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Summary

Arctic operations are mostly carried out in seas covered in ice. For these operations,
both DNV GL and IACS provide regulations for classification of ships. Interaction
with ice is difficult to determine, as it could occur in many different ways. The
ice vary both spatial and temporal, hence each individual interaction are distinct.
The strength of sea ice depends on; ice temperature, porosity, salinity, and load
direction.

The main scope of this Master’s thesis is to study the behaviour of two plate fields
located in the bow region of ice-going vessels, applying measurements of sea ice for
load prediction. Uni-axial compression tests and parametric measures have been
conducted by UNIS and prediction of ice loads are discussed in papers by Leira
et al. (2009), Løset et al. (2006) and Riska (2011).

This Master’s thesis presents sea ice theory down to a molecular level. Applying
both theory and measurements, the flexural strength of both level ice and ridged
ice were predicted. Further, the flexural strengths were applied in estimation of
empirical contact pressures. These pressures were compared to pressures obtained
from regulations provided by DNV GL and IACS, by conducting an assessment
of a local plate field in the bow region. The assessment of the local plate field
proved the dimensioning based on regulations to be a minimum requirement. The
findings stated that regulations from DNV GL in general provide less contact
pressure than similar regulations from IACS. Additionally, it was found that the
empirical contact pressure model was able to give a simplified estimate of one
interaction with ice, as ice have large temporal and spatial variations.

For the plate model located in the stem area, an empirical ridge ice pressure was
applied and the boundary conditions were assessed. The model applied one fixed
and three spring modelled boundaries. Findings from the assessment indicated the
spring-modelled boundary to approach the behaviour of a fixed condition, as the
spring stiffness was increased. Further, the modelling of the boundaries was only
able to account for warping of the supportive frames.

Both models suffered from large permanent deformations and entered the non-
linear behaviour region, as the applied pressures had a high magnitude. Addi-
tionally, the stiffeners providing support for the plates suffered from both plastic
hinges and warping.
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Sammendrag

Arktiske operasjoner foreg̊ar som oftest i hav dekket av is. For slike operasjoner
har b̊ade DNV GL og IACS reguleringer for klassifisering av skip. Interaksjon mel-
lom b̊at og is er vanskelig å beregne, ettersom interaksjonen kan foreg̊a p̊a mange
forskjellige m̊ater. Isen varierer b̊ade i tid og rom. Som et resultat er hver inter-
aksjon særegen. Isstyrken avhenger av isens temperatur, porøsitet, saltinnhold og
lastretning.

Hovedfokuset i denne masteroppgaven er responsen til to platemodeller lokalisert
i baugomr̊adet p̊a b̊ater som ferdes i arktiske farvann, der lastene er beregnet ut
ifra m̊alinger av sjøis. Enakset kompresjonstester og parametriske m̊alinger av
sjøis har blitt utført av UNIS og estimater p̊a is-laster er diskutert av Leira et al.
(2009), Løset et al. (2006) og Riska (2011).

Denne masteroppgaven presenterer teori p̊a sjøis ned til et molekylært niv̊a. Gjen-
nom bruk av teori og m̊alinger, er bøyestivheten til b̊ade is og isrygger estimert.
Videre ble disse m̊alingene brukt i estimering av kontakttrykk, hvorp̊a kontakt-
trykkene ble sammenlignet med tilsvarende trykk beregnet gjennom regelverk fra
DNV GL og IACS. Sammenligningen ble utført gjennom en analyse av en lokal
platemodell lokalisert i baugomr̊adet. Analysene tydet p̊a at dimensjoneringen av
platemodellen var et minimumskrav fra DNV GL. Resultatene tydet ogs̊a p̊a at
DNV GL generelt gir et lavere kontakttrykk enn IACS. I tillegg fant en ut at det
empiriske kontakttrykket var i stand til å gi et forenklet estimat for en interaksjon
med is, ettersom is har store variasjoner i tid og rom.

For platemodellen lokalisert i fremre baugomr̊ade ble randbetingelsene analysert
med et kontakttrykk beregnet ved hjelp av m̊alinger p̊a en isrygg. Modellen ble
testet med en fast innspent og tre fjærmodellerte grensebetingelser. Analysene
tydet p̊a at de fjærmodellerte grensebetingelsene tilnærmet seg oppførselen til den
fast innspente platen n̊ar fjærstivheten ble økt. Rotasjonsfjærene var kun i stand
til å modellere sideveis svikt av de omkringliggende stiverne.

Begge modeller led av store permanente deformasjoner og entret ikkelineær oppførsel,
ettersom de p̊aførte trykkene var store. I tillegg, led stiverne som støttet platene
av b̊ade plastisk og sideveis svikt under p̊aføringen av trykk.

ix



x



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Sea Ice Theory 5
2.1 Classification of Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Classification by Origin . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Classification by Feature Type . . . . . . . . . . . . . . . . 6
2.1.3 Classification by Age . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Classification by Location . . . . . . . . . . . . . . . . . . . 10

2.2 Ice Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Structure of Ice . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Formation of Ice . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Ice Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Temperature, Density, Salinity and Porosity in Ice . . . . . 21

2.3 Ice Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Elastic Modulus of Ice . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Failure Modes of Ice . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Material Properties and Parameters of Ice . . . . . . . . . . 26

3 Measurement of Sea Ice Strength 31
3.1 Ice Compression Test . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Experimental Set-up . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Measurement of Sea Ice Specimens . . . . . . . . . . . . . . 33
3.1.3 Results of Sea Ice Specimen Testing . . . . . . . . . . . . . 34
3.1.4 Discussion of Measurments . . . . . . . . . . . . . . . . . . 45

4 Ice-Structure Interaction 49
4.1 Local Ice Pressure Model . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Ice Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Relevant Input Parameters . . . . . . . . . . . . . . . . . . 51
4.1.3 Load Patch Area . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.4 Contact Pressure . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



xii CONTENTS

5 Review of Ship Classification 55
5.1 Classification of Ships Navigating in Ice - DNV GL . . . . . . . . . 55

5.1.1 Review of Ice Classes . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Design Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Local Dimensioning . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Classification of Ships Navigating in Ice - IACS . . . . . . . . . . . 61
5.2.1 Review of Ice Classes . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Design Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.3 Local Dimensioning . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Similarities and Differences in Classification of Ships . . . . . . . . 65

6 Finite Element Theory 67
6.1 Non-linear Finite Element Method . . . . . . . . . . . . . . . . . . 67

6.1.1 Linear Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Non-Linear Analysis . . . . . . . . . . . . . . . . . . . . . . 70

7 Analysis - Level Ice and Regulations 73
7.1 Presentation of the Local Plate Model . . . . . . . . . . . . . . . . 73

7.1.1 Location of the Local Plate Model . . . . . . . . . . . . . . 73
7.1.2 Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Assessment of Ice Pressure . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Model Response Analysis . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.1 Assessment of Pressure Models . . . . . . . . . . . . . . . . 79
7.3.2 Assessment of Empirical Ice Pressure Model . . . . . . . . . 81
7.3.3 Assessment of DNV GL Ice Pressure Model . . . . . . . . . 83

7.4 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Analysis - Ridged Ice 89
8.1 Presentation of the Local Bow Model . . . . . . . . . . . . . . . . . 89

8.1.1 Location of the Local Bow Model . . . . . . . . . . . . . . . 89
8.1.2 Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.1.3 The Bow Model . . . . . . . . . . . . . . . . . . . . . . . . 91

8.2 Assessment of Ridged Ice Pressure . . . . . . . . . . . . . . . . . . 92
8.3 Bow Model Response Analysis . . . . . . . . . . . . . . . . . . . . 94

8.3.1 Assessment of Response . . . . . . . . . . . . . . . . . . . . 94
8.4 Assessment of Boundary Conditions . . . . . . . . . . . . . . . . . 103

8.4.1 Modelling of the Boundary Conditions . . . . . . . . . . . . 103
8.4.2 Spring Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4.3 Results of Boundary Condition Assessment . . . . . . . . . 104
8.4.4 Findings From the Bow Model Assessment . . . . . . . . . 119

8.5 Discussion of the Bow Model Results . . . . . . . . . . . . . . . . . 120

9 Discussion of Results 123

10 Conclusions 127

11 Further Work and Recommendations 131



CONTENTS xiii

A Sea Ice Measurement Data I
A.1 Level Ice Porosities and Flexural Strengths . . . . . . . . . . . . . I
A.2 Ridged Ice Porosities and Flexural Strengths . . . . . . . . . . . . IV

B MATLAB Scripts VII
B.1 MATLAB - Porosityprogram.m . . . . . . . . . . . . . . . . . . . . VII
B.2 MATLAB - Porositykvh.m . . . . . . . . . . . . . . . . . . . . . . . X
B.3 MATLAB - sb.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . X
B.4 MATLAB - F 1.m . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
B.5 MATLAB - F 2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
B.6 MATLAB - PlotData.m . . . . . . . . . . . . . . . . . . . . . . . . XI
B.7 MATLAB - Plot.m . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII

C Element Choice for Plate Model XV
C.1 Plate Elements - Abaqus . . . . . . . . . . . . . . . . . . . . . . . . XV

C.1.1 Requirements for the Element . . . . . . . . . . . . . . . . . XV
C.1.2 Element Comparison . . . . . . . . . . . . . . . . . . . . . . XVI
C.1.3 Choice of Element . . . . . . . . . . . . . . . . . . . . . . . XVIII

D Additional Results - Plate Assessment XIX
D.1 Additional Results From Empirical Ice Pressure Model . . . . . . . XIX
D.2 Additional Results From DNV GL Ice Pressure Model . . . . . . . XXII
D.3 Additional Results From IACS Ice Pressure Model . . . . . . . . . XXIV

E Additional Results - Stiffener Assessment XXIX
E.1 Additional Results From Empirical Ice Pressure Model . . . . . . . XXXI
E.2 Additional Results From DNV GL Ice Pressure Model . . . . . . . XXXIV
E.3 Additional Results From IACS Ice Pressure Model . . . . . . . . . XXXVII

F Additional Results - Bow Model XLI
F.1 Plate Assessment - Bow Model . . . . . . . . . . . . . . . . . . . . XLII

F.1.1 Location 3 and 4 - Stiffener Side . . . . . . . . . . . . . . . XLII
F.1.2 Location 5 and 6 - Stiffener Side . . . . . . . . . . . . . . . XLIII
F.1.3 Location 7 and 8 - Stiffener Side . . . . . . . . . . . . . . . XLIV
F.1.4 Location 9 and 10 - Stiffener Side . . . . . . . . . . . . . . . XLV
F.1.5 Comments to the Figures - Stiffener Side . . . . . . . . . . XLV
F.1.6 Location 3 and 4 - Load Side . . . . . . . . . . . . . . . . . XLVI
F.1.7 Location 5 and 6 - Load Side . . . . . . . . . . . . . . . . . XLVII
F.1.8 Location 7 and 8 - Load Side . . . . . . . . . . . . . . . . . XLVIII
F.1.9 Location 9 and 10 - Load Side . . . . . . . . . . . . . . . . XLIX
F.1.10 Comments to the Figures - Load Side . . . . . . . . . . . . XLIX

F.2 Stiffener Assessment - Bow Model . . . . . . . . . . . . . . . . . . L
F.3 Boundary Condition Assessment - Bow Model . . . . . . . . . . . . LVIII

F.3.1 Plate Assessment - Various Boundaries . . . . . . . . . . . . LVIII
F.3.2 Stiffener Side - Location 3 and 4 . . . . . . . . . . . . . . . LVIII
F.3.3 Stiffener Side - Location 5 and 6 . . . . . . . . . . . . . . . LXII
F.3.4 Stiffener Side - Location 7 and 8 . . . . . . . . . . . . . . . LXVI
F.3.5 Stiffener Side - Location 9 and 10 . . . . . . . . . . . . . . . LXX



xiv CONTENTS

F.3.6 Load Side - Location 3 and 4 . . . . . . . . . . . . . . . . . LXXIV
F.3.7 Load Side - Location 5 and 6 . . . . . . . . . . . . . . . . . LXXVIII
F.3.8 Load Side - Location 7 and 8 . . . . . . . . . . . . . . . . . LXXXII
F.3.9 Load Side - Location 9 and 10 . . . . . . . . . . . . . . . . LXXXVI
F.3.10 Stiffener Assessment - Various Boundaries . . . . . . . . . . XC
F.3.11 Stiffener 1 - Location 1 and 2 . . . . . . . . . . . . . . . . . XC
F.3.12 Stiffener 1 - Location 3 and 4 . . . . . . . . . . . . . . . . . XCII
F.3.13 Stiffener 1 - Location 5 and 6 . . . . . . . . . . . . . . . . . XCIV
F.3.14 Stiffener 2 - Location 1 and 2 . . . . . . . . . . . . . . . . . XCVI
F.3.15 Stiffener 2 - Location 3 and 4 . . . . . . . . . . . . . . . . . XCVIII
F.3.16 Stiffener 2 - Location 5 and 6 . . . . . . . . . . . . . . . . . C
F.3.17 Contour Plot of Stiffeners . . . . . . . . . . . . . . . . . . . CII

G MATLAB Scripts for Plotting CV
G.1 MATLAB - plateover.m . . . . . . . . . . . . . . . . . . . . . . . . CV
G.2 MATLAB - importfile.m . . . . . . . . . . . . . . . . . . . . . . . . CXI



List of Tables

2.1 Parameters for description of ice ridges. . . . . . . . . . . . . . . . 9
2.2 First-year ice thickness . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Ice concentration factors. . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Parameters of ice density. . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Parameters of porosity approximation. . . . . . . . . . . . . . . . . 23

3.1 Porosity and flexural strength - Level ice . . . . . . . . . . . . . . . 38
3.2 Flexural strength variety - Level ice . . . . . . . . . . . . . . . . . 39
3.3 Deviation of varying flexural strength - Level ice . . . . . . . . . . 39
3.4 Porosity and flexural strength - Ridged ice . . . . . . . . . . . . . . 44
3.5 Flexural strength variety - Ridged ice . . . . . . . . . . . . . . . . 44
3.6 Deviation of varying flexural strength - Ridged ice . . . . . . . . . 45

5.1 Northern Baltic ice classes . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Arctic ice classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Polar classes by IACS . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 DNV GL dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Stiffener dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Applied plastic strain model . . . . . . . . . . . . . . . . . . . . . . 76
7.5 Empirical ice pressure . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6 Applied ice pressures . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1 DNV GL dimensions for bow model . . . . . . . . . . . . . . . . . 90
8.2 Stiffener dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3 Curvatures for bow model . . . . . . . . . . . . . . . . . . . . . . . 92
8.4 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.5 Empirical ice pressure data . . . . . . . . . . . . . . . . . . . . . . 93
8.6 Spring stiffness κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.7 Critical ice thickness and loads . . . . . . . . . . . . . . . . . . . . 119

A.1 Porosities and flexural strength for level ice . . . . . . . . . . . . . I
A.2 Porosities and flexural strength for ridged ice . . . . . . . . . . . . IV

C.1 Element properties . . . . . . . . . . . . . . . . . . . . . . . . . . . XVII

xv



xvi LIST OF TABLES



List of Figures

2.1 Process of ice rafting . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Process of ice ridging . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Simplified model of an ice ridge . . . . . . . . . . . . . . . . . . . . 9
2.4 Simplified model of ice concentration . . . . . . . . . . . . . . . . . 11
2.5 Simplified model for classification of ice by location . . . . . . . . . 12
2.6 Six possible arrangements of how hydrogen and oxygen are bounded 13
2.7 Molecular structure of ice, showing the hexagonal structure . . . . 14
2.8 Initial formation of ice layers . . . . . . . . . . . . . . . . . . . . . 15
2.9 Ice growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Skeleton layer and brine entrapment . . . . . . . . . . . . . . . . . 17
2.11 Illustration of the assumptions behind Stefan’s law . . . . . . . . . 19
2.12 Illustration of the heat fluxes trough a ridge . . . . . . . . . . . . . 20
2.13 Stress-strain diagram for non-linear material model . . . . . . . . . 24
2.14 von-Mises and Coulomb-Mohr failure criteria . . . . . . . . . . . . 25
2.15 The Tresca and Coulomb-Mohr models . . . . . . . . . . . . . . . . 26
2.16 Behaviour of stress-strain curve depending on strain rate . . . . . . 27
2.17 Uniaxial tension and compression of ice . . . . . . . . . . . . . . . 28
2.18 Flexural strength of sea ice . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Cutting rig and KOMPIS . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Measurements post compression . . . . . . . . . . . . . . . . . . . . 33
3.3 Compressive strength versus salinity - Level ice . . . . . . . . . . . 34
3.4 Compressive strength versus temperature - Level ice . . . . . . . . 35
3.5 Compressive strength versus porosity - Level ice . . . . . . . . . . . 35
3.6 Air porosity - Level ice . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Brine porosity - Level ice . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 Total porosity - Level ice . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9 Flexural strength - Level ice . . . . . . . . . . . . . . . . . . . . . . 37
3.10 Compressive strength versus salinity - Ridged ice . . . . . . . . . . 40
3.11 Compressive strength versus temperature - Ridged ice . . . . . . . 41
3.12 Compressive strength versus porosity - Ridged ice . . . . . . . . . . 41
3.13 Air porosity - Ridged ice . . . . . . . . . . . . . . . . . . . . . . . . 42
3.14 Brine porosity - Ridged ice . . . . . . . . . . . . . . . . . . . . . . 42
3.15 Total porosity - Ridged ice . . . . . . . . . . . . . . . . . . . . . . . 43
3.16 Flexural strength - Ridged ice . . . . . . . . . . . . . . . . . . . . . 43

xvii



xviii LIST OF FIGURES

4.1 Failure modes of ice prior to flexural failure . . . . . . . . . . . . . 50
4.2 Forces due to ship-ice interaction . . . . . . . . . . . . . . . . . . . 50
4.3 Load patch area simplification . . . . . . . . . . . . . . . . . . . . . 51
4.4 Ice height reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Design contact area by DNV GL . . . . . . . . . . . . . . . . . . . 58
5.2 Hull angles from DNV GL . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Hull angles provided by IACS . . . . . . . . . . . . . . . . . . . . . 63
5.4 Stiffener dimensions provided by IACS . . . . . . . . . . . . . . . . 64

6.1 Stress-strain relation for a linear elastic material . . . . . . . . . . 69
6.2 Stress-strain relation for a non-linear material . . . . . . . . . . . . 70

7.1 Location of local plate . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Local plate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Load patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4 Sampling element location . . . . . . . . . . . . . . . . . . . . . . . 80
7.5 Stress-strain curve comparison in location 1.1 . . . . . . . . . . . . 81
7.6 Stress-strain curve comparison in location 1.1 . . . . . . . . . . . . 81
7.7 Time plot of stress strain relation - Empirical . . . . . . . . . . . . 82
7.8 Displacement of plate field - 15 mm . . . . . . . . . . . . . . . . . 82
7.9 Stress in x-direction in plate field - 15 mm . . . . . . . . . . . . . . 83
7.10 Stress in z-direction in plate field - 15 mm . . . . . . . . . . . . . . 83
7.11 Stress-strain curve comparison in location 1.1 . . . . . . . . . . . . 84
7.12 Stress-strain curve comparison in location 1.1 . . . . . . . . . . . . 84
7.13 Time plot of stress strain relation - DNV GL . . . . . . . . . . . . 85
7.14 Displacement of plate field - 15 mm - DNV GL . . . . . . . . . . . 85
7.15 Stress in x-direction in plate field - 15 mm - DNV GL . . . . . . . 86
7.16 Stress in z-direction in plate field - 15 mm - DNV GL . . . . . . . 86

8.1 Location of local bow plate . . . . . . . . . . . . . . . . . . . . . . 90
8.2 Local bow model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3 Local bow model with load . . . . . . . . . . . . . . . . . . . . . . 94
8.4 Local bow model with sampling elements - Stiffener side . . . . . . 95
8.5 Stress-strain - Location 1 and 2 - Stiffener side . . . . . . . . . . . 96
8.6 True strain over time - Plate - Stiffener side . . . . . . . . . . . . . 96
8.7 Contour plot of stress in x-direction . . . . . . . . . . . . . . . . . 97
8.8 Contour plot of stress in z-direction . . . . . . . . . . . . . . . . . . 97
8.9 Contour plot of displacement in y-direction . . . . . . . . . . . . . 98
8.10 Local bow model with sampling elements - Load side . . . . . . . . 99
8.11 Stress-strain - Location 1 and 2 - load side . . . . . . . . . . . . . . 99
8.12 True strain over time - Plate - load side . . . . . . . . . . . . . . . 100
8.13 Contour plot of stress in x-direction - load side . . . . . . . . . . . 101
8.14 Contour plot of stress in z-direction - load side . . . . . . . . . . . 101
8.15 Contour plot of displacement in y-direction - load side . . . . . . . 102
8.16 Spring modelling of the stiffener cross sections . . . . . . . . . . . . 103
8.17 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . 105
8.18 Stress and true strain - Location 1 and 2 - Boundary assessment . 106



LIST OF FIGURES xix

8.19 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . 107
8.20 Stress and true strain - Location 1 and 2 - Boundary assessment . 108
8.21 Contour plot - Stress x-direction - Boundary assessment . . . . . . 109
8.22 Contour plot - Stress z-direction - Boundary assessment . . . . . . 110
8.23 Contour plot - Displacement y-direction - Boundary assessment . . 111
8.24 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . 112
8.25 Stress and true strain - Location 1 and 2 - Boundary assessment . 113
8.26 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . 114
8.27 Stress and true strain - Location 1 and 2 - Boundary assessment . 115
8.28 Contour plot - Stress x-direction - Boundary assessment . . . . . . 116
8.29 Contour plot - Stress z-direction - Boundary assessment . . . . . . 117
8.30 Contour plot - Displacement y-direction - Boundary assessment . . 118

C.1 Types of elements . . . . . . . . . . . . . . . . . . . . . . . . . . . XVI

D.1 Stress-strain curve comparison in location 2.2 . . . . . . . . . . . . XIX
D.2 Stress-strain curve comparison in location 2.3 . . . . . . . . . . . . XX
D.3 Stress-strain curve comparison in location 1.2 . . . . . . . . . . . . XX
D.4 Stress-strain curve comparison in location 1.3 . . . . . . . . . . . . XXI
D.5 Stress-strain curve comparison in location 2.2 - DNV GL . . . . . . XXII
D.6 Stress-strain curve comparison in location 2.3 - DNV GL . . . . . . XXII
D.7 Stress-strain curve comparison in location 1.2 - DNV GL . . . . . . XXIII
D.8 Stress-strain curve comparison in location 1.3 - DNV GL . . . . . . XXIII
D.9 Stress-strain curve comparison in location 1.1 . . . . . . . . . . . . XXIV
D.10 Stress-strain curve comparison in location 1.1 . . . . . . . . . . . . XXIV
D.11 Time plot of stress strain relation - IACS . . . . . . . . . . . . . . XXV
D.12 Displacement of plate field - 15 mm - IACS . . . . . . . . . . . . . XXVI
D.13 Stress in x-direction in plate field - 15 mm - IACS . . . . . . . . . XXVI
D.14 Stress in z-direction in plate field - 15 mm - IACS . . . . . . . . . XXVI
D.15 Stress-strain curve comparison in location 2.2 - IACS . . . . . . . . XXVII
D.16 Stress-strain curve comparison in location 2.3 - IACS . . . . . . . . XXVII
D.17 Stress-strain curve comparison in location 1.2 - IACS . . . . . . . . XXVIII
D.18 Stress-strain curve comparison in location 1.3 - IACS . . . . . . . . XXVIII

E.1 Sampling element location for stiffeners . . . . . . . . . . . . . . . XXIX
E.2 Sampling point locations for stiffeners . . . . . . . . . . . . . . . . XXX
E.3 Stress-strain curve for the web, location 1 . . . . . . . . . . . . . . XXXI
E.4 Stress-strain curve for the web, location 2 . . . . . . . . . . . . . . XXXII
E.5 Stress-strain curve for the web, location 3 . . . . . . . . . . . . . . XXXIII
E.6 Stress-strain curve for the web, location 1 - DNV GL . . . . . . . . XXXIV
E.7 Stress-strain curve for the web, location 2 - DNV GL . . . . . . . . XXXV
E.8 Stress-strain curve for the web, location 3 - DNV GL . . . . . . . . XXXVI
E.9 Stress-strain curve for the web, location 1 - IACS . . . . . . . . . . XXXVII
E.10 Stress-strain curve for the web, location 2 - IACS . . . . . . . . . . XXXVIII
E.11 Stress-strain curve for the web, location 3 - IACS . . . . . . . . . . XXXIX

F.1 Stress-strain - Location 3 and 4 . . . . . . . . . . . . . . . . . . . . XLII
F.2 Stress-strain - Location 5 and 6 . . . . . . . . . . . . . . . . . . . . XLIII



xx LIST OF FIGURES

F.3 Stress-strain - Location 7 and 8 . . . . . . . . . . . . . . . . . . . . XLIV
F.4 Stress-strain - Location 9 and 10 . . . . . . . . . . . . . . . . . . . XLV
F.5 Stress-strain - Location 3 and 4 . . . . . . . . . . . . . . . . . . . . XLVI
F.6 Stress-strain - Location 5 and 6 . . . . . . . . . . . . . . . . . . . . XLVII
F.7 Stress-strain - Location 7 and 8 . . . . . . . . . . . . . . . . . . . . XLVIII
F.8 Stress-strain - Location 9 and 10 . . . . . . . . . . . . . . . . . . . XLIX
F.9 Stiffener numbering - Bow model . . . . . . . . . . . . . . . . . . . L
F.10 Flange numbering - Bow model . . . . . . . . . . . . . . . . . . . . L
F.11 Stress σz versus true strain εz in z-direction. . . . . . . . . . . . . LI
F.12 Stress and strain versus time . . . . . . . . . . . . . . . . . . . . . LII
F.13 Stress σz versus true strain εz in z-direction. . . . . . . . . . . . . LIII
F.14 Stress and strain versus time . . . . . . . . . . . . . . . . . . . . . LIV
F.15 Contour plot of stress in z-direction . . . . . . . . . . . . . . . . . . LV
F.16 Contour plot of stress in y-direction . . . . . . . . . . . . . . . . . LVI
F.17 Contour plot of shear stress in yz-direction . . . . . . . . . . . . . LVII
F.18 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LVIII
F.19 Stress and true strain - Location 3 and 4 - Boundary assessment . LIX
F.20 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LX
F.21 Stress and true strain - Location 3 and 4 - Boundary assessment . LXI
F.22 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXII
F.23 Stress and true strain - Location 5 and 6 - Boundary assessment . LXIII
F.24 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXIV
F.25 Stress and true strain - Location 5 and 6 - Boundary assessment . LXV
F.26 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXVI
F.27 Stress and true strain - Location 7 and 8 - Boundary assessment . LXVII
F.28 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXVIII
F.29 Stress and true strain - Location 7 and 8 - Boundary assessment . LXIX
F.30 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXX
F.31 Stress and true strain - Location 9 and 10 - Boundary assessment . LXXI
F.32 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXII
F.33 Stress and true strain - Location 9 and 10 - Boundary assessment . LXXIII
F.34 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXIV
F.35 Stress and true strain - Location 3 and 4 - Boundary assessment . LXXV
F.36 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXVI
F.37 Stress and true strain - Location 3 and 4 - Boundary assessment . LXXVII
F.38 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXVIII
F.39 Stress and true strain - Location 5 and 6 - Boundary assessment . LXXIX
F.40 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXX
F.41 Stress and true strain - Location 5 and 6 - Boundary assessment . LXXXI
F.42 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXXII
F.43 Stress and true strain - Location 7 and 8 - Boundary assessment . LXXXIII
F.44 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXXIV
F.45 Stress and true strain - Location 7 and 8 - Boundary assessment . LXXXV
F.46 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXXVI
F.47 Stress and true strain - Location 9 and 10 - Boundary assessment . LXXXVII
F.48 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . LXXXVIII
F.49 Stress and true strain - Location 9 and 10 - Boundary assessment . LXXXIX



LIST OF FIGURES xxi

F.50 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . XC
F.51 Stress and true strain - Location 1 and 2 - Boundary assessment . XCI
F.52 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . XCII
F.53 Stress and true strain - Location 3 and 4 - Boundary assessment . XCIII
F.54 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . XCIV
F.55 Stress and true strain - Location 5 and 6 - Boundary assessment . XCV
F.56 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . XCVI
F.57 Stress and true strain - Location 1 and 2 - Boundary assessment . XCVII
F.58 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . XCVIII
F.59 Stress and true strain - Location 3 and 4 - Boundary assessment . XCIX
F.60 Stress-True strain plot - Boundary assessment . . . . . . . . . . . . C
F.61 Stress and true strain - Location 5 and 6 - Boundary assessment . CI
F.62 Contour plot - Stress y-direction - Stiffener assessment . . . . . . . CII
F.63 Contour plot - Stress yz-direction - Stiffener assessment . . . . . . CIII
F.64 Contour plot - Stress z-direction - Stiffener assessment . . . . . . . CIV



xxii LIST OF FIGURES



List of Symbols

A Contact area, applied in contact pressure pc

Aice Total area of ice floes

α = 86400 [seconds/day]

α̂ Uniformly distributed random variable in the range [0,1]

Anom Nominal surface area

Aocean Total area of a certain ocean area

β Hull slope, applied in contact pressure pc

β̂ Portion of diaemeter D that varies with α̂

◦C Degree centigrades, temperature measurement

C Value relating mass of solid salts and mass of brine

c Cohesion, in Coulomb-Mohr criterion

CAD Computer Aided Design

Cgeo Constant, depending on ice boundary geometry

Ci Ice concentration factor

d Grain size

δ Load fraction of the total load

D̂ Portion of diameter that remains constant

dhi Additional ice layer due to growth

DNV GL Det Norske Veritas Germanischer Lloyd

E Elastic modulus

ε̇ Strain rate

ε Strain

εp Plastic strain

xxiii



xxiv LIST OF FIGURES

ηa Volume of air in the unit volume of sea ice

ηb Volume of brine in the unit volume of sea ice

ηm Macro porosity of a ridge

ηT Total porosity of sea ice

F0 Force required to break the ice sheet

FB Bending capacity of ice

FDD Freezing degree days

FISCR Finnish-Swedish Ice Class Rules

Fn Normal force between ice and structure

FR Driving force during rafting of ice

FR,crit Critical resultant force

FV Vertical component of contact force

g Gravitational acceleration

γij Shear deformation in the ij-plane

hc Thickness of consolidated layer in an ice ridge

hi Height of ice

hic Ice contact height, applied in contact pressure pc

hk Keel height of ridged ice

hs Snow height

hsail Sail height of ridged ice

IACS International Association of Classification Societies

K Stiffness vector for a linear system

k Relative amount of salt in brine

κ Spring stiffness for rotational spring [N/rad]

ki Thermal conductivity of ice

KI(r) Incremental stiffness vector for a non-linear system

K(r) Stiffness vector for a non-linear system

ks Thermal conductivity of snow

kw Influence factor for narrow loads

L Ice contact length, applied in contact pressure pc

li Latent heat of ice



LIST OF FIGURES xxv

LR Length of raft

MPC Multi Point Constraint

µii Friction coefficient between ice and ice

ν Poisson’s Ratio

pc Contact pressure between ice and structure

pc,crit Critical contact pressure

ϕ Angle of internal friction in ice model

ppt Parts per thousand, weight fraction

qice Heat flux, ice

qlatent Heat flux, new ice layer

qocean Heat flux, ocean

qsurface Heat flux, surface

R Load vector for a linear system

r Displacement vector for a linear system

R Ratio between hc and hi

ρb Brine density

ρi Density of ice

ρpi Density of pure ice

ρss Solid salt density

ρw Density of water

Rs Shear limit

Sb Brine salinity

σ Stress

σf Flexural strength of ice

S Salinity, measured in ppt

Ta Air temperature

τii Friction force between two ice sheets

τ Shear force

Tf Freezing temperature of sea water

Tm Melting temperature of ice

Ts Surface temperature



xxvi LIST OF FIGURES

umax Maximum plate displacement

UNIS University Centre of Svalbard

Vseawater Volume of seawater in an ice ridge

Vtotal Total volume of an ice ridge

wk Keel width of ridged ice

ws Sail width of ridged ice
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Chapter 1

Introduction

The Arctic area covers about 14 · 106 [km2]. This is mostly covered by ice during
wintertime. In September, the ice extent is at its minimum, and the ice covers
roughly 8 · 106 [km2] of the total area (Løset, nd). Arctic operations will therefore
be carried out in seas mostly covered in ice.

Operations in Arctic environment have become more relevant over the past years.
The search for oil and gas, thus also survey of ice and environment have lead
to an increase in Arctic activity. These operations require structures to have
sufficient residual strength due to ice-induced stresses. Ice occurs in different size,
shape, age, feature type, location and origin. Regarding these parameters, ice will
have varying strength and load-inducing properties. In addition, the mechanical
behaviour of ice is described by four main parameters; temperature, porosity, grain
size and direction, and loading rate (Høyland, 2015).

For Arctic operations, both Det Norske Veritas Germanischer Lloyd (DNV GL)
and International Association of Classification Societies (IACS) provide regula-
tions considering ice-hull interactions. These regulations classify ships into classes
depending on ice feature type, location and age of the ice they will operate in.
Also, the number of repeated rams and vessel speed are considerable when classi-
fying ships. These codes assume that an area subjected to a pressure, represent
the ice load. Ice will have different size and shape, and there will occur difficulties
regarding an actual load pattern and the resulting contact pressure induced to the
hull.

1.1 Background

Uni-axial compression tests and parametric measurements have been conducted
by the University Centre of Svalbard (UNIS). To calculate ice loads on ship hulls,
highly advanced numerical algorithms and associated computer software such as
Abacus are required. Prediction of ice loads have been discussed in papers by Leira
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et al. (2009), Løset et al. (2006), Riska (2011) and Thorsen (2012). Interaction with
ice could occur in many different ways, and the models of interaction are difficult to
determine. There are many difficulties related to the ice-ship interaction. The ice
strength has spatial and temporal variations, and is difficult to predict as it depends
on several physical parameters. Further, the contact area is difficult to determine
due to different crushing and breaking patterns. Regarding these difficulties, there
exist simplified methods for calculation of both local and global ice induced loads
(Riska, 2011). Prediction of ice induced loads could be established by application
of measurements conducted by ice-going vessels (Leira et al., 2009). Hence, these
predictions require sufficient numbers of measurements over a long period of time
in the area where vessel will operate.

1.2 Objective

Considering difficulties and uncertainties connected to ice-structure interaction,
the following topics have been examined:

� Describe different types of sea ice, and their mechanical and physical prop-
erties.

� Present and discuss models for calculation of contact pressure acting on a
floating structure due to presence of ice.

� Present measurements from uni-axial compression tests of sea ice, performed
at UNIS. Also, establish an empirical pressure model based on these mea-
surements.

� Perform a review of ice classes of polar going ships with focus on regulations
provided by DNV GL and IACS.

� Compare different ice classes of polar going ships by assessing a local ship
hull component in Abaqus, with loads obtained from measurements of sea
ice and loads obtained by the regulations.

� Establish a finite element model in Abaqus and analyse this with respect
to extreme loads provided by ice ridges. Additionally, assess the effect of
varying boundary conditions due to varying support of the local ship hull
component. The loads should be established by measurements conducted at
UNIS.
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1.3 Scope and Limitations

The main scope of this Master’s thesis focuses on local ice loads on ship hulls
established by application of data from UNIS, and an empirical contact pressure
formula. Additionally, a comparison of regulations and the empirical contact pres-
sure will be provided. The boundary conditions of the a local bow model will be
assessed to investigate differences in behaviour regarding failure in the supportive
frames.

The coast guard vessel KV Svalbard has conducted measurements of sea ice and ice
induced stresses. KV Svalbard was therefore chosen as an inspirational ice-going
vessel for the comparison of regulations provided by DNV GL and IACS. The
plate model applied in the comparison was limited to only apply scantlings from
DNV GL. Thus, the design pressure from both DNV GL and IACS, as well as the
empirical pressure are applied to the model. Further, the plate assessment applying
contact pressure obtained from regulations by IACS, is given in the appendix as
the main focus was given the empirical model and the regulations from DNV
GL. Considering the regulations, scantlings of the plate model are limited to only
consider plate thickness, sectional area of the stiffeners, and design pressure. The
dimensioning are based on several general assumptions regarding main dimensions
and stiffener spacing.

The sea ice theory will provide details of sea ice down to a molecular level. This
will give the reader a better understanding of the measurements provided by UNIS
and the results of these measurements. The contact pressure model derived from
empirical equations describing the flexural strength of sea ice, bending capacity
and vertical force component, is limited to describe short impacts only. Further,
the normal force component is limited to only account for vertical forces and a
friction component, prior to collapse of the ice sheet.

For the bow model, applying an empirical pressure obtained from ridged ice mea-
surements, the boundary condition assessment was limited to one fixed boundary
and three boundaries applying rotational springs. The main focus was given to
assessment of the plate and stiffener flanges. These limitations were set to reduce
the extent of the thesis and give priority to the most critical sampling locations.

This Master’s thesis is limited to include only necessary theory, hence the basic
theory on the finite element method is not included. The reader should have
sufficient understanding of the basic theory to understand presented theory and
results.

The reader should note that this Master’s thesis is only describing the first stage
of interaction with ice, as the ship continue to navigate in ice, the ice floes will
continue to induce stresses to the hull until the ice floes have passed the ship. This
Master’s thesis will only consider the first interaction in the analysis.
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1.4 Structure of the Thesis

This section presents the content of the thesis. The chapters present the different
parts, and are arranged in the most chronological order, as listed below:

� Chapter 2 - Presents theory on sea ice, with focus on classification of ice, ice
physics and ice mechanics.

� Chapter 3 - Presents measurements from compression tests of ice specimens.
Further the experimental set-up, methodology and results are presented.

� Chapter 4 - Presents Ice-structure interaction, with focus on local ice pressure
models, relevant input parameters, pressure areas and contact pressure.

� Chapter 5 - Presents a review of ship classification for ice going vessels, with
focus on classification presented by DNV GL and IACS.

� Chapter 6 - Presents finite element theory, with focus on non-linear theory.

� Chapter 7 - Presents results from assessment of a local plate model, with
focus on a comparison of actual ice loads and loads suggested by regulations.

� Chapter 8 - Presents results from assessment of an advanced local bow model
exposed to extreme ice ridge loads. Additionally, an assessment of different
boundary conditions is presented here.

� Chapter 9 - Presents an overall discussion of the findings from the thesis.

� Chapter 10 - Presents an overall conclusion of the findings from the thesis.

� Chapter 11 - Presents suggestions for further work and recommendations.

Additional results, data from measurements and MATLAB-scripts will be given in
an appendix. The appendix will be arranged in the same chronological order as
the main part.



Chapter 2

Sea Ice Theory

As the surveys in Arctic areas are developing, knowledge about ice environment
become more relevant. Knowledge about physical and mechanical behaviour of
ice is necessary to understand how ice impacts a vessel located in an Arctic en-
vironment. There are many parameters and properties describing ice, that will
determine what kind of impacts the vessel will be exposed to during interaction
with ice. These parameters and properties could be divided into three main topics:
classification of ice, ice physics and ice mechanics. In this chapter, the topics will
be further described to give the reader a better understanding of topics discussed
later.

2.1 Classification of Ice

Ice is generally classified into four categories. For offshore structures and ships,
the main concern regarding origin is sea and land ice. The size and shape of
these two types of ice, along with different strength, are the main differences. The
Feature type describes the degree of deformation of ice, and will hence impact the
loading pattern and load amplitude on a ship hull. Over time the ice grows and
melts, these are also important factors that impact the ice-ship interaction. The
ice position in relation to land will give ice different properties as well. All these
different classification topics will be further discussed in this section. This section
refers to Høyland (nd) unless other is specified.

2.1.1 Classification by Origin

Ice is divided into four groups regarding the origin. The following four origins are
given by World Meteorological Organization (WMO, 1970):

� Sea ice is formed at sea due to freezing of sea water.
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� Ice of land origin is ice formed on land, i.e. glacier ice, found floating in
water due to calving.

� Lake ice is formed on a lake.

� River ice is formed on a river.

The origin will give the ice different properties regarding strength, size and shape.
Sea ice will typically have less strength than glacier ice, due to higher salinity and
porosity. The size of sea ice compared to glacier ice is also small. The largest
observed iceberg originating from a glacier was estimated to have a surface area
of 11.000 [km2].

Further in this master thesis, only sea ice will be discussed. Sea ice originate from
saline water, thus further growth could occur from snow on top that mixes with
saline water. This impacts the salinity, and also impacts the strength. This is
further described under section 2.2.3.

2.1.2 Classification by Feature Type

Sea ice can be divided into groups regarding degree of deformation. Different
feature types of ice have different mechanical and thermo-mechanical properties.
Also, the size differs between the feature types. WMO (1970) differ between two
main categories of feature types, when describing sea ice:

� Undeformed ice is ice with little to no mechanical deformation.

� Deformed ice is ice with mechanical deformation, typically deformed by
the surrounding environment.

The undeformed ice, is often called level ice. This means it consists of only one
layer of ice. The deformed ice is often divided into three sub-groups: rafted ice,
ice ridges and broken ice. The broken ice is often found in the marginal ice zone
where waves break the ice into smaller pieces. Only rafted ice and ice ridges are
further described in detail.

Rafted Ice

Rafted ice is defined as an ice sheet overriding another (Tuhkuri, 2014). For this
to occur, a driving force FR must exceed the load capacity F0 of an ice sheet.
Thereafter, the driving force must be able to compress the sheets sufficiently for
overriding to occur. This process continues until the friction forces between the
ice sheets τii are greater than the driving forces. This process could occur several
times, hence the ice could obtain more than double thickness as several layers
override each other. The process is illustrated in figure 2.1.
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Figure 2.1: Process of rafting of ice. From initial cracking to final state and also
initiation of a second layer. Inspired by Tuhkuri (2014).

Initially one requires FR > F0 to break the ice, as shown in top of figure 2.1.
The shear force between the ice sheets depends on the buoyancy and weight of
the ice sheets, as well as the friction coefficient µii between ice and ice. As the
raft length LR increases, the friction force per unit width between the ice sheets
increase described by equation 2.1.

τii = µii(ρw − ρi)ghiLR (2.1)

Where µii is the friction coefficient between two ice sheets, ρw is the density of
water, ρi is the density of ice, g is the gravitational acceleration and hi is the ice
thickness which is assumed constant for both sheets. As the driving force is larger
than the friction between the ice sheets, FR > τii, the overriding of one sheet
continues until τii > F0, and the ice sheet breaks in another location (as shown at
the bottom of figure 2.1).

From 2.1 one observes that the rafting length could be long if µii is small and FR
is small enough to keep the ice sheets intact. If the ice sheets are covered in snow
the friction increases significantly, hence the rafting length reduces. The rafting
length do depend on available forces driving the ice sheets. Additionally, field
observations show that thick ice most likely ends up ridging rather than rafting,
and thin ice will most likely raft (Tuhkuri, 2014).
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Ridged Ice

Ridged ice is defined as compaction of ice where the ice breaks up into blocks that
pile up, both over and under the ice sheet. Ridging could occur after the final
state of rafting. This is due to breaking of ice into smaller blocks, rather than ice
sheets overriding each other. The process is illustrated in figure 2.2.

Figure 2.2: Process of ridging of ice, from initial stages of rafting to final stage of
ridging. Inspired by Tuhkuri (2014).

From figure 2.2 one can observe that ridging may be initiated by rafting, hence
it may as well be directly ridged . The process requires a driving force FR larger
than the capacity of loading F0 to break the ice into smaller blocks. This process
continues until FR < F0 as the capacity is then greater than the winds and current
forcing the ice together.

A simplification of the final state is illustrated in figure 2.3 below. The keel consists
of rubble, a mix of ice and water, until consolidation occur. The ratio between
the sail and keel height is often in the range 4-5, respectively for first-year ridges.
While the ratio is only in the range of 3-4 for old ridges (Timco and Burden, 1997).
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Figure 2.3: The final state of an ice ridge (Tuhkuri, 2014).

Table 2.1 gives a description of the parameters from figure 2.3.

Table 2.1: Parameters for description of ice ridges.

Description Parameter

Sail width - ws
Sail height - hsail
Keel depth - hk
Keel width - wk
Consolidated layer thickness - hc

The reader should be aware of the simplified ridge shape, illustrated in figure 2.3.
Ridges may occur in shapes different from this figure.

2.1.3 Classification by Age

Age of ice is by WMO (1970) divided into two subgroups: First-year ice and old
ice. The definition of age is given by the number of summers the ice has survived.
This means that first-year ice is not older than one winter. Old ice has survived
at least one summer of melt, and is further divided into second-year ice and multi-
year ice. Second-year ice has only survived one summers melt, while multi-year
ice have survived several summers. The old ice thickness is approximated to be
within a range of 1.2-5 [m].
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First-year ice is often divided into subgroups regarding thickness. By WMO (1970)
the following thickness apply, as listed in table 2.2.

Table 2.2: First-year ice thickness.

Ice notation Thickness [m]

Thin - 0.3-0.7
Thin first stage - 0.3-0.5
Thin second stage - 0.5-0.7
Medium - 0.7-1.2
Thick - 1.2-2

From table 2.2 it is observed that the thin ice is divided into two sub-groups.

2.1.4 Classification by Location

Ice will have different behaviour regarding position in relation to land and open
ocean. The position of the ice will determine what kind of boundary conditions
the ice is exposed to, hence determine ice behaviour. Høyland (nd) define the
following classes of ice locations:

� Shore ice is fixed to the shore line and forms the transition to the landfast
ice. The shore ice is impacted by the shore.

� Landfast ice is only able to move vertically with tide water, as it is hori-
zontally fixed to the shore line.

� Shear zone ice defines the transition from landfast ice to the drift ice and
is characterized by large deformations.

� Drift ice is free to move and will be defined regarding the ice concentration
factor Ci, and will have different motion due to the level of ice concentration.

� Marginal ice zone (MIZ) is defined as the transition from drift ice to open
water.

The ice concentration factor is defined as:

Ci =
Aice
Aocean

(2.2)

where Aice is defined as the total area of the ice floes in a certain area Aocean.
Figure 2.4 defines the different areas applied by equation 2.2.
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Figure 2.4: Illustration of the areas defining the ice concentration factor Ci.

The shore ice define a transition between land and landfast ice. This ice are often
denoted the hinge zone as some ice are fixed to the shore and some ice move
together with the tide. This may cause rotation and eventually cracks in the ice
cover. Further, the landfast ice can move vertically, hence it is fixed horizontally.
The horizontal boundary and extension of the landfast ice zone are determined by
the number of islands, sea bed topography and ice thickness. Outside the landfast
ice, the ice can move and create a shear zone characterized by large deformations.
This zone define the boundary between landfast and drift ice. Regarding the
drift ice, one define several ice concentrations. Table 2.3 provides the different
concentrations(WMO, 1970). The MIZ defines the transition to open water, where
the ice cover is free to move and is affected by waves from open water.

Table 2.3: Ice concentration factors.

Ice concentration Ci [-]

Very open ice - 0.1-0.3
open ice - 0.4-0.6
pack ice - 0.7-0.8
Very close ice - 0.9-1
Compact ice - 1

Figure 2.5 illustrate the different locations ice could obtain during classification by
location, from land to open water.
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Figure 2.5: Illustration of the different locations defining the classification by lo-
cation, inspired by Høyland (nd).
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2.2 Ice Physics

To understand the mechanical properties of ice, one needs to investigate the phys-
ical properties. Ice consist of frozen water where each water molecule consists
of two hydrogen atoms and one oxygen atom. The process of ice growth will be
further discussed in this section, from the composition of a water molecule to the
final stage of fully developed ice. The mechanical properties of ice will depend on
several parameters described at an atomic level. This section will provide theory
presented by Løset et al. (2006).

2.2.1 Structure of Ice

At a microscopic level, water consist of oxygen atoms (O) covalent bonded with
two hydrogen atoms (H). Oxygen consist of eight electrons, where six of them are
located in the outer shell. Hydrogen has one electron in the outer shell, so that
two hydrogen atoms can create chemical bonds with one oxygen atom. Thus, the
hydrogen atom simply consists of their nuclei with a distance 0.96 [Å] from the
oxygen nucleus. This form a water molecule, and is bonded trough a hydrogen
bond to other water molecules.

As water in liquid form freeze, it undergoes a structural rearrangement on a molec-
ular level. Water molecules are transformed into a crystalline structure. The result
is a solid, with crystallographic arrangement of water molecules. Ice frozen under
normal conditions is often referred to as ice Ih, or hexagonal ice, due to hexagonal
crystalline symmetry. Each hydrogen nuclei with its partial charge is attracted
to one of the lone pairs of a neighbouring oxygen molecule. The bond is called
hydrogen bond and is weakly ionic. There are six possible arrangements of these
types of bonds, as illustrated in figure 2.6

Figure 2.6: Six possible arrangements of how hydrogen and oxygen are bonded. ◦
represents oxygen while • represents hydrogen(Løset et al., 2006).

Each oxygen can bond with three hydrogen atoms in plane, while only one out of
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plane, this give a total of four bonds per oxygen atom. In ice Ih the distance be-
tween a covalent bonded hydrogen and oxygen atom, is approximately 1 [Å]. While
the distance from a hydrogen bonded oxygen and hydrogen atom is approximately
1.76 [Å]. This gives a total distance of 2.76 [Å] between each oxygen atom(Løset
et al., 2006).

By applying the Bernal-Fowler rules, it is possible to establish a statistical model
for the structure of ice based on the following assumptions (Løset et al., 2006):

� The two hydrogen atoms are attached to each oxygen atom at distances of
approximate 1 [Å], hence forming a water molecule.

� The orientation of the water molecule is so that the two hydrogen atoms
approximately is directed towards two out of the four surrounding oxygen
atoms in a tetrahedrally pattern.

� Between each pair of oxygen atoms there exists only one hydrogen atom.

� Ice Ih will under ordinary conditions exist in one of the configurations cor-
responding to a certain distribution of the hydrogen atoms relative to the
oxygen atoms (Figure 2.6).

Regarding the arrangement of atoms, ice will obtain the oxygen atoms located in
series of paralell planes called basal planes. Perpendicular to these planes, one
finds the c-axis. The oxygen atoms are ordered in a hexagonal manner, in the
basal planes as shown in figure 2.7.

Figure 2.7: Molecular structure of ice, showing the hexagonal structure. The circles
represent oxygen atoms, while the lines represent hydrogen bonds. The hydrogen
atoms are not shown here. Left: The basal planes are shown horizontally, while
the c-axis points vertically. Right: The hexagonal pattern is illustrated with the
c-axis out of plane(Løset et al., 2006).

Figure 2.7 shows that a fracture along any plane normal to the basal plane requires
breaking of a minimum of four bonds. While a fracture parallel to the basal plane
only requires breaking of two bonds. Regarding the atomic planes, ice will have
different properties in different directions. This will be further discussed in section
2.3.3.
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2.2.2 Formation of Ice

The freezing temperature Tf of saline water is -1.9 [◦C] due to the presence of
salt. Generally the salinity S of sea water is 35 [ppt](Høyland, nd). When sea
water start to freeze, the basal planes are randomly oriented as a result of heat
transportation. Some heat is transported into air, and some is transported into
water regarding the basal plane orientation. Wind and waves also initiate random
orientation of the basal planes. Due to thermodynamics 2nd law, the generated
heat needs to be transported away. In an anisotropic material, the required energy
to transport heat away is greater than in an isotropic material. It will require less
energy to transport heat away parallel to the basal planes. The initial ice layer
is called the primary layer and has a thickness of 0.1-0.15 [m]. As ice continue
to grow from below, the heat generated need to be transported to the surface.
The favoured orientation of the basal planes is vertical, and a wedge out effect of
the horizontal basal planes occurs. This layer is named the wedge out zone and
is within the range of 0.05-0.3 [m]. Further growth will be dominated by vertical
oriented basal planes only, and is denoted secondary layer. Figure 2.8 shows the
process of initial ice development, to a fully developed secondary layer.

Figure 2.8: Initial formation of ice layers. The basal planes are illustrated with
black lines. The C-axis is perpendicular to the basal planes. The primary layer is
denoted P, the wedge out zone is denoted W, and the secondary layer is denoted
S. The figure only shows the principle, no scale or distances are accurate.

The primary layer will consist of granular ice. While the secondary layer consists
of columnar ice. In a horizontal plane cut, the columnar grains will increase in
cross section area as the distance from the surface increases. In the bottom most
part of the ice sheet, the skeleton layer is located, as illustrated by figure 2.9. From
figure 2.9 one could observe the orientation of basal planes in both horizontal and
vertical planes trough a layer of first year sea ice. Initially, the primary layer is
granular. The wedge out zone, or transition zone, is quite narrow compared to
the full thickness of the ice sheet and the wedge out effect is shown by the cross
section cut outs to the left in figure 2.9. Further, the grains does increase in size
through the columnar zone(secondary layer). Additionally, the basal planes are
almost vertically aligned at the bottom most part of the ice layer.
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Figure 2.9: Illustrative figure of first year sea ice and how the basal planes and
grains vary trough the cross section of the ice cover. To the right, cut outs of the
cross section, both horizontal and vertical are shown. The basal planes are drawn
as black lines. The figure is taken from Løset et al. (2006).
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The skeleton layer consists of ice layers extending into the water below the ice.
These platelets are typically less than 0.25 [mm] thin. As the root of these platelets
grows thicker, the extensions can entrap brine and gas in pockets. The skeleton
layer and brine entrapment are illustrated in figure 2.10.

Figure 2.10: Skeleton layer and brine entrapment. SK ice is similar to skeleton
layer(Løset et al., 2006).

When brine are entrapped, the brine pockets can migrate as the topmost part of
each pocket will freeze and increase the salinity of the remaining brine. Due to
this increase, the bottommost part will melt and cause downward motion. This
is easily understood regarding heat transport to the surface and the fact that the
temperature gradient is positive downwards.

Due to a volume difference between a water molecule and a salt molecule, freezing

water do expel salts. The volume of a water molecule is approximately 130 [Å
3
],

while a salt molecule has the volume of approximately 179 [Å
3
]. Another factor

that substantiates the expel of salt, is the distances in the lattice. The distance
between two oxygen atoms is 2.76 [Å]. For salt, the distance between two chlorine
atoms is 5.64 [Å]. Salinity of the ice will depend on the growth rate. The faster
the ice freezes, the more salt is locked in. Temperature is therefore an important
parameter for ice properties. This is further discussed in section 2.2.3.
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2.2.3 Ice Growth

Ice thickness is one of the most important parameters regarding ice load actions
on offshore structures. The thickness of ice is determined by ice growth, and could
occur in many forms. The theory provided in this section is mostly referring to
Høyland (nd).

Ice growth from above occur when sea ice get flooded and new ice develop on top.
This ice is often denoted superimposed ice. Snow could accelerate this process
as the ice could become submerged due to added weight. The water may flow
trough brine channels or cracks which connect the submerged part to the surface.
Additionally, the superimposed ice could be created due to radiation, high air
temperatures or rain. The topmost part of the snow layer melts and drizzles down
trough the snow. As it reaches the cold zone, it freezes. This causes porous fresh
ice. Ice could also grow from inside as brine pockets reach freezing temperature.
This growth do not provide much additional volume to the ice. Hence, the process
decrease the salinity of the ice. Ice growth from below is the most common form of
growth. The access to cold water is continuous and the latent heat released from
the freezing process is transported trough the ice and released to the surroundings
on top of the ice. This lead to ice growth underneath the ice cover. The ice
thickness could be predicted applying Stefan’s law when investigating ice growth
from below.

Stefan’s Law

Stefan’s law could be used for prediction of ice growth considering level ice, in an
one-dimensional model. To apply Stefan’s law, several assumptions are introduced,
as described by figure 2.11. It is assumed that there is no layer of snow on top
of the ice and that there exists no radiation. Also it is assumed that there is no
heat transfer from the ocean to the ice, such that the heat fulx from the ocean
is zero(qocean = 0). The temperature profile trough the ice is assumed linear and
the energy generated by development of an additional ice layer is carried trough
the ice to the surface. This imply the following: qlatent = qice = qsurface. Also,
Fourier’s law apply to the heat transported trough the ice as described in equation
2.3.

qice = −ki
∆T

∆z
(2.3)

Where ki is the thermal conductivity of ice, z describe thickness and T describe
temperature.

From figure 2.11, one obtains the following equation:

− ki
∆T

hi
= ρili

dhi
dt

(2.4)

Solved with respect to the time dependent ice height, one obtain the following
equation:
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Figure 2.11: Illustration of the assumptions behind Stefan’s law(Høyland, nd).
The additional ice layer is denoted dhi, the thickness of ice is denoted hi, the
surface temperature is denoted Ts, the freezing temperature of sea water is defined
as Tf and the air temperature is denoted Ta. The heat fluxes are defined in the
figure.

h2i (t)− h2i,0 =
2ki
ρili

∫ t

0

(Ts − Tf )dt (2.5)

Introducing the assumption that the surface temperature Ts is equal the air tem-
perature Ta. Freezing Degree Days (FDD) quantifies the energy amount released
at the surface by summing up the difference between the freezing temperature Tf
and the air temperature Ta. FDD is given as:

FDD =
∑
days

(Ta − Tf ) ≈ 1

α

∫ t

0

(Ta − Tf )dt (2.6)

Where alpha α is given as the seconds per day, resulting in α = 86400 [second/day].
This give Stefan’s law in rewritten form:

h2i (t)− h2i,0 =
2ki
ρili

FDDα (2.7)

Introducing a layer of snow that provide insulation, Stefan’s law is rewritten at
the following form:
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h2i (t)− h2i,0 +
2hski
ks

hi −
2hski
ks

hi,0 =
2ki
ρili

FDDα (2.8)

The assumptions are the same as previous, thus no snow is assumed.

Consolidation of Ridges

Consolidation of ridges is of consideration in design load characterization. First-
year ridges are assumed to consist of partially a consolidated layer and rubble, and
have not survived a summers melt. Old ridges have survived one or more summers
and are assumed to be fully consolidated. This results in larger impact forces. In
first-year ridges, the consolidated layer is assumed to be within a range of 2-2.5
times the thickness of the level ice(Høyland, nd). The keel depth is one of the
most important parameters. By observation of the sail, one can predict the keel
depth as the keel-sail fraction has a ratio of 4-5 for first-year ridges and 3-4 for old
ridges, as given by Timco and Burden (1997).

During the lifespan of a ridge, physical, mechanical and geometrical properties will
change. Initially the keel consists of rubble that is not yet consolidated. Due to
temperature difference between ice and sea water, freeze bonds develop. There
exist three important heat fluxes, the surface flux qsurface, the oceanic flux qocean
and the internal flux qre as illustrated by figure 2.12. The surface flux freezes the
water pockets between the ice blocks, from above. A consolidated layer is then
formed. The internal flux is partially used in freezing of the water pockets, namely
freeze bonds, and partially consumed by the flux from the ocean.

Figure 2.12: Illustration of the heat fluxes in a first-year ridge. The figure is taken
from Høyland (nd).
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Further growth of the consolidated layer, defines the main phase in the life of a
ridge. During this phase, the heat fluxes into the air qsurface dominate. The thick-
ness of the consolidated layer is important. By a numerical model, the consolidated
layer thickness hc could be found by equation 2.9.

hc(t)
2 = hc,0(t0)2 +

hi(t)
2 − hi,0(t0)2

ηm
(2.9)

Where hc,0 denotes the initial consolidated thickness, hi,0 denotes initial ice thick-
ness, hi denotes the ice thickness and ηm denotes the macro porosity of the ice
ridge. The macro porosity is a volume fraction given as:

ηm =
Vseawater
Vtotal

(2.10)

Where Vtotal is the volume of both ice and sea water in the rubble layer. To
estimate the ratio between the ice thickness hi and the consolidated layer thickness
hc, a ratio R is introduced. Equation 2.11 defines this ratio, which normally is
between 1.5 and 2.

R =
hc
hi

(2.11)

The rubble beneath the consolidated layer only feel the water below. Hence, it is
thermally insulated by the freezing front defined by the consolidated layer. This
result in continuously decay of the rubble.

In the decay phase, the ridge is exposed to melting from both top and bottom.
If the ridge survives one summers melt, it turns into a second-year ridge. At the
surface of the ridge, the sun radiation and warm air create fresh melt water, as snow
and surface ice melt. As the fresh water has a freezing point above the temperature
in the rubble, and it drizzle downwards, it will freeze as it reaches the keel. Heat
is released as freezing occurs, resulting in an increased temperature. Hence, both
freezing and melting occur during the decay phase. This is only possible if the
temperature in the keel is below the freezing point of the melt water. As the ridge
survives several summers melt, it turns into a multi-year ridge. The multi-year
ridges are recognized by even smother sail surface and a somewhat lower salinity
as they have had more summers to drain salt due to melting.

2.2.4 Temperature, Density, Salinity and Porosity in Ice

Temperature is an essential property for ice, as well as other materials. The
temperature determine the material phase, and quantifies the vibration energy
stored by a mass. For sea ice with a salinity of 35 [ppt], the freezing temperature
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is -1.9 [◦C]. Density describes the compactness of the material and is defined as a
mass per volume. For sea ice, the strength is interrelated with its density, as the
density depends on porosity. This is because the ice consists of pure ice, trapped
gases, salts, and brine pockets. The total porosity ηT is a sum of gas and brine
fractions, respectively ηa and ηb. Both theory and experiments have shown that
the relative volume of brine existing in sea ice will determine mechanical, thermal
and electrical properties of the ice. Further does the volume of air and gas in ice
pose a major portion of the total porosity. Knowledge about the total porosity is
therefore important(Cox and Weeks, 1983). The density of ice could be described
by equation 2.12.

ρi = (1− ηa)

(
1 +

S

αTρw
(ρw − ρpi)

)
ρpi (2.12)

Table 2.4: Parameters of ice density.

ρi - density of sea ice
ρpi - density of pure ice
ρw - density of water
ηa - volume of air in the unit volume of sea ice
α - constant equal -0.0182 [1/◦C]
Si - salinity of ice
Ti - temperature of ice

Formulas are empirically derived by Cox and Weeks (1983), Cox and Weeks (1975),
Leppäranta and Manninen (1988) and Pounder (1965) to approximate porosity of
ice. By measuring temperature, salinity and density it is possible to determine the
porosity of ice. The porosity describes the strength of ice. The total porosity is
given as:

ηT = ηa + ηb (2.13)

Where ηa is defined as:

ηa = 1− ρi
ρpi

+ ρiSi
F2(Ti)

F1(Ti)
(2.14)

and ηb is defined as:

ηb =
Vb
V

=
ρiSi
F1(Ti)

(2.15)

The two functions F1(Ti) and F2(Ti) are given as(Cox and Weeks, 1983):

F1(Ti) = ρb(Ti) ·Sb(Ti) · (1 + k(Ti)) (2.16)
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F2(Ti) = [(1 + C(Ti))
ρb(Ti)

ρi
− C(Ti)ρb(Ti)

ρss
− 1] (2.17)

Parameters in 2.16 and 2.17 are given in table 2.5 and are approximated to apply
for the compression test of ice provided in chapter 3. Subscript i denotes ice.

Table 2.5: Parameters of porosity approximation.

ρb - Brine density
Sb - Brine salinity
k - Relative amount of salt in brine, typical between 0 and 2.68 [-]
C - Value relating mass of solid salts and mass of brine, typical

between 0 and 1.09 [-]
ρss - Solid salt density

Values from table 2.5 are obtained from Cox and Weeks (1983).

2.3 Ice Mechanics

Considering ice mechanics, the strength of ice is impacted by several factors. It
is difficult to describe the exact impact from each of the parameters, hence an
interaction between them will impact the strength(Moslet, 2007). Studies by Sinha
(1989), Weeks and Assur (1967), Timco and Weeks (2010), Løset et al. (2006) and
Gans and Woodmansee (1992) have shown that the temperature, porosity, grain
size and load rate are the dominating parameters regarding ice strength. Ice is a
crystalline material equal to metals, and has both ductile and brittle behaviour.
Thus, there are two factors which make ice somewhat different from metals. The
grains are relatively large and ice exists close to its freezing point. These two
factors increase the material behaviour complexity.

Sea ice is a multi-phase material consisting of air and brine pockets, solid salts and
pure ice. As a result, sea ice is a complicated material to study, and a description
of the material behaviour consists of two parts: solid and fluid material behaviour.
Therefore, one needs to include both linear and non-linear material behaviour
to describe the solid part of the material behaviour, and visco-elastic and visco-
plastic behaviour to describe the fluid part. The fluid material behaviour is time
dependent and will hence be assumed negligible regarding the short impact time
during ship-ice interaction. The term visco relate to time dependent behaviour.

Further in this section, mechanics of ice will be presented. The material is mostly
referring to Løset et al. (2006).
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2.3.1 Elastic Modulus of Ice

Regarding a time-independent one-dimensional case, the stress-strain relation is
expressed with Hooke’s law. The stress-strain relation describes the stress as a
function of strain.

σ = E · ε (2.18)

Where σ is the applied stress and ε is the total strain. The elastic modulus can
then be expressed by

E =
σ

ε
(2.19)

Where σ is given by the applied force F over the nominal area Anom. As only the
short-term loading is considered due to short impact duration, the most important
behaviour is considered elastic-plastic. The ice will hence undergo three different
phases, elastic deformation prior to first yield, plastic strain hardening prior to the
peak stress and finally softening after reaching the peak stress. The behaviour is
illustrated in figure 2.13.

Figure 2.13: Stress-strain diagram for a non-linear material model(Løset et al.,
2006).

The elastic strain of ice is a result of deformation of the atomic bonds and is a
reversible process (Moslet, 2007). Several papers provide different relations be-
tween Young’s modulus and key parameters such as porosity and temperature.
Gans and Woodmansee (1992) present a relation between Young’s modulus and
total porosity trough FEM modelling. They observed the degradation of Youngs
modulus due to porosity. The following relation was found:

E = E0e
−α · ηT (2.20)
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where E0 is the Young’s modulus excluding porosity, and α is an empirically found
constant. Sinha (1989) presents the elastic modulus given as:

E = 9.61 + 1.1 · 10−2(Tm − Tk) (2.21)

where Tm is the melting temperature of the material in Kelvin, and Tk is the
temperature of the ice in Kelvin. Another relationship was suggested by Weeks
and Assur (1967) between the Young’s modulus for sea ice and fresh water ice,
using ηb as the brine volume.

E = E0 · (1− ηb)4 (2.22)

From previous field testing by Moslet (2007), it is reasonable to expect a Young’s
modulus in level ice to be around 9.6 [GPa] for temperatures between −10◦C and
0◦C.

2.3.2 Failure Modes of Ice

Von-Mises and Tresca failure criteria could usually be applied to describe material
failure. These models only require one material property to determine failure.
The Tresca criterion assumes the material to behave elastically until a certain
shear limit Rs. This model assumes failure in the plane where the largest shear
stress occurs (see figure 2.14). The criterion is described by equation 2.23, where
τ is the shear stress and Rs the material capacity or shear limit.

τ ≤ Rs (2.23)

Figure 2.14: To the left, the failure is shown at a critical combination of shear and
normal stresses according to von-Mises failure criteria. To the right, the Coulomb-
Mohr failure criteria has been taken into account(Løset et al., 2006).

The Tresca model fits to materials such as metals with equal behaviour in ten-
sion and compression. Materials such as ice, rocks and soil, are weak in tension
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and pressure dependent behaviour must be taken into account. Since the Tresca
criterion requires similar behaviour in compression and tension, which is not the
case for ice, other models sould be applied. The model that accounts for this
phenomenon is the Coulomb-Mohr model. Where the most critical combination
of normal and shear stress results in failure as given by equation 2.24.

τ ≤ c+ σ · tanϕ (2.24)

Figure 2.15: The Tresca and Coulomb-Mohr models in a τ − σ plane(Løset et al.,
2006).

In figure 2.15, σ and τ are respectively normal stress and shear stress in a given
plane, c is the cohesion and ϕ is the angle of internal friction. If ϕ equals ±45◦,
then Tresca criterion could be applied.

2.3.3 Material Properties and Parameters of Ice

The mechanical behaviour of sea ice depends on several parameters. To properly
describe the mechanical behaviour, one should distinguish between state variables
and material type. The two most important state variables are the loading or
strain rate ε̇, and the temperature T . The material type is governed by the grain
size d and orientation of the grains, and the porosity ηT . Regarding material
properties, they should be independent of sample size and a function of both state
variables and type of material (Løset et al., 2006).

The parameters that govern the mechanical behaviour of ice are temperature T ,
total porosity ηT , grain size d and the loading rate ε̇. Also the direction of load
regarding basal plane direction is an important parameter.

Temperature has several impacts on the mechanical behaviour. Firstly, it im-
pacts the mechanical behaviour itself as it for most materials determines whether
the material is brittle or ductile. Secondly, it determines the porosity, as the poros-
ity of sea ice depends on the temperature of the ice. The temperature does impact
the growth rate which in terms affect the ability to capture brine and gas pock-
ets. Also, the temperature determines further development of the gas and brine



2.3. ICE MECHANICS 27

pockets. Generally, the ice becomes less resistant to stresses and suffers a lowered
Young’s modulus due to increased temperature.

Porosity has shown to impact the capacity of ice. Timco and Weeks (2010) and
Moslet (2007) have shown that porosity impacts Young’s modulus, Poisson’s ratio
and ice strength. Also, the size of the pores impacts the strength.

Grain size impacts the mechanical behaviour of ice since the boundaries of each
grain increase due to increased grain size. Sliding occurs along the grain boundaries
due to shear stress and will result in stress concentrations and decohesion along
the boundaries.

Strain rate has shown great impact on the mechanical properties of ice. The
strength of ice increases with increasing strain-rate before it reaches a ductile to
brittle transition, and the strength decreases. The transition and relation between
strength and strain rate are shown in 2.16

Figure 2.16: Behaviour of stress-strain curve depending on strain rate (Høyland,
2015).

From figure 2.16, the ductile behaviour is defined when the peak is reached and
the stress decay with increasing compression. Brittle behaviour is defined as a
sudden end in the load curve. Also, there exists a transition region, where the ice
will have its maximum capacity.

Load direction regarding the grain direction is especially important. As ice
grows in a vertical direction one obtain columns of grains vertically. Ice will have
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sufficiently more strength in vertical compression, compared to horizontal com-
pression as slipping along the grains occur more easily than breakage between the
basal planes. The different grain directions relatively to compression and tension
are given in figure 2.17.

Figure 2.17: Uniaxial tension and compression of ice with different columnar direc-
tion. V denotes vertical columnar direction, while H denotes horizontal direction.
The arrows denote compression or tension (Høyland, 2015).

Due to the atomic structure of ice (presented in section 2.2.1) the ice will have
less strength along the basal planes compared with the strength along the c-axis.
Thus, slipping along grain boundaries occurs most often. Regarding this, empirical
formulas have been derived for compressive strength of ice relatively to the grain
boundaries(Moslet, 2007). The strength is dependent on strain rate ε̇ and porosity
ηT which in term are temperature dependent. v and h denote columnar direction,
c denotes compression, as illustrated by figure 2.17.

σc,v = 160 · (ε̇)0.22

[
1−

(
ηT

0.20

)0.5
]

(2.25)

σc,h = 37 · (ε̇)0.22

[
1−

(
ηT

0.27

)0.5
]

(2.26)

Equation 2.25 and 2.26 are valid for porosities up to about 0.2 [-]. Also, these
equations are best fit, such that they do not necessarily present the upper most
limit of capacity. Timco and Frederking (1990) found that σc,v ≈ 5-15 [MPa] and
σc,h ≈ 2-5 [MPa] for porosities around 0.1-0.15 [-].

Timco et al. (1994) investigated a database of about 2500 reported measurements
on flexural strength of sea ice from around the world. It was found that sample
size, test type and load rate had little influence on the results. Further, it was
found that flexural strength of ice correlated well with the brine porosity ηb of the
sea ice. The brine porosity could be estimated knowing the temperature, density
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and salinity of each test sample. The flexural strength was plotted towards the
brine porosity as shown in figure 2.18.

Figure 2.18: Flexural strength of sea ice σf plotted towards the root of the brine
porosity ηb(Timco et al. (1994) denote the brine porosity νb). The curve is a best
fit exponential trough the data. The figure is courtesy of Timco et al. (1994).

The flexural strength of ice has been found to fit the following equation, after
investigation by Timco et al. (1994).

σf (ηb) = 1.76 · e−5.88 ·
√
ηb (2.27)

where ηb is the brine volume fraction. This formula was based on several assump-
tions and restrictions. The load direction of each test was parallel to the original
ice growth direction in order to simulate an ice breaking vessel. The grain structure
and size were not accounted for due to lack of information from the source that
produced the test results. The loading rate had no influence on the results. For
each beam, the average salinity was applied to represent each sample. The brine
volume, or fraction, ηb was applied as a variable describing the flexural strength.
Reasonably because ηb describe the part of the ice that is not solid, and as the non-
solid part increases, there exist less solid ice, hence the strength is reduced. Also,
the brine fraction is related to the temperature T and the salinity S as described
under section 2.2.4.
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Chapter 3

Measurement of Sea Ice
Strength

Assessment of sea ice strength is a complex procedure, where the sea ice strength
depend on several parameters. The ice strength is an important parameter in
the design process of ships. To assess sea ice strength, compression tests and
parametric measurements could be performed. Cylindrical ice samples are drilled
out from the ice cover, at certain locations and either tested in situ or brought
back to a cold laboratory for testing later.

This chapter presents compression tests performed both in situ and at a cold
laboratory at UNIS. Approximately 1300 samples were tested during the year
2004 and 2005 in areas close to Svalbard. Knut V. Høyland has given permission
to apply the data in this master thesis, for further studies of behaviour of sea ice
in interaction with ships.

3.1 Ice Compression Test

This thesis will give priority to two groups of samples. The first group of samples
were gathered at Frysjaodden between May 31st and June 6th 2004. These sam-
ples consist of vertical specimens of level ice. The second group of samples were
gathered in the Barents Sea October 21st 2004. These samples consist of both
vertical and horizontal specimens from a ice ridge. These two groups of samples
were chosen as representatives for level ice and ice ridges, due to a large amount
of obtained data within each group. The data of level ice consist of 91 samples,
while the ice ridge data consist of 108 different samples.

Further in this section, the experimental set-up, measurements, results and discus-
sion of the compression test are presented. The results are considering variations
and equalities in ice strength towards descriptive parameters such as porosity and
temperature. Also, the results apply to establish approximations of the flexural
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strength for both level ice and ice ridges. Further, these results will be applied in
a structural analysis presented in chapter 7 and 8.

3.1.1 Experimental Set-up

In order to prepare each sample for a compression test, the ice samples were cut
into cylinders with parallel end surfaces as shown in figure 3.1a.

(a) Ice sample cutting rig. (b) Compression-rig KOMPIS.

Figure 3.1: In figure 3.1a the two blades are mounted in parallel with a distance
175 [mm] and are manually driven. In figure 3.1b is the ice sample set-up for
compression using KOMPIS shown.

Several measurements were conducted prior to compression, these are further dis-
cussed under section 3.1.2. For the compression tests, one used KOMPIS which is a
uni-axial compression test machine designed especially for this purpose. KOMPIS
compress ice between one fixed and one mechanically driven plate. The compres-
sion setup, is illustrated in figure 3.1b. From figure 3.1b the fixed plate is observed
under the ice specimen. Above the specimen, a spacer is placed between the
specimen and the moving plate. The vertical pipes shown in the figure guide the
moving plate to ensure that the two surfaces remain parallel during compression.
KOMPIS log the applied force, and the displacement of the moving plate in the
time domain. The compression velocity is also measured, such that the strain rate
could be found.
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3.1.2 Measurement of Sea Ice Specimens

Some measurements were made prior to compression, such as the main dimensions
of each sample. As the ice samples had some irregularities, both length and di-
ameter of the ice sample were averaged. These values were necessary to measure
regarding stress and strain rate calculations. Additionally, also for calculations of
density. The core temperature was measured by drilling holes into the remain-
ing ice pieces post compression and the salinity was measured after the ice had
melted(See figure 3.2). Each sample was stored over night for melting, in clean,
sealed boxes. From these measurements, the porosity could be found. Results
from these measurements are found under section 3.1.3

(a) Temperature measurement of the re-
maining of the ice specimens.

(b) Salinity measurement of the melted ice
samples.

Figure 3.2: The two measurements performed post compression of each ice sample.
The figures are only illustrative and not a part of actual results.

The results provided by Knut V. Høyland consisted of measurements of maximum
stress σmax, salinity S, core temperature Ti, ice feature and drilling direction.
Further it was given whether the sample suffered from brittle, ductile or a combi-
nation of the two failure modes. From previous measurements conducted at UNIS
during the course AT-334 Arctic Marine Measurements Techniques, Operations
and Transport the average length and diameter of each specimen were set to 175
[mm] and 70 [mm], respectively. This simplification was necessary to introduce, to
establish density data for the specimens, and will be further used in this master
thesis. This will in some cases either over- or underestimate the density. Hence, a
sensitivity study should be performed to investigate the effect of changing diam-
eter. The distance between the blades in figure 3.1a was measured to 175 [mm],
hence the most variable measure will be the diameter of each specimen.
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3.1.3 Results of Sea Ice Specimen Testing

This section will provide results based on the measurements conducted in 2004 and
2005. The results will be divided into two groups regarding ice feature, respectively
level ice and ridged ice. The measurements consist of many measurements, hence
only plots of compressive strength versus salinity and temperature will be included
to describe each data set. The total data set of porosities could be found in
appendix A.1 and A.2, for level ice and ridged ice respectively. For these results, a
diameter 70 [mm] and a length 175 [mm] were applied. The compressive strength
σc,v denotes compression parallel to the growth direction (see figure 2.17).

Level Ice Measurements

The level ice measurements have been sorted and plotted applying MATLAB
scripts given in appendix B.
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Figure 3.3: Compressive ice strength σc,v plotted towards salinity S.
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Figure 3.4: Compressive ice strength σc,v plotted towards core temperature T .

Figure 3.3 and 3.4 presents the data for level ice. The method of estimating the
porosity is described under section 2.2.4 and the MATLAB scripts that estimates
the porosity are provided by K. V. Høyland and based on Cox and Weeks (1983).
In figure 3.3 one can observe that the low salinity samples only reach a max value
of to 2.5 [MPa] in compression. This is not corresponding with Timco and Weeks
(2010), as low saline ice should be stronger than high saline ice. From the data
set, it was found that the low saline ice had high temperatures as shown in the
top left corner of figure 3.4. Hence, they became ductile and suffered from collapse
before the cold ones with high salinity.
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Figure 3.5: The compressive ice strength σc,v plotted towards total porosity ηT .
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Figure 3.5 present a scatter plot of how the compressive strength vary with the total
porosity. The figure substantiates the theory (Moslet, 2007), as high compressive
strength only exists for the samples with low porosity.
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Figure 3.6: The sample number plotted towards an approximated air porosity ηa.
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Figure 3.7: The sample number plotted towards an approximated brine porosity
ηb.
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Figure 3.8: The sample number plotted towards an approximated total porosity
ηT .

Figure 3.6 shows that air porosity exists for all samples regardless of core tem-
perature. Figure 3.7 show that brine porosity is stronger connected to the core
temperature. Sample 1 to 46 had a core temperature between -21 to -15.8 [◦C].
While sample 47 to 91 had core temperatures between -0.1 to -1.5 [◦C]. Figure 3.8
presents the sum of both air and brine porosity as total porosity.
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Figure 3.9: The flexural strength σf (ηb) plotted towards an approximated brine
porosity ηb. Timco et al. (1994) provided equation 3.1 for approximation of the
flexural strength σf (ηb) which is plotted here. Reasonably do the measurements
follow the curve.
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Figure 3.9 is estimated applying equation 3.1

σf (ηb) = 1.76 · exp−5.88 ·
√
ηb (3.1)

which approximates the flexural strength, based on work by Timco et al. (1994).
The plot of the flexural strength shows that low porosities, hence low temperatures,
result in the highest flexural strength. This coincide with Moslet (2007). Initially,
the volume was assumed constant with a value of 0.06735 [m3]. This assumption
is not necessarily valid due to irregularities from brine channels and cracks. In
order to assess the validity of the initial assumption, a sensitivity study of varying
volume was performed. All samples were cut with the rig shown in figure 3.1a,
and the length of 175 [mm] has been kept constant through the assessment. Table
3.1 presents the different diameters applied to account for irregularities. Also,
the table presents the mean air, brine and total porosity, as well as mean flexural
strength for each diameter.

Table 3.1: Presentation of the mean values: diameter D, air porosity ηa, brine
Porosity ηb, total porosity ηT and flexural strength σf from level ice testing.

Test # D [mm] ηa [-] ηb [-] ηT [-] σf [MPa]

1 70 0.06906331 0.10865094 0.17771425 0.53290562
2 69 0.04473790 0.11182306 0.15656096 0.52611649
3 68 0.02782597 0.11513616 0.14296213 0.51926007
4 67 0.01566240 0.11859871 0.13426111 0.51233537
5 66 0.00843636 0.12221984 0.13065620 0.50534138
6 65 0.00408550 0.12600938 0.13009488 0.49827706
7 64 0.00124890 0.12997793 0.13122683 0.49114132
8 63 0.00057424 0.13413696 0.13471121 0.48393306
9 62 0.00023557 0.13849886 0.13873443 0.47665115
10 61 0.00000000 0.14307703 0.14307703 0.46929441

Table 3.1 shows that an increase in density, due to reduced diameter, reduce the
average air porosity ηa hence increases the average brine porosity ηb. This increase
reduces the average flexural strength σf . Table 3.2 shows the deviation between
the initial assumed diameter of 70 [mm] and the reduced diameters.
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Table 3.2: Presentation of the deviation of the average flexural strength between
the initially assumed diameter D = 70 [mm] and the reduced diameters.

Test # D [mm] σf [MPa] Deviation [%]

1 70 0.53290562 0.000
2 69 0.52611649 1.274
3 68 0.51926007 2.561
4 67 0.51233537 3.860
5 66 0.50534138 5.172
6 65 0.49827706 6.498
7 64 0.49114132 7.837
8 63 0.48393306 9.189
9 62 0.47665115 10.556
10 61 0.46929441 11.937

From table 3.2 it is observed that a reduction in volume, presented by a reduction
in diameter, would give a reduction in the average flexural strength up to 12 [%].

In order to investigate the fact that the degree of irregularities will vary between
each specimen, another method was applied. A diameter of 61 [mm](as for test
number 10) will assume that all samples have large defects or irregularities regard-
ing shape. While a diameter of 69 [mm](as for test number 2) will assume small
to almost no defects or irregularities. Therefore, three different tests were per-
formed. The tests were conducted by letting a part of all diameters be uniformly
distributed on a given range, as described by equation 3.2.

D = β̂ · α̂+ D̂ [mm] (3.2)

Where D describes the diameter of each specimen, β̂ describes a portion of the
diameter multiplied with a uniformly distributed random number α̂ in the range
of [0,1] and D̂ describes the fixed portion of the diameter i.e. the lower limit of
the diameter. Table 3.3 presents the three different tests where all samples had
random varying diameters.

Table 3.3: Test results from varying a portion β̂ of the diameter D with a uniformly
distributed random number α̂ in the range [0,1]. The deviation is compared with
test 1 from table 3.2.

Test # D̂ [mm] β̂ [mm] σf [MPa] Deviation [%]

1 60 10 0.49903247 6.356
2 65 5 0.51496424 3.367
3 69 1 0.52925880 0.684
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The deviation of test 1, presented in table 3.3, tend to be marginally lower than
the deviation from test 6 (table 3.2). Equally for test 2, the result tend to be
somewhat lower than test 4 (table 3.5). Finally test 3 tends to be between the
deviation of test 1 and 2 (table 3.2). From table 3.3 test 1 would present a data set
containing everything from small to large defects and irregularities. Test 2 would
present a data set of small to medium defects, while test 3 would present a data
set with only small irregularities or defects.

Ridged Ice Measurements

The ridged ice measurements have been sorted and plotted applying the same
MATLAB scripts as the level ice data, given in appendix B.
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Figure 3.10: Compressive ice strength σc,v plotted towards salinity S.
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Figure 3.11: Compressive ice strength σc,v plotted towards core temperature T .

Figure 3.10 and 3.11 present the data for ridged ice. As for the level ice, the
same method of estimating the porosity is applied here. Compared to level ice,
the ridged ice have a larger spread in salinity while it do only reach a maximum
compressive strength of 15.5 [MPa]. Also, the temperatures are located between
-15 and -21 [◦C].
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Figure 3.12: The compressive ice strength σc,v plotted towards total porosity ηT .

Figure 3.12 presents the total porosity ηT for the ridged ice plotted towards the
compressive strength σc,v. Compared to the level ice results presented in figure
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3.5, these total porosities are low and concentrated between 0 and 0.12 [-]. The
low porosities and the measurement date of 21st of October indicate that this is a
second-year ridge, according to Ekeberg (2015).
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Figure 3.13: The sample number plotted towards an approximated air porosity ηa.
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Figure 3.14: The sample number plotted towards an approximated brine porosity
ηb.
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Figure 3.15: The sample number plotted towards an approximated total porosity
ηT .

From figure 3.13 and 3.14 one observes that the air porosity ηa dominates the total
porosity ηT . This indicates that brine pockets have had time to consolidate, which
according to theory of a second-year ridge substantiates the assumption. Figure
3.15 presents the total porosity ηT as a sum of both brine and air porosity.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Brine Porosity, ηb [-]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

F
le
x
u
ra
l
st
re
n
g
th

σ
f
(η

b
)
[M

P
a
]

Flexural Strength, σf

Measured σf(ηb)

Timco et al. (1994)

Figure 3.16: The flexural strength σf (ηb) plotted towards an approximated brine
porosity ηb. Timco et al. (1994) provided equation 3.1 for approximation of the
flexural strength σf (ηb) which is plotted here. Reasonably do the measurements
follow the curve.
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Figure 3.16 applies equation 3.1 to approximate the flexural strength. All the brine
porosities are close to zero, as shown by figure 3.14, hence the flexural strengths
became high. As this ridge is more consolidated, higher flexural strength is ex-
pected. Equally the level ice calculations, the initial assumed volume was set to
0.06735 [m3]. The same sensitivity study was conducted to check the variety due
to varying volume. Table 3.4 presents the results where the average diameter varies
from 70 to 61 [mm].

Table 3.4: Presentation of the mean values: diameter D, air porosity ηa, brine
Porosity ηb, total porosity ηT and flexural strength σf from ridged ice testing.

Test # D [mm] ηa [-] ηb [-] ηT [-] σf [MPa]

1 70 0.04555749 0.01115385 0.05671134 0.95350702
2 69 0.02064662 0.01147949 0.03212611 0.94511641
3 68 0.00765671 0.01181961 0.01947631 0.93655736
4 67 0.00250895 0.01217506 0.01468402 0.92782510
5 66 0.00057358 0.01254680 0.01312038 0.91891472
6 65 0.00021532 0.01293582 0.01315114 0.90982113
7 64 0.00000000 0.01334323 0.01334323 0.90053910
8 63 0.00000000 0.01377018 0.01377018 0.89106320
9 62 0.00000000 0.01421797 0.01421797 0.88138785
10 61 0.00000000 0.01468795 0.01468795 0.87150727

Table 3.4 shows that increased density reduces the average air porosity and in-
creases the average brine porosity. Regarding the increased density, the average
flexural strength is reduced as it only depends on the brine porosity. An assess-
ment of the deviation in average flexural strength between the initially assumed
diameter of 70 [mm] and the reduced diameters is presented in table 3.5.

Table 3.5: Presentation of the deviation of the average flexural strength between
the initially assumed diameter D = 70 [mm] and the reduced diameters.

Test # D [mm] σf [MPa] Deviation [%]

1 70 0.95350702 0.000
2 69 0.94511641 1.042
3 68 0.93655736 1.938
4 67 0.92782510 2.853
5 66 0.91891472 3.786
6 65 0.90982113 4.738
7 64 0.90053910 5.710
8 63 0.89106320 6.702
9 62 0.88138785 7.715
10 61 0.87150727 8.750
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Table 3.5 indicates that a data set with large imperfections and brine channels
could obtain a reduction in the average flexural strength up to 8.75 [%].

Similar to the results from the level ice specimen test, a uniformly distributed
random number α̂ was added to a part of the diameter as described by equation 3.2.
Which in term gave the ability to investigate difference between large and small
defects and imperfections in the data set. Table 3.6 presents the three different
test where all samples had random varying diameters within certain limits.

Table 3.6: Test results from varying a portion β̂ of the diameter D with a uniformly
distributed random number α̂ in the range [0,1]. The deviation is compared with
test 1 from table 3.2.

Test # D̂ [mm] β̂ [mm] σf [MPa] Deviation [%]

1 60 10 0.90366712 5.230
2 65 5 0.92983790 2.482
3 69 1 0.94950352 0.420

The results in the rightmost column presents deviations between the flexural
strength of the data set with varying diameter and the data set with assumed
70 [mm] diameter for the total set. Test 1 in table 3.6 is slightly lower than test 7
from table 3.5. For test 2 (from table 3.6), the results are lower than test 4 (from
table 3.5). Finally, for test 3, the result is between result 1 and 2 (from table 3.5).
Equal table 3.3, table 3.6 presents different degrees of defects and deformations.
Test 1 present large deformations, test 2 present small to medium deformations
while test 3 presents a data set with small to no irregularities or defects.

3.1.4 Discussion of Measurments

The level ice data presented in figure 3.3 indicates that only ice with salinity
above 3 [%] reach higher compressive strength. The less saline ice only reach
compressive strengths up to 2.5 [MPa]. From the data set, the low saline samples
are gathered from the top of the level ice. Regarding the fact that the ice were
gathered in May, radiation and melt water may have mixed up with snow on top,
and frozen as it interacts with the cold front of the ice layer. This will cause a
less saline ice with granular structure, and give ice less resistant to compressive
forces as the ice is granular. Figure 3.4 indicates that temperatures also impact
the strength of the ice. From the data set, most of the high temperature samples
was denoted ductile failure and low salinity. This coincide with Timco and Weeks
(2010) and figure 3.3, as high temperatures give a ductile and weak ice. Further,
the salinity was low and should give a stronger ice. Thus, the temperature had a
larger effect on the strength.

Figure 3.5 presents the total porosity plotted toward compressive strength, the
plot indicates that only low porosity samples are allowed to reach high compressive
strengths. This coincide well with Moslet (2007), as low porosity give stronger ice
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due to more ice per volume. From figure 3.8 one can observe that the first 46
samples have low total porosity. From the data set, it is noted that these samples
also had low core temperatures. Hence, both temperature, salinity and porosity
determine the compressive strength of the ice specimen. Figure 3.9 shows that
the flexural strength approximation is divided into two main groups. Considering
figure 3.7 one could see why, as the first 46 samples have low brine porosity, and
low brine porosity give higher flexural strength.

The sensitivity study of varying diameter describes defects or irregularities of each
sample (table 3.3). By varying the diameter, the density of each sample changes,
which in terms change the porosity and flexural strength. Letting the diameter
vary within 10 [mm], the deviation in flexural strength became 6.356 [%] from the
initially assumed case where the diameter was fixed to 70 [mm]. By letting the
diameter only vary within 5 [mm] the deviation became 3.367 [%] and for the case
where the diameter only varied within 1 [mm] the deviation became 0.684 [%].
Sea ice will never be truly perfect. By applying a diameter of 70 [mm], one will
obtain the highest flexural strength of the sea ice based on the previously presented
measurements. By accounting for large variety in the degree of imperfection, one
could apply the flexural strength of 0.499 [MPa] and only deviate 6.356 [%] from
the highest flexural strength of 0.533 [MPa].

The ridged ice data presented in figure 3.10 and 3.11 indicate that regardless
of salinity and temperature, the samples cover a range of compressive stresses.
The salinity vary from 2 to 6 [%] for a range of compressive strengths from 2 to 10
[MPa]. For the same range of compressive strengths, the temperature varied from
-15.5 to -20.5 [◦C]. This ridge has had time to consolidate both water pockets
between the ice blocks, and the brine pockets within the ice. Reasonably because
the total porosities are quite low as shown in figure 3.12 and the measurements
that took place 21st of October would indicate that this is a second-year ridge as
stated by (Ekeberg, 2015). Also note that the total porosity presented in figure
3.12 is low compared to the same plot for level ice presented in figure 3.5.

Figure 3.13 and 3.14 indicate that the total porosity are dominated by the air
porosity. As the brine pockets within the ridge continuously consolidate when
exposed to cold temperatures, the brine porosities reduce. While the approximated
air porosity do not change with the same rate when exposed to cold temperatures.
Because of the low variety in the brine porosity, the flexural strengths presented
in figure 3.16 are located in one group with an average strength of 0.954 [MPa].
Compared to the level ice measurements presented in figure 3.9, the ridged ice has
almost twice as much flexural strength. Also, a higher flexural strength is expected
for the ridged ice, as it has had more time to consolidate.

The sensitivity study presented in table 3.5 indicate that the ridged ice has less
deviation than for the level ice, when considering imperfections and defects that
may occur in an ice sample. One reason is less variation in the brine porosity
compared to the level ice measurements. By letting the diameter be as low as 61
[mm], the deviation between the initial average flexural strength became 8.75 [%]
which is lower than 12 [%] obtained from the level ice sensitivity study. When let-
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ting the diameter vary within 10 [mm] by a uniformly distributed random number
added to the lower limit of the diameter of 60 [mm], the deviation became 5.23
[%]. This is 1.13 [%] lower than the result from the same test performed on level
ice. To obtain the highest safety margin when applying the flexural strength to a
structural interaction problem, the initial assumption of perfect samples with no
defects and a diameter of 70 [mm] should be applied. This would lead to a flexural
strength of 0.954 [MPa]. If the variety of defects and imperfections are accounted
for, one could apply a strength of 0.904 [MPa] and deviate 5.23 [%] from the initial
value.
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Chapter 4

Ice-Structure Interaction

In ship design, regarding operations in ice-infested waters, there are many param-
eters that are necessary to investigate. Considering interaction between ships and
ice, both global actions and local pressures should be analysed. For this master
thesis, only local pressure and interaction models are further investigated. Local
loads are essential when local structural strength is predicted. By data collection
and observations from the operational area, the properties of level ice and ice ridges
could be established to describe the ice conditions. When the ice conditions in the
operation area are established, the required ship strength could be estimated by
including the ice conditions in the design loads. These loads could be predicted
by establishment of contact mechanics. This chapter will cover a local ice pressure
model for prediction of ice loads on a ship hull.

4.1 Local Ice Pressure Model

Contact between a ship hull and ice result in local loads as the ice break up during
interaction. These loads are commonly assumed to act as local load patches on
the ship. Regarding level ice, these patches will have a small vertical extend,
while horizontally they are of greater extend. Within the load patch area, the
model assume uniform loading from ice interaction. These assumptions are rough,
hence an exact model is difficult to predict without strain measurements from an
ice going vessel. For ridged ice, the vertical extend will be greater than for level
ice as a fully consolidated first-year ridge is typically is 2-2.5 times the thickness
of level ice. The following sections will provide additional information for the
local ice pressure model. The material is referring to Riska (2011) and Riska and
Kämäräinen (2011).

49



50 CHAPTER 4. ICE-STRUCTURE INTERACTION

4.1.1 Ice Interaction

Prior to the failure of the ice sheet, crushing occur in different forms. The two
main forms are spalling and crushing as presented in figure 4.1.

(a) Spalling. (b) Crushing.

Figure 4.1: The two failure modes of ice, prior to flexural failure. The figure
is inspired by Høyland (nd). Note that no scale is taken into account, only the
principle of failure mode is illustrated.

The contact height will vary between the two modes described by figure 4.1a and
4.1b. Further description of this is given in section 4.1.3.

For level ice, the ice is most often failing in bending. Initially, the hull crushes
the ice edge during contact, as described in figure 4.1. This will continue until the
contact area A is sufficiently large and able to create a vertical force component FV ,
and the ice cover will fail in bending as the moment induced by the vertical force
is greater than the flexural strength σf of the ice. For ridged ice, the loads induced
to the hull will be estimated as if the thickness of the consolidated layer equals
level ice thickness. In a 2D perspective, the forces that occur during interaction
between sea ice and a ship hull is presented in figure 4.2.

Figure 4.2: The forces acting during interaction between ship and ice, post ice
crushing. The figure is inspired by Riska (2011).

From figure 4.2 the normal force Fn is decomposed into a horizontal and a vertical
force component, FH and FV respectively. Where the horizontal component is
assumed to be negligible, as the vertical force will induce a larger moment due to a
larger lever arm relatively to the center of rotation. The force induced by friction
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between ice and hull Fµ is assumed to relate to the normal force Fn as described
by equation 4.1.

Fµ = µ ·Fn (4.1)

When FV is large enough to induce a moment that causes stresses σi larger than
the flexural strength σf , the ice breaks off from the intact ice. The reader should
know that this only describes the first stage of interaction with ice, as the ship
continue to navigate in ice, the ice floes will continue to induce stresses to the hull
until the floes have passed the ship. This master thesis will only consider the first
ship-ice interaction in the analysis.

4.1.2 Relevant Input Parameters

The governing parameters for description of ice induced loads are the ice thickness
hi and the flexural strength σf . As the ship is beaching upon the ice, a vertical
force component FV will be induced to the hull. When the bearing capacity FB of
the ice is reached, the ice breaks. The bearing capacity is described by equation
4.2:

FB = Cgeo ·σf ·h2i [N] (4.2)

where Cgeo is a coefficient depending on the geometry of the horizontal boundary of
the ice floe. Cgeo is normally suggested in the range 0.25 to 1 [-] (Riska, 2011). σf
is the flexural strength described by equation 2.27 and hi is ice thickness. Equation
4.2 is based on the assumption of static behaviour.

4.1.3 Load Patch Area

When ice break or crush locally, the surface in contact with the ship hull do not
necessarily remain even. As this shape is difficult to predict, an idealization of the
load patch is required. The simplification is presented in figure 4.3 and consists of
three input parameters, respectively the ice contact height hic, the load length L
and the contact pressure pc.

Figure 4.3: Simplification of interaction area between ice and structure.
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Vertical extended frames will normally give a load length equal the frame spacing,
while horizontal extended stiffeners give a load length equal the span. The load
should be applied to give the largest possible response. Usually, the most critical
locations are the centre of a plate field, and at the midspan of the stiffeners and
frames.

Riska and Kämäräinen (2011) discuss the development of the contact height be-
tween hull and ice, presented by the Finnish-Swedish Ice Class Rules(FISCR). The
reduction of height is presented in figure 4.4

Figure 4.4: Ice height reduction due to development of regulations(Riska and
Kämäräinen, 2011).

Figure 4.4 display different models of ice height during interaction with a structure.
To the left, the total ice height defines the contact height. In the middle, the
contact height is defined as only a part of the total height, hence the contact
pressure will increase significantly. To the right, the contact height is defined
as a narrow tip, creating an almost line load like interaction. These models are
developed based on assumptions of different ice failure patterns during interaction.
The left and middle figure, are based on crushing as given in figure 4.1b. The right
figure is based on spalling, as illustrated in figure 4.1a.

4.1.4 Contact Pressure

The pressure over the load patch is assumed to be uniformly distributed. For
simplicity one could consider static loads in an initial design phase, due to a short
impact duration. This is only a simplification, and not necessarily the case during
interaction with ice. Assuming a constant pressure pc over an area A, one obtains
the following equation for the normal force:

Fn = A · pc [N] (4.3)

If the ice is assumed to fail in bending, and the maximum flexural strength is
the governing ice strength, one obtain the following set of equations. Where the
flexural strength is given as:
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σf (ηb) = 1.76 ·

(
e−5.88 ·

√
ηb
)

[MPa] (4.4)

By introducing equation 4.2, and the fact that the vertical force FV equals the
bearing force FB one obtains:

FV = Cgeo · 1.76 ·

(
e−5.88 ·

√
ηb
)

·h2i [N] (4.5)

By simple geometry, the vertical force on the hull could be expressed by the normal
force as given in equation 4.6.

FV = Fn
(
sin(β)− µ · cos(β)

)
[N] (4.6)

Simple calculations give equation 4.7 for the pressure applying over an area when
inserting 4.6 into 4.3 and dividing by the area.

pc =
Fn
A

=
Cgeo · 1.76

(
· e−5.88 ·

√
ηb
)

·h2i

A ·

(
sin(β)− µ · cos(β)

) [MPa] (4.7)

where the contact area is given as:

A = hic ·L [m
2
] (4.8)

The contact pressure pc depends on the brine porosity ηn, the ice thickness hi, the
contact area A(hic, L), the hull slope β, the coefficient depending on the horizontal
boundary geometry Cgeo and the friction µ between ice and hull.
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Chapter 5

Review of Ship Classification

In the design phase of a polar ship, several parameters should be considered. The
environmental parameters and the operational limits are important for classifica-
tion of polar operating ships. DNV GL and IACS provide regulations for vessels
operating in ice-infested waters and the Arctic area. These regulations are given as
a guideline for design of ships. The classes are normally divided into the duration
of operation in ice infested waters, and the impact conditions regarding ice interac-
tions, feature type and age. While some classes are limited to assisted operations
only.

This chapter will give a review of different ice classes for ships. DNV GL - Ships
for Navigation in Ice (Veritas, 2016), and IACS - Unified Requirements for Polar
Ships (IACS, 2016), are presented and also compared in the following sections.

5.1 Classification of Ships Navigating in Ice - DNV
GL

This section presents a brief review of the different ice classes provided by DNV GL.
The local design loads and contact area will be presented for the class Icebreaker
POLAR-10, as KV Svalbard is classified with this class. A short review regarding
plate and stiffener requirements will also be presented.

5.1.1 Review of Ice Classes

DNV GL provides several classes for ice going ships, regarding the degree of expo-
sure to ice and area of operation. For light ice conditions the classes ICE-C and
ICE-E apply. These two classes are the lowest ice classes provided by DNV GL,
hence intended to describe basic ice strengthening. Further, DNV GL presents
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SEALERS which regard vessels built for catching in cold regions. The WINTER-
IZATION class applies to ships designed for service in cold climate environment.
The DAT(-X◦C) class provides regulations for materials in ships where the inten-
tion is to operate in cold regions with low air temperatures for a long period in
time. Finally, the two main groups of ice classes are divided into Baltic and Arctic
area of operation.

Classification for Baltic Areas

Classification for Baltic areas applies to vessels operating in the northern Baltic
and areas of similar conditions. The Baltic ice strengthening classes consist of four
notations, where the classes are equivalent to FSICR classes. The amount of ice,
from light to difficult ice condition, and the assistance from icebreakers determine
the notation. The notations are presented in table 5.1.

Table 5.1: Northern Baltic ice classes presented in relation to FSICR classes, and
the amount of ice and assistance they depend on.

DNV GL FSICR hice Assistance

ICE-1A* 1A Super 1 (Difficult) No
ICE-1A 1A 0.8 (Difficult) Yes
ICE-1B 1B 0.6 (Moderate) Yes
ICE-1C 1C 0.4 (Light) Yes

From table 5.1 one could observe that the difference in the two highest notations
are the required assistance and ice thickness.

Classification for Polar Areas

Classification for Polar areas applies to vessels operating unassisted in sub-Arctic,
Arctic and Antarctic areas. Each class is designed to encounter a particular con-
dition of ice, regarding thickness and strength of the ice cover. Depending on
whether the vessel is intended to encounter pressure ridges or other features of
remarkable larger thickness than average, the vessel is either denoted POLAR-XX
or ICE-XX, where XX corresponds to the average ice thickness. Regarding ram-
ming, the ICE class is limited to no ramming, while the POLAR class is assumed
to endure occasional ramming. The notation Icebreaker is assigned to vessels that
could take several attempts of ramming to break the ice. The different notations
and assigned ice properties are presented in table 5.2.
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Table 5.2: Arctic ice classes, ice properties and ramming conditions.

Ice Class σice [MPa]a hice [m]b Ramming condition*

ICE-05 4.2 0.5 Not anticipated
ICE-10 5.6 1 Not anticipated
ICE-15 7.0 1.5 Not anticipated

POLAR-10 7.0 1.0 Occasional(2.0)
POLAR-20 8.5 2.0 Occasional(3.0)
POLAR-30 10.0 3.0 Occasional(4.0)

Icebreaker As POLAR As POLAR Repeated

a The nominal ice strength. b The ice thickness.
* The values in parenthesis denotes the minimum ramming speed, VRAM , in
[m/s]. For notation Icebreaker the minimum ramming speed is 2.0 [m/s], hence
not less than 1.5 times the POLAR-class speed if POLAR-class is specified.

5.1.2 Design Loads

KV Svalbard is assigned the notation Icebreaker POLAR-10. The following section
will hence give priority to the notation Icebreaker POLAR-10 and the associated
design loads. To limit the scope, only local loads applied to the bow region will
be further discussed. However, it is important to note there exist several other
important loads that apply to vessels in ice-infested waters.

Local ice pressures are an important consideration during design. DNV GL states
that all classified vessels shall withstand local ice pressure applied in the reinforced
areas. The local design ice pressure is defined in equation 5.1:

p = FB · p0 [kPa] (5.1)

where FB is a correction factor for the design contact area, and p0 is the basic ice
pressure given by equation 5.2

p0 = 1000 ·FA ·σice [kPa] (5.2)

Where σice is the nominal ice strength from table 5.2 and the factor of 1000
converts equation 5.2 from [MPa] to [kPa]. A correction factor for the reinforced
area is introduced by the coefficient FA. This factor equals 1 in the stem and bow
area. Regarding other locations, this coefficient varies between 0.2 to 0.8. FB from
equation 5.1 is given as:
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FB =
0.58

A0.5
c

for Ac ≤ 1.0m2 [-]

=
0.58

A0.15
c

for Ac > 1.0m2 [-]

(5.3)

where Ac = h ·w is the contact area, as given by figure 5.1. Where h is the effective
height of the contact area, taken as 0.4hice, for other regions h varies between 0.4
and 0.8 of hice. w is the critical width of the contact area. w is taken as the length
corresponding to the longitudinal stiffener length.

Figure 5.1: Design contact area provided by DNV GL, applied for local ice pres-
sures.
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5.1.3 Local Dimensioning

The minimum requirements to local members and plating are essential in a design
phase. DNV GL presents requirements for plate thickness, longitudinal stiffeners,
other stiffeners and girders. The local model will only consist of plating and
longitudinal stiffeners, hence dimensioning of girders and other stiffeners will be
not be further assessed. The requirements in this section apply to members and
plating directly exposed to ice pressure.

The thickness of the plating t exposed to ice loads should not be less than expressed
in equation 5.4:

t = 23 · ka ·

s0.75

h0.250

√
kwp0
mpσice

+ tk [mm] (5.4)

ka describes the aspect ratio for the plate field, and is in the range of 1-0.85
depending on the ratio between the stiffener spacing and length. kw is the influence
factor correcting for narrow loads perpendicular to the stiffener spacing with a
maximum value of 1. h0 is equal the stiffener spacing s, i.e. 0.4 [m]. p0 and
σice are respectively the basic ice pressure and ice strength applied in equation 5.1
and 5.2. mp is the bending moment factor as a function of the ice thickness and
stiffener spacing, with a value typically between 27.4 and 2.68. tk is a corrosion
addition.

The longitudinal stiffeners are defined longitudinal if they are aligned parallel
to the water line. The web sectional modulus should not be less than given by
equation 5.5.

Z =
41 ·h1−αo · l2−α · p0 ·wk

σ sin(β)
[mm

3
] (5.5)

h0 equals the stiffener spacing or the contact area height, whichever is the smallest
value, and l defines the span of the longitudinal stiffeners. The factor α depends
on the contact area AC , for AC less than 1 [m2], α is 0.5 and for AC larger than
1 [m2], α is 0.15. wk is a section modulus corrosion factor, and σ equals 0.9σice
of the ice strength previously defined in table 5.2. While β equals the angle of the
web with shell plating as defined by equation 5.6.

β = arctan

(
tan(γ)

sin(θ)

)
(5.6)

Both γ and θ are defined in figure 5.2.
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Figure 5.2: Definition of the web angles γ and θ, to obtain β, with shell plating
presented by DNV GL.
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5.2 Classification of Ships Navigating in Ice - IACS

In this section, a brief review of the ice classes provided by IACS will be presented.
The class most similar to Icebreaker POLAR-10, PC-1, will be further assessed
considering local design loads and contact area. A short review regarding plate
and stiffener requirements will also be presented.

5.2.1 Review of Ice Classes

IACS defines the different polar classes into seven classes, where the ice condition is
defined by WMO (1970). The classes are intended to divide vessels into different
operational capabilities and strengths. Table 5.3 presents the classes and the
description regarding operational limits, using WMO ice nomenclature.

Table 5.3: Polar classes as presented by IACS, described by WMO nomenclature.

Class Ice description

PC 1 Year-round operation in all polar waters
PC 2 Year-round operation in moderate multi-year ice conditions
PC 3 Year-round operations in second-year ice which may include

multi-year ice inclusions
PC 4 Year-round operations in thick first-year ice which may

include old ice inclusions
PC 5 Year-round operations in medium first-year ice which may

include old ice inclusions
PC 6 Summer/autumn operation in medium first-year ice which

may include old ice inclusions
PC 7 Summer/autumn operation in thin first-year ice which

may include old ice inclusions

5.2.2 Design Loads

The design scenario for determination of the design loads is ice-hull impact in the
bow region. In this model, the design load is given as an average pressure Pavg,bow
uniformly distributed over a rectangular area of height bbow and width wbow. These
parameters are denoted the load parameters, hence they are determined by the bow
shape. Further assessment requires ice load characteristics for the bow area. The
shape coefficient fabow, the total impact force Fbow, line load Qbow and pressure
Pbow are hence required. Further assessment will consider the bow region only.

For the bow region, the dimensions for the load patch could be obtained by the
following equations (5.7 and 5.8) by applying equation 5.12, 5.13 and 5.14:

wbow =
Fbow
Qbow

[m] (5.7)
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bbow =
Qbow
Pbow

[m] (5.8)

and the average pressure Pavg,bow is obtained by:

Pavg,bow =
Fbow

wbow · bbow
[MPa] (5.9)

The shape coefficient fabow is to be taken as the minimum of equation 5.10:

fabow = min(fabow,1, fabow,2, fabow,3) [-] (5.10)

where the three functions are given by equation 5.11:

fabow,1 =

(
0.097− 0.68 ·

(
x

Lwl
− 0.15

)2
)

·

αbow
(β′bow)0.5

[-]

fabow,2 = 1.2 ·CFF ·

1(
sin(β′bow) ·CFC ·D0.64

) [-]

fabow,3 = 0.60 [-]

(5.11)

where Lwl is defined as the water line length measured at the upper ice water line
and x is the distance from the forward perpendicular to the impact area. D is
defined as the ship displacement in [kt] and should not be taken less than 5 [kt].
While CFC is defined as crushing failure class factor equal 17.69 for PC-1. CFF
is defined as flexural failure class factor equal 68.60 and CFD is defined as load
patch dimension class factor equal 2.01 for PC-1. The total force Fbow is given by
equation 5.12:

Fbow = fabow ·CFC ·D0.64 [MN] (5.12)

The line load Qbow is given by equation 5.13:

Qbow = F 0.61
bow ·

CFD
AR0.35

bow

[MN/m] (5.13)

The pressure Pbow is given by equation 5.14:

Pbow = F 0.22
bow ·CF 2

D ·AR0.3
bow [MPa] (5.14)

In equation 5.13 and 5.14 a load patch aspect ratio ARbow is introduced. This
aspect ratio is defined as:

ARbow = 7.46 · sin(β′bow) ≥ 1.3 [-] (5.15)
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Where β′bow is given as:

β′bow = arctan

(
sin(αbow)

tan(γbow)

)
(5.16)

Both β′bow, αbow and γbow are defined by figure 5.3.

Figure 5.3: Hull angles provided by IACS.

5.2.3 Local Dimensioning

Consideration of local loads requires local dimensioning to withstand applied loads.
IACS provides a minimum required plate thickness as a function of frame orien-
tation, transverse and longitudinal local frames, web frames and load-carrying
stringers. For continuous members, the boundary conditions are assumed fixed.
For other members, the boundaries are assumed simply supported unless the
boundaries could be proven to provide significantly rotational restraints. The
requirements apply to members and plating directly exposed to ice pressure. Only
plating and longitudinal stiffeners will be further assessed.

The thickness t of plating exposed to ice loads should not be taken less than given
by equation 5.17:

t = tnet + ts [mm] (5.17)

where ts is the corrosion addition and tnet is the plate thickness required to with-
stand ice loads. The plate thickness tnet depends on the orientation of the sup-
porting stiffeners. For longitudinally supported plating, where the stiffeners are
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aligned less than 20 degrees normal to the waterline, the net thickness is given by
equation 5.18:

tnet = 500 · s ·
((AF ·PPFp ·Pavg,bow)/σy)0.5

(1 + s/(2 · l))
[mm] (5.18)

where s is the stiffener spacing and l is the length. AF is an area factor equal
1 for the bow area of the PC 1 icebreaker notation. PPFp is a peak pressure
factor depending on the stiffener spacing and not to be taken less than 1.5 for
longitudinal stiffened plating. σy is the minimum upper yield stress of the applied
steel. If the stiffener spacing is larger than the load patch height (b ≤ s), equation
5.18 will have an additional correction term added, to correct for larger spacing.
The additional correction term is added in equation 5.19.

tnet = 500 · s ·
((AF ·PPFp ·Pavg,bow)/σy)0.5 · (2b/s− (b/s)2)0.5

(1 + s/(2 · l))
[mm] (5.19)

The plastic sectional modulus of the longitudinal stiffeners should not be taken
less than equation 5.20:

Zp = Apn ·

tpn
20

·

h2w · twn · sin(ϕw)

2000
+
Afn · (hfc · sin(ϕw)− bw · cos(ϕw))

10
[mm

3
]

(5.20)

where Apn is the net cross section area of the local stiffener, Afn is the net cross
section area of the stiffener flange, tpn is the net plate thickness equal to tnet. twn
is the net web thickness equal to tw without corrosion addition. The remaining
parameters are illustrated in figure 5.4

Figure 5.4: Stiffener dimensions provided by IACS, apply to both longitudinal and
transverse stiffeners.
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5.3 Similarities and Differences in Classification
of Ships

The previous sections have presented the main content of the classification rules
provided by DNV GL and IACS. The priority was given to the classes Icebreaker
POLAR-10 and PC-1. DNV GL divides the classes with respect to the area of
operation, considering Baltic and Polar areas. The classes are given different
notation regarding the ice thickness and ramming condition they are exposed to.
While IACS defines their classes with respect to the operational time and expected
ice age. Hence, the strength requirements are based on ice condition regardless of
area.

Regarding the design loads, DNV GL proposes that the load patch equals 0.4 of the
ice thickness multiplied with the stiffener span. Also, correction factors for varying
pressure over the load patch are included in the calculations. The calculations
depend mostly on the geometry of the local part and the class notation of the
vessel. While IACS proposes shape coefficients and class factors that apply to the
loads, the loads are thus used to obtain the load patch dimensions and the total
load patch pressure is obtained from the force divided by the load patch area.
Another difference is the various load scenarios presented in the regulations. DNV
GL provides several load scenarios, such as beaching, compression amidships and
local pressure. IACS does only present bow impacts as a design scenario.

The local dimensioning does in both cases provide regulations for the plate thick-
ness. The thickness consists of two terms where one is the net thickness, and the
second is a corrosion addition. The first term does differ in the two standards,
as DNV GL includes aspect ratio and an influence factor, while IACS provides
area factors and pressure peak factors. IACS also accounts for the different ra-
tios between stiffener spacing and load height through several formulas for the
net thickness. For the sectional modulus, DNV GL provides the regular sectional
modulus, while IACS presents the plastic sectional modulus. The plastic sectional
modulus does apply to models where plastic deformations are allowed. Holm
(2012) provides a numerical comparison of the regulations provided by DNV GL
and IACS in his master thesis. He found that IACS classes are dependent on the
ship displacement, while DNV GL classes are independent. Additionally, he found
the plate thickness and design load to be generally higher for IACS class PC-1,
compared to DNV GL class Icebreaker POLAR-10.
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Chapter 6

Finite Element Theory

During interaction with ice, the local deformations and displacements could be
large. The boundaries could also change during interaction, i.e. when two struc-
tural parts come in contact during displacement. When large displacement is
induced, the geometry would likely change during the process. Hence, the as-
sumption of small displacements and linear elastic behaviour are no longer valid.
To account for the large displacement, change of geometry and boundaries, a non-
linear model could be applied. This chapter presents the non-linear model.

6.1 Non-linear Finite Element Method

This section presents the difference between linear and non-linear behaviour and
the fundamental theory of non-linear finite element method. The linear analysis
and the fundamental assumptions are shortly presented prior to presentation of
the non-linear behaviour. The theory in section 6.1.1 is referring to Leira (2011)
while section 6.1.2 refers to Moan (2003).

6.1.1 Linear Analysis

In the linear model, the assumption of small displacements and linear-elastic ma-
terial behaviour are valid. The linear model could be described by equilibrium
between forces, where the model remain at rest with no acceleration. Hence, the
sum of forces equals zero. These forces induce stresses, which in turn are related
to the strains trough Hooke’s law(equation 6.1).
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εx =
1

E

(
σx − νσy − νσz

)
εy =

1

E

(
σy − νσx − νσz

)
εz =

1

E

(
σz − νσx − νσy

) (6.1)

where ν describes the Poisson ratio. The strains are derivatives of the displace-
ments in x-, y- and z-direction, respectively described by equation 6.2.

εx =
∂u

∂x

εy =
∂v

∂y

εz =
∂w

∂z

(6.2)

where u, v and z describe the displacements in the respective direction. The
angular deformations γij are related to the following displacements, where the
subscripts ij denote the plane where the deformations occur(x, y or z), given in
equation 6.3.

γxy = γyx =
∂u

∂y
+
∂v

∂x

γxz = γzx =
∂u

∂z
+
∂w

∂x

γyz = γzy =
∂v

∂z
+
∂w

∂y

(6.3)

which in turn are related to the shear strains εij and shear forces τij trough
equation 6.4.

γxy = 2εxy =
2(1 + ν)

E
τxy

γxz = 2εxz =
2(1 + ν)

E
τxz

γyz = 2εyz =
2(1 + ν)

E
τyz

(6.4)

Further it is assumed that the stresses induced by the forces, are below yield. When
stresses above yield occur, the elastic theory should be corrected. The linear elastic
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model is described by the following relation between stresses and strains, given by
figure 6.1.

Figure 6.1: The linear elastic material model, described by a linear relation between
stress σ and strain ε.

To solve the linear finite element problem, the relation between system stiffness
K, the displacement vector r and the load vector R are established and solved.
The relation is given by equation 6.5.

Kr = R (6.5)

which yields the inverted solution:

r = K−1R (6.6)

By application of this theory, linear problems could be solved under the assumption
of equilibrium in internal forces and stresses, compatibility between displacements
and strains, and the relation between stress and strain described by Hooke’s law.
This is not necessarily always applicable regarding larger deformations and non-
linear material behaviour, hence non-linear analysis should be applied.
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6.1.2 Non-Linear Analysis

The non-linear model requires adjustment of the theory that apply to the linear
model. In non-linear problems, the displacement is usually large and not linear
related to the load. Often, the displacements are large, and when the loads are
removed, the final state is different from the initial geometry. The material proper-
ties are non-linear, and the relation between stress and strain is a function of stress,
strain and/or time. Compared to the linear model, these impacts are difficult to
compute and require methods applying iterations to obtain a final result.

A model may be loaded so that the relation between stress and strain no longer
applies to a linear model. The stresses may reach a level inducing a non-linear
condition, thus unloading from such a condition appears to follow the initial stress-
strain relationship(Described by Hooke’s law). The effect is illustrated in figure
6.2.

Figure 6.2: The non-linear stress-strain relation. σp denotes the limit for linear
relationship, σY denotes the yield stress and the dotted line describes the unloading
process applying linear theory(Moan, 2003).

The model will not return to its initial state post loading, as yielding occurs. Ac-
cording to this theory, one needs more than linear formulations to describe the
stress relation to strains. Yielding may induce larger displacements and deforma-
tions to the model. As the assumption of small displacements does not apply, and
the fact that geometry may change during deformation, the stiffness relation will
depend on the displacement. This leads to the following relation between loads,
displacements and model stiffness.

K(r)r = R (6.7)
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Equation 6.7 could be solved analytically for a certain load. Thus it is more
common to apply iterative methods to solve the problem. By rewriting equation
6.7 to differential form, one obtains:

d

dr
(K(r)r)dr = KI(r)dr = dR (6.8)

where KI(r) denotes the incremental stiffness, which include both the initial stiff-
ness K0 as well as the geometrical stiffness KG. Resulting in equation 6.9.

KI = K0 + KG (6.9)

Equation 6.8 could be solved by incremental methods. Abaqus and Moan (2003)
present the modified Euler-Cauchy method. This method applies an update of the
nth step where the total load Rn and the displacement rn occur. This introduce
a residual force vector Rr which is the difference between the internal force vector
Rint(rn) and the total load vector for the nth step. This gives the following
equation:

Rr = Rint(rn)−Rn (6.10)

By adding the residual force vector to the next load increment, the residual forces
are accounted for. This reduces the external loads and global equilibrium is ob-
tained. The method is described by the following equations:

∆Rn+1 = Rn+1 −Rn (6.11)

Req = Rn −Rint(rn) (6.12)

By applying equation 6.10, 6.11 and 6.12 one obtains equation 6.13:

∆rn+1 = KI(rn)−1∆Rn+1 −KI(rn)−1(Rint(rn)−Rn)

= KI(rn)−1
[
∆Rn+1 + Req

]
= KI(rn)−1 [∆Rn+1 −Rr]

(6.13)

rn+1 = rn + ∆rn+1 (6.14)

The method focus on obtaining Rint(rn). Compared to section 6.1.1, this is a
more complex method of solving the problem. Each step in the non-linear analysis
requires an update of the system stiffness vector, and hence solution of the system
of equations. The computational time of such a step is almost equal the time of
conducting a linear analysis.
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Chapter 7

Results of Analysis Based on
Level Ice Measurements and
Regulations

To investigate the local ice loads’ impact on local details of a ship hull, a FE model
is established and assessed. The results in this chapter are based on theory and
measurements presented in previous chapters. The local model will be analysed
using Abaqus and dimensioned applying measures from DNV GL presented in
chapter 5. DNV GL and IACS classification will be assessed with their respective
ice pressures. Also, ice strength found by measurements in chapter 3 and the
pressure model presented under section 4.1.4 will be applied.

7.1 Presentation of the Local Plate Model

In this section, the local plate model will be presented. During the calculations,
it was necessary to do assumptions. The assumptions are hence made within
reasonable limits trying to fit an actual local model of KV Svalbard.

7.1.1 Location of the Local Plate Model

The model is a section of the bow located as described by figure 7.1. It is located
at the water line in the bow area. Half of the plate is above water level.
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Figure 7.1: The location of the local plate field is marked as a thick red line in the
bow region of the hull.

7.1.2 Dimensioning

The main dimensions of the plate field were arbitrarily set to a width of 2 [m] and
a length of 2.5 [m]. The following dimensions, presented in table 7.1, were found
through computations applying theory from section 5.1. The stiffener span was
chosen arbitrarily to fit the width of the plate field, and the hull angles were set
to 60◦ so that the web angle β ended at 63◦. The hull angles are defined in figure
5.2 and the web angle is defined in equation 5.6.

Table 7.1: Dimensions of the local plate field found by applying DNV GL regula-
tions.

Description Parameter Dimension

Arbitrarily chosen parameters

Stiffener spacing s 400 [mm]
Stiffener length l 2500 [mm]

Calculated parameters

Plate thickness t 10.5 [mm]
Section modulus Zmin 140600 [mm3]

The section modulus Zmin do not describe the dimensions of the stiffeners. By
application of the section modulus and basic calculations, the following dimensions
for the stiffeners were obtained(Table 7.2).
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Table 7.2: Dimensions of the local stiffeners.

Description Parameter Dimension

Web height hweb 120 [mm]
Web thickness tweb 10 [mm]
Flange height tflange 10 [mm]
Flange width wflange 120 [mm]
Section modulus Z 161680 [mm3]

From table 7.2, the section modulus was chosen to be slightly larger than the one
recommended by DNV GL regulations.

7.1.3 The Model

By application of the dimensions presented in section 7.1.2, a model was estab-
lished using Abaqus and S4R elements as discussed in appendix C. The model
was assumed located close to the bow with boundaries consisting of longitudinal
girders parallel to the stiffener span and transverse frames perpendicular oriented
to the span. Figure 7.2 presents the actual model, without boundaries.

Figure 7.2: Local plate model obtained by DNV GL requirements. The green
colour represents the plate, while the white sections represent the stiffeners.

Both plate and stiffeners are assigned the same material properties, given in table
7.3
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Table 7.3: Material properties assigned to the model.

Parameter Dimension

Youngs Modulus E 207000 [MPa]
Yield stress σy 488 [MPa]
Poisson’s ratio υ 0.3 [-]
Density ρs 7.85 · 10−6 [kg/mm3]

The material model was assumed to behave non-linear, where the material model
is important to ensure correct behaviour. The following table presents the plastic
behaviour is applied in the analysis. The first value of table 7.4 defines the initial
yield stress σy.

Table 7.4: The applied plastic strain model for steel.

Stress σ [MPa] Plastic strain εp

488 0.0000
509 0.0020
520 0.0038
532 0.0065
545 0.0110
556 0.0163
567 0.0219
584 0.0358
597 0.0509
605 0.0682
611 0.0901

The plate was assessed with fixed boundary conditions. As the surrounding girders
were assumed to provide sufficient stiffness, the edges of the plate were assumed to
neither deflect nor rotate. This is an essential assumption as it impacts the results
regarding plate behaviour.

During loading of the model, the pressure was applied directly to the plate in
between the stiffeners. Under this type of loading, the assessment of the plate is in
focus. As the ice could take many arbitrary shapes during breaking and crushing,
the plate is most likely to have large load concentrations. Regarding this, and the
small plate thickness, the pressure is applied to the plate to assess the most critical
part of this local model. The reader should therefore be aware of the focus on the
plate behaviour. Hence, the stiffeners are not put into focus in the same manner.
For further stiffener assessment, see appendix E.
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7.2 Assessment of Ice Pressure

Previously presented are three possible models for local ice pressure: The mea-
surements presented under chapter 3 with the contact pressure model presented
under section 4.1.4, DNV GL and IACS.

The DNV GL regulations provide the contact pressure for an arbitrary contact
area Ac. From the regulations, FA equals 1 [-], and σice equals 7 [MPa], so that
the contact pressure resulted in the following equation:

pc = FB · 7000 [kPa] (7.1)

where FB depends on the size of the contact area, and for a contact area below 1
[m2] this factor became the following:

FB =
0.58√
Ac

= 0.917 [-] (7.2)

which results in a contact pressure of 6.419 [MPa] as the contact area was set to
0.4 [m2].

The IACS regulations had a somewhat different approach to obtain the contact
pressure. The shape coefficient fa,bow was taken as a minimum of three equations
(see equation 5.11) and found equal 0.6 [-]. The total force Fbow was found by
applying the shape coefficient with the crushing failure class factor CFC , for PC
1 equal 17.69, and the ship displacement D in [kt] equal 6.375. This gave the
following equation:

Fbow = fabow ·CFC ·D0.64 = 0.6 · 17.69 · 6.3750.64 = 34.7 [MN] (7.3)

Applying the flexural failure class factor CFD equal 2.01 and a load patch aspect
ratio ARbow equal 6.65, one obtain both the line load Qbow and the pressure Pbow
given in the following equations:

Qbow = F 0.61
bow ·

CFD
AR0.35

bow

= 34.70.61 ·

2.01

6.650.35
= 9.012 [MN/m] (7.4)

Pbow = F 0.22
bow ·CF 2

D ·AR0.3
bow = 34.70.22 · 2.012 · 6.650.3 = 15.56 [MPa] (7.5)

Applying equation 7.3, 7.4 and 7.5, the average pressure pavg,bow was given by the
following equation:

Pavg,bow =
Fbow

wbow · bbow
=

Fbow
Fbow

Qbow
·
Qbow

Pbow

=
34.7

3.85 · 0.58
= 15.56 [MPa] (7.6)
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under the assumption that the contact area was kept constant regardless of the
applied regulation. This means that the average pressure Pavg,bow was applied to
a contact area of 0.4 [m2] and resulted in a lower resultant force impacting the
plate, as IACS suggested a larger contact area equal 2.233 [m2].

Applying the following equation (eq. 7.7) for the empirical contact pressure pc,emp:

pc,emp =
Fn
Ac

=
Cgeo · 1.76

(
· e−5.88 ·

√
ηb
)

·h2i

Ac ·
(
sin(β)− µ · cos(β)

) [MPa] (7.7)

and the average flexural strength σf from the level ice measurements presented
in section 3.1.3, the empirical contact pressure pc,emp was obtained. This was
performed by keeping the hull angle β, and contact area Ac constant, as well as
the ice boundary geometry Cgeo. Respectively, they were kept at 63◦, 0.4 [m2]
and 1 [-]. The empirical pressure pc,emp applies to an area of 0.4 [m2] and an ice
thickness of 1 [m] as initially assumed when conducting the modelling presented by
DNV GL. The contact pressure model depends on the ice height so that pc ∝ h2i .
The values applied and the resulting empirical ice contact pressure are given in
table 7.5.

Table 7.5: Results from sea ice measurements and application of empirical formula
given in equation 7.7, applying flexural strength data from table 3.3.

σf [MPa] - 0.499
hi [m] - 1
β [◦] - 63
Ac [m2] - 0.4
µ - 0.1

pc,emp [MPa] - 1.475

Where the friction coefficient µ is suggested to equal 0.1 by Riska (2011).

7.3 Model Response Analysis

This section presents the results from the analysis of the previously presented
model. The three different pressures will be assessed. These tests are conducted to
investigate difference in response and also whether the model is sufficiently dimen-
sioned regarding the applied loads. The magnitude of stresses and the displacement
will be considered to compare the pressures and also whether the dimensioning is
sufficient.

The loading was assumed static, with a uniform pressure applied at the centre
of the model, where the contact area was located in between two stiffeners. It
is important to note the simplification of actual conditions, as the loading vary
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temporally and spatially. Considering large variation in ice thickness and strength,
contact area, ramming speed and fracture model, this model is regarded a sim-
plification. The principle of a short interaction with ice is still covered as it is
reasonable to believe that such a condition could occur during operations.

Figure 7.3 presents the load patch where the contact pressure is applied.

Figure 7.3: The load patch, located at the centre of the model, in between two
stiffeners. The coordinate system is presented to the left in both figures, and
presents the angle of view.

7.3.1 Assessment of Pressure Models

This section presents the results from assessment of the three different pressures,
which were obtained from measurements of sea ice and assessment of ice classifica-
tion rules. In order to ensure convergence of the results, all models are subjected
to a mesh refinement. During these analysis, the boundary conditions are assumed
fixed.

The model is assessed with the following three pressures as presented by table 7.6.
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Table 7.6: The applied ice pressures obtained from measurements of ice, DNV GL
and IACS.

Empirical [MPa] DNV GL [MPa] IACS [MPa]

1.475 6.419 15.56

As the model was assessed assuming non-linearities, the system is updated for each
load increment. Where the load increment is described by an initial load and a
proportionality factor, adding load increments to obtain a stable solution for each
step. The first step in the analysis is an unloaded model. Further steps apply
load incrementally until the sum of the increments equals 1, and the total load is
applied.

The analysis was conducted using mesh refinement, starting at 120 [mm] element
size. Further, the element size has been reduced to half of the previous step, and
the following element sizes were applied to mesh the model: 120, 60, 30 and 15
[mm]. Throughout the analysis, five sampling locations were applied to the model.
Due to the reduction of element size, the sampling locations narrowed down and
became more accurate to the sampling location. The figure 7.4 shows the most
exact location of sampling.

Figure 7.4: The five sampling elements applied to the model where the stress-strain
curves are sampled at, expressed by red dots.

As the model is fully symmetric, only one fourth of the model was necessary to
assess. The previous figure (7.4) shows the concept of this symmetry.
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7.3.2 Assessment of Empirical Ice Pressure Model

In figure 7.5 a comparison of the two stress-strain plots obtained from the meshes
of 120 and 15 [mm] are presented for the direction perpendicular to the stiffeners.

(a) Mesh size: 120 [mm]. (b) Mesh size: 15 [mm].

Figure 7.5: Stress-strain curve from location 1.1, in x-direction.

Figure 7.5 presents two results, from respectively 120 and 15 [mm] mesh size.
Figure 7.5 occurs to yield when the strain reaches 0.00225 [-] and the stress is
approximate 530 [MPa], while figure 7.5b is closer to initial yield when the strain
has a value of 0.0024 [-] and the stress has a value of 550 [MPa]. Both curves
present the non-linear material behaviour as presented in table 7.4.

(a) Mesh size: 120 [mm]. (b) Mesh size: 15 [mm].

Figure 7.6: Stress-strain curve from location 1.1, in z-direction.

In figure 7.6 both plots show the effect of how strains in z-direction are impacted
by the stresses in x-direction, and how they can develop due to initial yield in
x-direction. The curve in figure 7.6b turns and the stresses in z-direction become
dominant so that the strains start to increase. The reason for this development of
stresses is the stiffener direction. The two curves in figure 7.6b and 7.5b are more
correlated than figure 7.6a and 7.5a, due to accuracy of the results.
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Figure 7.7: Stress and strain in both x- and z-direction plotted over time. The
labels are corresponding to the stresses in the following manner: S11 and LE11
define the stress and strains in x-direction respectively, S22 and LE22 define the
stress and strains in z-direction respectively.

From figure 7.7 one could observe that the plasticity in x-direction from figure 7.5
occurs when the strains in figure 7.6 are at a minimum. From the line denoted
LE22 in the bottom part of the plot, one observes that the plasticity of the line
denoted S11 occurs at the minimum value of LE22 which in terms are related to
the very same minimum value of figure 7.6. This corresponds well with Moan
(2003).

These stress strain curves, resulted in the following contour plots for displace-
ment(Fig. 7.8) and stress(Fig. 7.9 and 7.10). The contour plots are obtained for
a mesh of 15 [mm].

Figure 7.8: Displacement of the plate field, with a 15 [mm] mesh size.
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Figure 7.9: Stress in x-direction in the plate field, with a 15 [mm] mesh size.

Figure 7.10: Stress in z-direction in the plate field, with a 15 [mm] mesh size.

From figure 7.8 the max displacement was found at the centre with a magnitude
of 16.58 [mm]. In figure 7.9 the maximum stress in x-direction occurred at the
location of the load, where the magnitude was found to be 575.3 [MPa]. The
stiffeners in figure 7.10 had the largest compressive stress at the ends, with a
magnitude of -557.1 [MPa] and the largest tension of 484.7 [MPa] occurring at the
middle of the stiffeners. The tension is below yield, and the stiffener will behave
linear at the middle cross section.

7.3.3 Assessment of DNV GL Ice Pressure Model

By applying a pressure of 6.419 [MPa] as calculated from regulations provided by
DNV GL, the following plots were obtained for location (1.1) (see figure 7.4).
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(a) Mesh size: 120 [mm]. (b) Mesh size: 15 [mm].

Figure 7.11: Stress-strain curve from location 1.1, in x-direction.

Figure 7.11 presents results from both 120 and 15 [mm] mesh size. From the
figures one could observe that the initial yield stress increases from approximately
510 [MPa] in figure 7.11a to 530 [MPa] in figure 7.11b, while the strains at initial
yield are approximately 0.0021 [-] for both mesh sizes. The difference in the two
plots occurs due to a small change in the sampling location as the mesh is refined.
The non-linear material model is also here obtained.

(a) Mesh size: 120 [mm]. (b) Mesh size: 15 [mm].

Figure 7.12: Stress-strain curve from location 1.1, in z-direction.

From figure 7.12 one could observe the effect of the Poisson’s ratio. The stresses
are able to develop in x-direction before initial yield occurs and the stresses in
z-direction are dominant. It is reason to believe that this effect is obtained due to
the orientation of the stiffeners.
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Figure 7.13: Stress and strain in both x- and z-direction plotted over time. The
labels are corresponding to the stresses in the following manner: S11 and LE11
define the stress and strains in x-direction respectively, S22 and LE22 define the
stress and strains in z-direction respectively.

The vertical black line in figure 7.13 shows the relation between the two figures
7.11 and 7.12. Here, line denoted LE22 which represents the strains in z-direction
is at its minimum while stresses in x-direction, represented by S11, is at first yield.
This substantiates the assumption of initial yielding in x-direction followed by
domination of stresses in z-direction, as presented by figure 7.12b.

The previously presented stress strain curves, resulted in the following contour
plots for displacement(Fig. 7.14) and stresses(Fig. 7.15 and 7.16) for a mesh size
of 15 [mm].

Figure 7.14: Displacement of the plate field, with a 15 [mm] mesh size.
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Figure 7.15: Stress in x-direction in the plate field, with a 15 [mm] mesh size.

Figure 7.16: Stress in z-direction in the plate field, with a 15 [mm] mesh size.

From figure 7.14 the largest displacement was found to be 72.99 [mm]. The max-
imum stress in x-direction had a magnitude of 621.3 [MPa](Fig. 7.15) while the
maximum stress in z-direction had a magnitude of 608.7 and -691.6 [MPa], respec-
tively in tension and compression(Fig. 7.16). The stresses in z-direction occurred
both in the plate and the stiffeners. In addition, one could observe that the out-
ermost stiffeners are affected by the increased pressure, compared to the model
where the empirical ice pressure was applied (fig. 7.10).

The Results from the assessment of IACS regulations will be given in appendix
D.3 to limit the extent of the main part.
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7.4 Discussion of Results

The three pressures obtained by the empirical equation and the two regulations,
result in different pressures. The first model was assessed with the empirical
pressure, which was low compared to the two pressures obtained by the regulations.
The two ice pressures obtained from DNV GL and IACS regulations had a larger
magnitude. The three pressures obtained from the empirical calculation, DNV GL
and IACS regulations were found to equal 1.475, 6.419 and 15.56 [MPa]. These
pressures induced stresses to the plate with a magnitude over initial yield, where
the initial yield define the initiation of non-linearity. Further, the resultant forces
acting on the plate were found to equal 590, 2567.6 and 6224 [kN] for the empirical,
DNV GL and IACS pressure respectively. Comparing the empirical pressure with
the one obtained from IACS, the pressure level is almost 11 times larger for IACS.

The plate behaviour due to increased pressure was expected, as an increase in
pressure would induce larger stresses to the plate field. The empirical ice pressure
resulted in a total plate deflection of 16.58 [mm]. Compared to the pressure model
obtained from DNV GL regulations, which resulted in a total deflection of 72.99
[mm], and the IACS pressure model which gave a deflection of 219.9 [mm]. The
empirical pressure model had a quite low total displacement compared to the
main dimensions of the plate field. Considering the pressure from IACS, the plate
suffered from large displacement.

Further, the effect of the Poisson’s ratio is an interesting effect. This could be
observed by the three plots (figure 7.7, 7.13 and D.11) in the time domain. Initially,
all the three models had an increase in the stresses in z-direction, while the strains
were negative until yielding in x-direction occurred and the strains became positive
in z-direction. Due to initial yielding, the plate lost its capacity in x-direction and
the stresses in z-direction became dominant. The connection between strains and
stresses are described by Hooke’s law, and validated by the three figures previously
referred to.

The stresses induced in the plate do reach initial yield in all three models, thus the
plate does enter the non-linear behaviour region. For the empirical ice load model,
only the field between the middle stiffeners reaches initial yield in x-direction,
while the two other models has a larger field of initial yielding. From the figures
7.15 and D.13 one can observe how the stiffeners impact stresses, considering the
stress pattern in x-direction at the plate. This indicates the effect of stiffener
support, and the reason for the stresses in z-direction as indicated by figure 7.16
and D.14. Compared to figure 7.10, one could see how the two outermost stiffeners
are subjected to stresses due to bending as well. Also, one should note that
the stress pattern in the middle stiffeners is changed due to increased pressure.
The empirical ice pressure do induce small warping of the middle stiffeners. The
stresses along the flange edge closest to the applied pressure are smaller than for
the outer edge of the same stiffener. As the stiffener warps, the inner side is slightly
compressed while the outer edge suffers from tension. This warping effect explains
the difference in stresses across the cross section of the stiffeners. This very same
effect do not occur at the middle stiffeners, in the two models where pressures
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from the regulations were applied. For the two respective models, the effect occurs
at the outermost stiffeners. The reason for the warping effect is due to the plate
deflection and plate yielding.



Chapter 8

Results of Analysis Based on
Ridged Ice Measurements

Operations in Arctic environment require sufficient structural resistance as differ-
ent ice features may be encountered. The largest obstacles that may be encoun-
tered during operations in ice infested waters are ice ridges(Riska, 2011). Impacts
from ridged ice are often considered the governing design action for ships and off-
shore structures(Ekeberg, 2015). The ridged ice is often considered extreme loads
in design, hence it is important to study the loads induced by ridged ice on a ship
hull, and the response of the hull.

This chapter contains an assessment of a local FE model of a ship bow interacting
with an ice ridge. The model is established by Computer Aided Design (CAD)
using Autodesk Fusion 360. The data and measurements applied to obtain the
contact pressure are described in chapter 3. The interaction model is presented
in chapter 4. The main focus in this analysis is aimed at local response and
assessment of different boundary conditions.

8.1 Presentation of the Local Bow Model

This section presents the local bow model. The dimensions are based on regula-
tions provided by DNV GL and assumed to fit the actual hull of KV Svalbard.
Throughout the calculations of the dimensions, several assumptions were applied
within reasonable limits. These assumptions are described further in this section.

8.1.1 Location of the Local Bow Model

The model is a section of the bow located as described by figure 8.1. It is located
at the water line in the stem area. Half of the plate is above water level.
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Figure 8.1: The location of the local bow plate field is marked as a thick red line
in the stem area of the hull.

8.1.2 Dimensioning

In the stem region, transverse girders are separated with less distance than other
other regions. The transverse girder spacing was set to 1 [m], resulting in a plate
length with the same dimension. Additionally, the girder span was set to 2 [m]
resulting in a plate width of 2 [m]. Compared to the flat plate model presented in
chapter 7, the stiffener spacing was reduced from 400 to 200 [mm] for this model.
Additionally, the plate thickness was increased regarding the results from chapter
7 and the increased contact pressure pc,emp presented in table 8.5.

Table 8.1: Dimensions of the local bow model found by applying DNV GL regu-
lations.

Description Parameter Dimension

Arbitrarily chosen parameters

Stiffener spacing s 200 [mm]
Stiffener length l 1000 [mm]
Plate thickness t 35 [mm]

Calculated parameters

Section modulus Zmin 104680 [mm3]

The recommended minimum section modulus Zmin do not provide any dimensions
for the stiffeners. By iteration, the dimensions presented in table 8.2 were found.
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Table 8.2: Dimensions of the local stiffeners.

Description Parameter Dimension

Web height hweb 170 [mm]
Web thickness tweb 15 [mm]
Flange height tflange 15 [mm]
Flange width wflange 60 [mm]
Section modulus Z 108584 [mm3]

This resulted in a slightly larger section modulus Z compared to recommendations
by DNV GL.

8.1.3 The Bow Model

The bow model is curved in two directions to approximate the bow of an ice going
vessel. The model is inspired by KV Svalbard. For KV Svalbard Thorsen (2012)
suggests a stem angle at the water line γ equal 33◦. While the average waterline
entrance angle α in the bow region was suggested 59◦. Figure 5.3 presents the
different angles. For this model, the average stem angle γ equal 33◦. While the
average waterline entrance angle α was found equal 75◦ due to the curvature of the
model. Hence, the results presented here will not represent the exact behaviour of
the hull of KV Svalbard.

Applying the dimensions presented under section 8.1.2, the model was established
using CAD. This resulted in the following model, presented in figure 8.2.

Figure 8.2: Local bow model obtained by DNV GL regulations. The support are
assumed to consist of transverse girders perpendicular to the stiffeners(long edges),
while longitudinal frames are located at each end(short edges).

The model is created applying two different curvatures, where the following data
apply, as presented by table 8.3. Further, the plate width is considered the edges
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perpendicular to the stiffeners, while the plate length is the edges parallel to the
stiffeners.

Table 8.3: Curvatures that apply to the local bow model.

Description Parameter Dimension

Along the plate width

Arch radius rw 10 [m]
Arch length bw 2 [m]

Along the plate length

Arch radius rl 1.5 [m]
Arch length bl 1 [m]

The model is assigned the material properties given in table 8.4.

Table 8.4: Material properties assigned to the model.

Parameter Dimension

Youngs Modulus E 207000 [MPa]
Yield stress σy 488 [MPa]
Poisson’s ratio υ 0.3 [-]
Density ρs 7.85 · 10−6 [kg/mm3]

The ridged ice will induce loads large in magnitude resulting in non-linear material
behaviour. Hence, a plastic behaviour model is applied in the analysis. The
material model was presented under section 7.1.3 in table 7.4. A contact area was
assumed to apply at the centre of the plate over an width of 0.4 [m] and the total
plate length. This results in direct loading of the three middle stiffeners and a
contact area of 0.4 [m2].

8.2 Assessment of Ridged Ice Pressure

The empirical pressure model presented under chapter 4 in section 4.1.4 will be
applied to conduct analysis on the bow model subjected to loads from ridged ice.
The data for ridged ice provided under chapter 3 in section 3.1.3, are applied to
define the flexural strength of the ice.

Assuming that the ice specimens tested had a varying degree of defects and letting
the average varying diameter describe these defects, the average flexural strength
σf was approximated to 0.904 [MPa]. The diameter varied from 60 to 70 [mm]
by applying a uniformly distributed random number between 0 and 10 [mm] to
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a lower limit diameter of 60 [mm]. The empirical contact pressure presented in
section 4.1.4 given by equation 8.1 define the contact pressure applied to the model.

pc,emp =
Cgeo ·σf (ηb) ·h2i

A ·

(
sin(β)− µ · cos(β)

) [MPa] (8.1)

The horizontal geometry coefficient Cgeo was assumed to equal 0.75 accounting for
irregularities along the horizontal boundary of the ice. The contact area A was
set to 0.4 [m2]. The friction coefficient µ was set to 0.1 as suggested by Riska
(2011). From the drilling of the ridge, the deepest location of measurement was
at a depth of 3.63 [m] giving hi equal 3.36 [m]. Applying the hull angles discussed
under section 8.1.3, where α was set to approximately 75◦ and γ was set to 33◦,
the contact pressure was found to equal:

pc,emp =
0.75 · 0.904 · 3.632

0.4 ·

(
sin(34◦)− 0.1 · cos(34◦)

) = 47 [MPa] (8.2)

By assuming a normal frame angle β described by the following equation, under
geometrical considerations:

β = arctan

(
tan(γ)

sin(α)

)
= arctan

(
tan(33◦)

sin(75◦)

)
= 34 [◦] (8.3)

The data input applied to obtain the pressure are listed in table 8.5

Table 8.5: Results from sea ice measurements and application of empirical formula
given in section 4.1.4.

σf [MPa] - 0.904
hi [m] - 3.63
β [◦] - 34
Ac [m2] - 0.4
µ - 0.1

pc,emp [MPa] - 47
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8.3 Bow Model Response Analysis

Results of the analysis performed on the model, will be presented in this section.
The ridged ice contact pressure will be applied to the model to assess the behaviour
of the plate field. An assessment of the boundary conditions will be conducted as
well. Further, the dimensioning will be checked regarding if it is sufficient enough
to resist the applied loads. The main focus is given the plate and the stiffener
flanges.

The model is loaded with a static uniform pressure applied at the middle of the
plate, as presented in figure 8.3.

Figure 8.3: The bow model with applied pressure, marked by purple arrows. The
applied pressure was 47 [MPa] over an area of 0.4 [m2].

The reader should know that this is a simplified analysis when considering actual
conditions. Loads will normally have a large spatial and temporal variation, re-
garding parameters as fracture model, vessel speed, area of contact, ice thickness
and ice strength.

8.3.1 Assessment of Response

This section provides the results obtained from assessment of the local bow model
subjected to the empirical ice contact pressure. During this assessment, the bound-
aries are assumed fixed against translation and rotation.

The pressure applied to the model was an uniform pressure with a magnitude of
47 [MPa] over an area of 0.4 [m2].
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The model in this analysis is modelled as a continuum shell, providing the ability
to refine meshes over the model thickness. As one could refine the mesh over the
thickness, and thereby obtain accurate results over the thickness, it is not necessary
to conduct a mesh refinement to the whole model. Hence, a fixed mesh is sufficient
as it is refined close to loaded areas. As this model applies continuum shell, the
applied elements are C3D8R.

Plate Response - Stiffener Side

The plate was assessed at 20 locations, 10 of them at located at the stiffener side
and 10 located at the load side. All locations provide stress and strain for both
x- and z-direction. The stiffener side locations are presented in figure 8.4. Due to
symmetry only one fourth of the plate was assessed.

Figure 8.4: The sampling elements (1-10) on the stiffener side that provide stress
and strain data in-plane, are marked in red. Note that the presented part is only
a part of the model.

Further will the stress versus true strain curves for each sampling element be
presented. The reader should note the different scales of the axes applied in the
plots. The following plots will present data for the stiffener side of the plate.
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(b) Stress σz versus true strain εz.

Figure 8.5: Stress σ versus true strain ε at location 1 and 2.
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(a) Stress σ plotted versus time.
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(b) True strain ε plotted versus time.

Figure 8.6: Stress σ and true strain ε at location 1 and 2 plotted over time. The
time axis describes the load fraction δ, where 0 equals unloaded condition and 1
equals fully loaded.

Figure 8.5a and 8.5b present the stress versus true strain for location 1 and 2. The
correlation between location 1 and 2 is not obvious regarding both figure 8.5a and
8.5b. While figure 8.6a and 8.6b present a more obvious correlation between the
two locations. These two figures present stresses and true strains plotted versus
the amount of applied load. From figure 8.6a one can observe that the stresses
in x-direction for both locations increases almost linear until a load fraction δ
equals 0.55 is applied. The same is observed for the stresses in z-direction. The
correlation between figure 8.5a and 8.5b is found in figure 8.6a and 8.6b when the
applied load fraction δ is between 0.7 and 0.8. The sudden increase in both stresses
and strains occur due to collapse of the middle stiffener and warping of the two
stiffeners located next to the middle one, as illustrated in figure 8.7, 8.8 and 8.9.
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(a) Load fraction equals 0.735.

(b) Load fraction equals 1.

Figure 8.7: Contour plot of the stress in x-direction of the bow model, for two
different load fractions.

(a) Load fraction equals 0.735.

(b) Load fraction equals 1.

Figure 8.8: Contour plot of the stress in z-direction of the bow model, for two
different load fractions.
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(a) Load fraction equals 0.735.

(b) Load fraction equals 1.

Figure 8.9: Contour plot of the displacement in y-direction of the bow model, for
two different load fractions.

Figure 8.7, 8.8 and 8.9 present the plate model before and after collapse for stress
in x-direction, stress in z-direction and displacement in y-direction respectively.
The load fraction δ describes the amount of load applied. A load fraction δ of
0.735 implies that only 34.55 [MPa] is applied, while a load fraction of 1 results in
an applied pressure of 47 [MPa]. In figure 8.7 the maximum plate stress changes
from 604 to 690 [MPa] in tension after the collapse. In compression, the maximum
stress changes from -587 to -924 [MPa] after collapse. Also, the change in stress
pattern from figure 8.7a to 8.7b should be noted. In figure 8.8 the maximum stress
changes from 222.4 to 686.4 [MPa] in compression, while for tension the maximum
stress changes from -727.8 to 1032 [MPa]. In figure 8.9 the maximum displacement
of the plate changes from 0.0022 [m] in figure 8.9a to 0.1087 [m] in figure 8.9b. The
reader should note how the pattern change and how the induced stresses impact
the stiffener behaviour.
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Plate Response - Load Side

Both sides of the plate were assessed, and the following section provides results
for the load side of the plate. Due to symmetry, only one fourth of the plate was
assessed. The load side locations are presented in figure 8.10.

Figure 8.10: The sampling elements (1-10) on the load side that provide stress and
strain data in-plane are marked in red. Note that the presented part is only a part
of the model.

The analysis gave rise to the following plots, for location 1 and 2. The figures
below present the results.
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Figure 8.11: Stress σ versus true strain ε at location 1 and 2.
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(a) Stress σ plotted versus time.
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Figure 8.12: Stress σ and true strain ε at location 1 and 2 plotted over time. The
time axis describes the load fraction δ, where 0 equals unloaded condition and 1
equals fully loaded.

Figure 8.11a and 8.11b present stress versus true strain for the loaded side of
the plate. In figure 8.11a one can observe equal initial behaviour for compres-
sive stresses below -400 [MPa]. For compressive stresses below -400 [MPa] the
behaviour differ. Reasonably due to warping of the stiffener closest to location 2.
In figure 8.11b one can observe almost equal behaviour for both locations. This is
well understood by looking at the figures 8.12b and 8.12a, and the curves plotted
for the z-direction. In the same figures, for x-direction, one can observe a large
difference in the strains between a load fraction of 0.7 and 1. This explains the
difference for the behaviour below -400 [MPa] as illustrated by figure 8.11a. As for
figure 8.6a and 8.6b, figure 8.12a and 8.12b also have a sudden change in the curves
between the load fraction of 0.7 to 0.8. This is related to the warping and collapse
of the stiffeners. The assessment gave the following contour plots, presented in
figure 8.13, 8.14 and 8.15.



8.3. BOW MODEL RESPONSE ANALYSIS 101

(a) Load fraction equals 0.735.

(b) Load fraction equals 1.

Figure 8.13: Contour plot of the stress in x-direction of the bow model, for two
different load fractions.

(a) Load fraction equals 0.735.

(b) Load fraction equals 1.

Figure 8.14: Contour plot of the stress in z-direction of the bow model, for two
different load fractions.
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(a) Load fraction equals 0.735.

(b) Load fraction equals 1.

Figure 8.15: Contour plot of the displacement in y-direction of the bow model, for
two different load fractions.

In figure 8.13 the stresses in x-direction are presented. Indicated by figure 8.13a,
the plate suffers from compressive stresses of -581 [MPa] and tensile stresses of
405.6 [MPa] prior to stiffener collapse. While figure 8.13b indicates a dominance
of tensile stresses with a magnitude of 691 [MPa] and compressive stresses with a
magnitude of -520 [MPa] post collapse. In figure 8.14 the stresses in z-direction
is presented. Here the compressive stresses increase from -727.8 to -1032 [MPa],
and the tensile stresses increase from 697.5 to 1030 [MPa], after the collapse. The
displacement in y-direction, described by figure 8.15, increases from 0.0022 [m] to
0.1087 [m] due to collapse of the stiffeners. The reader should notice the changes
in contour pattern due to changes in load fraction.

For the rest of the sampling locations, the results are found in appendix F.1. The
stiffeners indicated both collapse and buckling behaviour. Hence, an assessment
of the stiffeners were necessary, and is found in appendix F.2.
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8.4 Assessment of Boundary Conditions

In the previous analysis, presented under section 8.3.1, fixed boundaries were ap-
plied. Fixed boundaries are in most cases not an actual model of the boundaries,
as the supporting girders will not be infinitely stiff. To obtain the most realistic
result of the model response, and study the effect of varying support, the bound-
aries were changed. This section will provide further information on the set-up
and results of the boundary condition assessment. The applied load is set to a
pressure of 47 [MPa], equally the previous assessment.

8.4.1 Modelling of the Boundary Conditions

Due to the curvature of the model, each stiffener cross section had an individual
plane applied with origin located at the point where the stiffener webbing and plate
interacts, as shown in figure 8.16a. To simulate the support of the surrounding
girders, a rotational spring with spring stiffness κ was applied to the origin of the
local coordinate system at each stiffener end (figure 8.16a). The location of this
rotational spring is an important factor, as it defines the assumed behaviour of
the supporting girder. For this analysis, an assumption of warping only applied.
The boundary of each spring were set to grounded, i.e. fixed to the ground.
Each spring were assigned with a rotational degree of freedom around the local
x-axis. To assign this rotational stiffness to the entire cross section, a multi point
constraint (MPC) was applied to the outline of each stiffener and jointed to the
point where the spring was located. The MPC is a rigid connection, where all
forces and moments are transferred to a given location. The MPC connection is
illustrated in figure 8.16b.

(a) The local coordinate system for each stiff-
ener end. (b) The edges of each stiffener jointed to the

local spring with a MPC, are marked in red.

Figure 8.16: Modelling of rotational boundaries. The y-axis is parallel to the web
and the z-axis is perpendicular to the stiffener cross section. Each stiffener end
are assigned an individual spring located in the origin of the coordinate system in
figure (a). The yellow lines illustrate the MPC.
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From figure 8.2, the short edge defines the length and the long edge defines the
width of the plate. Along the length, the boundaries are restrained with no deflec-
tion or rotation. Hence, the supporting frames are assumed infinitely stiff. This
is applied to reduce the extent of the assessment of the boundaries, and keep the
main focus on the supporting girders. The plate edge over the width is restrained
against translation and rotation in all directions globally, while each stiffener are
allowed to rotate around the local x-axis and move along the local z-axis. Further,
the stiffener cross sections are fixed against translation in x- and y-direction and
rotation about the y- and z-axis locally. This, together with the applied springs,
will simulate warping of the supportive girder. The local boundaries for the stiff-
eners will conduct the same behaviour of interaction between girder and stiffener
as if welded together.

8.4.2 Spring Stiffness

To simulate different girder dimensions, various spring stiffness κ were assigned to
the different analysis. The following table presents the different stiffness applied
in the analysis.

Table 8.6: Different stiffness κ assigned to the springs.

Analysis # - Stiffness, κ [N/rad]

1 - 1 · 103

2 - 1 · 106

3 - 1 · 109

The different values of spring stiffness were chosen arbitrarily, hence no dimensional
calculations of the supportive girders were performed to predict these values.

8.4.3 Results of Boundary Condition Assessment

For this assessment, the sampling locations remain the same as for the assessment
of the model with fixed boundaries. For the plate, both stresses and true strain
were measured in x- and z-direction. Equal measures as previous were conducted
for the stiffener flanges. This assessment will focus on the varying behaviour due
to changes in the spring stiffness as given in table 8.6.
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Plate Assessment - Stiffener Side

For the stiffener side of the plate, the following stress versus true strain plots apply
for the three different variations of spring stiffness.
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(a) Spring stiffness κ = 1 · 103 [N/rad].
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(b) Spring stiffness κ = 1 · 106 [N/rad].
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(c) Spring stiffness κ = 1 · 109 [N/rad].
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(d) Fixed boundary condition.

Figure 8.17: Stress σx versus true strain εx in x-direction at location 1 and 2 on
the stiffener side.

From figure 8.17 one can observe similar behaviour for the stress versus true strain
curves. In figure 8.17a the initial yield in location 1 is located at 300 [MPa], while
for figure 8.17b and 8.17c the initial yield is located at approximately 325 and 330
[MPa] respectively. For location 2, the initial yield is located at 160 [MPa] for a
spring stiffness of κ equal 1 · 103 in figure 8.17a. This change as the spring stiffness
is increased. In figure 8.17b, the initial yield for location 2 is 170 [MPa]. While
in figure 8.17c, the initial yield is 175 [MPa]. The curves for both locations tend
to approach the behaviour of the stress versus true strain for a fixed boundary
condition, as the spring stiffness is increased. This is well understood by the
following figure.
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(b) True strain, εx, location 1.
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(c) Stress, σx, location 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

0.01

0.02

0.03

0.04

0.05

T
ru
e
st
ra
in
,
ε
x
[-
]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109

(d) True strain, εx, location 2.

Figure 8.18: Stress σx and true strain εx in x-direction at location 1 and 2 plotted
over time. The scale on the x-axis present the load fraction.

Figure 8.18 does prove that the plate behaviour in location 1 and 2 tends to
approach the behaviour of a plate with fixed boundaries. Additionally, one can
observe that the capacity of the model now is reduced as the sudden increase
in both stress and true strain has been reduced from a load fraction between
0.7 and 0.8, down to a load fraction between 0.4 and 0.6. It is observed that an
increase in stiffness from κ equals 103 to 109 [N/rad] does not improve the capacity
significantly.
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The same assessment is applied in the z-direction for location 1 and 2. The fol-
lowing figures present the results of this assessment.
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(a) Spring stiffness κ = 1 · 103 [N/rad].
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(b) Spring stiffness κ = 1 · 106 [N/rad].
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(c) Spring stiffness κ = 1 · 109 [N/rad].
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(d) Fixed boundary condition.

Figure 8.19: Stress σz versus true strain εz in z-direction at location 1 and 2 on
the stiffener side. Note the different scales between each figure.

In figure 8.19, the curves for the spring supported stiffeners tend to develop positive
stresses in the final state. For the spring stiffness κ equals 103, presented in figure
8.19a, the strains and stresses in location 1 become positive when δ equals 1.
This indicates the effect of the Poisson’s ratio and the impact of plate capacity.
In figure 8.19b and 8.19c the strains are reduced, due to more support from the
increased spring stiffness κ, while the stresses still became positive. The same effect
is observed for location 2, thus less stress and strain are observed. For location
2, the compressive stresses are larger prior to collapse compared to location 1,
and indicate less stress in x-direction at location 2 prior to collapse. This could
be observed by looking at figure 8.18a and 8.18c, and the difference in stress
magnitude at a load fraction between 0.4 and 0.5. The curves in figure 8.19a,
8.19b and 8.19c tend to turn toward positive strains at approximate 300 [MPa] of
tensile stresses. This is explained by figure 8.20 below.
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(a) Stress, σz, location 1.
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(b) True strain, εz, location 1.
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(c) Stress, σz, location 2.
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(d) True strain, εz, location 2.

Figure 8.20: Stress σz and true strain εz in z-direction at location 1 and 2 plotted
over time. The scale on the x-axis presents the load fraction.

In figure 8.20 it is shown how the increased spring stiffness approaches the be-
haviour of the fixed boundary condition. Equal the stresses and strains in figure
8.18, the same capacities are observed here, for a load fraction δ between 0.4 and
0.6. From figure 8.20b and 8.20d one can observe that the curve for spring stiffness
κ equals 103 has steeper curve after the turning point (located at a load fraction
of 0.5) compared to the stiffer springs. From the stress curves presented in figure
8.18 and 8.20 one can observe capacities of approximately 0.4, 0.45 and 0.5 for
spring stiffness κ equals 103, 106 and 109 respectively. The strains from the same
figures indicate the same capacities. To avoid buckling of the plate model, the
load capacity equals 18.8 [MPa] for a spring stiffness κ equals 103, while the load
capacity equals 21.15 [MPa] for κ equals 106, and 23.5 [MPa] for κ equals 106.
This is a reduction compared to the load capacity of 34.55 [MPa] for the plate
model with fixed boundaries.
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The assessment gave the following contour plots of displacement in y-direction and
stresses in x- and z-direction. Note that the load fraction for these plots equals 1,
hence the total load of 47 [MPa] is applied.

(a) Spring stiffness κ = 1 · 103 [N/rad].

(b) Spring stiffness κ = 1 · 106 [N/rad].

(c) Spring stiffness κ = 1 · 109 [N/rad].

Figure 8.21: Contour plot of stresses in x-direction σx for fully loaded model for
the different spring stiffness. The load fraction equals 1.

From figure 8.21a one can observe a large extent of tensile stresses with a magnitude
of 690 [MPa] located at the centre of the plate. In figure 8.21b one can observe
a smaller concentration of tensile stresses located at the centre of the plate with
a higher magnitude. The maximum tensile stress reaches a magnitude of 716.3
[MPa]. While figure 8.21c has a further reduced field of tensile stresses with a
magnitude of 778.1 [MPa]. This indicates that the increased boundary support
raise the capability of tackling stresses, and also a better support provided to the
plate by the stiffeners, regarding Hooke’s law.
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(a) Spring stiffness κ = 1 · 103 [N/rad].

(b) Spring stiffness κ = 1 · 106 [N/rad].

(c) Spring stiffness κ = 1 · 109 [N/rad].

Figure 8.22: Contour plot of stresses in z-direction σz for fully loaded model for
the different spring stiffness. The load fraction equals 1.

In figure 8.22a the tensile stress reaches a value of 722 [MPa] closest to the middle
stiffener. The area of large stress is reduced further in figure 8.22b and reaches
a magnitude of 742.7 [MPa]. In figure 8.22c the magnitude of the stress at the
centre of the plate is 660.6 [MPa]. This indicate more support from the stiffeners
as the spring stiffness is increased.
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(a) Spring stiffness κ = 1 · 103 [N/rad].

(b) Spring stiffness κ = 1 · 106 [N/rad].

(c) Spring stiffness κ = 1 · 109 [N/rad].

Figure 8.23: Contour plot of displacement in y-direction for fully loaded model for
the different spring stiffness. The load fraction equals 1.

From figure 8.23a the maximum displacement is found equal 0.169 [m] for the
centre of the plate. This is further reduced as the spring stiffness κ is increased.
From figure 8.23b the maximum displacement is found equal 0.1491 [m], while
in figure 8.23c the magnitude of the displacement is further reduced to a value of
0.1389 [m], for the centre of the plate. Hence, a fixed boundary would provide more
support and less deflection. For the fixed boundary, the maximum displacement
was found to equal 0.1087 [m].
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Plate Assessment - Load Side

For the loaded side of the plate, the following stress versus true strain plots apply
for the three different variations of the spring stiffness κ.
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(a) Spring stiffness κ = 1 · 103 [N/rad].
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(b) Spring stiffness κ = 1 · 106 [N/rad].
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(c) Spring stiffness κ = 1 · 109 [N/rad].
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(d) Fixed boundary condition.

Figure 8.24: Stress σx versus true strain εx in x-direction at location 1 and 2 on
the load side.

In figure 8.24 the curves for location 1 tend to approach the behaviour of the fixed
boundary model, as the spring stiffness κ is increased, while location 2 show a
different behaviour. Figure 8.24a indicate a minimum compressive stress of -525
[MPa] for location 1, and -410 [MPa] for location 2. While figure 8.24b presents
a minimum compressive stress of -440 [MPa] for location 1, and -460 [MPa] for
location 2. Figure 8.24c indicates a minimum compressive stress of -575 [MPa] for
location 1, and -500 [MPa] for location 2. For location 1 in all figures, it is obvious
that Hooke’s law applies to the stress versus true strain curves. Until first yield,
both locations tend to have equal behaviour as the fixed boundary model. Further
study of the behaviour is given by the following figure.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-0.0225

-0.02

-0.0175

-0.015

-0.0125

-0.01

-0.0075

-0.005

-0.0025

0

T
ru
e
st
ra
in
,
ε
x
[-
]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109

(b) True strain, εx, location 1.
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(c) Stress, σx, location 2.
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(d) True strain, εx, location 2.

Figure 8.25: Stress σx and true strain εx in x-direction at location 1 and 2 plotted
over time. The scale on the x-axis present the load fraction.

Compared to figure 8.18, figure 8.25 does not indicate a clear behaviour approach-
ing the fixed boundary condition, as κ is increased. In figure 8.25b and 8.25d for
the curve of κ equals 103, one can observe a sudden increase in strains at a load
fraction of 0.5. The curves of κ equals 106 and 109 do not tend to increase in the
same manner. Further, one can observe a reduction in capacity. This is indicated
in figure 8.25a and 8.25c, as the load fraction that defines the capacity is reduced
from 0.735 for the fixed boundary condition, to a load fraction between 0.4 and
0.6 for the boundaries modelled by springs.
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The same assessment for the different locations are conducted for the stresses and
strains in z-direction. The following figures present the results.
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(a) Spring stiffness κ = 1 · 103 [N/rad].
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(b) Spring stiffness κ = 1 · 106 [N/rad].

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
True Strain, εz [-]

-700

-600

-500

-400

-300

-200

-100

0

S
tr
es
s,

σ
z
[M

P
a
]

Location 1

Location 2

(c) Spring stiffness κ = 1 · 109 [N/rad].
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(d) Fixed boundary condition.

Figure 8.26: Stress σz versus true strain εz in z-direction at location 1 and 2 on
the load side. Note the different scales between each figure.

For the stress versus true strain curves presented in figure 8.26 the increased stiff-
ness approaches the behaviour of the fixed boundary condition. For all curves,
first yield is located between a compressive stress with a magnitude of -500 and
-600 [MPa]. Also, the strains at collapse are reduced as the spring stiffness is
increased. After collapse, the final stress condition approaches the value of the
fixed boundary condition assessment. This indicates better stiffener support of
the plate, due to greater support at the stiffener ends as the spring stiffness κ is
increased. The behaviour is better understood by the following figures, where the
stresses and strains for location 1 and 2 are plotted over time.
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(b) True strain, εz, location 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-800

-700

-600

-500

-400

-300

-200

-100

0

S
tr
es
s,

σ
z
[M

P
a]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109

(c) Stress, σz, location 2.
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(d) True strain, εz, location 2.

Figure 8.27: Stress σz and true strain εz in z-direction at location 1 and 2 plotted
over time. The scale on the x-axis present the load fraction.

Figure 8.26 indicates a behaviour approaching the fixed boundary condition as
the spring stiffness κ is increased. Figure 8.27 substantiates this, as the curves in
all cases approach the behaviour of the fixed boundary condition. Figure 8.27a
and 8.27b present equal collapse load fractions (as from figure 8.18a and 8.18b),
respectively 0.4, 0.45 and 0.5 for the three different magnitudes of spring stiffness.
The same are observed for figure 8.27c and 8.27d. Comparing location 1 and 2,
one can observe less compressive stress and true strain levels for location 2. This
could indicate less support from the stiffener outlining the loaded area, as this
stiffener is warping due to unsymmetrical loading. The assessment of the load side
of the plate resulted in the following contour plots of stresses in x- and z-direction,
as well as displacement in y-direction, in a fully loaded condition.
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(a) Spring stiffness κ = 1 · 103 [N/rad].

(b) Spring stiffness κ = 1 · 106 [N/rad].

(c) Spring stiffness κ = 1 · 109 [N/rad].

Figure 8.28: Contour plot of stresses in x-direction σx for fully loaded model for
the different spring stiffness. The load fraction equals 1.

In figure 8.28a one can observe a maximum tensile stress of 690.4 [MPa] located at
the centre of the plate, while the largest compressive stress is found equal -803.1
[MPa] located under the middle stiffener. As the spring stiffness was increased, the
maximum tensile stress at the centre of the plate reduces to 597.2 [MPa], and the
tensile stresses are increased to -713.8 [MPa] as shown in figure 8.28b. In figure
8.28c, the same stresses change to 425.6 [MPa] and -631.8 [MPa] respectively. The
stiffeners do provide support for the plate in x-direction as the increased support
reduces stresses in x-direction, hence Hooke’s law applies.
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(a) Spring stiffness κ = 1 · 103 [N/rad].

(b) Spring stiffness κ = 1 · 106 [N/rad].

(c) Spring stiffness κ = 1 · 109 [N/rad].

Figure 8.29: Contour plot of stresses in z-direction σz for fully loaded model for
the different spring stiffness. The load fraction equals 1.

From figure 8.29a the tensile stress at the centre of the plate reaches a magnitude
of 463.5 [MPa], while the largest compressive stress is located beside the middle
stiffener, reaching a level of -570.4 [MPa]. The same locations in figure 8.29b
reach a level of 364.4 and -644.5 [MPa] respectively. Further increase of the spring
stiffness, presented in figure 8.29c, results in -141.1 [MPa] for the centre of the plate,
and -675.6 [MPa] for the area besides the middle stiffener. As the stiffeners are
assigned larger rotational restriction, due to increased spring stiffness, the collapse
of the three middle stiffeners induce more compressive stresses in z-direction to
the load side of the plate.
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(a) Spring stiffness κ = 1 · 103 [N/rad].

(b) Spring stiffness κ = 1 · 106 [N/rad].

(c) Spring stiffness κ = 1 · 109 [N/rad].

Figure 8.30: Contour plot of displacement in y-direction for fully loaded model for
the different spring stiffness. The load fraction equals 1.

In figure 8.30 the maximum displacement in y-direction is 0.169, 0.1491 and 0.1389
[m] found from figure 8.30a, 8.30b and 8.30c, respectively. This indicates more
support from the stiffeners, as the spring stiffness κ is increased.

For more plots of stress versus true strain from the boundary assessment, these
could be found in appendix F.3.
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8.4.4 Findings From the Bow Model Assessment

The four different boundary conditions, where three of them were modelled by
application of rotational springs and one was fixed against both translation and
rotation, gave four different load capacities. By applying the capacities (load frac-
tions) in the contact pressure formula (equation 8.1), a critical ridge ice thickness
hi,crit could be estimated. The empirical contact pressure pc,emp was estimated to
47 [MPa]. Simple calculations give the following equation:

hi,crit =

√
δ · pc,emp ·A ·

(
sin(β)− 0.1 · cos(β)

)
Cgeo ·σf (ηb)

(8.4)

Applying the original values for the angle β, geometrical constant Cgeo, contact
area A and flexural strength σf (ηb) (from table 8.5), and apply the load fraction
δ to the empirical contact pressure pc,emp, one obtain the following equation:

hi,crit = 3.63 ·

√
δ (8.5)

Equation 8.5 could be applied to estimate the critical ice thickness hi,crit for each
boundary condition, by use of the load fraction δ at collapse. Additionally, one
could apply the load fraction to estimate both the critical contact pressure pc,crit
and resultant force FR,crit. Where the critical resultant force FR,crit is estimated
by equation 8.6 and the critical contact pressure pc,crit is given by equation 8.7.

FR,crit = δ · pc,emp ·A (8.6)

pc,crit = δ · pc,emp (8.7)

From equation 8.6 A is the contact area. The following table presents the results
and the maximum plate deflection umax when δ equals 1.

Table 8.7: Critical values for the different boundary conditions.

Boundary δ [-] hi,crit [m] pc,crit [MPa] FR,crit [kN] umax [m]

Fixed 0.735 3.11 34.55 13820 0.1087
κ = 103 0.400 2.29 18.80 7520 0.1690
κ = 106 0.450 2.44 21.15 8460 0.1491
κ = 109 0.500 2.57 23.50 9400 0.1389
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8.5 Discussion of the Bow Model Results

This section provides a discussion of the results from the bow model assessment
for both fixed and varying boundary conditions. For this chapter, two main top-
ics have been assessed. The first analysis applied fixed boundaries and and the
empirical ice pressure found from measurements of ridged ice. The aim was to
study the plate behaviour. The second analysis applied three different boundary
conditions modelled by different supports applying rotational springs to the end
of each stiffener, allowing the cross section to rotate about the plate edge. The
aim of this assessment was to study the impact of various girder frame support
and compare it to the fixed boundary model.

The Fixed Boundary Model

The fixed boundary problem was exposed to a pressure of 47 [MPa] obtained from
the sea ice measurements applying the empirical ice pressure formula. At a load
fraction δ equal 0.735, the middle stiffener started to develop plastic hinges close
to the boundaries. While the stiffeners located next to the middle one initiated
warping, and the plate centre collapsed. This indicated that the plate model could
withstand a load of 34.55 [MPa], hence the critical ice height hi,crit became 3.11
[m], as given in table 8.7. The ridge had a total height of 3.63 [m] which turned
out to be large enough to create collapse in the model. Thus, this is only valid
if the ridge has an average flexural strength of 0.904 [MPa] and the geometrical
coefficient equals 0.75. Also, the contact area must equal 0.4 [m2] to create such a
pressure. In figure F.15, F.16 and F.17 given in appendix F.1, one can observe the
collapse and warping of the three middle stiffeners. It should be noted that the
displacement is multiplied with a factor to be visible in these figures. The plastic
hinges are located at each end of the middle stiffener. From figure F.16b one can
observe a stress in y-direction, located at the webbing close to the ends, with a
magnitude of -500 [MPa]. This indicates yielding across the webbing as the stress
level is above the yield stress of the applied steel. The effect of this collapse is
displayed in figure F.15 where the webbing of the three middle stiffeners suffers
from compressive stresses with a magnitude of -609 [MPa] located close to the
plate, prior to collapse. After collapse, the webbing suffers from tensile stresses
with a magnitude of 686.4 [MPa] located close to the flange. In figure 8.7 and
8.8 one can observe how the stiffener support is activated and how the stress
pattern changes due to collapse. Prior to collapse, the maximum displacement
was found to equal 0.0022 [m], which is small compared to the displacement post
buckling. After the collapse, the plate was displaced 0.1087 [m]. This indicates
that the stiffeners are a critical support for the plate. In figure 8.8a one can observe
compressive stresses in z-direction with a magnitude of -727.8 [MPa] located at the
flange ends of the three middle stiffeners. Hence, large forces would be induced
to the supportive frames prior to collapse. Post collapse, as shown in figure 8.8b,
the magnitude of stresses at the flange ends have decreased to a value of -688.6
[MPa]. Thus, the five middle stiffeners now have stresses with large magnitude
located at the flanges. These stress concentrations would induce larger transverse
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stresses to the supportive frames, as two additional stiffeners now induce stresses
to the support. This indicates that the boundaries of the plate should be assessed,
as fixed boundary conditions would not describe actual conditions.

The Spring Modelled Boundary Model

The boundaries were assessed by applying three different springs with various
stiffness. For the assessments, the stiffness κ were set to 103, 106 and 109 [N/rad].
The applied pressure was set to 47 [MPa]. In table 8.7 the load fractions δ and
critical ice height hi,crit are given. For a spring stiffness κ of 103, the load fraction δ
was found to equal 0.4 in general. This resulted in a critical ice height hi,crit of 2.29
[m]. Hence, an ice ridge height of 3.63 [m] would collapse the plate and surrounding
supportive frames. Compared to the fixed model, the stiffeners did not suffer from
the same development of a plastic hinge and warping. The maximum tensile plate
stress found in figure 8.21 and 8.22 for a load fraction δ equals 1, were 690 and
722 [MPa] for x- and z-direction respectively. Compared to the fixed model, where
the same stress components reached 690.1 and 686.4 [MPa]. This indicates better
support from the stiffeners located at the plate when the boundaries are fixed, as
the collapse load fraction is higher in the fixed boundary case. Also, more forces
are transferred to the stiffeners as the plate stress is reduced in the fixed boundary
model. The displacement found from the model with κ equals 103, was found equal
0.169 [m]. This is almost 0.07 [m] larger than for the fixed model. Relative to the
stiffener height of 0.170 [m], the spring modelled boundary model suffer from large
displacements.

As the spring stiffness along the boundaries was increased to κ equals 106, the
load fraction δ increased to 0.45 and the critical ice height hi,crit became 2.44
[m]. A ridge height of 3.63 [m] would still result in plate collapse. Compared to
what found from the assessment applying springs with κ equal 103, this boundary
condition indicates slightly more warping of the two stiffeners surrounding the
middle stiffener. Additionally, the middle stiffener indicates collapse. In figure
8.22 one can observe a change in stresses located at the stiffener flanges. The
five middle stiffeners in figure 8.22a has a maximum tensile stress of 722 [MPa],
while in figure 8.22b this is reduced to 616.6 [MPa]. This reduction is caused by
a more even stress distribution for the flanges. Also, one can observe a reduction
in stresses for the outermost located stiffeners. Similar behaviour for the plate
stress could be observed for figure 8.21a and 8.21b, and figure 8.22a and 8.22b.
The magnitude of the stress is increased, while the extent is reduced towards the
centre of the plate. Additionally, the displacement reduces from 0.169 to 0.1491
[m] as κ is increased.

By applying a spring stiffness κ of 109 [N/rad] the critical ice thickness hi,crit
increased to 2.57 [m] and the load fraction δ increased to 0.5. For a load fraction
of 1, the maximum tensile plate stress in x- and z-direction were found to equal
778.1 and 660.6 [MPa] from figure 8.21c and 8.22c respectively. Compared to the
model where κ equals 103, this model has an increased stress level in x-direction
and a decreased stress level in z-direction. The change in stresses is reasonably
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due to better support in z-direction, parallel to the stiffeners. For the stiffeners,
the flange stress in z-direction was found to equal 660.6 [MPa] in tension. This is a
decrease compared to the model with κ equal 103, while it is an increase compared
to the model with κ equal 106. An important notice is the extent of the stresses.
For this model, the five middle stiffeners are the most affected ones. While for the
model applying κ equal 106, the seven middle stiffeners are impacted by the stress
level of 616.6 [MPa]. The increased stress level for the last model, is reasonably due
to higher stresses distributed to fewer stiffeners. The displacement in y-direction is
reduced to a maximum value of 0.1389 [m] for the centre of the plate. Additionally,
the area suffering from displacement is further reduced in extent (in x-direction)
as the spring stiffness was increased. This implies that stiffer boundaries reduce
the extent of the displacement for the plate field in x-direction, and increase it in
z-direction.

Short Discussion of Results Presented in Appendix F.3

In general does the behaviour of the stress and true strain approach the fixed
boundary behaviour as the spring stiffness is increased. By comparing the locations
1-10 for the plate, one observes a small increase in the load fraction δ, as the
location of sampling is located further away from the plate centre. Additionally,
it is observed that the true strain decrease rapidly. For location 9 and 10, the
behaviour is different for the model with springs compared to the fixed boundary
model. Reasonably due to slight differences in the modelling of the boundaries,
and the locations were sufficiently close to the boundary. For the fixed boundary
condition, all edges were fixed. While for the model with springs, the motion of the
stiffener ends required ability to move in z-direction. To avoid errors in Abaqus,
the plate edge between each stiffener could not be restricted with translation in
z-direction, as the nodes defining the interaction between stiffener and plate would
create an error.

For the stiffener assessment, the stress level was approximately identical in all
cases. The main difference was the strain level. Between the weakest and stiffest
spring, the strain level was reduced more than three times the initial value. For
the fixed boundary problem, the strain reduction was approximately 10 times the
strain value of the weakest spring boundary. The figures presenting stress and
true strain plotted over time indicate an approach towards the fixed boundary
condition as the spring stiffness was increased. For sampling location 5 and 6 (for
the stiffeners, see figure F.10), located closest to the boundaries, the difference in
behaviour was large. Reasonably affected by the same issue as for the sampling
location 9 and 10 located at the plate. Also, the critical load fractions δ were
increased compared to the ones found from the plate centre.



Chapter 9

Discussion of Results

This section will summarize all the discussions presented in chapter 3 - Measure-
ments of Sea Ice Strength, chapter 5 - Review of Ship Classification, chapter 7 -
Results of Analysis Based on Level Ice Measurements and Regulations and chapter
8 - Results of Analysis Based on Ridge Ice Measurements. Hence, only present the
findings regarded most important. The reader should be familiar with the results
previously presented, and also the results presented in the appendix.

Measurement of Sea Ice Strength

The measurements consisted of two types of ice, both level ice and ridged ice. For
the level ice data, the findings coincide well with Timco and Weeks (2010). The
low saline ice should have had higher compressive strength. Thus, from the data
set it was found that the low saline ice also had high temperature in which made
it ductile and porous (i.e. weak), hence only reached strengths up to 2.5 [MPa]
in compression. The ice with higher salinity were cold and reached strengths up
to 25 [MPa]. The flexural strength depends on the brine porosity, which in term
depends on temperature, as low temperature give less porosity. This resulted
in high flexural strength for the samples with high compressive strength (and low
temperature). From the data set, there existed no data describing the volume of the
samples. By applying a uniformly distributed random variable for description of
the diameter, it was found that 10 [mm] variation of the diameter gave a deviation
in the flexural strength of 6.356 [%]. The average flexural strength was found to
equal 0.499 [MPa]. According to Ekeberg (2015), this level ice should be first-year
ice.

For the ridged ice data, the salinities reached from 2 to 6 [%] and the compressive
strength varied between 2 and 10 [MPa], while the temperatures were located
between -17 to -20 [◦C]. According to Ekeberg (2015) this is a second-year ridge,
and was substantiated by low temperatures and porosities. As a result, the flexural
strength became higher than for the level ice. The consolidation process is also a
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factor affecting the porosity. Applying a variable diameter of 10 [mm] to account
for the variation in volume that may occur, the flexural strength became 0.904
[MPa] with a deviation of 5.23 [%] compared to tests where the samples were
assumed perfect without imperfections.

Review of Ship Classification

The two regulations applied in this thesis were provided by DNV GL and IACS.
The main difference between the two regulations were the class criteria. DNV
GL defined the class notations based on the ice thickness and ramming conditions
that may occur during operation, and also the area of operation. While IACS
defined their classes with respect to operational time and expected ice age without
considering the operational area. From DNV GL, the load patch area was one of
the input parameters, while for IACS one applied the calculated loads to provide
both contact pressure and area. IACS also applied class coefficients decided by the
vessel class, which in terms were applied in the calculation of the loads. DNV GL
applied structural dimensions as a criterion for decision of the coefficients applying
to the formulas. Also, location of the interaction area was a criterion stated by
DNV GL. Holm (2012) found the plate thickness and design load to be generally
higher for IACS class PC-1, compared to DNV GL class Icebreaker POLAR-10.

Results of Analysis Based on Level Ice Measurements and Regulations

The three different contact pressures were found to equal 1.475, 6.419 and 15.56
[MPa] from the empirical pressure model, DNV GL and IACS respectively. All
pressures induced stresses above yield to the plate model and initiated non-linearities.
As the pressure increased, the displacement, stresses and strain were increased.
The behaviour is according to Moan (2003), as increased forces and pressures
would induce larger body forces. The effect of the Poisson’s ratio was also ob-
served. All three assessments had occasions of increasing stress in z-direction with
negative strains, until yielding occured in x-direction, and the strains ended up pos-
itive in z-direction. For the empirical pressure model, it was only observed yield
stress between the middle stiffeners where the load was applied. While the other
two models had a larger field of initial yield. The two middle stiffeners suffered
from warping due to the empirical ice pressure, while the two outermost stiffeners
suffered from warping as the ice pressure from the regulations were applied.

Results of Analysis Based on Ridge Ice Measurements

The analysis applied an ice ridge pressure estimated equal 47 [MPa] and four dif-
ferent boundary conditions. The first assessment applied fixed boundaries which
indicated a collapse at a load fraction δ equal 0.735. This resulted in a critical
contact pressure of 34.55 [MPa] and a critical ice height of 3.11 [m]. For loads
higher than the critical load, the middle stiffener developed plastic hinges at the
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ends and the two stiffeners located along the load boundary warped. The max-
imum deflection was found to 0.1087 [m] in y-direction. For the three boundary
assessments applying springs to support the stiffener ends, the load fractions were
reduced to 0.4, 0.45 and 0.5 for the springs with stiffness κ equals 103, 106 and 109

respectively. A collapse should occur faster as the support is reduced. The reduc-
tion in δ resulted in a reduced critical ice height hi,crit, and also larger maximum
displacement umax of the plate centre. For these three models, the load fraction
changed slightly as the sampling location was moved further from the plate centre.
Further, it was found irregularities for the locations close to the boundaries when
compared to the fixed model. As κ was increased, the stresses and true strains for
each sampling location tended to approach the behaviour of the fixed model, as
an infinitely stiff spring would act as a fixed boundary.
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Chapter 10

Conclusions

Several topics have been investigated throughout this thesis. This chapter will
present the conclusions of each topic. The main conclusions are listed in the end
of this chapter, to give the reader the ability to get a good overview.

Measurements of Sea Ice Strength

The measurements of sea ice provide results of level ice and ridged ice, with 91
and 108 measurements respectively. The measurements behave according to Timco
and Weeks (2010), as warm and porous ice behave ductile and cold ice, with less
porosity, are stronger than the weak ductile ice. Further, it should be noted that
the porosities are estimates based on temperature, density and salinity (based on
Cox and Weeks (1983)). Deviation from actual conditions may therefore occur.
The flexural strength is an empirical function based on the brine porosity of the
measurements (based on Timco et al. (1994)). Due to the fact that both the
flexural strength and brine porosity are based on empirical formulas, the obtained
flexural strengths may not present the actual level ice and ridged ice which were
physically measured. Additionally, the strength of ice is difficult to determine
as it depends on grain size and direction, load rate, temperature, salinity and
porosity. The temperature was found dominant compared to salinity, regarding
ice strength. Further, it is believed that the measured levels of flexural strengths
may occur during operations in ice infested waters. Also, the measurements are
gathered with low spatial resolution. This will lead to a representation of the
specific area where the measurements were conducted, as sea ice have large spatial
and temporal variations. Additionally, it is difficult to say whether the modelling
of defect variation is valid, as no data about the degree of defect for each sample
existed.
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Ice-Structure Interaction

The interaction model between ship and ice is a simplified model where both
spalling and crushing are disregarded. Further, the contact area is simplified and
given a fixed value, even tough the contact area will have temporal variations.
The difficulty in such a model, is to define a length and height of the contact
area. For a ship operating in ice, the number of interactions depend on the ice
concentration, and typically be very large. Hence, the interaction model provides
an estimate of one ice-structure interaction. Further, one could assume that the
pressure condition may occur once during operations, while it is not necessarily a
representation of the conditions presented by the sea ice data sets.

Review of Ship Classification

The two regulations presented by DNV GL and IACS are based on different sea
ice observations and model tests. Their prediction of the contact pressure do
differ. Additionally, do the safety factors and coefficients applied in their equations
differ. After the scaling of the contact pressure, the two regulations provided
contact pressures quite different in magnitude. Further, one could assume both
regulations to account for uncertainty in the ice-structure interaction model by
applying safety factors, and also apply ridged ice for load prediction as the pressure
levels were significantly high compared to the empirical pressure obtained from
level ice. Regarding the difference in pressure level between DNV GL and IACS,
it is reason to believe that the design loads provided by IACS are generally higher
than DNV GL, when considering the two classes PC-1 and Icebreaker POLAR-10.

Results of Analysis Based on Level Ice Measurements and Regulations

The plate model was exposed to three different contact pressures, one empirical
and two obtained from regulations. For this assessment, the height of the contact
area was set to 0.4 [m]. As lower contact area heights can occur, this could under-
estimate the force concentrations that may occur during ship-ice interaction. A
high force concentration can cause severe damage to the plate. Hence, the plating
is critical and the assessment with focus on the plate proved to be a good approach
as the stiffener spacing was large. The results from the assessment indicate the
dimensions to be a minimum requirement from the classification companies. Con-
sidering the magnitude of forces induced to the model, the stiffener dimensions
should have been larger and the stiffener spacing should be reduced. To comply
with the applied pressures, the model should have a thicker plate and a narrower
stiffener spacing. By comparing the three different pressures, the empirical contact
pressure model is low, reasonably due to absent of safety factors.
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Results of Analysis Based on Ridge Ice Measurements

During the modelling of the bow model, the findings from the plate model were
taken into account. This turned out to increase the capacity of the plate, regard-
ing the pressure level from the ridged ice which was approximately 30 times the
pressure from the level ice. The assessment of the bow model applied four different
boundaries, one fixed and three modelled by rotational springs applied to the cross
section of each stiffener end. Not unlikely was the fixed boundary more resistant to
the applied pressure, compared to the three spring modelled boundaries. Further,
the increased spring stiffness acted according to Moan (2003), as the behaviour
indicated an approach towards the behaviour of the fixed model. Thus, there exist
only an indication of such an approach. Hence, the spring stiffness should have
been increased further. Also, the rotational springs were only able to account for
warping of the supporting frames. In addition, only one type of failure was as-
sessed in the model. From the model, it was found that the stiffeners also could
develop plastic hinges, which in term also could occur for the supportive frames.
The model did in all four cases enter the non-linear region, thus permanent defor-
mations will not necessarily imply total failure. Compared to the boundaries with
rotational springs, the fixed boundary condition is a non-conservative condition
when assessing a local model.

Main Findings From the Conclusions

The main conclusions are listed by the bullet points below:

� The empirical contact model is able to give a simplified estimate of the
contact pressure for one interaction with ice, as there are several simplified
factors in the establishment of the empirical formula.

� The ice will have large temporal and spatial variation. Hence, the two data
sets applied to estimate flexural strength will only be valid for the certain ice
feature and location they present. Additionally, the ice feature will change
property over time.

� The regulations provided by DNV GL and IACS provide different results
regarding the contact pressure, and the method of obtaining the pressure
differs.

� The DNV GL regulations provide an absolute minimum requirement for the
dimensions of plate fields. This resulted in improvements for the bow model.

� The modelling of boundaries was able to represent warping of the supportive
frames, and does not account for development of plastic hinges in the frames.

� The non-linear analysis proved to be a correct choice, regarding the fact
that both models entered the non-linear behaviour region and suffered from
permanent deformations. The permanent deformations were expected.
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Chapter 11

Further Work and
Recommendations

This section presents suggestions to further work which could be conducted to
give a more detailed plate assessment. The assessments provided in this thesis
do only consider static assessment of the models, with evenly distributed loads
over a constant contact area. The applied ice pressures are found trough empirical
formulas and regulations. Several measures could be further investigated to provide
even more realistic and accurate results.

Both plate models had arbitrarily chosen main dimensions for the plates. Also, the
curved bow model applied curvature, where span and radius were chosen trying
to fit the hull angles of an ice going vessel. To give a better prediction of actual
conditions, a FE-model of an actual ship bow could be applied in further assess-
ments. This would provide more accurate dimensioning, hull angles and boundary
conditions for the local plate models. The boundaries for the global bow model
could be assumed fixed, as the distance between the loaded area and boundaries
would be large. Hence, the local support for the local plate models would provide
boundaries closer to actual conditions.

Regarding the fixed boundaries, they were found non-conservative in a perspective
of actual conditions. Further, the boundaries were modelled by springs supporting
the stiffener end cross section. The sampling points closest to the boundaries
indicated a behaviour not approaching the behaviour of the fixed boundary, as the
spring stiffness was increased. For further work, the modelling of the boundaries
applying spring stiffness should be improved. The issue was found for the plate
edge between the stiffeners. This issue could be fixed by applying translational
springs with large stiffness in z-direction to prevent motion of the plate edge.
Further studies could apply more spring stiffness tests to confirm that the spring
modelled boundaries approach the fixed model, as the three tests conducted in
this thesis only give indication of such an approach. Also, the supportive frames
could collapse in the same manner as the middle stiffener of the bow model. To

131



132 CHAPTER 11. FURTHER WORK AND RECOMMENDATIONS

simulate such a collapse, translational springs in y-direction could be applied along
the plate edge in further studies.

The measurement of ice consisted of 91 and 108 different samples for level ice and
ridged ice, respectively. By applying even more tests, one could develop an even
better approximation of actual ice conditions for further studies. Additionally,
one could perform flexural strength tests of sea ice to obtain a better estimate on
flexural strength data. As ice not necessarily fail in bending, other failure modes
could occur as well. In example, splitting and crushing may occur prior to bending
failure. By conducting a contact problem between a bow model and a body with
a material applying material properties of ice, one could perform an even more
realistic assessment in further studies. This study could also include arbitrary
shapes of the body, to investigate variety of the contact area.
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Appendix A

Sea Ice Measurement Data

This chapter contains data applied to obtain the plots presented in chapter 3. The
data for level ice were measured at Frysjaodden between May 31st and June 6th

2004. The data for ridged ice were measured in the Barents Sea October 21st

2004. The level ice data consist of vertical samples, while the ridged ice consist of
a variety of orientations of the basal planes.

A.1 Level Ice Porosities and Flexural Strengths

Table A.1 presents the porosities calculated based on the measurements conducted
by K. V. Høyland and the approximated flexural strength. The MATLAB scripts
applied to obtain these values are given in appendix B. The porosities are obtained
based on the assumptions that the diameter D had a constant value 70 [mm] and
a length L 175 [mm].

Table A.1: Air porosities ηa, brine porosities ηb, total porosities ηT and flexural
strength σf for a sample length L 175 [mm] and diameter D 70 [mm].

Sample # ηa ηb ηT σf
1 0.14189006 0.00710416 0.14899422 1.07219834
2 0.05143267 0.01215048 0.06358316 0.92050385
3 0.04621147 0.01091045 0.05712192 0.95230449
4 0.05068788 0.00971422 0.06040210 0.98587732
5 0.02177439 0.01016948 0.03194387 0.97273063
6 0.03999723 0.01170175 0.05169898 0.93169189
7 0.17836258 0.01025646 0.18861904 0.97027244
8 0.04680844 0.01286317 0.05967161 0.90341624
9 0.02556356 0.01200486 0.03756842 0.92409684
10 0.03536485 0.01238779 0.04775263 0.91472415
11 0.02576691 0.01267004 0.03843695 0.90796771

I
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Sample # ηa ηb ηT σf
12 0.01387670 0.01073373 0.02461043 0.95707260
13 0.00632704 0.01243640 0.01876344 0.91355151
14 0.01143569 0.01330825 0.02474393 0.89314079
15 0.01725028 0.01120969 0.02845997 0.94437108
16 0.00411579 0.01048289 0.01459868 0.96395007
17 0.00973968 0.01304011 0.02277978 0.89929633
18 0.01155362 0.01369399 0.02524761 0.88446563
19 0.17059517 0.01124686 0.18184202 0.94339783
20 0.02733468 0.01267319 0.04000787 0.90789301
21 0.01780679 0.01303007 0.03083686 0.89952876
22 0.02438532 0.01296154 0.03734687 0.90111994
23 0.06429340 0.01213014 0.07642353 0.92100378
24 0.01399816 0.01090915 0.02490731 0.95233931
25 0.01757247 0.01226359 0.02983607 0.91773743
26 0.02132338 0.01438081 0.03570419 0.86951830
27 0.02661856 0.01199426 0.03861282 0.92435994
28 0.02163059 0.01173601 0.03336660 0.93082557
29 0.03231663 0.01556974 0.04788637 0.84502813
30 0.06028329 0.01251939 0.07280268 0.91155818
31 0.01666321 0.01106897 0.02773218 0.94808038
32 0.04307699 0.01462725 0.05770424 0.86430278
33 0.02895650 0.01475621 0.04371271 0.86160359
34 0.05754508 0.01293482 0.07047989 0.90174231
35 0.01671110 0.01188026 0.02859136 0.92719982
36 0.03022413 0.01337902 0.04360315 0.89153333
37 0.04551028 0.01590461 0.06141489 0.83842225
38 0.07372465 0.01329314 0.08701779 0.89348479
39 0.04561104 0.01089977 0.05651081 0.95259088
40 0.04022769 0.01572303 0.05595072 0.84198908
41 0.09997352 0.01690562 0.11687914 0.81937515
42 0.10424579 0.01313938 0.11738517 0.89700514
43 0.01497915 0.01163130 0.02661044 0.93348042
44 0.02103268 0.01554779 0.03658047 0.84546540
45 0.03725388 0.01617198 0.05342587 0.83323413
46 0.08654048 0.01419599 0.10073647 0.87347997
47 0.06960790 0.05748257 0.12709047 0.42979501
48 0.06536241 0.10027892 0.16564133 0.27343352
49 0.15751132 0.15349176 0.31100307 0.17580954
50 0.09408482 0.16389862 0.25798343 0.16281046
51 0.07828713 0.18585400 0.26414113 0.13951258
52 0.13818526 0.12234326 0.26052852 0.22506430
53 0.09082778 0.16108724 0.25191503 0.16618330
54 0.08879341 0.33849351 0.42728692 0.05751660
55 0.07747297 0.12761702 0.20508998 0.21540627
56 0.10513838 0.41049772 0.51563610 0.04068044
57 0.11116299 0.14952159 0.26068459 0.18116159
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Sample # ηa ηb ηT σf
58 0.08782209 0.18393137 0.27175347 0.14135868
59 0.09672348 0.07707553 0.17379901 0.34399778
60 0.06625110 0.14450420 0.21075530 0.18826736
61 0.09662164 0.33558549 0.43220713 0.05836990
62 0.07000281 0.13483804 0.20484085 0.20314407
63 0.04017781 0.12883920 0.16901701 0.21325560
64 0.15788147 0.36782765 0.52570912 0.04974549
65 0.12925757 0.14986566 0.27912323 0.18068856
66 0.09007304 0.12451298 0.21458602 0.22101465
67 0.16864141 0.30883171 0.47747311 0.06704731
68 0.15324965 0.14946551 0.30271515 0.18123887
69 0.16548387 0.20339278 0.36887664 0.12411924
70 0.06488810 0.18862334 0.25351143 0.13691205
71 0.02124936 0.20776241 0.22901177 0.12065178
72 0.04719508 0.22719739 0.27439247 0.10673549
73 0.03870782 0.19814983 0.23685765 0.12846346
74 0.02435997 0.20654792 0.23090789 0.12160201
75 0.09311024 0.24059245 0.33370269 0.09838771
76 0.03493688 0.21142970 0.24636658 0.11784353
77 0.15953527 0.17165739 0.33119266 0.15399091
78 0.02378660 0.18564548 0.20943208 0.13971117
79 0.23232735 0.42018020 0.65250754 0.03892264
80 0.06925289 0.20902136 0.27827425 0.11967748
81 0.08603595 0.25940683 0.34544278 0.08808195
82 0.06494003 0.22657471 0.29151475 0.10714650
83 0.10572135 0.21190373 0.31762508 0.11748710
84 0.05724709 0.17768071 0.23492780 0.14760212
85 0.14996406 0.32877743 0.47874150 0.06043262
86 0.11040837 0.19977892 0.31018729 0.12709145
87 0.12018218 0.20458534 0.32476752 0.12315944
88 0.08711691 0.19363471 0.28075162 0.13237479
89 0.09164755 0.21122054 0.30286809 0.11800127
90 0.12457407 0.36253852 0.48711259 0.05104217
91 0.08036068 0.18477861 0.26513929 0.14054099
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A.2 Ridged Ice Porosities and Flexural Strengths

Table A.2 presents the porosities calculated based on the measurements conducted
by K. V. Høyland and the approximated flexural strength. The MATLAB scripts
applied to obtain these values are given in appendix B. The porosities are obtained
based on the assumptions that the diameter D had a constant value 70 [mm] and
a length L 175 [mm].

Table A.2: Air porosities ηa, brine porosities ηb, total porosities ηT and flexural
strength σf for a sample length L 175 [mm] and diameter D 70 [mm].

Sample # ηa ηb ηT σf
1 0.04588998 0.01364996 0.05953995 0.88544535
2 0.08215986 0.00863764 0.09079750 1.01901146
3 0.02718157 0.00800478 0.03518635 1.04001335
4 0.08767177 0.01147947 0.09915124 0.93736473
5 0.05192984 0.01071861 0.06264844 0.95748356
6 0.06733126 0.00816294 0.07549420 1.03464858
7 0.05776262 0.00865943 0.06642204 1.01830986
8 0.09297776 0.00728977 0.10026753 1.06532350
9 0.04085076 0.01166928 0.05252003 0.93251520
10 0.04685124 0.01043528 0.05728652 0.96527025
11 0.06736020 0.00826497 0.07562517 1.03122954
12 0.05072403 0.01342868 0.06415271 0.89040988
13 0.05649550 0.00973820 0.06623370 0.98517286
14 0.07972870 0.01044045 0.09016915 0.96512673
15 0.04179166 0.01338523 0.05517689 0.89139268
16 0.03506764 0.01264378 0.04771142 0.90859104
17 0.02308674 0.00575755 0.02884428 1.12653683
18 0.06573382 0.01374927 0.07948308 0.88323948
19 0.03051789 0.01339481 0.04391269 0.89117584
20 0.03061597 0.01380733 0.04442330 0.88195590
21 0.07729601 0.01926011 0.09655612 0.77824238
22 0.01978421 0.01046381 0.03024802 0.96447854
23 0.02367101 0.01247915 0.03615015 0.91252339
24 0.03838161 0.01309373 0.05147534 0.89805677
25 0.05687749 0.01069657 0.06757406 0.95808324
26 0.03603414 0.01120893 0.04724307 0.94439104
27 0.01512390 0.01140892 0.02653281 0.93918398
28 0.05571494 0.01171846 0.06743339 0.93126922
29 0.01701867 0.01165899 0.02867766 0.93277635
30 0.01748718 0.01358005 0.03106723 0.88700645
31 0.00000000 0.01129415 0.01129415 0.94216307
32 0.02386013 0.01271981 0.03657994 0.90678933
33 0.01778770 0.00857741 0.02636511 1.02095833
34 0.02282066 0.00943400 0.03225466 0.99421352
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Sample # ηa ηb ηT σf
35 0.02879908 0.00746855 0.03626763 1.05882502
36 0.03356803 0.01263483 0.04620285 0.90880375
37 0.03596659 0.00999585 0.04596244 0.97768845
38 0.02788435 0.01033107 0.03821541 0.96817709
39 0.10552930 0.01084208 0.11637138 0.95414176
40 0.11930361 0.00781496 0.12711857 1.04655979
41 0.02286878 0.00967058 0.03253936 0.98716289
42 0.02170207 0.01081227 0.03251434 0.95494586
43 0.04556535 0.01036098 0.05592633 0.96734040
44 0.02969672 0.01687141 0.04656813 0.82000948
45 0.04824281 0.01368799 0.06193079 0.88459908
46 0.09461152 0.01292799 0.10753951 0.90190145
47 0.03623402 0.01272626 0.04896027 0.90663696
48 0.05022074 0.01134016 0.06156090 0.94096575
49 0.03132908 0.01421311 0.04554219 0.87311121
50 0.07581040 0.01502384 0.09083424 0.85606564
51 0.03700759 0.00920127 0.04620885 1.00128600
52 0.01474024 0.01007904 0.02481928 0.97530455
53 0.02236482 0.01429341 0.03665822 0.87138638
54 0.03239857 0.00979744 0.04219601 0.98343823
55 0.01877497 0.00699875 0.02577371 1.07616283
56 0.04888020 0.01080765 0.05968785 0.95507057
57 0.04364608 0.00982951 0.05347560 0.98250263
58 0.03212789 0.00900340 0.04113129 1.00741006
59 0.02293851 0.01066745 0.03360596 0.95887725
60 0.02386794 0.00872011 0.03258805 1.01636278
61 0.02652922 0.01160597 0.03813520 0.93412541
62 0.00344192 0.00941508 0.01285700 0.99478322
63 0.03236221 0.00894185 0.04130406 1.00933633
64 0.01956599 0.00912979 0.02869578 1.00348612
65 0.02445321 0.00935051 0.03380372 0.99673471
66 0.02698303 0.00679190 0.03377493 1.08407332
67 0.02218701 0.00701553 0.02920254 1.07552879
68 0.01177703 0.01000864 0.02178567 0.97732085
69 0.04947940 0.01148135 0.06096075 0.93731633
70 0.03098180 0.00909234 0.04007414 1.00464452
71 0.04005408 0.00731709 0.04737117 1.06432263
72 0.04529730 0.00872879 0.05402609 1.01608514
73 0.05068311 0.01048054 0.06116365 0.96401514
74 0.05253393 0.01097803 0.06351196 0.95049756
75 0.03594315 0.01510225 0.05104540 0.85445916
76 0.02643940 0.02222669 0.04866609 0.73248459
77 0.00631000 0.00729942 0.01360942 1.06496986
78 0.09555805 0.01480259 0.11036063 0.86063776
79 0.02979245 0.01102600 0.04081845 0.94922053
80 0.03877036 0.00815351 0.04692386 1.03496622
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Sample # ηa ηb ηT σf
81 0.02974643 0.01064595 0.04039238 0.95946442
82 0.01869235 0.01131839 0.03001075 0.94153170
83 0.04232428 0.01735427 0.05967856 0.81115861
84 0.09942035 0.01312555 0.11254591 0.89732336
85 0.04338462 0.01422226 0.05760688 0.87291414
86 0.05574433 0.01269373 0.06843806 0.90740625
87 0.03189588 0.00833736 0.04023324 1.02882348
88 0.15780621 0.00845349 0.16625970 1.02499712
89 0.07760751 0.01124804 0.08885554 0.94336693
90 0.06579273 0.01404070 0.07983343 0.87684259
91 0.03242652 0.00937654 0.04180306 0.99594665
92 0.03655619 0.00783362 0.04438981 1.04591089
93 0.04586640 0.01219212 0.05805853 0.91948296
94 0.05904965 0.01872203 0.07777168 0.78722785
95 0.08505083 0.01920348 0.10425432 0.77917717
96 0.00000000 0.01203301 0.01203301 0.92339963
97 0.00000000 0.01302102 0.01302102 0.89973851
98 0.10911496 0.00693085 0.11604581 1.07873996
99 0.06304293 0.00997350 0.07301643 0.97833159
100 0.03163401 0.01226502 0.04389903 0.91770280
101 0.10134462 0.01340186 0.11474649 0.89101614
102 0.04583392 0.01068034 0.05651425 0.95852565
103 0.06609594 0.00843551 0.07453145 1.02558689
104 0.05583981 0.01214518 0.06798499 0.92063415
105 0.05702429 0.01636877 0.07339306 0.82946338
106 0.04184791 0.00826021 0.05010813 1.03138829
107 0.09825544 0.00792919 0.10618463 1.04260610
108 0.09200270 0.00842432 0.10042702 1.02595441



Appendix B

MATLAB Scripts

This section provides the MATLAB scripts applied to conduct estimates on porosi-
ties and flexural strengths. Additionally, the scripts that produce the plots for
chapter 3 are given here. The MATLAB scripts are provided by K. V. Høyland
and slightly modified to fit the input-files.

B.1 MATLAB - Porosityprogram.m

1 %This program reads Salinity (ppt), density (kg/l) and
2 %Temperature (C) calculates the porosity (air , brine and total) and return
3 clear all
4 save_file = 'yes';%'yes '; %Write 'yes ' to save figure!
5
6 %Open data sheet:
7 %filename = 'levelice.xlsx ';
8 filename = 'ridgedice.xlsx';
9 sheet = 1;

10 xlRange = 'G:J';
11 Phys_prop = xlsread(filename ,sheet ,xlRange);
12
13 %Transposes the Phys_prop vector to fit with this program
14 Phys_prop = transpose(Phys_prop);
15
16 %preallocate a diameter vector of zeros:
17 %D = zeros(length(Phys_prop (1,:)) ,1);
18
19 %create a vector consisting of values between 70 and 60 mm (norm dist)
20 %for k = 1: length(Phys_prop (1,:))
21 %D(k) = rand + 69;
22 %end
23
24 %General dimensions for each specimen , can be set to other values
25 D = 70; %diameter [mm]
26 l = 175; %length [mm]
27 area = pi*(D/2)ˆ2;
28 %area = pi.*(D./2) .ˆ2;
29 vol = area*l;
30 %vol = area.*l;
31 Density = 1000.* Phys_prop (1,:)./vol;
32 %Density = 1000.* Phys_prop (1,:)./ transpose(vol); % [kg/l]
33 %Change the weight to density:
34 Phys_prop (1,:) = Density;
35
36 %After reading:
37 %Phys_prop(1,i) = density [kg/l]
38 %Phys_prop(2,i) = temperature
39 %Phys_prop(3,i) = strength
40 %Phys_prop(4,i) = salinity
41 strength = Phys_prop (3,:); %Create a strength vector
42 temperature = Phys_prop (2,:); %Create a temperature vector
43 Phys_prop (3,:) = Phys_prop (2,:); %exchange strength vector with temperature
44 Phys_prop (2,:) = Phys_prop (1,:); %exchange old temperature vector

VII
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45 %with weight
46 %After exchange:
47 %Phys_prop(1,i) = density [kg/l]
48 %Phys_prop(2,i) = density [kg/l]
49 %Phys_prop(3,i) = temperature
50 %Phys_prop(4,i) = salinity
51 n = size(Phys_prop ,2);
52 Por = zeros(n,4);
53 density = [];
54 for i = 1 : n
55 if ˜Phys_prop(1,i) || ˜Phys_prop(2,i) || ˜Phys_prop(3,i) || ...
56 ˜Phys_prop(4,i)
57 Por(i,1:4) = [i , zeros (1,3)];
58 else
59 density(i) = (0.1* Phys_prop(1,i)+0.9* Phys_prop(2,i));...
60 %/1000; % Unit [kg/l] or [Mg/mˆ3] to comply with
61 %subfunction sb.m
62 Por(i,1:4) = [i , porositykvh(Phys_prop(4,i), ...
63 Phys_prop(3,i),density(i))];
64 end
65 end
66
67 %% - Plot
68 Por_var_vect = [];
69 for j = 1:n
70 if ˜Por(j,4)
71 Por_for_plot(j,1:2) = [Por(j,1) , NaN];
72 else
73 Por_for_plot(j,1:2) = [Por(j,1) , Por(j,4)];
74 Por_var_vect = [Por_var_vect;Por(j,1) , Por(j,4)];
75 end
76 end
77 var_por = var(Por_var_vect (:,2));
78
79 % - Figure 4
80 fg4 = figure (4);clf;
81 scatter(strength , Por(:,4))
82 grid on
83 box on
84 ax = gca;
85 ax.XTick = 0: length(Phys_prop (1,:));
86 ax.YTick = 0:0.025:100;
87
88 tl1 = sprintf('\\ textbf{Total porosity , }$\\ mathbf {\\ eta_T}$');
89 ll1 = sprintf('Hoyland - Matlab ');
90 ll2 = sprintf('Cox and Weeks (1983) ');
91 xl = xlabel('Compressive strength $$\sigma_{c,v}$$ [MPa]');
92 yl = ylabel('Porosity , $\eta_T$ [-]');
93 tl = title(strcat(tl1));
94 ll = legend(ll1 ,ll2 ,'location ','best');
95 ll.Interpreter = 'latex ';
96 tl.Interpreter = 'latex ';
97 xl.Interpreter = 'latex ';
98 yl.Interpreter = 'latex ';
99 tl.FontSize = 16; xl.FontSize = 12 ; yl.FontSize = 12 ;

100 %ax.YLim = [0.9* min(Por_var_vect (:,2)) ,1.1*max(Por(:,4))];
101
102 %% - Print figure
103 filename = 'RidgePorosityStrenghtCV ';
104 %filename = 'PorosityStrenghtCV ';
105 postfix = '.eps';
106 path = 'plot/';
107 filetype = '-depsc2 ';
108 fid = strcat(path ,filename ,postfix);
109 m=1;
110 while exist(fid ,'file')
111 m=m+1;
112 fid = strcat(path ,filename ,'TestNumb ',num2str(m),postfix);
113 end
114 fg4.Units = 'pixels ';
115 fg4.PaperPositionMode = 'auto';
116 if (strcmp(save_file ,'yes'))
117 fprintf('Saving figure: %s \n',fid);
118 print(fg4 ,filetype ,fid);
119 else
120 disp('Not saving figure ')
121 end
122
123
124 % - Figure 5 Air porosity versus sample nr
125 fg5 = figure (5);clf;
126 plot(Por(:,1), Por(:,2), 'ob')
127 grid on
128 ax = gca;
129 ax.XTick = [0:10:110];
130 ax.YTick = [0:0.05:100];
131
132 tl1 = sprintf('\\ textbf{Air porosity , }$\\ mathbf {\\ eta_a}$');
133 ll1 = sprintf('Hoyland - Matlab ');
134 ll2 = sprintf('Cox and Weeks (1983) ');
135 xl = xlabel('Sample number ');
136 %xl = xlabel('Sample ');
137 yl = ylabel('Air fraction , $\eta_a$ [-]');



B.1. MATLAB - POROSITYPROGRAM.M IX

138 tl = title(strcat(tl1));
139 ll = legend(ll1 ,ll2 ,'location ','best');
140 ll.Interpreter = 'latex ';
141 tl.Interpreter = 'latex ';
142 xl.Interpreter = 'latex ';
143 yl.Interpreter = 'latex ';
144 tl.FontSize = 16; xl.FontSize = 12 ; yl.FontSize = 12 ;
145 %ax.YLim = [0.9* min(Por_var_vect (:,2)) ,1.1*max(Por(:,4))];
146
147 %% - Print figure
148 filename = 'RidgePorosityAirSample ';
149 %filename = 'PorosityAirSample ';
150 postfix = '.eps';
151 path = 'plot/';
152 filetype = '-depsc2 ';
153 fid1 = strcat(path ,filename ,postfix);
154 m=1;
155 while exist(fid1 ,'file')
156 m=m+1;
157 fid1 = strcat(path ,filename ,'TestNumb ',num2str(m),postfix);
158 end
159 fg5.Units = 'pixels ';
160 fg5.PaperPositionMode = 'auto';
161 if (strcmp(save_file ,'yes'))
162 fprintf('Saving figure: %s \n',fid1);
163 print(fg5 ,filetype ,fid1);
164 else
165 disp('Not saving figure ')
166 end
167
168 % - Figure 6 brine porosity versus sample nr
169 fg6 = figure (6);clf;
170 plot(Por(:,1), Por(:,3), 'ob')
171 grid on
172 ax = gca;
173 ax.XTick = [0:10:110];
174 ax.YTick = [0:0.005:0.025];
175
176 tl1 = sprintf('\\ textbf{Brine porosity , }$\\ mathbf {\\ eta_b}$');
177 ll1 = sprintf('Hoyland - Matlab ');
178 ll2 = sprintf('Cox and Weeks (1983) ');
179 xl = xlabel('Sample number ');
180 %xl = xlabel('Sample ');
181 yl = ylabel('Brine porosity , $\eta_b$ [-]');
182 tl = title(strcat(tl1));
183 ll = legend(ll1 ,ll2 ,'location ','best');
184 ll.Interpreter = 'latex ';
185 tl.Interpreter = 'latex ';
186 xl.Interpreter = 'latex ';
187 yl.Interpreter = 'latex ';
188 tl.FontSize = 16; xl.FontSize = 12 ; yl.FontSize = 12 ;
189 %ax.YLim = [0.9* min(Por_var_vect (:,2)) ,1.1*max(Por(:,4))];
190
191 %% - Print figure
192 filename = 'RidgePorosityBrineSample ';
193 %filename = 'PorosityBrineSample ';
194 postfix = '.eps';
195 path = 'plot/';
196 filetype = '-depsc2 ';
197 fid2 = strcat(path ,filename ,postfix);
198 m=1;
199 while exist(fid2 ,'file')
200 m=m+1;
201 fid2 = strcat(path ,filename ,'TestNumb ',num2str(m),postfix);
202 end
203 fg6.Units = 'pixels ';
204 fg6.PaperPositionMode = 'auto';
205 if (strcmp(save_file ,'yes'))
206 fprintf('Saving figure: %s \n',fid2);
207 print(fg6 ,filetype ,fid2);
208 else
209 disp('Not saving figure ')
210 end
211
212 % - Figure 7 Total porosity versus sample nr
213 fg7 = figure (7);clf;
214 plot(Por(:,1), Por(:,4), 'ob')
215 grid on
216 ax = gca;
217 ax.XTick = [0:10:110];
218 ax.YTick = [0:0.05:100];
219
220 tl1 = sprintf('\\ textbf{Total porosity , }$\\ mathbf {\\ eta_T}$');
221 ll1 = sprintf('Hoyland - Matlab ');
222 ll2 = sprintf('Cox and Weeks (1983) ');
223 xl = xlabel('Sample number ');
224 %xl = xlabel('Sample ');
225 yl = ylabel('Total porosity , $\eta_T$ [-]');
226 tl = title(strcat(tl1));
227 ll = legend(ll1 ,ll2 ,'location ','best');
228 ll.Interpreter = 'latex ';
229 tl.Interpreter = 'latex ';
230 xl.Interpreter = 'latex ';
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231 yl.Interpreter = 'latex ';
232 tl.FontSize = 16; xl.FontSize = 12 ; yl.FontSize = 12 ;
233 %ax.YLim = [0.9* min(Por_var_vect (:,2)) ,1.1*max(Por(:,4))];
234
235 %% - Print figure
236 filename = 'RidgePorosityTotalSample ';
237 %filename = 'PorosityTotalSample ';
238 postfix = '.eps';
239 path = 'plot/';
240 filetype = '-depsc2 ';
241 fid3 = strcat(path ,filename ,postfix);
242 m=1;
243 while exist(fid3 ,'file')
244 m=m+1;
245 fid3 = strcat(path ,filename ,'TestNumb ',num2str(m),postfix);
246 end
247 fg7.Units = 'pixels ';
248 fg7.PaperPositionMode = 'auto';
249 if (strcmp(save_file ,'yes'))
250 fprintf('Saving figure: %s \n',fid3);
251 print(fg7 ,filetype ,fid3);
252 else
253 disp('Not saving figure ')
254 end

B.2 MATLAB - Porositykvh.m

1 function P = porositykvh(S,T,rho)
2
3 %The salinity is given in [ppt], the density in [kg/l]=[Mg/m3] and
4 %the temperature is given in [C].
5 % The following indexes are used:
6 %_i is used for sea ice
7 %_pi for pure ice
8 %_a for air
9 %_b for birne

10
11 S_i = S;
12 rho_i = rho;
13 rho_pi = 0.917 - 1.403e-4*T;
14
15
16 if T >= -1.9
17 S_b = sb(T);
18 rho_b = 1 + 0.0008* S_b;
19 brine_frac = (rho_i*S_i)/(rho_b*S_b);
20 air_frac = 1 - rho_i./ rho_pi + brine_frac *(( rho_b./ rho_pi) -1);
21 else
22 brine_frac = rho_i.*S_i./F_1(T);
23 air_frac = 1 - rho_i./ rho_pi + rho_i.*S_i.*F_2(T)/F_1(T);
24 end
25 if air_frac < 0
26 air_frac = 0;
27 end
28 P = [air_frac brine_frac brine_frac+air_frac ];
29 end

B.3 MATLAB - sb.m

1 function salbrine = sb(T)
2 %Calculates the salinity of seawater given the freezing point.
3 %The inverse of the UNESCO formula given by Lepparanta (1983) is used.
4 %The salinity goes in [ppt] and the temp in [C]
5 % T = -0;
6 sw = 34;
7 Tf = -0.0575*sw +0.001710523* sw ˆ1.5 -0.0002154996* swˆ2;
8 if T - Tf < 0;
9 while abs(T - Tf) > 0.001;

10 sw = sw + 0.01;
11 Tf = -0.0575*sw +0.001710523* sw ˆ1.5 -0.0002154996* swˆ2;
12 end
13 else
14 while abs(T - Tf) > 0.001;
15 sw = sw - 0.01;
16 Tf = -0.0575*sw +0.001710523* sw ˆ1.5 -0.0002154996* swˆ2;
17 end
18 end
19
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20 salbrine = sw;
21 end

B.4 MATLAB - F 1.m

1 function f = F_1(T)
2
3 if(T> -22.9)
4 alpha_0 = -4.732;
5 alpha_1 = -22.45;
6 alpha_2 = -0.6397;
7 alpha_3 = -0.01074;
8
9 f = alpha_0 + alpha_1*T + alpha_2*T.ˆ2 + alpha_3*T.ˆ3;

10 else
11 alpha_0 = 9899;
12 alpha_1 = 1309;
13 alpha_2 = 55.27;
14 alpha_3 = 0.716;
15
16 f = alpha_0 + alpha_1*T + alpha_2*T.ˆ2 + alpha_3*T.ˆ3;
17 end

B.5 MATLAB - F 2.m

1 function f = F_2(T)
2
3 if(T> -22.9)
4 alpha_0 = 0.08903;
5 alpha_1 = -0.01763;
6 alpha_2 = -0.000533;
7 alpha_3 = -0.000008801;
8
9 f = alpha_0 + alpha_1*T + alpha_2*T.ˆ2 + alpha_3*T.ˆ3;

10 else
11 alpha_0 = 8.547;
12 alpha_1 = 1.089;
13 alpha_2 = 0.04518;
14 alpha_3 = 0.0005819;
15
16 f = alpha_0 + alpha_1*T + alpha_2*T.ˆ2 + alpha_3*T.ˆ3;
17 end

B.6 MATLAB - PlotData.m

This script is programmed to plot the flexural strength and write result files, hence
not provided by K. V. Høyland.

1 function PlotData(Por)
2 %This function reads the Por -Vector from KVH -programs and saves it to a txt
3 %file for further use. It also calculates the mean of data to se whether
4 %the values change for different diameters.
5
6
7 %Create a new txt -file:
8 filename = 'RidgePorosityData ';
9 %filename = 'PorosityData ';

10 postfix = '.txt';
11 fid = strcat(filename ,postfix);
12 m=1;
13 while exist(fid ,'file')
14 m=m+1;
15 fid = strcat(filename ,'TestNumb ',num2str(m),postfix);
16 end
17 outdat = fopen(fid ,'wt+');
18
19 %Calculate mean values:
20 MeanAir = mean(Por(:,2));
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21 MeanBrine = mean(Por(:,3));
22 MeanTot = mean(Por(:,4));
23
24 %Pre allocating the flexural strength vector:
25 Flexural = zeros(length(Por(:,1)) ,1);
26
27 %Calculates the flexural strength of ice by brine porosity:
28 for j = 1: length(Por(:,1))
29 Flexural(j) = 1.76* exp ( -5.88* sqrt(Por(j,3)));
30 end
31
32 MeanFlexural = mean(Flexural);
33
34 %Write data from Por -vector to txt -file:
35 fprintf(outdat , '%12.8f & %12.8f & %12.8f & %12.8f \\\\ \n' ,...
36 MeanAir , MeanBrine , MeanTot , MeanFlexural);
37 fprintf(outdat , 'Mean Air porosity %12.8f \n', MeanAir);
38 fprintf(outdat , 'Mean Brine porosity %12.8f \n', MeanBrine);
39 fprintf(outdat , 'Mean Total porosity %12.8f \n', MeanTot);
40 fprintf(outdat , 'Mean Flexural strength %12.8f \n', MeanFlexural);
41 fprintf(outdat ,'Sample \t Air \t Brine \t Total \t Flexural Strength \n');
42 for i = 1: length(Por(:,1))
43 fprintf(outdat ,...
44 '\t %d & \t%12.8f & \t%12.8f & \t%12.8f & \t%12.8f \\\\ \n' ,...
45 Por(i,1), Por(i,2), Por(i,3), Por(i,4), Flexural(i));
46 end
47 fclose('all');
48
49 Flex = zeros (20,2);
50 for k = 1:500
51 Flex(k,1) = 1.76* exp ( -5.88* sqrt(k*0.001));
52 Flex(k,2) = k*0.001;
53 end
54
55 % - Figure 1
56 save_file = 'yes'; %Saves figure , 'no' does not save figure
57 fg1 = figure (1);clf;
58 %Scatter plot of the flexural strength versus brine porosity
59 hold on
60 plot(Por(:,3),Flexural , 'ob')
61 plot(Flex (:,2),Flex (:,1), 'b')
62 grid on
63 box on
64 ax = gca;
65 ax.XTick = 0:0.05:1;
66 ax.YTick = 0:0.2:1.5;
67
68 tl1 = sprintf('\\ textbf{Flexural Strength , }$\\ mathbf {\\ sigma_f}$');
69 yl = ylabel('Flexural strength $\sigma_{f}(\ eta_b)$ [MPa]');
70 xl = xlabel('Brine Porosity , $\eta_b$ [-]');
71 %ll1 = sprintf('Approx. $\sigma_{f}(\ eta_b)$');
72 %ll2 = sprintf('Empirical Formula $\sigma_f (\eta_b)$');
73 tl = title(strcat(tl1));
74 ll = legend ({'Measured $\sigma_{f}(\ eta_b)$','Timco et al. (1994) '},'location ','best','interpreter ','latex ');
75 ll.Interpreter = 'latex ';
76 tl.Interpreter = 'latex ';
77 xl.Interpreter = 'latex ';
78 yl.Interpreter = 'latex ';
79 tl.FontSize = 16; xl.FontSize = 12 ; yl.FontSize = 12 ; l1.FontSize = 14;
80 %ax.YLim = [0.9* min(Por_var_vect (:,2)) ,1.1*max(Por(:,4))];
81
82 %% - Print figure
83 filename = 'RidgePorosityFlexural ';
84 %filename = 'PorosityFlexural ';
85 postfix = '.eps';
86 path = 'plot/';
87 filetype = '-depsc2 ';
88 fid = strcat(path ,filename ,postfix);
89 m=1;
90 while exist(fid ,'file')
91 m=m+1;
92 fid = strcat(path ,filename ,'TestNumb ',num2str(m),postfix);
93 end
94 fg1.Units = 'pixels ';
95 fg1.Position = [7.575714285714286e+02 3.541428571428571e+02 ...
96 8.754285714285714e+02 5.154285714285714e+02];
97 fg1.PaperPositionMode = 'auto';
98 if (strcmp(save_file ,'yes'))
99 fprintf('Saving figure: %s \n',fid);

100 print(fg1 ,filetype ,fid);
101 else
102 disp('Not saving figure ')
103 end
104
105
106
107 end
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B.7 MATLAB - Plot.m

This script is programmed to plot the temperature and salinity versus the porosity,
hence not provided by K. V. Høyland.

1 clc
2 save_file = 'yes'; %Write 'yes ' to save figure!
3 fg2 = figure (21);clf;
4 fg3 = figure (22);clf;
5 filename = 'ridgedice.xlsx';
6 %filename = 'levelice.xlsx ';
7 sheet = 1;
8 xlRange = 'G:J';
9 LevelIce = xlsread(filename ,sheet ,xlRange)

10
11
12 weight = LevelIce (:,1); %grams
13 temperature = LevelIce (:,2); %C
14 strength = LevelIce (:,3); %MPa [N/mm2];
15 salinity = LevelIce (:,4); % [%]
16 D = 70; %diameter [mm]
17 l = 175; %length [mm]
18 area = pi*(D/2)ˆ2;
19 vol = area*l;
20 density = weight ./vol; % [g/mm3]
21
22 max_strength = max(strength);
23
24 %% plotting set up
25 filename = 'RidgedIce ';
26 %filename = 'LevelIce ';
27 postfix = '.eps';
28 path = 'plot/';
29 filetype = '-depsc2 ';
30 fid = strcat(path ,filename ,postfix);
31 fid1 = strcat(path ,filename ,'temp',postfix);
32
33
34 %% Plotting
35 %xmin = 0;
36 %xmax = 0.03;
37 %ymin = 0;
38
39 figure (21); %Plotting strength versus salinity
40 scatter(strength , salinity);
41 grid on
42 box on
43 %ll1 = sprintf('Maximum stress: %6.2fMPa ',max_strength);
44
45 xl = xlabel('Compressive strength $$\sigma_{c,v}$$ [MPa]');
46 xl.Interpreter = 'latex ';
47 xl.FontSize = 12 ;
48
49
50 yl = ylabel('Salinity $$S$$ [\%]');
51 %ll = legend(ll1 ,'location ','northwest ','location ','best ');
52 %ll.Interpreter = 'latex ';
53 yl.Interpreter = 'latex ';
54 yl.FontSize = 12 ;
55
56 figure (22); %Plotting temperature versus strength
57 scatter(strength , temperature);
58 grid on
59 box on
60 %ll1 = sprintf('Maximum stress: %6.2fMPa ',max_strength);
61
62 xl = xlabel('Compressive strength $$\sigma_{c,v}$$ [MPa]');
63 xl.Interpreter = 'latex ';
64 xl.FontSize = 12 ;
65
66 yl = ylabel('Temperature $$T_i$$ [$$ˆ\ circ$$C]');
67 %ll = legend(ll1 ,'location ','northwest ','location ','best ');
68 %ll.Interpreter = 'latex ';
69 yl.Interpreter = 'latex ';
70 yl.FontSize = 12 ;
71
72
73
74 % -- Print
75 plot_size = [2,2,16,10];
76 fg2.Units = 'centimeters ';
77 fg2.Position = plot_size;
78 fg2.PaperPositionMode = 'auto';
79 fg3.Units = 'centimeters ';
80 fg3.Position = plot_size;
81 fg3.PaperPositionMode = 'auto';
82
83 if (strcmp(save_file ,'yes'))
84 fprintf('Saving figure: %s \n',fid);
85 fprintf('Saving figure: %s \n',fid1);
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86 print(fg2 ,filetype ,fid);
87 print(fg3 ,filetype ,fid1);
88 else
89 disp('Not saving figure ')
90 end



Appendix C

Element Choice for Plate
Model

This chapter will provide information about the element choice applied to the
assessment of the plate model where the loads were found from level ice measure-
ments and the dimensions provided by regulations.

C.1 Plate Elements - Abaqus

One of the steps in a finite element analysis is choosing the correct element type
for the analysis. There exist several element types that are preferred for certain
analysis, as they do not eliminate important factors that contribute to the final
result. Hence, there are several issues that should be considered regarding element
selection. This section focuses on the most applicable element types found in
Abaqus.

The reader should be familiar with the finite element theory presented by Moan
(2003). The theory in this section refer to Abaqus (2016).

C.1.1 Requirements for the Element

The element must apply to a static model where large displacements could occur.
Hence, non-linear geometry may be induced. Considering the ratio between the
thickness and the main dimensions of the plate field, one must differentiate between
thin and thick shells. Also, one wants to avoid locking and hourglass modes in
the model. Finally, the results should be as close to the exact solution as possible.
Further, one should study the different elements and their certain properties.

XV
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C.1.2 Element Comparison

Abaqus provides several different element types. Both triangular and rectangular
elements, with different number of nodes. This section will only consider the
most relevant elements in which apply to the structure. As there are no rounded
shapes which require refinement of the mesh, only rectangular elements are further
assessed. Abaqus presents a wide range of different elements regarding different
properties and node numbers, hence a combination of these provides even more
elements.

Figure C.1 presents the different rectangular elements of different node numbers.

Figure C.1: Element types regarding node number, presented by Abaqus. Left:
4-node element. Middle: 8-node element. Right: 9-node element

Further, Abaqus defines a set of indexes to name their elements. Due to this, the
name of the element defines the element properties. The table below defines these
properties for three-dimensional shell elements only.

� Position 1 Defines the type.

– S Conventional stress/displacement shell

– SC Continuum stress/displacement shell

– STRI Triangular stress/displacement thin shell

– DS Heat transfer shell

� Position 2 Defines the number of nodes.

� Position 3 Optional position.

– R Reduced integration

� Position 4 Optional position.

– 5 Defines the number of d.o.f.

– T Coupled temperature-displacement

– S Smal-strain formulation in Abaqus/explicit only

� Position 5 Optional position.
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– W Warping considered in small-strain formulation in Abaqus/explict
only

For this analysis, the following elements are relevant: S4, S4R, S4R5, S8R, S8R5
and S9R5. The properties of these elements are presented in table C.1

Table C.1: Element properties as presented by Abaqus.

Property/element S4 S4R S4R5 S8R S8R5 S9R5

General thin/thick shells X X
Thick shells only X
Thin shells only X X X
Small strain X X X X
6 D.O.F. X X X
5 D.O.F. X X X
Reduced integration X X X X X
Shear flexible element X X X
Hourglass control X X

The S4 element is a general-purpose element suitable for most applications.
For problems dominated by in-plane bending, this is recommended. Reasonably
due to the assumed strain formulation applied in the membrane response. As full
integration is applied in both membrane and bending terms, the element does
not suffer from hourglass modes in the respective terms. Thus, the transverse
shear response is constant over the element. The element is suitable for non-linear
geometry problems.

The S4R element applies reduced integration in order to avoid shear and mem-
brane locking. As the element has hourglass modes that may propagate over a
mesh, the element applies hourglass control. Equal the S4 element, S4R is a
general-purpose element suitable for most applications. The element is suitable
for thin shell applications, where the plate thickness is low compared to the span.
As the element is shear flexible, transverse shear is integrated accurate over the
entire element. Also, the element has reduced integration. The element is suitable
for non-linear geometry problems.

The S4R5 element applies small strain formulation and uses reduced degrees
of freedom. This element is suitable for large models with small strains and linear
geometric behaviour. The hourglass control is applied to this element as well. The
membrane and bending terms are integrated using reduced integration.

The S8R element does not need hourglass control as it has a non-propagating
single hourglass mode. The element applies to small strain formulation. Shear and
membrane locking is avoided by applying uniformly reduced integration. The S8R
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element does converge towards shear flexible theory for thick plate, thus it does
not neccessarily converge towards classic theory for thin shells. Where the classic
theory refers to Kirchhoff-Love theory.

The S8R5 and S9R5 elements are applicable to fracture mechanics problems
and apply to thin shells only. Also, they require small strains. The elements are
also preferred if the model is subjected to contact with other structures during de-
formation. Hourglass modes does propagate over the mesh, thus hourglass control
is applied to handle this.

C.1.3 Choice of Element

Abaqus differentiates between thick and thin shells, where the limit for thin shells
is a thickness-to-main-structural-dimension less than 1/10. Hence, the shear flex-
ible formulation applies to thin shells. The shear flexible formulation states that
the normals to the shell surface do not necessarily remain perpendicular to the
surface post deformation. This adds transverse shear flexibility to the structural
property. The classical formulation neglects these shear strains, so that the nor-
mal to the shell surface remains orthogonal to the surface after deformation. The
hourglass modes are deformation modes that may result in zero strain at the in-
tegration points. This is due to reduced integration of the elements, hence for
some elements(4- and 9-node) this is controlled to avoid the hourglass modes. As
for the S4 element, which applies full integration for bending and membrane stiff-
ness terms, hourglass modes are not a concern. Thus, for the transverse shear
behaviour, reduced integration is applied and the control of hourglass is necessary.
The thin shell elements, are subjected to two types of locking. Transverse shear
locking, and membrane locking do develop, and could be avoided by choosing a
element that does not suffer from locking, such as the S4 and S4R elements.

Regarding the dimensions of the model, the model is found to be classified as a
thin model. Also, as the deformations are assumed to be of a certain magnitude,
the geometry could be found non-linear. The two elements that do not suffer from
locking is S4 and S4R, and hourglass modes are either controlled or non-existing
for the respective elements. In addition, the elements are capable of including
the transverse shear strains in the computations. So that the choice of element is
either S4 or S4R. Due to the mesh refinement, the computational time increases
as the number of elements increases. Regarding this, the element with reduced
integration would be preferred, so that the choice of element is the S4R.



Appendix D

Additional Results - Plate
Assessment

This chapter contains results from the plate assessment that provide additional
information about the plate response. The analysis providing the results are con-
ducted in the same manner as presented in the main part of the thesis. The reader
should be familiar with the method and applied pressure from previous discussed
material, as no further information about assessment is given here.

D.1 Additional Results From Empirical Ice Pres-
sure Model

This section provides results from the assessment of the ice pressure model, with
the pressure from the empirical ice pressure model.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.1: Stress-strain curve from location 2.2, in z-direction

Figure D.1a shows the same tendency as figure D.1b does, initially. Note that

XIX
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the two figures have a different scale at the strain axis. Due the mesh refinement,
figure D.1b shows a more accurate result. Additionally, the sampling location
might have changed slightly due to the refinement.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.2: Stress-strain curve from location 2.3, in z-direction

Figure D.2 shows a perfectly linear behaviour. This could be expected as the
sampling location is sufficiently distanced from the area where the load is applied.
Considering the development in figure 7.6, D.1 and D.2 one see the convergence
towards linear behaviour even clearer.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.3: Stress-strain curve from location 1.2, in x-direction

Figure D.3 presents the effect of stiffener yielding and hence loss of support. Ini-
tially, the stiffeners do support the plate out of plane, so that compression occurs
at location (1.2). The curves turn when the stiffeners closest to the applied pres-
sure warps, so that support is no longer present. This effect is reduced as one
move over to location (1.3), as indicated by figure D.4. Equally location (2.3), the
behaviour is closer to linear as one has a greater distance to the applied load.
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(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.4: Stress-strain curve from location 1.3, in x-direction
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D.2 Additional Results From DNV GL Ice Pres-
sure Model

This section provides results from the assessment of the ice pressure model with
applied pressure obtained from the DNV GL regulations.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.5: Stress-strain curve from location 2.2, in z-direction

From figure D.5 one could observe that the stress strain curves do not correlate.
This is due to large element size in figure D.5a and hence the location of the
sampling point. The response are obviously non linear, considering the plots.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.6: Stress-strain curve from location 2.3, in z-direction

Figure D.6 shows almost perfect linear behaviour, which is reasonable due to the
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distance from the loaded area. As for the plate model with the empirical ice
pressure, this model shows the same behaviour regarding the increase in linearity,
due to distance from the loaded area.

(a) Mesh size: 120 [mm]

(b) Mesh size: 15 [mm]

Figure D.7: Stress-strain curve from location 1.2, in x-direction

Figure D.7 shows how the increased load, compared to figure D.3, impacts the
stress strain relation. One could observe how the plate behaviour has changed
from the curve presented in figure D.3 to a more non linear stress strain behaviour
in figure D.7, with only the same behaviour as figure D.3 initially, before the
effect of linearity until yielding occur. Figure D.8 presents the same effect as in
z-direction, with linearity due to increased distance from the loaded area.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.8: Stress-strain curve from location 1.3, in x-direction
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D.3 Additional Results From IACS Ice Pressure
Model

By applying a pressure of 15.56 [MPa], as calculated from regulations provided by
IACS, the following plots were obtained for location (1.1) (see figure 7.4).

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.9: Stress-strain curve from location 1.1, in x-direction

From figure D.9 one could observe that the results for both 120 and 15 [mm] mesh
has larger strains and stresses compared to the ones presented in figure 7.11. Thus
the initial yield stress tends to be higher in magnitude. The initial yield stress in
figure D.9a is approximate 500 [MPa] while figure D.9b yields at approximate 525
[MPa]. For the mesh of 15 [mm], the strain value at initial yield is approximate
0.0025 [-].

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.10: Stress-strain curve from location 1.1, in z-direction

In figure D.10 one could observe a small effect of the Poisson’s ratio for the initial
part of the curve. Further, when the strain in z-direction reaches its minimum
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value, and the plate reaches its initial yield in x-direction, the stresses in z-direction
became dominant and the curve turns. The relation between stresses and strains
in both directions are given in figure D.11.

Figure D.11: Stress and strain in both x- and z-direction plotted over time. The
labels are corresponding to the stresses in the following manner: S11 and LE11
define the stress and strains in x-direction respectively, S22 and LE22 define the
stress and strains in z-direction respectively.

The black line in figure D.11 defines the location where initial yield in x-direction
(S11) occurs, and also the minimum value of the strain in z-direction (LE22). As
for the two previous pressure models, this substantiates the assumption of how the
strains and stresses are related in the linear region of the stress analysis.

The previously presented plots of stress strain curves result in the following plots
of displacements and stresses in x- and z-direction, respectively given in figure
D.12, D.13 and D.14.
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Figure D.12: Displacement of the plate field, with a 15 [mm] mesh size.

Figure D.13: Stress in x-direction in the plate field, with a 15 [mm] mesh size.

Figure D.14: Stress in z-direction in the plate field, with a 15 [mm] mesh size.
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The largest displacement was found to be 219.9 [mm] in figure D.12. In x-direction,
the largest tensile stress had a magnitude of 695.3 [MPa], as given by figure D.13.
In z-direction, the stiffeners suffered from the most critical tensile and compres-
sive stress, with magnitudes of respectively 688.3 and -705.5 [MPa]. Figure D.14
presents the stresses in z-direction.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.15: Stress-strain curve from location 2.2, in z-direction

Compared to the two previously presented pressure models, this pressure induce
sufficiently stresses such that both 120 and 15 [mm] stress strain curves in figure
D.15 show almost same behaviour. The strains do start to develop in the negative
direction, while the pressure level is sufficient to override this development.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.16: Stress-strain curve from location 2.3, in z-direction

As the mesh is refined, figure D.16 shows that due to refinement, the stress-strain
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relation tends to behave even more non-linear.

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.17: Stress-strain curve from location 1.2, in x-direction

(a) Mesh size: 120 [mm] (b) Mesh size: 15 [mm]

Figure D.18: Stress-strain curve from location 1.3, in x-direction

Figure D.17 and D.18 show how the non-linearity decreases due to increased dis-
tance between the sampling and loading location.



Appendix E

Additional Results -
Stiffener Assessment

This chapter provides results that are of interest, thus not of such importance they
are provided in the main part of this thesis, as they provide results of stiffener
assessment. The reader should in this chapter be familiar with the results in the
main part and how they were conducted.

The assessment of the stiffeners are regarded additional results, since the extend of
the main part are somewhat limited. The stiffeners were assessed applying several
sampling points as presented in figure E.1.

Figure E.1: The sampling locations for the stiffeners. Three points along each red
line are applied for the flange.

As previously presented, in figure E.1, stresses in the longitudinal direction were

XXIX
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measured at three locations. These locations had three points for sampling of
stresses along the flanges, as presented in figure E.2.

Figure E.2: Sampling points for the three locations along the stiffener closest to the
applied stress. (X.Y) define the location, where X refers to the numbering obtained
from figure E.1 and Y defines the position of the sampling point corresponding to
the numbering in this figure (1 to 3).



E.1. ADDITIONAL RESULTS FROMEMPIRICAL ICE PRESSUREMODELXXXI

E.1 Additional Results From Empirical Ice Pres-
sure Model

The stiffeners in figure 7.10 had the largest compressive stress at the ends, with a
magnitude of -557.1 [MPa] and the largest tension of 484.7 [MPa] occurring at the
middle of the stiffeners. This gave rise to the assessment of the stresses induced
in the stiffener flanges, as they were important for the response of the plate.

(a) Position (1.1) (b) Position (1.2)

(c) Position (1.3)

Figure E.3: Stress-strain curve from location 1, in z-direction

Due to the applied pressure, the stiffeners will deform sideways (x-direction) as
well as out of plane (y-direction). Due to this deformation, the stiffener warps as
rotation around the z-axis requires less work. As a result, position (1.1) will have
less stress due to compression and bending. While position (1.2) will suffer from
bending stresses that override the compressive stresses due to the close position to
the neutral axis. In position (1.3) the tension and bending stresses both cooperate
to induce stresses. The results are presented in figure E.3.
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(a) Position (2.1) (b) Position (2.2)

(c) Position (2.3)

Figure E.4: Stress-strain curve from location 2, in z-direction

Figure E.4 presents results corresponding to figure E.1, the stress strain curves were
found linear for all three positions. Considering figure 7.10, this is the location
with least stress.
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(a) Position (3.1) (b) Position (3.2)

(c) Position (3.3)

Figure E.5: Stress-strain curve from location 3, in z-direction

In figure E.5 the warping of the beam does affect the results regarding the position,
compared to the results for location 1. The boundaries constrain the beam, and the
bending of the beam induces dominant compressive stresses with yield magnitude.
Comparing figure E.5a with figure E.5c, the non-linear behaviour is visible due to
more compressive stresses. This effect exists due to an impact of warping.
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E.2 Additional Results From DNV GL Ice Pres-
sure Model

Figure 7.16 presents that compressive forces of 619.6 [MPa] and tension forces of
608.7 [MPa] occur in the stiffeners due to the applied ice pressure. This is further
assessed in this section by measurements at three different points at three different
locations along the flanges, as presented in the beginning of this chapter. As the
pressure was increased, also the second pair of stiffeners were subjected to stresses.
Thus, the second pair of stiffeners were not further assessed.

(a) Position (1.1) (b) Position (1.2)

(c) Position (1.3)

Figure E.6: Stress-strain curve from location 1, in z-direction

Due to increased pressure, figure E.6 presents almost equal curves for all positions
along the flanges. Due to the increased pressure, the warping effect was surpassed
by equal yielding across the flange as the stiffeners reach plasticity and the plate
had different behaviour.
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(a) Position (2.1) (b) Position (2.2)

(c) Position (2.3)

Figure E.7: Stress-strain curve from location 2, in z-direction

Sampling location 2, provides linear behaviour at all three points across the flange,
as shown by figure E.7. According to figure 7.16, location 2 is the location along
the stiffeners with least stress, as it is located at the turning point from tensile to
compressive stresses.
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(a) Position (3.1) (b) Position (3.2)

(c) Position (3.3)

Figure E.8: Stress-strain curve from location 3, in z-direction

Figure E.8 presents stress-strain curves for the end of the stiffeners. One observes
small differences in the stress and strain levels regarding the sampling points across
the flange. This does most likely occur due to small warping of the stiffeners. As
for location 1, one observes non-linear material behaviour here.
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E.3 Additional Results From IACS Ice Pressure
Model

This section provides assessment of the stiffeners. Figure D.14 shows that the large
stresses occur in the stiffener flanges. The largest compressive stress occurred at
the flange ends, and had a magnitude of -705.5 [MPa] while the tensile stress had
a magnitude of 688.3 [MPa], located at the middle of the stiffener span.

(a) Position (1.1) (b) Position (1.2)

(c) Position (1.3)

Figure E.9: Stress-strain curve from location 1, in z-direction

Figure E.9 shows that the warping effect is almost eliminated due to the increased
pressure and that the cross section of the flange has almost the same behaviour.
It is reason to believe that the increased pressure includes more of the plate and
let the stiffener closest to the loaded area behave more as a loaded beam.
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(a) Position (2.1) (b) Position (2.2)

(c) Position (2.3)

Figure E.10: Stress-strain curve from location 2, in z-direction

Figure E.10 presents the same behaviour as for the model subjected to the loads
obtained from the DNV GL regulations. Here, one also observes truly linear be-
haviour.
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(a) Position (3.1) (b) Position (3.2)

(c) Position (3.3)

Figure E.11: Stress-strain curve from location 3, in z-direction

The stress strain curves for the stiffener ends measured at the flange, are given in
figure E.11. There exist small differences for the three sampling points, hence this
is believed to occur due to small warping of the stiffeners.
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Appendix F

Additional Results - Bow
Model

This chapter extends results from the analysis of the plate and stiffeners for the
local bow model. The reader should be familiar with the set-up of the analysis, as
no further details are given here.

XLI
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F.1 Plate Assessment - Bow Model

The following subsections provide plots of stress versus true strain for the plate
sampling locations excluded from the main part of the thesis.

F.1.1 Location 3 and 4 - Stiffener Side
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(c) Stress σ plotted versus time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-0.02

-0.01

0

0.01

0.02

T
ru
e
st
ra
in
,
ε
[-
]

X - location 3

X - location 4

Z - location 3

Z - location 4

(d) True strain ε plotted versus time.

Figure F.1: Stresses and true strains for location 3 and 4. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.



F.1. PLATE ASSESSMENT - BOW MODEL XLIII

F.1.2 Location 5 and 6 - Stiffener Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.2: Stresses and true strains for location 5 and 6. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.
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F.1.3 Location 7 and 8 - Stiffener Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.3: Stresses and true strains for location 7 and 8. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.
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F.1.4 Location 9 and 10 - Stiffener Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.4: Stresses and true strains for location 9 and 10. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.

F.1.5 Comments to the Figures - Stiffener Side

From the figures presenting stress and true strain plotted over time, one can observe
the same tendency for all figures. When the load fraction is between 0.7 and 0.8,
the three middle stiffeners collapse, hence the plate looses it’s support. Further,
it is observed that the stresses and strains are reduced as the sampling location is
moved further from the loaded area. Looking at location 1-6, one should notice
that the stresses in x-direction are reduced from approximately 680 to 250 [MPa].
The true strain in x-direction is reduced from 0.05 to 0.001 [-]. In z-direction, the
stresses are reduced from 450 to almost 0 [MPa]. The strains are reduced from
-0.02 to -0.0004 [-].
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F.1.6 Location 3 and 4 - Load Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.5: Stresses and true strains for location 3 and 4. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.
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F.1.7 Location 5 and 6 - Load Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.6: Stresses and true strains for location 5 and 6. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.
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F.1.8 Location 7 and 8 - Load Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.7: Stresses and true strains for location 7 and 8. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.
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F.1.9 Location 9 and 10 - Load Side
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(c) Stress σ plotted versus time.
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(d) True strain ε plotted versus time.

Figure F.8: Stresses and true strains for location 9 and 10. The time axis describes
the load increments, where 0 equals unloaded condition and 1 equals fully loaded.

F.1.10 Comments to the Figures - Load Side

The same tendency is observed for the plots presenting the stress and true strain
over time, when the load fraction reaches a value between 0.7 and 0.8. Reasonably
due to a collapse of the three middle stiffeners. The load side stresses and strains
change as the sampling location increases the distance from the load. Between
location 1 and 6, the stress in x-direction changes from approximately -200 to
400 [MPa]. While the true strain changes from approximately -0.015 to 0.002 [-].
The change from compression to tension is reasonably because the stiffeners far
from the loaded area still support the plate in z-direction only, and the dented
area suffers from compression resulting in tension for the surrounding areas. In
z-direction, the stress varies from approximately -620 [MPa] at location 1, to 20
[MPa] at location 6. The true strain is reduced from approximately -0.028 to
-0.0005 [-].
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F.2 Stiffener Assessment - Bow Model

This section presents the analysis and results of the stiffener assessment. As the
plate analysis indicated stiffener buckling for a load fraction larger than 0.735, an
assessment of the stiffeners closest to the applied load was found necessary. As
the extend of the main part was somewhat limited, this assessment was put in the
appendix. The same procedure as for the plate was conducted at the stiffeners.
Figure F.9 presents the two stiffeners assessed, with numbering of each stiffener.

Figure F.9: Numbering of the stiffeners. Stiffener 1 is located at the middle of the
plate. Stiffener 2 is located at the edge of the load patch.

Each flange of stiffener 1 and 2 had six sampling locations as shown in figure F.10.

Figure F.10: Numbering of the flanges for stiffener 1 and 2.
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The stiffeners indirectly impacted by the contact pressure, were considered less
critical, hence neglected in the analysis. Additionally, they were left out of the
assessment to give priority to other assessments. For the sampling locations pre-
sented in figure F.10, stresses in z-direction were measured for all locations. This
resulted in the following plots for stiffener 1.
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(a) location 1 and 2 for stiffener 1.
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(b) location 3 and 4 for stiffener 1.
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(c) location 5 and 6 for stiffener 1.

Figure F.11: Stress σz versus true strain εz in z-direction.
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(a) Stress σz plotted versus time.
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(b) True strain εz plotted versus time.

Figure F.12: The time axis describes the load increments, where 0 equals unloaded
condition and 1 equals fully loaded.

From figure F.11a, F.11b and F.11c one can observe almost identical behaviour for
each pair of locations. This indicates of no warping of the stiffener. For location
1, 2, 3 and 4 one could observe a typical stress-strain curve with a defined yield
point. In figure F.11a the yield stress is approximately 480 [MPa], while in figure
F.11b it is approximately 450 [MPa]. In figure F.11c two locations of the curves
are of interest. The first location indicates the yield stress at an approximate value
of -400 [MPa] in compression. The second location at a true strain of 0.16 and
a stress level of -600 [MPa] indicates the point of collapse for stiffener 1. This
is confirmed by figure F.12a and F.12b, between a load fraction from 0.7 to 0.8
[-]. From previous assessment of the plate the same behaviour between a load
fraction of 0.7 to 0.8 was observed. The stress-strain curve presented in figure
F.11c indicates that stiffener 1 suffers from a development of a plastic hinge, hence
collapses.
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For stiffener 2, the following plots were obtained from the analysis. Similar stiffener
1, stiffener 2 had 6 sampling locations, as indicated by figure F.10.
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(b) location 3 and 4 for stiffener 2.
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(c) location 5 and 6 for stiffener 2.

Figure F.13: Stress σz versus true strain εz in z-direction.
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(a) Stress σz plotted versus time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

T
ru
e
st
ra
in
,
ε
[-
]

Z - location 1

Z - location 2

Z - location 3

Z - location 4

Z - location 5

Z - location 6

(b) True strain εz plotted versus time.

Figure F.14: The time axis describes the load increments, where 0 equals unloaded
condition and 1 equals fully loaded.

In figure F.13a one can observe a small difference between the two locations. The
strains at location 2 reach a higher level than at location 1, while the stress level
is almost equal. Thus, the curves tend to behave equal until a true strain level of
0.018 [-]. The yield stress for both curves is approximately 480 [MPa] in tension.
From figure F.13b one observes a different behaviour comparing location 3 and 4.
Comparing location 3 and 4, location 3 has almost no stresses or strains. This
is well substantiated by figure F.14a and F.14b. The yield stress at location 4 is
approximately 450 [MPa]. In figure F.13c one observes the effect of the boundary
condition and the fact that the stiffener obviously warps. Until yield at a com-
pressive stress of 480 [MPa], the behaviour is similar, while the difference starts at
a true strain level of -0.025 [-]. From figure F.14b this strain level is also located
between a load fraction of 0.7 to 0.8. This indicates that the warping of stiffener
2 occur at the same time as the collapse happens for stiffener 1.

The following figures present contour plots for both stiffeners in z- and y-direction.
The stresses in y-direction for both flange and web, and the stresses in z-direction
for the web will only be presented graphically.
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(a) Load fraction equal 0.735

(b) Load fraction equal 1

Figure F.15: Contour plot of the stress in z-direction of the bow model for two
different load fractions.

Figure F.15a indicates a maximum tensile stress of 578.7 [MPa], and a maximum
compressive stress of -727.8 [MPa] (stiffener 1) and -609 [MPa] (stiffener 2) at the
flanges. In figure F.15b these values have changed to 686.4, -688.6 and -860.5
[MPa] respectively. The web of both stiffeners is mostly impacted by the stresses
at the midpoint, close to the flanges.
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(a) Load fraction equal 0.735

(b) Load fraction equal 1

Figure F.16: Contour plot of the stress in y-direction of the bow model for two
different load fractions.

Figure F.16 indicates small stresses in the flanges for both stiffeners. The exception
is location 5 and 6 for stiffener 1, where the magnitude reaches a compressive stress
of -1170 [MPa].
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(a) Load fraction equal 0.735

(b) Load fraction equal 1

Figure F.17: Contour plot of the shear stress in yz-direction of the bow model for
two different load fractions.

Figure F.17 presents large shear stresses in the yz-direction. Prior to the collapse
(figure F.17a) only the three stiffeners located above the loaded area suffer from
shear stresses with an absolute value of 337.6 [MPa]. After the collapse, these
shear stresses have increased to an absolute value of 348.9 [MPa] and additionally
impacted the two stiffeners next to the ones located over the loaded area.
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F.3 Boundary Condition Assessment - Bow Model

This section provides additional results from the assessment of the boundary con-
ditions. Information about set-up and sampling points are given in the main part,
unless other specified.

F.3.1 Plate Assessment - Various Boundaries

The figures presented here provide results for the plate assessment, where the
sampling locations are presented previously. Discussion and comments on the
plots are given in the main part.

F.3.2 Stiffener Side - Location 3 and 4
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]

0 0.0025 0.005 0.0075 0.01 0.0125 0.015
True Strain, εx [-]

-600

-450

-300

-150

0

150

300

450

600

S
tr
es
s,

σ
x
[M

P
a]

Location 3

Location 4

(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.18: Stress σx versus true strain εx in x-direction at location 3 and 4 on
the stiffener side.
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(b) True strain, εx, location 3
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(c) Stress, σx, location 4
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(d) True strain, εx, location 4

Figure F.19: Stress σx and true strain εx in x-direction at location 3 and 4 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.20: Stress σz versus true strain εz in z-direction at location 3 and 4 on
the stiffener side. Note the different scales between each figure.
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Figure F.21: Stress σz and true strain εz in z-direction at location 3 and 4 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.3 Stiffener Side - Location 5 and 6
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.22: Stress σx versus true strain εx in x-direction at location 5 and 6 on
the stiffener side.
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(b) True strain, εx, location 5
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Figure F.23: Stress σx and true strain εx in x-direction at location 5 and 6 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.24: Stress σz versus true strain εz in z-direction at location 5 and 6 on
the stiffener side. Note the different scales between each figure.
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(a) Stress, σz, location 5
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-0.0025

0

T
ru
e
st
ra
in
,
ε
z
[-
]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109
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Figure F.25: Stress σz and true strain εz in z-direction at location 5 and 6 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.4 Stiffener Side - Location 7 and 8
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]

0 0.01 0.02 0.03 0.04 0.05
True Strain, εx [-]

0

100

200

300

400

500

600

700
S
tr
es
s,

σ
x
[M

P
a]

Location 7

Location 8

(d) Fixed boundary condition.

Figure F.26: Stress σx versus true strain εx in x-direction at location 7 and 8 on
the stiffener side.
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(a) Stress, σx, location 7
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(b) True strain, εx, location 7
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(c) Stress, σx, location 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

T
ru
e
st
ra
in
,
ε
x
[-
]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109

(d) True strain, εx, location 8

Figure F.27: Stress σx and true strain εx in x-direction at location 7 and 8 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.28: Stress σz versus true strain εz in z-direction at location 7 and 8 on
the stiffener side. Note the different scales between each figure.
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Figure F.29: Stress σz and true strain εz in z-direction at location 7 and 8 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.5 Stiffener Side - Location 9 and 10
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.30: Stress σx versus true strain εx in x-direction at location 9 and 10 on
the stiffener side.
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(c) Stress, σx, location 10
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(d) True strain, εx, location 10

Figure F.31: Stress σx and true strain εx in x-direction at location 9 and 10 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.32: Stress σz versus true strain εz in z-direction at location 9 and 10 on
the stiffener side. Note the different scales between each figure.
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(b) True strain, εz, location 9
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(c) Stress, σz, location 10
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(d) True strain, εz, location 10

Figure F.33: Stress σz and true strain εz in z-direction at location 9 and 10 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.6 Load Side - Location 3 and 4
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(d) Fixed boundary condition.

Figure F.34: Stress σx versus true strain εx in x-direction at location 3 and 4 on
the load side.
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Figure F.35: Stress σx and true strain εx in x-direction at location 3 and 4 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(d) Fixed boundary condition.

Figure F.36: Stress σz versus true strain εz in z-direction at location 3 and 4 on
the load side. Note the different scales between each figure.
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Figure F.37: Stress σz and true strain εz in z-direction at location 3 and 4 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.7 Load Side - Location 5 and 6

0 0.005 0.01 0.015 0.02
True Strain, εx [-]

0

100

200

300

400

S
tr
es
s,

σ
x
[M

P
a]

Location 5

Location 6
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(d) Fixed boundary condition.

Figure F.38: Stress σx versus true strain εx in x-direction at location 5 and 6 on
the load side.
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Figure F.39: Stress σx and true strain εx in x-direction at location 5 and 6 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(d) Fixed boundary condition.

Figure F.40: Stress σz versus true strain εz in z-direction at location 5 and 6 on
the load side. Note the different scales between each figure.
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Figure F.41: Stress σz and true strain εz in z-direction at location 5 and 6 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.8 Load Side - Location 7 and 8
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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Figure F.42: Stress σx versus true strain εx in x-direction at location 7 and 8 on
the load side.
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Figure F.43: Stress σx and true strain εx in x-direction at location 7 and 8 plotted
over time. The scale on the x-axis presents the load fraction.
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.44: Stress σz versus true strain εz in z-direction at location 7 and 8 on
the load side. Note the different scales between each figure.
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Figure F.45: Stress σz and true strain εz in z-direction at location 7 and 8 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.9 Load Side - Location 9 and 10
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(d) Fixed boundary condition.

Figure F.46: Stress σx versus true strain εx in x-direction at location 9 and 10 on
the load side.
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(c) Stress, σx, location 10
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Figure F.47: Stress σx and true strain εx in x-direction at location 9 and 10 plotted
over time. The scale on the x-axis presents the load fraction.
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(d) Fixed boundary condition.

Figure F.48: Stress σz versus true strain εz in z-direction at location 9 and 10 on
the load side. Note the different scales between each figure.
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(c) Stress, σz, location 10
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(d) True strain, εz, location 10

Figure F.49: Stress σz and true strain εz in z-direction at location 9 and 10 plotted
over time. The scale on the x-axis presents the load fraction.
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F.3.10 Stiffener Assessment - Various Boundaries

The stiffeners have been assessed as previously described in appendix F.2. No
further details about the set-up will be given here. Comments to the plots are
given in the main part.

F.3.11 Stiffener 1 - Location 1 and 2
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.50: Stress σz versus true strain εz in z-direction at location 1 and 2 on
the stiffener flange. Note the different scales between each figure.
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(b) True strain, εz, location 1
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(c) Stress, σz, location 2
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(d) True strain, εz, location 2

Figure F.51: Stress σz and true strain εz in z-direction at the stiffener flange for
location 1 and 2 plotted over time. The scale on the x-axis presents the load
fraction.
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F.3.12 Stiffener 1 - Location 3 and 4
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(d) Fixed boundary condition.

Figure F.52: Stress σz versus true strain εz in z-direction at location 3 and 4 on
the stiffener flange. Note the different scales between each figure.
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(a) Stress, σz, location 3
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(b) True strain, εz, location 3
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(c) Stress, σz, location 4
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(d) True strain, εz, location 4

Figure F.53: Stress σz and true strain εz in z-direction at the stiffener flange for
location 3 and 4 plotted over time. The scale on the x-axis presents the load
fraction.
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F.3.13 Stiffener 1 - Location 5 and 6
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.54: Stress σz versus true strain εz in z-direction at location 5 and 6 on
the stiffener flange. Note the different scales between each figure.
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(b) True strain, εz, location 5
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(c) Stress, σz, location 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-0.2

-0.15

-0.1

-0.05

0

0.05

T
ru
e
st
ra
in
,
ε
z
[-
]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109

(d) True strain, εz, location 6

Figure F.55: Stress σz and true strain εz in z-direction at the stiffener flange for
location 5 and 6 plotted over time. The scale on the x-axis presents the load
fraction.
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F.3.14 Stiffener 2 - Location 1 and 2
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.56: Stress σz versus true strain εz in z-direction at location 1 and 2 on
the stiffener flange. Note the different scales between each figure.
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(b) True strain, εz, location 1
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(c) Stress, σz, location 2
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(d) True strain, εz, location 2

Figure F.57: Stress σz and true strain εz in z-direction at the stiffener flange for
location 1 and 2 plotted over time. The scale on the x-axis presents the load
fraction.
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F.3.15 Stiffener 2 - Location 3 and 4
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(c) Spring stiffness κ = 1 · 109 [N/rad]
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(d) Fixed boundary condition.

Figure F.58: Stress σz versus true strain εz in z-direction at location 3 and 4 on
the stiffener flange. Note the different scales between each figure.
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(a) Stress, σz, location 3
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(b) True strain, εz, location 3
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(c) Stress, σz, location 4
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(d) True strain, εz, location 4

Figure F.59: Stress σz and true strain εz in z-direction at the stiffener flange for
location 3 and 4 plotted over time. The scale on the x-axis presents the load
fraction.
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F.3.16 Stiffener 2 - Location 5 and 6
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(a) Spring stiffness κ = 1 · 103 [N/rad]
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(b) Spring stiffness κ = 1 · 106 [N/rad]
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(d) Fixed boundary condition.

Figure F.60: Stress σz versus true strain εz in z-direction at location 5 and 6 on
the stiffener flange. Note the different scales between each figure.
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(b) True strain, εz, location 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time

-600

-500

-400

-300

-200

-100

0

100

S
tr
es
s,

σ
z
[M

P
a]

Fixed
κ = 1 · 103

κ = 1 · 106

κ = 1 · 109

(c) Stress, σz, location 6
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(d) True strain, εz, location 6

Figure F.61: Stress σz and true strain εz in z-direction at the stiffener flange for
location 5 and 6 plotted over time. The scale on the x-axis presents the load
fraction.
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F.3.17 Contour Plot of Stiffeners

The following section provides contour plots for the stiffeners with stresses in y-
and z-direction. The stresses for the webbing will only be plotted graphically
giving priority to the assessment of the plate and flanges. Additionally, no further
comments are given here.

(a) Spring stiffness κ = 1 · 103 [N/rad]

(b) Spring stiffness κ = 1 · 106 [N/rad]

(c) Spring stiffness κ = 1 · 109 [N/rad]

Figure F.62: Contour plot of stresses in y-direction σy for fully loaded model for
the different spring stiffness. The load fraction equals 1.
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(a) Spring stiffness κ = 1 · 103 [N/rad]

(b) Spring stiffness κ = 1 · 106 [N/rad]

(c) Spring stiffness κ = 1 · 109 [N/rad]

Figure F.63: Contour plot of stresses in yz-direction τyz for fully loaded model for
the different spring stiffness. The load fraction equals 1.
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(a) Spring stiffness κ = 1 · 103 [N/rad]

(b) Spring stiffness κ = 1 · 106 [N/rad]

(c) Spring stiffness κ = 1 · 109 [N/rad]

Figure F.64: Contour plot of stresses in z-direction σz for fully loaded model for
the different spring stiffness. The load fraction equals 1.



Appendix G

MATLAB Scripts for
Plotting

This section provides the MATLAB scripts applied to plot figures for the bow
model assessment. The scripts presented here will not be able to provide all the
results as they were modified to produce results for each part individually.

G.1 MATLAB - plateover.m

1 clc
2 save_file = 'yes'; %Write 'yes ' to save figure!
3
4 %Filenames to choose:
5 %Files with 24 data sets:
6 filename = 'PlateOver ';
7 %filename = 'PlateUnder ';
8 %filename = 'WebStiff1 ';
9 %filename = 'FlangeStiff1 ';

10 %filename = 'WebStiff2 ';
11 %filename = 'FlangeStiff2 ';
12
13 %Files with only 16 datasets:
14 %filename = 'PlateOver2 ';
15 %filename = 'PlateUnder2 ';
16
17 %File type and fid
18 postfix = '.rpt';
19 fid = strcat(filename ,postfix);
20
21 %Initial start and end:
22 startRow = 2;
23 endRow = 45;
24
25
26 %For files with 24 datasets:
27 for i = 1:24
28 [x, vect] = importfile(fid , startRow , endRow);
29
30 %labeling and struct creation:
31 if i > 0 && i <= 6
32 Data(i).LE11 = vect;
33 elseif i >6 && i <= 12
34 Data(i-6).LE33 = vect;
35 elseif i >12 && i <= 18
36 Data(i-12).S11 = vect;
37 elseif i >18 && i <= 24
38 Data(i-18).S33 = vect;
39 end
40
41 %Update of data reading:

CV
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42 startRow = startRow + 45;
43 endRow = endRow + 45;
44
45 end
46
47 %Plotting of stress strain figures:
48 fg1 = figure (1);clf;
49
50 hold on
51 plot(Data (4).LE11 , Data (4).S11 /1000000 , 'b')
52 plot(Data (6).LE11 , Data (6).S11 /1000000 ,'--b')
53 grid on
54 box on
55 ax = gca;
56 ax.XTick = -0.05:0.01:0.07;
57 ax.YTick = -500:100:900;
58 ax.YAxis.Exponent = 0;
59 ax.XAxis.Exponent = 0;
60
61 xl = xlabel('True Strain , $\varepsilon_x$ [-]');
62 yl = ylabel('Stress , $\sigma_x$ [MPa]');
63 ll1 = sprintf('Location 1');
64 ll2 = sprintf('Location 2');
65 ll = legend(ll1 ,ll2 ,'location ','best');
66 ll.Interpreter = 'latex ';
67 xl.Interpreter = 'latex ';
68 yl.Interpreter = 'latex ';
69 xl.FontSize = 12 ; yl.FontSize = 12 ;
70
71
72 %% - Print figure
73 filename = 'PlateS11Loc12 ';
74 postfix = '.eps';
75 path = 'plot/';
76 filetype = '-depsc2 ';
77 fid = strcat(path ,filename ,postfix);
78
79 fg1.Units = 'pixels ';
80 fg1.PaperPositionMode = 'auto';
81 if (strcmp(save_file ,'yes'))
82 fprintf('Saving figure: %s \n',fid);
83 print(fg1 ,filetype ,fid);
84 else
85 disp('Not saving figure ')
86 end
87
88 %Position 3 and 4
89 fg2 = figure (2);clf;
90
91 hold on
92 plot(Data (1).LE11 , Data (1).S11 /1000000 ,'b')
93 plot(Data (5).LE11 , Data (5).S11 /1000000 ,'--b')
94 grid on
95 box on
96 ax = gca;
97 ax.XTick = -0.05:0.005:0.02;
98 ax.YTick = -500:100:900;
99 ax.YAxis.Exponent = 0;

100 ax.XAxis.Exponent = 0;
101
102 xl = xlabel('True Strain , $\varepsilon_x$ [-]');
103 yl = ylabel('Stress , $\sigma_x$ [MPa]');
104 ll1 = sprintf('Location 3');
105 ll2 = sprintf('Location 4');
106 ll = legend(ll1 ,ll2 ,'location ','best');
107 ll.Interpreter = 'latex ';
108 xl.Interpreter = 'latex ';
109 yl.Interpreter = 'latex ';
110 xl.FontSize = 12 ; yl.FontSize = 12 ;
111
112
113 %% - Print figure
114 filename = 'PlateS11Loc34 ';
115 postfix = '.eps';
116 path = 'plot/';
117 filetype = '-depsc2 ';
118 fid = strcat(path ,filename ,postfix);
119
120 fg2.Units = 'pixels ';
121 fg2.PaperPositionMode = 'auto';
122 if (strcmp(save_file ,'yes'))
123 fprintf('Saving figure: %s \n',fid);
124 print(fg2 ,filetype ,fid);
125 else
126 disp('Not saving figure ')
127 end
128
129 %Position 5 and 6
130 fg3 = figure (3);clf;
131
132 hold on
133 plot(Data (2).LE11 , Data (2).S11 /1000000 ,'b')
134 plot(Data (3).LE11 , Data (3).S11 /1000000 ,'--b')
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135 grid on
136 box on
137 ax = gca;
138 ax.XTick = -0.05:0.0005:0.02;
139 ax.YTick = -500:50:900;
140 ax.YAxis.Exponent = 0;
141 ax.XAxis.Exponent = 0;
142
143 xl = xlabel('True Strain , $\varepsilon_x$ [-]');
144 yl = ylabel('Stress , $\sigma_x$ [MPa]');
145 ll1 = sprintf('Location 5');
146 ll2 = sprintf('Location 6');
147 ll = legend(ll1 ,ll2 ,'location ','best');
148 ll.Interpreter = 'latex ';
149 xl.Interpreter = 'latex ';
150 yl.Interpreter = 'latex ';
151 xl.FontSize = 12 ; yl.FontSize = 12 ;
152
153
154 %% - Print figure
155 filename = 'PlateS11Loc56 ';
156 postfix = '.eps';
157 path = 'plot/';
158 filetype = '-depsc2 ';
159 fid = strcat(path ,filename ,postfix);
160
161 fg3.Units = 'pixels ';
162 fg3.PaperPositionMode = 'auto';
163 if (strcmp(save_file ,'yes'))
164 fprintf('Saving figure: %s \n',fid);
165 print(fg3 ,filetype ,fid);
166 else
167 disp('Not saving figure ')
168 end
169
170 %-------------------------------------------------------------------------
171 %Plotting of stress strain figures S33:
172 %-------------------------------------------------------------------------
173 fg4 = figure (4);clf;
174
175 hold on
176 plot(Data (4).LE33 , Data (4).S33 /1000000 , 'b')
177 plot(Data (6).LE33 , Data (6).S33 /1000000 ,'--b')
178 grid on
179 box on
180 ax = gca;
181 ax.XTick = -0.05:0.005:0.07;
182 ax.YTick = -500:100:900;
183 ax.YAxis.Exponent = 0;
184 ax.XAxis.Exponent = 0;
185
186 xl = xlabel('True Strain , $\varepsilon_z$ [-]');
187 yl = ylabel('Stress , $\sigma_z$ [MPa]');
188 ll1 = sprintf('Location 1');
189 ll2 = sprintf('Location 2');
190 ll = legend(ll1 ,ll2 ,'location ','best');
191 ll.Interpreter = 'latex ';
192 xl.Interpreter = 'latex ';
193 yl.Interpreter = 'latex ';
194 xl.FontSize = 12 ; yl.FontSize = 12 ;
195
196
197 %% - Print figure
198 filename = 'PlateS33Loc12 ';
199 postfix = '.eps';
200 path = 'plot/';
201 filetype = '-depsc2 ';
202 fid = strcat(path ,filename ,postfix);
203
204 fg4.Units = 'pixels ';
205 fg4.PaperPositionMode = 'auto';
206 if (strcmp(save_file ,'yes'))
207 fprintf('Saving figure: %s \n',fid);
208 print(fg4 ,filetype ,fid);
209 else
210 disp('Not saving figure ')
211 end
212
213 %Position 3 and 4
214 fg5 = figure (5);clf;
215
216 hold on
217 plot(Data (1).LE33 , Data (1).S33 /1000000 ,'b')
218 plot(Data (5).LE33 , Data (5).S33 /1000000 ,'--b')
219 grid on
220 box on
221 ax = gca;
222 ax.XTick = -0.05:0.005:0.02;
223 ax.YTick = -700:100:900;
224 ax.YAxis.Exponent = 0;
225 ax.XAxis.Exponent = 0;
226
227 xl = xlabel('True Strain , $\varepsilon_z$ [-]');
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228 yl = ylabel('Stress , $\sigma_z$ [MPa]');
229 ll1 = sprintf('Location 3');
230 ll2 = sprintf('Location 4');
231 ll = legend(ll1 ,ll2 ,'location ','best');
232 ll.Interpreter = 'latex ';
233 xl.Interpreter = 'latex ';
234 yl.Interpreter = 'latex ';
235 xl.FontSize = 12 ; yl.FontSize = 12 ;
236
237
238 %% - Print figure
239 filename = 'PlateS33Loc34 ';
240 postfix = '.eps';
241 path = 'plot/';
242 filetype = '-depsc2 ';
243 fid = strcat(path ,filename ,postfix);
244
245 fg5.Units = 'pixels ';
246 fg5.PaperPositionMode = 'auto';
247 if (strcmp(save_file ,'yes'))
248 fprintf('Saving figure: %s \n',fid);
249 print(fg5 ,filetype ,fid);
250 else
251 disp('Not saving figure ')
252 end
253
254 %Position 5 and 6
255 fg6 = figure (6);clf;
256
257 hold on
258 plot(Data (2).LE33 , Data (2).S33 /1000000 ,'b')
259 plot(Data (3).LE33 , Data (3).S33 /1000000 ,'--b')
260 grid on
261 box on
262 ax = gca;
263 ax.XTick = -0.05:0.0005:0.02;
264 ax.YTick = -700:100:900;
265 ax.YAxis.Exponent = 0;
266 ax.XAxis.Exponent = 0;
267
268 xl = xlabel('True Strain , $\varepsilon_z$ [-]');
269 yl = ylabel('Stress , $\sigma_z$ [MPa]');
270 ll1 = sprintf('Location 5');
271 ll2 = sprintf('Location 6');
272 ll = legend(ll1 ,ll2 ,'location ','best');
273 ll.Interpreter = 'latex ';
274 xl.Interpreter = 'latex ';
275 yl.Interpreter = 'latex ';
276 xl.FontSize = 12 ; yl.FontSize = 12 ;
277
278
279 %% - Print figure
280 filename = 'PlateS33Loc56 ';
281 postfix = '.eps';
282 path = 'plot/';
283 filetype = '-depsc2 ';
284 fid = strcat(path ,filename ,postfix);
285
286 fg6.Units = 'pixels ';
287 fg6.PaperPositionMode = 'auto';
288 if (strcmp(save_file ,'yes'))
289 fprintf('Saving figure: %s \n',fid);
290 print(fg6 ,filetype ,fid);
291 else
292 disp('Not saving figure ')
293 end
294
295
296 %Timeplot
297 fg45 = figure (45);clf;
298
299 hold on
300 plot(x,Data (4).S11 /1000000 ,'b')
301 plot(x,Data (6).S11 /1000000 ,'--b')
302 plot(x,Data (4).S33 /1000000 ,':b','MarkerSize ' ,3)
303 plot(x,Data (6).S33 /1000000 ,'-.b','MarkerSize ' ,3)
304 grid on
305 box on
306 ax = gca;
307 ax.XTick = 0:0.1:1;
308 ax.YTick = -900:150:900;
309 ax.YAxis.Exponent = 0;
310 ax.XAxis.Exponent = 0;
311
312 xl = xlabel('Time');
313 yl = ylabel('Stress , $\sigma$ [MPa]');
314 ll1 = sprintf('X - location 1');
315 ll2 = sprintf('X - location 2');
316 ll3 = sprintf('Z - location 1');
317 ll4 = sprintf('Z - location 2');
318 ll = legend(ll1 ,ll2 ,ll3 ,ll4 ,'location ','best');
319 ll.Interpreter = 'latex ';
320 xl.Interpreter = 'latex ';
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321 yl.Interpreter = 'latex ';
322 xl.FontSize = 12 ; yl.FontSize = 12 ;
323
324
325 %% - Print figure
326 filename = 'PlateTimeS ';
327 postfix = '.eps';
328 path = 'plot/';
329 filetype = '-depsc2 ';
330 fid = strcat(path ,filename ,postfix);
331
332 fg45.Units = 'pixels ';
333 fg45.PaperPositionMode = 'auto';
334 if (strcmp(save_file ,'yes'))
335 fprintf('Saving figure: %s \n',fid);
336 print(fg45 ,filetype ,fid);
337 else
338 disp('Not saving figure ')
339 end
340
341 %TimePlot for strains
342 fg46 = figure (46);clf;
343
344 hold on
345 plot(x,Data (4).LE11 ,'b')
346 plot(x,Data (6).LE11 ,'--b')
347 plot(x,Data (4).LE33 ,':b')
348 plot(x,Data (6).LE33 ,'-.b')
349 grid on
350 box on
351 ax = gca;
352 ax.XTick = 0:0.1:1;
353 ax.YTick = -0.05:0.01:0.09;
354 ax.YAxis.Exponent = 0;
355 ax.XAxis.Exponent = 0;
356
357 xl = xlabel('Time');
358 yl = ylabel('True strain , $\varepsilon$ [-]');
359 ll1 = sprintf('X - location 1');
360 ll2 = sprintf('X - location 2');
361 ll3 = sprintf('Z - location 1');
362 ll4 = sprintf('Z - location 2');
363 ll = legend(ll1 ,ll2 ,ll3 ,ll4 ,'location ','best');
364 ll.Interpreter = 'latex ';
365 xl.Interpreter = 'latex ';
366 yl.Interpreter = 'latex ';
367 xl.FontSize = 12 ; yl.FontSize = 12 ;
368
369
370 %% - Print figure
371 filename = 'PlateTimeLE ';
372 postfix = '.eps';
373 path = 'plot/';
374 filetype = '-depsc2 ';
375 fid = strcat(path ,filename ,postfix);
376
377 fg46.Units = 'pixels ';
378 fg46.PaperPositionMode = 'auto';
379 if (strcmp(save_file ,'yes'))
380 fprintf('Saving figure: %s \n',fid);
381 print(fg46 ,filetype ,fid);
382 else
383 disp('Not saving figure ')
384 end
385
386 %Timeplot
387 fg49 = figure (49);clf;
388
389 hold on
390 plot(x,Data (1).S11 /1000000 ,'b')
391 plot(x,Data (5).S11 /1000000 ,'--b')
392 plot(x,Data (1).S33 /1000000 ,':b','MarkerSize ' ,3)
393 plot(x,Data (5).S33 /1000000 ,'-.b','MarkerSize ' ,3)
394 grid on
395 box on
396 ax = gca;
397 ax.XTick = 0:0.1:1;
398 ax.YTick = -900:150:900;
399 ax.YAxis.Exponent = 0;
400 ax.XAxis.Exponent = 0;
401
402 xl = xlabel('Time');
403 yl = ylabel('Stress , $\sigma$ [MPa]');
404 ll1 = sprintf('X - location 3');
405 ll2 = sprintf('X - location 4');
406 ll3 = sprintf('Z - location 3');
407 ll4 = sprintf('Z - location 4');
408 ll = legend(ll1 ,ll2 ,ll3 ,ll4 ,'location ','best');
409 ll.Interpreter = 'latex ';
410 xl.Interpreter = 'latex ';
411 yl.Interpreter = 'latex ';
412 xl.FontSize = 12 ; yl.FontSize = 12 ;
413
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414
415 %% - Print figure
416 filename = 'PlateTimeS34 ';
417 postfix = '.eps';
418 path = 'plot/';
419 filetype = '-depsc2 ';
420 fid = strcat(path ,filename ,postfix);
421
422 fg49.Units = 'pixels ';
423 fg49.PaperPositionMode = 'auto';
424 if (strcmp(save_file ,'yes'))
425 fprintf('Saving figure: %s \n',fid);
426 print(fg49 ,filetype ,fid);
427 else
428 disp('Not saving figure ')
429 end
430
431 %TimePlot for strains
432 fg50 = figure (50);clf;
433
434 hold on
435 plot(x,Data (1).LE11 ,'b')
436 plot(x,Data (5).LE11 ,'--b')
437 plot(x,Data (1).LE33 ,':b')
438 plot(x,Data (5).LE33 ,'-.b')
439 grid on
440 box on
441 ax = gca;
442 ax.XTick = 0:0.1:1;
443 ax.YTick = -0.05:0.01:0.09;
444 ax.YAxis.Exponent = 0;
445 ax.XAxis.Exponent = 0;
446
447 xl = xlabel('Time');
448 yl = ylabel('True strain , $\varepsilon$ [-]');
449 ll1 = sprintf('X - location 3');
450 ll2 = sprintf('X - location 4');
451 ll3 = sprintf('Z - location 3');
452 ll4 = sprintf('Z - location 4');
453 ll = legend(ll1 ,ll2 ,ll3 ,ll4 ,'location ','best');
454 ll.Interpreter = 'latex ';
455 xl.Interpreter = 'latex ';
456 yl.Interpreter = 'latex ';
457 xl.FontSize = 12 ; yl.FontSize = 12 ;
458
459
460 %% - Print figure
461 filename = 'PlateTimeLE34 ';
462 postfix = '.eps';
463 path = 'plot/';
464 filetype = '-depsc2 ';
465 fid = strcat(path ,filename ,postfix);
466
467 fg50.Units = 'pixels ';
468 fg50.PaperPositionMode = 'auto';
469 if (strcmp(save_file ,'yes'))
470 fprintf('Saving figure: %s \n',fid);
471 print(fg50 ,filetype ,fid);
472 else
473 disp('Not saving figure ')
474 end
475
476 %Timeplot
477 fg51 = figure (51);clf;
478
479 hold on
480 plot(x,Data (2).S11 /1000000 ,'b')
481 plot(x,Data (3).S11 /1000000 ,'--b')
482 plot(x,Data (2).S33 /1000000 ,':b','MarkerSize ' ,3)
483 plot(x,Data (3).S33 /1000000 ,'-.b','MarkerSize ' ,3)
484 grid on
485 box on
486 ax = gca;
487 ax.XTick = 0:0.1:1;
488 ax.YTick = -900:100:900;
489 ax.YAxis.Exponent = 0;
490 ax.XAxis.Exponent = 0;
491
492 xl = xlabel('Time');
493 yl = ylabel('Stress , $\sigma$ [MPa]');
494 ll1 = sprintf('X - location 5');
495 ll2 = sprintf('X - location 6');
496 ll3 = sprintf('Z - location 5');
497 ll4 = sprintf('Z - location 6');
498 ll = legend(ll1 ,ll2 ,ll3 ,ll4 ,'location ','best');
499 ll.Interpreter = 'latex ';
500 xl.Interpreter = 'latex ';
501 yl.Interpreter = 'latex ';
502 xl.FontSize = 12 ; yl.FontSize = 12 ;
503
504
505 %% - Print figure
506 filename = 'PlateTimeS56 ';
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507 postfix = '.eps';
508 path = 'plot/';
509 filetype = '-depsc2 ';
510 fid = strcat(path ,filename ,postfix);
511
512 fg51.Units = 'pixels ';
513 fg51.PaperPositionMode = 'auto';
514 if (strcmp(save_file ,'yes'))
515 fprintf('Saving figure: %s \n',fid);
516 print(fg51 ,filetype ,fid);
517 else
518 disp('Not saving figure ')
519 end
520
521 %TimePlot for strains
522 fg52 = figure (52);clf;
523
524 hold on
525 plot(x,Data (2).LE11 ,'b')
526 plot(x,Data (3).LE11 ,'--b')
527 plot(x,Data (2).LE33 ,':b')
528 plot(x,Data (3).LE33 ,'-.b')
529 grid on
530 box on
531 ax = gca;
532 ax.XTick = 0:0.1:1;
533 ax.YTick = -0.005:0.001:0.009;
534 ax.YAxis.Exponent = 0;
535 ax.XAxis.Exponent = 0;
536
537 xl = xlabel('Time');
538 yl = ylabel('True strain , $\varepsilon$ [-]');
539 ll1 = sprintf('X - location 5');
540 ll2 = sprintf('X - location 6');
541 ll3 = sprintf('Z - location 5');
542 ll4 = sprintf('Z - location 6');
543 ll = legend(ll1 ,ll2 ,ll3 ,ll4 ,'location ','best');
544 ll.Interpreter = 'latex ';
545 xl.Interpreter = 'latex ';
546 yl.Interpreter = 'latex ';
547 xl.FontSize = 12 ; yl.FontSize = 12 ;
548
549
550 %% - Print figure
551 filename = 'PlateTimeLE56 ';
552 postfix = '.eps';
553 path = 'plot/';
554 filetype = '-depsc2 ';
555 fid = strcat(path ,filename ,postfix);
556
557 fg52.Units = 'pixels ';
558 fg52.PaperPositionMode = 'auto';
559 if (strcmp(save_file ,'yes'))
560 fprintf('Saving figure: %s \n',fid);
561 print(fg52 ,filetype ,fid);
562 else
563 disp('Not saving figure ')
564 end

G.2 MATLAB - importfile.m

1 function [X,PlateOver1] = importfile(filename , startRow , endRow)
2 %IMPORTFILE Import numeric data from a text file as column vectors.
3 % [X,PLATEOVER1] = IMPORTFILE(FILENAME) Reads data from text file
4 % FILENAME for the default selection.
5 %
6 % [X,PLATEOVER1] = IMPORTFILE(FILENAME , STARTROW , ENDROW) Reads data from
7 % rows STARTROW through ENDROW of text file FILENAME.
8 %
9 % Example:

10 % [X,PlateOver1] = importfile('PlateOver.rpt ',2, 45);
11 %
12 % See also TEXTSCAN.
13
14 % Auto -generated by MATLAB on 2017/04/25 18:38:34
15
16 %% Initialize variables.
17 delimiter = ' ';
18 %if nargin <=2
19 % startRow = 2;
20 % endRow = 45;
21 %end
22
23 %% Format string for each line of text:
24 % column1: double (%f)
25 % column2: double (%f)
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26 % For more information , see the TEXTSCAN documentation.
27 formatSpec = '%f%f%[ˆ\n\r]';
28
29 %% Open the text file.
30 fileID = fopen(filename ,'r');
31
32 %% Read columns of data according to format string.
33 % This call is based on the structure of the file used to generate this
34 % code. If an error occurs for a different file , try regenerating the code
35 % from the Import Tool.
36 textscan(fileID , '%[ˆ\n\r]', startRow (1) -1, 'WhiteSpace ', '', 'ReturnOnError ', false);
37 dataArray = textscan(fileID , formatSpec , endRow (1)-startRow (1)+1, 'Delimiter ', delimiter , 'MultipleDelimsAsOne ',

true , 'ReturnOnError ', false);
38 for block =2: length(startRow)
39 frewind(fileID);
40 textscan(fileID , '%[ˆ\n\r]', startRow(block)-1, 'WhiteSpace ', '', 'ReturnOnError ', false);
41 dataArrayBlock = textscan(fileID , formatSpec , endRow(block)-startRow(block)+1, 'Delimiter ', delimiter , '

MultipleDelimsAsOne ', true , 'ReturnOnError ', false);
42 for col=1: length(dataArray)
43 dataArray{col} = [dataArray{col}; dataArrayBlock{col}];
44 end
45 end
46
47 %% Close the text file.
48 fclose(fileID);
49
50 %% Post processing for unimportable data.
51 % No unimportable data rules were applied during the import , so no post
52 % processing code is included. To generate code which works for
53 % unimportable data , select unimportable cells in a file and regenerate the
54 % script.
55
56 %% Allocate imported array to column variable names
57 X = dataArray{:, 1};
58 PlateOver1 = dataArray{:, 2};
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