Plaxis Scripting Tutorial
Advanced Course on Computational Geotechnics

Ivan Depina
SINTEF Infrastructure
Rock and Geotechnical Engineering

September 23, 2016

1 Introduction

The following tutorial on Plaxis scripting is based on the Plaxis 2D Tutorial 02:
Submerged construction of an excavation. The information on the problem and the
corresponding .p2dxlog file are available onhttp://kb.plaxis.nl/tutorials /2d-tutorial{
[02-submerged-construction-excavation| Additionally, the information on the prob-
lem can be examined in the Plaxis 2D Tutorial Manual 2015.

This tutorial is organized to provide an introduction to the use of Plaxis commands
in Section 2. An introduction to the use of the Plaxis Sensitivity Analysis is provided
in Section 3. The tutorial concludes with an inverse analysis problem in Section 4
that examines several practical aspects related to the use of Plaxis commands in
Python.

2 Plaxis Input and Output commands

2.1 Use of the Command runner

e Download the following files related to the PLAXIS 2D 2016 - Tutorial Manual
Lesson 2 from |http://kb.plaxis.nl/tutorials /2d-tutorial-02-submerged-constru¢tion-

— PLAXIS2D2016-Tutorial-Lesson02.pdf
— PLAXIS2D2016-Tutorial-Lesson02.p2dxlog
The .pdf file provides a reference for the problem, while the .p2dxlog file is a

command log file that contains all the necessary commands to regenerate the
model in Plaxis.

e Start the Plaxis 2D Input application and select Start a new project on the
Quick select window.

2.2

Press OK on the Project properties window

Open the Commands runner by selecting from the menu Expert — Run
commands... or Ctrl+F9

From the menu of the Commands runner window select File — Open... or
Ctrl+0O

Locate the PLAXIS2D2016- Tutorial-Lesson02.p2dxlog file and select Open

From the menu of the Commands runner window select Run — Run every-
thing

Save the project by selecting File — Save project or Ctrl+S from the main
menu

Plaxis Input commands

Later in the tutorial we will examine ground settlements at the surface level,
10 m from the excavation. In order to ensure that Plaxis assigns a mesh node
at the considered location, a point needs to be added at coordinates x=40.0
m, y=20.0 m.

The point will be added by the use of the Plaxis Input commands. The
Command reference can be accessed by selecting Help — Command reference.

Before a point can be added to the model, it is necessary to select the Struc-
tures mode in the Plaxis Input. Examine the command gotostructures (gtt)
in Help — Command reference — Input commands reference — gotostruc-
tures.

Type the following command in the Command line:

gotostructures

Use the command point (pt) to add a point at x=40.0 m and y=20.0 m.
Examine the point (pt) command in the Input commands reference and select
one of the alternatives. For example, the following command can be typed in
the Command line:

point (40 20)

Note that a point object Point_12 was created as a result of the previous
command. The properties of a point object can be examined in Help —
Command reference — Input objects reference — Point.

Use the command info to display all available commands and attributes of
the object Point_12.

info Point_12

Use the command echo to display the details of the object Point_12.

echo Point_12

Use the command echo to display the x coordinate of the object Point_12.

echo Point_12.x

The properties of the line load next to the excavation will be modified in the
following section. The line load will be renamed to VerticalLoad, extended
for 1.0 m in the left direction and the vertical component of the line load will
be updated to -4.17 kN/m/m.

First, display a list of all the line loads with the command __dumplineloads

(__dll):

__dll

From the output of the __dumplineloads (__dll) command it can be observed
that there is a single line load, LineLoad_1, associated with the line, Line_5.

Use the commands info, echo, rename, and set to modify the LineLoad_1.
For example, the changes can be implemented with the following commands:

info LineLoad_1
rename LineLoad_1 " VerticalLoad”

3 echo VerticallLoad

=3

N

echo Line_5

echo Point_10

echo Point_11

set Point_10.x 42

set VerticalLoad.qy_start —4.17

In the following section, the mesh of the finite element model will be generated
and the calculations will be performed. In order to mesh the model use the
gotomesh (gtm) command to open the Mesh mode. The mesh is generated
with the mesh command.

gotomesh
mesh

In order to calculate the model, the Staged construction mode needs to be
opened with the gotostages (gts) command.

gotostages

Prior to the calculation it is necessary to select points for curves. The points
are selected by opening the Plaxis Output with the command selectmeshpoints

(smp).

selectmeshpoints

2.3

Note that the selectmeshpoints (smp) command opens the Plaxis Output
application. In order to select points for curves it is necessary to use the
Plaxis Output commands that can be accessed by selecting Help — Command
reference.

Points for curves are selected with the addcurvepoint (acp) command that can
be examined in Help — Command reference — Output commands reference.
When selecting points for curves special attention should be given to different
clusters generated during the model construction.

In this tutorial, two points are to be selected; Node A at x=50.0 m and y=10.0
m, and Node B at x=40.0 and y=20.0 m. Node A is found in the cluster
Plate_1_3 corresponding to the diaphragm wall, while the Node B is found in
the cluster Soil_1_3.

The following commands can be typed in the Command line:

addcurvepoint "Node” Plate_1_3 (50 10)
addcurvepoint "Node” Soil_-1_3 (40 20)

Close the Plaxis Output by selecting the Update button.

Calculate and save the project with the commands calculate (ca) and save
(sv).

Ca
SV

Open the results for the last calculation phase (i.e., Phase_5) with the com-
mand view (vr).

view Phase_5

Plaxis Output commands

Investigate the object corresponding to the last calculation phase with the info
and echo commands and access the ¥ Msf in the Plaxis Output Command
line.

info Phase_5
echo Phase b

3 echo Phase_5.Info.SumMsf

Use the function getsingleresult (gsres) to obtain the following results:

— Horizontal displacements at Node A after Phase_4
— Vertical displacements at Node B after Phase_5
— Base heave at the center of the excavation after Phase_5

— Vertical effective stress at depth of 2.0 m below Node B after InitialPhase

1 getsingleresult Phase_4 Soil.Ux Node_A
> getsingleresult Phase_ 5 Soil.Uy Node B
; getsingleresult Phase 5 Soil.Uy (65 0)
. getsingleresult InitialPhase Soil.SigyyE (40 18)

3 Sensitivity analysis

A Sensitivity Analysis is performed to evaluate the effects of parameter variation on
the model response. In this tutorial, the effect of variation in the soil stiffness pa-
rameters and the bending stiffness of the diaphragm wall on the ground settlements
at the Node B in Phase_5 will be examined, as illustrated in Figure [T

Node_B_ T I

Uy

Figure 1. Ground settlements at Node B, denoted as U, after Third_excavation
phase (i.e., Phase.5).

o Activate the Sensitivity Analysis and Parameter Variation module by selecting
Expert — Sensitivity and parameter variation.

e Activate the Remote scripting server. Select Start server and Close the win-
dow.

e From the parameters of the Soft soil model for the upper clay layer select x*
and * by dragging them to the panel on the right.
ref
A* is related to the oedometer modulus E;eefd: E('fefd = ’/’* , where pref =100
kPa.

* 1 H H . FEo _ p’+c cot ¢
k* is related to the unloading/reloading modulus E,,, oy = e

where p’ is the mean effective stress, ¢ is the cohesion, ¢ is the friction angle,
Vyr is the Poisson's ratio for unloading/reloading.

e Select the parameters ErSf, E™f and E'f from the parameters of the Hard-

ening soil model for the sand layer.
e Select the bending stiffness, E1, of the diaphragm wall.

e A variation of +10% is considered for the soil parameters, while a variation
of +5% is considered for the bending stiffness of the diaphragm wall. The
Min and Max values should correspond to the values in Figure 2]

e Select the Sensitivity analysis tab and add a criterion by selecting the Add
criterion icon on the panel on the right. The properties of the criterion are
defined as follows:

Phase Third_excavation [Phase_5]
Criterion Displacement
Point B(40.00;20.00;0.00)

Value type Uy

e Perform a Sensitivity Analysis by selecting the Run analysis icon in the upper
left corner. The results of the Sensitivity Analysis can be examined in Figure[2]

e Should the strength parameters be included in the Sensitivity Analysis?

S y————
S >)

@ | %

Type Material Parameter Min Ref Max SensiScore "é “,-'é

Soil Tutorial 02 -Clay A* (ambda®) 0,02700 0,03000 0,03300 17 Criterion 1

Sail Tutorial 02 - Clay &= (kappa®) 7,650E-3 8,500E-3 9,350E-3 13 Faih gepmaianl
Soil Tutorial 02 -Sand E gy " 36,0083 40,0083 44,0083 25 Citerion Displacement =
Sl Tutorial 02 -Sand €™ 36,003 40,003 44,00E3 3 Paint B(40.00; 20.00;

Sail Tutorial 02-Sand E,, ref 108,0E3 120,0E3 132,0E3 2 Value type Uy -
Plate Tutorial 02 - Diaphr EI 950,0E3 1,000E6 1,050E6 40

Figure 2: Results of the Sensitivity Analysis.

4 Inverse analysis with Plaxis commands in Python

Consider that a measurement of the horizontal displacement of the diaphragm wall
at Node A of u! 4, = 0.024 m in the positive x direction is available after the Sec-
ond_excavation phase (i.e., Phase_4), as illustrated in Figure[3] Perform an inverse
analysis using Plaxis commands in Python to obtain the most likely combination of
the x* and * parameters of the clay layer that corresponds to the measurement.
In this case, it is assumed that a prediction of the horizontal displacements of the

diaphragm wall with the Plaxis model at Node A is mostly influenced by the stiff-
ness parameters of the clay layer. For example, this can be further examined by

conducting a Sensitivity Analysis.
m I

u’
Node A =25

Figure 3: Horizontal displacement of Node A, w/, 4, after Second_excavation phase
(i.e., Phase_4).

e The inverse problem can be formulated as an optimization problem, such that
the difference between the measured horizontal displacement of the diaphragm
wall at Node A, u/, 4, and the displacement predicted by the Plaxis model at
the corresponding node, wu, 4 (*, £*) is minimized. The optimization problem
is defined as follows:

{Nins Fmin } = argmin e(A*, k)

min>

= argmin |u}, 4, — uza(*, K")| (1a)

subject to
0.8 N < A* < 1.2\ (1b)
0.8 Kpg < K" < 1.2 Ky (1)

where {*. ' k*. } is the solution of the inverse problem, e(*, k*) is the

min’ "Ymin
objective function defined as an absolute value of the difference between !, ,

and uza (A%, k*), N = 0.03 and k% = 8.5:1073 are the reference values used

to specify bounds of the search space. The bounds are selected as +20% of

the reference values to represent uncertainties in the estimates of the reference
values. The selection of bounds is case-specific and should be estimated from
the available information, while accounting for different sources of uncertainty
(e.g., natural variability of soil properties, interpretation uncertainty).

e The solution to the inverse problem can be found by implementing an opti-
mization algorithm. The Python module scipy.optimize provides a wide range
of algorithms that can be implemented to obtain the solution of the inverse
problem. More information can be found on:

[rttp: //docs.scipy.org/doc/scipy/reference/optimize.htmi]

e In this tutorial, the solution to the inverse problem in Eq. [T will be simplified
by discretizing the search domain, defined by Egs. [Ib] and into 10 x 10
equally spaced points and implementing the exhaustive search optimization
algorithm. An estimate of the solution, {5‘;1111’ /%fnin}, will correspond to the
values of * and k* in the discretized space with the lowest value of the

objective function.

e Note that although the implementation of the exhaustive search algorithm is
relatively simple, the algorithm is usually associated with relatively high com-
putational demands. For this reason, more advanced and computationally ef-
ficient optimization algorithms should be considered in practical projects. For
example, one can examine the algorithms implemented in the scipy.optimize
module.

e An example of a Python code that can be applied to solve the inverse problem
follows. Examine the code and try to understand the overall structure of the
code. Examine the syntax of the Plaxis commands in Python.

1

#

> # Short description and instructions for use.

,{#

4

s # Python code for the inverse problem is based on the
PLAXIS2D2016—Tutorial —Lesson02 and defined by an
observation of horizontal displacement of 0.024 m in
the positive x direction at Node_ A (i.e., at location
(50,10)), after the second excavation phase.

6

7 # Note that prior to the analysis, the Plaxis project
based on the code in PLAXIS2D2016—Tutorial —Lesson02.
p2dxlog needs to be opened and calculated with Node_A
defined on the coordinate (50,10). The remote
scripting server in the Plaxis Input needs to be
started on the port 10000. Additionally , the Plaxis
Output should be started WITHOUT AN ACTIVE PROJECT and
the remote scripting server started on the port
10001.

o #
10 #
u #
12#

Set up Plaxis scripting

Specify the local ports for the Plaxis Input and Plaxis

Output

13 localhostport_input = 10000
1w localhostport_output = 10001

16 # Specify the boilerplate code

17 plaxis_path = r'C:\Program Files (x86)\Plaxis\PLAXIS 2D’
15 import imp
v found_module = imp.find_module(' plxscripting ', |

plaxis_path])

20 plxscripting = imp.load_module(’ plxscripting ', *

o1 from plxscripting.easy

22

found_module)

import x*

3 # Connect to the Plaxis Input and Plaxis Output servers
2% s_i, g-i = new_server('localhost’, localhostport_input)
5 s_.0, g-o = new_server('localhost’, localhostport_output)
26

27#

s # Import additional modules

29 F

50 # NumPy is the fundamental package for scientific

computing with Python

31 import numpy as np
Matplotlib is a 2D plotting library
:3 import matplotlib. pyplot as plt

’%2#

34

35 FF

6 # Define the objective function

37 #F

s def objfun(x):

Note that x is a row vector with the first value, x
[0] . corresponding to lambdax, and the second value,
[1], corresponding to kappax

39

Specify the horizontal measurement at Node A

uxAMeas=0.024 # m

Update the parameters in
lambdaModified parameter
g_i.set(g_-i.Tutorial02Clay
kappaModified parameter
g-i.set(g-i.Tutorial02Clay

Move to stages
g-i.gotostages ()

the Plaxis model
.lambdaModified ,x[0])

. kappaModified ,x[1])

X

s3 # Set the phases to calculate

54 for phase in g_i.Phases: # Note that g_i.Phases is a
list of phases

55 # Set phases to calculate

56 g-i.set(phase.ShouldCalculate , True)

57

ss # Calculate the project

5o g-i.calculate ()

60

6t # Save the project

2 g-i.save()

63

¢ 7# Open Phase_4

s g-i.view(g-i.Phase_4)

66

v 7 Obtain the predicted value of the horizontal
displacement at Node A from the Plaxis Output for the
specified values of lambdax and kappax

68 uxACalc=np. float (g-o.getsingleresult(g-o.Phase 4 ,g_o.
Soil .Ux, g_o.Node_A))

69

w0 # Close the project in the Plaxis Output window

71 s_o.close()

72

3 # Value of the objective function

7 objFunVal=np.abs(uxAMeas—uxACalc)

75

w6 # Return the objective function value

7 return objFunVal

78

79 F#

s # Optimization algorithm
81 #

&2 # Reference values

&2 ref=[0.03,8.5e—3]

84

es # Define bounds

ss bounds=((0.8xref [0] ,1.2xref[0]) ,(0.8xref[1],1.2xref[1]))
87

ss # Discretize the domain

80 ## Number of discretization points

o0 nLambda=10

o1 nKappa=10

92

03 # Row vectors for the discretization of the domain

o lambdaLin=np. linspace (bounds[0][0] , bounds[0][1] ,nLambda)
s kappalLin=np.linspace(bounds[1][0], bounds[1][1] 6 nKappa)

96

o7 # Create a mesh of points

o6 lam , kappa=np.meshgrid (lambdalin , kappalLin)

10

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

116

117

119

120

121

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Allocate an array to store the objective function
values
objVal=np.zeros(lam.shape)

Calculate the values of the objective function at the
discretized points
for i in xrange(nKappa):
for j in xrange(nLambda):
objVal[i,j]=objfun ([lam[i,j], kappali,j]])

Locate the minimum with the numpy.argmin function

objMin=np.amin(objVal)

Find the indices of the objVal array that correspond to
the minimum with the numpy.where function

indMin=np.where (objVal=—objMin)

lambdax value corresponding to the minimum
lamMin=lam [indMin [0] , indMin [1]]

kappax*x value corresponding to the minimum
kappaMin=kappa [indMin[0] ,indMin [1]]

#

Print the results and the log values of the objective
function

#

Print the results

print ('The minimum value of the objective function is %e,
with the corresponding)\

values of lambdax=%e and kappax=%e.’' % (objMin, lamMin,
kappaMin))

Plot the log values of the objective function and the
minimizer

Create a figure

fig=plt.figure ()

ax = fig.add_subplot(111)

Plot the contour plot of the logl0 values of the
objective function

CS = plt.contour(lam, kappa, np.loglO(objVal),9)

plt.clabel (CS, inline=1, fontsize=10)

Plot the minimum denoted with a star marker
SC=plt.scatter (lamMin, kappaMin,s=100,marker="x")

Set the figure title

plt.title('Logl0 values of the objective function')
Set the axes titles

11

an plt.xlabel ('lambdax")
w2 plt.ylabel ("kappax')
143

4 # Show the plot

s plt. ShOW()

e After evaluating the Python code, an estimate of the solution of the inverse
problem {5*, f%*} = {0.028,7.178 - 1073} is obtained with the value of the

objective function of e(A*,4*) = 5.687 - 107°. Log values of the objective
function, log; €, are presented in Figure with a star marker (x) denoting
the location of the inverse problem solution estimate.

Log10 values of the objective function

0.0100} 4
0.0095} -2.250 —_
0.0090} .

*

© \

S 0.0085} -2.500 T

g e
0.0080} .
0.0075} 4

50 &
<X~ o N n
0.0070} & = i
-

0.024 0.026 0.028 0.030 0.032 0.034 0.036
lambda*

Figure 4: Log values of the objective function, log;,€, with a star marker (%)
denoting the location of the inverse problem solution estimate.

e Additionally, one can examine the effect of the information provided by the
measurement on the prediction of the diaphragm wall displacements and
ground settlements in the last excavation phase.

12

	Introduction
	Plaxis Input and Output commands
	Use of the Command runner
	Plaxis Input commands
	Plaxis Output commands

	Sensitivity analysis
	Inverse analysis with Plaxis commands in Python

