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1 Introduction

The following tutorial on Plaxis scripting is based on the Plaxis 2D Tutorial 02:
Submerged construction of an excavation. The information on the problem and the
corresponding .p2dxlog file are available on http://kb.plaxis.nl/tutorials/2d-tutorial-
02-submerged-construction-excavation. Additionally, the information on the prob-
lem can be examined in the Plaxis 2D Tutorial Manual 2015.
This tutorial is organized to provide an introduction to the use of Plaxis commands
in Section 2. An introduction to the use of the Plaxis Sensitivity Analysis is provided
in Section 3. The tutorial concludes with an inverse analysis problem in Section 4
that examines several practical aspects related to the use of Plaxis commands in
Python.

2 Plaxis Input and Output commands

2.1 Use of the Command runner

• Download the following files related to the PLAXIS 2D 2016 - Tutorial Manual
Lesson 2 from http://kb.plaxis.nl/tutorials/2d-tutorial-02-submerged-construction-
excavation:

– PLAXIS2D2016-Tutorial-Lesson02.pdf

– PLAXIS2D2016-Tutorial-Lesson02.p2dxlog

The .pdf file provides a reference for the problem, while the .p2dxlog file is a
command log file that contains all the necessary commands to regenerate the
model in Plaxis.

• Start the Plaxis 2D Input application and select Start a new project on the
Quick select window.

1



• Press OK on the Project properties window

• Open the Commands runner by selecting from the menu Expert → Run
commands... or Ctrl+F9

• From the menu of the Commands runner window select File → Open... or
Ctrl+O

• Locate the PLAXIS2D2016-Tutorial-Lesson02.p2dxlog file and select Open

• From the menu of the Commands runner window select Run → Run every-
thing

• Save the project by selecting File → Save project or Ctrl+S from the main
menu

2.2 Plaxis Input commands

• Later in the tutorial we will examine ground settlements at the surface level,
10 m from the excavation. In order to ensure that Plaxis assigns a mesh node
at the considered location, a point needs to be added at coordinates x=40.0
m, y=20.0 m.
The point will be added by the use of the Plaxis Input commands. The
Command reference can be accessed by selecting Help→ Command reference.

• Before a point can be added to the model, it is necessary to select the Struc-
tures mode in the Plaxis Input. Examine the command gotostructures (gtt)
in Help → Command reference → Input commands reference → gotostruc-
tures.
Type the following command in the Command line:

1 g o t o s t r u c t u r e s

• Use the command point (pt) to add a point at x=40.0 m and y=20.0 m.
Examine the point (pt) command in the Input commands reference and select
one of the alternatives. For example, the following command can be typed in
the Command line:

1 po i n t (40 20)

• Note that a point object Point 12 was created as a result of the previous
command. The properties of a point object can be examined in Help →
Command reference → Input objects reference → Point.

• Use the command info to display all available commands and attributes of
the object Point 12.

1 i n f o Po in t 12

• Use the command echo to display the details of the object Point 12.
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1 echo Po in t 12

• Use the command echo to display the x coordinate of the object Point 12.

1 echo Po in t 12 . x

• The properties of the line load next to the excavation will be modified in the
following section. The line load will be renamed to VerticalLoad, extended
for 1.0 m in the left direction and the vertical component of the line load will
be updated to -4.17 kN/m/m.
First, display a list of all the line loads with the command dumplineloads
( dll):

1 d l l

From the output of the dumplineloads ( dll) command it can be observed
that there is a single line load, LineLoad 1, associated with the line, Line 5.

• Use the commands info, echo, rename, and set to modify the LineLoad 1.
For example, the changes can be implemented with the following commands:

1 i n f o L ineLoad 1
2 rename L ineLoad 1 ” Ve r t i c a l L o a d ”
3 echo Ve r t i c a l L o a d
4 echo L i n e 5
5 echo Po in t 10
6 echo Po in t 11
7 s e t Po in t 10 . x 42
8 s e t V e r t i c a l L o a d . q y s t a r t −4.17

• In the following section, the mesh of the finite element model will be generated
and the calculations will be performed. In order to mesh the model use the
gotomesh (gtm) command to open the Mesh mode. The mesh is generated
with the mesh command.

1 gotomesh
2 mesh

• In order to calculate the model, the Staged construction mode needs to be
opened with the gotostages (gts) command.

1 go t o s t a g e s

• Prior to the calculation it is necessary to select points for curves. The points
are selected by opening the Plaxis Output with the command selectmeshpoints
(smp).

1 s e l e c tme s h p o i n t s
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Note that the selectmeshpoints (smp) command opens the Plaxis Output
application. In order to select points for curves it is necessary to use the
Plaxis Output commands that can be accessed by selecting Help→ Command
reference.

• Points for curves are selected with the addcurvepoint (acp) command that can
be examined in Help → Command reference → Output commands reference.
When selecting points for curves special attention should be given to different
clusters generated during the model construction.
In this tutorial, two points are to be selected; Node A at x=50.0 m and y=10.0
m, and Node B at x=40.0 and y=20.0 m. Node A is found in the cluster
Plate 1 3 corresponding to the diaphragm wall, while the Node B is found in
the cluster Soil 1 3.
The following commands can be typed in the Command line:

1 addcu r v epo i n t ”Node” P l a t e 1 3 (50 10)
2 addcu r v epo i n t ”Node” S o i l 1 3 (40 20)

Close the Plaxis Output by selecting the Update button.

• Calculate and save the project with the commands calculate (ca) and save
(sv).

1 ca
2 sv

• Open the results for the last calculation phase (i.e., Phase 5) with the com-
mand view (vr).

1 v iew Phase 5

2.3 Plaxis Output commands

• Investigate the object corresponding to the last calculation phase with the info
and echo commands and access the ΣMsf in the Plaxis Output Command
line.

1 i n f o Phase 5
2 echo Phase 5
3 echo Phase 5 . I n f o . SumMsf

• Use the function getsingleresult (gsres) to obtain the following results:

– Horizontal displacements at Node A after Phase 4

– Vertical displacements at Node B after Phase 5

– Base heave at the center of the excavation after Phase 5

– Vertical effective stress at depth of 2.0 m below Node B after InitialPhase
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1 g e t s i n g l e r e s u l t Phase 4 S o i l . Ux Node A
2 g e t s i n g l e r e s u l t Phase 5 S o i l . Uy Node B
3 g e t s i n g l e r e s u l t Phase 5 S o i l . Uy (65 0)
4 g e t s i n g l e r e s u l t I n i t i a l P h a s e S o i l . S igyyE (40 18)

3 Sensitivity analysis

A Sensitivity Analysis is performed to evaluate the effects of parameter variation on
the model response. In this tutorial, the effect of variation in the soil stiffness pa-
rameters and the bending stiffness of the diaphragm wall on the ground settlements
at the Node B in Phase 5 will be examined, as illustrated in Figure 1.

Figure 1: Ground settlements at Node B, denoted as Uy, after Third excavation
phase (i.e., Phase 5).

• Activate the Sensitivity Analysis and Parameter Variation module by selecting
Expert → Sensitivity and parameter variation.

• Activate the Remote scripting server. Select Start server and Close the win-
dow.

• From the parameters of the Soft soil model for the upper clay layer select κ∗

and λ∗ by dragging them to the panel on the right.

λ∗ is related to the oedometer modulus Eref
oed: Eref

oed = pref

λ∗ , where pref = 100
kPa.
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κ∗ is related to the unloading/reloading modulus Eur: Eur

3(1−2νur)
= p′+c cotϕ

κ∗ ,

where p′ is the mean effective stress, c is the cohesion, ϕ is the friction angle,
νur is the Poisson’s ratio for unloading/reloading.

• Select the parameters Eref
50 , Eref

oed, and Eref
ur from the parameters of the Hard-

ening soil model for the sand layer.

• Select the bending stiffness, EI, of the diaphragm wall.

• A variation of ±10% is considered for the soil parameters, while a variation
of ±5% is considered for the bending stiffness of the diaphragm wall. The
Min and Max values should correspond to the values in Figure 2.

• Select the Sensitivity analysis tab and add a criterion by selecting the Add
criterion icon on the panel on the right. The properties of the criterion are
defined as follows:

Phase Third excavation [Phase 5]
Criterion Displacement
Point B(40.00;20.00;0.00)
Value type Uy

• Perform a Sensitivity Analysis by selecting the Run analysis icon in the upper
left corner. The results of the Sensitivity Analysis can be examined in Figure 2.

• Should the strength parameters be included in the Sensitivity Analysis?

Figure 2: Results of the Sensitivity Analysis.

4 Inverse analysis with Plaxis commands in Python

Consider that a measurement of the horizontal displacement of the diaphragm wall
at Node A of u′xA = 0.024 m in the positive x direction is available after the Sec-
ond excavation phase (i.e., Phase 4), as illustrated in Figure 3. Perform an inverse
analysis using Plaxis commands in Python to obtain the most likely combination of
the κ∗ and λ∗ parameters of the clay layer that corresponds to the measurement.
In this case, it is assumed that a prediction of the horizontal displacements of the
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diaphragm wall with the Plaxis model at Node A is mostly influenced by the stiff-
ness parameters of the clay layer. For example, this can be further examined by
conducting a Sensitivity Analysis.

Figure 3: Horizontal displacement of Node A, u′xA, after Second excavation phase
(i.e., Phase 4).

• The inverse problem can be formulated as an optimization problem, such that
the difference between the measured horizontal displacement of the diaphragm
wall at Node A, u′xA, and the displacement predicted by the Plaxis model at
the corresponding node, uxA(λ∗, κ∗) is minimized. The optimization problem
is defined as follows:

{λ∗min, κ
∗
min} = arg min ε(λ∗, κ∗)

= arg min |u′xA − uxA(λ∗, κ∗)| (1a)

subject to
0.8 · λ∗ref ≤ λ∗ ≤ 1.2 · λ∗ref (1b)

0.8 · κ∗ref ≤ κ∗ ≤ 1.2 · κ∗ref (1c)

where {λ∗min, κ
∗
min} is the solution of the inverse problem, ε(λ∗, κ∗) is the

objective function defined as an absolute value of the difference between u′xA
and uxA(λ∗, κ∗), λ∗ref = 0.03 and κ∗ref = 8.5·10−3 are the reference values used
to specify bounds of the search space. The bounds are selected as ±20% of
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the reference values to represent uncertainties in the estimates of the reference
values. The selection of bounds is case-specific and should be estimated from
the available information, while accounting for different sources of uncertainty
(e.g., natural variability of soil properties, interpretation uncertainty).

• The solution to the inverse problem can be found by implementing an opti-
mization algorithm. The Python module scipy.optimize provides a wide range
of algorithms that can be implemented to obtain the solution of the inverse
problem. More information can be found on:
http://docs.scipy.org/doc/scipy/reference/optimize.html.

• In this tutorial, the solution to the inverse problem in Eq. 1 will be simplified
by discretizing the search domain, defined by Eqs. 1b and 1c, into 10 × 10
equally spaced points and implementing the exhaustive search optimization

algorithm. An estimate of the solution,
{
λ̂∗min, κ̂

∗
min

}
, will correspond to the

values of λ∗ and κ∗ in the discretized space with the lowest value of the
objective function.

• Note that although the implementation of the exhaustive search algorithm is
relatively simple, the algorithm is usually associated with relatively high com-
putational demands. For this reason, more advanced and computationally ef-
ficient optimization algorithms should be considered in practical projects. For
example, one can examine the algorithms implemented in the scipy.optimize
module.

• An example of a Python code that can be applied to solve the inverse problem
follows. Examine the code and try to understand the overall structure of the
code. Examine the syntax of the Plaxis commands in Python.

1 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 # Short d e s c r i p t i o n and i n s t r u c t i o n s f o r use .
3 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 # Python code f o r the i n v e r s e problem i s based on the
PLAXIS2D2016−Tuto r i a l−Lesson02 and d e f i n e d by an
o b s e r v a t i o n o f h o r i z o n t a l d i s p l a c emen t o f 0 .024 m i n
the p o s i t i v e x d i r e c t i o n at Node A ( i . e . , a t l o c a t i o n
(50 ,10) ) , a f t e r the second e x c a v a t i o n phase .

6

7 # Note tha t p r i o r to the a n a l y s i s , the P l a x i s p r o j e c t
based on the code i n PLAXIS2D2016−Tuto r i a l−Lesson02 .
p2dx log needs to be opened and c a l c u l a t e d wi th Node A
d e f i n e d on the c o o r d i n a t e (50 ,10) . The remote
s c r i p t i n g s e r v e r i n the P l a x i s I npu t needs to be
s t a r t e d on the po r t 10000 . A d d i t i o n a l l y , the P l a x i s
Output shou l d be s t a r t e d WITHOUT AN ACTIVE PROJECT and
the remote s c r i p t i n g s e r v e r s t a r t e d on the po r t

10001 .
8
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9 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
10 # Set up P l a x i s s c r i p t i n g
11 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 # Spe c i f y the l o c a l p o r t s f o r the P l a x i s I npu t and P l a x i s

Output
13 l o c a l h o s t p o r t i n p u t = 10000
14 l o c a l h o s t p o r t o u t p u t = 10001
15

16 # Spe c i f y the b o i l e r p l a t e code
17 p l a x i s p a t h = r ’C :\ Program F i l e s ( x86 ) \ P l a x i s \PLAXIS 2D ’
18 impor t imp
19 found module = imp . f i nd modu l e ( ’ p l x s c r i p t i n g ’ , [

p l a x i s p a t h ] )
20 p l x s c r i p t i n g = imp . l oad modu l e ( ’ p l x s c r i p t i n g ’ , ∗

found module )
21 from p l x s c r i p t i n g . ea sy impor t ∗
22

23 # Connect to the P l a x i s I npu t and P l a x i s Output s e r v e r s
24 s i , g i = new s e r v e r ( ’ l o c a l h o s t ’ , l o c a l h o s t p o r t i n p u t )
25 s o , g o = new s e r v e r ( ’ l o c a l h o s t ’ , l o c a l h o s t p o r t o u t p u t )
26

27 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 # Import a d d i t i o n a l modules
29 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 # NumPy i s the fundamenta l package f o r s c i e n t i f i c

computing wi th Python
31 impor t numpy as np
32 # Matp l o t l i b i s a 2D p l o t t i n g l i b r a r y
33 impor t ma t p l o t l i b . p yp l o t as p l t
34

35 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 # Def i n e the o b j e c t i v e f u n c t i o n
37 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
38 de f ob j f un ( x ) :
39 # Note tha t x i s a row v e c t o r w i th the f i r s t va lue , x

[ 0 ] , c o r r e s p ond i n g to lambda ∗ , and the second va lue , x
[ 1 ] , c o r r e s p ond i n g to kappa∗

40

41 # Spe c i f y the h o r i z o n t a l measurement at Node A
42 uxAMeas=0.024 # m
43

44 # Update the pa ramete r s i n the P l a x i s model
45 # lambdaModi f i ed paramete r
46 g i . s e t ( g i . Tu t o r i a l 0 2C l a y . lambdaModi f ied , x [ 0 ] )
47 # kappaMod i f i ed paramete r
48 g i . s e t ( g i . Tu t o r i a l 0 2C l a y . kappaModi f i ed , x [ 1 ] )
49

50 # Move to s t a g e s
51 g i . g o t o s t a g e s ( )
52
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53 # Set the phase s to c a l c u l a t e
54 f o r phase i n g i . Phases : # Note tha t g i . Phases i s a

l i s t o f phase s
55 # Set phase s to c a l c u l a t e
56 g i . s e t ( phase . Shou l dCa l cu l a t e , True )
57

58 # Ca l c u l a t e the p r o j e c t
59 g i . c a l c u l a t e ( )
60

61 # Save the p r o j e c t
62 g i . s ave ( )
63

64 # Open Phase 4
65 g i . v iew ( g i . Phase 4 )
66

67 # Obtain the p r e d i c t e d v a l u e o f the h o r i z o n t a l
d i s p l a c emen t at Node A from the P l a x i s Output f o r the
s p e c i f i e d v a l u e s o f lambda∗ and kappa∗

68 uxACalc=np . f l o a t ( g o . g e t s i n g l e r e s u l t ( g o . Phase 4 , g o .
S o i l . Ux , g o . Node A ) )

69

70 # Clo se the p r o j e c t i n the P l a x i s Output window
71 s o . c l o s e ( )
72

73 # Value o f the o b j e c t i v e f u n c t i o n
74 objFunVal=np . abs ( uxAMeas−uxACalc )
75

76 # Return the o b j e c t i v e f u n c t i o n v a l u e
77 r e t u r n objFunVal
78

79 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 # Opt im i z a t i on a l g o r i t hm
81 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 # Re f e r enc e v a l u e s
83 r e f = [0 . 03 , 8 . 5 e−3]
84

85 # Def i n e bounds
86 bounds =((0.8∗ r e f [ 0 ] , 1 . 2 ∗ r e f [ 0 ] ) , ( 0 . 8∗ r e f [ 1 ] , 1 . 2 ∗ r e f [ 1 ] ) )
87

88 # D i s c r e t i z e the domain
89 # Number o f d i s c r e t i z a t i o n p o i n t s
90 nLambda=10
91 nKappa=10
92

93 # Row v e c t o r s f o r the d i s c r e t i z a t i o n o f the domain
94 lambdaLin=np . l i n s p a c e ( bounds [ 0 ] [ 0 ] , bounds [ 0 ] [ 1 ] , nLambda )
95 kappaLin=np . l i n s p a c e ( bounds [ 1 ] [ 0 ] , bounds [ 1 ] [ 1 ] , nKappa )
96

97 # Create a mesh o f p o i n t s
98 lam , kappa=np . meshgr id ( lambdaLin , kappaLin )
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99

100 # A l l o c a t e an a r r a y to s t o r e the o b j e c t i v e f u n c t i o n
v a l u e s

101 ob jVa l=np . z e r o s ( lam . shape )
102

103 # Ca l c u l a t e the v a l u e s o f the o b j e c t i v e f u n c t i o n at the
d i s c r e t i z e d p o i n t s

104 f o r i i n x range ( nKappa ) :
105 f o r j i n x range ( nLambda ) :
106 ob jVa l [ i , j ]= ob j f un ( [ lam [ i , j ] , kappa [ i , j ] ] )
107

108 # Locate the minimum with the numpy . argmin f u n c t i o n
109 objMin=np . amin ( ob jVa l )
110 # Find the i n d i c e s o f the ob jVa l a r r a y tha t co r r e spond to

the minimum with the numpy . where f u n c t i o n
111 indMin=np . where ( ob jVa l==objMin )
112

113 # lambda∗ v a l u e c o r r e s p ond i n g to the minimum
114 lamMin=lam [ indMin [ 0 ] , indMin [ 1 ] ]
115

116 # kappa∗ v a l u e c o r r e s p ond i n g to the minimum
117 kappaMin=kappa [ indMin [ 0 ] , indMin [ 1 ] ]
118

119 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
120 # Pr i n t the r e s u l t s and the l o g v a l u e s o f the o b j e c t i v e

f u n c t i o n
121 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 # Pr i n t the r e s u l t s
123 p r i n t ( ’The minimum va l u e o f the o b j e c t i v e f u n c t i o n i s %e ,

w i th the c o r r e s p ond i n g \
124 v a l u e s o f lambda∗=%e and kappa∗=%e . ’ % ( objMin , lamMin ,

kappaMin ) )
125

126 # Plo t the l o g v a l u e s o f the o b j e c t i v e f u n c t i o n and the
m in im i z e r

127 # Create a f i g u r e
128 f i g=p l t . f i g u r e ( )
129 ax = f i g . a dd subp l o t (111)
130

131 # Plo t the contou r p l o t o f the l og10 v a l u e s o f the
o b j e c t i v e f u n c t i o n

132 CS = p l t . con tou r ( lam , kappa , np . l og10 ( ob jVa l ) , 9 )
133 p l t . c l a b e l (CS , i n l i n e =1, f o n t s i z e =10)
134

135 # Plo t the minimum denoted wi th a s t a r marker
136 SC=p l t . s c a t t e r ( lamMin , kappaMin , s=100 ,marker=’ ∗ ’ )
137

138 # Set the f i g u r e t i t l e
139 p l t . t i t l e ( ’ Log10 v a l u e s o f the o b j e c t i v e f u n c t i o n ’ )
140 # Set the axe s t i t l e s
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141 p l t . x l a b e l ( ’ lambda∗ ’ )
142 p l t . y l a b e l ( ’ kappa∗ ’ )
143

144 # Show the p l o t
145 p l t . show ( )

• After evaluating the Python code, an estimate of the solution of the inverse

problem
{
λ̂∗, κ̂∗

}
=
{

0.028, 7.178 · 10−3
}

is obtained with the value of the

objective function of ε(λ̂∗, κ̂∗) = 5.687 · 10−5. Log values of the objective
function, log10 ε, are presented in Figure 4, with a star marker (?) denoting
the location of the inverse problem solution estimate.
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Figure 4: Log values of the objective function, log10 ε, with a star marker (?)
denoting the location of the inverse problem solution estimate.

• Additionally, one can examine the effect of the information provided by the
measurement on the prediction of the diaphragm wall displacements and
ground settlements in the last excavation phase.
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