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We consider current-induced spin-transfer torque on an antiferromagnet in a dual spin-valve setup. It is
demonstrated that a net magnetization may be induced in the AFM by partially or completely aligning the
sublattice magnetizations via a current-induced spin-transfer torque. This effect occurs for current densities
ranging below 106 A/cm2. The direction of the induced magnetization in the AFM is shown to be efficiently
controlled by means of the magnetic configuration of the spin-valve setup, with the anti-parallell configuration
yielding the largest spin-transfer torque. Interestingly, the magnetization switching time-scale τswitch itself has
a strong, non-monotonic dependence on the spin-valve configuration. These results may point toward new ways
to incorporate AFMs in spintronic devices in order to obtain novel types of functionality.

PACS numbers:

I. INTRODUCTION

The effect known as spin-transfer torque1,2 lies at the heart
of many areas within theoretical and applied spintronics3. In
essence, it consists of non-equilibrium spin-polarized elec-
trons transferring angular momentum onto a magnetic order
parameter. For a sufficiently large current of such electrons,
one may for instance observe magnetization switching of a
magnetic layer. A flow of electrons can thus serve to manipu-
late the configuration of magnetic hybrid structures, which is
a key element in modern spintronics.

Whereas current-induced spin-transfer torque traditionally
has been discussed in the context of ferromagnetic layers,
there has arisen an interest in how this phenomenon is man-
ifested in antiferromagnets (AFMs)4–12. The motivation for
this pertains to both fundamental and applied aspects. Re-
garding the former, the ambition is to extend the concept of
spin-transfer torque to systems with different types of mag-
netic ordering than ferromagnets. Concerning the latter, it has
been demonstrated that the current density required to influ-
ence the exchange bias of antiferromagnets can be 1-2 orders
of magnitude smaller7,13 than for magnetoresistive structures
consisting of ferromagnets (FMs). Such a property is highly
desirable in the context of practical devices. Related to this,
it is also known14 that the critical current may be decreased
considerably by employing a so-called dual spin-valve setup
where a free layer is sandwiched between two polarizing mag-
nets that both can act with a spin-transfer torque on the middle
layer.

Taking the above observations into account, an interesting
opportunity presents itself: how does a current-induced spin-
transfer torque act on an antiferromagnet in a dual-spin valve
setup? Given the advantages for both AFMs and dual-spin
valves mentioned previously, one might expect that a combi-
nation of these two aspects could generate new and improved
perspectives in spintronics. Motivated by this, we consider in
this Letter the magnetization dynamics induced by an elec-
tric current flowing through an antiferromagnet in a dual spin-
valve setup. Our three main findings are the following: (i)
For an experimentally feasible parameter range, we find that
it is possible to induce a net magnetization in the AFM by
partially or completely aligning the sublattice magnetizations

via a current-induced spin-transfer torque. (ii) The direction
of the induced magnetization in the AFM can be efficiently
controlled by means of the magnetic configuration of the spin-
valve setup, with the anti-parallell configuration yielding the
largest spin-transfer torque. (iii) The magnetization switching
time τswitch has a strong, non-monotonic dependence on the
spin-valve configuration, suggesting that the switching time-
scale itself can be tuned by varying the magnetization orienta-
tion of the spin-valve. These results may suggest novel routes
to incorporating AFMs in spintronic devices with new types
of functionality.

II. THEORY

We now proceed to present the theoretical framework used
to obtain these results. To study the time-dependent magne-
tization dynamics in the presence of a current-induced torque
and anisotropy forces, we utilize the Landau-Lifshitz-Gilbert
(LLG) equation15 with two coupled magnetic sublattices.
These describe the AFM order and are exchange coupled with
an internal field HE . The LLG-equation takes the form10,16:

∂ts j = α js j×∂ts j− γs j×Heff,j +T j, (1)

where the current-induced spin-transfer torque reads:

T j = Iζ j

(
s j× [s j× (sL− εsR)]

)
. (2)

Here, ε is an asymmetry factor accounting for any difference
in polarization efficiency for the left and right ferromagnetic
layers. The normalized magnetization vectors in the left and
right parts of the spin-valve are

sL = (0,0,1), sR = (0,sinΩ,cosΩ) (3)

such that the configuration is parallell (P) for Ω = 0 and anti-
parallell (AP) for Ω = π, while

ζ j =
νh̄γ

2S0, jVe
. (4)

Here, e is the electron unit charge, ν is the polarization effi-
ciency, h̄ is Planck’s constant, µ0 is the magnetic permeability,
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FIG. 1: (Color online). Time-evolution of the AFM and FM order
parameters l and m, respectively, under the influence of an applied
current-bias of I = 1 mA. The spin-valve configuration is assumed
to be AP (Ω = π). Top panel: l. Middle panel: m. In both in-
sets, a parametric plot is given with the circle indicating the order
parameter value at t = 0. Lower panel: switching time τswitch and its
dependence on the applied current-bias.

S0, j is the magnetization amplitude of sublattice j, I is the ap-
plied current bias, and V is the volume of the system. The
effective field Heff,j acting on magnetic sublattice j may be
defined as:

Heff,j =−∂F /∂S j (5)

where F is the free energy per unit volume. Here, S j = S jsj
and we assume S1 ' S2 = S0. The free energy of the AFM is
taken in the form10:

F =
HE

4S0
M2 +

H⊥an

S0
(L)2

x−
H‖an

8S3
0
[(L)4

x +(L)4
y +(L)4

z ]

−H0 ·M, (6)

Ω

AFM

sR

sL

Polarized
current I

FIG. 2: (Color online) Proposed setup of an antiferromagnetic layer
sandwiched in a dual spin-valve setup. The magnetization orienta-
tions of the ferromagnetic layers may be misaligned with an angle
Ω. An injected electric current I becomes polarized and transfers a
spin-torque onto the magnetic sublattices in the AFM region, causing
magnetization dynamics. The original equilibrium state of the AFM
is indicated by the green and red arrows.

where we have defined the FM and AFM order parameters:

M = S1 +S2, L = S1−S2. (7)

This corresponds to a tetragonal anisotropy with the easy axes
(y and z) in the AFM plane, and also incorporates the strong
exchange coupling HE between the magnetic sublattices. The
above constitutes a system of non-linear coupled equations
for the magnetization s j of sublattice j. In order to make
contact with a realistic experimental situation, we now dis-
cuss the choices for parameter values. We set 2µ0S0 = 0.1 T,
µ0 = 4π×10−7 Tm/A, V = 120×60×1.5 nm3, and ν= 0.3 as
a moderate estimate17. To model a realistic antiferromagnet,
the spin exchange coupling and anisotropy fields are taken as
HE = 400 T and H⊥an = 0.01 T, H‖an = 0.02 T18. The Gilbert
damping constant is set to α = 0.001 (α1 = α2) and the sub-
lattice magnetizations are assumed to be slightly shifted from
their equilibrium position (AP to each other, s1 =−s2) at t = 0
by an angle θ/π = 0.005, and set ε = 1. We also introduce the
spin-flop transition field

Hsf = 2
√

H‖anHE (8)

for later use, which is ' 5 T with the above choice of param-
eters. The model under consideration is summarized in Fig.
2. For details concerning the solution method of the LLG-
equation, see the Appendix.
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FIG. 3: (Color online). Time-evolution for lz (left panel) and
mz (right panel) in an AP spin-valve configuration (Ω = π).
The arrows point in the direction of increasing current: I =
{0.02,0.04,0.06,0.08,0.10} mA.

III. RESULTS

In order to investigate quantitatively the magnetization dy-
namics, we have solved the full LLG-equation numerically.
The time-coordinate has been normalized to τ = tγµ0M0

19.
We begin by focusing on the results obtained when the spin-
valve configuration is AP, i.e. Ω = π. The corresponding re-
sults are shown in Fig. 1 for a current bias of I = 1 mA with-
out any external field. As seen, the AFM order parameter l
and FM order parameter m display qualitatively different be-
havior. In the top panel, l exhibits an oscillating decay until it
vanishes completely. Remarkably, it is seen from the middle
panel that a net magnetization evolves with increasing τ until
it fully saturates in the z-direction. The insets show a para-
metric plot of the time-evolution of the AFM and FM order
parameters, the circle denoting its value at t = 0. These re-
sults indicate that it should be possible to magnetize an AFM
exclusively by means of a current-bias in a spin-valve setup.
In the lower panel of Fig. 1, we consider how the switching
time τswitch depends on the magnitude of the applied current,
the switching time defined from |m(τswitch)| ≥ 1.95 (note that
the maximum value of both |m| and |l| is 2).

We proceed to investigate how large the current-bias has to
be in order for the spin-transfer torque to magnetize the AFM.
To answer this, we provide in Fig. 3 both lz and mz as a func-
tion of τ for several values of the current strength I. As seen,
the induced magnetization decreases as the current dimin-
ishes. However, even at I = 0.02 mA one may observe a par-
tial alignment of the sublattice magnetizations manifested as
a finite value of mz. As discussed in Sec. IV, this corresponds
to current densities ranging below 106 A/cm2. The AFM order
parameter displays an oscillating decay in all cases. For very
small currents I ≤ 0.01 mA, we found no appreciable induced
magnetism when solving the above equations of motion. In-
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FIG. 4: (Color online). Time-evolution of the AFM and FM order
parameters l and m, respectively, under the influence of an applied
current-bias of I = 1 mA. The spin-valve configuration is assumed to
be set in an angle Ω = 0.5π. Left panel: l. Right panel: m.

stead, the AFM order parameter l undergoes a precessional
motion and spin-flop transition into the xy-plane, similarly to
Ref.10.

It is also of interest to see what happens when the spin-
valve configuration is noncollinear, i.e. Ω 6= {0,π}. In Fig.
4, we solve for the time-evolution of the AFM and FM order
parameters for an applied current of I = 1 mA with a spin-
valve configuration set at Ω = 0.5π. As seen, l decays to zero
whereas m saturates at a finite value, albeit not fully aligned
with either of the easy axes of the system. This shows that it is
possible to control the direction of the induced magnetization
in the AFM by tuning the spin-valve configuration Ω.

Related to this, it is natural to ask: what influence, if any,
does the spin-valve configuration have on the switching time
itself? To investigate this, we have plotted the switching time
τswitch as a function of Ω in Fig. 5 for a regime of config-
urations where switching occurs, comparing two values of
the current bias in our numerical calculations. Numerically,
τswitch was defined as the time where the magnetization had
attained a value of 97.5% of its saturated value. As seen, the
switching time is strongly dependent on the configuration Ω.
In fact, it behaves in a non-monotonic fashion with a peak
value as its most striking feature. Fig. 5 suggests that there ex-
ists a spin-valve configuration for a given current bias which
strongly delays the magnetization switching, whereas config-
urations close to AP (Ω = π) offers the most rapid switching.
The peak position shifts towards the P configuration (Ω = 0)
with increasing current which also lowers the overall switch-
ing time, as is natural since the spin-transfer torque becomes
stronger. The variation in switching time as obtained when
varying Ω is seen to span over more than an order of magni-
tude from Fig. 5.

IV. DISCUSSION

In order to understand the induced magnetic moment in the
AFM qualitatively, one should note that the current-induced
spin-transfer torque described by Eq. (2) acts in the same
direction even after applying the transformation s j → −s j.
Hence, both magnetic sublattices in the AFM will experience
a torque in the same direction upon application of a current-
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FIG. 5: (Color online). Switching time and its dependence on the
magnetic configuration of the spin-valve for a current bias of 0.5 mA
and 1 mA, respectively.

bias and thus inducing a net magnetic moment. The stabil-
ity range of the induced moment, i.e. whether it persists
over time, depends on the other system parameters such as
anisotropy field and exchange bias, as we have discussed. To
observe the proposed effects, it is necessary to experimentally
adjust the spin-valve configuration Ω. Presumably, this will
be most efficiently done by selecting ferromagnets with dif-
ferent properties for the left and right layer. The coercive field
should be weaker for the tunable (right) magnetic layer such
that its orientation may be changed by application of a small
external field. An exchange interaction with the fixed (left)
magnetic layer should determine the initial orientation of the
AFM order parameter l, taken to be along the z-axis in this
case, although this interaction should be sufficiently small that
it may be disregarded under the influence of a current-bias.

A key parameter in terms of the current-induced spin-
transfer torque is the required current density to obtain the
induced magnetization M. As seen from Eqs. (1) and (2),
the torque is proportional to both the current density and the
cross-sectional area of the AFM while being inversely pro-
portional to the total volume of the AFM. Assuming a cross-
sectional area of 120×60 nm2, it follows that the predicted ef-
fects in this paper occur for current densities even below 106

A/cm2 (corresponding to a total current ' 0.1 mA). To fur-
ther characterize the robustness of the reported effects, such
as the non-monotonous switching-time20, it could be useful
to a apply micromagnetic theory to the proposed spin-valve
structure. Moreover, the characterization of other properties
such as how the GMR is influenced by the antiferromagnetic
layer could provide further insight in how the magnetic con-
figuration interacts with the presence of AFM in the middle
free layer.

V. SUMMARY

In summary, we have calculated the magnetization dynam-
ics of an antiferromagnet in a dual spin-valve setup, taking

into account anisotropy effects and current-induced torques.
We have shown that it is possible to induce a net magne-
tization in the AFM by partially or completely aligning the
sublattice magnetizations via a current-induced spin-transfer
torque. Moreover, the direction of the induced magnetiza-
tion in the AFM can be efficiently controlled by means of
the magnetic configuration of the spin-valve setup. Remark-
ably, the magnetization switching time-scale itself is found to
be controllable via the spin-valve setup: it displays a highly
non-monotonic dependence on the magnetization configura-
tion. The obtained results appear in an experimentally feasi-
ble parameter regime, and may thus point toward new ways
to incorporate AFMs in spintronic devices in order to obtain
novel types of functionality.

Appendix

We here provide some additional details concerning the
method of solution for the LLG-equation. By direct algebraic
manipulation, one may write Eq. (1) as:

Âx = B (9)

where x = [ṡ1x, ṡ1y, ṡ1z, ṡ2x, ṡ2y, ṡ2z]
T where T denotes the ma-

trix transpose. We have defined the matrices:

Â =

(
A1 0
0 A2

)
, A j =

 −1 −αs jz αs jy
αs jz −1 −αs jx
−αs jy αs jx −1

 , j = 1,2.

(10)

in addition to B = [b1,b2]
T with:

b j =

γ(s jyH jz− s jzH jy)−Tjx
γ(s jzH jx− s jxH jz)−Tjy
γ(s jxH jy− s jyH jx)−Tjz

=

b jx
b jy
b jz

 , j = 1,2. (11)

The above system of equations may then be solved to yield
uncoupled equations in the time-derivative of the magnetiza-
tion sublattices s j, which read:

ṡ jx =−
1

1+α2

[
α

2(s jxs jzb jz + s2
jxb jx + s jxs jyb jy)

+α(s jyb jz− s jzb jy)+b jx

]
ṡ jy =−

1
1+α2

[
α

2(s jys jzb jz + s2
jyb jy + s jxs jyb jx)

+α(s jzb jx− s jxb jz)+b jy

]
ṡ jz =−

1
1+α2

[
α

2(s jys jzb jy + s2
jzb jz + s jxs jzb jx)

+α(s jxb jy− s jyb jx)+b jz

]
(12)
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