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1. Bakgrunn 

Å kunne simulere infiltrasjon er viktig i mange samanhengar i hydrologi, og ikkje minst i 

samband med dimensjonering i småfelt eller felt der det skjer arealbruksendringar. I dei fordelte 

modellane som er vanleg i bruk i Norge har ikkje spesifikke infiltrasjonsmetodar, og det er difor 

ønskjeleg å få laga ein slik modell. Det er gjennom forprosjektet gjort ei grundig vurdering av 

moglege metoder for å implementere ei slik metode, og i denne oppgåva skal denne metoda 

implementerast i det hydrologiske rammeverket SHyFT (Statkraft Hydrological Forecasting 

Toolbox). Dette er eit fordelt modelleringssystem som er laga for at det skal enkelt kunne 

leggast til metodar og for å teste prototypar av nye hydrologiske verkty 

2. Arbeidsoppgåver 

Oppgåva vil ha følgjande hovuddelar: 

1. Utvikle ei prototyp av metoda som er spesifisert i prosjektoppgåva. Denne skal vere 

frittståande og eigna for testing mot ulike oppsett. Køyre test av metoda mot 

litteraturdata og måledata for å sjekke funksjonalitet. Rutina skal dokumenterast både 

på kodenivå og for bruk. 

 

2. Ein detaljspesifikasjon av den nye rutina må lagast med utgangspunkt i SHyFT sitt 

rammeverk. Dette gjeld algoritma, koplinga mot grensesnitt og naudsynte data og 

parametrar for rutina. Det er spesielt viktig å formulere arealbruksdata slik at dei 

passar med det eksisterande systemet. 

 

3. Implementere metoda i SHyFT. Sjølve simuleringsalgoritma må kodast i C++ som ein 

del av simuleringsbiblioteket, medan grensesnittet må kodast i Python. Etter 

implementering skal testrutiner byggast etter SHyFT sin mal, og kode skal 

dokumenterast både med tanke på implementering, grensesnitt og krav til data og 

modellparameterar. 

4. SHyFT skal no køyrast med den nye rutina implementert. Funksjon og resultat må 

sjekkast mot data frå 1) for å sjå om implementeringa fungerer om den skal. 

 

5. Køyre testsimuleringar av den nye rutinar for eit par tilfelle: 
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a. Eit område med kjend infiltrasjon, t.d. eit grønt tak om slike data er 

tilgjengelege. 

b. Det skal gjerast arealbrukssimuleringar for å systematisk vurdere korleis 

modellen reagerer på endringar i areal. 
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4. Rapport 
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Abstract 

Climate change is expected to give more intense rainfall events, while urbanisation leads to 

more impervious surfaces. This combined with growing cities, increase the stress on the 

existing storm water infrastructure, and may result in more frequent flooding in urban areas. 

The land use in urban catchments affects the stormwater runoff patterns. More impervious 

surfaces lead to runoff hydrographs reaching the flood peaks faster, and having higher peaks. 

Having green spaces and water retention on the other hand, results in hydrographs with a shape 

more similar to natural conditions: smaller peaks reaching maxima later.   

To do urban hydrology assessments, e.g. for understanding the effects of land use changes, 

modelling of the hydrological processes in an urban area might be beneficial. Hydrological 

models can simulate the runoff patters from a catchment based on input parameters such as soil 

properties and rainfall patterns. Spatially distributed hydrological models are hydrological 

models that divides a catchment into smaller cells, each with its own properties and input 

parameters.       

Spatially distributed hydrological models used in Norway today do not consider the 

mechanisms of infiltration and are therefore not applicable for urban hydrology assessments. 

This thesis therefore suggests including infiltration by implementing an infiltration routine in a 

hydrological model. The infiltration model Green-Ampt with redistribution Tablot and Ogden 

(GARTO) was chosen to create the base of the routine. Further, the widely used hydrological 

model Hydrologiska Byråns Vattenbalansavdelning (HBV) model was chosen for 

implementation of the infiltration routine. The HBV model already exists in open source 

database gihub, under Statkraft Hydrological Forecasting Tools (SHyFT).  

The routine was coded separately in C++ and the results were compared to results from Lai et 

al. (2015). The routine was also tested against infiltration and soil moisture data of a green roof 

in Trondheim. The code was then implemented in SHyFT. 

The comparison to the results from Lai et al. (2015) gave satisfactory results. The routine also 

managed to match parts of the results from a green roof. A sensitivity analysis on the soil 

properties shows that saturated conductivity is the most sensitive soil moisture constant. Further 

the routine match good with expected infiltration responses.   
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Sammendrag 

Klimaendringene forventes å kraftigere nedbørshendelser. Samtidig fører urbanisering fører til 

flere tette flater. Dette kombinert med voksende byer, øker presset på den eksisterende 

overvannsnettet, og kan føre til hyppigere flom i byområder. 

Areal bruk i byområdene påvirker flom avrenningen. Mer ugjennomtrengelige overflater gir en 

hydrograf med økte flomtopper som når maksimalverdier raskere. Å ha grønne områder og 

fordøyingsbassenger, resulterer i mer naturlig hydrograf med mindre topper som når maksima 

senere. 

For å gjøre urbane hydrologiske vurderinger, f.eks. for å forstå effekten av endringer i arealbruk, 

kan modellering av hydrologiske prosesser i et byområde være en god løsning. Hydrologiske 

modeller kan simulere avrenningen fra et nedbørsområde basert på inngangsparametere som 

jordartsegenskaper og nedbør. Fordelte hydrologiske modeller er hydrologiske modeller som 

deler et nedbørsfelt i mindre celler, hver med sine egne egenskaper og inngangsparametere. 

Fordelte hydrologiske modeller som brukes i Norge i dag, inneholder ikke egne infiltrasjons 

rutiner og er derfor lite anvendelige for urbane områder. Denne masteroppgaven foreslår derfor 

å inkludere infiltrasjon ved å implementere en infiltrasjonsrutine i en hydrologisk modell. 

Infiltrasjonsmodellen Green-Ampt with redistribution, Tablot and Ogden (GARTO) ble valgt 

som utgangspunkt for rutinen. Videre ble det valgt å implementere infiltrasjonsrutinen i den 

populære hydrologiske modellen Hydrologiska Byråns Vattenbalansavdeling (HBV). HBV-

modellen eksisterer allerede i opensource databasen gihub, under Statkraft Hydrological 

Forecasting Tools (SHyFT). 

Rutinen ble kodet separat i C ++, og resultatene ble sammenlignet med resultater fra Lai et al. 

(2015). Rutinen ble også testet mot infiltrasjon og jordfuktighetsdata fra et grønt tak i 

Trondheim. Koden ble deretter implementert i SHyFT. 

Sammenligningen med resultatene fra Lai et al. (2015) ga tilfredsstillende resultater. Rutinen 

klarte også å matche deler av resultatene fra det grønne taket. En sensitivitetsanalyse på 

jordartsegenskaper viser at mettet hydraulisk konduktivitet er den mest følsomme 

jordartsparameteren. Videre samsvarer rutinen godt med forventede infiltrasjonsresponser. 
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1 Introduction 

Rainwater that hits the ground either evaporates, transpires, infiltrates or creates surface runoff 

(Horton, 1933). Urbanisation as we know it today has been shown to shift the allocation of 

water between these three processes. More of the rainwater creates runoff, due to higher density 

of impervious surfaces. On top of this, rainfall amounts and intensities are expected to increase 

in Norway in the future, due to climate change (NKSS, 2015). 

Urban stormwater management is therefore of increasing concern in the context of urban 

planning. To avoid flooding, the infrastructure needs to be designed for future climate. 

Hydrological models can be used for forecasting the need for stormwater capacity in urban 

drainage systems, or to anticipate the effects of land use changes.  

Distributed hydrological models divide the catchment into smaller cells, each with its own input 

parameters and properties. The majority of the spatially distributed hydrological models are 

developed for natural watersheds. Simulating infiltration is important in hydrology, and it 

becomes even more important in urban areas, due to the varying perviousness of the land cover 

and the complexity of the urban soils. The already-existing spatially distributed hydrological 

models do not have an infiltration routine and are therefore not applicable in urban watersheds. 

(Salvadore et al., 2015).  

Including an infiltration routine could enhance the hydrological models and make them more 

applicable for handling the complexity of urban watersheds. The aim of this thesis is therefore 

to include infiltration by developing an infiltration routine and implementing it in a full 

hydrological model. 

Finding the right infiltration method for implementation in a hydrological model is important. 

A thorough analysis of possible infiltration methods was conducted in TVM4520 Specialization 

project, fall 2016. The method Green-Ampt with redistribution (GAR) (Ogden and Saghafian, 

1997) was found best suited. In this thesis, an infiltration routine based on GAR is coded in 

C++ before it is implemented. 
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Theory 

2 Urban surface water and infiltration 

Urbanized areas are constantly growing. In 2009, more than half the world’s population lived 

in urban areas, and an increase to more than 80% by 2030 is expected. The rainfall amounts 

and intensities are expected to increase in Norway in the future due to climate change (NKSS, 

2015) and urban areas have been found vulnerable to heavy rainfall  (Salvadore et al., 2015) 

and  

In nature, a substantial portion of the rainfall that hits the ground is infiltrated into the ground 

or evaporated as shown in Figure 2.1.a. The remaining water becomes surface runoff. Both 

groundwater and surface runoff drains to the nearest river or reservoir. Groundwater transport 

is a slow process that retains the water. Surface runoff is a faster process. Urbanisation as we 

know it today involves piping of rivers, removal of vegetation, modification of natural soil 

and large areas being covered by impervious surfaces. This changes the allocation of water to 

the evapotranspiration, infiltration, and surface runoff. The consequence is less water returned 

to the atmosphere and infiltrated to the ground and more water occurring as surface runoff as 

shown in Figure 2.1.b. In addition to larger amounts of runoff, will the velocity of the runoff 

increase due to less friction in pipes and on surfaces, compared to natural conditions.  

 

Figure 2.1 The effect of urbanisation on the stormwater runoff (Butler and Davis, 2004) 

The natural hydrograph will have a low peak and a large lag time from the precipitation event 

starts until the runoff peak is reached. The urbanized hydrograph, on the contrary, will have a 

high flow peak which will come fast (Butler and Davis, 2004).    
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As an example of this, it was found in a study in Korea that for a specific rainfall event, the 

hydrograph peak is 15% higher than before urbanization. The lag time (Figure 2.2) was found 

to be reduced with 70 minutes (Kang et al., 1998). The combination of more water passing a 

point in a shorter time interval, results in a greater maximum flow (Butler and Davis, 2004).  

 

Figure 2.2 Illustration of the effect of urbanisation on a hydrograph (Rodgers and 

Hasselmann, 1997) 

The traditional way of handling stormwater and wastewater with piped systems can be referred 

to as “hard engineering solutions” (Butler and Davis, 2004). However, the combination of 

expanding cities and increased precipitation leads to overloading of the wastewater system, 

which again leads to flood events causing great harm to cities. A new philosophy of 

“sustainability” has therefore grown during the last years within stormwater management. The 

system should not depend as much on “hard engineering solutions”, but recover some of the 

natural mechanisms by reopening rivers and creating green spaces (Butler and Davis, 2004). 

Water is again allowed to infiltrate, and to move as groundwater to the rivers. This way the 

hydrograph is stretched out and the peak runoff is decreased. The goal is to move from situation 

(b) back to situation (a) (Figure 2.1) by utilizing the infiltration capacity of the soil and retaining 

water to avoid the highest hydrograph peaks.       
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3  Infiltration 

The key solution in sustainable urban planning regarding stormwater management is to utilize 

the soil’s ability to infiltrate and retain water. Therefore, mechanisms of infiltration will be 

described in the following sections.  

Darcy found a relationship describing flow through a porous medium: 

 
𝑄 = −𝐾𝐴

𝑑ℎ

𝑑𝐿
 (1) 

 

He discovered that infiltrated water, Q [L3T-1], is proportional to the cross section A [L2] and 

the head loss dh [L] and inversely proportional to the flow length dL (m). K [LT-1] is the 

hydraulic conductivity constant which describes the rate the water can flow through a porous 

medium (Dingman, 2015). Modifications of Darcy’s law is the basis for several of the 

infiltration models described later.  

3.1.1 Infiltration during a rainfall event 

Two important terms when working with infiltration of water into soils are infiltration capacity 

and actual infiltration rate. There is a slight difference between these two terms. Infiltration 

capacity, denoted in this thesis as fc [LT-1], is the maximum speed in which the water can enter 

the soil at a certain state. Actual infiltration rate, denoted as (f) [LT-1] in this thesis, describes 

the speed of the which water is entering the soil at a certain state. f equals fc when the rainfall 

intensity equals or is larger than fc. Otherwise the f equals the rainfall rate. .fc is affected by the 

soil moisture content and the capillary drive (G). G is the integrated capillary head across the 

wetting front (Horton, 1933).   

The hydraulic conductivity Ks of a soil will vary, depending on the soil moisture content. When 

the soil is fully saturated, the term saturated hydraulic conductivity is used. This is the 

maximum hydraulic conductivity a soil can have, and it is dependent on the soil type. Any lower 

soil moisture content will result in a lower hydraulic conductivity (Lai et al., 2015).  

Infiltration occurs if there is available surface water. Surface water can occur as ponded water, 

or rainfall water. Situations A-D shown in Figure 3.1 describe the infiltration rate depending on 

infiltration capacity and rainfall intensities (Mein and Larson, 1973).  
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In situation (A), the rainfall intensity is less than the saturated hydraulic conductivity. All the 

rain water will infiltrate into the soil and no ponding will occur. The hydraulic conductivity of 

the soil will be greater than the rainfall intensity so the soil moisture content will decrease.  

In situation (B), the rainfall intensity is greater than the hydraulic conductivity, but lower than 

fc. In this situation too, all the rain water will infiltrate. In situation B, the hydraulic conductivity 

of the soil will be lower than the rainfall intensity, so the soil moisture content of the upper 

layer of the soil will gradually increase until it reaches full saturation.  

When the soil reaches full saturation and the same rainfall intensity continues, situation (C) will 

occur. Because fc has been decreasing during situation B, the rainfall intensity is now greater 

than fc, and the upper layers of the soil become saturated. Ponding will occur. 

If the rainfall intensity is greater than fc at the beginning of a rainfall event, Situation (D) will 

be present. f will in this case equal fc during the rainfall event, or until the rainfall intensity drops 

below fc.    

    

 

Figure 3.1 Infiltration rate for situation A,B,C and D (Mein and Larson, 1973) 

Different infiltration situations are now explained. The infiltration process is, however, 

complex. The conditions impacting the infiltration capacity can differ severely over small 

distances. Layers in the soil column, types of soil, vegetation and the soil moisture distribution 

affects the infiltration capacity of the soil. Even a soil profile with several layers and with an 

evenly distributed soil moisture content can be complex to calculate (Mein and Larson, 1973).  
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3.1.2  Soil moisture redistribution 

After a rainfall event, when all the surface water has infiltrated, the soil moisture will start to 

move downwards in the soil column, due to gravitational and capillary forces. This process is 

called redistribution (Ogden and Saghafian, 1997). Figure  3.2 presents the shape and location 

of a wetting front through a soil column at two different points in time. The total water volume 

in a soil column at a given time is the area of the graph multiplied with the surface area of the 

soil column. 

 

Figure 3.2 Redistribution of water (Corradini et al., 1997) 

The y-axis represents the depth (Z) [L] and the x-axis represent the soil moisture content (𝜃0). 

If no water is added to the soil column and evapotranspiration is neglected, the total water 

volume will be constant. Over time, the soil moisture will redistribute form situation (1) to 

situation (2) in Figure  3.2. When the wetting front percolates to an increased depth form Z(1) 

to Z(2), the soil moisture content will decrease from 𝜃0(1) to 𝜃0(2) to maintain mass balance 

(Ogden and Saghafian, 1997). 

Many studies have described the infiltration process through saturated soil, but few studies have 

been conducted on unsaturated soil and the redistribution process (Bunsri et al., 2008). The 

following methods for calculation of infiltration capacity do all consider redistribution. 

3.2 Infiltration calculation methods 

In the specialisation project mentioned in section 1, several infiltration methods were evaluated. 

The GAR method was found to be the best fitted method for describing infiltration in a full 

hydrological model. In the following sections, Richards Equation and several modifications of 

the GAR method are presented.   
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3.2.1 Richards Equation 

Richards Equation (RE) is an infiltration model with steady linear flow and a 1-D system that 

can be expressed as: 

 
𝐾

𝑑2𝜓

𝑑𝑧2
+

𝑑𝐾

𝑑𝑧

𝑑𝜓

𝑑𝑧
+ 𝑔

𝑑𝐾

𝑑𝑧
= 0 (2) 

where K is the hydraulic conductivity, z is the depth of the soil, g = 
𝑑𝜃

𝑑𝑧
 is the change in soil 

moisture over the depth z, and 𝜓 [L] is the capillary drive.  RE is developed from Darcey’s law 

Equation 1, but Richard also includes capillary drive and gravity forces (Richards, 1931).   

RE is commonly accepted as the most accurate description of infiltration and is often used as a 

reference for development of new infiltration models (Ross, 1990). There are several proposals 

for solving RE. Flux-Updating Iterative Conjugate Gradient (FUCG) is an algorithm for solving 

the RE for saturated soil, based on the two-dimensional pressure-based form of Richards’ 

Equation (3). 

 
𝐶

𝑑ℎ

𝑑𝑡
 =

𝑑

𝑑𝑦
(𝐾 − 𝐾

𝑑ℎ

𝑑𝑦
) −

𝑑

𝑑𝑥
(𝐾

𝑑ℎ

𝑑𝑥
) (3) 

C is 
𝑑𝜃

𝑑ℎ
 and K is the saturated hydraulic conductivity. FUCG is able to calculate soil moisture 

content in a two-dimensional system and performs with high accuracy (Kirkland et al., 1992).   

Soil hydraulics are highly nonlinear, which causes the RE to be computational expensive. RE 

also struggle with some conditions like overly dry soil, near saturation and nonuniform porous 

media (Lai et al., 2015). 

3.2.2 Green-Ampt with Redistribution (GAR) 

The Green-Ampt with redistribution (GAR) is an infiltration model developed by Ogden an 

Saghafian (1997) which describes the redistribution of soil moisture content 𝜃 during a rainfall 

hiatus. GAR uses two wetting fronts that develop separately to describe the soil moisture 

situation in a soil column. GAR uses a redistribution equation, Equation 7,  based on the  model 

of Smith et al (1993) and combines it with the Green-Ampt infiltration model (Green and Ampt, 

1911). The Green-Ampt model (GA) calculates the infiltrated water depth and the infiltration 

capacity during heavy rainfall with initial soil moisture content and infiltrated water depth as 

input values, as shown in Equation 4. During a hiatus, Smith et al. (1993) continuously 
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calculates the change in 𝜃 which again is used as input values by GA for the next rainfall event 

(Ogden and Saghafian, 1997):  

 𝑓(𝑡) =
𝑑𝐹(𝑡)

𝑑𝑡
= 𝐾𝑠 [

(𝜃𝑠 − 𝜃𝑖)𝐻𝑐

𝐹(𝑡)
+ 1]  (4) 

  

Where f(t) is the infiltration capacity, F(t) is the infiltrated depth, Ks is the saturated 

conductivity, 𝜃𝑠 and 𝜃𝑖 is saturated and initial soil moisture content respectively and Hc is the 

Green-Ampt soil suction parameter. Lai et al. (2015) tested GAR against FUCG RE and the 

results were satisfactory. However, for coarse soils, the evolution of surface soil water moisture 

content in subsequent long periods of redistribution was not accurately predicted (Lai et al., 

2015). The Modified GAR (MGAR) model is an enhancement of GAR which uses multiple 

wetting fronts. MGAR also introduces a coefficient. MGAR reduces the error in surface water 

content predictions (Gowdish and Muñoz-Carpena, 2009). However, neither GAR or MGAR 

can consider shallow water table conditions, which limits the model to catchments with deep 

unsaturated soil profiles.   

3.2.3 Talbot-Ogden (T-O) 

The Talbot-Ogden (T-O) model describes an infiltration model where the redistribution 

equation, Equation 7, in GAR is calculated with respect to depth Z and not with respect to soil 

moisture content 𝜃, as in the GAR and MGAR models. The model also divides the soil profile 

into several bins with a size of ∆𝜃 as shown in Figure 3.3.  

 

Figure 3.3 Schematic illustration of the T-O model (Talbot and Ogden, 2008) 
 

The T-O model considers both the advance of a wetting front starting at the soil surface and the 

development of a water table further down in the soil profile. Each bin therefore considers two 
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Z-values. One Z-value describes the depth of the wetting front and one Z-value describes the 

depth of the water table for this bin. When the wetting front reaches the water table, the bin is 

saturated throughout the soil column like for the first four bins in Figure 3.3 (Talbot and Ogden, 

2008). 

3.2.4  GARTO 

GARTO is a model that combines the GAR model and the T-O model. The model is efficient 

and guaranteed stable (Lai et al., 2015). Like the T-O method, GARTO controls several wetting 

fronts and can also control a groundwater table. Each wetting front is controlled by defining 𝜃𝑖, 

𝜃 and Z of the wetting fronts. 𝜃𝑖 coincides with the 𝜃-value of the last wetting front. The figure 

below illustrates the differences between GA, GAR and GARTO.      

 

 

Figure 3.4 Comparison of the GA, GAR and GARTO methods (Lai et al., 2015) 

GARTO uses GA under ponded conditions to calculate total infiltration depth (F) and fc. For 

the last wetting front, under ponded conditions, 𝜃 equals 𝜃𝑠.  
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𝐹(𝑡) = 𝐾𝑠𝑡 + 𝐻𝑐∆𝜃 ln [1 +

𝐹(𝑡)

𝐻𝑐∆𝜃
] (5) 

 
𝑓𝑐(𝑡) = 𝐾𝑠 [1 +

𝐻𝑐∆𝜃

𝐹(𝑡)
] (6) 

 

where Ks is saturated hydraulic conductivity [LT-1], t is time [h], Hc is the wetting front suction 

head [L], ∆𝜃 = 𝜃𝑠 − 𝜃𝑖 where 𝜃𝑠 and 𝜃𝑖 is the saturated and initial volumetric soil moisture 

content respectively [-]. The redistribution equation, Equation 7, is used between precipitation 

events to control the developing soil moisture content:  

 ∆𝜃

𝑑𝑡
=

1

𝛽𝑍
[𝑟 − 𝐾(𝜃) −

𝑝𝐾𝑠𝐺(𝜃𝑖, 𝜃0)

𝑍
] (7) 

 

where r is the rainfall intensity, K(𝜃) is the conductivity at current soil moisture content [LT-1],  

𝛽 is a shape constant [-] set to 1, p is a constant [-] set to 1,0 when r > 0 and 1,7 when r = 0. By 

controlling the soil moisture content (𝜃), GARTO applies the 𝜃-value of the last wetting front 

as 𝜃𝑖 in GA for a new rainfall event.  

For the first timestep in a new rainfall event, a maximum advance during a timestep or “dry 

depth” is approximated as: 

 
ℎ𝑑𝑟𝑦 = 0,5 (√𝜏2 + 4𝜏𝐺(𝜃𝑖, 𝜃𝑠)) :         𝜏 =

∆𝑡𝐾𝑠

𝜃𝑠 − 𝜃𝑖
 (8) 

where ℎ𝑑𝑟𝑦 is the first Z-value for the new wetting front and G is the capillary drive. Variations 

of Equation 12 and 13 calculate further advance of the wetting fronts as explained later. 

The soil moisture content 𝜃 changes only in the last wetting front during redistribution. The 

other wetting fronts keep a constant 𝜃. Water needed to continue the advance in Z direction is 

taken from ponded water, or from the last wetting front if there is no ponded water. 

If the depth of one wetting front exceeds the depth of the adjacent wetting front to the left, the 

wetting fronts are merged together by the given equation: 

 
𝑍𝑘−1

𝑛𝑒𝑤 =
(𝜃𝑘, 𝜃𝑘−1)𝑍𝑘 + (𝜃𝑘−1 − 𝜃𝑘−2)𝑍𝑘−1

(𝜃𝑘 − 𝜃𝑘−2)
:             𝜃𝑘−1

𝑛𝑒𝑤 =  𝜃𝑘 (9) 

Where k is the number of wetting fronts considered counting from the left in Figure 3.4.d.  
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GARTO provides a numerical stable method that it is proven to match well with the RE method 

in several situations. It also allows for continuous calculations of infiltration capacity by 

evaluating redistribution. GARTO is therefore chosen to establish a base method for an 

infiltration routine in a full hydrological model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

 

4  Hydrological models 

When designing stormwater managing infrastructure, hydrological models are potentially 

powerful tools. they can e.g. predict how changes in a watershed will affect the runoff. The 

impact of future urbanisation, climate change and changing rainfall patterns can all be simulated 

by hydrological models and be used as design criteria for new water infrastructure (Jacobson, 

2011). However, the application in urban areas are limited today as few models suited for urban 

assessments exist. This thesis suggests implementing GARTO as an infiltration routine in a full 

hydrological model. This will make the model better equipped to handle stormwater predictions 

in urban areas.  

To set a suitable scope for the hydrological model is important. Hydrological models are 

developed and used within weather forecasting, irrigation modelling, hydropower economical 

assessments, water quality simulations, flood protection and other fields. The scope for the 

models within these fields varies. A large scope with a need of detailed data mapping is more 

computational expensive to run. Weather forecast models are example on models with a large 

scope. Choosing a scope that provides accurate enough results on a reasonable amount of 

computational power is important. “Watershed hydrology” is a term that deals with 

hydrological processes on a watershed scale to determine the watershed response (Singh, 1995). 

A watershed provides accurate boundaries for input values and responses. A watershed is also 

a suitable size for hydrological models and is therefore a suitable scope for hydrological models 

simulating urban stormwater.  

Hydrological models can be categorized into three groups: physically-based, conceptual, and 

empirical models. Empirical models analyse observed input and output to obtain a statistical 

relationship between them. This requires only simple mathematical computations and provides 

fast results. Empirical models will however not provide very accurate results. Physically-based 

models consider mass balance equations of water through the watershed. This requires high 

computational power and detailed knowledge of the watershed parameters. If the input data is 

good, these models provide accurate results. Conceptual models describe hydrological 

processes and uses simple mathematical equations to describe the mass balance in each process 

e.g. evapotranspiration, snowmelt, surface runoff, surface storage and percolation. Parameters 

baked into these equations are used to calibrate conceptual models by using historical data. 

Hydrological models are also divided into distributed or lumped models. The difference is 
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whether the model divides the watershed in smaller subbasins or considers the watershed as one 

single unit (Aghakouchak and Habib, 2010). 

Around the world, several models describe the movement of water at watershed level. The 

HBV-model is the standard model for flow forecasting in Scandinavian countries (Singh, 1995). 

It will therefore be used as a reference model for implementation of an infiltration routine. The 

principal of an infiltration routine could however be implemented in several hydrological 

models.  

4.1 The HBV model 

The HBV model was originally developed as a lumped conceptual model, but was modified to 

a distributed model using subbasin division in 1996. The model setup is simple and the data 

demand is low. Nevertheless, the model is robust and gives precise results, e.g. demonstrated 

by a study where the model returned results with the coefficient of determination (R2) around  

89%, for seven different test areas (Lindström et al., 1997). The HBV-model is a continuous 

model, meaning that it can simulate several rainfall events following each other. The time series 

with data are divided into incremental timesteps. 

A schematic setup for a modified HBV model is shown in Figure 4.1. This setup was used in a 

study researching the effect of urbanisation and more impervious surfaces in a subbasin of 

Rhine (Bunsri et al., 2008). The model takes three input parameters and runs them through some 

“boxes” simulating hydrological processes. The input parameters are precipitation, air 

temperature and potential evaporation. Each “box” is called a routine and contains 

mathematical equations that describe a specific hydrological process. Each routine takes input 

and generate output values. The output values are calculated inside the routine. All the routines, 

except impervious surfaces, can also store water. The output from the snow routine becomes 

the input in the soil moisture routine and so on. For each new timestep, an algorithm runs 

through all the routines and produces a subbasin response, Q [L3T-1]. Q is the total runoff 

generated from lower reservoir, upper reservoir, and surface runoff in Figure 4.1.  If the model 

is distributed, the algorithm will run through all the subbasins with respective input values and 

produce a Q for each subbasin.       

 



15 

 

 

 

Figure 4.1 Schematic setup of the HBV-model (Hundecha and Bárdossy, 2004) 

4.1.1 Applicability in urban environments 

The original HBV model was developed for natural fields, e.g. large river systems with a sub-

basin size of 40 km2. The original version of the HBV model does not distinguish between 

surface water runoff and soil water runoff  (Lindström et al., 1997). The setup in Figure 4.1 

shows a modified version of the HBV-model which considers all the water that hits impervious 

surfaces to generate runoff. For pervious surfaces, it sets a threshold-value. Rainfall intensity 

exceeding this value will generate runoff (Hundecha and Bárdossy, 2004).  

The latter approach is better to describe the hydrology in urbanized watersheds than the original 

HBV model. However, the mechanisms of infiltration make it hard to set a threshold value for 

infiltration. As described in section 0, the infiltration capacity, and therefore the magnitude of 

runoff generated from pervious surfaces, varies greatly depending on the soil moisture content 

level. Several hydrological models use an approach like the one in Figure 4.1. This thesis 

suggests an improvement to the HBV model by adding an infiltration routine between the snow 

routine and the soil moisture routine calculating the runoff, instead of setting a constant 

threshold value. 
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4.2 A new infiltration routine 

The original HBV model considers runoff only form the soil routine as shown in Figure 4.2.a. 

Because of great variations in infiltration capacity in urban surfaces, consideration of the 

infiltration process becomes more important in urbanized watersheds than in natural dominated 

watersheds. An implementation of an infiltration routine is therefore suggested as shown in 

Figure 4.2.b. 

 
 

a) b) 

Figure 4.2 The HBV-model with and without an infiltration routine 

Input precipitation will normally go through the snow routine, or if no snow, directly to soil 

moisture routine. The new infiltration routine will be placed between the snow routine and the 

soil moisture routine as shown in Figure 4.2.b. The infiltration routine will have two output 

values; infiltrated water, and runoff water. Infiltrated water will be forwarded as input to the 

soil moisture routine. Further calculations through the other routines will proceed as in the 

original model but with less water due to the loss of runoff water in the infiltration routine. 

Depending on the properties of the evaluated subbasin, runoff water could either pond on the 

surface and infiltrate when the rainfall intensity drops, or it can flow to the neighbouring 

downstream subbasin.  
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4.2.1 Input data in the infiltration routine 

For the infiltration routine to be useful in a full hydrological model, it should be feasible to 

obtain the input data for the routine without investing too much time. Table 4.1 displays the 

input parameters necessary to implement the GARTO approach. All these parameters are 

additional parameters to the already existing-parameters in the HBV model.  

Tabell 4.1 Input parameters in the infiltration routine 

Physical description Symbol Unit 

Bubbling pressure/air entry pressure 𝜓𝑏 [L] 

Pore distribution index Λ [-] 

Saturated volumetric soil moisture content 𝜃𝑠 [-] 

Residual volumetric soil moisture content 𝜃𝑟 [-] 

Initial volumetric soil moisture content 𝜃𝑖 [-] 

Saturated hydraulic conductivity 𝐾𝑠 [LT-1] 
 

  

The bubbling pressure (𝜓𝑏) and the pore distribution index can be found using a technique 

described by Brooks and Corey (1966) (Brooks and Corey, 1966).  Saturated and residual 

volumetric soil moisture content (𝜃𝑠 and 𝜃𝑟) and saturated hydraulic conductivity (Ks) can be 

decided by field observations and lab tests. Initial volumetric soil moisture content (𝜃𝑖) can be 

guessed without further investigations. This is because initial soil moisture content will change 

during the simulations, and the start value I therefore not of significantly importance for a longer 

simulation periods.    

Alternatively, these parameters can be estimated based on literature. If the soil types are known, 

tables from e.g. Lai et al. (2015) can provide values for these parameters. The uncertainty in 

the calculations will however increase by applying this technique compared to using filed 

observations.  

4.3 Statkraft Hydrological Forecasting Tools (SHyFT)  

SHyFT is an open source hydrological toolbox developed by Statkraft. In SHyFT, a HBV model 

is implemented. The HBV model contains the routines actual evapotranspiration, snow, soil, 

and tank (see Figure 4.2.a). Each routine is programmed separately in the programming 

language C++ and merged in a HBV-stack code. The interface between the routines is 

programmed in Python. A new infiltration routine should be implemented as an own routine 

and merged with the other routines between the snow routine and the soil routine in the HBV 

stack.  
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A routine in SHyFT divides variables into three types: parameters, states, and responses. The 

parameters contain variables that remain constant throughout the simulation, e.g. soil 

properties. The states contain variables that change during the simulations, e.g. soil moisture 

level and infiltration capacity. The responses contain variables that are forwarded to the next 

routines, e.g. runoff and infiltrated water. Each routine in the HBV model in SHyFT works as 

a “black-box”, and calculates state, response, and parameters hidden for the user. A routine 

provides however output values. Time and input data such as precipitation, potential 

evapotranspiration and air temperature are handled outside the routines and fed into each 

routine when needed.  

4.3.1  C++ programming language 

The C++ programming language originated from the C programming language. C is a general-

purpose language that can write any kind of program. C++ is similar to C but it is object 

orientated and uses classes. A program in C++ consists of a main function “main” and classes. 

“Main” is stored as “main.cpp”.  A class contains member functions and member variables. A 

class consists of one header file “<name>.h” and one cpp-file “<name>.cpp”. In the header file, 

the class member variables and the functions are initialized and stored, while the calculations 

are done in the cpp-file. When the program is run, “main” is called. “main” may again call on 

classes connected to “main”. A class can take input variables from “main”, run through a 

member function, store values to member variables and then return member variables to “main” 

(Savitch, 2010).  
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 Method 

5 Code development 

The author of this thesis did not have any prior knowledge of programming. To understand the 

infiltration routine and gain programming knowledge, an own C++ code were first made for the 

infiltration routine. When this code gave satisfactory results, it was implemented in SHyFT. 

The technique used to develop the program was to start by developing a basic program and add 

on new features as programming skills were gained. This way the code developed to handle 

increasingly advanced rainfall events. 

5.1 The prototype 

In the specialisation project mentioned in section 1, a simple prototype of the GAR method 

was developed in excel. It was able to consider short rainfall events (Nyhus, 2016). GAR was 

used to calculate infiltration followed by redistribution. A copy of this prototype was developed 

in C++ as a basis for further development. This code considered one short rainfall event 

followed by redistribution and used a while loop to iterate infiltration. The precipitation data 

was stored in a vector. The rainfall event considered in the prototype was short and artificial. 

The prototype could not run multiple rainfall events. Figure 5.1 displays a flow-chart of the 

prototype code. 
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Figure 5.1 Flow-chart of the prototype C++ code. From the specialisation project  

GA was used for calculations of F and fc and the results were compared with results from Becker 

(2016) (Becker, 2016). GAR was used to calculate redistribution but there were no available 

results to validate the redistribution period for such a basic code.  

5.2 Developing the final code from the prototype 

It was not clear how GARTO dealt with several of the issues described later in this section. For 

further development of the prototype, a trial and error approach was therefore applied. To check 

whether the result became better it was compared to the results presented in GARTO.  

Lai et al (1997) did four tests comparing the GARTO algorithm with the RE for eleven soil 

types.  

Test 1 was chosen for comparison because this was the simplest of the four tests to simulate. 

Of the eleven soil types, four soil types had results for the wetting front depths, ponding time, 

deponding time and infiltrated water. Of these four soil types, soil type 4 and 11 were chosen 

as reference soils. The code was developed with soil 4 as standard soil and tested regularly for 

soil 11 to check that the code managed more than one soil type. When testing for several types 
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of soils and rainfall intensities, a wider understanding of problems with the code was gained 

and several issues were solved.   

Section 5.2.1-5.2.4 describes the steps of how some main issues were solved to go form the 

prototype to the finished code.  

5.2.1 Mistaken interpretation of the capillary drive.  

During coding process of the prototype in C++, it was discovered an error in the excel prototype. 

Z was multiplied with timestep (delta t) in Equation 7, which it should not have been. The error 

was probably a result of a misunderstanding of the mechanisms of capillary drive G. GAR 

includes Equation 10 where the bubbling pressure 𝜓𝑏 is negative which makes G negative 

(Ogden and Saghafian, 1997). However, GARTO describes G in Equation 11 which implies 

that G should be positive  (Talbot and Ogden, 2008):  

 
𝐺(𝜃𝑖 , 𝜃) =

−𝜓𝑏

𝜆
(

Θ3+1/𝜆 − Θ𝑖
3+1/𝜆

3 + 1/𝜆
) (10) 

 
𝐺(𝜃𝑖 , 𝜃) = |𝜓𝑏| (

Θ3+1/𝜆 − Θ𝑖
3+1/𝜆

3𝜆 + 1
) (11) 

Here Θ is relative volumetric soil moisture content and 𝜆 is the pore distribution index. 

5.2.2 Classes 

An early version of the code was written in “main” without any connecting classes. Variables 

were initialized, calculated, and rewritten in a for-loop in the same file. This approach had two 

main disadvantages: (1) The code became long and messy resulting in debugging becoming 

hard because it was hard to discover where a problem occurred in the code; (2) The code became 

unstable because all calculations had access to all the variables. Variables could therefore be 

changed several places in the code and it was hard to understand when and where this happened.  

Classes were introduced to solve these problems. “main” contained the structure of the code 

while it called on classes to calculate side operations as explained in section 6.1.  this lead to 

the following advantages: (1) If a problem was connected to the structure of the code, “main” 

could be examined, while a problem connected to a specific operation could be examined in the 

class handling this operation. Both “main” and the classes became shorter and easier to 

understand; (2) Using classes, variables could be stored as private. As “Private”, only functions 

inside a class have access to the variables in that class. “main” or other classes could not change 
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these variables without calling on functions inside that class. This gave the programmer more 

control over the variables and made the code more stable.   

5.2.3  Redistribution and advance of wetting fronts 

In an advancing wetting front, Z changes with the value ΔZ over one timestep. This can be 

described by the following equations(Lai et al., 2015): 

 𝑑𝑍𝑘

𝑑𝑡
=

𝐾(𝜃𝑘) − 𝐾(𝜃𝑘−1)

𝜃𝑘 − 𝜃𝑘−1
(

𝐺(𝜃𝑖 , 𝜃0)

𝑍𝑘
+ 1) (12) 

 
(𝜃0 −  𝜃𝑖)

𝑑𝑍

𝑑𝑡
= (

𝐾𝑠𝐺(𝜃𝑖 , 𝜃0)

𝑍
+ 𝐾(𝜃0)) (13) 

How ΔZ can be calculated in a situation where the precipitation rate (Pe) is less than fc is not 

stated clearly in the GARTO article. However, for situations where Pe exceeds Ks, and the last 

wetting front is saturated, Equation 12 should be used. It is also stated that Equation 12 is a 

variation of Equation 13 which comes from GAR. Therefore, it was assumed that Equation 13 

should be used to calculate Z for the latest wetting front in an unsaturated situation and were Pe 

is less than Ks.  

The infiltrated water depth F(t) is the total mass of infiltrated water during a rainfall event. F(t) 

can be calculated independently of Δ𝜃 and 𝑍 as described in section 5.2.4. Equation 14 shows 

a mass relationship between F(t), the wetting front depth Z, and the soil moisture content 𝜃. 

The right side of the equation describes the volume of a wetting front as illustrated in figure 

3.4.b.   

 𝐹(𝑡) = (𝜃 − 𝜃𝑖) ∗ 𝑍(𝑡) (14) 

 

When moving from one timestep to the next the infiltration depth Z and the soil moisture 

content 𝜃 changes. In the prototype, when the rainfall intensity was low, Z from the last timestep 

was used as input parameter in the redistribution equation (Equation 7) to calculate the change 

in soil moisture content Δ𝜃. The last 𝜃 plus Δ𝜃 was then used in Equation 13 to calculate a new 

Z. By this approach the water mass balance described in Equation 14 was not retained. Since 

the variables Z and 𝜃 are dependent on each other the solution was to do an iteration. 

Two approaches to iterate Z and 𝜃 were tested: In approach (1) Z was increased by incremental 

timestep and inserted in Equation 7 to calculate a new 𝜃. The right side of Equation 14 was 
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calculated with new values of Z and 𝜃. If the water mass was below F(t), the iteration process 

continued. Approach (2) used the same approach as in (1), but ere 𝜃  was incrementally 

increased and used in Equation 13. See Figure 6.4 and 6.5 for flow chart and code of this process.  

To decide which approach that gave the best results, a trial and error approach was applied. It 

was found that approach (1) gave best results when Pe < Ks and approach (2) gave best results 

when Pe > Ks.  

5.2.4  Infiltration 

The prototype used Green-Ampt (GA) to calculate infiltration depth F, and infiltration capacity 

fc. A rainfall intensity greater than the infiltration capacity is a prerequisite for GA. A natural 

precipitation event will rarely start with such high intensities. To develop the code to handle all 

types of precipitation events, several changes where done.      

ftest, was created as a test variable to decide ponding time. In each timestep in situation B, F 

increased with Pe and was used as input parameter in GA (Equation 4), to calculate ftest. In the 

beginning of the next timestep Pe was compared to ftest. If Pe > ftest situation B ended and 

situation C started.  

In situation C, GA was used for further infiltration calculations without including cumulative 

infiltrated water F from situation B. This could be interpreted as shifting the curve D to the end 

of curve B in Figure 3.1. This approach gave a too high fc resulting in a too high F. 

Mein and Larson (1973) developed an approach to shift curve D to start at the end of situation 

B and at the same time account for the accumulated infiltration depth F during situation B. The 

approach is often referred to as Green-Ampt Mein Larson (GAML) (Chu, 1987). The method 

calculates time at ponding tp and cumulative infiltration depth 𝐹𝑝 at tp. For a certain F, a time t 

can be decided based on these two variables. If t is higher than tp, ponding occurs and the rainfall 

event change form situation B to situation C. GAML solved the problem and calculations of fc 

became accurate for all situations A-C. The method follows the equations below:     

 
𝑡 = 𝑡𝑝 +

1

𝐾𝑠
[𝐹 − 𝐹𝑝 + |𝜓𝑓|(𝜃𝑠 − 𝜃𝑖) ln (

|𝜓𝑓|(𝜃𝑠−𝜃𝑖) + 𝐹𝑝

|𝜓𝑓|(𝜃𝑠−𝜃𝑖) + 𝐹
)] (15) 

 
𝐹𝑝 =

|𝜓𝑓|𝐾𝑠(𝜃𝑠 − 𝜃𝑖)

𝑃𝑒 − 𝐾𝑠
 (16) 

 
𝑡𝑝 =

𝐹𝑝

𝑃𝑒
 (17) 
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Sand where tested in test 2 in GARTO described in 0. For the last wetting front the infiltration 

rate for the fifth pulse did not match with GARTO. It was discovered that the rainfall rate in the 

beginning of the pulse exceeded the infiltration capacity. GAML is not applicable for this 

situation, but GA is. GA was therefore used when time of ponding were at the beginning of a 

rainfall event.  
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6 Code structure 

The developed C++ code of the infiltration routine consists of “main” and six classes. “main” 

initializes and keeps track of all states and responses. Further it controls whether the infiltration 

follows the situation A, B, or C in Figure 3.1. the code also imports precipitation data and stores 

it in a vector. The classes calculate and changes certain parameters, states, and responses, and 

return them to “main” as explained in section 6.2. the six classes are called “Infiltration”, 

“getPrecipitation”, “infiltration_depth”, “Parameters”, “Ponding” and “soilMoitsture”.  

 

Table 6.1 and 6.2 explains the parameters, states, responses, outputs, and other variables used 

in the code. When developing the code, it was not necessary to distinguish on states, parameters, 

or response. This became important when implementing in SHyFT. However, it gives a clearer 

picture on the nature of a variable used in the code.  

 

Tabell 6.1 Parameters, States, and responses 

Physical description 
Symbols 
in thesis 

Symbol in  
the code Unit Classification 

Green Ampt wetting front soil suction Hc Hc [L] Parameter 

Bubbling pressure/air entry pressure 𝜓𝑏 Yb [L] Parameter 

Pore distribution index Λ lambda [-] Parameter 

Saturated volumetric soil moisture 
content 𝜃𝑠 Os [-] Parameter 

Residual volumetric soil moisture content 𝜃𝑟 Or [-] Parameter 

Initial volumetric soil moisture content 𝜃𝑖 Oi [-] Parameter 

Saturated hydraulic conductivity 𝐾𝑠 Ks [LT-1] Parameter 

Initial hydraulic conductivity 𝐾𝑖 Ki [LT-1] Parameter 

Relative volumetric initial water content Θ𝑖  ORi [-] Parameter 

Relative volumetric water content Θ OR0 [-] Parameter 

Number of wetting fronts K k [#] Sate 

Current hydraulic conductivity 𝐾(𝜃) K0 [LT-1] State 

Current volumetric soil moisture content 𝜃 O0 [-] state/output 

Infiltrated physical depth Z Z [L] state/output 

Actual infiltration f f [LT-1] state/output 

Ponding  ponding [L] state/output 

Infiltrated water depth F Freal [L] response/output 

Runoff  Runoff [LT-1] response/output 
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Table 6.2 Other variables in the code  

Description Code symbold Unit 

Water demand for wetting front 0-(k-1) Pek [L] 

Residual rain water PeR [L] 

Porewater volume for wetting front 0-(k-1) Vzk [L] 

Unsaturated capillary drive G [L] 

Infiltration rate if Pe > f since the start ftest [LT-1] 

Infiltrated water before the start deltaF [L] 

Rainfall rate in last timestep PeL [L] 

Soil water content during iteration O0test [-] 

Wetting front depth during iteration Ztest [L] 

Infiltrated water during iteration Ftest [L] 
 

 

6.1 Main   

Main initializes variables and decides which of the situations A, B or C that is present. “Main” 

is structured into two parts: (1) Initialization of parameters states and responses and (2) A for-

loop running through the precipitation series, consisting of three parts.  

 

In part (1), the classes are called and the class objects are given names. A precipitation vector 

called Pe is initialized to a zero vector with a length equal to the length gathered from the 

precipitation class. Each value of the precipitation series is stored in the vector Pe. Parameters 

are initialized to the values stored in the class “Parameters”. Time, cumulative infiltration Freal, 

infiltration rate f, the test parameter ftest, number of wetting fronts k, ponding and precipitation 

intensity from last timestep PeL are set to zero. The six vectors for soil moisture content O0, 

relative volumetric soil moisture content OR0, conductivity K0, wetting front depth Z, water 

volume in wetting front k Vzk and water demand of wetting front k Pek are created to store the 

states of each wetting front. Each vector is assigned four elements where the first value is 

initialized to initial conditions of wetting front zero, and the other values are set to zero.  

 

(2) The for-loop changes the parameters, states and responses and controls which of the 

situations A, B, and C that are present. The loop is divided into three parts. The first part (i) 

controls the advance of wetting front 0-(k-1), prat (ii) decides which situation A-C that is 

present and part (iii) calculates K0 and OR0 and merges wetting fronts if necessary. 
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Part (i) describes the advance of the wetting fronts that are not under development, wetting front 

0 - (k-1). The flow chart in Figure 6.1 describes the process. For these wetting fronts 𝜃 is 

constant and Z is increasing. The wetting fronts therefore needs a supply of water to maintain 

mass balance. This water is taken from either rainfall water, ponded water, or the developing 

wetting front respectively. For each new timestep, the vectors Pek and Vzk are initialized to 

zero vectors. Residual rainwater (PeR) is initialized to Pe for the given timestep. A fore-loop 

runs through wetting front 0 - (k-1). For wetting front j, the pore water volume before an 

advance Vzk is calculated by multiplying Z and 𝜃. The class “infiltration_detpth” is called and 

returns Znew which is the depth for the next advance. The water demand for each wetting front 

(Pek) is calculated as the new volume, Znew times 𝜃, minus Vzk. PeR is calculated as PeR-Pek 

in each loop. This approach is repeated for all the wetting fronts 0 - (k-1). The remaining water 

for the developing wetting front PeR = (∑ 𝑃𝑒𝑘[𝑗])
𝑘−1

𝑗=0
 is used when calculating the advance 

of wetting front k in situation A. 

 

(ii) Four if statements decide which of the situations A, B, or C are present or if a new wetting 

front is formed (see lower left part flow chart Figure 6.1). Each loop runs through all the if 

statements but only one of them will be true for each timestep. A new 𝜃 and Z are calculated 

differently depending on which of the if statements that is true as in section 6.1.2 to 6.1.4.  

 

Part (iii) is the end of the for loop. It calculates a new OR0 and K0 and checks if one wetting 

front has exceeded the depth of another (see left part of flow chart in Figure 6.1). If so these 

wetting fronts are merged. Equation 12 is used to calculate a new Z. Further 𝜃𝑘−1 =  𝜃𝑘 and k = 

k-1. 

 

At the end of the loop, the code prints some information to the screen and all the information to a text 

document. The data is further imported to excel to do analysis of data.  
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Figure 6.1 Flow-chart of “main” 

 
 

6.1.1 New wetting front  

If the precipitation is higher than saturated conductivity, and the precipitation in last timestep 

is lower than saturated conductivity, a new wetting front is formed (Figure 6.2). The if statement 

also checks whether 𝜃 is less than 𝜃𝑠. This check is only important if ponding is allowed. If 

ponded water form last rainfall event still is infiltrating, no redistribution has yet occurred, and 
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a new wetting front will not be created. If the if statement is true, the class “Infiltration_depth” 

calculates an initial depth. Another if statement checks if the Pe exceeds ftest. If so 𝜃 is set to 

𝜃𝑠. If not, the class “SoilMoisture” calculates a new 𝜃 value.  

 

if (Pe[i] > Ks && PeL < Ks && O0[k] < Os){   

    getZ.setZK0(O0[k-1],OR0[k-1]);                   

    Z[k] = getZ.getZK0(); 

    if (Pe[i] > ftest){                       

        O0[k] = Os;                          

    } else{ 

        output.setO0(Z[k],PeR,O0[k-1],OR0[k-        

1]);  

        O0[k] = output.getO0(); 

    } 

} 

 

Figur 6.2 Flow-chart describing the creation of a new wetting front 

6.1.2 Situation C 

Situation C, Figure 6.3, is the present situation if the precipitation rate Pe > the maximum 

infiltration capacity of the soil ftest. Ponding is present occurs in situation C and the soil reaches 

is in a fully saturated state, 𝜃 = 𝜃𝑠. A new Z is calculated using a saturated form of Equation 13 

which is calculated in the class “Infiltration_depth”. 𝜃 and Z are returned to “main”.  

 

 

if (Pe[i] >= ftest){                                                                                                     

      getZ.setZs(O0[k-1],Z[k]); 

      Z[k] = getZ.getZs(); 

      O0[k] = Os; 

} 

Figure 6.3 Flow-chart describing situation C 

6.1.3 Situation B 

If Pe is less than fc, but higher than Ks, Situation B is present. The infiltration is then calculated 

as shown in Figure 6.4 Three test parameters, Ftest, Ztest and O0test, are created to do the 

iteration explained in 0.  They are initialized to the values from last timestep. The amount of 

infiltrated water Freal, will in situation B equal total rainfall during the rainfall event. The 

parameter deltaF is gathered form the infiltration routine. deltaF offsets Freal to only measure 
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infiltrated water during the last rainfall event in case of multiple precipitation events. A while 

loop with the decision criteria “is Ftest >= Freal” is used to iterate new values for 𝜃 and Z. 

O0test is increased with incremental steps. The class “Infiltration_depth” is called to calculate 

a new Z. Ftest is calculated as the new volume of the wetting front 𝑍 times (𝑂0 − 𝑂0). Ftest is 

compared with Freal. If Ftest < Freal the while-loop continues. Ftest >= Freal, the while loop 

ends. A new Z is set equal to Ztest, and O0 is set to O0test. These values are then returned to 

“main”. 

 

 

float O0test = O0[k]; 
float Ztest = Z[k]; 
if (Pe[i] < ftest && Pe[i] >= Ks) { 
   float Ftest = Freal - deltaF –  
   f*timestep; 
   while (Ftest < Freal - deltaF) { 
     O0test = O0test + 0.0001; 
     getZ.setZK1(K0[k],O0test,O0[k-1],Z[k],        
     OR0[k],OR0[k-1]); 
     Ztest = getZ.getZK1(); 
     Ftest = Ztest*(O0test – O0[k-1]); 
   } 
   Z[k] = Ztest; 
   O0[k] = O0test; 
} 

 

Figure 6.4 Flow-chart describing situation B 

6.1.4 Situation A 

If Pe is less than Ks, situation A is present, and Figure 6.5 describes the calculation process. 

However, an if statement considers whether ponding still occurs. If ponding occurs, the code 

repeats the calculations in situation C.  

If there is no ponding, iteration like the one in situation B is stared. However, the iteration object 

is now Z and not 𝜃 as explained in section 0. The variable Ztest is increased with incremental 

values and O0test is gathered from the class “soilMoisture”. Ftest is calculated as in B and the 

criteria Ftest>=Freal is used to continue or end the while loop, like in B. New values of Z and 

O0 are set equal to O0test and Ztest, and returned to “main”.    
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if (Pe[i] < Ks){  
    if (ponding > 0){                       

  getZ.setZs(O0[k-1],Z[k]); 
  Z[k] = getZ.getZs(); 
  O0[k] = Os; 

    else { 
         float Ftest=Freal-deltaF-0.001;       
         while (Ftest < Freal) { 

Ztest = Ztest + 0.001; 
output.setO0(Ztest, PeR,    
O0[k], OR0[k-1]); 
O0test = output.getO0(); 
Ftest=Ztest*(O0test-O0[k-1]); 

          } 
          Z[k] = Ztest; 
          O0[k] = O0test; 
     } 
} 

 

Figure 6.5 Flow-chart describing situation A 

 

 
 

6.2 Classes 

As explained in 5.2, the classes contain functions to calculates some variables, and they also 

store variables as private to prevent “main” to change the variables without permission. Two 

functions are normally needed to change and return a variable from a class. A “set-function” is 

called by “main” and will calculate a new value for a variable and store it as private. Then 

“main” call a “get-function” to return the new value of the variable to “main”.    

6.2.1 The class “getPrecipitation” 

The class “getPrecipitation” reads and returns the length of the precipitation file. 

“getPrecipitation” contains the functions “setLength()” and “getLength()”. “setLength()” reads 

the precipitation file named in “Parameters”, which is stored in a text document. Further it 

counts the number of values stored in the file. This number is stored in a private variable length. 

“getLength()” returns length to “main”. “main” uses this number to initialize a zero vector, Pe, 

with the length “length”. A while-loop in “main” runs through the text document again and 

stores each precipitation data in the right order in the vector Pe. 
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6.2.2  The class “Parameters” 

The class “Parameters” contains parameters and initial states for the soil of consideration. All 

the variables in the class “Parameters” will stay the same throughout the simulations. The class 

“Parameters” does therefor not have any “set-functions”. This means that “main” cannot change 

any variables given in the class “Parameters”. “main” is only allowed to return parameters from 

the class “Parameters”. This makes the code more robust.  

The user initializes the states and parameters marked with “user input” in the table below. The 

class calculates the states and parameters marked with “calculated”. 

Tabell 6.3 Parameters and state stored in the class “Parameters” 

Description Code symbols Unit Classification 

Bubbling pressure/air entry pressure 𝜓𝑏 [L] Parameter (user input) 

Pore distribution index Λ  [-] Parameter (user input) 

Saturated volumetric soil moisture content 𝜃𝑠 [-] Parameter (user input) 

Residual volumetric soil moisture content 𝜃𝑟 [-] Parameter (user input) 

Initial volumetric soil moisture content 𝜃𝑖 [-] State (user input) 

Is ponding Allowed Pond [char] State (user input) 

Saturated hydraulic conductivity 𝐾𝑠 [LT-1] Parameter (user input) 

Green-Ampt wetting front soil suction parameter Hc [L] Parameter (Calculated) 

Initial hydraulic conductivity 𝐾𝑖 [LT-1] State (Calculated) 

Relative initial volumetric water content  Θ𝑖  [-] State (Calculated) 
 

 

6.2.3 The class “Infiltration”  

The class “Infiltration” is a crucial class for the code. It calculates and returns F, deltaF, ftest, 

and fc. These parameters are essential to control the if statements in “main” and to monitor the 

responses from the observed area. F is the infiltrated water depth since the first rainfall event 

started. f is the current infiltration rate. ftest is the potential infiltration capacity. deltaF is the 

total infiltrated water before the current rainfall period started. The class “Infiltration” can also 

return the parameter error which is explained later. 

“Infiltration” is called by the function “setFf()” which takes four input arguments, time, Pe, 

ponding, k, O0(k-1), and i. “setFf()” calculates F, deltaF, ftest,and  fc and stores them in private 

variables. To return these values the functions “getf()”, “getftest()”, “getF()”, and “getdletaF()” 

are called. Since deltaF is stored in a vector “getdletaF()” takes the input argument k to 

determine which of the values in the vector that are returned.  
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The infiltration routine consists of two parts. (1) The test parameters Ftest1 and ftest are set. 

Ftest1 is F plus Pe. ftest is calculated with Ftest1 and is the maximum infiltration capcacity for 

the soil. This parameter is used by “main” to decide when ponding occurs. When a new wetting 

front is formed, several parameters is reset. “main” needs to keep track of total infiltration depth 

F across the whole time-series, but to be able to calculate infiltrated water during the last rainfall 

event with GAML, F and time needs to be set to zero. deltaF, deltatime and ktest, where 

introduced as member variables in the class “Infiltration”. In “main” k controls how many 

wetting fronts that are present. Therefore, k where exposed to “infiltration”. In “Infiltration” an 

if statement controls if k increases or decreases over the last timestep and updates ktest to the 

new k. If k increases deltaF and deltatime is set to current time and F. O0[k-1] is also stored as 

O0L. Calculation of infiltration subtract deltatime and deltaF so that every new wetting front 

starts infiltration calculations at the time when the rainfall event started and with no infiltrated 

water.     

(2) In part two, infiltration depth at time of ponding (Fp) and time of ponding (tp) is calculated 

as in Equation  16 and 17. A test parameter for iteration (Ftest) is initialized. Four if statements 

decide how F and f should be calculated. (i) If there is raining, but the intensity is low, all the 

water is infiltrated and f is set to the rainfall intensity. (ii) If the rainfall intensity exceeds ftest 

at the first timestep, GA can be used directly to calculate f and F, without applying Mein and 

Larson’s approach. (iii) If Pe is greater than Ks, but less than ftest, GAML is used. GAML 

iterates a parameter (t) which is the time calculated based on infiltrated water. Further an if 

statement decide if t is less than tp. If so all the water infiltrates. If not, F and f is calculated by 

using GA. (iv) The fourth if statement I true if water is ponded on the surface. Then if statement 

three is continued even if it is not raining until all the ponded water is infiltrated. If one rainfall 

event follows close after another so there is not enough time for the water to infiltrate, the soil 

would experience that there is one long rainfall event because of the fourth if statement. Only 

one wetting front is formed. If none of the if statements is true there is no rainfall and the f is 

set to zero. F remains unchanged. A flow-chart of the class “Infiltration” is shown below.  
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Figure 6.6 Flow-chart of the class “Infiltration”  

When the depth of wetting front k exceeds the depth of wetting front k-1 and the wetting fronts 

are merged the infiltration rate raised above the rainfall rate. The infiltration rate should in 

theory be the same over this transition from two wetting fronts to one, but because O0(k-1) 

changes over this transition and everything else is the same the infiltration rate increases. In the 

code the solution is to keep O0(k-1) from two wetting fronts.  

6.2.4 The class “Ponding” 

The class “Ponding” controls whether ponding occurs and how much water is ponded on for 

each timestep. It returns either ponding or Runoff. The class takes infiltration rate f, precipitation 

rate Pe, timestep and data number i as input variables. In “Parameters”, the user has decided 

whether ponding is allowed. This information is read by “Ponding” and is fed into an if 

statement. If ponding is not allowed, runoff is calculated and ponding is set to zero and returns 

this information to “main”. If ponding is allowed, two if-sentences check whether Pe is higher 
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or lower than fc, and calculates ponding as shown in Figure 6.7 If Ponding is calculated to less 

than zero, all the ponded water is infiltrated during the last timestep, and ponding is set to zero. 

The runoff is always zero if ponding is allowed. Ponding and runoff are returned to main.  

 

Figure 6.7 Flow-chart describing the class “Ponding” 

6.2.5 The class “Infiltration_depth” 

The class “infiltration_depth” calculates the advance of a wetting front in Z direction. The 

Runge-Kutta method (RK4) is used for numerical integration of ∆Z between each timestep. A 

new depth Z is set equal to the old value of Z plus ∆Z.  By applying RK4, stability in the code 

is maintained and the code generates accurate results. The timesteps should not exceed 0.5 
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minutes when using RK4 (Lai et al., 2015) “Infiltration_depth” contains four separate ways of 

calculating the advance of a wetting front; (1) Equation  8 calculates “dry depth” which is the 

advance of a wetting front during the first timestep after it is formed; (2) Equation 12 is used 

for a situation where Pe is greater than fc.; (3) When the soil is fully saturated, a saturated form 

of Equation 12 is used; (4) Equation 13 is used if there is only the initial wetting front and one 

additional wetting front.  

Main needs to call the function “setZ” to set a new Z-value which is stored in private variables 

in the class “Infiltration_depth”. Another function “getZ” is called to return the stored Z-value. 

This is a safe way of changing and returning the stored Z-value without giving main the rights 

to modify private variables in the class “Infiltration_depth”. 

6.2.6  The class “soilMoisture” 

The class “soilMoisture” calculates the redistribution of soil moisture when the rainfall 

intensity is less than Ks. The soil moisture routine also applies RK4. PeR is used as input 

value for the precipitation. Then the coefficient p = 1 if PeR > 0, or 1,7 if PeR = 0. O0 is 

calculated using Equation 7.  

As in the class “Infiltration_depth”, the O0 is set by the function “setO0” and it is returned by 

the function “getO0”. 

6.3 Error messages 

If input data is wrong, the program will produce results without value for the user. To avoid 

wasting time on producing these results and to give the user an indication of what the problem 

is, error messages are implemented. For certain cases where it is obvious that the user has 

entered wrong input data, the program will detect these mistakes and print a short message 

about what the problem might be. The error messages are printed form the classes 

“getPrecipitation”, “Ponding” and “Parameters”. The error messages are shown in table 6.4. 
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Table 6.4 Error messages built into the program 

1 "ERROR: The typed file does not exist in the right folder" 

2 "ERROR: Precipitation data at time " << (x+1)*0.008333 << "h is < 0" 

3 "ERROR: Precipitation data at time " << (x+1)*0.008333 << "h has more than 8 

decimals" 

4 "ERROR: A Parameter in the class Parameters is < 0” 

5 "EROOR: The variable Or > Oi or Oi > Os or Or < Os" 

6 "ERROR: Or or Oi or Os >= 1" 

7 "ERROR: Wrong spelling of Yes or No in class ponding" 
 

 

Error message 1 in table 6.4 is returned if the user specifies an invalid precipitation file or the 

file is in the wrong folder and the program fails to open the file. 

When the program stores precipitation data in the Pe vector, it will check whether any of the 

data has a value below zero. If this is the case, the program will exit and return error message 

2 in table 6.4. The program cannot handle precipitation data with more than 8 decimals. If any 

of the data entered has more than 8 decimals the program will exit and return error massage 3 

in table 6.4. Both these error messages will display the location in the data series where the 

mistake is detected.  

In the class “Parameters”, none of the parameters can have a value lower than zero. The soil 

moisture content parameters 𝜃𝑠, 𝜃𝑖, and 𝜃𝑟 must have a value between zero and one because 

they are a measure relative to total volume of the soil. The parameter  𝜃𝑟 cannot be greater than 

either 𝜃𝑖 or 𝜃𝑠, and  𝜃𝑖 cannot be greater than 𝜃𝑠. If the input values fail to fulfil any of these 

requirements, the program will exit and return the error message 4 to 6 in table 6.4.  

The user needs to specify whether water will pond on the surface or create surface runoff. This 

is specified by typing “yes” or “no” in the class “Parameters”. The program understands all 

combinations of capital letters and lowercase letters. However, if the user types anything else 

than no or yes, the program will exit and return the error message 7 in table 6.4.  
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7 Implementation of the code in SHyFT 

When the code was developed and produced reasonable results compared to GARTO, it was 

implemented in SHyFT.  

7.1 Compiling SHyFT and including the infiltration routine 

SHyFT was installed and compiled on the computer by following the installation manual 

provided on the open source web based Git repository (Helset, 2017). An own branch in SHyFT, 

called “ntnu_hbv_inf”, was established to host the project of the infiltration routine. 

A summary of the changes that were conducted is described in section 7.1.1. An overview of 

all the changed files and in which lines the changes are done, are attached in appendix C. In 

section 0, a description of the infiltration routine used to compile the code is described.  

7.1.1 Changed files 

In the file “core_serializtion” the infiltration routine was included by including the file 

“hbv_infiltration”. The states of the infiltration routine were introduced to the archive to store 

the states of the infiltration routine.   

In the file “hbv_stack”, the infiltration routine was included by including the file 

“hbv_infiltration”. The parameter class of the infiltration routine was introduced as an object to 

expose the parameters to the file by the function “set”. The function “get” returns the parameters 

when called, and the function “get_name” returns the name of the routine.  The states and 

responses were also exposed to the file. Thereafter, the states, parameters, responses, and the 

function “step” from the infiltration struct “calculator” in the file “hbv_infiltration” were 

exposed to the function “run_hbv_stack”. The variable “outflow”, in the snow routine, was 

redirected as input to the infiltration routine, while the input of the soil routine was replaced 

with the variable “Freal” from the infiltration routine. This way the HBV stack could stack the 

infiltration routine between the snow routine and the soil routine. 

In the file “hbv_stack_cell_model”, the responses “Freal” and “Runoff” were included in the 

struct “all_response_collector”. This way, the time and location of the responses could be 

initialized and the responses could be collected in the function called “collect”. In the struct 

“state_collector” all states are collected. The states of the infiltration routine was included.  
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In the file “hbv_stack_test”, the namespace “infil” was set equal to 

“shyft::core::hbv_infiltration” in order to include the infiltration routine. The parameters were 

imported and the states were initialized.  

7.1.2 Basic infiltration routine 

To test whether the infiltration routine was properly implemented in SHyFT, a simple code was 

developed in the struct “calculator”. The files “hbv_soil” and “hbv_soil_test” were copied to 

separate files and they were modified to host the infiltration routine. A first edition of the 

infiltration routine was implemented and coded. The first edition contained only the parameter 

Os, the state O0, and the responses Freal and Runoff. In the file “hbv_infiltration” the struct 

“calculator” containing the function “step”, updated states and responses for each timestep. In 

this function, a simple code was developed as shown below.       

void step(S& s, R& r, shyft::core::utctime t0, shyft::core::utctime t1, double 
snow_out) { 
 r.Freal = param.Os*snow_out;  
       r.Runoff = 1; 
 s.O0 = 1; 

} 

The aim of this simple code was to verify that the hbv-stack, including the infiltration routine, 

was running without errors. In the file “hbv_infiltration_test” tests were implemented to ensure 

that the user does not run a simulation with invalid input data. Tests that would be true based 

on the calculations in the function “step” were made. SHyFT was built and run, and compiling 

errors where rectified.  

7.2 Implementation of the code 

When the hbv-stack was compiling without the code returning errors, the code described in 

section 6 was implemented. The struct “calculator” was implemented in “hbv_infiltration_test” 

and the namespace was set to “hbv_infiltration2”. Under TEST_CASE(“test_regression”) the 

line including the calculator was referring to the object “hbv_infiltration2” and not 

“hbv_infiltration”. This way, only the “hbv_infiltration_test” needed to be compiled and run 

during debugging, and the process went therefore faster.  

7.2.1 Modification of the code to match the SHyFT framework 

The structure of the code implemented in SHyFT is similar to the structure described in section 

6. However, the interpretation of time and the data handling mechanisms had to be changed to 

make the code fit the framework of SHyFT.  
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The interpretation of time is different in SHyFT and in the developed code. Precipitation data 

in the developed code is presented as a time independent data series. The code interpreter the 

time as a number and allocates the first data in the series the time number zero. For each new 

data, this number increases by a number given in hours, e.g. the second value in the precipitation 

data will get the number 0.00833 hours, which corresponds to half a minute. 

In SHyFT, time is also interpreted as a number. However, the number is date dependent. SHyFT 

uses the computer’s system clock that counts ticks from a decided starting time. Each tick is 

counted and the time number is given based on number of ticks since the starting time. A tick 

is equal to one second. When presenting a precipitation data in SHyFT, the date needs to be 

specified, so that SHyFT can decide the time number (how many ticks since starting time) it 

should allocate to this data.  

Because of the different interpretation of time in SHyFT and the developed code, the for loop 

used to control time and precipitation data described in section 6, was not applicable in SHyFT. 

Because the time and input water is handled outside the routine, the routine in SHyFT is like a 

function that takes input water data, calculates new states and responses, and returns them to 

the global HBV model. The response “snow_out” from the snow routine was used as the 

variable “precipitation” was used in the code.  

In the developed code, some calculations are separate classes and not included in “main”. In 

SHyFT this is not an option. Some of the classes were therefore implemented directly into the 

function “step”. Other classes which were called several times during “main”, were 

implemented as own functions before the function “step” and were called whenever needed. 

The code in SHyFT is further explained in section 7.3. 

In SHyFT, all variables are named with lower case letters and underscore between words. All 

the variables from the code where renamed to fit these rules.  

7.3 The structure of the code in SHyFT 

The struct “calculator” calls on the struct “parameter”, “states” and “responses” to get the 

current values and to be able to change the states and responses.  

The two classes “Infiltration_depth” and “soilMoisture” from section 6.2 are implemented as 

functions. Four functions describe the four different ways of calculating the infiltration depth 
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Z, as described in section 6.2.5,  while one function calculates the soil moisture content 𝜃 as 

described in section 6.2.6.  

The function “step” conducts all the other calculations and “step” is mainly a copy of “main” 

described in 6.1. However, the infiltration routine and the ponding routine are merged together 

and placed before the if statements. The if statements which decide the infiltration situation (see 

section 6.1) equals the if statements in the developed code.  

The classes “getPrecipitation” and “Parameters” are not needed in SHyFT. The precipitation is 

controlled by SHyFT and is introduced to the infiltration routine as the response variable from 

the snow routine called “snow_out”. The parameters are replaced by the struct “parameters”.   

7.4 Further work with SHyFT 

In the file “hbv_stack_cell_model”, the responses from the infiltration routine might have been 

implemented incorrectly. The result of this would be that the HBV model will misinterpret the 

runoff. If this is the case, the runoff will probably not contribute to the total runoff from the 

evaluated catchment.  

Because of problems with exposing the states stored as vectors, the struct calculator is still 

located in the file “hbv_infiltration_test”. The states need to be exposed properly so that all the 

files in SHyFT using states can read them. Then the struct “calculator” can be moved to the file 

“hbv_infiltration” where it should be located. 

To initialize parameters as equations that calculates values using other parameters was difficult 

to implement. The parameters ori, ki and hc were therefore initialized to the fixed value of the 

equation using the soil type loam. To run the simulations for other soil types, these parameters 

must be properly implemented. 

When the SHyFT has been compiled correctly with the infiltration routine properly included, 

the full HBV model should be tested for the same precipitation series as in Lai et al. (2015) to 

verify that the results from the infiltration routine match the results from the code. 

The changes in infiltration depth Z and soil moisture content 𝜃, is currently done by coded 

Runge-Kutta. There is available better and more stable Runge-Kutta functions. These would 

reduce the number of lines in the code and should be implemented.   
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Results and discussion 

8 The code’s performance 

To investigate the code’s performance, it was compared to results of GARTO method presented 

by Lai et al. (2015). Lai et al. (2015) compared results from GARTO to the results from FUCG 

RE. As explained in section 3.2.1, the RE method is considered to provide accurate results for 

infiltration simulations. Only comparing the results from the developed code against the 

GARTO model, and not against FUGG RE could cause cumulative error Nevertheless, the aim 

of the developed code is to reproduce the GARO model and the Lai et al. (2015) present more 

results for the GARTO method than for RE. To limit the study scope while at the same time 

comparing to as many results as possible, the results from the code are compared only to the 

results of GARTO.  

The code where tested against the soil types loam, clay, and sand. Comparison of sand is only 

briefly presented. Soil properties for the three soils are listed in table 8.1.  

Table 8.1 Soil properties.    

Soil type 𝜽𝒓 𝜽𝒔 𝜽𝒊 

0.117 

𝝍𝒃 𝝀 𝑲𝒔 

Loam 0.027 0.434 11.15 0.252 1.32 

Clay 0.090 0.385 0.272 37.30 0.165 0.06 

Sand 0.020 0.417 0.033 7.26 0.694 23.56 

Green Roof 0.120 0.400 0.2302 8.00 0.600 43.928 
 

 

Clay does have a low saturated conductivity, which means that rain water will pond with lower 

intensities. Sand has a high saturated conductivity which means that it ponds only on high 

rainfall intensities. Loam is between these two.  

The developed code was compared to results from two scenarios in GARTO, test 1 and test 2, 

and results from a green roof in Trondheim. In test 1, a comparison of done both infiltration 

rate and infiltration depth where done.    

8.1 Test 1  

Test 1 describes rainfall sequences with two rainfall pulses, both with steady rainfall. The same 

rainfall event as used by Lai et al. (2015) was applied on the developed code. See Table 8.2 for 

duration and rainfall intensities for the rainfall events.  
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Tabell 8.2 Duration and rainfall intensity, Test 1 

Soil Pulse Rainfall rate (cm/h) Starting time (h) Duration (h) 

Loam 1 4 0 1 

 2 4 3 1 

Clay 1 1 0 1 

 2 1 3 1 
 

 

8.1.1 Infiltration rate 

The developed code gives the same infiltration pattern as the results from Lai et al. (2015) (see 

figure 8.1). In the beginning of each rainfall event, the infiltration capacity exceeds the rainfall 

rate for both loam and clay, hence the infiltration rate equals the rainfall rate. When the soil 

gets saturated the infiltration capacity drops below the rainfall rate and the infiltration rate starts 

decreasing. Infiltration continues until the rainfall event stops and the ponded water is 

infiltrated.   

The code GARTO 

 
 

Time(h) Time(h) 

  

Time(h) Time(h) 

Figure 8.1 Test 1: Infiltration rate with ponding 

Loam on the top and clay at the bottom. Dotted line is RE FUCG (Lai et al., 2015) 
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For the first rainfall event, the decreasing part of the infiltration rate curve is smooth for both 

loam and clay. For the second rainfall event, a sharp edge can be observed at one point for both 

loam and clay. For loam this sharp point is evident both in the results form Lai et al. (2015) and 

the code. By analysing the data set, it was found that this point corresponds in time with the 

merging of two wetting fronts.  

Evaluation of Green-Ampt (equation 4) can give a possible explanation of this sharp point. The 

considered developing wetting front before the merging contains little infiltrated water F. 𝜃0 −

𝜃𝑖, expressed as ∆𝜃 is low. Over the timestep where two wetting fronts are merged, 𝜃𝑖 will 

change to be the soil moisture content of wetting front (k-2), not (k-1) as before the merge. The 

value of 𝜃𝑖 decreases. F in wetting front k and F in wetting front (k-1) must be summed and 

considered as F for the merged wetting front. For the initial wetting front, before merging, the 

capillary forces were a large portion of the downward forces. A larger F and a large ∆𝜃 makes 

the capillary forces small relative to the gravity forces. The infiltration capacity is dependent 

on the forces that are pulling the wetting front down. The gravity force is constant. The capillary 

force decreases when the depth and ∆𝜃 increases. This makes the change in infiltration capacity 

decrease when two wetting fronts are merged.   

There are two sharp points at the graph for loam in the results from Lai et al. (2015). This is 

however not the case for the results from the developed code. Lai et al. (2015) do not provide 

a detailed enough description of their results for further evaluation of this difference.  

8.1.2 Wetting front depth 

The wetting front depth obtained by the developed code and by Lai et al. (2015) for one hour, 

three hours and six hours are compared in figure 8.2. 
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 The code GARTO 

 

 

 
 

 

 
 

Figure 8.2 Test 1: Wetting front infiltration depth (Lai et al., 2015)  

Figure 8.2 indicate that the developed code produces similar wetting front depths as the results 

by Lai et al. (2015). However, the authors have only presented the graphs of the infiltration 

depths (as shown in figure 8.2), but not more detailed data. For further evaluating the accuracy 

of the developed code regarding wetting front depth, more detailed data for comparison would 

have been needed. 

8.1.3 Overall results from Test 1 

Table 8.3 presents a comparison of results from Lai et al. (2015) and from the developed code. 

Time of ponding and deponding, and accumulated infiltrated water depth F is presented for 

loam, clay, and sand.     
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Table 8.3 Comparison of results from Lai et al. (2015) and the developed code for loam, clay, sand 

 
Soil 
type 

Rainfall 
pulse 

Total 
rain 
[cm] 

Start 
time 
[h] 

Stopping 
time [h] 

Time ponding 
[h] 

Time 
deponding [h] F [cm] 

     GARTO Result GARTO Result GARTO Result 

Loam 1 4.0 0 1.00 0.686 0.683 1.043 1.042 3.862 3.860 

 2 4.0 3 4.00 3.185 3.175 4.442 4.450 2.967 2.945 

Clay 1 4.0 0 1.00 0.458 0.450 1.281 1.300 0.851 0.844 

 2 4.0 3 4.00 3.105 3.108 5.510 5.633 0.522 0.505 

Sand 1 12.5 0 0.25 0.066 0.058 0.318 0.325 10.331 10.219 

 2 12.5 3 3.25 3.031 3.025 3.377 3.400 8.916 8.987 
 

  

Time of ponding, time of deponding, and infiltrated water depths match the results from Lai et 

al. (2015) with high accuracy (Table 8.3). The largest deviation is on the deponding time for 

clay after the second rainfall pulse (7,38 minutes). Since the data set only considers two wetting 

fronts, evaluation of whether there is a cumulative error over time could not be done.  

8.1.4 Ponding 

In nature, ponding is a delayed process, means ponding will only occur a while into a rainfall 

event, unless the soil is fully saturated. Ponding will also occur a while after the rainfall event, 

depending on the soil’s infiltration capacity and amount of ponded water. Figure 8.3 shows that 

results produced by the code corresponds with the nature of ponding.  

  

Loam clay 

Figure 8.3 Test 1: 

Ponded water for clay and loam  

For both loam and clay, the two rainfall events start at time zero, and last for one hour. Ponding, 

however, does start a while into the rainfall event, as shown Figure 8.3 and in Table 8.3. For 
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rainfall event two, the soil has a higher soil moisture content because the water from event one 

has filled the pores. This leads to decreased infiltration capacity as shown in Figure 8.1, which 

again leads to more ponding during event two. The deponding time will shift to the right because 

more water needs to be infiltrated after the rainfall stops, as shown in figure 8.3 and in Table 

8.3.  

8.1  Test 2 

Test 2 represents rainfall sequences with five rainfall pulses all with steady rainfall. As for Test 

1, is same rainfall event as used by Lai et al. (2015) was applied on the developed code. The 

start time (ti), the duration (di) and the rainfall rate (4 cm/h) for each rain pulse are shown in 

table 8.4. Unlike for test 1, excess rainfall is not allowed to pond but is directly becoming runoff. 

Excess runoff is this way removed from further infiltration calculations. 

Tabell 8.4 Start of rainfall event (ti) and duration (di) 

Soil Rainfall rate t1 d1 t2 d2 t3 d3 t4 d4 t5 d5 

Loam 4 0 2 20 0.5 21 1 40 1 41.5 0.5 

Clay 1 0 2 20 0.5 21 1 40 1 41.5 0.5 
 

 

8.1.1 Infiltration rate 

The infiltration rate obtained by the developed code and by Lai et al. (2015) was compared for  

loam and clay as shown in Figure 8.4 - Figure 8.5   
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Time(h) 

Figure 8.4 Infiltration rate in loam. 

Produced results on the top and results from Lai et al. (2015) on the bottom (Lai et al., 2015)  
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  Time (h) 

Figure 8.5 Test 2: Infiltration rate in clay. 

Produced results on the top and results from Lai et al. (2015) on the bottom (Lai et al., 2015)  

The sharp point discussed for test 1 is also present were two wetting fronts meet in the results 

produced by the code (Figure 8.4 - Figure 8.5). However, the point cannot be spotted in the 

graphs provided by Lai at al. (2015)  

This might be because no wetting fronts merge during the rainfall event in the study by Lai et 

al. (2015). This does, however, seem unlikely considering that the results from Lai et al. (2015) 

and the developed code agree on the merging point in test 1.  

A more likely explanation is that the calculation of infiltration rate over the merging of two 

wetting fronts is done differently in the developed code and in in the study presented by Lai et 

al. (2015). The authors do not provide a detailed description of how the infiltration rate changes 

when two wetting fronts merges. An indication that the calculations might have been conducted 

differently is the fact that there are discontinuities in the infiltration rate curves in the results 

from the developed code. Discontinuities in the infiltration rate curve can be seen for both clay 

and loam. The reason for the discontinuity is not identified. However, investigations on this is 

recommended as part of further development of the code.   
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8.1.2 Runoff predictions test 2 

In nature, expected runoff will increase with increased soil moisture content. Soil moisture 

content and corresponding runoff, simulated by the code, is shown in Figure 8.6. The results 

correspond with the expected natural response. 

 

(a) 

 

(b) 

Figure 8.6 Runoff prediction and soil moisture content for loam test 2 

Precipitation event in pulse two and five has the same precipitation rate and duration. However, 

as seen in Figure 8.6.b, the soil moisture content before pulse two is at around 0.3, while it is at 

around 0.4 for pulse five. The runoff for pulse two reach a maximum of 1 cm/h while the runoff 

for pulse five reaches 2 cm/h as shown in Figure 8.6.a. The same results can be found for pulse 

three and four, but it is not as clear.  

8.1.3 Number of wetting fronts 

Test 2 with five rainfall pulses will at some stages during the simulations have three wetting 

fronts in addition to the initial wetting front. Figure 8.7 shows the soil moisture profile at one 

of these stages. 
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Figur 8.7 Soil moisture profile for loam after 42,5 hours, test 2 

The code does operate with state vectors, holding four elements. Any precipitation series 

causing more than three wetting fronts plus initial wetting front, would not be possible to run 

for the code. It would be possible to apply a similar approach as in GAR, where two wetting 

fronts are merged if the amount of wetting fronts exceeds a certain number (Ogden and 

Saghafian, 1997). However, the computational costs of having vectors with no limits on number 

of elements, should not be too high. A natural wetting front would have a curved shape as 

shown in Figure 3.2. In comparison, Figure 8.7 is a rough reproduction of this curve. An 

advantage of increasing the number of elements in the vectors would be to produce a smoother 

curve than in Figure 8.7. This would make the simulations more accurate. Missing programming 

skills early in the process is the reason for why this not being implemented. 

8.2 Comparison against Green Roof 

Precipitation data and soil moisture data gathered from a green roof in Trondheim was 

compared to simulations of the code. The green roof was ten cm. thick with free drainage under 

the soil. The precipitation rate varied between 0.98 cm/h and 2.7 cm/h and lasted for ten 

minutes.   

Soil properties are shown in table 8.1. Field measurements decided saturated conductivity Ks. 

Initial soil moisture content 𝜃𝑖 was set equal to the measured soil moisture content in the 

beginning of the rainfall. Bubbling pressure 𝜓𝑏, pore distribution index 𝜆 and saturated soil 

moisture content 𝜃𝑠 were guessed by comparing the soil type of the green roof to the soils 

presented in Lai et al. (2015).  
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Figure 8.8 Soil moisture content green roof and infiltration routine 

The code produces good prediction of the increase in soil moisture content during the rainfall 

event as shown in figure 8.8. However, during redistribution, the soil moisture content decreases 

too fast compared to the green roof.  

A possible explanation could be connected to the thickness of the roof. The code simulations 

consider infinitively deep soil columns, while the green roof is only ten cm. thick. When the 

water in the green roof reaches the bottom of the soil, capillary forces will try to pull the water 

back up into the soil, like a sponge will hold the water inside. For the soil column, capillary 

forces will work the opposite way. Below the wetting front, the soil moisture content is less 

than in the wetting front. Therefore, the dry soil will create capillary forces pulling the water 

downwards.  

For further studies of the code performance on real situations, there should be conducted tests 

on a deeper soil column, and preferably a denser soil. This would force the soil moisture to 

move slower through a longer soil column and the simulations would have the same conditions 

as the test soil for a longer period.   
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8.1 Sensitivity analysis of parameters  

The land use and soil type are important factors for deciding the infiltration capacity. As implied 

in section 4.2.1, the input parameters for the infiltration routine can be decided either by field 

measurements or by gathering the parameters from literature data based on the soil type. 

Uncertainties are present in both these methods. 

For field measurements, the main uncertainty is a result of great variation of the surface cover 

and soil types in urban catchment (Mein and Larson, 1973). Parameters gathered from the 

literature will in addition have uncertainty connected to misinterpreting of which soil types are 

present in the evaluated catchment. A brief uncertainty analysis of the five parameters is 

therefore conducted to investigate the consequence of choosing wrong parameters.  

Loam was chosen as test soil and the conditions in test 1 was applied. Each parameter was 

tested separately while the other parameters remained unchanged. A certain percentage increase 

and a percentage decrease in value were tested for each parameter. The applied percentage 

change varied for the parameters. The aim was to reflect the natural variation of the parameter 

between soil types and at the same time not produce errors that are too significant. Table 8.5 

presents the results. The analysis was conducted looking at cumulative infiltrated water depth 

F. The result of a high F value would result in low ponding or runoff making F a suitably 

parameter to look at.          

Tabell 8.5 Sensitivity analysis on the parameters  

Parameter/  Pulse Decrease Increase 

Change in %  F [cm] e (%) F [cm] e (%) 

Ks 1 3.186 -17.465 4.000 3.627 

+20%/-20% 2 1.985 -32.594 3.932 33.510 

𝝍𝒃 1 3.460 -10.360 3.998 3.572 

+40%/-40% 2 2.469 -16.179 3.321 12.769 

𝝀 1 3.809 -1.328 3.904 1.137 

+40%/-40% 2 2.906 -1.328 2.985 1.358 

𝜽𝒔 1 3.813 -1.211 3.900 1.041 

+5%/-5% 2 2.878 -2.279 3.018 2.484 

𝜽𝒊 1 3.952 2.375 3.715 -3.762 

+50%/-50% 2 3.109 5.566 2.778 -5.670 

𝜽𝒓 1 3.860 0.012 3.860 0.012 

+300%/-90% 2 2.958 0.450 2.926 -0.662 
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The infiltrated water depth F is most sensitive to the saturated hydraulic conductivity Ks. 

Considering that the saturated conductivity varies greatly in nature, a 20% margin of error 

should be accepted of the user. However, up to 33.5% less water would infiltrate if the Ks is 

misinterpreted with 20%. On the other hand, F is less sensitive to changes in the other variables.  

8.2 Steady state rainfall 

The infiltration routine was coded with the method of combining GA and Mein and Larson 

(GAML) (Mein and Larson, 1973). GAML use steady state rainfall, which means that Pe is 

constant throughout the rainfall event. This is rarely the case in nature. A natural rainfall event 

normally follows a curve with increasing intensity until it reaches a peak, before it drops 

gradually. The results presented are generated for steady state rainfall events. For a natural 

rainfall event the code would consider the rainfall intensity for the last timestep as the steady 

state rainfall, regardless of the intensities of earlier rainfall intensities. Nevertheless, the code 

managed to predict the increase in soil moisture content in the green roof in section 8.2 even 

though the rainfall intensity varying.  

For further work, two solutions are suggested. Solution (1) is to continuously calculate an 

average precipitation rate (PeA), including all the previous timesteps in the precipitation event 

during situation B, Figure 3.1. A suggestion on how the average precipitation rate could be 

calculated is presented in Equation 18: 

 

PeA =
PeA ∗ (

time − deltatime − timestep
timestep ) + Pe

time − deltatime
timestep

 (18) 

 

Where Pe is precipitation rate, deltatime is the time of the beginning of the precipitation event 

and timestep are the time intervals. This precipitation rate can then be used as a “dynamic” 

steady rainfall rate to calculate tp and Fp in each timestep.  

Solution (2) is to investigate the modified versions of GAML which allow unsteady rainfall 

being used (e.g. Chu, 1987). If modifications like solution (1) or (2) are done, the results should 

be validated against field tests to assess whether it improves the stability of the results.  
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9 Performance of the infiltration routine in SHyFT 

In the following section the results produced in SHyFT is compared to the results produced by 

the code. The Infiltration curve, water depths, ponding deponding times, and total infiltrated 

water are compared. The precipitation series presented in table 8.2 and the soil type loam is 

used for the simulations. 

  

  

SHyFT The code 

Figure 9.1 Infiltration curve and infiltrated depth in SHyFT compared to the code 

Both the infiltration curve and the infiltrated water depth follows the same pattern in SHyFT 

and in the code (Figure  9.1). In the code, the unit of length is (cm). During the process, it was 

discovered that it would have been easier to use the SI unit (mm), so a transition could be 

preferable for further use of the code. SHyFT, However, operates with (mm) which explains 

why the unit is different on the infiltration curves. On the depth curves, Both the graphs are 

presented in the SI unit (m). 
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Tabell 9.1 Comparison of ponding and deponding time and infiltrated water depth   

 
Soil 
type 

Rainfall 
pulse 

Total 
rain 
[cm] 

Start 
time 
[h] 

Stopping 
time [h] 

Time ponding 
[h] 

Time 
deponding [h] F [cm] 

     SHyFT Code SHyFT Code SHyFT Code 

Loam 1 4.0 0 1.00 0.692 0.683 1.042 1.042 3.860 3.860 

 2 4.0 3 4.00 3.200 3.175 4.467 4.450 3.089 2.945 
 

 

Ponding time, deponding time and total infiltrated water depth F is predicted similar by SHyFT 

and the code (Table 9.1). However, SHyFT do calculate the values somewhat different. If this 

is an error, or if it is due to some minor differences in how the code is implemented is hard to 

tell. SHyFT is only tested for this one soil type and precipitation series. Further tests are 

recommended to validate the accuracy of SHyFT. These tests will probably also tell if the 

differences in table 9.1 is neglectable.  
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Conclusion 

The study was conducted to evaluate the performance of a full hydrological model with an 

implemented infiltration routine, with the goal of improving hydrological runoff predictions in 

urban catchments. This was done by developing a code for an infiltration routine in C++. The 

code was further implemented into the HBV model in SHyFT.   

Despite small differences in the shape of the infiltration rate curve when comparing to the 

results form Lai et al. (2015), the overall performance of the code is good. The comparison 

against observed data from a green roof showed that increase in soil moisture content is well 

predicted, while the decrease is overestimated. The runoff and ponding prediction corresponds 

to the expectation of how these responses behave.  

The most sensitive variable was found to be the saturated hydraulic conductivity, Ks. It was 

further found that choosing a wrong Ks affects the results significantly (20% change in Ks gave 

up to 33% change in F). 

The code is concluded to describe infiltration well. With some further development, the code is 

promising for implementation and use in the HBV model. Further work is suggested on: 

• Implementing a ground water table as explained in the Lai et al. (2015). This would 

make the code able to predict infiltration for more scenarios.  

• Lai et al. (2015) is also working on a layered GARTO model. When this is available, it 

should be implemented.  

• Implementing state vectors handling an indefinite number of wetting fronts. 

• Testing SHyFT for more scenarios and debugging any errors that have not yet been 

discovered.  

• Conducting real infiltration measurements to validate the performance of the code, and 

develop the code to handle errors that might occur.  

• Implementing the code fully in the HBV model and test the new version of the HBV 

model against real catchments. How the runoff from the infiltration routine should be 

handled in the HBV model needs to be decided. How an urban catchment should be 

divided into cells should be investigated.  
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Appendix A: User manual 

To run the code for a new soil type. Follow the steps below 

1) Open the main.cpp file. This will open the entire project. CodeBlocks is used to develop 

the program 

2) Go to the header-file “Parameters.h”. In this file, all the soil specific parameters and 

properties are listed. Change them to the wanted soil properties. 

3) Change the ponding conditions to “Yes” if runoff water can pond, or “No” if it cannot.  

4) Change the name to the name of the file where the precipitation data is stored (default 

“Precipitaion.txt”). This file needs to be in the same folder as all the other project files.  

5) Changes in the depth of initial soil column can be done in main where the depth is 

initialized. 

6) Create a precipitation series. Go to the file specified as the precipitation file. It is easiest 

to make a precipitation series in excel and copy-paste this series into the precipitation-

file. The file needs to have space-separated precipitation data and points are used as 

decimal separator. 

7) Build and run the code. A window will open and display output data specified in the 

end of “main”. 

8) Use the excel-sheet analyse data Master to evaluate the full result. Open the document, 

go to data, click update data and import. The new data will automatically be imported 

to the excel document form the file “Output.txt”.     
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Appendix B: The code  

Main 

#include <iostream> 
#include <fstream> 
#include <cmath> 
#include <windows.h> 
//Includes the classes 
#include "soilMoisture.h" 
#include "getPrecipitation.h" 
#include "Parameters.h" 
#include "Infiltration.h" 
#include "Infiltration_depth.h" 
#include "Ponding.h" 
 
using namespace std; 
 
int main() { 
 //Allows the program to print to the file "Output", and sets print precision = 3 
decimals 
 ofstream theFile("Output.txt"); 
 std::cout.precision(3); 
 //Allows the program to enter classes, and name class objects 
 getPrecipitation number; 
 Parameters Par; 
 Infiltration Ff; 
 soilMoisture output; 
 Infiltration_depth getZ; 
 Ponding Pond; 
 //Runs through the precipitation file and reads the length of file 
 number.setLength(); int length = number.getLength(); 
 //Stores the Pe array and reads from file Precipitation 
 char filename[50];      //initialize a variable of type char to store the filename 
 filename[50] = Par.getfilename(filename);  //The function "getfilename" returns the 
file name from "Parameters" and Stores the file name as a char "filename" 
 ifstream fp;                //Makes an input file stream class 
 fp.open(filename);          //Opens the file named in the variable "filename" 
 float Prec; 
 float Pe[length];       //Creates a precipitation vector with the length "length" 
 int j = 0; 
 while (fp.good()) {     //While-loop runs through the file "filename" until the end 
  fp >> Prec;             //Each data is stored as "Prec" 
  Pe[j] = Prec;           //Stores Precipitation value in a vector 
  j++;                    //increase the value of j with one 
 } 
 fp.close();                 //Closes the file "filename" 
        //INITIALIZTION; 
 float ORi = Par.getORi(), Hc = Par.getHc(), Yb = Par.getYb(), lambda = 
Par.getlambda(), timestep = Par.getTimestep(); //Gets parameters from the class "Parame-
ters"  
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float time = 0; 
 float Oi = Par.getOi(), Os = Par.getOs(), Ks = Par.getKs(), Ki = Par.getKi(), Or 
= Par.getOr(); //Gets parameters from the class "Parameters" 
 float Freal = 0; 
 float deltaF = 0; 
 float f = 0; 
 float ftest = 0; 
 float O0[4] = { 0 }; O0[0] = Oi; 
 float OR0[4] = { 0 }; OR0[0] = ORi; 
 float K0[4] = { 0 }; K0[0] = Ki; 
 float Z[4] = { 0 }; Z[0] = 10; 
 int k = 0; 
 float ponding = 0; 
 float Runoff = 0; 
 float PeL = 0; 
 Par.geterror();  //Checks if it is an error in the input values in "Parameters" 
 //STARTS THE FOR LOOP 
 for (int i = 0; i < length; i++) { runs through each precipitation data 
  //If I want to slow down the output 
  Sleep(0);                   
  // changes the time in steps of timestep 
  time = time + timestep;     //Increases time with one timestep 
  //changes k if a new wetting front is formed 
  if (Pe[i] > Ks && PeL < Ks && O0[k] < Os) {       
   k++;   //Number of wetting fronts "k" is increased by one 
  } 
//Calculates advance and controls the water demand for wetting front (1 to k-1) 
  //Creates a vector controlling water demand for wetting front 1-(k-1) 

float Pek[4] = { 0 };  
//Creates a vector controlling volume for wetting front 1-(k-1) 
float Vzk[4] = { 0 };   
float PeR = Pe[i];          //Creates a variable for residual rainfall 

  for (int j = 1; j < k; j++) {         //For wetting front 1-(k-1) 
   Vzk[j] = Z[j] * (O0[j] - O0[j - 1]);  //Check initial water volume 
   getZ.setZKn(K0[j], K0[j - 1], O0[j], O0[j - 1], Z[j], OR0[j], 
OR0[j - 1]);  //Get new depth value 
   Z[j] = getZ.getZKn(); 
   //Water demand is new volume - initial volume Vzk 

Pek[j] = (Z[j] * (O0[j] - O0[j - 1]) - Vzk[j]);   
   //Residua rainfall = rainfall - water demand all wetting fronts 

PeR = PeR - Pek[j] / timestep;     
  } 
//Gets "f", "ftest", "Freal", "deltaF", and "error" form the class "Infiltration" 
  Ff.setFf(time, Pe[i], ponding, k, O0[k - 1], i); 
  f = Ff.getf(); 
  ftest = Ff.getftest(); 
  Freal = Ff.getF(); 
  deltaF = Ff.getdeltaF(k); 
//Considers if the area have free surface runoff or if Ponding occurs 
  //Calculates "ponding" and "Runoff" from the class "Ponding" 

Pond.setPonding(f, Pe[i], timestep, i);   
  ponding = Pond.getPonding(); 
  Runoff = Pond.getRunoff();  
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//New................................................................................. 
  //If "Pe" > Ks and a new wetting front is formed --> situation New 

if (Pe[i] > Ks && PeL < Ks && O0[k] < Os) {   
   getZ.setZK0(O0[k - 1], OR0[k - 1]);  //new depth equals dry depth 
   Z[k] = getZ.getZK0(); 
   if (Pe[i] > ftest) {   //"Pe" is higher than infiltration capacity 
    O0[k] = Os;     //the soil is saturated 
   } 
   else { //else get soil moisture content 
    output.setO0(Z[k], PeR, O0[k - 1], OR0[k - 1]);     
    O0[k] = output.getO0(); 
   } 
  } 
  else { 
//C................................................................................... 
   if (Pe[i] >= ftest) { //if "Pe" higher than infiltration capacity 
    getZ.setZs(O0[k - 1], Z[k]);    //get new depth 
    Z[k] = getZ.getZs(); 
    O0[k] = Os;                     //The soil is saturated 
   } 
//B................................................................................... 
   float O0test = O0[k];       //Creates a test variable "O0test" 
   float Ztest = Z[k];              //Creates a test variable "Ztest" 
   if (Pe[i] < ftest && Pe[i] >= Ks) {   //If Pe > ks but less than  
    //Creates a test variable "Ftest" 

float Ftest = Freal - deltaF - f*timestep;  
    //Runs if "Ftest" is less than the infiltrated water volume 

while (Ftest < Freal - deltaF) {      
     //increase "O0test" in small steps 

O0test = O0test + 0.0001;  
     getZ.setZK1(K0[k], O0test, O0[k - 1], Z[k], OR0[k], 
OR0[k - 1]); //Get new depth with new O0test as input 
     Ztest = getZ.getZK1(); 
     //Calculate new "Ftest" volume 

Ftest = Ztest*(O0test - O0[k - 1]);  
  } 

    Z[k] = Ztest;   //New depth is set to "Ztest" 
    O0[k] = O0test; //New soil moisture content = "O0test" 
   } 
//A................................................................................... 
   if (Pe[i] < Ks) {                 //If "Pe" < "Ks" --> Situation A 
    if (ponding > 0) {         //If still ponding --> situation 
C 
     getZ.setZs(O0[k - 1], Z[k]);   //New depth 
     Z[k] = getZ.getZs(); 
     O0[k] = Os;          //The soil is fully saturated 
    } 
    else { 

//Creates a test variable "Ftest" 
float Ftest = Freal - deltaF - 0.001;  
//Runs if "Ftest" is less than infiltrated water 

volume 
while (Ftest < Freal - deltaF) {    

      //increase "Ztest" in small steps 
Ztest = Ztest + 0.001;        

      //Get new "O0" with new O0test as input 
output.setO0(Ztest, PeR, O0[k], OR0[k - 1]);  

      O0test = output.getO0(); 
      //Calculate new "Ftest" volume 

Ftest = Ztest*(O0test - O0[k - 1]);  
     } 
     Z[k] = Ztest;     //New depth is set to "Ztest"  
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     Z[k] = Ztest;     //New depth is set to "Ztest" 
     //New soil moisture content is set to "O0test" 

O0[k] = O0test;    
    } 
   } 
//..........merges to wetting fronts if they reach the same level................... 
   if (Z[k] > Z[k - 1] && k > 0) {            
    Z[k - 1] = ((O0[k] - O0[k - 1])*Z[k] + (O0[k - 1] - O0[k - 
2])*Z[k - 1]) / (O0[k] - O0[k - 2]); //New depth of both wetting fronts 
    //New soil moisture content of both wetting fronts 

O0[k - 1] = O0[k];                     
    //deletes last wetting front because of merging to one 

Z[k] = 0, O0[k] = 0, K0[k] = 0, OR0[k] = 0;  
    k--;      //Number of wetting fronts "k" is reduced by one 
   } 
  } 
//OR0 is set using the new calculated soil moisture content 

OR0[k] = (O0[k] - Or) / (Os - Or);            
//New K0 by using new calculated relative volumetric soil moisture content 

K0[k] = Ks*pow(OR0[k], 3 + 2 / lambda);    
  //PRINTS TO SCREEN 
  std::cout << "time " << time; 
  std::cout << ": Pe " << Pe[i]; 
  std::cout << ": k " << k; 
  std::cout << ": Z[1] " << Z[1]; 
  std::cout << ": O0 " << O0[k]; 
  //PRINTS TO FILE 
  std::cout << std::fixed << endl; 
  theFile << time << " " << Pe[i] << " " << Freal << " " << f << " " << 
ftest << " " << Z[0] << " " << Z[1] << " " << Z[2] << " " << Z[3] << " " << O0[0] << " 
" << O0[1] << " " << O0[2] << " " << O0[3] << " " << OR0[0] << " " << OR0[1] << " " << 
OR0[2] << " " << OR0[3] << " " << K0[0] << " " << K0[1] << " " << K0[2] << " " << 
K0[3] << " " << Pek[0] << " " << Pek[1] << " " << Pek[2] << " " << ponding << " " << 
Runoff << " " << endl; 
 //Stores last Precipitation for use to check if new wetting front is formed 

PeL = Pe[i];   
 } 
 //PRINTS INITIAL VALUES TO SCREEN 
 cout << endl << "length of file = " << length << endl << "time = " << time << 
endl << "timestep = " << timestep << endl << "Ks = " << Ks << endl << "Ki = " << Ki << 
endl << "Hc = " << Hc << endl << "Yb = " << Yb << endl << "lambda = " << lambda << 
endl << "Os = " << Os << endl << "Oi = " << Oi << endl << "Or = " << Or << endl << 
"ORi = " << ORi << endl << endl; 
 theFile.close();                    //Closes the output file 
}  
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Infiltration 

Infiltration.h 

#ifndef INFILTRATION_H 
#define INFILTRATION_H 
class Infiltration 
{ 
public: 
 float setFf(float time, float Pe, float ponding, int k, float O0L_, int i); 
 float getf(); 
 float getF(); 
 float getftest(); 
 float getdeltaF(int k); 
 
private: 
 float F = 0; 
 float f;                //Actual infiltration rate at all times 
 float ftest;            //Potential infiltration rate at all times 
 float deltatime = 0;    //The time when last wetting front started 
 float deltaF[4] = { 0 };  //A vector that stores infiltrated water for wetting 
front 0-k 
 float ktest = 0;        //Test variable to check if a new wetting front is created 
 float Ftest1;           // 
 float Ftest2; 
 float Fpot; 
 float O0L; 
}; 
#endif // INFILTRATION_  
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Infiltration.cpp 

#include <iostream> 
#include <cmath> 
#include "Infiltration.h" 
#include "Parameters.h" 
 
using namespace std; 
 
Parameters param; 
 
float Infiltration::setFf(float time, float Pe, float ponding, int k, float O0L_, int i) { 
 //Gathers parameters from the class "Parameters" 
 float Hc = param.getHc(); 
 float Ks = param.getKs(); 
 float Os = param.getOs(); 
 float timestep = param.getTimestep(); 
 
 float Fp; 
 float tp; 
 float t = 0; 
 float Ftest; 
 
 if (i == 0) { 
  O0L = O0L_; 
 } 
 //Calculates infiltration capacity if the precipitation rate would be high enough 
 if (k > ktest) { 
  deltatime = time; 
  deltaF[k] = F; 
  ktest = k; 
  O0L = O0L_; 
 } 
 else if (k < ktest) { 
  ktest = k; 
  O0L = O0L_; 
 } 
 Ftest1 = F - deltaF[k] + Pe*timestep; 
 ftest = Ks*((Hc*(Os - O0L)) / Ftest1 + 1); 
 
 Fp = (Hc*Ks*(Os - O0L)) / (Pe - Ks); 
 tp = Fp / Pe; 
 Ftest = F - deltaF[k]; 
 
 if (Pe > 0 && Pe < Ks) { 
  F = F + Pe*timestep; 
  f = Pe; 
 } 
 else if (tp < timestep && Pe > ftest) { 
  //iterates Fpot against Ftest similar to the way they do it in GA 

while (Fpot < (Ftest2 - 0.0001)) {     
if (Fpot < Ftest2) {               

    // adds a small sum to Fpot until Fpot is 0,001 from Ftest 
Fpot = Fpot + 0.00011;       

    Ftest2 = Ks*(time - deltatime + timestep) + Hc*(Os - 
O0L)*log(1 + (Fpot / (Hc*(Os - O0L)))); 
   } 
  }  
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  F = F + Ftest2; 
  f = Ks*((Hc*(Os - O0L)) / (F - deltaF[k]) + 1); 
 } 
 else if (Pe > Ks) { 
  while (t < time - deltatime + timestep) { 
   Ftest = Ftest + 0.0001; 
   t = tp + (1 / Ks)*(Ftest - Fp + Hc*(Os - O0L)*log((Hc*(Os - O0L) + 
Fp) / (Hc*(Os - O0L) + Ftest))); 
  } 
  if (t <= tp) { 
   F = F + Pe*timestep; 
   f = Pe; 
  } 
  else { 
   F = F + f*timestep; 
   f = Ks*((Hc*(Os - O0L)) / (F - deltaF[k]) + 1); 
  } 
 } 
 else if (ponding > 0) { 
  F = F + f*timestep; 
  f = Ks*((Hc*(Os - O0L)) / (F - deltaF[k]) + 1); 
 } 
 else { 
  f = 0; 
 } 
} 
float Infiltration::getF() { 
 return F; 
} 
float Infiltration::getf() { 
 return f; 
} 
float Infiltration::getftest() { 
 return ftest; 
} 
float Infiltration::getdeltaF(int k) { 
 return deltaF[k]; 
}  
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getPrecipitation 

getPrecipitation.h 

#ifndef PRECIPITATIONDATA_H 
#define PRECIPITATIONDATA_H 
 
 
class getPrecipitation 
{ 
public: 
 float setLength();  //Calculates the length of the precipitation file 
 int getLength();    //returns the length 
 
 
private: 
 int length;         //Stores the length 
}; 
 
#endif // PRECIPITATIONDATA_H  
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getPrecipitation.cpp

#include <fstream> 
#include <iostream> 
#include <cstdlib> 
#include "Parameters.h" 
#include "getPrecipitation.h" 
 
using namespace std; 
 
Parameters parame; 
 
float getPrecipitation::setLength() { 
 char filename[50];         //Creates a variable "filename" of type char 
 filename[50] = parame.getfilename(filename);  //Get filename from "Parameters" and 
Stores the file name in "filename" 
 ifstream fp;               //Makes an input file stream class called fp 
 fp.open(filename);         //Opens the filename given to the variable filename 
 if (!fp.is_open()) {       //If file was not properly opened 
  cout << "ERROR: The typed file does not exist in the right folder" << endl;    
//Error message returned if the file was not opened 
  exit(EXIT_FAILURE); //Exits the program if the file was not properly opended 
 } 
 int x = 0;                 //Initialize the a counting variable "x" to zero 
 float Prec;                //Initialize a variable "Prec" to receive data from fp 
 float Ks = parame.getKs(); 
 while (fp.good())          //Runs as long as there is data in 
 { 
  fp >> Prec; 
  if (Prec > 0 && Prec < 0.00000001) {     //if "Prec" has to many decimals 
   cout << "ERROR: Precipitation data at time " << (x + 1)*0.008333 << 
"h has more than 8 decimals" << endl; //Error message returned 
   exit(EXIT_FAILURE);                //Exit the program 
  }if (Prec < 0) {                         //if "Prec" has a negative value 
   cout << "ERROR: Precipitation data at time " << (x + 1)*0.008333 << 
"h is < 0" << endl; //Error message returned 
   exit(EXIT_FAILURE);        //Exit the program 
  } 
  x++;                //counts the number of data 
 } 
 length = x;                //store the length of the file in the variable "Length" 
 fp.close();                //closes the file 
} 
int getPrecipitation::getLength() { //returns the length to main 
 return length; 
}  
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Infiltration_depth 

Infiltration_depth.h

#ifndef INFILTRATION_DEPTH_H 
#define INFILTRATION_DEPTH_H 
 
 
class Infiltration_depth 
{ 
public: 
 float setZKn(float K0, float K0L, float O0, float O0L, float Z_, float OR0, float 
OR0L); 
 float setZK1(float K0, float O0, float O0L, float Z_, float OR0, float OR0L); 
 float setZK0(float O0L, float OR0L); 
 float setZs(float O0L, float Z_); 
 float getZKn(); 
 float getZK1(); 
 float getZK0(); 
 float getZs(); 
 
private: 
 float ZK1; 
 float ZKn; 
 float ZK0; 
 float Zs; 
}; 
 
#endif // INFILTRATION_DEPTH_H  
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Infiltration_depth.cpp 

#include <iostream> 
#include <cmath> 
#include "Infiltration_depth.h" 
#include "Parameters.h" 
using namespace std; 
//Gathers parameters from the class "Parameters" 
Parameters par; //Gathers the parameters from the class "Parameters" 
float Yb = par.getYb(); 
float Os = par.getOs(); 
float lambda = par.getlambda(); 
float ORi = par.getORi(); 
float Ks = par.getKs(); 
float Hc = par.getHc(); 
float timestep = par.getTimestep(); 
float k1, k2, k3, k4; 
//Calculates the advance in Z direction for a wetting front k > 1 
float Infiltration_depth::setZKn(float K0, float K0L, float O0, float O0L, float Z_, float 
OR0, float OR0L) { 
 float G;        //initialize G 
 if (O0 < Os) {   //Unsaturated G 
  G = Yb*(pow(OR0, 3 + 1 / lambda) - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda 
+ 1); 
 } 
 else {          //Saturated G 
  G = Yb*(3 * lambda + 2 - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda + 1); 
 }               //RK4 calculations of k1-k4     
 k1 = timestep*((K0 - K0L) / (O0 - O0L))*((G / Z_) + 1); 
 k2 = timestep*((K0 - K0L) / (O0 - O0L))*((G / (Z_ + k1*0.5)) + 1); 
 k3 = timestep*((K0 - K0L) / (O0 - O0L))*((G / (Z_ + k2*0.5)) + 1); 
 k4 = timestep*((K0 - K0L) / (O0 - O0L))*((G / (Z_ + k3)) + 1); 
 ZKn = Z_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6;   //Adds delta Z to Z 
} 
//Infliltration Depth for wettingfront k = 1; 
float Infiltration_depth::setZK1(float K0, float O0, float O0L, float Z_, float OR0, float 
OR0L) { 
 float G; 
 if (O0 < Os) { 
  G = Yb*(pow(OR0, 3 + 1 / lambda) - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda 
+ 1); 
 } 
 else { 
  G = Yb*(3 * lambda + 2 - pow(OR0L, 3 + 1 / lambda)) / (3 * lambda + 1); 
 }               //RK4 calculations of k1-k4 
 k1 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*Z_))); 
 k2 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*(Z_ + k1*0.5)))); 
 k3 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*(Z_ + k2*0.5)))); 
 k4 = timestep*((K0 / (O0 - O0L)) + (Ks*G / ((O0 - O0L)*(Z_ + k3)))); 
 ZK1 = Z_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6;  //Adds delta Z to Z 
} 
//Infliltration Depth for a saturated wettingfront; 
float Infiltration_depth::setZs(float O0L, float Z_) { 
 //RK4 calculations of k1-k4 
 k1 = timestep*(Ks / ((Os - O0L))*(Hc / Z_ + 1)); 
 k2 = timestep*((Ks / (Os - O0L))*(Hc / (Z_ + k1*0.5) + 1)); 
 k3 = timestep*((Ks / (Os - O0L))*(Hc / (Z_ + k2*0.5) + 1)); 
 k4 = timestep*((Ks / (Os - O0L))*(Hc / (Z_ + k3) + 1)); 
 Zs = Z_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6;  //Adds delta Z to Z 
}  
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//Infiltration Depth for first advance for a new wetting front; 
float Infiltration_depth::setZK0(float O0L, float OR0L) { 
 float tau = (timestep*Ks / (Os - O0L)); 
 float G = (Yb / lambda)*((3 * lambda + 2) - pow(OR0L, (3 + (1 / lambda)))) / (3 + 
(1 / lambda)); // equation 13 GARTO 
 ZK0 = 0.5*(tau + sqrt(pow(tau, 2) + 4 * tau*G)); 
} 
float Infiltration_depth::getZKn() { 
 return ZKn; 
} 
float Infiltration_depth::getZK1() { 
 return ZK1; 
} 
float Infiltration_depth::getZK0() { 
 return ZK0; 
} 
float Infiltration_depth::getZs() { 
 return Zs; 
}  
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Parameters 

Parameters.h

#ifndef INFILTRATION_DEPTH_H 
#define INFILTRATION_DEPTH_H 
 
 
class Infiltration_depth 
{ 
public: 
 float setZKn(float K0, float K0L, float O0, float O0L, float Z_, float OR0, float 
OR0L); 
 float setZK1(float K0, float O0, float O0L, float Z_, float OR0, float OR0L); 
 float setZK0(float O0L, float OR0L); 
 float setZs(float O0L, float Z_); 
 float getZKn(); 
 float getZK1(); 
 float getZK0(); 
 float getZs(); 
 
private: 
 float ZK1; 
 float ZKn; 
 float ZK0; 
 float Zs; 
}; 
 
#endif // INFILTRATION_DEPTH_H  
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Parameters.cpp 

#include <iostream> 
#include <cmath> 
#include <string> 
#include <cstdlib> 
#include "Parameters.h" 
 
using namespace std; 
 
float Parameters::getKs() { 
 return Ks; 
} 
float Parameters::getYb() { 
 return Yb; 
} 
float Parameters::getlambda() { 
 return lambda; 
} 
float Parameters::getOs() { 
 return Os; 
} 
float Parameters::getOi() { 
 return Oi; 
} 
float Parameters::getOr() { 
 return Or; 
} 
float Parameters::getORi() { 
 ORi = (Oi - Or) / (Os - Or);        //Relative initial volumetric watercontent 
 return ORi; 
} 
float Parameters::getKi() { 
 Ki = Ks*pow(ORi, 3 + 2 / lambda); //initial soilmoisture conductivity 
 return Ki; 
} 
float Parameters::getHc() { 
 Hc = Yb*((2 + 3 * lambda) / (1 + 3 * lambda)); //initial soilmoisture conductivity 
 return Hc; 
} 
float Parameters::getTimestep() { 
 float timestep = minutes / 60; 
 return timestep; 
} 
char Parameters::getPond(char* outPond) { //gathers if ponding and stores it in a string 
 char str[10]; 
 for (int i = 0; i < 10; ++i) { 
  outPond[i] = Pond[i]; 
 } 
} 
char Parameters::getfilename(char* outFilename) { //gathers filename and stores it in a 
string 
 char str[50]; 
 for (int i = 0; i < 50; ++i) { 
  outFilename[i] = filename[i]; 
 } 
}  
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float Parameters::geterror() { 
 float error; 
 if (Ks<0 || Yb<0 || lambda<0 || Os<0 || Oi<0 || Or<0 || ORi<0 || Ki<0 || Hc<0 || 
minutes<0) { 
  cout << "ERROR: A Parameter in the class Parameters is < 0" << endl; //Error 
message returned 
  exit(EXIT_FAILURE);                //Exit the program 
 } 
 else if (Or > Oi || Oi > Os || Or > Os) { 
  cout << "EROOR: The variable Or > Oi or Oi > Os or Or < Os" << endl; //Error 
message returned 
  exit(EXIT_FAILURE); 
 } 
 else if (Or >= 1 || Oi >= 1 || Os >= 1) { 
  cout << "ERROR: Or or Oi or Os >= 1" << endl; //Error message returned 
  exit(EXIT_FAILURE); 
 } 
 return error; 
}  
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Ponding 

Ponding.h

#ifndef PONDING_H 
#define PONDING_H 
 
 
class Ponding 
{ 
public: 
 float setPonding(float ftest, float Pe, float timestep, int i); 
 float getPonding(); 
 float getRunoff(); 
 
private: 
 float ponding = 0; 
 float Runoff = 0; 
}; 
 
#endif // PONDING_H  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



84 

 

 

Ponding.cpp 

#include "Ponding.h" 
#include <iostream> 
#include <cstring> 
#include <string> 
#include <cstdlib> 
#include "Parameters.h" 
 
 
using namespace std; 
 
Parameters paramet; 
 
float Ponding::setPonding(float f, float Pe, float timestep, int i) { 
 char En[10]; 
 En[10] = paramet.getPond(En); //returns ponding condition from parameters  
 if (strcmp(En, "Yes") == 0 || strcmp(En, "yes") == 0 || strcmp(En, "YES") == 0) { 
  if (f < Pe && i != 0) { 
   //If Pe is high, add pe to ponding 

ponding = ponding + (Pe - f)*timestep;  
  } 
  else if (f > Pe && ponding > 0) { 
   //If Pe is low, substract f from ponding 

ponding = ponding + (Pe - f)*timestep;  
   if (ponding < 0) { 
    //If Ponding is than 0, ponding = 0 is high, add pe to ponding 

ponding = 0;                      
   } 
  } 
  else { 
   ponding = 0; 
  } 
 } 
 else if (strcmp(En, "No") == 0 || strcmp(En, "no") == 0 || strcmp(En, "NO") == 0) { 
  ponding = 0; 
  Runoff = Pe - f; 
 } 
 else { 
  cout << "ERROR: Wrong spelling of Yes or No in class ponding" << endl; //Er-
ror message returned 
  exit(EXIT_FAILURE); //Exit program 
 } 
} 
float Ponding::getPonding() { 
 return ponding; 
} 
float Ponding::getRunoff() { 
 return Runoff; 
}  
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soilMoisture 

soilMoisture.h

#ifndef RUNGEKUTTA_H 
#define RUNGEKUTTA_H 
class soilMoisture{ 
public: 
 float setO0(float Z, float PeR, float O0_, float OR0L); 
 float getO0(); 
 float getdO(); 
 float getk1(); 
 float getk2(); 
 float getk3(); 
 float getk4(); 
private: 
 float dO; 
 float O0; 
 float k1; 
 float k2; 
 float k3; 
 float k4; 
}; 
#endif // RUNGEKUTTA_H  
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soilMoisture.cpp

#include "soilMoisture.h" 
#include <iostream> 
#include <cmath> 
#include "Parameters.h" 
using namespace std; 
Parameters  Par; 
float soilMoisture::setO0(float Z, float PeR, float O0_, float OR0L) { 
 //returns parameters from the class "parameters" 
 float Yb = Par.getYb(); 
 float Ks = Par.getKs(); 
 float Os = Par.getOs(); 
 float lambda = Par.getlambda(); 
 float Or = Par.getOr(); 
 float timestep = Par.getTimestep(); 
 //sets the correction factor p 
 float p; 
 if (PeR > 0) { 
  p = 1; 
 } 
 else { 
  p = 1.7; 
 } 
 //RK4 calculations k1-k4 
 k1 = timestep*((1 / Z)*(PeR - Ks*(pow((O0_ - Or) / (Os - Or), 3 + (2 / lambda))) - 
(p*Ks*((Yb / lambda)*(pow((O0_ - Or) / (Os - Or), (3 + (1 / lambda))) - pow(OR0L, (3 + (1 
/ lambda)))) / (3 + (1 / lambda))) / Z))); 
 k2 = timestep*((1 / Z)*(PeR - Ks*(pow(((O0_ + k1*0.5) - Or) / (Os - Or), 3 + (2 / 
lambda))) - (p*Ks*((Yb / lambda)*(pow(((O0_ + k1*0.5) - Or) / (Os - Or), (3 + (1 / 
lambda))) - pow(OR0L, (3 + (1 / lambda)))) / (3 + (1 / lambda))) / Z))); 
 k3 = timestep*((1 / Z)*(PeR - Ks*(pow(((O0_ + k2*0.5) - Or) / (Os - Or), 3 + (2 / 
lambda))) - (p*Ks*((Yb / lambda)*(pow(((O0_ + k2*0.5) - Or) / (Os - Or), (3 + (1 / 
lambda))) - pow(OR0L, (3 + (1 / lambda)))) / (3 + (1 / lambda))) / Z))); 
 k4 = timestep*((1 / Z)*(PeR - Ks*(pow(((O0_ + k3) - Or) / (Os - Or), 3 + (2 / 
lambda))) - (p*Ks*((Yb / lambda)*(pow(((O0_ + k3) - Or) / (Os - Or), (3 + (1 / lambda))) - 
pow(OR0L, (3 + (1 / lambda)))) / (3 + (1 / lambda))) / Z))); 
 O0 = O0_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6; //adds delta O0 to O0 
} 
float soilMoisture::getO0() { 
 return O0; 
}  
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Appendix C: Changes in SHyFT files 

File Lines Type of change 

Core\serialization\core_serialization.cpp\shyft 13  

 240  

 275-285 states 

 336  

 410  

 469  

Core\method-stack\hbv_stack.h 6  

 33  

 48  

 49  

 60  

 93-101 Parameters 

 130-138 Parameters 

 170-178 Parameters 

 198  

 201  

 204  

 206  

 220  

 226  

 322  

 351  

 353  

Core\method-stack\hbv_stack_cell_model.h 35-36 Response 

 52-53 Response 

 69-70 Response 

 92-93 Response 

 160-167 States 

 184-191 States 

 206-212 States 

 225-232 States 

Test\method-steck\hbv-stack-test.cpp 18  

 69  

 76 States 

 88  

 89  
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Appendix D: SHyFT  

Hbv_infiltration_test.cpp

#include "fstream.h" 
#include "test_pch.h" 
#include "core/hbv_infiltration.h" 
 
 
using namespace shyft::core; 
namespace shyft { 
 namespace core { 
  namespace hbv_infiltration2 {   
   template<class P> 
   struct calculator { 
    P param; 
    calculator(const P& p) :param(p) {} 

    double zkn(double o0,double o0l,double or0,double or0l,double 
k0,double k0l,double z, double dt){ 
     double G; 
     if (o0 < param.os) {G = param.yb*(pow(or0, 3 + 1 / 
param.lambda) - pow(or0l, 3 + 1 / param.lambda)) / (3 * param.lambda + 1);} 
     else {G = param.yb*(3 * param.lambda + 2 - pow(or0l, 3 + 
1 / param.lambda)) / (3 * param.lambda + 1);} 
     double k1 = dt*((k0 - k0l) / (o0 - o0l))*((G / z) + 1); 
     double k2 = dt*((k0 - k0l) / (o0 - o0l))*((G / (z + 
k1*0.5)) + 1); 
     double k3 = dt*((k0 - k0l) / (o0 - o0l))*((G / (z + 
k2*0.5)) + 1); 
     double k4 = dt*((k0 - k0l) / (o0 - o0l))*((G / (z + k3)) 
+ 1); 
     double zkn = z + (k1 + 2 * k2 + 2 * k3 + k4) / 6; 
     return zkn; 
    } 
    double zk1(double o0, double o0l, double or0, double or0l, 
double k0, double z, double dt) { 
     double G; 
     if (o0 < param.os) { G = param.yb*(pow(or0, 3 + 1 / 
param.lambda) - pow(or0l, 3 + 1 / param.lambda)) / (3 * param.lambda + 1); } 
     else { G = param.yb*(3 * param.lambda + 2 - pow(or0l, 3 
+ 1 / param.lambda)) / (3 * param.lambda + 1); } 
     double k1 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 - 
o0l)*z))); 
     double k2 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 - 
o0l)*(z + k1*0.5)))); 
     double k3 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 - 
o0l)*(z + k2*0.5)))); 
     double k4 = dt*((k0 / (o0 - o0l)) + (param.ks*G / ((o0 - 
o0l)*(z + k3)))); 
     double zk1 = z + (k1 + 2 * k2 + 2 * k3 + k4) / 6; 
     return zk1; 
    } 
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    double zs(double o0l, double z, double dt) { 
     double k1 = dt*(param.ks / ((param.os - o0l))*(param.hc 
/ z + 1)); 
     double k2 = dt*((param.ks / (param.os - o0l))*(param.hc 
/ (z + k1*0.5) + 1)); 
     double k3 = dt*((param.ks / (param.os - o0l))*(param.hc 
/ (z + k2*0.5) + 1)); 
     double k4 = dt*((param.ks / (param.os - o0l))*(param.hc 
/ (z + k3) + 1)); 
     double zs = z + (k1 + 2 * k2 + 2 * k3 + k4) / 6; 
     return zs; 
    } 
    double z0(double o0l, double or0l, double dt) { 
     double tau = (dt*param.ks / (param.os - o0l)); 
     double G = (param.yb / param.lambda)*((3 * param.lambda 
+ 2) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / param.lambda)); // equation 13 
GARTO 
     double z0 = 0.5*(tau + sqrt(pow(tau, 2) + 4 * tau*G));  
     return z0; 
    } 
    double o0(double z, double per, double o0_, double or0l, dou-
ble dt) { 
     double p; 
     if (per > 0) { p = 1; } 
     else { p = 1.7; } 
     double k1 = dt*((1 / z)*(per - param.ks*(pow((o0_ - 
param.or) / (param.os - param.or), 3 + (2 / param.lambda))) - (p*param.ks*((param.yb / 
param.lambda)*(pow((o0_ - param.or) / (param.os - param.or), (3 + (1 / param.lambda))) - 
pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / param.lambda))) / z))); 
     double k2 = dt*((1 / z)*(per - param.ks*(pow(((o0_ + 
k1*0.5) - param.or) / (param.os - param.or), 3 + (2 / param.lambda))) - 
(p*param.ks*((param.yb / param.lambda)*(pow(((o0_ + k1*0.5) - param.or) / (param.os - 
param.or), (3 + (1 / param.lambda))) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / 
param.lambda))) / z))); 
     double k3 = dt*((1 / z)*(per - param.ks*(pow(((o0_ + 
k2*0.5) - param.or) / (param.os - param.or), 3 + (2 / param.lambda))) - 
(p*param.ks*((param.yb / param.lambda)*(pow(((o0_ + k2*0.5) - param.or) / (param.os - 
param.or), (3 + (1 / param.lambda))) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / 
param.lambda))) / z))); 
     double k4 = dt*((1 / z)*(per - param.ks*(pow(((o0_ + k3) 
- param.or) / (param.os - param.or), 3 + (2 / param.lambda))) - (p*param.ks*((param.yb / 
param.lambda)*(pow(((o0_ + k3) - param.or) / (param.os - param.or), (3 + (1 / 
param.lambda))) - pow(or0l, (3 + (1 / param.lambda)))) / (3 + (1 / param.lambda))) / z))); 
     double o0 = o0_ + (k1 + 2 * k2 + 2 * k3 + k4) / 6; 
     return o0; 
    } 
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    template <class R, class S> 
    void step(S& s, R& r, shyft::core::utctime t0, 
shyft::core::utctime t1, double snow_out) {      
     double Fp; 
     double tp; 
     double t = 0; 
     double f_test; 
     double F_test; 
     double F_test1; 
     double F_pot = 0; 
     double pea = 0; 
     double dt = 0.5/60;  
     double F_test2; 
     s.pe = snow_out/dt; //mm/h 
     if (s.pe > param.ks && s.pel < param.ks && s.o0[s.k] < 
param.os) { 
      s.k++; 
      F_test2 = param.ks * dt; 
      s.delta_time = t0; 
      s.delta_F[s.k] = r.F; 
     } 
     double pek[4] = { 0.0 };                
     double vzk[4] = { 0.0 };              
     double per = s.pe;                   
     for (int j = 1; j < s.k; j++) {         
      vzk[j] = s.z[j] * (s.o0[j] - s.o0[j - 1]);   
      s.z[j] = zkn(s.o0[j], s.o0[j - 1], s.or0[j], 
s.or0[j - 1], s.k0[j], s.k0[j - 1], s.z[j], dt); 
      pek[j] = (s.z[j] * (s.o0[j] - s.o0[j - 1]) - 
vzk[j]);  
      per = per - pek[j];               
     } 
     F_test1 = r.F - s.delta_F[s.k] + snow_out; 
     s.f_test = param.ks*((param.hc*(param.os - s.o0[s.k - 
1])) / F_test1 + 1); 
 
     pea = pea + s.pe;  
 
     Fp = ((param.hc*param.ks*(param.os - s.o0[s.k -1])) / 
(s.pe - param.ks)); 
     tp = (Fp / pea)*3600; 
     F_test = r.F - s.delta_F[s.k]; 
     if (s.pe  > 0 && s.pe  < param.ks) { 
      r.F = r.F + snow_out; 
      s.f = s.pe;       
     }else{ 
      r.F = r.F + s.f*dt; 
      s.f = param.ks*((param.hc*(param.os - s.o0[s.k -
1])) / (r.F - s.delta_F[s.k]) + 1); 
      s.ponding = s.ponding + snow_out - s.f * dt;  
     } 
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     }else if (s.ponding > 0) { 
      r.F = r.F + s.f*dt; 
      s.f = param.ks*((param.hc*(param.os - s.o0[s.k - 
1])) / (r.F - s.delta_F[s.k]) + 1); 
      s.ponding = s.ponding - s.f * dt; 
      if (s.ponding < 0){ s.ponding = 0; } 
     }else { 
      s.f = 0; 
     } 
     //Main if-sentences 
    
 //New..............................................................................
......... 
     if (s.pe  > param.ks && s.pel < param.ks && s.o0[s.k] < 
param.os) { 
      s.z[s.k] = z0(s.o0[s.k - 1], s.or0[s.k - 1], dt); 
      if (s.pe  > s.f_test) { 
       s.o0[s.k] = param.os; 
      } 
      else { 
       s.o0[s.k] = o0(s.z[s.k], per, s.o0[s.k - 
1], s.or0[s.k - 1], dt); 
      } 
     } 
     else { 
     
 //C................................................................................
....... 
      if (s.pe >= s.f_test) { 
       s.z[s.k] = zs(s.o0[s.k - 1], s.z[s.k], 
dt); 
       s.o0[s.k] = param.os; 
      } 
     
 //B................................................................................
....... 
      double o0_test = s.o0[s.k];                   
      double z_test = s.z[s.k];                     
      if (s.pe  < s.f_test && s.pe >= param.ks) {       
       double F_test = r.F - s.delta_F[s.k] - 
s.f*dt;  
       while (F_test < r.F - s.delta_F[s.k]) {      
        o0_test = o0_test + 0.0001;  
        z_test = zk1(s.o0[s.k], s.o0[s.k - 
1], s.or0[s.k], s.or0[s.k - 1], s.k0[s.k], s.z[s.k], dt); 
        F_test = z_test*(o0_test - s.o0[s.k 
- 1]);  
       } 
       s.z[s.k] = z_test;                    
       s.o0[s.k] = o0_test;                  
      } 
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 //A................................................................................ 
      if (s.pe  < param.ks) {                         
       if (s.ponding > 0) {                    
        s.z[s.k + 2] = zs(s.o0[s.k - 1], 
s.z[s.k], dt); 
        s.o0[s.k] = param.os;                      
       } 
       else { 
        float F_test = r.F - s.delta_F[s.k] 
- 0.001;  
        while (F_test < r.F - 
s.delta_F[s.k]) {    
         z_test = z_test  + 0.001;        
         o0_test = o0(s.z[s.k], per, 
s.o0[s.k], s.or0[s.k - 1], dt); 
         F_test = z_test*(o0_test - 
s.o0[s.k - 1]);  
        } 
        s.z[s.k] = z_test ;                  
        s.o0[s.k] = o0_test;                 
       } 
      } 
//..........merges to wetting fronts if they reach the same level......................... 
      if (s.z[s.k] > s.z[s.k - 1] && s.k > 0) {             
       s.z[s.k - 1] = ((s.o0[s.k] - s.o0[s.k - 
1])*s.z[s.k] + (s.o0[s.k - 1] - s.o0[s.k - 2])*s.z[s.k - 1]) / (s.o0[s.k] - s.o0[s.k - 
2]);  
       s.o0[s.k - 1] = s.o0[s.k];                     
       s.z[s.k] = 0, s.o0[s.k] = 0, s.k0[s.k] = 
0, s.or0[s.k] = 0;  
       s.k--;                                 
      } 
     } 
     s.or0[s.k] = (s.o0[s.k] - param.or) / (param.os - 
param.or); 
     s.k0[s.k] = param.ks*pow(s.or0[s.k], 3 + 2 / 
param.lambda); 
     s.pel = s.pe;  
    } 
   }; 
  } 
 } 
}; 

 


