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Work description

Remotely Operated Vehicles (ROVs) are used in a number of operations performed sub-
sea, ranging from the oil and gas industry, to fisheries and aquaculture as well as in
subsea mining. Especially the subsea oil and gas industry has come to rely on ROVs for
conducting Intervention, Maintenance and Repair (IMR) operations.

Today, human operators, with the use of joysticks, control ROVs manually. Consequently,
the costs incurred for proper training of ROV operators as well as using these to operate
offshore, become high. In addition to the costs, the possibility of human error also
becomes a risk. It is therefore desirable to make operation of ROVs more autonomous,
by introducing more automatic functions that can be performed independent of an ROV
operator.

Accurate underwater navigation systems will be essential in order to achieve successful
autonomous operation of ROVs and is considered in this master thesis. Two different
filters will be developed to solve integration of inertial and pseudo-range measurements.
The implementation of the integration filters will be verified in simulations, and in ad-
dition their performance will be compared. Finally, both filters will be tested in offline
runs using experimental data collected during two separate experiments conducted in the
test basin in the Marine Cybernetics Laboratory at Tyholt, NTNU.

Scope of work:

1. Literature review of specific topics relevant for the thesis work. The main focus is
on underwater navigation, with emphasis on the following



a. Overview of state of the art underwater navigation
b. Range-aided inertial navigation
c. State estimation using integration of inertial and range-based measurements

2. Modify the three-stage filter (TSF) for integration of inertial measurements and
pseudo-range acoustic measurements described in the work by B. Stovner et al.
(2016), so that acceleration biases also are estimated. In addition, implement an
Extended Kalman Filter (EKF) for estimation of the same states, and use this as
basis for comparison.

3. Develop a kinematic ROV simulator that generates the necessary measurements,
and that can be used for testing the filters. Verify the implementation of the TSF
and EKF in simulations, and compare their performance.

4. Perform experimental work in the MC-laboratory, and log sensor data to perform
offline tests of the filters. Compare the TSF and EKF.

5. Discuss and compare simulations and results from experimental work

6. A report on the simulation and experimental testing. Conclusions will be presented
along with recommendations for further work.

The master thesis is written in English, and is structured as a research report. Following
a preface, a summary is given in both English as well as Norwegian, according to the
departmental guidelines for a master thesis from NTNU. In the introduction of the report
the background and motivation for the thesis are explained further. A short review of
previous research on the chosen topic is also given. The introduction will also list the
main contributions made, as well as an outline of the rest of the thesis. The main part of
the report contains a literature review, as specified above, a description of the integration
filters and how these are tested, as well as a presentation of results from simulations and
experimental work. Discussions and conclusions are made based on these, and finally
suggestions for further work are given. Computer codes, pictures, data series and a PDF
version of the report shall be included electronically with the submitted version.

Ingrid Schjølberg
Supervisor
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Summary

Underwater navigation is one of the key issues that need to be addressed in order to make
operation of underwater vehicles more autonomous. This thesis investigates two different
methods for integration of inertial and pseudo-range measurements that is to be suited
for underwater navigation of a Remotely Operated Vehicle (ROV). For underwater appli-
cations acoustic range measurements can be provided by Long Baseline (LBL) systems.
And if the wave speed for which the acoustic signals propagate with is unknown, the
measurements will be corrupted by an uncertainty modeled as a slowly-varying bias. The
measurements are then referred to as pseudo-range measurements. An Inertial Measure-
ment Unit (IMU) that is mounted on the underwater vehicle can measure the vehicle’s
linear accelerations.

A Three-Stage filter (TSF) was implemented for integration of inertial and pseudo-range
measurements. The filter estimates the position, linear velocities, and a wave speed
bias parameter in addition to acceleration measurement biases. Because the filter uses
tightly coupled integration, the raw measurements are used directly in the filter, and
the estimation problem is nonlinear. The TSF is based on a novel approach of using an
exogenous state estimator for providing an external estimate. This is used to linearize
a second filter. And consequently it can be proven that the error dynamics have global
exponential stability (GES). An Extended Kalman filter (EKF) was implemented for the
same estimation problem, also using a tightly coupled integration.

A simulator was built in MATLAB, so the TSF and EKF could be verified and com-
pared in simulations. Range and acceleration measurements were generated at realistic
frequencies, 2 Hz and 100 Hz respectively. The measurements were added a realistic
amount of noise, and in addition the acceleration measurements were corrupted by a con-
stant bias. The filters were initialized with accurate initial estimates, and showed similar
performance in steady-state, resulting in a similar Root-Mean-Square (RMS) position
estimation error. Initializing the filters with inaccurate initial state estimates tested the
transient behavior of the filters. And the plotted states suggested that the TSF converged
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faster in transient behavior. Also the TSF converged with a smaller overshoot than the
EKF estimates. This resulted in a smaller RMS position estimation error in transient
behavior.

Physical experiments were conducted in the MC-laboratory at NTNU, where a test basin
facilitates underwater experiments. An underwater positioning system, Qualisys Motion
Tracking (QMT), was used to obtain the position of the ROV and was used as ground
truth for the estimated position. Two different methods were used for generating range
measurements, and two different ROVs were used to perform experiments. All sensor
data was logged during both experiments, and used for offline tests of the integration
filters. The data sets were used for testing steady-state and transient behavior of both
filters. Overall the experimental results backed the same trends as seen in simulations, in
favor of similar performance in steady-state and TSF having a faster transient behavior.

The EKF is currently the standard choice for integration of measurements for nonlinear
estimation problems. The performance of the filters could vary beyond what has been
found in this thesis, due to uncertainties related to the "true values" available during
experiments, tuning of the filters or variations that come with different transponder set-
ups. However, results from both simulations and two different experiments indicated
good performance of the TSF when benchmarked against the EKF. To conclude, the
TSF, based on the investigation done in this thesis, is recommended for the estimation
problem considered. This inspires further work to continue examining the performance
and the potential that the TSF could have for underwater navigation of ROVs.



Sammendrag

Undervannsnavigasjon vil være avgjørende for å kunne gjøre undervannsfartøy mer au-
tonome. Denne oppgaven undersøker to ulike metoder for integrasjon av treghets- og
pseudo-rangemålinger som kan egne seg for undervannsnavigasjon av en fjernstyrt under-
vannsrobot (ROV, eng: Remotely Operated Vehicle). For undervannsapplikasjoner vil
akustiske rangemålinger typisk bli levert av Long Baseline (LBL) systemer. Og dersom
bølgehastigheten som de akustiske signalene propagerer med er ukjent, vil målingene være
påvirket av en unøyaktighet som modelleres som en saktevarierende feil. Målingene vil da
omtales som pseudo-rangemålinger. Treghetsmålinger blir levert av en treghetsmåleenhet
(IMU, eng: Inertial Measurement Unit), som er festet direkte på undervannsfartøyet og
som blant annet kan måle fartøyets lineære akselerasjoner.

Et trestegsfilter (TSF, eng: Three-Stage Filter) ble implementert for integrasjon av
treghets- og pseudo-rangemålinger. Filtrene estimerer posisjon, lineære hastigheter, feilen
i lydbølgehastighet i tillegg til en konstant feil i akselerasjonsmålingene. Fordi filteret
bruker en tett koblet integrasjon, og råmålingene blir brukt direkte i filteret, blir dette
estimeringsproblemet ulineært. Trestegsfilteret bruker en ny tilnærming der en ekstern
estimator brukes for å levere et eksternt tilstandsestimat. Dette brukes til å linearisere
et annet filter. Og for denne strukturen kan man vise at feildynamikken er globalt ek-
sponentielt stabil (GES). Et Extended Kalman Filter (EKF) ble implementert for det
samme estimeringsproblemet og bruker også en tett koblet integrasjon.

En simulator ble laget i MATLAB, slik at TSF og EKF kunne verifiseres og sammen-
liknes i simuleringer. Range- og treghetsmålinger ble generert ved realistiske frekvenser,
henholdsvis 2 Hz og 100 Hz. Det ble lagt til støy i målingene, i tillegg til at akselerasjon-
smålingene også ble lagt til konstante feil. Ved nøyaktig initialisering, viste filtrene svært
lik stasjonær oppførsel, som resulterte i en lik gjennomsnittsverdi (RMS, eng: Root-Mean-
Square) for estimeringsfeilen i posisjon. Transient oppførsel ble testet ved å initialisere
filtrene med unøyaktige startestimater. Plot av tilstandsestimatene viste at TSF kon-
vergerte raskere i transient oppførsel. TSF hadde også mindre oversvingeamplitude, som
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til sammen ga en mindre gjennomsnittsverdi for estimeringsfeilen i posisjon i transient
oppførsel.

Fysiske forsøk ble utført i MC-laboratoriet på NTNU, der et testbasseng legger til rette
for undervannsforsøk. Et undervannsposisjoneringssystem, Qualisys Motion Tracking
(QMT), ble brukt til å bestemme posisjonen til ROVen under forsøk, og ble i tillegg
brukt som fasit for den estimerte posisjonen. Rangemålinger ble generert på to ulike
måter, og i tillegg ble to ulike ROVer brukt til å utføre to ulike forsøk. All sensor-data
ble logget underveis, og brukt i offline-tester av filtrene, både i stasjonær og transient
tilstand. Kort oppsummert viste de eksperimentelle resultatene de samme trendene som
ble observert under simuleringer. Igjen så man at TSF konvergerte raskere i transient
tilstand, og oppførte seg svært likt i stasjonær tilstand.

Per i dag blir EKF typisk valgt som filter for integrasjon av målinger i ulineære estimer-
ingsproblemer. Ytelsen på filtrene vil kunne variere ut fra det som har blitt funnet i denne
oppgaven, på grunn av usikkerhet knyttet til de "sanne verdiene" brukt under forsøkene,
tuning av filtrene i tillegg til variasjoner som kan komme av ulike transponderoppsett.
Til tross for dette, viste resultater både fra simuleringer og to ulike eksperimenter at TSF
presterte bra sammenliknet med EKF. Basert på undersøkelsen gjort i denne oppgaven,
blir TSF derfor anbefalt for estimeringsproblemet som det er tatt utgangspunkt i. Dette
inspirerer til videre arbeid som fortsetter å undersøke ytelsen og potensialet TSF kan ha
for undervannsnavigasjon av ROVer.
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Chapter 1

Introduction

1.1 Background and motivation

A Remotely Operated Vehicle (ROV) is a tethered, unmanned vehicle that will be oper-
ated at a distance from where it is located. ROVs are normally tethered by an umbilical
that supplies electrical power as well as fiber optics, providing communication with an
operator and transfer of data. This allows an operator to control the ROV from a sur-
face vessel, limiting the range of the ROV to the length of the tether. An ROV can be
equipped with a selection of sensors that can collect useful data, which today is used in
the oil- and gas industry, in scientific research communities, in subsea mining, by the
military and is also emerging in fisheries and aquaculture.

1.1.1 Subsea IMR operations

Subsea oil and gas production refers to facilities where equipment is placed on the seabed.
The main motivation for moving oil and gas production subsea is primarily to cut the
costs of building and installing production platforms on the sea surface. Subsea tech-
nology is especially favorable when oil and gas fields are placed on deep waters. Subsea
processing systems are becoming more comprehensive, which will enhance field economics
by maximizing oil and gas recovery, increasing production and reducing costs. This will
also contribute to extending field lifetime.

As production equipment is moved subsea and into deeper waters, the subsea oil and gas
industry has come to rely on ROVs for a number of operations. These are with a common
term referred to as inspection, repair and maintenance (IMR) operations, and range from
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drilling support, subsea construction to asset and pipeline inspection, subsea site surveys,
protection surveys, other repair operations in addition to much more. In Figure 1.1 an
ROV is doing subsea intervention work. Today ROVs used for subsea intervention come
with manipulators and other tools designed to work on subsea equipment.

Figure 1.1: ROV performing IMR operation, courtesy of TechnipFMC

Performing ROV operations in proximity of subsea installations means that the ROV
must be maneuvered with extreme accuracy. Not only because the subsea units and
structures are expensive, but also because a collision is potentially catastrophic in case
of leakage to the surroundings. This means that accurate underwater navigation will be
especially important during the IMR part of the mission, in addition to any part of the
mission when the ROV will be operating close to subsea installations.

Oil and gas related activity is expected to move further offshore in the future, and when
it does ROVs will become an even more important tool for performing IMR operations
on deep waters. The use of ROVs is in many ways an enabler for exploring more harsh
and remote operation sites.

1.1.2 ROV operations in fisheries and aquaculture

Fish farming is becoming an increasingly large supplier of the world’s seafood. And the
use of ROVs for production support at the fish farms is a growing industry. Introducing
ROVs in aquaculture means that inspection of fish cages can be done more systematically
and without human divers. Typically smaller, more low-cost ROVs can be used for
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checking nets for holes, assuring integrity of moorings and other underwater infrastructure
and for monitoring fish behavior.

The development of smaller and cheaper ROVs has been essential for the growing use
of underwater vehicles in this industry. Improving underwater navigation, exploiting
relatively cheap navigation sensors and making the operation less dependent on skilled
operators, will enable an ongoing use of ROVs also in small fish businesses.

1.1.3 Autonomy in ROV operations

Currently, the majority of all ROV IMR operations are manually controlled, using only
a few or no automatic control functions (Schjølberg et al., 2016). Consequently the effi-
ciency in operation is highly dependent on the experience of the ROV operator (Schjølberg
and Utne, 2015). The operation is because of this also dependent on the support from
offshore vessels during the entire duration of the operation. The day rates for these vessels
are excessive, and in total the costs related to these operations constitute a huge expense
for the industry. Making motion control of ROVs more autonomous will contribute to
reduced workload on the operators, minimize human errors and increase efficiency in op-
erations. Here autonomy refers to a robot’s ability to use available information in order
to make independent decisions on how to perform a mission. Autonomy can be regarded
as one of the solutions that will help optimize subsea IMR operations in the oil and gas
industry (Schjølberg and Utne, 2015). More autonomous ROV functions will also increase
their value and potential in other industries.

Today functions such as station keeping, velocity control, path tracking and terrain fol-
lowing are being developed. This allows an operator to interact less with vehicle control,
and allows them to keep closer track of data that is collected by cameras and sensors.
These types of developments are important contributions towards more autonomy in
ROV operations. A challenge is to make these functions reliable enough, so they can
be implemented in subsea IMR operations. Figure 1.2 shows how the tasks of a motion
control system are related to the navigation system. Here it appears that the motion
control system is indeed dependent on estimates of position, velocity and attitude from
the navigation system. In order to leave the human out of the control loop, the control
system will need accurate states to react upon. Making navigation more autonomous will
therefore impose strict requirements to accurate feedback, and will be a prerequisite for
being able to perform closed-loop control (Dukan, 2014).
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Figure 1.2: Guidance, navigation and control, courtesy of Fossen (2011)

1.2 Previous Research

Recent advances in underwater navigation are based on merging information from acous-
tic positioning techniques with other inertial sensors. Classical filtering strategies often
resort to the well-known Extended Kalman Filter (EKF). In Morgado et al. (2013) the
EKF was implemented with a tightly coupled strategy, and compared to the more classi-
cal loosely coupled integration. For the tightly coupled scheme different variations of the
nonlinear Kalman Filters (KF), which in addition to the EKF also include the unscented
KF (UKF) and particle filters (PF), have also been widely used.

The tightly coupled schemes also include methods where "new measurements" are con-
structed from the pseudo-range measurements, which give a linear relationship between
the constructed measurements and the estimated states. A nonlinear algebraic transfor-
mation has been used to derive a set of quasi-linear measurement equations, for example
in the work by A. Johansen et al. (2016) and A. Johansen (2015).

Position and velocity estimation based on integration of inertial navigation and Long
Baseline (LBL) range measurements has also been studied in Batista et al. (2010). Here
a cascaded navigation system was used, which opposed to the EKF, was proven to have
globally exponentially stable (GES) error dynamics. In A. Johansen et al. (2016) the
same cascaded approach was used to combine two filters, in addition to making use of
the nonlinear algebraic transformation of the pseudo-range measurements. This resulted
in a Three-Stage Filter (TSF) for position and linear velocity estimation using inertial and
pseudo-range measurements. In B. Stovner et al. (2016) the TSF from A. Johansen et al.
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(2016) is employed for estimating position and linear velocity, and uses a multiplicative
bias parameter to model the unknown wave speed. A formulation relating the pseudo-
range to position and wave speed bias parameter was developed in Batista (2015), and in
B. Stovner et al. (2016) this formulation is adjusted so that the states could be linearly
related to the measurements.

1.3 Objective

The main objective of this thesis is to investigate two different filters for integration of
inertial and pseudo-range measurements that would be suited for underwater navigation
of an ROV. The focus of this investigation lies on the accuracy of the state estimates,
convergence in case of accurate and inaccurate initialization in addition to stability prop-
erties. The filters are tested in simulations in order to verify their implementation and
compare their performance. Finally, the integration filters are also tested offline using
experimental data, in order to test their robustness in more realistic conditions for un-
derwater navigation.

1.4 Contributions

The main contributions made in this thesis, are listed below.

1. The TSF as described in B. Stovner et al. (2016) was implemented, adding the
additional states of acceleration biases

2. An EKF was implemented for the same estimation problem

3. A simulator was developed in MATLAB for testing sensor-based observers

4. The filters were verified and compared in simulations

5. Modification of the integration filters were done so they could be tested offline,
using logged experimental data

6. The performance of the filters was compared in offline runs
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1.5 Structure of the report

The rest of the thesis is structured as follows:

Chapter 2 is dedicated to a literature review. This includes an overview of underwa-
ter navigation techniques, with a main focus on integration of inertial and pseudo-range
measurements.

Chapter 3 presents the mathematical modeling and reference frames that are used in
order to describe the motion of the simulated ROV as well as the measurements that are
generated.

Chapter 4 renders the observer design of the TSF and the EKF.

Chapter 5 describes the implementation of the simulator and also the experiments that
were conducted in the MC-laboratory which were the source of the experimental data
that the filters were tested for. The chapter includes a description of the ROVs, sensors
and other equipment that were used.

Chapter 6 presents results from simulations. The simulation results are briefly dis-
cussed.

Chapter 7 presents results from offline tests using experimental data. The experimental
results are briefly discussed.

Chapter 8 discusses the results obtained both from simulations as well as from physical
experiments. A comparison between simulation and experimental results is given.

Chapter 9 draws conclusions from the results and discussions.

Chapter 10 proposes further work.
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Chapter 2

Underwater navigation

This chapter is dedicated to review some of the literature and recent research in the
field of underwater navigation. In this thesis navigation is the process of directing a
craft by determining its position. Positioning is the process of establishing the position
of a vehicle, and is a subset of navigation. This should not be confused with the term
localization which is placing a moving object within a map (Paull et al., 2014).

In a marine control system, the navigation system includes sensor devices measuring the
system’s states. This may be position, velocity or the distance travelled. In circumstances
where relevant states might be too expensive to measure or there simply exists no sensor
that measures this state, an observer can be used for state estimation. An observer can
be a high or low fidelity model of the system that is used to estimate the model’s state
(Sørensen, 2013). The observer can establish for example the vehicle’s position within a
specific reference frame among other system states, based on the sensor measurements
that are available.

The topics highlighted in this literature review are state of the art underwater navigation
techniques, with a closer look on inertial navigation aided by range measurements and
filter design for this particular case.

2.1 An overview

For aerial and ground vehicles, the Global Navigation Satellite System (GNSS) is widely
used for navigation solutions. A major challenge for underwater navigation is that there
exists no global positioning system. Due to the strong attenuation of electromagnetic
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waves under water, underwater applications cannot rely on GNSS. Underwater navigation
must therefore rely on other techniques, which can be divided into three main categories
according to Paull et al. (2014):

• Inertial navigation/dead reckoning

• Acoustic transponders/modems

• Geophysical navigation

Figure 2.1 gives an overview of underwater navigation methods available today. The
figure is intended for AUV navigation, but the same methods apply for other underwater
vehicles. The overview includes the same three techniques as mentioned above, listing
also the most commonly used sensor technologies applied by each of them.

Figure 2.1: Underwater navigation classifications, courtesy of Paull et al. (2014)

Inertial navigation is based on measurements from a variety of navigation sensors in
order to propagate the current state of an underwater vehicle. This is also known as dead
reckoning. Acoustic navigation is based on propagation of sound waves under water.
Geophysical navigation refers to methods that use external environmental features to
determine a vehicle’s position (Paull et al., 2014), and relies on scientific sensors to a
greater extent than navigation sensors (C. Kinsey et al., 2006).
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The type of navigation technique used is highly dependent on what type of operation is
being done, the associated requirements to navigation accuracy as well as infrastructure
and available sensor data. A common practice is to combine systems to enhance perfor-
mance. An integrated navigation system determines the states of a system using more
than one technology (Groves, 2008). In Section 2.6.1 integration of inertial and range
measurements is elaborated further. And in Section 2.6 several filters for this application
are discussed.

2.2 Inertial Navigation System

An INS will typically calculate position, velocity and attitude using high frequency data,
from an Inertial Measurement Unit (IMU). Today, the sensors contained in the IMU are
simply strapped to the vehicle, which is known as a strapdown INS. Because navigation
is based on dead reckoning, this requires that the initial states are known. The system
will then calculate future states by integrating the information provided by the inertial
sensors. The kinematic equations formulated for the strapdown case, are integrated
numerically based on the IMU measurements, and constitute the INS.

Inertial navigation is known to give accurate short-term results, but its performance
quickly degrades with time, because of integration of sensor noise as well as sensor bi-
ases. Due to these inherent errors in the IMU, all dead-reckoning methods based on
these measurements will suffer from cumulative errors. In order to correct this drift-off,
and stabilize the estimation errors, INS can be combined with other aiding sensors and
different navigation techniques to correct this.

In addition to the navigation sensors contained in the IMU, the INS algorithm can also
include sensor data from a compass, a Doppler Velocity Log (DVL) or a pressure sensor,
as illustrated in Figure 2.1. A compass is able to sense the heading of a vehicle in motion,
by measuring the direction of the horizontal components of Earth’s magnetic field. This
can therefore partially correct the drift-off in the orientation estimate. A pressure sensor
provides the depth of a vehicle, by assuming that the atmospheric pressure at the surface
is known and using that static pressure is proportional to depth. This can correct the
position estimate in Down. The DVL can measure the 3-DOF linear velocities of a
moving body. This is done by emitting acoustic pulses, that are reflected for example
by the seabed, and measuring the Doppler shift in the returned signals to determine the
velocity.
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2.2.1 Inertial measurement Unit

An IMU typically consists of three accelerometers and three gyroscopes mounted with
orthogonal axes, that measure the 3-Degrees-of-Freedom (DOF) accelerations and turn
rates respectively (Dukan, 2014). The IMU can also include magnetometers that mea-
sure the magnetic field components in 3-DOF. The acceleration measurements can be
integrated once to obtain velocity, twice to obtain position, while the turn rates can be
used for determining an estimate of the attitude of the vehicle. These are known as the
INS strapdown equations, and are illustrated in Figure 3.2. In Chapter 3 the relevant
measurement equations are described further.

The IMU measurement models are only valid for low-speed applications, such as for
ships and underwater vehicles, because it is assumed that the inertial frame in which the
measurements are obtained in is non-rotating. Read more about the relevant reference
frame in a navigation context, in Chapter 3.

In recent years there has been a breakthrough in the development of low-cost inertial
sensors based on micro-electromechanical system (MEMS) technology. This has resulted
in the use of MEMS-based inertial sensors in a wide range of products, among these
underwater navigation applications. Consequently more research has been targeted on
developing integration navigation algorithms that can be implemented at low cost, com-
bining MEMS-based inertial sensors with other navigation techniques.

2.2.2 IMU error characteristics

Inaccurate scaling, sensor axis misalignments, and cross-axis sensitivities in addition to
non-zero biases will usually affect low-cost MEMS-based IMUs. IMU calibration is the
process of identifying these quantities, and compensating for the error identified in the
measurements.

Scale factor error is an erroneous relation between input and output, used to convert
digital outputs of the sensors to real physical quantity. For accelerometers in the IMU,
sensor misalignment describes the angular difference between the accelerometer’s axis of
rotation and the system defined inertial reference frame.

Each systematic error source has four components: a fixed contribution, a temperature-
dependent variation, a run-to-run variation, and an in-run variation (Groves, 2008). The
fixed contribution and the temperature-dependent variation can be corrected using cal-
ibration algorithms. The run-to-run variation results in error sources that are different
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each time the sensor is run, but will remain constant within the same run. These can be
calibrated using the integration algorithm. The in-run variation gives a slowly-varying
error source, and is in practice hard to observe and therefore hard to compensate for
(Groves, 2008).

2.3 Acoustic navigation

Acoustic navigation techniques are based on measuring ranges using acoustic signals.
The range is not measured directly, but instead a parameter that is proportional to the
geometric range is measured, namely the time-of-arrival (TOA). Acoustics are applied in a
number of different navigation methods used under water, which all have in common that
they are based on TOA measurements. A main distinction is made between techniques
that use acoustic beacons, usually fixed on either a surface vessel or on the seabed, and
acoustic modems, that can be mounted on an underwater vehicle and are therefore usually
non-stationary. An acoustic modem allows both simultaneous communication of small
data packets as well as ranging based on TOA measurements (Paull et al., 2014). This has
enabled so-called cooperative navigation, where multiple underwater vehicles can share
navigation data.

2.3.1 Acoustic positioning

Acoustic positioning employs fixed subsea beacons or transponders to generate range
measurements. In Figure 2.2 the three main methods for underwater acoustic position-
ing are illustrated. For underwater applications ultra-short baseline (USBL) and LBL
navigation are most commonly used (Ludvigsen, 2010). The two methods are explained
further in the following sections.
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Figure 2.2: Underwater acoustic positioning methods, courtesy of Kongsberg Maritime

Acoustic positioning with fixed subsea beacons applies mainly two devices, namely an
interrogator and a transponder, which both are combined transmitter-receiver devices
(Christ and Wernli, 2013). The interrogator will transmit a short acoustic signal, and
when registered by the transponder, a output signal with a new frequency is sent in reply.
So the transponder will send out a signal on receipt of the interrogation signal from the
interrogator, but with a different frequency (Christ and Wernli, 2013). By measuring the
time from the transmission of one signal to a new signal is registered in return, the TOA
measurement is obtained. Using that the sound propagation velocity is known, range
measurements, that is the distance between the interrogator and the transponder, can be
calculated based on TOA measurements.

Ultra-short baseline navigation

USBL navigation allows an underwater vehicle to position itself relative to a surface ship.
The interrogators will typically be mounted on the ship, while transponders are placed on
the underwater vehicle, for example an ROV, in motion. This method is also known as
super short baseline, where "baseline" refers to the distance between the transducers, the
device making acoustic signals, on the interrogator. The angle between the transponder
mounted on the ROV and the interrogator on the ship, also known as the bearing, is
found from phase-differencing of the signal arriving at the interrogator. For the USBL
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system the bearing and the TOA measurements are used to determine the position based
on triangulation principles (Groves, 2008).

Long Baseline navigation

A LBL system consists of a number of acoustic transponder beacons at fixed locations
on the seabed or potentially on ships or platforms, in addition to interrogators mounted
on a moving underwater vehicle. The vehicle will be able to position itself relative to
the transponder network. Here the term "baseline" refers to the distance between the
fixed beacons (Christ and Wernli, 2013). LBL navigation uses range measurements only.
And these are used in order to determine the position based on trilateration principles
(Groves, 2008). In principle, navigation can be performed using only two transponders.
However, with only two range measurements, a baseline ambiguity arises (Christ and
Wernli, 2013). This means that it is not possible to determine which side of the baseline
the object is located on, and the depth of the object is unknown. A third transponder is
therefore used to obtain the exact point, to ensure unambiguous navigation, while four
transponders typically will be used in order to give redundancy and to serve as a quality
check of the range measurements.

Today, long baseline navigation is the most accurate method for obtaining position in X
and Y. The price to pay is that a LBL network will require more expensive equipment,
and a more extensive and time-consuming installation and calibration phase (Hegrenas
et al., 2009). Also, a LBL network provides navigation within a limited maximum range,
typically up to 5-10 km from the fixed beacon network (Webster et al., 2012).

2.3.2 Range-based navigation

Range-based positioning is a common term for positioning based on range measurements
and trilateration principles. Examples of range-based positioning methods are GNSS as
well as LBL systems that are based on the same principles. The TOA measurements
that these systems provide will normally be corrupted by slowly-varying uncertainties.
For GNSS applications this is typically because of clock-synchronization errors when
measuring time, while for subsea applications uncertainties typically occur because of
unknown wave speed of sound in water. Because of this the measurements will be bi-
ased. To account for this the range measurements are modeled with an slowly-varying
bias parameter, and are referred to as pseudo-range measurements. Consequently, four
variables typically need to be estimated based on the pseudo-range measurements: three
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position coordinates and a bias parameter. This requires a minimum of four pseudo-range
measurements. Range-based positioning systems can also be used to generate so-called
difference-in-time-of-arrival (DTOA) of a signal sent from a known position. These are
known as range-rate measurements, and if these are corrupted by the same bias param-
eter, they will be known as pseudo-range-rate measurements.

2.3.3 Shortcomings of acoustic navigation

Common for the acoustic positioning techniques, is that they suffer from a number of
shortcomings. Listed below are those indicated by Paull et al. (2014).

• Small bandwidth

• Low data rate

• High latency

• Variable sound speed

• Multipath transmissions

• Unreliability

The TOA measurements that acoustic positioning relies on, are limited by the speed of
sound in water, which is approximately 1500 m/s (C. Kinsey et al., 2006). This limits how
fast the acoustic system is able to provide new measurements and contributes to latencies.
Also, the fact that the speed of sound fluctuates, due to changes in water temperature,
pressure or salinity, is further complicated by the fact that actual speed of sound also is
difficult to measure accurately (Kussat et al., 2005). Variety of speed of sound across the
water column, creates layers with variable sound speed, which also can result in multipath
transmissions. And put together all of the above-mentioned drawbacks contribute to a
level of uncertainty.

2.4 Geophysical navigation

Geophysical or terrain-based navigation methods use external environmental features as
references for navigation. In recent years extensive research has been done on developing
environmentally-based navigation methods, that omits the need for additional infrastruc-
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ture. This form of navigation is truly autonomous, because the vehicle is independent of
external measurements and infrastructure.

Geophysical navigation uses sensors and processing that enables detecting, identification
and classification of specific environmental features. This can for example be done us-
ing real-time sensing and a terrain or landmark map using either topographic, magnetic,
gravitational or geodetic data (C. Kinsey et al., 2006). The majority of geophysical nav-
igation methods will use some form of simultaneous localization and mapping (SLAM).
SLAM is the process where a robot builds a map of its environment while at the same
time, it localizes itself within this map (Paull et al., 2014). Terrain-aided navigation
(TAN) is becoming more common for underwater applications, and has demonstrated a
great potential for the development of a new generation of navigation systems. Currently
TAN navigation will typically use TOA sonars as the principal navigation sensors, in
order to detect and identify features in the environment that can be used as navigation
landmarks. An example of a geophysical navigation is work done by Teixeira and Pascoal
(2008). In this article the navigation algorithm uses TAN complemented with geophysi-
cal data. Bathymetric and geomagnetic measurements were obtained using acoustic and
magnetic sensor technology, and merged with dead-reckoning data, in order to estimate
the position and velocity of an AUV. Despite the flexibility that geophysical navigation
gives, the navigation techniques will also suffer from the fact that the more "natural" and
unstructured the environment is, the more challenging feature extraction and matching
becomes (C. Kinsey et al., 2006).

2.5 Observer design and state estimation

An observer will be an essential part of most navigation systems. Its main functions are
listed below (Candeloro et al., 2012).

• Estimation of unmeasured states based on available measurements

• Estimation of environmental disturbances

• The ability of dead reckoning in case of sensor-faults

• Filtering of the measured signal
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2.5.1 Models vs. measurements

An observer can be based on either a model of the body in motion or on measure-
ments. The typical strapdown INS system as described in Section 2.2, is an example of
measurement-based navigation and relies on measurements only. In turn this means that
the accuracy of the estimated states are highly dependent on the quality of the inertial
measurement unit and the accuracy of the measurements they provide (Paull et al., 2014).
However, if high accuracy sensors are used, measurement-based navigation can provide
accurate estimates of position, velocity and attitude. Because all unknown forces acting
on a moving body is felt instantaneously by accelerometers, these are included directly
in the INS. Otherwise these can be hard to predict.

Model-based navigation solutions rely on a model of the underwater vehicle. These are
efficient for filtering noise and estimating states without phase lag (Dukan, 2014). Even
though it can be challenging to estimate the hydrodynamics of underwater vehicles, even
a very simple model that captures the main dynamics can improve the navigation solution
considerably. Despite this, unmodeled dynamics and disturbances can result in estimation
errors.

2.5.2 Sensor-based observers

The strapdown INS problem can be divided into two main categories, where one of them is
the attitude estimation and the other is the integration filter for estimation of translational
states, which are position and linear velocity. The attitude estimator comprises all sensors
that measure Euler angles or turn rates, which is used for estimating the orientation or
attitude of the vehicle. Sensors that give information on the vehicle position, linear
velocity or linear acceleration are considered part of the integration filter, and are used to
estimate the translational motion of a vehicle (Paull et al., 2014). The attitude estimator
and integration filter can be interconnected in order to enhance the accuracy of the total
navigation solution. This is shown in Figure 2.3.
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Figure 2.3: Strapdown INS combining attitude estimation with integration filter, courtesy
of Dukan (2014)

Above it is seen how the attitude estimates can be integrated from turn rates, if the
measurements provided are accurate enough. The acceleration measurements can be in-
tegrated twice to obtain position. The notation which is used in Figure 2.3 is explained
further in Chapter 3. This configuration is convenient because the orientation of the
vehicle is needed to obtain the acceleration measurements in the correct, inertial frame.
These can then be integrated to obtain position and velocity estimates. However, this
solution is heavily affected by the accuracy of attitude estimation. And small attitude er-
rors can result in faulty resolved acceleration measurements, which will cause the velocity
and position estimate to drift-off rapidly.

Position and velocity estimation using a combination of inertial and range measurements
is a nonlinear estimation problem. Essentially two main categories exist for solving non-
linear estimation problems. These are divided into methods based on either local lin-
earizations or nonlinear observers. For the linearized estimators a first-order Taylor se-
ries expansion is used to find an approximation of the nonlinear problem. The stochastic
estimators have the advantage of optimal performance with respect to unknown measure-
ment and process noise for the linear case, when tuned properly. The nonlinear observers
lack the same systematic approach for optimizing their performance. However, they have
strong stability properties, and are usually globally asymptotic stable (GAS) or at least
have a large region of attraction. The mentioned stability properties are explained further
in Section 2.5.3. Because the state is unknown, the linearized filters must normally rely
on linearization about their own state estimate. And consequently global stability cannot
be guaranteed. The linearization also causes errors and correlations that are sub-optimal
(Johansen and Fossen, 2016b).
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2.5.3 Stability properties

In order to analyze the stability of an observer, their error dynamics are studied. Crudely
defined, stability of a dynamical system ensures that any solution that starts near an
equilibrium point of the system, will stay near this for all time. If the solution also
tends to the equilibrium point as time approaches infinity, the system is asymptotically
stable. The equilibrium point of any dynamical system can be shifted to the origin. For
convenience all definitions and theorems regarding stability is usually defined for the case
when the equilibrium point is in the origin (Khalil, 2015).

For Linear-Time-Varying (LTV) systems, the term uniform stability becomes relevant.
Uniform stability is a concept which guarantees that the stability is maintained, meaning
that stability is obtained for all initial times, t0. Further, there is a distinction between
global and local stability. Global stability is obtained when the error dynamics converge
to the origin for all possible initial conditions. If stability is only local, the solution must
start within an area of the equilibrium point in order to ensure convergence. The set of
initial values for which the error dynamics will converge to the origin is known as the
region of attraction or the region of asymptotic stability (Khalil, 2015).

If the error dynamics of a LTV system converge to the origin independent of the initial
solution and the initial time, t0, the error dynamics are uniformly globally asymptot-
ically stable (UGAS). The asymptotic form of stability does not quantify the rate of
convergence. Exponential stability is a stronger form of stability, and implies uniform,
asymptotic stability, and in addition demands an exponential rate of convergence. When-
ever possible one wishes to prove uniformly globally exponential stability (UGES). For
linear systems asymptotic and exponential stability are equivalent (Khalil, 2015).

2.6 Integration filters

Integration filters are used to combine different sensor data in order to estimate the
desired states. In the following sections, integration filters for merging inertial and range
measurements are considered.

2.6.1 Integration of inertial navigation and range measurements

One of the main attractions of combining sensor data is that measurements with oppo-
site characteristics can be compensated by the strength of the other. INS suffers from
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unbounded drift, but has low measurement noise. Acoustic measurements on the other
hand have no drift, but high noise. As acoustic range measurements and INS suffer from
opposite error characteristics, these are also good candidates for sensor fusion, in order
to obtain state estimates with low levels of noise and smaller drift (Rowan, 2008).

Inertial sensors provide measurements with a much higher frequency than acoustic sensors
that provide TOA signals. This means that in between range measurements, navigation
must rely on vehicle position estimated based on available inertial sensor measurements.
Even with low-frequency range measurements, the result of combining INS with range
measurements is that the inertial solution will not drift and that the position estimation
error is bounded (Webster et al., 2012).

The integration algorithm used for combining INS and range measurements will compare
the inertial solution to the one found from the range measurements and estimate correc-
tions to the system’s states. This will typically be done using a Kalman Filter (KF). The
final state estimate is then the corrected inertial navigation solution (Groves, 2008).

2.6.2 Loosely and tightly coupled scheme

A translational motion observer (TMO) designed for integration of range and inertial
measurements, will typically estimate position, velocity and possibly a bias parameter.
Two design philosophies exist for such state estimators. In the loosely coupled scheme an
estimate of the position, velocity and bias is found from the pseudo-range measurements,
meaning that direct measurements of the states are used in the integration algorithm.
This yields a linear relationship between the measurements and the states. In a tightly
coupled scheme, the pseudo-range measurements are used directly, so that the measure-
ments are given by a nonlinear measurement model. State estimation using tightly cou-
pled integration of pseudo-range and inertial measurements therefore typically uses a
local linearization as the basis for a nonlinear Kalman filter or particle filter or uses a
nonlinear observer.

The advantage of using a loosely coupled integration is a linear measurement model that
simplifies the structure of the observer. However, the tightly coupled architecture will
almost always perform better when it comes to accuracy as well as robustness (Groves,
2008).
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2.6.3 Extended Kalman Filter

The EKF is regarded as a state of the art solution to the tightly coupled approach,
and reaps the benefits of optimality in the presence of noise. Applied in its linear form,
the LTV KF is known to be GES. However, when used in its nonlinear form, known as
the EKF, global stability can no longer be guaranteed. The lack of global stability can
essentially be traced back to the feedback loop, in which the filters own state estimate
is used to make a local linearization of the nonlinear model of the system. In a scenario
where the filter is initiated with a poor state estimate, the resulting linearization will
be poor and produce a poor update, so that the filter might not be able to reduce the
estimation error (Johansen and Fossen, 2016b). This means that the global stability of
the system cannot be guaranteed, because convergence of the filter is dependent on an
initialization that is sufficiently accurate. This means that the EKF obtains only local
stability.

2.6.4 The eXogenous Kalman Filter

In order to overcome the weak stability property of the EKF, an auxillary state estimator
has been studied by Johansen and Fossen (2016a) and Johansen and Fossen (2016b)
among others. By using a different state estimator to provide an exogenous input to a
linearized Kalman filter, the feedback loop that destabilizes the EKF is avoided. The
nonlinear system is then linearized about the exogenous state estimate, rather than the
KF’s own state estimate. This is known as a two-stage estimator and is referred to as an
eXogenous Kalman filter (XKF). The most important requirement to the auxiliary state
estimator is that this should have strong stability properties, ideally GES. It follows from
standard results on cascaded systems, that the cascade of estimators inherits the stability
properties of the auxiliary state estimator.

20



CHAPTER 2. UNDERWATER NAVIGATION

Figure 2.4: eXogenous Kalman filter (XKF), courtesy of Johansen and Fossen (2016a)

2.6.5 Three-Stage filter

The tightly coupled integration of inertial and pseudo-range measurements are considered
specifically. And for this estimation problem a globally valid nonlinear algebraic trans-
formation can be used on the nonlinear measurement equation in order to derive a set
of quasi-linear time-varying equations. The term quasi-linear is used because the mea-
surement model has been manipulated into a linear form, by introducing new variables.
Because the algebraic transformation yields a quasi-linear time-varying (LTV) model, a
UGES state estimator can be designed using the standard KF (Johansen and Fossen,
2016b). In the noise-free case, the quasi-linear measurement model is free of approxima-
tions. When noise is present however, the result of the algebraic transformation will give
sub-optimal estimates. This is because the original nonlinear relationship is eliminated in
order to obtain the global quasi-linear model, which will result in sub-optimal estimates
when pseudo-range measurements are noisy.

To address the sub-optimality in presence of noise, the two-stage estimator approach
has been proposed for this specific case. A second-stage KF is introduced in order to
reduce the influence of noise on the estimates. The two-stage estimator aims to improve
the accuracy of the estimates, by combining the quasi-linear time-varying measurement
equations with the original nonlinear measurement model. The state estimate provided
by the auxiliary estimator is used to ensure global convergence without considering op-
timality with respect to noise. The second stage estimator recovers estimation accuracy
by considering both measurement and process noise (Johansen and Fossen, 2016b). This
novel formulation has been referred to as the TSF, where the first stage constitutes the
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algebraic transformation.

The TSF has earlier been presented in the work by A. Johansen et al. (2016), and later
on also in work by B. Stovner et al. (2016) and Jørgensen et al. (2016). By using the
principle of the XKF, the feedback loop used to linearize the nonlinear system is avoided,
and global stability is restored. The TSF is able to give a globally convergent solution
and accurate estimates, also when measurements are subject to noise.

Figure 2.5: Three-stage filter (TSF), courtesy of A. Johansen et al. (2016)

In Figure 2.5 the main steps of the TSF are illustrated. In the first stage the global
nonlinear transformation of the measurement equation takes place, which puts the mea-
surement model on a quasi-linear form. The next stage is then to obtain a globally
convergent estimate by using the quasi-linear measurement model and data from the 1st
stage together with a model of the vehicle dynamics using a LTV KF that is UGES. The
2nd stage state estimate is then used to determine a point for which a local linearization
can be made of the original nonlinear measurement model. The 3rd stage KF is then
used to provide a more accurate estimate based on this linearization. In the work done
by A. Johansen et al. (2016) it is shown that the three-stage filter must be UGES because
of the cascaded structure of the two UGES filters and the transformation.

22



Chapter 3

Modeling

This chapter aims to describe the mathematical modeling that lies behind the navigation
system that is developed. Theory is mainly taken from Fossen (2011), and from this the
matrix notation is also adopted. A kinematic model is described, and this has been used
to simulate the motion of an ROV and is part of the kinematic filter model. Relevant
measurement models for acoustic and acceleration measurements are also included. These
are used for generating measurements during simulations, and are also part of the filter
design.

3.1 Mathematical ROV model

According to Fossen (2011) a mathematical model for a robotic system can be divided into
two parts, kinematics and kinetics. The kinematic model compromises the geometrical
aspect of motion, without considering the cause of motion. The kinetic model considers
the forces and moments that act on the body, and how these create motions.

Because the transformations and references frames of a moving vehicle are known, the
kinematics will be accurate. More uncertainty is however associated with the forces and
moments acting on a vehicle, causing the need for the kinetics to be more simplified and
usually subject to a number of assumptions.

In the developed filters only the kinematic model of an ROV is considered. The vehicle
kinetics are therefore not included. In practice this means that the proposed naviga-
tion system can be applied to any underwater vehicle, independent of its geometry and
hydrodynamic properties. Kinetic modeling is therefore not further addressed in this
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thesis.

3.2 Kinematics

In the following section kinematic relations are used to define motion in different reference
frames.

3.2.1 Notation

The motion, position and orientation of a vehicle are given by vectors and generalized
coordinates. The notation that will be used throughout this thesis, is based on a 6 DOF
representation for vessels, given by (SNAME, 1950).

Table 3.1: Notation used for marine vessels, courtesy of SNAME (1950)

Forces and Linear and Positions and
DOF moments angular velocities Euler angles
1 motions in x-direction (surge) X u x
2 motions in y-direction (sway) Y v y
3 motions in z-direction (heave) Z w z
4 rotations about the x-axis (roll) K p φ

5 rotations about the y-axis (pitch) M q θ

6 rotations about the z-axis (yaw) N r ψ

3.2.2 Reference frames

A reference frame is needed in order to describe and represent any vehicle in motion.
There exists several reference frames, and the most common ones are the North-East-
Down frame (NED) and the body-fixed reference frame (BODY).

• NED, {n}
The North-East-Down frame with axes {n} = [xn, yn, zn] has an origin on defined
relative to the Earth’s reference ellipsoid. This frame is often defined as the tangent
plane on the surface of the Earth moving with the craft. The x-axis points towards
true North, the y-axis towards true East, and the z-axis points downwards normal
to the Earth surface. For a vehicle operating with relatively low speed, within a
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local area, so that the longitude and latitude can be assumed constant, the NED
frame can be assumed inertial. This means that Earth’s angular rate is neglected,
and that Newton’s laws are applicable (Fossen, 2011).

• BODY, {b}
The body frame with axes {b} = [xb, yb, zb] and origin ob is a coordinate frame
fixed to the craft in motion. The origin of {b} can be placed anywhere, but is most
convenient on the centerline or at intersections of symmetry planes. This is also
referred to as the Center of Origin (CO). The position and orientation of a craft is
expressed relative to an inertial frame, while linear and angular velocity is described
in a body-fixed frame.

A third relevant reference frame, is the measurement frame, MES, {m}, with axes {m} =
[xm, ym, zm]. Measurements obtained from instruments that are mounted on the vehicle
will be given in the instrument’s measurement frame, which is also in motion and moving
with the body (Dukan, 2014). For the work done in this thesis the measurement frame
is assumed coinciding with the BODY frame, so that measurements do not need to be
transformed from {m} to {b}.

The test basin in the MC-laboratory has been used to perform experiments. This tank is
illustrated in Figure 3.1, with the BODY frame for the ROV and the reference frame for
the test basin. The test basin reference frame is defined by the Qualisys Motion Tracking
(QMT) system, which is an underwater positioning system. The test basin reference
frame is used as NED frame in experiments, in the same way that GNSS reference frame
is used as NED frame in real life. The origin of the test basin reference frame is placed
on the bottom of the basin, approximately in the middle of the tank.
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Figure 3.1: ROV BODY frame and NED frame in towing tank

3.2.3 Generalized coordinates

Generalized position and velocity coordinates are given by (3.1) and (3.2), respectively.

η = [x y z φ θ ψ]> (3.1)

ν = [u v w p q r]> (3.2)

The linear and angular velocity vectors are sub-vectors of the generalized coordinates,
and are given by (3.3).

p =


x

y

z

 v =


u

v

w

 Θ =


φ

θ

ψ

 ω =


p

q

r

 (3.3)

where p ∈ R3×1 is the linear position, v ∈ R3×1 is the linear velocity, Θ ∈ R3×1 is the
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vector of Euler angles and finally ω ∈ R3×1 is the angular velocity or the turn rates of
the body.

The orientation of a vehicle with respect to NED can be represented by means of Euler
angles Θ, as defined in (3.3), or unit quaternions, q ∈ R4, defined in (3.4). The main
motivation for using quaternions is that this notation avoids problems with singularities
that occur in the angular transformation matrix, when expressing orientation using Euler
angles. Compared to the Euler angle representation, the quaternion representation is
also more computationally effective, as the linear and angular transformation matrices
include less trigonometric functions. On the downside, the quaternion representation is
less intuitive compared to using Euler angles.

Q := {q |q>q = 1, q = [η, ε>]>, ε ∈ R3 and η ∈ R} (3.4)

where

q =


η

ε1

ε2

ε3

 ∈ Q (3.5)

The quaternion must satisfy the geometric constraint, qT q = 1. To ensure this, a nor-
malization can done according to (3.6).

qk+1 = qk+1

‖qk+1‖
(3.6)

3.2.4 Transformations

A transformation is necessary to be able to change the representation of motion from one
reference frame to another, for example from BODY to NED. The transformation function
is denoted by J, more specifically Jq when attitude is expressed using the unit quaternion.
The kinematics expressed using generalized coordinates in 6 degrees of freedom (DOF)
are given in (3.7).

η̇ = Jq(η)ν (3.7)
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where η = [x, y, z, η, ε1, ε2, ε3]>, η ∈ R7, ν ∈ R6 and Jq(η) ∈ R7×6 when using the
quaternion representation for attitude. The 6 DOF kinematic equations are now expressed
with seven differential equations, which can be written on matrix form according to (3.8).

ṗnb/n
q̇

 =
Rn

b (q) 03×3

04×3 Tq(q)

vbb/n
ωbb/n

 (3.8)

The terms included in (3.8) are explained in the two following sections.

Linear velocity transformation

The linear velocity in NED frame, vnb/n, also denoted by ṗnb/n, can be extracted from the
matrix form of the kinematics (3.8) and gives

ṗnb/n = Rn
b (q)vbb/n (3.9)

where Rn
b (q) is the linear transformation matrix, that transforms velocities in a body-fixed

reference frame {b} to the inertial frame {n}.

Rn
b (q) =


1− 2(ε2

2 + ε2
3) 2(ε1ε2 − ε3η) 2(ε1ε3 + ε2η)

2(ε1ε2 + ε3η) 1− 2(ε2
1 + ε2

3) 2(ε2ε3 − ε1η)
2(ε1ε3 − ε2η) 2(ε2ε3 + ε1η) 1− 2(ε2

1 + ε2
3)

 (3.10)

The position on a path or a trajectory, pnb/n, of a craft relative to the NED coordinate
system can be found by numerical integration, here using Euler integration. Below h is
the sampling time.

pnb/n,k+1 = pnb/n,k + h ·Rn
b (q) · vbb/n,k (3.11)

In order to find the linear acceleration in the NED frame, anb/n, or v̇nb/n, the following
property of the rotation matrix is used

Ṙn
b = Rn

bS(ωbb/n) (3.12)

where S(ωbb/n) is the skew-symmetric matrix, defined as
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S(ωbb/n) =


0 −r −q
r 0 −p
−q p 0

 (3.13)

so that the linear accelerations in NED frame are found from

anb/n = S(ωbb/n)Rn
b v

b
b/n +Rn

b v̇
b
b/n (3.14)

Angular velocity transformation

The angular velocity transformation is also contained in the kinematics given by (3.8).

q̇ = Tq(q)ωbb/n (3.15)

where Tq is the angular transformation matrix expressed using the quaternions (3.16).

Tq(q) = 1
2


−ε1 −ε2 −ε3

η −ε3 ε2

ε3 η −ε1

−ε2 ε1 η

 (3.16)

Using Euler integration like in (3.11), the next quaternion is found by

qk+1 = qk + h · Tq(q) · ωbb/n,k (3.17)

3.3 Measurement models

In the following sections, the relevant measurement models are described. These are used
to put together the kinematic observer model. In simulations "perfect" measurements
are generated, and noise is therefore modeled and added to these measurements to make
simulations more realistic. Modeling of sensor noise and biases is explained further.

In physical experiments, measurements are further complicated by the fact that sensors
can be placed and aligned in different positions on the ROV. The measurements will then
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need to be transformed to the CO or another common point, so that all measurements
are made relative to the same point on the body.

3.3.1 Gaussian white noise

Signal noise occurs both due to external and internal disturbances in sensors. Various
types of noise is often either characterized as process or sensor noise. And due to its
random nature, these will be modeled as random processes using stochastic variables. A
random variable is described by a probability density function, defined by a variance and
a mean.

The Gaussian or normal distribution is the most known probability function, and can be
used to model noise. Gaussian white noise is normally distributed random process noise
which contains all frequencies. A sensor measurement is typically on the form

y = Hx+ w(t) (3.18)

where y ∈ Rm contains the sensor measurements, x ∈ Rn is the state vector and
H ∈ Rm×n is the measurement matrix. w(t) denotes the Gaussian white noise, and
the Gaussian white noise process can be described as

w(t) ∼ N(0, σ2) (3.19)

with zero mean, and variance σ2.

3.3.2 Random walk process

The random walk process or the Wiener-motion process is Gaussian white-noise inte-
grated. The variable w(t) is then modeled as

ẇ = εb (3.20)

where εb ∼ (0, σ2
b ). In turn this means that that the random walk process in theory

has an infinite variance. The random-walk process is however often well behaved. It is
suggested by Fossen (2011) to use a random walk for modeling slowly varying biases.
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3.3.3 Range measurements

Range measurements can be found from TOA measurements, here denoted by ti. Using
the wave speed of sound under water, the acoustic range measurement is given by (3.21).

yi = c0ti (3.21)

In Equation (3.21) co denotes the assumed sound wave propagation speed, and the sub-
script i indicates a measurement from transponder i. The wave speed is known to vary
with pressure, temperature and salinity. The real propagation speed, c, can therefore
be modeled as c =

√
βc0, where the multiplicative bias-parameter, β, accounts for the

uncertainty in this value. This is modeled as a random walk process, as described in
Section 3.3.2.

β̇ = εβ (3.22)

where εβ ∼ (0, σ2
β). Let pn and vn denote the position and velocity of the ROV, and p̆ni

denote the position of transponder i, all in NED frame. The geometric range, ρi, is given
by a nonlinear function of the vehicle position, pn, and the ith transponder position, p̆n,
given by the Euclidean distance, denoted by ‖·‖.

ρi = ‖pn − p̆ni ‖ (3.23)

The measurements, yi, are subject to zero-mean, Gaussian measurement noise, as de-
scribed in Section 3.3.1. In the measurement equation (3.24) the range measurement is
modeled with unknown wave propagation speed, and referred to as pseudo-range mea-
surements.

yi = 1√
β

(ρi + εy,i) (3.24)

where εy,i ∼ (0, σ2
y).

The range measurements are made relative to the position of the acoustic interrogator
on the ROV. This means that the resulting positions that are based on the range mea-
surements and trilateration principles have an offset or a lever arm with respect to the
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CO of the ROV. This can be compensated for using the distance from the interrogator
to the CO, according to

pnb = pnm −R(Θ)l (3.25)

where pb is the position relative to vehicle origin, and pm is the resulting position found
from trilateration, l ∈ R3×1 is the lever-arm, and R(Θ) ∈ R3×3 is the rotation matrix.

3.3.4 Acceleration measurements

Acceleration measurements are obtained from an IMU mounted on the moving vehicle.
In Figure 3.2 the strapdown equations for both the accelerometers and gyroscopes are
illustrated. The attitude is expressed in quaternions, q, and the figure clearly illustrates
the interconnection between the position and attitude estimator. For the integration
filters that are developed, the attitude is assumed available and will not be estimated, so
that only the acceleration measurement equations are explained further.

Figure 3.2: The strapdown INS equations, courtesy of Fossen (2012)

Typically three orthogonal accelerometers are used. The inertial sensor model is based
on the strap-down assumption, which implies that the IMU is fixed to the BODY frame
of the vehicle. This means that the reference frame for the IMU is aligned with the
BODY frame, so that there are no misalignment errors between {m} and {b}. Linear
accelerations in NED are found by rotation of acceleration measurements obtained in
BODY frame, as it also appears from Figure 3.2. The accelerometers in the IMU are
subject to sensor biases. When these are double integrated, they cause an accumulative
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error in position that grows quadratically with time. The acceleration measurements,
abimu ∈ R3×1, are expressed by (3.26).

abimu = Rb
n(q)[v̇n − gn] + εbacc + bbacc (3.26)

where Rb
n(q) ∈ R3×3 is the rotation matrix from {n} to {b}, and q = [η, ε1, ε2, ε3]> is

the unit quaternion. εbacc ∈ R3×1 is additive zero-mean measurement noise, and bbacc =
[bu, bv, bw]> ∈ R3×1 represent accelerometer measurement biases, both obtained in the
BODY frame. The acceleration noise is modeled as described in Section 3.3.1 and the
acceleration biases are modeled as slowly time-varying disturbances, using a random-walk
process, as described in Section 3.3.2. See Equation (3.27).

ḃbacc = εbbacc (3.27)

where εbbacc ∈ R3×1 is Gaussian white noise. The gravity vector gn is modeled as a constant
vector in NED according to (3.28).

gn =


0
0
g

 (3.28)

The gravity vector varies across the globe, according to the distance away from the poles.
The nominal "average" that typically is used is g = 9.80665m/s2.

The INS strapdown assumption states that the IMU is fixed to the BODY frame, so that
there are no misalignment errors between {m} and {b}. The IMU can still be mounted
with an offset with respect to the CO of {b}, denoted by rbm = [xm, ym, zm]>. Instead of
transforming the IMU measurements to the CO, a state estimator will usually be formu-
lated in the measurement frame {m}. If desired, the estimated states can be transformed
to the CO, using the lever arm, rbm (Fossen, 2012). This is especially important if control
is made relative to this point. Control is not considered in this thesis, so all measurements
are instead shifted to the position of the IMU on the ROV, ensuring that measurements
are made relative to the same point.
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Chapter 4

Integration filter design

Two different methods for integration inertial and pseudo-range measurements are con-
sidered. The selected filters are the TSF and the standard EKF. And in the following
chapter the two different filter designs are described. In the set-up that is considered
pseudo-range measurements are provided by four transponders, yielding four individual
pseudo-range measurements. Acceleration measurements are made by an accelerometer
triad, as a part of an IMU mounted on the ROV in motion. Both filters use pseudo-range
and acceleration measurements to estimate position, velocity and bias parameters. The
filters that are described is the novel formulation of the TSF, in addition to the standard
EKF.

4.1 Observer model

The Kalman filter is formulated using the kinematic relations and the measurement mod-
els described in Chapter 3. The resulting system model is given by (4.1).

ṗn = vn

β̇ = εβ

v̇n = Rn
b (q)[abimu − εbacc − bbacc] + gn

ḃbacc = εbbacc

(4.1)

This includes acceleration measurements, modeled with a random-walk bias, and pseudo-
range measurements. The slowly-varying bias parameter accounting for an unknown wave
propagation speed is also estimated, in addition to the position and linear velocity. A
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continuous state space model can be defined for the observer according to

ẋ = Ax+Bu+ Ew

y = Hx+ v
(4.2)

where y ∈ R4×1 is the measurement vector, H ∈ R4×10 is the measurement matrix, and
w ∈ R7×1 and v ∈ R4×1 is the process and measurement noise respectively. The system
model is written on state space form and given by (4.1).

χ̇ =


03×3 03×1 I3×3 03×3

01×3 01×1 01×3 01×3

03×3 03×1 03×3 −Rn
b (q)

03×3 03×1 03×3 03×3

χ+


04×3 04×3

Rn
b (q) I3×3

03×3 03×3

u

+


03×1 03×3 03×3

1 01×3 01×3

03×1 −Rn
b (q) 03×3

03×1 03×3 I3×3

 ε
(4.3)

where χ ∈ R10×1 is the estimated state vector from the filter. The process noise in the
system is defined as in (4.4).

ε =


εβ

εbacc

εbbacc

 (4.4)

The input to the system is given by

u =
abimu
gn

 (4.5)

where abimu are the acceleration measurements from the IMU, and gn is the gravity vector.
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4.2 Discretization

The observers that are implemented use the discrete Kalman filter design. The discrete
state space formulation used is stated below.

xk+1 = φxk + ∆uk + Γwk
yk = Hxk + vk

(4.6)

where xk+1 ∈ R10×1 is the state vector containing the ten states. φ ∈ R10×10 is the state
transition matrix relating the previous state to the next, ∆ ∈ R10×6 relates the control
input to the next state and finally Γ ∈ R10×7 relates white noise to the next state vector.
The system matrices are discretized using Euler integration according to

φ = exp(Ah) ≈ I + Ah

∆ = A−1(φ− I)B

Γ = A−1(φ− I)E

(4.7)

which can easily be obtained in MATLAB, by using the in-built function c2d. Above h
is the sampling time.

4.3 Discrete Kalman Filter Design

The recursive discrete Kalman filter is developed based on the optimization criteria of
minimizing the mean-square estimation error of a random process. It is assumed that the
covariances of the process noise and the sensor noise are Gaussian distributed and given
by w ∼ N(0, Q) and v ∼ N(0, R) respectively. Also, these are assumed uncorrelated with
each other.

The Kalman equations were developed in Kalman (1960). Initial conditions are defined
for the filter

x̄0 = x0

P̄0 = E [(x0 − x̂0)(x0 − x̂0)>] = P0
(4.8)

where x0 is the initial estimate of the filter, and P0 is the initial covariance of the state
estimate. P0 is therefore an indication of how correct the initial estimate of the filter
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is. The Kalman gain matrix is determined by computing previous covariances estimates
weighing the sensor updates against the noise in the process.

Kk = P̄kH
>[HP̄kH> +Rk]−1 (4.9)

The corrected estimates for the states and the covariance are then found, using the
Kalman gain, Kk.

x̂k = x̄k +Kk[yk − h(x̄k)]

P̂k = [I −KkHk]P̄k[I −KkHk]> +KkRkK
>
k

(4.10)

where Rk = R>k . The projected estimates for the next step are given by

x̄k+1 = φkx̂k + ∆uk
P̄k+1 = φkP̂kφ

>
k + ΓkQkΓ>k

(4.11)

where Qk = Q>k . Based on the equations it is seen that a small R compared to Q, will give
a large Kk favoring the measurements rather than the model. When R is large compared
to Q, Kk is small, and the model is emphasized more than the measurements.

4.4 Three-Stage filter

The TSF as described in Section 2.6.5, is here described in more detail. In Figure 4.1 the
different stages, and the information flow in the filter is illustrated. Σ1, Σ2 and Σ4 are
the three stages that give the filter its name.
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Figure 4.1: Structure of TSF

In Figure 4.1 y ∈ R4×1 denotes the pseudo-range measurements, and abimu ∈ R3×1 are
acceleration measurements obtained in {b}. χ1 is the state estimate produced by the
exogenous, LTV Kalman filter, and is used as linearization point for the second KF. This
first state estimate is used to evaluate the linearized measurement matrix and model given
by H(χ1) and h(χ1). The final estimate from the TSF is denoted χ2 and is obtained from
the linearized Kalman filter, in the last and third stage. In the following sections, each
of the stages of the TSF are explained further.

4.4.1 Nonlinear algebraic transformation

The algebraic nonlinear transformation, as briefly described in Section 2.6.5, is used to
construct "new measurements" from the pseudo-range measurements, so that the system
can be described on a LTV form. The technique used for relating the states linearly to
the measurements, is based on work done by B. Stovner et al. (2016). The constructed
measurement equation with noise is given by

y2
i = 1

β
(ρi + 2εy,iρi + ε2

y,i) (4.12)

where ρi = (pn − p̆n)>(pn − p̆ni ) is the geometric range, and εy,i is the noise contained in
the pseudo-range measurements. Considering the mean of the constructed measurement,
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it is found that these are biased due to the influence of noise. The estimated mean of a
stochastic variable and a squared stochastic variable is given by E[X] = 0 and E[X2] 6= 0
respectively. This results in the following bias of the constructed measurement

my,i = E(y2
i −

1
β
ρ2
i ) = 1

β
σ2
y

my = 1
β
σ2
y

(4.13)

The bias, my, should be subtracted from the squared measurements, y2
1, before these are

used in the algebraic transformation.

Expanding and rearranging the left-hand side of the expression given by (4.12) gives

βy2
i = r − 2p̆n>i pn + ‖p̆ni ‖2+2εy,iρi + ε2

y,i (4.14)

where r = pn>pn. Considering the case of four transponders, the partial state vector and
a selection matrix can be defined

x =
pn
β

 M =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 (4.15)

By using the selection matrix M , r can be expressed in terms of x according to

r = x>Mx (4.16)

Not considering noise in the measurements, (4.14) can now be written on the form

Cyx− rl = z (4.17)

where

Cy =
[
Cyp Cyβ

]
Cyp =


2p̆n>1
...

2p̆n>4

 Cyβ =


y2

1
...
y2

4

 (4.18)

40



CHAPTER 4. INTEGRATION FILTER DESIGN

where l = [1, 1, 1, 1]> and z = [‖p̆n1‖2, . . . , ‖p̆n4‖2]>. If Cy has full rank, so that it is
invertible, the position measurements and the bias parameter, β, contained in the state
vector x, can be expressed as

x = rC−1
y l + C−1

y z = rc+ w (4.19)

where c = C−1
y l and w = C−1

y z. Inserting (4.19) into (4.16), will give a second order
equation with respect to r.

r = (rc+ w)>M(rc+ w)

r = r2c>Mc+ 2rc>Mw + w>Mw

r2c>Mc+ r(2c>Mw − 1) + w>Mw = 0

(4.20)

The second-order equation gives two solutions, expressed using the defined term h =
2c>Mw − 1.

r1,2 = −h±
√
h2 − 4c>Mc · w>Mw

2c>Mc
(4.21)

Equation (4.21) has to possible solutions, where one of them is correct and the other one
is wrong, denoted r1 and r2 respectively. In order to solve the ambiguity related to r1

and r2, domain knowledge can be used to exclude one of the solutions. In underwater
navigation all the transponders will usually be located on the seabed and the vehicle will
be above these at all times. Positions below the seabed can then be ruled out. Bounds
on β can also be used to obtain the correct solution to the second-order equation, as the
two solutions typically have significantly different estimates of β. Another approach is
to introduce an additional depth measurement to rule out the ambiguity (A. Johansen
et al., 2016). For this implementation the solution to the second order equation given by
(4.21) is selected by choosing the solution of r that gives a pseudo-range bias parameter,
β, closest to one.

Finally, the constructed measurement equation, which is now linearly time-varying in
C(t), in the case of four transponders, m = 4, can be written as

C(t)χ− lr1 = z (4.22)

where χ is the state vector, l is defined from earlier and r1 is the chosen solution to
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Equation (4.21). Written out in further detail

[
Cyp Cyβ 04×6

]

pn

β

vn

bbacc

− lr1 = z (4.23)

It is worth mentioning that the quasi-linear time-varying measurement model, given by
(4.23), is free of approximations in the noise-free case. However, in the case of noise in the
pseudo-range measurements, nonlinear relationships are eliminated in order to perform
the transformation and to get a global quasi-linear model. This causes sub-optimal
estimation in presence of noise.

4.4.2 LTV Kalman filter

The dynamics of the LTV Kalman filter is described on matrix form as in (4.3), and the
linear measurement model found from the algebraic transformation is described by (4.23).
The state estimate produced by this filter is denoted χ1. This state estimate is GES, but is
sup-optimal in presence of noise, and is used as linearization point for the final linearized
Kalman filter. Because of the new, constructed measurement model, the sensor covariance
matrix must be found accordingly. The covariance for each constructed measurement is
found from calculating the resulting variance of the squared range measurement given by
(4.12). Using that the variance of a stochastic variable and a squared stochastic variable
is defined as V ar[X] = σ2 and V ar[X2] = 2σ4, results in the following variance of the
constructed measurements

Ry,i(t) = V ar(y2
i ) = 2

β2 (2ρ2
iσ

2
y + σ4

y) (4.24)

Finally, the sensor variance matrix for the LTV Kalman filter is given by (4.25).

R(t) = diag([Ry,1(t), ..., Ry,4(t)]) (4.25)
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4.4.3 Linearized Kalman filter

The linearized Kalman filter is described using the same process model as given by (4.3),
but uses the original nonlinear measurement model. In order to linearize the measurement
model, a first-order Taylor-series approximation of the measurement function is used. The
linearized measurement matrix is given by

H(χ1) =


dh1(χ)
dχ
...

dhm(χ)
dχ


∣∣∣∣∣∣
χ=χ1

∈ Rm×10 (4.26)

where h(χ) is the nonlinear measurement model defined for each of the pseudo-range
measurements. Using four acoustic range measurements, so that m = 4, and using the
definition of the geometric range, (3.23), the measurement matrix can be written as in
(4.27).

H =


(pn−p̆n1 )>√
β‖pn−p̆n1 ‖

−‖p
n−p̆n1 ‖

2β
3
2

· · · 0
... · · · · · · 0

(pn−p̆n4 )>√
β‖pn−p̆n4 ‖

−‖p
n−p̆n4 ‖

2β
3
2

· · · 0

 ∈ R4×10 (4.27)

A first-order Taylor approximation of the measurement function is found as

h(χ) ≈ h(χ1) +H(χ1)(χ− χ1) (4.28)

where χ1 is the state estimate obtained from the first KF. As linearization point either
χ̂1 or χ̄1 can be used. The projected estimate, χ̄1, is more noisy, while the corrected
estimates, χ̂1 , is subject to less noise, but correlated with the measurements (B. Stovner
et al., 2016). Here the latter is used. For the linearized Kalman filter, the estimate χ in
(4.28) is the filters own projected estimate, here denoted χ̄2.

Because the linearized Kalman filter keeps the nonlinear measurement model, the sensor
covariance matrix is straightforward to find, and is simply given by the variance of the
noise present in each pseudo-range measurement.

R(t) = diag([σ2
y, ..., σ

2
y]) (4.29)
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The sensor covariance matrix (4.29), is the same for the linearized KF as the EKF.

4.5 Extended Kalman Filter

The EKF is described by the same kinematic model as given by (4.3). In fact, the only
difference between the linearized KF and the EKF, is that the EKF is linearized about
its own state estimate. This implies that the linearized measurement matrix given by
(4.27) is evaluated at the EKF’s own projected estimate, χ̄. And because the EKF uses no
external estimate, χ = χ1, and the nonlinear measurement model reduces to the first term
only given by (4.28). Figure 4.2 shows the structure of the EKF, and clearly illustrates
the feedback-loop that can potentially cause the filter to diverge (Johansen and Fossen,
2016a).

Figure 4.2: Structure of EKF

In Figure 4.2 y and abimu denote pseudo-range and acceleration measurement respectively,
like before. The state estimate from the EKF, χ, is used to evaluate the measurement
matrix, H(χ), and the measurement model, h(χ).

4.6 Observability

The ultimate goal of an observer is to reconstruct unmeasured states from the available
sensor and input measurement, denoted y and u respectively. For this to be possible, the
system needs to be observable. Observability of a system implies that for any possible
sequence of state and control vectors, the current state can be estimated using only the
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outputs. The observability proof for the TSF follows the procedure as describe in the
work by Stovner et al. (2017).

According to Kalman and Bucy (1961) a linear time-varying system is UGES if the
pair (A(t),C(t)) is uniformly completely observable (UCO), and if (A(t),E(t)) is also
uniformly completely controllable (UCC), where (A(t), C(t)) and E(t) are the general
process, measurement and process noise matrices respectively.

4.6.1 Uniform observability

In order to show observability for a linearly time-varying system, Theorem 6.012 from
Chen (2013) is used. The pair (A(t), C(t)) is observable if the observability co-distribution,
given by (4.30)

dO =



N0(t)
N1(t)

...
Nn−1(t)

 (4.30)

has rank n for all t, where n is the dimension of the state space, and where

Nm+1(t) = Nm(t)A(t) + d

dt
Nm(t) (4.31)

for m = 0, 1, ..., n− 1. N0(t) is given by

N0 = C(t) (4.32)

In order to complete the observability proof, two assumptions regarding the algebraic
transformation and the transponder placement must be made.

Assumption 1 : The ambiguity regarding the algebraic solution, r1 and r2 can be solved,
for example using domain knowledge, when the number of transponder, is m = 4.

Assumption 2 : The transponder placement must be non-coplanar, i.e. the transponders
cannot lie in the same plane.

In order to simplify the observability and controllability proof, the following corollary is
used.
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Corollary 1 : For the block triangular matrix as given below

M =
D 0
E F

 (4.33)

D, E and F are matrices of arbitrary dimensions. M has full rank if D and F have full
rank, indicating that E is insignificant when it comes to evaluating the rank of the matrix.

4.6.2 Uniform controllability

The controllability proof follows a very similar procedure, and is obtained from Chen
(2013), Theorem 6.12. The pair A(t), E(t) is controllable if the controllability co-
distribution given by (4.34)

dC =
[
M0(t) M1(t) . . .Mn−1(t)

]
(4.34)

has rank n for all t, where

Mm+1(t) = −A(t)Mm(t) + d

dt
Mm(t) (4.35)

where m = 0, 1, ..., n− 1. N0(t) is given by

M0 = E(t) (4.36)

4.6.3 Observability for LTV Kalman filter

When conducting the observability proof, it turns out that it is sufficient to evaluate the
first 3m rows of the observability distribution given by (4.30), where m is the number
of range measurements. The measurement matrix for the LTV KF was found using the
algebraic transformation, and is given by (4.23). The system matrix, A(t), is defined as
in (4.3). Calculations yield a observability co-distribution according to
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dOχ1 =


Cyp Cpβ 04×3 04×3

? ? Cyp 04×3

? ? ? −Rn
b (q)Cyp

 (4.37)

where Cyp and Cpβ is defined from earlier, and Rn
b (q) is the rotation matrix from {b}

to {n}. Assumption 1 must be valid, so that the LTV measurement matrix, C(t), can
be defined. And under assumption 2, the matrix C = [Cyp, Cpβ] has full rank. Using
Corollary 1 as stated in the previous section, the observability co-distribution, given by
dOχ1 must have full rank. Consequently, it is found that for the linearized Kalman filter,
rank(dOχ1) = 10, and the system is UCO.

4.6.4 Observability for linearized Kalman filter

Similarly for the second Kalman filter, only the first 3m rows of the observability dis-
tribution is needed in order to prove observability. For the linearized Kalman filter, the
original nonlinear measurement matrix is linearized, and given by (4.27). The process
matrix A(t) is the same as for the LTV Kalman filter. The resulting 3m rows of the
observability co-distribution becomes

dOχ2 =


Hχ2(χ̂1) 04×3 04×3

? H∗χ2(χ̂1) 04×3
? ? −Rn

b (q)H∗χ2(χ̂1)

 (4.38)

where H∗χ2(χ̂1) is the extracted first column of the measurement matrix Hχ2(χ̂1), which
is given by

H∗χ2(χ̂1) =


(pn−p̆n1 )>√
β‖pn−p̆n1 ‖...

(pn−p̆n4 )>√
β‖pn−p̆n4 ‖

 ∈ R4×3 (4.39)

This observability proof also requires assumption 2 to hold, because the measurement
matrix Hχ2 contains the transponder positions. Again, Corollary 1 is used to establish
rank(dOχ2) = 10. The linearized KF is also UCO.

The observability proof conducted for the second Kalman filter, Σ4, is the same as for
the EKF, because the measurement matrix H and the process matrix A(t) are defined
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equally. The EKF is also UCO.

4.6.5 Stability for TSF and EKF

Because the filters Σ2, Σ4 and the EKF share the same dynamics, the controllability proof
is the same. The controllability co-distribution found by evaluating the process and the
process noise matrices , A(t) and E(t), was found to be

dCχ =


03×1 03×3 03×3 03×1 Rn

b (q) 03×3

1 01×3 01×3 0 01×3 01×3

03×1 −Rn
b (q) 03×3 03×1 03×3 Rn

b (q)
03×1 03×3 I3×3 03×1 03×3 03×3

 (4.40)

Because rank(dCχ) = 10, the unforced system dynamics as described in (4.3) are UCC.
The LTV KF in the first stage of the TSF is shown to be both UCO and UCC. According
to Kalman and Bucy (1961) the LTV system is then UGES. The matrix pairs (A(t), H(t))
and (A(t), E(t)) for the linearized KF, are also found to be UCO and UCC respectively.

Stability for the TSF is established using Theorem 2.1 from Johansen and Fossen (2016a).
The LTV system is proved UGES, and the tuning parameters used in the filters, P(0),
Q and R are symmetric and positive definite. From Theorem 2.1, using GES estimates,
χ1, to linearize about, the error dynamics of the cascaded system, Σ1-Σ4, are GES if the
linearized KF is also UCO and UCC.

The EKF state estimate cannot be proved GES using the same procedure, because the
proof by Kalman and Bucy (1961) applies only to LTV systems. Consequently the lin-
earization is not made using a GES estimate, and the filter obtains only local stability.

4.6.6 Condition number and degree of observability

The standard tool for checking observability of a nonlinear dynamic system is the observ-
ability rank condition, which is checked in Section 4.6.3 and 4.6.4. However, this will only
provide a yes or no answer to the question if the system is observable. But considering
the estimation condition number, that is the condition number of the measurement ma-
trix in the filter, the degree of unobservability can in stead be evaluated. The estimation
condition number is the ratio of the largest local singular value to the smallest. When the
condition number becomes high, the estimation problem becomes ill-conditioned. The
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effect on the output because of a small change in the initial condition in one direction can
then be overwhelmed by the effect on the output of a change in another direction (Bayat
and Aguiar, 2012). This means that if the condition number becomes large enough, the
system can in practice become unobservable.
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Chapter 5

Implementation of navigation system

The TSF and EKF were implemented in MATLAB according to the description given
in Chapter 4. A simulator was built in order to verify the implementation of the filters,
and to compare their performance. Two different experiments were also conducted to
collect sensor data that was tested in the filters. This chapter aims to give an overview
of how the simulator works and a further explanation of the experimental work that was
conducted.

5.1 Simulator

A simulator was developed in MATLAB, based on the kinematic model and measurement
equations as explained in Chapter 3. It was assumed that the ROV operates within the
range of a LBL transponder network, and that it operates with an IMU, and that these
are the measurements available for navigation. The EKF and the TSF were implemented
in MATLAB as described in Chapter 4, and were tested in simulations. In Figure 5.1 an
effort is made to illustrate the overall structure of the code running the simulator. Here
abimu denotes acceleration measurements from the IMU, and y1, .., yn denote pseudo-range
measurements delivered by the LBL network. In addition to bias parameters, the filters
estimate the position and linear velocities, given by pnest and vnest respectively in the figure
below.
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Figure 5.1: Structure of MATLAB simulator

The simulator was built based on an object-oriented approach. This implies that logical
subgroups are implemented as separate classes or objects. This is a way of collecting vari-
ables and functions that naturally fit together, which will contribute to more structured
programs for large applications. It can also help the process of debugging and introducing
changes to the code.

In order to generate pseudo-range measurements during simulations, transponder posi-
tions had to be constructed. The configuration could be chosen arbitrary but aimed at
being non-coplanar, as reasoned in Section 4.6. The placement of the transponders was
assumed on the seabed, which allowed little vertical separation, typical for underwater
range-based positioning. The transponder positions in NED frame are listed below (5.5).

p̆n1 = [10, 10, 0]> p̆n2 = [10,−10, 1]>

p̆n3 = [−10, 10, 2]> p̆n4 = [−10,−10, 0]>
(5.1)

All measurement noise was modeled as Gaussian white noise, defined by zero mean and
a standard deviation. The acceleration measurements were modeled to contain Gaus-
sian white noise given by σv = 0.01 and the pseudo-range measurements contained white
noise with standard deviation σy = 0.1. The variance of the unknown wave speed pa-
rameter was tuned empirically, and set to σβ = 10−2. The sensor covariance matrices
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are specified in Chapter 4, as these depend on how the measurement model is defined.
The process covariance matrix was similar for all filters, and is defined by the wave speed
bias, acceleration noise and acceleration bias variance, according to (5.2).

Q = diag([σ2
β, σ

2
v , σ

2
v , σ

2
v , σ

2
bacc, σ

2
bacc, σ

2
bacc]) (5.2)

where σbacc = 10−2. The filters were updated with a frequency of 100 Hz, equivalent
to a sampling time of h = 0.01 seconds. Measurements from the IMU were assumed
gathered with a frequency of 100 Hz, while pseudo-range measurements were available at
a frequency of 2 Hz.

In order to evaluate the estimation error, the Root-Mean-Square (RMS) error was calcu-
lated. The formula for RMS is given by Equation (5.3).

RMS =

√√√√ 1
N

N∑
i=1

(x̂(i)− xtrue(i))2 (5.3)

where N is the number of samples in a time-series, x̂(i) is the estimated value and xtrue(i)
is the true value for sample i.

5.1.1 Simulation I

For steady-state behavior the filters were initiated with correct initial conditions for
all states. In the simulator the ROV was tested for a lawn-mower trajectory, which
corresponded to initial conditions p0 = [0, 0, 0]>, β0 = 1, v0 = [0, 0, 0]> and bacc,0 =
[0.1, 0.05,−0.13]>. Simulations were run for 300 seconds. The initial covariance for all
filters were set to P (0) = diag([5 · 10−4, 5 · 10−4, 5 · 10−5, 10−5, 10−4, 10−4, 10−4, 10−4,

10−4, 10−4]).

5.1.2 Simulation II

For transient behavior the filters were initiated with erroneous initial conditions for
all states. For the lawn mower trajectory p0 = [10,−15,−10]>, β0 = 0.8751, v0 =
[0.1, 0.2, 0.1]> and bacc,0 = [0, 0, 0]> were used. Simulations were like before run for 300
seconds. The initial covariance was now changed to P (0) = diag([10, 10, 10, 10−3, 10−3

, 10−3, 10−3, 5 · 10−3, 5 · 10−3, 5 · 10−3]) for the LTV KF and the linearized KF, while for
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the EKF P (0) = diag([10−2, 10−2, 10−2, 10−4, 5 · 10−4, 5 · 10−4, 5 · 10−4, 10−4, 10−4,

10−4]) was used.

5.1.3 Execution time

The computing power demanded by an integration filter is an important aspect if it
should be implemented on embedded hardware. The need for computer power is decided
by the execution time of the filter. An indication of how much computer power is needed
for each of the filters is found by measuring the mean execution time per iteration for
each of the filters. This was done using the tic/toc function in MATLAB.

5.2 Physical experiments

The following sections aim to describe the physical experiments, which were done to
collect sensor data, that was later used for testing the integration filters in offline runs.
Offline testing in this context means that sensor data that was logged during experiments,
later was run through the integration filters. The benefit of doing offline tests, is that
tuning and debugging can be done after data is collected, and in many turns, without
having to carry out the experiments again. In other words, offline estimation can save
a lot of time. All experimental work was executed in the MC-lab at NTNU, which
has a small-scale test basin that facilitates underwater experiments. Experiments were
conducted using both the Videoray Pro 4 ROV as well as the Seabotix LBV600-6 ROV.
More information about the ROVs and sensors will be given next.

5.2.1 Experiment I

In the first experiment conducted, the Videoray Pro 4 ROV was used. QMT was used
to obtain the position and attitude estimates of the ROV under water. More details
about the QMT system is given in Section 5.2.5. The QMT position estimates were for
these experiments used for constructing pseudo-range measurements, in addition to being
used as ground truth for the position estimated by the integration filters. The orientation
estimates it provides were also used for rotating the IMU acceleration measurements from
{b} to {n}. The IMU acceleration measurements were logged with a frequency of 100
Hz, while the pseudo-range measurements were made available at 2 Hz.
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For the collected sensor data, two different offline tests were run. The initial conditions
were known so that the filters could be tested in steady-state behavior by initializing the
filters correctly. By making the initial conditions inaccurate, the filters were also tested
in transient behavior.

5.2.2 Experiment II

The second experiment was conducted by Bård B. Stovner and Eirik Henriksen, using
the the SeaBotix LBV600-6 in the test basin. This time the Water Linked system was
installed in the basin, and acoustic range measurements were obtained for the SeaBotix
during testing. Similarly for this experiment, QMT position served as ground truth for
the position estimated by the filters. Orientation was also needed this time to rotate the
IMU acceleration measurements.

The IMU measurements were available with a frequency of 100 Hz, while Qualisys was
logged at approximately 5 Hz. The acoustic range measurements were available at ap-
proximately 0.8 Hz, but with slight variations during the experiment. All sensor data
was logged during the experiment, and used to test the filters in both steady-state as well
as transient behavior.

5.2.3 The Videoray Pro 4 ROV

The Videoray Pro 4 ROV is a small observation class ROV that is used at NTNU, Tyholt
for scientific purposes. It has a thruster configuration that allows motion in surge, heave,
yaw as well as sway. The ROV is equipped with navigation sensors, and can also be
used with a number of additional sensors, cameras and tools, such as manipulator arms.
It can be controlled manually using a PlayStation controller, or from a lab computer,
which is a Dell latitude e7440 loaded with Videoray control software. The Videoray
ROV was purchased configured with standard communications protocols, sample codes
and interfaces. All other code is made by scratch by Bent O. Arnesen, parts of which
are documented in Arnesen and Schjølberg (2016). A picture of the Videoray is seen in
Figure 5.2.
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Figure 5.2: Videoray Pro 4, courtesy of AtlantasMarine

The Videray Pro 4 ROV is equipped with an embedded navigation solution, VectorNav
VN-100. This is developed using MEMS-based sensor technology, and combines a set
of 3-axis accelerometers, 3-axis gyroscopes, 3-axis magnetometers and a pressure sensor
(VectorNav).

5.2.4 SeaBotix LBV600-6 ROV

LBV600-6 is a small work class ROV produced by SeaBotix, seen in Figure 5.3. The
SeaBotix can be controlled manually using a dedicated control unit or using control
software. It has six thrusters, where 4 of them work in forward direction, giving the ROV
4-axis maneuverability.

Figure 5.3: SeaBotix LBV600-6, courtesy of BlueSolutions

The SeaBotix used at NTNU is equipped with both a manipulator arm as well as a high-
resolution camera that can film during an operation. A MEMS-based IMU is mounted on
the top of the SeaBotix, placed inside a cylinder. As for the Videoray, the IMU contains
accelerometers, gyroscopes and magnetometers. A pressure sensor is also mounted on the
ROV.
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5.2.5 Qualisys Motion Tracking system

The QMT system is a tracking system used in the MC-lab to obtain position and ori-
entation fixes. The motion capture technology is based on a set of cameras, used for
detecting markers mounted on a body in motion, which also can be used for underwater
applications. A minimum of four markers is needed in order to determine the position
uniquely.

In the MC-lab at Tyholt 6 high-speed infrared cameras are mounted to function in the test
basin. Qualisys will work within an area where these 6 cameras have sufficient coverage.
This is decided by the camera configuration, water quality, light and shadowing effects
as well as marker configuration. Registrations made by the cameras are transmitted to
a computer dedicated to running Qualisys software. Based on camera recognition of
the markers under water, triangulation principles are used to determine position and
orientation data, which is broadcasted over the wireless network in the MC-lab. The
cameras are configured to update measurements at a frequency up to 100-150 Hz.

Qualisys produces orientation estimates for the registered body given in Euler angles.
These were converted to quaternions, to fit the formulation of the observers, see Section
4.1. When determining the orientation of the ROV, the system will define a BODY frame
for the body that is detected, coinciding with the NED frame defined by Qualisys. It was
assumed that {b} defined by QMT was coinciding with the actual BODY frame for the
ROV.

Because Qualisys position estimates were available and very accurate, these were used as
ground truth during all experiments. The derivative of the QMT position measurements
were also used as a reference for the linear velocity estimates. Because the position
estimates contained noise, these also gave a noisy velocity estimate. The velocity reference
was therefore low-pass filtered. This induced some delay to the reference, but provided
an estimate good enough for evaluating the velocity estimation errors for the filters.

Constructing range measurements

From the QMT position estimates, pseudo-range measurements were constructed, accord-
ing to the definition of the geometric range (3.23). Transponder positions also had to be
invented, and were fabricated so that they would be realistic considering the dimensions
of the test basin.
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p̆n1 = [10,−3.25,−0.5]> p̆n2 = [−10,−1.75,−0.8]>

p̆n3 = [10, 3.35,−0.3]> p̆n4 = [−10, 1.75, 0]>
(5.4)

Lever arm compensation

In order to use the QMT system to obtain measurements for the Videoray, a custom
made rig had earlier been made in order to mount markers on the ROV. The rig enables
markers to be fixed with good spread, in order for the underwater cameras to identify
the body from a variety of angles. The marker configuration is shown in Figure 5.4,
where the ROV lies upside down to reveal the marker rig and the markers. The QMT
will then estimate position and orientation for the geometric center of the markers that
are registered. Due to the geometry and the placement of the markers, shadowing of
markers and otherwise loss of markers may affect how well Qualisys measures position
and orientation of the ROV.

Figure 5.4: Videoray marker configuration

When combining Qualisys measurements with other measurements, it is important that
these are made relative to the same point on the ROV. The pseudo-range measurements
that were constructed using QMT were found relative to the geometric center of the
marker configuration, while acceleration measurements were found relative to the place-
ment of the IMU on the ROV. This meant that the point for which acceleration and
the pseudo-range measurements were found were separated by a lever arm. In order to
obtain high accuracy, the lever arm should be compensated for. This was done according

58



CHAPTER 5. IMPLEMENTATION OF NAVIGATION SYSTEM

to Equation (3.25).

In order to determine the lever arm separating the INS and range measurements obtained
for the Videoray, it was assumed that the point measured by the QMT system lied straight
under the IMU, so that the lever arm only had a component in Down. The lever arm
could then by found using the difference in the measurement in Down from the pressure
sensor and the QMT Down measurement.

For the SeaBotix Qualisys markers were mounted on individual rods sticking out from
the body, see Figure 5.5, placed in order to lay their geometric center as close as possible
to the position of the IMU. The IMU lies inside the cylinder mounted on top of the
ROV seen in the picture. Similarly the Water Linked acoustic receiver, used to obtain
the TOA measurements, was placed close to the IMU, though not visible in the picture.
It is therefore assumed that all measurements are made relative the same point, so no
lever-arm compensation is done. This should only yield small inaccuracies for the marker
configuration applied in experiments using the SeaBotix.

Figure 5.5: SeaBotix marker configuration

5.2.6 Water Linked acoustic system

Water Linked is an acoustic system based on fixed subsea transponders. TOA measure-
ments are found from acoustic waves signals, and are obtained for underwater vehicles
by a receiver mounted on the body. The acoustic set-up follows the principles applied by
LBL acoustic positioning as described in Section 2.3, only at a smaller scale.

For the experiments in the test basin, the wave speed was unknown, so that only pseudo-
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range measurements were available. Unlike the range measurements generated in exper-
iment I, the frequency of the actual acoustic ranges was more lower and probably also
contained more noise.

During experiment II using the Water Linked System, 4 transponders were placed in the
test basin in the MC-laboratory. Two of them were mounted on stakes, in order to achieve
some variation in the transponder position in Down. In addition each transponder had
a Qualisys marker attached, so that the QMT system could be used to determine the
transponder positions accurately. During experiments they were as listed below.

p̆n1 = [−2.356, 1.259.,−0.757]> p̆n2 = [2.965, 1.009,−0.148]>

p̆n3 = [2.150,−0.677,−0.769]> p̆n4 = [−1.642,−1.610,−0.193]>
(5.5)

5.2.7 Determining measurement noise

Qualisys Motion Tracking System

QMT produces position and orientation measurements with high accuracy. The variances
for the noise present in each of the position measurements were found experimentally in
work done by Sandøy et al. (2016), and are reproduced in the table below. The variance
for each measurement was found by logging a series of measurements at 10 Hz and using
MATLAB’s var function on the resulting time series.

Table 5.1: Qualisys measurement noise variance, courtesy of Sandøy et al. (2016)

Qualisys Measurement Variance, σ2 Unit
Position x 2.727425e-08 [m2]

y 2.584928e-08 [m2]
z 1.987803e-09 [m2]

Because position measurements were used to construct range measurements, the Gaussian
distributions for the noise on the position measurements were used to find the Gaussian
distribution of the noise on the range measurements. For the experiments performed,
Qualisys measurements were generated with a frequency of 100 Hz. The variances of
the position measurements were assumed to be the same at 10 Hz and 100 Hz. The
method used to find the resulting Gaussian distribution for the noise present in the range
measurement is illustrated in Figure 5.6.
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Figure 5.6: Nonlinear transformation of a Gaussian variable, courtesy of Thrun et al.
(2005)

The MATLAB function normrnd was used to generate noise present in measurements for
x, y and z, using their Gaussian distribution, ε ∼ (0, σ2), and the variances defined in
Table 5.1. The definition of the geometric range was then used to calculate the noise that
would be present in the pseudo-range measurements, when using the Qualisys position
measurements to find the constructed range. The function fitdist was then employed to
define a new Gaussian distribution based on the noise found for the range. The variance
of the resulting distribution is given in Table 5.2.

Table 5.2: Range measurements noise variance

Range measurements Standard deviation, σ Unit
yi 1.6376e-04 [m]

Water Linked Acoustic system

The noise present in the Water Linked range measurements was decided based on tuning,
which resulted in a standard deviation of σ = 1e− 04.
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5.2.8 Determining process noise

The process noise in the filters is defined by the variance of the wave speed bias, ac-
celeration measurements in addition to the variance for which the acceleration biases
vary.

Acceleration measurement noise

For the Videoray the IMU accelerometer noise variance was found by logging 16105
acceleration measurements for the ROV in static condition, at a frequency of 100 Hz.
The variance of the acceleration measurements for the ROV at rest should therefore only
be because of noise. The measurement variance was found using the in-built function
var in MATLAB on the resulting acceleration data series. The resulting variances of the
noise present in the acceleration in abx, aby and abz are given in Table 5.3.

Table 5.3: IMU accelerometer measurement noise variance

Accelerometers (IMU) Variance, σ2 Unit
Noise in abx 1.6765331232158308e-04 [m/s2]
Noise in aby 1.623284546288902e-04 [m/s2]
Noise in abz 3.342784513438293e-04 [m/s2]

The SeaBotix was also equipped with a MEMS-based IMU, and the same variances were
used initially for the other experiments. These were later modified during the tuning
process of the filters. These and the other sensor specifications used in offline runs with
the experimental data, are summarized in Table 7.2 in Chapter 7.

Wave speed and acceleration bias

The variance for which the wave speed bias varied, was found tuning empirically to achieve
the best overall performance, and were in offline tests set to σ2

β = 10−6 in experiment
I and σ2

β = 10−7 in experiment II. The variance of the acceleration measurement biases
was set to σ2

bacc = 10−8 in offline runs of both experiments.
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5.2.9 Calibration of acceleration measurements

The calibration process that was performed for the accelerometers mounted on the Vide-
oray estimated scale-factors, the orthogonalization matrix to account for orthogonality
misalignment errors in addition to offsets of the accelerometer triad. This was done using
a finished calibration script, which is based on a nonlinear optimization algorithm, ex-
plained in the work by Rohac et al. (2015). Having defined the Sensor Error Model (SEM)
from calibration, the compensated acceleration measurements can be found according to
(A.1)

ua = TaSa(ya − ba) (5.6)

where ya is the vector of measured acceleration, ba is a vector of offsets, Sa represents the
matrix of scale factors, Ta transforms the vector from the non-orthogonal coordinate sys-
tem to an orthogonal one, all of which were found by the calibration algorithm. This was
run for a series of acceleration data collected for approximately 24 different orientations.
For each orientation acceleration was measured under static conditions, so that the mean
of the measurements for each orientation could be used in order to reduce the effect of
random noise. Based on this the vector of compensated acceleration measurements, ua,
was found (Rohac et al., 2015).

The accelerometers for the SeaBotix were not calibrated.

5.2.10 Handling sensor drop-outs

Every once in a while, the QMT system would suffer from drop-outs of measurements.
This happens when for some reason not all markers are captured by a sufficient number
of cameras. During the experiments using Videoray, Qualisys was used for generating
range measurements, and drop-outs of position measurements would also cause drop-
outs of range measurements. If the IMU acceleration data had been more accurate, the
filter could benefit from just dead reckoning whenever the range measurements for some
reason were not available. Because the acceleration data was not that accurate, and
because the drop-outs usually only occur for short periods of time, the previous QMT
measurements were used to generate ranges, whenever an drop-out occurred.

Drop-outs of QMT also meant that orientation estimates were lost. These were needed
in order to transform the acceleration measurements to the inertial frame, whenever new
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acceleration measurements were available. This was solved using the previous orientation
measurement, until a new one was available.

64



Chapter 6

Simulation results

The following chapter covers the results from simulations as described in Chapter 5.
Simulation analysis is particularly useful as both the actual and the estimated states are
known. Therefore the estimation error can be directly observed. In this thesis simulations
are used to verify the implementation of the filters, in addition to comparing the per-
formance of the TSF and the EKF. The filters were tested in steady-state and transient
behavior. Relevant plots and tables are presented, followed by a short discussion related
to these specific results.

6.1 Summary of simulation specifications

Simulations were run for 300 seconds, and the filters were updated at a frequency of 100
Hz. In Table 7.2 the most important sensor specifications are summarized.

Table 6.1: Sensor specifications used in simulations

Simulations
Noise [σ2] Bias [Hz]

yi 1e-02 n/a 2

abimu 1e-04


0.1
0.05
−0.13

 [m/s2] 100
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6.2 Simulation I: Steady-state behavior
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Figure 6.1: Simulation I: Trajectory in 3D
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Figure 6.2: Simulation I: Position estimation error
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Figure 6.3: Simulation I: Velocity estimation error
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Figure 6.4: Simulation I: Wave speed estimate
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Figure 6.5: Simulation I: Acceleration bias estimates

6.2.1 Analyzing the steps of the TSF
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Figure 6.6: Simulation I: Steady-state behavior of second and third stage of the TSF
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6.2.2 Resolving the ambiguity between r1 and r2
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Figure 6.7: Simulation I: Solution to algebraic transformation
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Figure 6.8: Simulation I: Estimated and true position and wave speed bias

In Figure 6.7 the blue graph is the solution to position and β found using the selected
solution of r, while the red graph applies to the value of r not selected.
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6.3 Simulation II: Transient behavior
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Figure 6.9: Simulation II: Trajectory in 3D
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Figure 6.10: Simulation II: Position estimation error
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Figure 6.11: Simulation II: Velocity estimation error
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Figure 6.12: Simulation II: Wave speed estimate
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Figure 6.13: Simulation II: Acceleration bias estimates

6.4 RMS in simulations

Table 6.2: Position RMS error in simulations

Simulation I Simulation II
TSF EKF TSF EKF

North [m] 0.1798 0.1892 0.2096 2.8749
East [m] 0.1357 0.1370 0.1661 0.9189
Down [m] 0.2318 0.2328 0.2605 2.5841

6.5 Execution time

Table 6.3: Average execution time per iteration

TSF EKF
Execution time [ms] 1.3581 0.5343
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6.6 Discussion of simulation results

6.6.1 Range navigation solution accuracy

The position estimation error in Down reached its maximum during the first few seconds
of the simulation, referring to the initial peak in Figure 6.2. This can be related to
range signal geometry. The effect of signal geometry is quantified with the Dilution of
Precision (DOP) concept. The position information along a given axis obtained from
ranging signals is maximized when the angle between the axis and the line of sight is
minimized (Groves, 2008). When the ROV is located right above the area in the middle
of the four transponders, the angle between the line of sight and the Down axis is instead
large. These range signals will result in poor accuracy in Down. Vertical accuracy is
instead optimized when the ROV is located at a higher elevation with respect to the
transponders.

The horizontal accuracy is best when the ROV is operating at lower elevations and when
the line-of-sight vectors from the ROV to the transponders are evenly distributed. This
means that as the ROV moves further away from the transponder set-up the signal
geometry becomes worse in North and East. Considering the position estimation errors
in Figure 6.2 it is seen that the initial position estimation error in North and East was
smaller.

For range-based positioning, moving further away from the transponders will deteriorate
the overall position estimation error. This is not easily seen in the resulting position
estimation errors, because a number of different influences are present during simula-
tions. It would also become clearer if the ROV were to move even further away from
the transponders. This has a pure mathematical explanation, categorized in the form
of the condition number of the measurement matrix. Moving further away from the
transponders, causes more similar range measurements. This will lead to badly condi-
tioned measurement matrices, meaning high condition numbers, resulting in less accurate
estimates. As described in Section 4.6.6, the filter’s degree of unobservability will decrease
as the condition number of the measurement matrix becomes higher.

6.6.2 Analyzing the steps of the TSF

Estimates of the position and the bias parameter, β, can be found using the algebraic
transformation, according to (4.19). In Figure 6.6 the position estimates from the alge-
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braic transformation and the 2nd and 3rd stage of the TSF are plotted. The 2nd stage is
the estimate from the LTV KF, and the 3rd stage is the estimate from the linearized KF.
It is important to stress that the solution to the algebraic transformation is not part of
the TSF. The first stage in the filter uses the algebraic transformation to create the LTV
measurement model used in the 2nd stage KF, but does not apply the resulting position
or β which is plotted in Figure 6.6. This is included in the plot simply to illustrate that
the algebraic transformation is influenced by noise, and gives a position estimation error
in the order of ±15m. The second estimate is also sub-optimal with respect to noise.
This is because the algebraic transformation used to derive the quasi-linear measurement
model cancels out nonlinearities, which will affect the estimation accuracy in presence of
measurement noise. Because of the nonlinear transformation, the measurement noise in
the pseudo-ranges are amplified linearly with increased pseudo-range (Jørgensen et al.,
2016). Noise in the pseudo-range measurements cause a bias in the constructed measure-
ments, that was defined in Equation (4.13). When the noise level increases, and the noise
variances are unknown, the bias is hard to compensate for and can reduce performance.
The 3rd and final state estimate obtains better accuracy, and reduces the effect of noise
which is present in the 2nd estimate.

6.6.3 Resolving the ambiguity between r1 and r2

A pre-condition for the TSF to be observable, see Section 4.6, is that the ambiguity be-
tween r1 and r2 can be solved for m = 4 transponders. In this implementation this was
solved by selecting the solution to the second order equation, r, that gave a wave speed
bias, β, closest to 1, which was used as blueprint for the simulations. However, in pres-
ence of measurement noise, and in certain limited areas, depending on the transponder
positions, both values of r can give very similar estimated values of β. This means that
the correct solution can be hard to determine. In Figure 6.7 the resulting position and
wave speed bias, β, from the algebraic transformation, is plotted for each of the solutions
of r. And in Figure 6.8 the true and estimated position and β are plotted. The result
obtained for the selected r, matches the true position and β. This is an indication that
the correct solution of r was selected, for the simulations that were run. However, in gen-
eral this is not a guarantee, and may vary with the amount of noise in the pseudo-range
measurements and for certain areas around the transponders.
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6.6.4 Execution time

It was found in simulations that it took more than twice as long to calculate the estimate
produced by the TSF, compared to the EKF, based on the average execution time per
iteration, see Table 6.3. This makes sense as the TSF in theory uses two KF’s, while
the EKF uses only one. Higher execution time in simulations is an indication that more
computer power will be needed to apply the TSF. The state estimates will also be updated
slightly faster when using the EKF. Nonetheless, the efficiency will also depend on how
the filters are implemented and the operating system.
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Chapter 7

Experimental results

Chapter 7 includes the experimental results for the integration filters. Experimental work
is a useful method to verify simulations in addition to pointing out some of the practical
considerations and challenges that usually present themselves in real-life experiments.

The experimental results that are presented proceed from offline runs, based on sensor
data logged during experiment I and II, as explained in Chapter 5. The filters were tested
and compared in steady-state as well as transient behavior. A short discussion specific
for each of the experiments is included after the results. The final discussion considers
the results as a whole, and is given in Chapter 8.

7.1 Summary of experiment specifications

In Table 7.1 the most important specifications for experiment I and II are listed, in order
to give the reader a better overview and understanding of how the experiments were
executed.

Table 7.1: Experiment specifications

Experiment I Experiment II
ROV Videoray SeaBotix
Range measurements Qualisys Water Linked
Acceleration measurements IMU (MEMS-based) IMU (MEMS-based)
Length of data series [s] 60 ≈ 200

Table 7.2 lists the sensors specifications that applied under each of the experiments.
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These were slightly different, as different sensors were used for both acceleration and
range measurements.

Table 7.2: Sensor specifications during experiments

Experiment I Experiment II
Noise [σ2] Bias [Hz] Noise [σ2] Bias [Hz]

yi 2.68e-08 n/a 2 10e-04 n/a ≈ 0.8

abimu


1.68e− 04
1.62e− 04
3.34e− 04

 [m/s2]


0.01
−0.3
0.5

 [m/s2] 100


1e− 02
1e− 02
51e− 01

 [m/s2] n/a ≈ 100

In Table 7.2 the bias is stated as n/a if it is either not available, as for the IMU accelerom-
eters in the second experiment, or not applicable, as for the range measurements. The
filters were run slightly faster than the IMU measurements were available, at approxi-
mately 100 Hz. For the final process and sensor covariances, in addition to the initial
covariance, P(0), for the filters, the reader is referred to the Attachments. The folder
including the implementation of the filters used in offline runs is specified in B.3.

During experiment I Qualisys position and orientation was logged with a frequency of
100 Hz. In experiment II Qualisys was logged with approximately 5 Hz. The velocity
reference was in both experiments found from low-pass filtering the derivative of the
Qualisys position estimates. The velocity reference contained more spikes in experiment
II, because position was updated less often.

Because the data series in experiment II were longer, only the first 10 seconds of the
transient behavior was plotted, to make it easier to distinguish between the estimates
produced by the different filters. The estimates would eventually converge, and obtain
steady-state behavior, which is also plotted for the entire data series.
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7.2 Experiment I: Results using Videoray

7.2.1 Steady-state behavior
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Figure 7.1: Experiment I: Trajectory in 2D
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Figure 7.2: Experiment I: Position estimation error
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Figure 7.3: Experiment I: Velocity estimation error
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Figure 7.4: Experiment I: Wave speed estimate
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Figure 7.5: Experiment I: Acceleration bias estimates

7.2.2 Transient behavior
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Figure 7.6: Experiment I: Trajectory in 2D
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Figure 7.7: Experiment I: Position estimation error
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Figure 7.8: Experiment I: Velocity estimation error
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Figure 7.9: Experiment I: Wave speed estimate
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Figure 7.10: Experiment I: Acceleration bias estimates

7.2.3 Discussion of results obtained using Videoray

Considering the position estimation error in North and East in Figure 7.2, this is rather
choppy. This suggests that the dead-reckoning performance in between range updates was
not very good. The acceleration measurements were calibrated in order to compensate
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for scale-factors, orthogonality and offsets. In addition the filters estimated the biases
that possibly remained after calibration. However, misalignment errors were not as well
catered for. The INS-strapdown assumption implies that the IMU sensor-axes are aligned
with the ROV BODY-axes. The QMT system was used to obtain orientation estimates,
which were made relative to a BODY frame defined for the detected body by the Qualisys
system. It was assumed that this was also coinciding with the true BODY frame of the
Videoray. Both assumptions could have been be the source of misalignment errors that
influenced the dead-reckoning performance, because the acceleration measurements were
not rotated accurately.

Because the accelerometers used in this experiment were calibrated for constant offsets,
the estimated acceleration biases obtained small values, see Figure 7.5. In transient
behavior, see Figure 7.10, the bias estimates behaved quite similarly.

As earlier mentioned, the QMT system suffered from occasional drop-outs of measure-
ments. This can be caused by the ROV moving outside the area where a sufficient number
of cameras are able to detect a body, or for other reasons that the markers are not spot-
ted by the cameras so that the body cannot be positioned. In this experiment this also
caused drop-outs of range measurements and orientation estimates. And because of these
drop-outs spikes are seen in the plotted position and velocity estimation errors in Figure
7.2 and Figure 7.3. This also caused gaps in the same figures, because no reference was
available for evaluating the estimation error.

The wave speed estimate in steady-state is plotted in Figure 7.4. Because the range
measurements in experiment I were constructed, the true wave speed was known, and
β = 1 was used to generate pseudo-range measurements. The wave speed estimate
oscillated with small amplitude, quite similar as in simulations, see Figure 6.4.
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7.3 Experiment II: Results using Seabotix

7.3.1 Steady-state behavior

1 1.2 1.4 1.6 1.8 2 2.2

North [m]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
E

a
s
t 
[m

]

TSF

EKF

Qualisys

Figure 7.11: Experiment II: Trajectory in 2D
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Figure 7.12: Experiment II: Position estimation error
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Figure 7.13: Experiment II: Velocity estimation error
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Figure 7.14: Experiment II: Wave speed estimate
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Figure 7.15: Experiment II: Acceleration bias estimates
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7.3.2 Transient behavior
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Figure 7.16: Experiment II: Trajectory in 2D
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Figure 7.17: Experiment II: Position estimation error
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Figure 7.18: Experiment II: Velocity estimation error
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Figure 7.19: Experiment II: Wave speed estimate

89



CHAPTER 7. EXPERIMENTAL RESULTS

0 2 4 6 8 10 12

Time [s]

-2

-1

0

1

B
ia

s
 a

x 
[m

/s
2
]

TSF

EKF

0 2 4 6 8 10 12

Time [s]

-2

-1

0

1
B

ia
s
 a

yb
 [

m
/s

2
]

TSF

EKF

0 2 4 6 8 10 12

Time [s]

-0.2

0

0.2

0.4

B
ia

s
 a

zb
 [

m
/s

2
]

TSF

EKF

Figure 7.20: Experiment II: Acceleration bias estimates

7.3.3 Discussion of results obtained using Seabotix

Figure 7.11 shows that the estimated 2D trajectory for both filters were quite similar.
This is also seen for the position estimation error, in Figure 7.12. In the same plot, a
small bump in the Down position estimation occurs at t ≈ 91 s, and bumps are also seen
in the position estimation error in North and East at t = 153 s. The same disorders are
recognized in the plotted velocity estimation errors in Figure 7.13. This was investigated
further, and it was found that this was caused by very sudden, large changes in the
attitude of the ROV during the experiment. This is clearly seen in Figure 7.21 for the
same points of time as the distortions in the estimates. Figure 7.21 shows the orientation
estimated by Qualisys, and is here plotted in Euler angles, for better intuition. Because
the attitude was updated using only 5 Hz, a fast maneuver will have seemed very sudden.
And because attitude updates were also much slower than the states in the filters were
estimated, the use of an "old attitude" estimate has caused some error to persist for a
couple of seconds. An erroneous attitude will result in a poor gravity compensation, which
will give inaccurate velocity and position estimates when the acceleration measurements
are integrated.

90



CHAPTER 7. EXPERIMENTAL RESULTS

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-5

0

5

R
o
ll 

[r
a
d
]

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-0.4

-0.2

0

0.2

P
it
c
h
 [
ra

d
]

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-2

0

2

Y
a
w

 [
ra

d
]

Figure 7.21: Experiment II: Attitude estimates

The sudden jumps in the attitude reference, also caused errors in the acceleration bias
estimates in abx and abz. Simultaneously with the attitude jumps, the estimated biases
experience sudden breaks, see Figure 7.15. Without the sudden changes in attitude, the
bias estimates would have been expected to give smoother estimates.

The estimate of the wave speed bias oscillated with larger amplitude than in the other
results, see Figure 7.14. When using the Water Linked acoustic system, the exact wave
speed was not known. The wave speed was in this experiment affected by the properties
of the water in the test basin. The wave speed estimate seems to converge to a value of
approximately ≈ 1450 m/s. A theory is that the acoustic measurements were reflected
by the concrete walls in the test basin, contributing to increased acoustic noise in the
measurements. In turn, this could cause the wave speed estimate to oscillate with large
amplitudes. Thruster noise on the ROV could also have contributed to increased acoustic
noise.

In realistic field trials reflections can also occur if the acoustic signal bounces off a subsea
structure, seabed riser, ship hull or the sea surface. However reflections are considered
to be a bigger challenge in the test basin, because the operation site is very confined.
The acoustic noise can also increase as a result the wave speed changing with salinity,
pressure and temperature. The latter effects are assumed compensated for by estimating
the wave speed in the filters.

Considering the 2D trajectory, the position estimation error and all other plotted states,
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see Figure 7.16, 7.17, 7.18, 7.19 and 7.20 respectively, it is seen that the TSF estimates
converged faster and with smaller overshoots than the EKF in transient phase. In the
same figures it also appears that the transient behavior was slightly delayed, because the
initial peaks do not appear before after approximately 1 second. This is because the first
IMU acceleration measurements were not received before t = 0.96 seconds, and the filters
were not updated before after this.

7.4 RMS in experiments

Table 7.3: Position RMS error in experiments

Experiment I Experiment II
Steady Transient Steady Transient

TSF EKF TSF EKF TSF EKF TSF EKF
North [m] 0.0325 0.0327 0.6137 0.6692 0.0542 0.0523 0.5375 0.5699
East [m] 0.0323 0.0328 0.2242 0.2715 0.0395 0.0398 0.3514 0.4953
Down [m] 0.0859 0.0898 0.9033 2.5767 0.1365 0.1273 0.2445 0.5364
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Discussion of results

In this chapter some general remarks regarding the results presented in Chapter 6 and
7 are made. The simulation preconditions and the circumstances, for which the physical
experiments were conducted, were quite different. For example the set-up of transponders
and the trajectory for which the ROV moved were not the same. In simulations noise
and biases were perfectly modeled, while in real-life experiments these had to be tuned,
calibrated or estimated.

Despite this, an attempt is made to compare the results obtained in simulations with
the experimental results. However, the comparison is limited to evaluating only general
trends. A broader discussion on integration of inertial and pseudo-range measurements
is also included in this chapter.

8.1 Comparing simulation and experimental results

In order to compare the performance of the filters, the RMS error is evaluated in simu-
lations and in experiments. These are stated in Table 6.2 and 7.3 respectively. During
experiments, the position measurement from Qualisys was used as ground truth, and
used to calculate the RMS error. Based on the resulting RMS error, in addition to the
plots included in Chapter 6 and 7, the following general trends are pointed out.

• The TSF and EKF performed similarly in steady-state behavior

• The RMS error was always largest in Down

• The TSF state estimates converged faster than the EKF in transient behavior
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• As a result of the previously mentioned point, the RMS error was also smaller for
the TSF in transient behavior

8.1.1 Steady-state behavior

The steady-state trajectory plots from simulation and experiment, see Figure 6.1, 7.1 and
7.11, show that the filters perform very similarly in steady-state. This is also confirmed
by the calculated RMS position estimation errors.

The steady-state behavior of both filters in experiment I and II obtained a position
estimation error that was in fact smaller than in simulations, see Table 6.2 and 7.3.
This is most likely due to poorer ranging signal geometry in simulations. As earlier
discussed, this gradually became worse as the ROV moved horizontally further away
from the transponders. While during experiments, the ROV operated more in the area
in the middle of the transponders. Also, the range measurements that were generated in
experiment I, contained less noise than those generated in simulations.

It was found in both simulations and in experimental results, that the position estima-
tion errors were always largest in Down. This was expected because the transponders
have smallest separation this direction, and because the body is placed sub-optimal with
respect to the vertical DOP, as discussed in Section 6.6.

In Figure 6.3, 7.3 and 7.13 the steady-state velocity estimation errors are plotted. For the
experimental results, the Qualisys position derivative is used as reference for the linear
velocity. This provided noisy references, especially for experiment II, because Qualisys
was logged with only 5 Hz. It was found that the velocity estimation errors in contrast
to the position estimation errors were larger than in simulations. This suggests that the
acceleration measurements were less accurate than in simulations. This is not surprising,
considering that the real-life error sources in the IMU acceleration measurements were not
known exactly, and the acceleration measurements were integrated to obtain the velocity
estimates.

Overall, the position estimation accuracy was best in experiment I. To the extent that the
simulation and experimental results can be directly compared, it appears that the TSF
showed better performance when range-measurements were subject to less noise. This is
supported by the fact that pseudo-range measurement noise is amplified in the first stage
of the TSF. The results also emphasized the importance of ranging signal geometry for
the position estimation accuracy.
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8.1.2 Transient behavior

The transient trajectories, plotted in Figure 6.9,7.6 and 7.16 from simulations and exper-
iments, illustrate how the TSF estimates converged quicker to the correct position. This
also resulted in a smaller RMS position estimation error for the TSF, as the initial error
was removed faster.

Considering the transient behavior of the velocity estimates in simulations and in exper-
iment II, Figure 6.11 and Figure 7.18 respectively, the EKF has a larger overshoot and
converges slower than the TSF. The transient estimates for experiment I, see Figure 7.8
both filters obtain quite large initial values, before they converge. This could possibly
have been improved with more extensive tuning.

When the filters were tested in transient behavior, the TSF was usually not re-tuned,
while the EKF required additional tuning of the initial covariance P(0). The initial
covariance used in the EKF had to be smaller, which means more unrealistic, than P(0)
used in the TSF. In general the performance of the EKF is very dependent on tuning of
the initial covariance, P(0), and process noise, Q. The feedback loop and the unnecessary
P(0) will have slowed down the convergence rate of the EKF, while the initialization
provided by the LTV KF and the algebraic transformation ensured fast convergence of
the TSF (Jørgensen et al., 2016).

8.2 Dead-reckoning performance

In all realistic acoustic set-ups, range measurements will only be available at slow update
rates. This means that in between measurements, navigation must rely on dead reckoning.
The dead reckoning performance was for these specific filters decided by the quality of
the acceleration measurements in addition to the accuracy of the attitude estimates used
for rotating the acceleration measurements.

MEMS-based accelerometers are improving, but are known to contain a considerable
amount of noise. Noise levels will typically be measured for the ROV at rest. While
during experiments these can increase because of vibrations caused by the thrusters. The
applied noise characteristic will in this case not reflect the actual condition of the ROV in
operation. In addition, other error sources are present in the acceleration measurements,
such as scale-factors, orthogonality or misalignment errors, and bias offsets. If accelera-
tion biases are not good enough compensated for, this will cause the position and velocity
estimates to drift rapidly in between range measurements. Sufficient drift in the position
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and velocity estimate can cause choppy estimates. This is perhaps most obvious in the
position and velocity estimation error from experiment I, seen in Figure 7.2 and 7.3.

The attitude estimate was needed in order to define the rotation matrix, for rotating
acceleration measurements obtained in {b} to the inertial frame, {n}. Errors in the
attitude estimate will results in an erroneous gravity compensation, which will deteriorate
the acceleration measurements, as discussed in Section 7.3.3. During experiments the
QMT system was used to obtain the orientation, which is very accurate. Under more
realistic conditions, the attitude will need to be estimated, based on other IMU data, and
might not be as accurate. However, Qualisys did suffer from drop-outs in the experiments
performed. And in experiment II Qualisys, providing the attitude estimate, was logged
only at 5 Hz. It was clearly visible in the results from experiment II, how both the position
and velocity estimate was affected by inaccurate and outdated attitude estimates.

8.2.1 Acceleration bias estimation

In Figure 7.5 and 7.15 the steady-state acceleration bias estimates are plotted. For exper-
iment I the IMU was calibrated on beforehand, and the estimated biases oscillate around
quite small values. The IMU in experiment II was not calibrated, and in addition sudden
attitude jumps during the experiment caused the bias estimates to converge to quite large
values. With a faster logging of attitude, and perhaps a more smooth movement of the
ROV, it is expected that the acceleration bias estimation would be more similar to the
bias estimation in simulations, see Figure 6.5. This means that the drift in the position
and velocity estimate will be somewhat compensated for, even though the IMU is not
calibrated on beforehand.
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Conclusion

In this thesis two different filters have been presented to solve integration of inertial and
pseudo-range measurements, that could be suited for underwater navigation of an ROV.
The purpose is to estimate position, velocity, wave speed and acceleration biases.

Simulations were carried out to verify the implementation of the two filters, and to com-
pare their performance in steady-state and in transient behavior. The filters showed very
similar performance in steady-state, measured in form of the RMS position estimation
error and based on the plotted states. In transient behavior all TSF estimates converged
faster than the EKF. Simulations were also used to evaluate the time it took to compute
the estimates produced by the filters. It was found that the execution time for the TSF
was more than twice as long as for the EKF.

Experiments were conducted in the test basin in the MC-laboratory at Tyholt, using a
Videoray ROV and a SeaBotix ROV. Two different sensor systems were used to generate
range measurements, and all relevant measurements were logged during the experiments.
Offline runs were done to test once again the steady-state and transient behavior of the
filters. Overall, the results using experimental data showed many of the same trends
as those observed in simulations. The TSF and EKF behaved similarly in steady-state,
while the TSF estimates converged faster in transient state.

The EKF is currently the standard choice for integration of measurements for nonlinear
estimation problems. It is argued that the additional work it took to implement the
TSF, was not much, because the third stage of the TSF and the EKF is so similar. Also,
the work of re-tuning the EKF in transient behavior proved to be more challenging and
time-consuming than for the TSF. While the performance of the EKF was sensitive to
the tuning of P(0), the performance of the TKF was less dependent on tuning. The
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TSF therefore proved to be more robust when it came to inaccurate initialization. The
stability proof for the TSF also guarantees the state estimates will converge, because it
is globally stable, while the EKF could possibly diverge.

The performance of the filters could vary beyond what has been found in this thesis, due
to uncertainties related to the "true values" available during experiments, tuning of the
filters or variations that come with different transponder set-ups. However, results from
both simulations and two different experiments indicate good performance of the TSF
when benchmarked against the EKF. To conclude, the TSF, based on the investigation
done in this thesis, is recommended for the estimation problem considered. This inspires
further work to continue examining the performance and the potential of the TSF in use
for underwater navigation of ROVs.
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Further work

One of the general trends observed in both simulation and experimental results, was that
the RMS error was always largest in Down. For subsea navigation problems, the vertical
DOP will typically be poor, as the underwater vehicle in operation most likely will operate
with little elevation with respect to the transponder network. A depth measurement is
therefore an effective method to improve the estimation accuracy in Down, and is in
practice always available on an underwater vehicle. A new formulation must then be
developed for the measurement matrix in the LTV KF in the second stage of the TSF,
to include the depth measurement. And consequently the sensor covariance matrix must
be established for this formulation. The depth measurement could also be exploited in
the algebraic transformation, as done in the work by (Jørgensen et al., 2016), to increase
robustness with respect to pseudo-range measurements.

An other improvement that would also increase robustness with respect to pseudo-range
measurements noise, is an additional step for calculating the correct solution to the
second order equation of r, see Section 4.4.1. Jørgensen et al. (2016) proposes to solve
an nonlinear optimization problem to determine the correct solution of r. And in the
same optimization the noise in r is modelled using a numerical method, as opposed to
this formulation, where r is assumed noise-free. This strategy is assumed to increase the
performance of the 2nd stage LTV KF.

A truly realistic navigation system will use the estimated attitude for rotating the acceler-
ation measurements. This will require some reconstructing of the filter, and the attitude
must then be estimated based on other IMU data. It would be interesting to do further
experimental testing with this modification.
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Appendix A

IMU accelerometer calibration

The IMU accelerometers on the Videoray, used in experiment I, were calibrated using a
calibration algorithm made by Rohac et al. (2015). The Sensor Error Model (SEM) is
defined according to (A.1)

ua = TaSa(ya − ba) (A.1)

where ya is the measured acceleration data. And the result from the calibration script
was

Ta =


1 0 0

0.0230 1 0
−0.0834 0.0173 1

 (A.2)

Sa = 1e− 05 ·


0.1005 0 0

0 0.08130
0 0 −0.0494

 (A.3)

ba =


−0.0408
0.0026
−0.1295

 (A.4)

It is worth mentioning that the gravity component present in the accelerometer measure-
ments was estimated by the calibration algorithm, and therefore not compensated for
in the filter. Gravity compensation was then already done when using the compensated
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acceleration measurements, ua.
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Appendix B

Attachments

Appendix A contains the attachments to this thesis, which are stored in a ZIP-file deliv-
ered electronically together with the thesis. The file includes the following folders:

B.1 Poster

The A2 poster (2 x A3) has been included in .pdf-format, and is found in the folder
Poster.

B.2 Simulator

All MATLAB codes needed to run simulations can be found in the folders Simulation
1 and Simulation 2. Both folders also include a figures folder, which contain relevant
figures generated from simulations results.

B.3 Experiments

The experimental results were based on logged measurement data, that were tested in
the integration filters. For each experiment, all needed data, as well as scripts for reading
this, are included so that offline tests can be re-run.
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B.3.1 Experiment I

In Experiment I the relevant measurement data was stored as .mat-files. The nonlinear
Gaussian transformation, for finding the variance of the noise present in the constructed
range measurements, was performed using the script covariance_range.m. Within this
folder, a figures folder contain all figures generated from offline results.

B.3.2 Experiment II

In Experiment II, all relevant measurement data was read from -txt-files. Within this
folder, a figures folder contain all generated figures generated from offline results.
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