer

simulation periods.

Alternatively, these parameters can be estimated based on literature. If the soil types are known,

tables from e.g. Lai et al. (2015) can provide values for these parameters. The uncertainty in

the calculations will however increase by applying this technique compared to using filed

observations.

4.3 Statkraft Hydrological Forecasting Tools (SHyFT)

SHyFT is an open source hydrological toolbox developed by Statkraft. In SHyFT, a HBV model

is implemented. The HBV model contains the routines actual evapotranspiration, snow, soil,

and tank (see Figure 4.2.a). Each routine is programmed separately in the programming

language C++ and merged in a HBV-stack code. The interface between the routines is

programmed in Python. A new infiltration routine should be implemented as an own routine

and merged with the other routines between the snow routine and the soil routine in the HBV

stack.

18

A routine in SHyFT divides variables into three types: parameters, states, and responses. The

parameters contain variables that remain constant throughout the simulation, e.g. soil

properties. The states contain variables that change during the simulations, e.g. soil moisture

level and infiltration capacity. The responses contain variables that are forwarded to the next

routines, e.g. runoff and infiltrated water. Each routine in the HBV model in SHyFT works as

a “black-box”, and calculates state, response, and parameters hidden for the user. A routine

provides however output values. Time and input data such as precipitation, potential

evapotranspiration and air temperature are handled outside the routines and fed into each

routine when needed.

4.3.1 C++ programming language

The C++ programming language originated from the C programming language. C is a general-

purpose language that can write any kind of program. C++ is similar to C but it is object

orientated and uses classes. A program in C++ consists of a main function “main” and classes.

“Main” is stored as “main.cpp”. A class contains member functions and member variables. A

class consists of one header file “<name>.h” and one cpp-file “<name>.cpp”. In the header file,

the class member variables and the functions are initialized and stored, while the calculations

are done in the cpp-file. When the program is run, “main” is called. “main” may again call on

classes connected to “main”. A class can take input variables from “main”, run through a

member function, store values to member variables and then return member variables to “main”

(Savitch, 2010).

19

 Method

5 Code development

The author of this thesis did not have any prior knowledge of programming. To understand the

infiltration routine and gain programming knowledge, an own C++ code were first made for the

infiltration routine. When this code gave satisfactory results, it was implemented in SHyFT.

The technique used to develop the program was to start by developing a basic program and add

on new features as programming skills were gained. This way the code developed to handle

increasingly advanced rainfall events.

5.1 The prototype

In the specialisation project mentioned in section 1, a simple prototype of the GAR method

was developed in excel. It was able to consider short rainfall events (Nyhus, 2016). GAR was

used to calculate infiltration followed by redistribution. A copy of this prototype was developed

in C++ as a basis for further development. This code considered one short rainfall event

followed by redistribution and used a while loop to iterate infiltration. The precipitation data

was stored in a vector. The rainfall event considered in the prototype was short and artificial.

The prototype could not run multiple rainfall events. Figure 5.1 displays a flow-chart of the

prototype code.

20

Figure 5.1 Flow-chart of the prototype C++ code. From the specialisation project

GA was used for calculations of F and fc and the results were compared with results from Becker

(2016) (Becker, 2016). GAR was used to calculate redistribution but there were no available

results to validate the redistribution period for such a basic code.

5.2 Developing the final code from the prototype

It was not clear how GARTO dealt with several of the issues described later in this section. For

further development of the prototype, a trial and error approach was therefore applied. To check

whether the result became better it was compared to the results presented in GARTO.

Lai et al (1997) did four tests comparing the GARTO algorithm with the RE for eleven soil

types.

Test 1 was chosen for comparison because this was the simplest of the four tests to simulate.

Of the eleven soil types, four soil types had results for the wetting front depths, ponding time,

deponding time and infiltrated water. Of these four soil types, soil type 4 and 11 were chosen

as reference soils. The code was developed with soil 4 as standard soil and tested regularly for

soil 11 to check that the code managed more than one soil type. When testing for several types

21

of soils and rainfall intensities, a wider understanding of problems with the code was gained

and several issues were solved.

Section 5.2.1-5.2.4 describes the steps of how some main issues were solved to go form the

prototype to the finished code.

5.2.1 Mistaken interpretation of the capillary drive.

During coding process of the prototype in C++, it was discovered an error in the excel prototype.

Z was multiplied with timestep (delta t) in Equation 7, which it should not have been. The error

was probably a result of a misunderstanding of the mechanisms of capillary drive G. GAR

includes Equation 10 where the bubbling pressure 𝜓𝑏 is negative which makes G negative

(Ogden and Saghafian, 1997). However, GARTO describes G in Equation 11 which implies

that G should be positive (Talbot and Ogden, 2008):

𝐺(𝜃𝑖 , 𝜃) =

−𝜓𝑏

𝜆
(

Θ3+1/𝜆 − Θ𝑖
3+1/𝜆

3 + 1/𝜆
) (10)

𝐺(𝜃𝑖 , 𝜃) = |𝜓𝑏| (

Θ3+1/𝜆 − Θ𝑖
3+1/𝜆

3𝜆 + 1
) (11)

Here Θ is relative volumetric soil moisture content and 𝜆 is the pore distribution index.

5.2.2 Classes

An early version of the code was written in “main” without any connecting classes. Variables

were initialized, calculated, and rewritten in a for-loop in the same file. This approach had two

main disadvantages: (1) The code became long and messy resulting in debugging becoming

hard because it was hard to discover where a problem occurred in the code; (2) The code became

unstable because all calculations had access to all the variables. Variables could therefore be

changed several places in the code and it was hard to understand when and where this happened.

Classes were introduced to solve these problems. “main” contained the structure of the code

while it called on classes to calculate side operations as explained in section 6.1. this lead to

the following advantages: (1) If a problem was connected to the structure of the code, “main”

could be examined, while a problem connected to a specific operation could be examined in the

class handling this operation. Both “main” and the classes became shorter and easier to

understand; (2) Using classes, variables could be stored as private. As “Private”, only functions

inside a class have access to the variables in that class. “main” or other classes could not change

22

these variables without calling on functions inside that class. This gave the programmer more

control over the variables and made the code more stable.

5.2.3 Redistribution and advance of wetting fronts

In an advancing wetting front, Z changes with the value ΔZ over one timestep. This can be

described by the following equations(Lai et al., 2015):

 𝑑𝑍𝑘

𝑑𝑡
=

𝐾(𝜃𝑘) − 𝐾(𝜃𝑘−1)

𝜃𝑘 − 𝜃𝑘−1
(

𝐺(𝜃𝑖 , 𝜃0)

𝑍𝑘
+ 1) (12)

(𝜃0 − 𝜃𝑖)

𝑑𝑍

𝑑𝑡
= (

𝐾𝑠𝐺(𝜃𝑖 , 𝜃0)

𝑍
+ 𝐾(𝜃0)) (13)

How ΔZ can be calculated in a situation where the precipitation rate (Pe) is less than fc is not

stated clearly in the GARTO article. However, for situations where Pe exceeds Ks, and the last

wetting front is saturated, Equation 12 should be used. It is also stated that Equation 12 is a

variation of Equation 13 which comes from GAR. Therefore, it was assumed that Equation 13

should be used to calculate Z for the latest wetting front in an unsaturated situation and were Pe

is less than Ks.

The infiltrated water depth F(t) is the total mass of infiltrated water during a rainfall event. F(t)

can be calculated independently of Δ𝜃 and 𝑍 as described in section 5.2.4. Equation 14 shows

a mass relationship between F(t), the wetting front depth Z, and the soil moisture content 𝜃.

The right side of the equation describes the volume of a wetting front as illustrated in figure

3.4.b.

 𝐹(𝑡) = (𝜃 − 𝜃𝑖) ∗ 𝑍(𝑡) (14)

When moving from one timestep to the next the infiltration depth Z and the soil moisture

content 𝜃 changes. In the prototype, when the rainfall intensity was low, Z from the last timestep

was used as input parameter in the redistribution equation (Equation 7) to calculate the change

in soil moisture content Δ𝜃. The last 𝜃 plus Δ𝜃 was then used in Equation 13 to calculate a new

Z. By this approach the water mass balance described in Equation 14 was not retained. Since

the variables Z and 𝜃 are dependent on each other the solution was to do an iteration.

Two approaches to iterate Z and 𝜃 were tested: In approach (1) Z was increased by incremental

timestep and inserted in Equation 7 to calculate a new 𝜃. The right side of Equation 14 was

23

calculated with new values of Z and 𝜃. If the water mass was below F(t), the iteration process

continued. Approach (2) used the same approach as in (1), but ere 𝜃 was incrementally

increased and used in Equation 13. See Figure 6.4 and 6.5 for flow chart and code of this process.

To decide which approach that gave the best results, a trial and error approach was applied. It

was found that approach (1) gave best results when Pe < Ks and approach (2) gave best results

when Pe > Ks.

5.2.4 Infiltration

The prototype used Green-Ampt (GA) to calculate infiltration depth F, and infiltration capacity

fc. A rainfall intensity greater than the infiltration capacity is a prerequisite for GA. A natural

precipitation event will rarely start with such high intensities. To develop the code to handle all

types of precipitation events, several changes where done.

ftest, was created as a test variable to decide ponding time. In each timestep in situation B, F

increased with Pe and was used as input parameter in GA (Equation 4), to calculate ftest. In the

beginning of the next timestep Pe was compared to ftest. If Pe > ftest situation B ended and

situation C started.

In situation C, GA was used for further infiltration calculations without including cumulative

infiltrated water F from situation B. This could be interpreted as shifting the curve D to the end

of curve B in Figure 3.1. This approach gave a too high fc resulting in a too high F.

Mein and Larson (1973) developed an approach to shift curve D to start at the end of situation

B and at the same time account for the accumulated infiltration depth F during situation B. The

approach is often referred to as Green-Ampt Mein Larson (GAML) (Chu, 1987). The method

calculates time at ponding tp and cumulative infiltration depth 𝐹𝑝 at tp. For a certain F, a time t

can be decided based on these two variables. If t is higher than tp, ponding occurs and the rainfall

event change form situation B to situation C. GAML solved the problem and calculations of fc

became accurate for all situations A-C. The method follows the equations below:

𝑡 = 𝑡𝑝 +

1

𝐾𝑠
[𝐹 − 𝐹𝑝 + |𝜓𝑓|(𝜃𝑠 − 𝜃𝑖) ln (

|𝜓𝑓|(𝜃𝑠−𝜃𝑖) + 𝐹𝑝

|𝜓𝑓|(𝜃𝑠−𝜃𝑖) + 𝐹
)] (15)

𝐹𝑝 =

|𝜓𝑓|𝐾𝑠(𝜃𝑠 − 𝜃𝑖)

𝑃𝑒 − 𝐾𝑠
 (16)

𝑡𝑝 =

𝐹𝑝

𝑃𝑒
 (17)

24

Sand where tested in test 2 in GARTO described in 0. For the last wetting front the infiltration

rate for the fifth pulse did not match with GARTO. It was discovered that the rainfall rate in the

beginning of the pulse exceeded the infiltration capacity. GAML is not applicable for this

situation, but GA is. GA was therefore used when time of ponding were at the beginning of a

rainfall event.

25

6 Code structure

The developed C++ code of the infiltration routine consists of “main” and six classes. “main”

initializes and keeps track of all states and responses. Further it controls whether the infiltration

follows the situation A, B, or C in Figure 3.1. the code also imports precipitation data and stores

it in a vector. The classes calculate and changes certain parameters, states, and responses, and

return them to “main” as explained in section 6.2. the six classes are called “Infiltration”,

“getPrecipitation”, “infiltration_depth”, “Parameters”, “Ponding” and “soilMoitsture”.

Table 6.1 and 6.2 explains the parameters, states, responses, outputs, and other variables used

in the code. When developing the code, it was not necessary to distinguish on states, parameters,

or response. This became important when implementing in SHyFT. However, it gives a clearer

picture on the nature of a variable used in the code.

Tabell 6.1 Parameters, States, and responses

Physical description
Symbols
in thesis

Symbol in
the code Unit Classification

Green Ampt wetting front soil suction Hc Hc [L] Parameter

Bubbling pressure/air entry pressure 𝜓𝑏 Yb [L] Parameter

Pore distribution index Λ lambda [-] Parameter

Saturated volumetric soil moisture
content 𝜃𝑠 Os [-] Parameter

Residual volumetric soil moisture content 𝜃𝑟 Or [-] Parameter

Initial volumetric soil moisture content 𝜃𝑖 Oi [-] Parameter

Saturated hydraulic conductivity 𝐾𝑠 Ks [LT-1] Parameter

Initial hydraulic conductivity 𝐾𝑖 Ki [LT-1] Parameter

Relative volumetric initial water content Θ𝑖 ORi [-] Parameter

Relative volumetric water content Θ OR0 [-] Parameter

Number of wetting fronts K k [#] Sate

Current hydraulic conductivity 𝐾(𝜃) K0 [LT-1] State

Current volumetric soil moisture content 𝜃 O0 [-] state/output

Infiltrated physical depth Z Z [L] state/output

Actual infiltration f f [LT-1] state/output

Ponding ponding [L] state/output

Infiltrated water depth F Freal [L] response/output

Runoff Runoff [LT-1] response/output

26

Table 6.2 Other variables in the code

Description Code symbold Unit

Water demand for wetting front 0-(k-1) Pek [L]

Residual rain water PeR [L]

Porewater volume for wetting front 0-(k-1) Vzk [L]

Unsaturated capillary drive G [L]

Infiltration rate if Pe > f since the start ftest [LT-1]

Infiltrated water before the start deltaF [L]

Rainfall rate in last timestep PeL [L]

Soil water content during iteration O0test [-]

Wetting front depth during iteration Ztest [L]

Infiltrated water during iteration Ftest [L]

6.1 Main

Main initializes variables and decides which of the situations A, B or C that is present. “Main”

is structured into two parts: (1) Initialization of parameters states and responses and (2) A for-

loop running through the precipitation series, consisting of three parts.

In part (1), the classes are called and the class objects are given names. A precipitation vector

called Pe is initialized to a zero vector with a length equal to the length gathered from the

precipitation class. Each value of the precipitation series is stored in the vector Pe. Parameters

are initialized to the values stored in the class “Parameters”. Time, cumulative infiltration Freal,

infiltration rate f, the test parameter ftest, number of wetting fronts k, ponding and precipitation

intensity from last timestep PeL are set to zero. The six vectors for soil moisture content O0,

relative volumetric soil moisture content OR0, conductivity K0, wetting front depth Z, water

volume in wetting front k Vzk and water demand of wetting front k Pek are created to store the

states of each wetting front. Each vector is assigned four elements where the first value is

initialized to initial conditions of wetting front zero, and the other values are set to zero.

(2) The for-loop changes the parameters, states and responses and controls which of the

situations A, B, and C that are present. The loop is divided into three parts. The first part (i)

controls the advance of wetting front 0-(k-1), prat (ii) decides which situation A-C that is

present and part (iii) calculates K0 and OR0 and merges wetting fronts if necessary.

27

Part (i) describes the advance of the wetting fronts that are not under development, wetting front

0 - (k-1). The flow chart in Figure 6.1 describes the process. For these wetting fronts 𝜃 is

constant and Z is increasing. The wetting fronts therefore needs a supply of water to maintain

mass balance. This water is taken from either rainfall water, ponded water, or the developing

wetting front respectively. For each new timestep, the vectors Pek and Vzk are initialized to

zero vectors. Residual rainwater (PeR) is initialized to Pe for the given timestep. A fore-loop

runs through wetting front 0 - (k-1). For wetting front j, the pore water volume before an

advance Vzk is calculated by multiplying Z and 𝜃. The class “infiltration_detpth” is called and

returns Znew which is the depth for the next advance. The water demand for each wetting front

(Pek) is calculated as the new volume, Znew times 𝜃, minus Vzk. PeR is calculated as PeR-Pek

in each loop. This approach is repeated for all the wetting fronts 0 - (k-1). The remaining water

for the developing wetting front PeR = (∑ 𝑃𝑒𝑘[𝑗])
𝑘−1

𝑗=0
 is used when calculating the advance

of wetting front k in situation A.

(ii) Four if statements decide which of the situations A, B, or C are present or if a new wetting

front is formed (see lower left part flow chart Figure 6.1). Each loop runs through all the if

statements but only one of them will be true for each timestep. A new 𝜃 and Z are calculated

differently depending on which of the if statements that is true as in section 6.1.2 to 6.1.4.

Part (iii) is the end of the for loop. It calculates a new OR0 and K0 and checks if one wetting

front has exceeded the depth of another (see left part of flow chart in Figure 6.1). If so these

wetting fronts are merged. Equation 12 is used to calculate a new Z. Further 𝜃𝑘−1 = 𝜃𝑘 and k =

k-1.

At the end of the loop, the code prints some information to the screen and all the information to a text

document. The data is further imported to excel to do analysis of data.

28

Figure 6.1 Flow-chart of “main”

6.1.1 New wetting front

If the precipitation is higher than saturated conductivity, and the precipitation in last timestep

is lower than saturated conductivity, a new wetting front is formed (Figure 6.2). The if statement

also checks whether 𝜃 is less than 𝜃𝑠. This check is only important if ponding is allowed. If

ponded water form last rainfall event still is infiltrating, no redistribution has yet occurred, and

29

a new wetting front will not be created. If the if statement is true, the class “Infiltration_depth”

calculates an initial depth. Another if statement checks if the Pe exceeds ftest. If so 𝜃 is set to

𝜃𝑠. If not, the class “SoilMoisture” calculates a new 𝜃 value.

if (Pe[i] > Ks && PeL < Ks && O0[k] < Os){

 getZ.setZK0(O0[k-1],OR0[k-1]);

 Z[k] = getZ.getZK0();

 if (Pe[i] > ftest){

 O0[k] = Os;

 } else{

 output.setO0(Z[k],PeR,O0[k-1],OR0[k-

1]);

 O0[k] = output.getO0();

 }

}

Figur 6.2 Flow-chart describing the creation of a new wetting front

6.1.2 Situation C

Situation C, Figure 6.3, is the present situation if the precipitation rate Pe > the maximum

infiltration capacity of the soil ftest. Ponding is present occurs in situation C and the soil reaches

is in a fully saturated state, 𝜃 = 𝜃𝑠. A new Z is calculated using a saturated form of Equation 13

which is calculated in the class “Infiltration_depth”. 𝜃 and Z are returned to “main”.

if (Pe[i] >= ftest){

 getZ.setZs(O0[k-1],Z[k]);

 Z[k] = getZ.getZs();

 O0[k] = Os;

}

Figure 6.3 Flow-chart describing situation C

6.1.3 Situation B

If Pe is less than fc, but higher than Ks, Situation B is present. The infiltration is then calculated

as shown in Figure 6.4 Three test parameters, Ftest, Ztest and O0test, are created to do the

iteration explained in 0. They are initialized to the values from last timestep. The amount of

infiltrated water Freal, will in situation B equal total rainfall during the rainfall event. The

parameter deltaF is gathered form the infiltration routine. deltaF offsets Freal to only measure

30

infiltrated water during the last rainfall event in case of multiple precipitation events. A while

loop with the decision criteria “is Ftest >= Freal” is used to iterate new values for 𝜃 and Z.

O0test is increased with incremental steps. The class “Infiltration_depth” is called to calculate

a new Z. Ftest is calculated as the new volume of the wetting front 𝑍 times (𝑂0 − 𝑂0). Ftest is

compared with Freal. If Ftest < Freal the while-loop continues. Ftest >= Freal, the while loop

ends. A new Z is set equal to Ztest, and O0 is set to O0test. These values are then returned to

“main”.

float O0test = O0[k];
float Ztest = Z[k];
if (Pe[i] < ftest && Pe[i] >= Ks) {
 float Ftest = Freal - deltaF –
 f*timestep;
 while (Ftest < Freal - deltaF) {
 O0test = O0test + 0.0001;
 getZ.setZK1(K0[k],O0test,O0[k-1],Z[k],
 OR0[k],OR0[k-1]);
 Ztest = getZ.getZK1();
 Ftest = Ztest*(O0test – O0[k-1]);
 }
 Z[k] = Ztest;
 O0[k] = O0test;
}

Figure 6.4 Flow-chart describing situation B

6.1.4 Situation A

If Pe is less than Ks, situation A is present, and Figure 6.5 describes the calculation process.

However, an if statement considers whether ponding still occurs. If ponding occurs, the code

repeats the calculations in situation C.

If there is no ponding, iteration like the one in situation B is stared. However, the iteration object

is now Z and not 𝜃 as explained in section 0. The variable Ztest is increased with incremental

values and O0test is gathered from the class “soilMoisture”. Ftest is calculated as in B and the

criteria Ftest>=Freal is used to continue or end the while loop, like in B. New values of Z and

O0 are set equal to O0test and Ztest, and returned to “main”.

31

if (Pe[i] < Ks){
 if (ponding > 0){

 getZ.setZs(O0[k-1],Z[k]);
 Z[k] = getZ.getZs();
 O0[k] = Os;

 else {
 float Ftest=Freal-deltaF-0.001;
 while (Ftest < Freal) {

Ztest = Ztest + 0.001;
output.setO0(Ztest, PeR,
O0[k], OR0[k-1]);
O0test = output.getO0();
Ftest=Ztest*(O0test-O0[k-1]);

 }
 Z[k] = Ztest;
 O0[k] = O0test;
 }
}

Figure 6.5 Flow-chart describing situation A

6.2 Classes

As explained in 5.2, the classes contain functions to calculates some variables, and they also

store variables as private to prevent “main” to change the variables without permission. Two

functions are normally needed to change and return a variable from a class. A “set-function” is

called by “main” and will calculate a new value for a variable and store it as private. Then

“main” call a “get-function” to return the new value of the variable to “main”.

6.2.1 The class “getPrecipitation”

The class “getPrecipitation” reads and returns the length of the precipitation file.

“getPrecipitation” contains the functions “setLength()” and “getLength()”. “setLength()” reads

the precipitation file named in “Parameters”, which is stored in a text document. Further it

counts the number of values stored in the file. This number is stored in a private variable length.

“getLength()” returns length to “main”. “main” uses this number to initialize a zero vector, Pe,

with the length “length”. A while-loop in “main” runs through the text document again and

stores each precipitation data in the right order in the vector Pe.

32

6.2.2 The class “Parameters”

The class “Parameters” contains parameters and initial states for the soil of consideration. All

the variables in the class “Parameters” will stay the same throughout the simulations. The class

“Parameters” does therefor not have any “set-functions”. This means that “main” cannot change

any variables given in the class “Parameters”. “main” is only allowed to return parameters from

the class “Parameters”. This makes the code more robust.

The user initializes the states and parameters marked with “user input” in the table below. The

class calculates the states and parameters marked with “calculated”.

Tabell 6.3 Parameters and state stored in the class “Parameters”

Description Code symbols Unit Classification

Bubbling pressure/air entry pressure 𝜓𝑏 [L] Parameter (user input)

Pore distribution index Λ [-] Parameter (user input)

Saturated volumetric soil moisture content 𝜃𝑠 [-] Parameter (user input)

Residual volumetric soil moisture content 𝜃𝑟 [-] Parameter (user input)

Initial volumetric soil moisture content 𝜃𝑖 [-] State (user input)

Is ponding Allowed Pond [char] State (user input)

Saturated hydraulic conductivity 𝐾𝑠 [LT-1] Parameter (user input)

Green-Ampt wetting front soil suction parameter Hc [L] Parameter (Calculated)

Initial hydraulic conductivity 𝐾𝑖 [LT-1] State (Calculated)

Relative initial volumetric water content Θ𝑖 [-] State (Calculated)

6.2.3 The class “Infiltration”

The class “Infiltration” is a crucial class for the code. It calculates and returns F, deltaF, ftest,

and fc. These parameters are essential to control the if statements in “main” and to monitor the

responses from the observed area. F is the infiltrated water depth since the first rainfall event

started. f is the current infiltration rate. ftest is the potential infiltration capacity. deltaF is the

total infiltrated water before the current rainfall period started. The class “Infiltration” can also

return the parameter error which is explained later.

“Infiltration” is called by the function “setFf()” which takes four input arguments, time, Pe,

ponding, k, O0(k-1), and i. “setFf()” calculates F, deltaF, ftest,and fc and stores them in private

variables. To return these values the functions “getf()”, “getftest()”, “getF()”, and “getdletaF()”

are called. Since deltaF is stored in a vector “getdletaF()” takes the input argument k to

determine which of the values in the vector that are returned.

33

The infiltration routine consists of two parts. (1) The test parameters Ftest1 and ftest are set.

Ftest1 is F plus Pe. ftest is calculated with Ftest1 and is the maximum infiltration capcacity for

the soil. This parameter is used by “main” to decide when ponding occurs. When a new wetting

front is formed, several parameters is reset. “main” needs to keep track of total infiltration depth

F across the whole time-series, but to be able to calculate infiltrated water during the last rainfall

event with GAML, F and time needs to be set to zero. deltaF, deltatime and ktest, where

introduced as member variables in the class “Infiltration”. In “main” k controls how many

wetting fronts that are present. Therefore, k where exposed to “infiltration”. In “Infiltration” an

if statement controls if k increases or decreases over the last timestep and updates ktest to the

new k. If k increases deltaF and deltatime is set to current time and F. O0[k-1] is also stored as

O0L. Calculation of infiltration subtract deltatime and deltaF so that every new wetting front

starts infiltration calculations at the time when the rainfall event started and with no infiltrated

water.

(2) In part two, infiltration depth at time of ponding (Fp) and time of ponding (tp) is calculated

as in Equation 16 and 17. A test parameter for iteration (Ftest) is initialized. Four if statements

decide how F and f should be calculated. (i) If there is raining, but the intensity is low, all the

water is infiltrated and f is set to the rainfall intensity. (ii) If the rainfall intensity exceeds ftest

at the first timestep, GA can be used directly to calculate f and F, without applying Mein and

Larson’s approach. (iii) If Pe is greater than Ks, but less than ftest, GAML is used. GAML

iterates a parameter (t) which is the time calculated based on infiltrated water. Further an if

statement decide if t is less than tp. If so all the water infiltrates. If not, F and f is calculated by

using GA. (iv) The fourth if statement I true if water is ponded on the surface. Then if statement

three is continued even if it is not raining until all the ponded water is infiltrated. If one rainfall

event follows close after another so there is not enough time for the water to infiltrate, the soil

would experience that there is one long rainfall event because of the fourth if statement. Only

one wetting front is formed. If none of the if statements is true there is no rainfall and the f is

set to zero. F remains unchanged. A flow-chart of the class “Infiltration” is shown below.

34

Figure 6.6 Flow-chart of the class “Infiltration”

When the depth of wetting front k exceeds the depth of wetting front k-1 and the wetting fronts

are merged the infiltration rate raised above the rainfall rate. The infiltration rate should in

theory be the same over this transition from two wetting fronts to one, but because O0(k-1)

changes over this transition and everything else is the same the infiltration rate increases. In the

code the solution is to keep O0(k-1) from two wetting fronts.

6.2.4 The class “Ponding”

The class “Ponding” controls whether ponding occurs and how much water is ponded on for

each timestep. It returns either ponding or Runoff. The class takes infiltration rate f, precipitation

rate Pe, timestep and data number i as input variables. In “Parameters”, the user has decided

whether ponding is allowed. This information is read by “Ponding” and is fed into an if

statement. If ponding is not allowed, runoff is calculated and ponding is set to zero and returns

this information to “main”. If ponding is allowed, two if-sentences check whether Pe is higher

35

or lower than fc, and calculates ponding as shown in Figure 6.7 If Ponding is calculated to less

than zero, all the ponded water is infiltrated during the last timestep, and ponding is set to zero.

The runoff is always zero if ponding is allowed. Ponding and runoff are returned to main.

Figure 6.7 Flow-chart describing the class “Ponding”

6.2.5 The class “Infiltration_depth”

The class “infiltration_depth” calculates the advance of a wetting front in Z direction. The

Runge-Kutta method (RK4) is used for numerical integration of ∆Z between each timestep. A

new depth Z is set equal to the old value of Z plus ∆Z. By applying RK4, stability in the code

is maintained and the code generates accurate results. The timesteps should not exceed 0.5

36

minutes when using RK4 (Lai et al., 2015) “Infiltration_depth” contains four separate ways of

calculating the advance of a wetting front; (1) Equation 8 calculates “dry depth” which is the

advance of a wetting front during the first timestep after it is formed; (2) Equation 12 is used

for a situation where Pe is greater than fc.; (3) When the soil is fully saturated, a saturated form

of Equation 12 is used; (4) Equation 13 is used if there is only the initial wetting front and one

additional wetting front.

Main needs to call the function “setZ” to set a new Z-value which is stored in private variables

in the class “Infiltration_depth”. Another function “getZ” is called to return the stored Z-value.

This is a safe way of changing and returning the stored Z-value without giving main the rights

to modify private variables in the class “Infiltration_depth”.

6.2.6 The class “soilMoisture”

The class “soilMoisture” calculates the redistribution of soil moisture when the rainfall

intensity is less than Ks. The soil moisture routine also applies RK4. PeR is used as input

value for the precipitation. Then the coefficient p = 1 if PeR > 0, or 1,7 if PeR = 0. O0 is

calculated using Equation 7.

As in the class “Infiltration_depth”, the O0 is set by the function “setO0” and it is returned by

the function “getO0”.

6.3 Error messages

If input data is wrong, the program will produce results without value for the user. To avoid

wasting time on producing these results and to give the user an indication of what the problem

is, error messages are implemented. For certain cases where it is obvious that the user has

entered wrong input data, the program will detect these mistakes and print a short message

about what the problem might be. The error messages are printed form the classes

“getPrecipitation”, “Ponding” and “Parameters”. The error messages are shown in table 6.4.

37

Table 6.4 Error messages built into the program

1 "ERROR: The typed file does not exist in the right folder"

2 "ERROR: Precipitation data at time " << (x+1)*0.008333 << "h is < 0"

3 "ERROR: Precipitation data at time " << (x+1)*0.008333 << "h has more than 8

decimals"

4 "ERROR: A Parameter in the class Parameters is < 0”

5 "EROOR: The variable Or > Oi or Oi > Os or Or < Os"

6 "ERROR: Or or Oi or Os >= 1"

7 "ERROR: Wrong spelling of Yes or No in class ponding"

Error message 1 in table 6.4 is returned if the user specifies an invalid precipitation file or the

file is in the wrong folder and the program fails to open the file.

When the program stores precipitation data in the Pe vector, it will check whether any of the

data has a value below zero. If this is the case, the program will exit and return error message

2 in table 6.4. The program cannot handle precipitation data with more than 8 decimals. If any

of the data entered has more than 8 decimals the program will exit and return error massage 3

in table 6.4. Both these error messages will display the location in the data series where the

mistake is detected.

In the class “Parameters”, none of the parameters can have a value lower than zero. The soil

moisture content parameters 𝜃𝑠, 𝜃𝑖, and 𝜃𝑟 must have a value between zero and one because

they are a measure relative to total volume of the soil. The parameter 𝜃𝑟 cannot be greater than

either 𝜃𝑖 or 𝜃𝑠, and 𝜃𝑖 cannot be greater than 𝜃𝑠. If the input values fail to fulfil any of these

requirements, the program will exit and return the error message 4 to 6 in table 6.4.

The user needs to specify whether water will pond on the surface or create surface runoff. This

is specified by typing “yes” or “no” in the class “Parameters”. The program understands all

combinations of capital letters and lowercase letters. However, if the user types anything else

than no or yes, the program will exit and return the error message 7 in table 6.4.

38

39

7 Implementation of the code in SHyFT

When the code was developed and produced reasonable results compared to GARTO, it was

implemented in SHyFT.

7.1 Compiling SHyFT and including the infiltration routine

SHyFT was installed and compiled on the computer by following the installation manual

provided on the open source web based Git repository (Helset, 2017). An own branch in SHyFT,

called “ntnu_hbv_inf”, was established to host the project of the infiltration routine.

A summary of the changes that were conducted is described in section 7.1.1. An overview of

all the changed files and in which lines the changes are done, are attached in appendix C. In

section 0, a description of the infiltration routine used to compile the code is described.

7.1.1 Changed files

In the file “core_serializtion” the infiltration routine was included by including the file

“hbv_infiltration”. The states of the infiltration routine were introduced to the archive to store

the states of the infiltration routine.

In the file “hbv_stack”, the infiltration routine was included by including the file

“hbv_infiltration”. The parameter class of the infiltration routine was introduced as an object to

expose the parameters to the file by the function “set”. The function “get” returns the parameters

when called, and the function “get_name” returns the name of the routine. The states and

responses were also exposed to the file. Thereafter, the states, parameters, responses, and the

function “step” from the infiltration struct “calculator” in the file “hbv_infiltration” were

exposed to the function “run_hbv_stack”. The variable “outflow”, in the snow routine, was

redirected as input to the infiltration routine, while the input of the soil routine was replaced

with the variable “Freal” from the infiltration routine. This way the HBV stack could stack the

infiltration routine between the snow routine and the soil routine.

In the file “hbv_stack_cell_model”, the responses “Freal” and “Runoff” were included in the

struct “all_response_collector”. This way, the time and location of the responses could be

initialized and the responses could be collected in the function called “collect”. In the struct

“state_collector” all states are collected. The states of the infiltration routine was included.

40

In the file “hbv_stack_test”, the namespace “infil” was set equal to

“shyft::core::hbv_infiltration” in order to include the infiltration routine. The parameters were

imported and the states were initialized.

7.1.2 Basic infiltration routine

To test whether the infiltration routine was properly implemented in SHyFT, a simple code was

developed in the struct “calculator”. The files “hbv_soil” and “hbv_soil_test” were copied to

separate files and they were modified to host the infiltration routine. A first edition of the

infiltration routine was implemented and coded. The first edition contained only the parameter

Os, the state O0, and the responses Freal and Runoff. In the file “hbv_infiltration” the struct

“calculator” containing the function “step”, updated states and responses for each timestep. In

this function, a simple code was developed as shown below.

void step(S& s, R& r, shyft::core::utctime t0, shyft::core::utctime t1, double
snow_out) {
 r.Freal = param.Os*snow_out;
 r.Runoff = 1;
 s.O0 = 1;

}

The aim of this simple code was to verify that the hbv-stack, including the infiltration routine,

was running without errors. In the file “hbv_infiltration_test” tests were implemented to ensure

that the user does not run a simulation with invalid input data. Tests that would be true based

on the calculations in the function “step” were made. SHyFT was built and run, and compiling

errors where rectified.

7.2 Implementation of the code

When the hbv-stack was compiling without the code returning errors, the code described in

section 6 was implemented. The struct “calculator” was implemented in “hbv_infiltration_test”

and the namespace was set to “hbv_infiltration2”. Under TEST_CASE(“test_regression”) the

line including the calculator was referring to the object “hbv_infiltration2” and not

“hbv_infiltration”. This way, only the “hbv_infiltration_test” needed to be compiled and run

during debugging, and the process went therefore faster.

7.2.1 Modification of the code to match the SHyFT framework

The structure of the code implemented in SHyFT is similar to the structure described in section

6. However, the interpretation of time and the data handling mechanisms had to be changed to

make the code fit the framework of SHyFT.

41

The interpretation of time is different in SHyFT and in the developed code. Precipitation data

in the developed code is presented as a time independent data series. The code interpreter the

time as a number and allocates the first data in the series the time number zero. For each new

data, this number increases by a number given in hours, e.g. the second value in the precipitation

data will get the number 0.00833 hours, which corresponds to half a minute.

In SHyFT, time is also interpreted as a number. However, the number is date dependent. SHyFT

uses the computer’s system clock that counts ticks from a decided starting time. Each tick is

counted and the time number is given based on number of ticks since the starting time. A tick

is equal to one second. When presenting a precipitation data in SHyFT, the date needs to be

specified, so that SHyFT can decide the time number (how many ticks since starting time) it

should allocate to this data.

Because of the different interpretation of time in SHyFT and the developed code, the for loop

used to control time and precipitation data described in section 6, was not applicable in SHyFT.

Because the time and input water is handled outside the routine, the routine in SHyFT is like a

function that takes input water data, calculates new states and responses, and returns them to

the global HBV model. The response “snow_out” from the snow routine was used as the

variable “precipitation” was used in the code.

In the developed code, some calculations are separate classes and not included in “main”. In

SHyFT this is not an option. Some of the classes were therefore implemented directly into the

function “step”. Other classes which were called several times during “main”, were

implemented as own functions before the function “step” and were called whenever needed.

The code in SHyFT is further explained in section 7.3.

In SHyFT, all variables are named with lower case letters and underscore between words. All

the variables from the code where renamed to fit these rules.

7.3 The structure of the code in SHyFT

The struct “calculator” calls on the struct “parameter”, “states” and “responses” to get the

current values and to be able to change the states and responses.

The two classes “Infiltration_depth” and “soilMoisture” from section 6.2 are implemented as

functions. Four functions describe the four different ways of calculating the infiltration depth

42

Z, as described in section 6.2.5, while one function calculates the soil moisture content 𝜃 as

described in section 6.2.6.

The function “step” conducts all the other calculations and “step” is mainly a copy of “main”

described in 6.1. However, the infiltration routine and the ponding routine are merged together

and placed before the if statements. The if statements which decide the infiltration situation (see

section 6.1) equals the if statements in the developed code.

The classes “getPrecipitation” and “Parameters” are not needed in SHyFT. The precipitation is

controlled by SHyFT and is introduced to the infiltration routine as the response variable from

the snow routine called “snow_out”. The parameters are replaced by the struct “parameters”.

7.4 Further work with SHyFT

In the file “hbv_stack_cell_model”, the responses from the infiltration routine might have been

implemented incorrectly. The result of this would be that the HBV model will misinterpret the

runoff. If this is the case, the runoff will probably not contribute to the total runoff from the

evaluated catchment.

Because of problems with exposing the states stored as vectors, the struct calculator is still

located in the file “hbv_infiltration_test”. The states need to be exposed properly so that all the

files in SHyFT using states can read them. Then the struct “calculator” can be moved to the file

“hbv_infiltration” where it should be located.

To initialize parameters as equations that calculates values using other parameters was difficult

to implement. The parameters ori, ki and hc were therefore initialized to the fixed value of the

equation using the soil type loam. To run the simulations for other soil types, these parameters

must be properly implemented.

When the SHyFT has been compiled correctly with the infiltration routine properly included,

the full HBV model should be tested for the same precipitation series as in Lai et al. (2015) to

verify that the results from the infiltration routine match the results from the code.

The changes in infiltration depth Z and soil moisture content 𝜃, is currently done by coded

Runge-Kutta. There is available better and more stable Runge-Kutta functions. These would

reduce the number of lines in the code and should be implemented.

43

Results and discussion

8 The code’s performance

To investigate the code’s performance, it was compared to results of GARTO method presented

by Lai et al. (2015). Lai et al. (2015) compared results from GARTO to the results from FUCG

RE. As explained in section 3.2.1, the RE method is considered to provide accurate results for

infiltration simulations. Only comparing the results from the developed code against the

GARTO model, and not against FUGG RE could cause cumulative error Nevertheless, the aim

of the developed code is to reproduce the GARO model and the Lai et al. (2015) present more

results for the GARTO method than for RE. To limit the study scope while at the same time

comparing to as many results as possible, the results from the code are compared only to the

results of GARTO.

The code where tested against the soil types loam, clay, and sand. Comparison of sand is only

briefly presented. Soil properties for the three soils are listed in table 8.1.

Table 8.1 Soil properties.

Soil type 𝜽𝒓 𝜽𝒔 𝜽𝒊

0.117

𝝍𝒃 𝝀 𝑲𝒔

Loam 0.027 0.434 11.15 0.252 1.32

Clay 0.090 0.385 0.272 37.30 0.165 0.06

Sand 0.020 0.417 0.033 7.26 0.694 23.56

Green Roof 0.120 0.400 0.2302 8.00 0.600 43.928

Clay does have a low saturated conductivity, which means that rain water will pond with lower

intensities. Sand has a high saturated conductivity which means that it ponds only on high

rainfall intensities. Loam is between these two.

The developed code was compared to results from two scenarios in GARTO, test 1 and test 2,

and results from a green roof in Trondheim. In test 1, a comparison of done both infiltration

rate and infiltration depth where done.

8.1 Test 1

Test 1 describes rainfall sequences with two rainfall pulses, both with steady rainfall. The same

rainfall event as used by Lai et al. (2015) was applied on the developed code. See Table 8.2 for

duration and rainfall intensities for the rainfall events.

44

Tabell 8.2 Duration and rainfall intensity, Test 1

Soil Pulse Rainfall rate (cm/h) Starting time (h) Duration (h)

Loam 1 4 0 1

 2 4 3 1

Clay 1 1 0 1

 2 1 3 1

8.1.1 Infiltration rate

The developed code gives the same infiltration pattern as the results from Lai et al. (2015) (see

figure 8.1). In the beginning of each rainfall event, the infiltration capacity exceeds the rainfall

rate for both loam and clay, hence the infiltration rate equals the rainfall rate. When the soil

gets saturated the infiltration capacity drops below the rainfall rate and the infiltration rate starts

decreasing. Infiltration continues until the rainfall event stops and the ponded water is

infiltrated.

The code GARTO

Time(h) Time(h)

Time(h) Time(h)

Figure 8.1 Test 1: Infiltration rate with ponding

Loam on the top and clay at the bottom. Dotted line is RE FUCG (Lai et al., 2015)

45

For the first rainfall event, the decreasing part of the infiltration rate curve is smooth for both

loam and clay. For the second rainfall event, a sharp edge can be observed at one point for both

loam and clay. For loam this sharp point is evident both in the results form Lai et al. (2015) and

the code. By analysing the data set, it was found that this point corresponds in time with the

merging of two wetting fronts.

Evaluation of Green-Ampt (equation 4) can give a possible explanation of this sharp point. The

considered developing wetting front before the merging contains little infiltrated water F. 𝜃0 −

𝜃𝑖, expressed as ∆𝜃 is low. Over the timestep where two wetting fronts are merged, 𝜃𝑖 will

change to be the soil moisture content of wetting front (k-2), not (k-1) as before the merge. The

value of 𝜃𝑖 decreases. F in wetting front k and F in wetting front (k-1) must be summed and

considered as F for the merged wetting front. For the initial wetting front, before merging, the

capillary forces were a large portion of the downward forces. A larger F and a large ∆𝜃 makes

the capillary forces small relative to the gravity forces. The infiltration capacity is dependent

on the forces that are pulling the wetting front down. The gravity force is constant. The capillary

force decreases when the depth and ∆𝜃 increases. This makes the change in infiltration capacity

decrease when two wetting fronts are merged.

There are two sharp points at the graph for loam in the results from Lai et al. (2015). This is

however not the case for the results from the developed code. Lai et al. (2015) do not provide

a detailed enough description of their results for further evaluation of this difference.

8.1.2 Wetting front depth

The wetting front depth obtained by the developed code and by Lai et al. (2015) for one hour,

three hours and six hours are compared in figure 8.2.

46

 The code GARTO

Figure 8.2 Test 1: Wetting front infiltration depth (Lai et al., 2015)

Figure 8.2 indicate that the developed code produces similar wetting front depths as the results

by Lai et al. (2015). However, the authors have only presented the graphs of the infiltration

depths (as shown in figure 8.2), but not more detailed data. For further evaluating the accuracy

of the developed code regarding wetting front depth, more detailed data for comparison would

have been needed.

8.1.3 Overall results from Test 1

Table 8.3 presents a comparison of results from Lai et al. (2015) and from the developed code.

Time of ponding and deponding, and accumulated infiltrated water depth F is presented for

loam, clay, and sand.

L
O

A
M

C

L
A

Y

47

Table 8.3 Comparison of results from Lai et al. (2015) and the developed code for loam, clay, sand

Soil
type

Rainfall
pulse

Total
rain
[cm]

Start
time
[h]

Stopping
time [h]

Time ponding
[h]

Time
deponding [h] F [cm]

 GARTO Result GARTO Result GARTO Result

Loam 1 4.0 0 1.00 0.686 0.683 1.043 1.042 3.862 3.860

 2 4.0 3 4.00 3.185 3.175 4.442 4.450 2.967 2.945

Clay 1 4.0 0 1.00 0.458 0.450 1.281 1.300 0.851 0.844

 2 4.0 3 4.00 3.105 3.108 5.510 5.633 0.522 0.505

Sand 1 12.5 0 0.25 0.066 0.058 0.318 0.325 10.331 10.219

 2 12.5 3 3.25 3.031 3.025 3.377 3.400 8.916 8.987

Time of ponding, time of deponding, and infiltrated water depths match the results from Lai et

al. (2015) with high accuracy (Table 8.3). The largest deviation is on the deponding time for

clay after the second rainfall pulse (7,38 minutes). Since the data set only considers two wetting

fronts, evaluation of whether there is a cumulative error over time could not be done.

8.1.4 Ponding

In nature, ponding is a delayed process, means ponding will only occur a while into a rainfall

event, unless the soil is fully saturated. Ponding will also occur a while after the rainfall event,

depending on the soil’s infiltration capacity and amount of ponded water. Figure 8.3 shows that

results produced by the code corresponds with the nature of ponding.

Loam clay

Figure 8.3 Test 1:

Ponded water for clay and loam

For both loam and clay, the two rainfall events start at time zero, and last for one hour. Ponding,

however, does start a while into the rainfall event, as shown Figure 8.3 and in Table 8.3. For

48

rainfall event two, the soil has a higher soil moisture content because the water from event one

has filled the pores. This leads to decreased infiltration capacity as shown in Figure 8.1, which

again leads to more ponding during event two. The deponding time will shift to the right because

more water needs to be infiltrated after the rainfall stops, as shown in figure 8.3 and in Table

8.3.

8.1 Test 2

Test 2 represents rainfall sequences with five rainfall pulses all with steady rainfall. As for Test

1, is same rainfall event as used by Lai et al. (2015) was applied on the developed code. The

start time (ti), the duration (di) and the rainfall rate (4 cm/h) for each rain pulse are shown in

table 8.4. Unlike for test 1, excess rainfall is not allowed to pond but is directly becoming runoff.

Excess runoff is this way removed from further infiltration calculations.

Tabell 8.4 Start of rainfall event (ti) and duration (di)

Soil Rainfall rate t1 d1 t2 d2 t3 d3 t4 d4 t5 d5

Loam 4 0 2 20 0.5 21 1 40 1 41.5 0.5

Clay 1 0 2 20 0.5 21 1 40 1 41.5 0.5

8.1.1 Infiltration rate

The infiltration rate obtained by the developed code and by Lai et al. (2015) was compared for

loam and clay as shown in Figure 8.4 - Figure 8.5

49

Time(h)

Figure 8.4 Infiltration rate in loam.

Produced results on the top and results from Lai et al. (2015) on the bottom (Lai et al., 2015)

50

 Time (h)

Figure 8.5 Test 2: Infiltration rate in clay.

Produced results on the top and results from Lai et al. (2015) on the bottom (Lai et al., 2015)

The sharp point discussed for test 1 is also present were two wetting fronts meet in the results

produced by the code (Figure 8.4 - Figure 8.5). However, the point cannot be spotted in the

graphs provided by Lai at al. (2015)

This might be because no wetting fronts merge during the rainfall event in the study by Lai et

al. (2015). This does, however, seem unlikely considering that the results from Lai et al. (2015)

and the developed code agree on the merging point in test 1.

A more likely explanation is that the calculation of infiltration rate over the merging of two

wetting fronts is done differently in the developed code and in in the study presented by Lai et

al. (2015). The authors do not provide a detailed description of how the infiltration rate changes

when two wetting fronts merges. An indication that the calculations might have been conducted

differently is the fact that there are discontinuities in the infiltration rate curves in the results

from the developed code. Discontinuities in the infiltration rate curve can be seen for both clay

and loam. The reason for the discontinuity is not identified. However, investigations on this is

recommended as part of further development of the code.

51

8.1.2 Runoff predictions test 2

In nature, expected runoff will increase with increased soil moisture content. Soil moisture

content and corresponding runoff, simulated by the code, is shown in Figure 8.6. The results

correspond with the expected natural response.

(a)

(b)

Figure 8.6 Runoff prediction and soil moisture content for loam test 2

Precipitation event in pulse two and five has the same precipitation rate and duration. However,

as seen in Figure 8.6.b, the soil moisture content before pulse two is at around 0.3, while it is at

around 0.4 for pulse five. The runoff for pulse two reach a maximum of 1 cm/h while the runoff

for pulse five reaches 2 cm/h as shown in Figure 8.6.a. The same results can be found for pulse

three and four, but it is not as clear.

8.1.3 Number of wetting fronts

Test 2 with five rainfall pulses will at some stages during the simulations have three wetting

fronts in addition to the initial wetting front. Figure 8.7 shows the soil moisture profile at one

of these stages.

52

Figur 8.7 Soil moisture profile for loam after 42,5 hours, test 2

The code does operate with state vectors, holding four elements. Any precipitation series

causing more than three wetting fronts plus initial wetting front, would not be possible to run

for the code. It would be possible to apply a similar approach as in GAR, where two wetting

fronts are merged if the amount of wetting fronts exceeds a certain number (Ogden and

Saghafian, 1997). However, the computational costs of having vectors with no limits on number

of elements, should not be too high. A natural wetting front would have a curved shape as

shown in Figure 3.2. In comparison, Figure 8.7 is a rough reproduction of this curve. An

advantage of increasing the number of elements in the vectors would be to produce a smoother

curve than in Figure 8.7. This would make the simulations more accurate. Missing programming

skills early in the process is the reason for why this not being implemented.

8.2 Comparison against Green Roof

Precipitation data and soil moisture data gathered from a green roof in Trondheim was

compared to simulations of the code. The green roof was ten cm. thick with free drainage under

the soil. The precipitation rate varied between 0.98 cm/h and 2.7 cm/h and lasted for ten

minutes.

Soil properties are shown in table 8.1. Field measurements decided saturated conductivity Ks.

Initial soil moisture content 𝜃𝑖 was set equal to the measured soil moisture content in the

beginning of the rainfall. Bubbling pressure 𝜓𝑏, pore distribution index 𝜆 and saturated soil

moisture content 𝜃𝑠 were guessed by comparing the soil type of the green roof to the soils

presented in Lai et al. (2015).

53

Figure 8.8 Soil moisture content green roof and infiltration routine

The code produces good prediction of the increase in soil moisture content during the rainfall

event as shown in figure 8.8. However, during redistribution, the soil moisture content decreases

too fast compared to the green roof.

A possible explanation could be connected to the thickness of the roof. The code simulations

consider infinitively deep soil columns, while the green roof is only ten cm. thick. When the

water in the green roof reaches the bottom of the soil, capillary forces will try to pull the water

back up into the soil, like a sponge will hold the water inside. For the soil column, capillary

forces will work the opposite way. Below the wetting front, the soil moisture content is less

than in the wetting front. Therefore, the dry soil will create capillary forces pulling the water

downwards.

For further studies of the code performance on real situations, there should be conducted tests

on a deeper soil column, and preferably a denser soil. This would force the soil moisture to

move slower through a longer soil column and the simulations would have the same conditions

as the test soil for a longer period.

0,20

0,21

0,22

0,23

0,24

0,25

0,0 0,5 1,0

So
il

m
o

is
tu

re
 c

o
n

te
n

t

time (h)

Gree Roof

Infiltration routine

54

8.1 Sensitivity analysis of parameters

The land use and soil type are important factors for deciding the infiltration capacity. As implied

in section 4.2.1, the input parameters for the infiltration routine can be decided either by field

measurements or by gathering the parameters from literature data based on the soil type.

Uncertainties are present in both these methods.

For field measurements, the main uncertainty is a result of great variation of the surface cover

and soil types in urban catchment (Mein and Larson, 1973). Parameters gathered from the

literature will in addition have uncertainty connected to misinterpreting of which soil types are

present in the evaluated catchment. A brief uncertainty analysis of the five parameters is

therefore conducted to investigate the consequence of choosing wrong parameters.

Loam was chosen as test soil and the conditions in test 1 was applied. Each parameter was

tested separately while the other parameters remained unchanged. A certain percentage increase

and a percentage decrease in value were tested for each parameter. The applied percentage

change varied for the parameters. The aim was to reflect the natural variation of the parameter

between soil types and at the same time not produce errors that are too significant. Table 8.5

presents the results. The analysis was conducted looking at cumulative infiltrated water depth

F. The result of a high F value would result in low ponding or runoff making F a suitably

parameter to look at.

Tabell 8.5 Sensitivity analysis on the parameters

Parameter/ Pulse Decrease Increase

Change in % F [cm] e (%) F [cm] e (%)

Ks 1 3.186 -17.465 4.000 3.627

+20%/-20% 2 1.985 -32.594 3.932 33.510

𝝍𝒃 1 3.460 -10.360 3.998 3.572

+40%/-40% 2 2.469 -16.179 3.321 12.769

𝝀 1 3.809 -1.328 3.904 1.137

+40%/-40% 2 2.906 -1.328 2.985 1.358

𝜽𝒔 1 3.813 -1.211 3.900 1.041

+5%/-5% 2 2.878 -2.279 3.018 2.484

𝜽𝒊 1 3.952 2.375 3.715 -3.762

+50%/-50% 2 3.109 5.566 2.778 -5.670

𝜽𝒓 1 3.860 0.012 3.860 0.012

+300%/-90% 2 2.958 0.450 2.926 -0.662

55

The infiltrated water depth F is most sensitive to the saturated hydraulic conductivity Ks.

Considering that the saturated conductivity varies greatly in nature, a 20% margin of error

should be accepted of the user. However, up to 33.5% less water would infiltrate if the Ks is

misinterpreted with 20%. On the other hand, F is less sensitive to changes in the other variables.

8.2 Steady state rainfall

The infiltration routine was coded with the method of combining GA and Mein and Larson

(GAML) (Mein and Larson, 1973). GAML use steady state rainfall, which means that Pe is

constant throughout the rainfall event. This is rarely the case in nature. A natural rainfall event

normally follows a curve with increasing intensity until it reaches a peak, before it drops

gradually. The results presented are generated for steady state rainfall events. For a natural

rainfall event the code would consider the rainfall intensity for the last timestep as the steady

state rainfall, regardless of the intensities of earlier rainfall intensities. Nevertheless, the code

managed to predict the increase in soil moisture content in the green roof in section 8.2 even

though the rainfall intensity varying.

For further work, two solutions are suggested. Solution (1) is to continuously calculate an

average precipitation rate (PeA), including all the previous timesteps in the precipitation event

during situation B, Figure 3.1. A suggestion on how the average precipitation rate could be

calculated is presented in Equation 18:

PeA =
PeA ∗ (

time − deltatime − timestep
timestep) + Pe

time − deltatime
timestep

 (18)

Where Pe is precipitation rate, deltatime is the time of the beginning of the precipitation event

and timestep are the time intervals. This precipitation rate can then be used as a “dynamic”

steady rainfall rate to calculate tp and Fp in each timestep.

Solution (2) is to investigate the modified versions of GAML which allow unsteady rainfall

being used (e.g. Chu, 1987). If modifications like solution (1) or (2) are done, the results should

be validated against field tests to assess whether it improves the stability of the results.

56

57

9 Performance of the infiltration routine in SHyFT

In the following section the results produced in SHyFT is compared to the results produced by

the code. The Infiltration curve, water depths, ponding deponding times, and total infiltrated

water are compared. The precipitation series presented in table 8.2 and the soil type loam is

used for the simulations.

SHyFT The code

Figure 9.1 Infiltration curve and infiltrated depth in SHyFT compared to the code

Both the infiltration curve and the infiltrated water depth follows the same pattern in SHyFT

and in the code (Figure 9.1). In the code, the unit of length is (cm). During the process, it was

discovered that it would have been easier to use the SI unit (mm), so a transition could be

preferable for further use of the code. SHyFT, However, operates with (mm) which explains

why the unit is different on the infiltration curves. On the depth curves, Both the graphs are

presented in the SI unit (m).

58

Tabell 9.1 Comparison of ponding and deponding time and infiltrated water depth

Soil
type

Rainfall
pulse

Total
rain
[cm]

Start
time
[h]

Stopping
time [h]

Time ponding
[h]

Time
deponding [h] F [cm]

 SHyFT Code SHyFT Code SHyFT Code

Loam 1 4.0 0 1.00 0.692 0.683 1.042 1.042 3.860 3.860

 2 4.0 3 4.00 3.200 3.175 4.467 4.450 3.089 2.945

Ponding time, deponding time and total infiltrated water depth F is predicted similar by SHyFT

and the code (Table 9.1). However, SHyFT do calculate the values somewhat different. If this

is an error, or if it is due to some minor differences in how the code is implemented is hard to

tell. SHyFT is only tested for this one soil type and precipitation series. Further tests are

recommended to validate the accuracy of SHyFT. These tests will probably also tell if the

differences in table 9.1 is neglectable.

59

Conclusion

The study was conducted to evaluate the performance of a full hydrological model with an

implemented infiltration routine, with the goal of improving hydrological runoff predictions in

urban catchments. This was done by developing a code for an infiltration routine in C++. The

code was further implemented into the HBV model in SHyFT.

Despite small differences in the shape of the infiltration rate curve when comparing to the

results form Lai et al. (2015), the overall performance of the code is good. The comparison

against observed data from a green roof showed that increase in soil moisture content is well

predicted, while the decrease is overestimated. The runoff and ponding prediction corresponds

to the expectation of how these responses behave.

The most sensitive variable was found to be the saturated hydraulic conductivity, Ks. It was

further found that choosing a wrong Ks affects the results significantly (20% change in Ks gave

up to 33% change in F).

The code is concluded to describe infiltration well. With some further development, the code is

promising for implementation and use in the HBV model. Further work is suggested on:

• Implementing a ground water table as explained in the Lai et al. (2015). This would

make the code able to predict infiltration for more scenarios.

• Lai et al. (2015) is also working on a layered GARTO model. When this is available, it

should be implemented.

• Implementing state vectors handling an indefinite number of wetting fronts.

• Testing SHyFT for more scenarios and debugging any errors that have not yet been

discovered.

• Conducting real infiltration measurements to validate the performance of the code, and

develop the code to handle errors that might occur.

• Implementing the code fully in the HBV model and test the new version of the HBV

model against real catchments. How the runoff from the infiltration routine should be

handled in the HBV model needs to be decided. How an urban catchment should be

divided into cells should be investigated.

60

61

References

AGHAKOUCHAK, A. & HABIB, E. 2010. Application of a Conceptual Hydrologic Model in Teaching
Hydrologic Processes. TEMPUS PUBLICATIONS.

BECKER, M. A. 2016. Assesment of downspout disconnecting by modeling infiltration potential in urban
areas. NTNU.

BROOKS, R. H. & COREY, A. T. 1966. Properties of Porous Media Affecting Fluid Flow. Journal of the
Irrigation and Drainage Division, Vol. 92 Pg. 61-9.

BUNSRI, T., SIVAKUMAR, M. & HAGARE, D. 2008. Simulation of Water Movement through Unsaturated
InfiltrationRedistribution

System Journal of Applied Fluid Mechanics, 2.
BUTLER, D. & DAVIS, J. W. 2004. Urban Drainage, second edition.
CHU, S. T. 1987. Generalized Mein‐Larson Infiltration Model. Journal of Irrigation and

Drainage Engineering, 113, 155-162.
CORRADINI, C., MELONE, F. & SMITH, R. E. 1997. A unified model for infiltration and redistribution

during complex rainfall patterns. Journal of hydrology, 192.
DINGMAN, L. D. 2015. Physical Hydrology.
GOWDISH, L. & MUÑOZ-CARPENA, R. 2009. An Improved Green–Ampt Infiltration and Redistribution

Method for Uneven Multistorm Series All rights reserved. No part of this periodical may be
reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission
in writing from the publisher. Vadose Zone Journal, 8, 470-479.

GREEN, W. H. & AMPT, G. A. 1911. Studies on Soil Phyics. The Journal of Agricultural Science, 4, 1-24.
HELSET, S. 2017. Statkraft. Available: https://github.com/statkraft/shyft/wiki/BuildCplusplus

[Accessed 28.05 2017].
HORTON, R. E. 1933. The Rôle of infiltration in the hydrologic cycle. Eos, Transactions American

Geophysical Union, 14, 446-460.
HUNDECHA, Y. & BÁRDOSSY, A. 2004. Modeling of the effect of land use changes on the runoff

generation of a river basin through parameter regionalization of a watershed model. Journal
of Hydrology, 292, 281-295.

JACOBSON, C. R. 2011. Identification and quantification of the hydrological impacts of imperviousness
in urban catchments: A review. Journal of Environmental Management, 92, 1438-1448.

KANG, I. S., PARK, J. I. & SINGH, V. P. 1998. Effect of urbanization on runoff characteristics of the On‐
Cheon Stream watershed in Pusan, Korea. Hydrological Processes, 12, 351-363.

KIRKLAND, M. R., HILLS, R. G. & WIERENGA, P. J. 1992. Algorithms for solving Richards' equation for
variably saturated soils. Water Resources Research, 28, 2049-2058.

LAI, W., OGDEN, F. L., STEINKE, R. C. & TALBOT, C. A. 2015. An efficient and guaranteed stable numerical
method for continuous modeling of infiltration and redistribution with a shallow dynamic
water table. Water Resources Research, 51, 1514-1528.

LINDSTRÖM, G., JOHANSSON, B., PERSSON, M., GARDELIN, M. & BERGSTRÖM, S. 1997. Development
and test of the distributed HBV-96 hydrological model. Journal of Hydrology, 201, 272-288.

MEIN, R. G. & LARSON, C. L. 1973. Modeling infiltration during a steady rain. Water Resources Research,
9, 384-394.

NKSS 2015. Klima i Norge 2100.
NYHUS, E. 2016. Infiltrasjonsrutine i en full hydrologisk modell.
OGDEN, F. L. & SAGHAFIAN, B. 1997. Green and Ampt Infiltration with Redistribution. Journal of

Irrigation and Drainage Engineering, 123, 386-393.

https://github.com/statkraft/shyft/wiki/BuildCplusplus

62

RICHARDS, L. A. 1931. CAPILLARY CONDUCTION OF LIQUIDS THROUGH POROUS MEDIUMS. Physics, 1,
318-333.

RODGERS, J. D. & HASSELMANN, K. F. 1997. Evolving laws and policies for an ever-present risk.
ROSS, P. J. 1990. Efficient numerical methods for infiltration using Richards' equation. Water Resources

Research, 26, 279-290.
SALVADORE, E., BRONDERS, J. & BATELAAN, O. 2015. Hydrological modelling of urbanized catchments:

A review and future directions. Journal of Hydrology, 529, Part 1, 62-81.
SAVITCH, W. 2010. Absolute C++. fourth edition.
SINGH, V. P. 1995. Computer models of watershed hydrology, Colorado, Water Resources Publications.
TALBOT, C. A. & OGDEN, F. L. 2008. A method for computing infiltration and redistribution in a

discretized moisture content domain. Water Resources Research, 44, n/a-n/a.

63

Appendix A: User manual

To run the code for a new soil type. Follow the steps below

1) Open the main.cpp file. This will open the entire project. CodeBlocks is used to develop

the program

2) Go to the header-file “Parameters.h”. In this file, all the soil specific parameters and

properties are listed. Change them to the wanted soil properties.

3) Change the ponding conditions to “Yes” if runoff water can pond, or “No” if it cannot.

4) Change the name to the name of the file where the precipitation data is stored (default

“Precipitaion.txt”). This file needs to be in the same folder as all the other project files.

5) Changes in the depth of initial soil column can be done in main where the depth is

initialized.

6) Create a precipitation series. Go to the file specified as the precipitation file. It is easiest

to make a precipitation series in excel and copy-paste this series into the precipitation-

file. The file needs to have space-separated precipitation data and points are used as

decimal separator.

7) Build and run the code. A window will open and display output data specified in the

end of “main”.

8) Use the excel-sheet analyse data Master to evaluate the full result. Open the document,

go to data, click update data and import. The new data will automatically be imported

to the excel document form the file “Output.txt”.

64

65

Appendix B: The code

Main

#include <iostream>
#include <fstream>
#include <cmath>
#include <windows.h>
//Includes the classes
#include "soilMoisture.h"
#include "getPrecipitation.h"
#include "Parameters.h"
#include "Infiltration.h"
#include "Infiltration_depth.h"
#include "Ponding.h"

using namespace std;

int main() {
 //Allows the program to print to the file "Output", and sets print precision = 3
decimals
 ofstream theFile("Output.txt");
 std::cout.precision(3);
 //Allows the program to enter classes, and name class objects
 getPrecipitation number;
 Parameters Par;
 Infiltration Ff;
 soilMoisture output;
 Infiltration_depth getZ;
 Ponding Pond;
 //Runs through the precipitation file and reads the length of file
 number.setLength(); int length = number.getLength();
 //Stores the Pe array and reads from file Precipitation
 char filename[50]; //initialize a variable of type char to store the filename
 filename[50] = Par.getfilename(filename); //The function "getfilename" returns the
file name from "Parameters" and Stores the file name as a char "filename"
 ifstream fp; //Makes an input file stream class
 fp.open(filename); //Opens the file named in the variable "filename"
 float Prec;
 float Pe[length]; //Creates a precipitation vector with the length "length"
 int j = 0;
 while (fp.good()) { //While-loop runs through the file "filename" until the end
 fp >> Prec; //Each data is stored as "Prec"
 Pe[j] = Prec; //Stores Precipitation value in a vector
 j++; //increase the value of j with one
 }
 fp.close(); //Closes the file "filename"
 //INITIALIZTION;
 float ORi = Par.getORi(), Hc = Par.getHc(), Yb = Par.getYb(), lambda =
Par.getlambda(), timestep = Par.getTimestep(); //Gets parameters from the class "Parame-
ters"

66

float time = 0;
 float Oi = Par.getOi(), Os = Par.getOs(), Ks = Par.getKs(), Ki = Par.getKi(), Or
= Par.getOr(); //Gets parameters from the class "Parameters"
 float Freal = 0;
 float deltaF = 0;
 float f = 0;
 float ftest = 0;
 float O0[4] = { 0 }; O0[0] = Oi;
 float OR0[4] = { 0 }; OR0[0] = ORi;
 float K0[4] = { 0 }; K0[0] = Ki;
 float Z[4] = { 0 }; Z[0] = 10;
 int k = 0;
 float ponding = 0;
 float Runoff = 0;
 float PeL = 0;
 Par.geterror(); //Checks if it is an error in the input values in "Parameters"
 //STARTS THE FOR LOOP
 for (int i = 0; i < length; i++) { runs through each precipitation data
 //If I want to slow down the output
 Sleep(0);
 // changes the time in steps of timestep
 time = time + timestep; //Increases time with one timestep
 //changes k if a new wetting front is formed
 if (Pe[i] > Ks && PeL < Ks && O0[k] < Os) {
 k++; //Number of wetting fronts "k" is increased by one
 }
//Calculates advance and controls the water demand for wetting front (1 to k-1)
 //Creates a vector controlling water demand for wetting front 1-(k-1)

float Pek[4] = { 0 };
//Creates a vector controlling volume for wetting front 1-(k-1)
float Vzk[4] = { 0 };
float PeR = Pe[i]; //Creates a variable for residual rainfall

 for (int j = 1; j < k; j++) { //For wetting front 1-(k-1)
 Vzk[j] = Z[j] * (O0[j] - O0[j - 1]); //Check initial water volume
 getZ.setZKn(K0[j], K0[j - 1], O0[j], O0[j - 1], Z[j], OR0[j],
OR0[j - 1]); //Get new depth value
 Z[j] = getZ.getZKn();
 //Water demand is new volume - initial volume Vzk

Pek[j] = (Z[j] * (O0[j] - O0[j - 1]) - Vzk[j]);
 //Residua rainfall = rainfall - water demand all wetting fronts

PeR = PeR - Pek[j] / timestep;
 }
//Gets "f", "ftest", "Freal", "deltaF", and "error" form the class "Infiltration"
 Ff.setFf(time, Pe[i], ponding, k, O0[k - 1], i);
 f = Ff.getf();
 ftest = Ff.getftest();
 Freal = Ff.getF();
 deltaF = Ff.getdeltaF(k);
//Considers if the area have free surface runoff or if Ponding occurs
 //Calculates "ponding" and "Runoff" from the class "Ponding"

Pond.setPonding(f, Pe[i], timestep, i);
 ponding = Pond.getPonding();
 Runoff = Pond.getRunoff();

67

//New...
 //If "Pe" > Ks and a new wetting front is formed --> situation New

if (Pe[i] > Ks && PeL < Ks && O0[k] < Os) {
 getZ.setZK0(O0[k - 1], OR0[k - 1]); //new depth equals dry depth
 Z[k] = getZ.getZK0();
 if (Pe[i] > ftest) { //"Pe" is higher than infiltration capacity
 O0[k] = Os; //the soil is saturated
 }
 else { //else get soil moisture content
 output.setO0(Z[k], PeR, O0[k - 1], OR0[k - 1]);
 O0[k] = output.getO0();
 }
 }
 else {
//C...
 if (Pe[i] >= ftest) { //if "Pe" higher than infiltration capacity
 getZ.setZs(O0[k - 1], Z[k]); //get new depth
 Z[k] = getZ.getZs();
 O0[k] = Os; //The soil is saturated
 }
//B...
 float O0test = O0[k]; //Creates a test variable "O0test"
 float Ztest = Z[k]; //Creates a test variable "Ztest"
 if (Pe[i] < ftest && Pe[i] >= Ks) { //If Pe > ks but less than
 //Creates a test variable "Ftest"

float Ftest = Freal - deltaF - f*timestep;
 //Runs if "Ftest" is less than the infiltrated water volume

while (Ftest < Freal - deltaF) {
 //increase "O0test" in small steps

O0test = O0test + 0.0001;
 getZ.setZK1(K0[k], O0test, O0[k - 1], Z[k], OR0[k],
OR0[k - 1]); //Get new depth with new O0test as input
 Ztest = getZ.getZK1();
 //Calculate new "Ftest" volume

Ftest = Ztest*(O0test - O0[k - 1]);
 }

 Z[k] = Ztest; //New depth is set to "Ztest"
 O0[k] = O0test; //New soil moisture content = "O0test"
 }
//A...
 if (Pe[i] < Ks) { //If "Pe" < "Ks" --> Situation A
 if (ponding > 0) { //If still ponding --> situation
C
 getZ.setZs(O0[k - 1], Z[k]); //New depth
 Z[k] = getZ.getZs();
 O0[k] = Os; //The soil is fully saturated
 }
 else {

//Creates a test variable "Ftest"
float Ftest = Freal - deltaF - 0.001;
//Runs if "Ftest" is less than infiltrated water

volume
while (Ftest < Freal - deltaF) {

 //increase "Ztest" in small steps
Ztest = Ztest + 0.001;

 //Get new "O0" with new O0test as input
output.setO0(Ztest, PeR, O0[k], OR0[k - 1]);

 O0test = output.getO0();
 //Calculate new "Ftest" volume

Ftest = Ztest*(O0test - O0[k - 1]);
 }
 Z[k] = Ztest; //New depth is set to "Ztest"

68

 Z[k] = Ztest; //New depth is set to "Ztest"
 //New soil moisture content is set to "O0test"

O0[k] = O0test;
 }
 }
//..........merges to wetting fronts if they reach the same level...................
 if (Z[k] > Z[k - 1] && k > 0) {
 Z[k - 1] = ((O0[k] - O0[k - 1])*Z[k] + (O0[k - 1] - O0[k -
2])*Z[k - 1]) / (O0[k] - O0[k - 2]); //New depth of both wetting fronts
 //New soil moisture content of both wetting fronts

O0[k - 1] = O0[k];
 //deletes last wetting front because of merging to one

Z[k] = 0, O0[k] = 0, K0[k] = 0, OR0[k] = 0;
 k--; //Number of wetting fronts "k" is reduced by one
 }
 }
//OR0 is set using the new calculated soil moisture content

OR0[k] = (O0[k] - Or) / (Os - Or);
//New K0 by using new calculated relative volumetric soil moisture content

K0[k] = Ks*pow(OR0[k], 3 + 2 / lambda);
 //PRINTS TO SCREEN
 std::cout << "time " << time;
 std::cout << ": Pe " << Pe[i];
 std::cout << ": k " << k;
 std::cout << ": Z[1] " << Z[1];
 std::cout << ": O0 " << O0[k];
 //PRINTS TO FILE
 std::cout << std::fixed << endl;
 theFile << time << " " << Pe[i] << " " << Freal << " " << f << " " <<
ftest << " " << Z[0] << " " << Z[1] << " " << Z[2] << " " << Z[3] << " " << O0[0] << "
" << O0[1] << " " << O0[2] << " " << O0[3] << " " << OR0[0] << " " << OR0[1] << " " <<
OR0[2] << " " << OR0[3] << " " << K0[0] << " " << K0[1] << " " << K0[2] << " " <<
K0[3] << " " << Pek[0] << " " << Pek[1] << " " << Pek[2] << " " << ponding << " " <<
Runoff << " " << endl;
 //Stores last Precipitation for use to check if new wetting front is formed

PeL = Pe[i];
 }
 //PRINTS INITIAL VALUES TO SCREEN
 cout << endl << "length of file = " << length << endl << "time = " << time <<
endl << "timestep = " << timestep << endl << "Ks = " << Ks << endl << "Ki = " << Ki <<
endl << "Hc = " << Hc << endl << "Yb = " << Yb << endl << "lambda = " << lambda <<
endl << "Os = " << Os << endl << "Oi = " << Oi << endl << "Or = " << Or << endl <<
"ORi = " << ORi << endl << endl;
 theFile.close(); //Closes the output file
}

69

Infiltration

Infiltration.h

#ifndef INFILTRATION_H
#define INFILTRATION_H
class Infiltration
{
public:
 float setFf(float time, float Pe, float ponding, int k, float O0L_, int i);
 float getf();
 float getF();
 float getftest();
 float getdeltaF(int k);

private:
 float F = 0;
 float f; //Actual infiltration rate at all times
 float ftest; //Potential infiltration rate at all times
 float deltatime = 0; //The time when last wetting front started
 float deltaF[4] = { 0 }; //A vector that stores infiltrated water for wetting
front 0-k
 float ktest = 0; //Test variable to check if a new wetting front is created
 float Ftest1; //
 float Ftest2;
 float Fpot;
 float O0L;
};
#endif // INFILTRATION_

70

Infiltration.cpp

#include <iostream>
#include <cmath>
#include "Infiltration.h"
#include "Parameters.h"

using namespace std;

Parameters param;

float Infiltration::setFf(float time, float Pe, float ponding, int k, float O0L_, int i) {
 //Gathers parameters from the class "Parameters"
 float Hc = param.getHc();
 float Ks = param.getKs();
 float Os = param.getOs();
 float timestep = param.getTimestep();

 float Fp;
 float tp;
 float t = 0;
 float Ftest;

 if (i == 0) {
 O0L = O0L_;
 }
 //Calculates infiltration capacity if the precipitation rate would be high enough
 if (k > ktest) {
 deltatime = time;
 deltaF[k] = F;
 ktest = k;
 O0L = O0L_;
 }
 else if (k < ktest) {
 ktest = k;
 O0L = O0L_;
 }
 Ftest1 = F - deltaF[k] + Pe*timestep;
 ftest = Ks*((Hc*(Os - O0L)) / Ftest1 + 1);

 Fp = (Hc*Ks*(Os - O0L)) / (Pe - Ks);
 tp = Fp / Pe;
 Ftest = F - deltaF[k];

 if (Pe > 0 && Pe < Ks) {
 F = F + Pe*timestep;
 f = Pe;
 }
 else if (tp < timestep && Pe > ftest) {
 //iterates Fpot against Ftest similar to the way they do it in GA

while (Fpot < (Ftest2 - 0.0001)) {
if (Fpot < Ftest2) {

 // adds a small sum to Fpot until Fpot is 0,001 from Ftest
Fpot = Fpot + 0.00011;

 Ftest2 = Ks*(time - deltatime + timestep) + Hc*(Os -
O0L)*log(1 + (Fpot / (Hc*(Os - O0L))));
 }
 }

71

 F = F + Ftest2;
 f = Ks*((Hc*(Os - O0L)) / (F - deltaF[k]) + 1);
 }
 else if (Pe > Ks) {
 while (t < time - deltatime + timestep) {
 Ftest = Ftest + 0.0001;
 t = tp + (1 / Ks)*(Ftest - Fp + Hc*(Os - O0L)*log((Hc*(Os - O0L) +
Fp) / (Hc*(Os - O0L) + Ftest)));
 }
 if (t <= tp) {
 F = F + Pe*timestep;
 f = Pe;
 }
 else {
 F = F + f*timestep;
 f = Ks*((Hc*(Os - O0L)) / (F - deltaF[k]) + 1);
 }
 }
 else if (ponding > 0) {
 F = F + f*timestep;
 f = Ks*((Hc*(Os - O0L)) / (F - deltaF[k]) + 1);
 }
 else {
 f = 0;
 }
}
float Infiltration::getF() {
 return F;
}
float Infiltration::getf() {
 return f;
}
float Infiltration::getftest() {
 return ftest;
}
float Infiltration::getdeltaF(int k) {
 return deltaF[k];
}

72

73

getPrecipitation

getPrecipitation.h

#ifndef PRECIPITATIONDATA_H
#define PRECIPITATIONDATA_H

class getPrecipitation
{
public:
 float setLength(); //Calculates the length of the precipitation file
 int getLength(); //returns the length

private:
 int length; //Stores the length
};

#endif // PRECIPITATIONDATA_H

74

getPrecipitation.cpp

#include <fstream>
#include <iostream>
#include <cstdlib>
#include "Parameters.h"
#include "getPrecipitation.h"

using namespace std;

Parameters parame;

float getPrecipitation::setLength() {
 char filename[50]; //Creates a variable "filename" of type char
 filename[50] = parame.getfilename(filename); //Get filename from "Parameters" and
Stores the file name in "filename"
 ifstream fp; //Makes an input file stream class called fp
 fp.open(filename); //Opens the filename given to the variable filename
 if (!fp.is_open()) { //If file was not properly opened
 cout << "ERROR: The typed file does not exist in the right folder" << endl;
//Error message returned if the file was not opened
 exit(EXIT_FAILURE); //Exits the program if the file was not properly opended
 }
 int x = 0; //Initialize the a counting variable "x" to zero
 float Prec; //Initialize a variable "Prec" to receive data from fp
 float Ks = parame.getKs();
 while (fp.good()) //Runs as long as there is data in
 {
 fp >> Prec;
 if (Prec > 0 && Prec < 0.00000001) { //if "Prec" has to many decimals
 cout << "ERROR: Precipitation data at time " << (x + 1)*0.008333 <<
"h has more than 8 decimals" << endl; //Error message returned
 exit(EXIT_FAILURE); //Exit the program
 }if (Prec < 0) { //if "Prec" has a negative value
 cout << "ERROR: Precipitation data at time " << (x + 1)*0.008333 <<
"h is < 0" << endl; //Error message returned
 exit(EXIT_FAILURE); //Exit the program
 }
 x++; //counts the number of data
 }
 length = x; //store the length of the file in the variable "Length"
 fp.close(); //closes the file
}
int getPrecipitation::getLength() { //returns the length to main
 return length;
}

75

Infiltration_depth

Infiltration_depth.h

#ifndef INFILTRATION_DEPTH_H
#define INFILTRATION_DEPTH_H

class Infiltration_depth
{
public:
 float setZKn(float K0, float K0L, float O0, float O0L, float Z_, float OR0, float
OR0L);
 float setZK1(float K0, float O0, float O0L, float Z_, float OR0, float OR0L);
 float setZK0(float O0L, float OR0L);
 float setZs(float O0L, float Z_);
 float getZKn();
 float getZK1();
 float getZK0();
 float getZs();

private:
 float ZK1;
 float ZKn;
 float ZK0;
 float Zs;
};

#endif // INFILTRATION_DEPTH_H

76

Infiltration_depth.cpp

#include <iostream>
#include <cmath>
#include "Infiltration_depth.h"
#include "Parameters.h"
using namespace std;
//Gathers parameters from the class "Parameters"
Parameters par; //Gathers the parameters from the class "Parameters"
float Yb = par.getYb();
float Os = par.getOs();
float lambda = par.getlambda();
float ORi = par.getORi();
float Ks = par.getKs();
float Hc = par.getHc();
float timestep = par.getTimestep();
float k1, k2, k3, k4;
//Calculates the advance in Z direction for a wetting front k > 1
float Infiltration_depth::setZKn(float K0, float K0L, float O0, float O0L, float Z_, float
OR0, float OR0L) {
 float G; //initialize G
 if (O0 < Os) { //Unsaturated G
 G = Yb*(pow(OR0, 3 + 1 / lambda) - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda
+ 1);
 }
 else { //Saturated G
 G = Yb*(3 * lambda + 2 - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda + 1);
 } //RK4 calculations of k1-k4
 k1 = timestep*((K0 - K0L) / (O0 - O0L))*((G / Z_) + 1);
 k2 = timestep*((K0 - K0L) / (O0 - O0L))*((G / (Z_ + k1*0.5)) + 1);
 k3 = timestep*((K0 - K0L) / (O0 - O0L))*((G / (Z_ + k2*0.5)) + 1);
 k4 = timestep*((K0 - K0L) / (O0 - O0L))*((G / (Z_ + k3)) + 1);
 ZKn = Z_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6; //Adds delta Z to Z
}
//Infliltration Depth for wettingfront k = 1;
float Infiltration_depth::setZK1(float K0, float O0, float O0L, float Z_, float OR0, float
OR0L) {
 float G;
 if (O0 < Os) {
 G = Yb*(pow(OR0, 3 + 1 / lambda) - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda
+ 1);
 }
 else {
 G = Yb*(3 * lambda + 2 - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda + 1);
 } //RK4 calculations of k1-k4
 k1 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*Z_)));
 k2 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*(Z_ + k1*0.5))));
 k3 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*(Z_ + k2*0.5))));
 k4 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*(Z_ + k3))));
 ZK1 = Z_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6; //Adds delta Z to Z
}
//Infliltration Depth for a saturated wettingfront;
float Infiltration_depth::setZs(float O0L, float Z_) {
 //RK4 calculations of k1-k4
 k1 = timestep*(Ks / ((Os - O0L))*(Hc / Z_ + 1));
 k2 = timestep*((Ks / (Os - O0L))*(Hc / (Z_ + k1*0.5) + 1));
 k3 = timestep*((Ks / (Os - O0L))*(Hc / (Z_ + k2*0.5) + 1));
 k4 = timestep*((Ks / (Os - O0L))*(Hc / (Z_ + k3) + 1));
 Zs = Z_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6; //Adds delta Z to Z
}

77

//Infiltration Depth for first advance for a new wetting front;
float Infiltration_depth::setZK0(float O0L, float OR0L) {
 float tau = (timestep*Ks / (Os - O0L));
 float G = (Yb / lambda)*((3 * lambda + 2) - pow(OR0L, (3 + (1 / lambda)))) / (3 +
(1 / lambda)); // equation 13 GARTO
 ZK0 = 0.5*(tau + sqrt(pow(tau, 2) + 4 * tau*G));
}
float Infiltration_depth::getZKn() {
 return ZKn;
}
float Infiltration_depth::getZK1() {
 return ZK1;
}
float Infiltration_depth::getZK0() {
 return ZK0;
}
float Infiltration_depth::getZs() {
 return Zs;
}

78

79

Parameters

Parameters.h

#ifndef INFILTRATION_DEPTH_H
#define INFILTRATION_DEPTH_H

class Infiltration_depth
{
public:
 float setZKn(float K0, float K0L, float O0, float O0L, float Z_, float OR0, float
OR0L);
 float setZK1(float K0, float O0, float O0L, float Z_, float OR0, float OR0L);
 float setZK0(float O0L, float OR0L);
 float setZs(float O0L, float Z_);
 float getZKn();
 float getZK1();
 float getZK0();
 float getZs();

private:
 float ZK1;
 float ZKn;
 float ZK0;
 float Zs;
};

#endif // INFILTRATION_DEPTH_H

80

Parameters.cpp

#include <iostream>
#include <cmath>
#include <string>
#include <cstdlib>
#include "Parameters.h"

using namespace std;

float Parameters::getKs() {
 return Ks;
}
float Parameters::getYb() {
 return Yb;
}
float Parameters::getlambda() {
 return lambda;
}
float Parameters::getOs() {
 return Os;
}
float Parameters::getOi() {
 return Oi;
}
float Parameters::getOr() {
 return Or;
}
float Parameters::getORi() {
 ORi = (Oi - Or) / (Os - Or); //Relative initial volumetric watercontent
 return ORi;
}
float Parameters::getKi() {
 Ki = Ks*pow(ORi, 3 + 2 / lambda); //initial soilmoisture conductivity
 return Ki;
}
float Parameters::getHc() {
 Hc = Yb*((2 + 3 * lambda) / (1 + 3 * lambda)); //initial soilmoisture conductivity
 return Hc;
}
float Parameters::getTimestep() {
 float timestep = minutes / 60;
 return timestep;
}
char Parameters::getPond(char* outPond) { //gathers if ponding and stores it in a string
 char str[10];
 for (int i = 0; i < 10; ++i) {
 outPond[i] = Pond[i];
 }
}
char Parameters::getfilename(char* outFilename) { //gathers filename and stores it in a
string
 char str[50];
 for (int i = 0; i < 50; ++i) {
 outFilename[i] = filename[i];
 }
}

81

float Parameters::geterror() {
 float error;
 if (Ks<0 || Yb<0 || lambda<0 || Os<0 || Oi<0 || Or<0 || ORi<0 || Ki<0 || Hc<0 ||
minutes<0) {
 cout << "ERROR: A Parameter in the class Parameters is < 0" << endl; //Error
message returned
 exit(EXIT_FAILURE); //Exit the program
 }
 else if (Or > Oi || Oi > Os || Or > Os) {
 cout << "EROOR: The variable Or > Oi or Oi > Os or Or < Os" << endl; //Error
message returned
 exit(EXIT_FAILURE);
 }
 else if (Or >= 1 || Oi >= 1 || Os >= 1) {
 cout << "ERROR: Or or Oi or Os >= 1" << endl; //Error message returned
 exit(EXIT_FAILURE);
 }
 return error;
}

82

83

Ponding

Ponding.h

#ifndef PONDING_H
#define PONDING_H

class Ponding
{
public:
 float setPonding(float ftest, float Pe, float timestep, int i);
 float getPonding();
 float getRunoff();

private:
 float ponding = 0;
 float Runoff = 0;
};

#endif // PONDING_H

84

Ponding.cpp

#include "Ponding.h"
#include <iostream>
#include <cstring>
#include <string>
#include <cstdlib>
#include "Parameters.h"

using namespace std;

Parameters paramet;

float Ponding::setPonding(float f, float Pe, float timestep, int i) {
 char En[10];
 En[10] = paramet.getPond(En); //returns ponding condition from parameters
 if (strcmp(En, "Yes") == 0 || strcmp(En, "yes") == 0 || strcmp(En, "YES") == 0) {
 if (f < Pe && i != 0) {
 //If Pe is high, add pe to ponding

ponding = ponding + (Pe - f)*timestep;
 }
 else if (f > Pe && ponding > 0) {
 //If Pe is low, substract f from ponding

ponding = ponding + (Pe - f)*timestep;
 if (ponding < 0) {
 //If Ponding is than 0, ponding = 0 is high, add pe to ponding

ponding = 0;
 }
 }
 else {
 ponding = 0;
 }
 }
 else if (strcmp(En, "No") == 0 || strcmp(En, "no") == 0 || strcmp(En, "NO") == 0) {
 ponding = 0;
 Runoff = Pe - f;
 }
 else {
 cout << "ERROR: Wrong spelling of Yes or No in class ponding" << endl; //Er-
ror message returned
 exit(EXIT_FAILURE); //Exit program
 }
}
float Ponding::getPonding() {
 return ponding;
}
float Ponding::getRunoff() {
 return Runoff;
}

85

soilMoisture

soilMoisture.h

#ifndef RUNGEKUTTA_H
#define RUNGEKUTTA_H
class soilMoisture{
public:
 float setO0(float Z, float PeR, float O0_, float OR0L);
 float getO0();
 float getdO();
 float getk1();
 float getk2();
 float getk3();
 float getk4();
private:
 float dO;
 float O0;
 float k1;
 float k2;
 float k3;
 float k4;
};
#endif // RUNGEKUTTA_H

86

soilMoisture.cpp

#include "soilMoisture.h"
#include <iostream>
#include <cmath>
#include "Parameters.h"
using namespace std;
Parameters Par;
float soilMoisture::setO0(float Z, float PeR, float O0_, float OR0L) {
 //returns parameters from the class "parameters"
 float Yb = Par.getYb();
 float Ks = Par.getKs();
 float Os = Par.getOs();
 float lambda = Par.getlambda();
 float Or = Par.getOr();
 float timestep = Par.getTimestep();
 //sets the correction factor p
 float p;
 if (PeR > 0) {
 p = 1;
 }
 else {
 p = 1.7;
 }
 //RK4 calculations k1-k4
 k1 = timestep*((1 / Z)*(PeR - Ks*(pow((O0_ - Or) / (Os - Or), 3 + (2 / lambda))) -
(p*Ks*((Yb / lambda)*(pow((O0_ - Or) / (Os - Or), (3 + (1 / lambda))) - pow(OR0L, (3 + (1
/ lambda)))) / (3 + (1 / lambda))) / Z)));
 k2 = timestep*((1 / Z)*(PeR - Ks*(pow(((O0_ + k1*0.5) - Or) / (Os - Or), 3 + (2 /
lambda))) - (p*Ks*((Yb / lambda)*(pow(((O0_ + k1*0.5) - Or) / (Os - Or), (3 + (1 /
lambda))) - pow(OR0L, (3 + (1 / lambda)))) / (3 + (1 / lambda))) / Z)));
 k3 = timestep*((1 / Z)*(PeR - Ks*(pow(((O0_ + k2*0.5) - Or) / (Os - Or), 3 + (2 /
lambda))) - (p*Ks*((Yb / lambda)*(pow(((O0_ + k2*0.5) - Or) / (Os - Or), (3 + (1 /
lambda))) - pow(OR0L, (3 + (1 / lambda)))) / (3 + (1 / lambda))) / Z)));
 k4 = timestep*((1 / Z)*(PeR - Ks*(pow(((O0_ + k3) - Or) / (Os - Or), 3 + (2 /
lambda))) - (p*Ks*((Yb / lambda)*(pow(((O0_ + k3) - Or) / (Os - Or), (3 + (1 / lambda))) -
pow(OR0L, (3 + (1 / lambda)))) / (3 + (1 / lambda))) / Z)));
 O0 = O0_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6; //adds delta O0 to O0
}
float soilMoisture::getO0() {
 return O0;
}

87

Appendix C: Changes in SHyFT files

File Lines Type of change

Core\serialization\core_serialization.cpp\shyft 13

 240

 275-285 states

 336

 410

 469

Core\method-stack\hbv_stack.h 6

 33

 48

 49

 60

 93-101 Parameters

 130-138 Parameters

 170-178 Parameters

 198

 201

 204

 206

 220

 226

 322

 351

 353

Core\method-stack\hbv_stack_cell_model.h 35-36 Response

 52-53 Response

 69-70 Response

 92-93 Response

 160-167 States

 184-191 States

 206-212 States

 225-232 States

Test\method-steck\hbv-stack-test.cpp 18

 69

 76 States

 88

 89

88

89

Appendix D: SHyFT

Hbv_infiltration_test.cpp

#include "fstream.h"
#include "test_pch.h"
#include "core/hbv_infiltration.h"

using namespace shyft::core;
namespace shyft {
 namespace core {
 namespace hbv_infiltration2 {
 template<class P>
 struct calculator {
 P param;
 calculator(const P& p) :param(p) {}

 double zkn(double o0,double o0l,double or0,double or0l,double
k0,double k0l,double z, double dt){
 double G;
 if (o0 < param.os) {G = param.yb*(pow(or0, 3 + 1 /
param.lambda) - pow(or0l, 3 + 1 / param.lambda)) / (3 * param.lambda + 1);}
 else {G = param.yb*(3 * param.lambda + 2 - pow(or0l, 3 +
1 / param.lambda)) / (3 * param.lambda + 1);}
 double k1 = dt*((k0 - k0l) / (o0 - o0l))*((G / z) + 1);
 double k2 = dt*((k0 - k0l) / (o0 - o0l))*((G / (z +
k1*0.5)) + 1);
 double k3 = dt*((k0 - k0l) / (o0 - o0l))*((G / (z +
k2*0.5)) + 1);
 double k4 = dt*((k0 - k0l) / (o0 - o0l))*((G / (z + k3))
+ 1);
 double zkn = z + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
 return zkn;
 }
 double zk1(double o0, double o0l, double or0, double or0l,
double k0, double z, double dt) {
 double G;
 if (o0 < param.os) { G = param.yb*(pow(or0, 3 + 1 /
param.lambda) - pow(or0l, 3 + 1 / param.lambda)) / (3 * param.lambda + 1); }
 else { G = param.yb*(3 * param.lambda + 2 - pow(or0l, 3
+ 1 / param.lambda)) / (3 * param.lambda + 1); }
 double k1 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 -
o0l)*z)));
 double k2 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 -
o0l)*(z + k1*0.5))));
 double k3 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 -
o0l)*(z + k2*0.5))));
 double k4 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 -
o0l)*(z + k3))));
 double zk1 = z + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
 return zk1;
 }

90

 double zs(double o0l, double z, double dt) {
 double k1 = dt*(param.ks / ((param.os - o0l))*(param.hc
/ z + 1));
 double k2 = dt*((param.ks / (param.os - o0l))*(param.hc
/ (z + k1*0.5) + 1));
 double k3 = dt*((param.ks / (param.os - o0l))*(param.hc
/ (z + k2*0.5) + 1));
 double k4 = dt*((param.ks / (param.os - o0l))*(param.hc
/ (z + k3) + 1));
 double zs = z + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
 return zs;
 }
 double z0(double o0l, double or0l, double dt) {
 double tau = (dt*param.ks / (param.os - o0l));
 double G = (param.yb / param.lambda)*((3 * param.lambda
+ 2) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / param.lambda)); // equation 13
GARTO
 double z0 = 0.5*(tau + sqrt(pow(tau, 2) + 4 * tau*G));
 return z0;
 }
 double o0(double z, double per, double o0_, double or0l, dou-
ble dt) {
 double p;
 if (per > 0) { p = 1; }
 else { p = 1.7; }
 double k1 = dt*((1 / z)*(per - param.ks*(pow((o0_ -
param.or) / (param.os - param.or), 3 + (2 / param.lambda))) - (p*param.ks*((param.yb /
param.lambda)*(pow((o0_ - param.or) / (param.os - param.or), (3 + (1 / param.lambda))) -
pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / param.lambda))) / z)));
 double k2 = dt*((1 / z)*(per - param.ks*(pow(((o0_ +
k1*0.5) - param.or) / (param.os - param.or), 3 + (2 / param.lambda))) -
(p*param.ks*((param.yb / param.lambda)*(pow(((o0_ + k1*0.5) - param.or) / (param.os -
param.or), (3 + (1 / param.lambda))) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 /
param.lambda))) / z)));
 double k3 = dt*((1 / z)*(per - param.ks*(pow(((o0_ +
k2*0.5) - param.or) / (param.os - param.or), 3 + (2 / param.lambda))) -
(p*param.ks*((param.yb / param.lambda)*(pow(((o0_ + k2*0.5) - param.or) / (param.os -
param.or), (3 + (1 / param.lambda))) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 /
param.lambda))) / z)));
 double k4 = dt*((1 / z)*(per - param.ks*(pow(((o0_ + k3)
- param.or) / (param.os - param.or), 3 + (2 / param.lambda))) - (p*param.ks*((param.yb /
param.lambda)*(pow(((o0_ + k3) - param.or) / (param.os - param.or), (3 + (1 /
param.lambda))) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / param.lambda))) / z)));
 double o0 = o0_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
 return o0;
 }

91

 template <class R, class S>
 void step(S& s, R& r, shyft::core::utctime t0,
shyft::core::utctime t1, double snow_out) {
 double Fp;
 double tp;
 double t = 0;
 double f_test;
 double F_test;
 double F_test1;
 double F_pot = 0;
 double pea = 0;
 double dt = 0.5/60;
 double F_test2;
 s.pe = snow_out/dt; //mm/h
 if (s.pe > param.ks && s.pel < param.ks && s.o0[s.k] <
param.os) {
 s.k++;
 F_test2 = param.ks * dt;
 s.delta_time = t0;
 s.delta_F[s.k] = r.F;
 }
 double pek[4] = { 0.0 };
 double vzk[4] = { 0.0 };
 double per = s.pe;
 for (int j = 1; j < s.k; j++) {
 vzk[j] = s.z[j] * (s.o0[j] - s.o0[j - 1]);
 s.z[j] = zkn(s.o0[j], s.o0[j - 1], s.or0[j],
s.or0[j - 1], s.k0[j], s.k0[j - 1], s.z[j], dt);
 pek[j] = (s.z[j] * (s.o0[j] - s.o0[j - 1]) -
vzk[j]);
 per = per - pek[j];
 }
 F_test1 = r.F - s.delta_F[s.k] + snow_out;
 s.f_test = param.ks*((param.hc*(param.os - s.o0[s.k -
1])) / F_test1 + 1);

 pea = pea + s.pe;

 Fp = ((param.hc*param.ks*(param.os - s.o0[s.k -1])) /
(s.pe - param.ks));
 tp = (Fp / pea)*3600;
 F_test = r.F - s.delta_F[s.k];
 if (s.pe > 0 && s.pe < param.ks) {
 r.F = r.F + snow_out;
 s.f = s.pe;
 }else{
 r.F = r.F + s.f*dt;
 s.f = param.ks*((param.hc*(param.os - s.o0[s.k -
1])) / (r.F - s.delta_F[s.k]) + 1);
 s.ponding = s.ponding + snow_out - s.f * dt;
 }

92

 }else if (s.ponding > 0) {
 r.F = r.F + s.f*dt;
 s.f = param.ks*((param.hc*(param.os - s.o0[s.k -
1])) / (r.F - s.delta_F[s.k]) + 1);
 s.ponding = s.ponding - s.f * dt;
 if (s.ponding < 0){ s.ponding = 0; }
 }else {
 s.f = 0;
 }
 //Main if-sentences

 //New..
.........
 if (s.pe > param.ks && s.pel < param.ks && s.o0[s.k] <
param.os) {
 s.z[s.k] = z0(s.o0[s.k - 1], s.or0[s.k - 1], dt);
 if (s.pe > s.f_test) {
 s.o0[s.k] = param.os;
 }
 else {
 s.o0[s.k] = o0(s.z[s.k], per, s.o0[s.k -
1], s.or0[s.k - 1], dt);
 }
 }
 else {

 //C..
.......
 if (s.pe >= s.f_test) {
 s.z[s.k] = zs(s.o0[s.k - 1], s.z[s.k],
dt);
 s.o0[s.k] = param.os;
 }

 //B..
.......
 double o0_test = s.o0[s.k];
 double z_test = s.z[s.k];
 if (s.pe < s.f_test && s.pe >= param.ks) {
 double F_test = r.F - s.delta_F[s.k] -
s.f*dt;
 while (F_test < r.F - s.delta_F[s.k]) {
 o0_test = o0_test + 0.0001;
 z_test = zk1(s.o0[s.k], s.o0[s.k -
1], s.or0[s.k], s.or0[s.k - 1], s.k0[s.k], s.z[s.k], dt);
 F_test = z_test*(o0_test - s.o0[s.k
- 1]);
 }
 s.z[s.k] = z_test;
 s.o0[s.k] = o0_test;
 }

93

 //A..
 if (s.pe < param.ks) {
 if (s.ponding > 0) {
 s.z[s.k + 2] = zs(s.o0[s.k - 1],
s.z[s.k], dt);
 s.o0[s.k] = param.os;
 }
 else {
 float F_test = r.F - s.delta_F[s.k]
- 0.001;
 while (F_test < r.F -
s.delta_F[s.k]) {
 z_test = z_test + 0.001;
 o0_test = o0(s.z[s.k], per,
s.o0[s.k], s.or0[s.k - 1], dt);
 F_test = z_test*(o0_test -
s.o0[s.k - 1]);
 }
 s.z[s.k] = z_test ;
 s.o0[s.k] = o0_test;
 }
 }
//..........merges to wetting fronts if they reach the same level.........................
 if (s.z[s.k] > s.z[s.k - 1] && s.k > 0) {
 s.z[s.k - 1] = ((s.o0[s.k] - s.o0[s.k -
1])*s.z[s.k] + (s.o0[s.k - 1] - s.o0[s.k - 2])*s.z[s.k - 1]) / (s.o0[s.k] - s.o0[s.k -
2]);
 s.o0[s.k - 1] = s.o0[s.k];
 s.z[s.k] = 0, s.o0[s.k] = 0, s.k0[s.k] =
0, s.or0[s.k] = 0;
 s.k--;
 }
 }
 s.or0[s.k] = (s.o0[s.k] - param.or) / (param.os -
param.or);
 s.k0[s.k] = param.ks*pow(s.or0[s.k], 3 + 2 /
param.lambda);
 s.pel = s.pe;
 }
 };
 }
 }
};

