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We study numerically the properties of spin- and charge-transport in a current-biased nanoscale diffusive
superconductor|ferromagnet|superconductor junction when the magnetization texture is non-uniform. Specif-
ically, we incorporate the presence of a Bloch/Neel domain walls and conical ferromagnetism, including the
role of spin-active interfaces. The superconducting leads are assumed to be of the conventional s-wave type.
In particular, we investigate how the 0-π transition is influenced by the inhomogeneous magnetization texture
and focus on the particular case where the charge-current vanishes while the spin-current is non-zero. In the
case of a Bloch/Neel domain-wall, the spin-current can be seen only for one component of the spin polarization,
whereas in the case of conical ferromagnetism the spin-current has the three components. This is in contrast to
a scenario with a homogeneous exchange field, where the spin-current vanishes completely. We explain all of
these results in terms of the interplay between the triplet anomalous Green’s function induced in the ferromag-
netic region and the local direction of the magnetization vector in the ferromagnet. Interestingly, we find that
the spin-current exhibits discontinuous jumps at the 0–π transition points of the critical charge-current. This
is seen both in the presence of a domain wall and for conical ferromagnetism. We explain this result in terms
of the different symmetry obeyed by the current-phase relation when comparing the charge- and spin-current.
Specifically, we find that whereas the charge-current obeys the well-known relation Ic(φ) = −Ic(2π − φ), the
spin-current satisfies Is(φ) = Is(2π − φ), where φ is the superconducting phase difference.

PACS numbers: 74.78.Na

I. INTRODUCTION

Because of the interesting phenomena that
superconductor|ferromagnet|superconductor (S|F|S) struc-
tures exhibit, including their potential applications in
spintronics1,2 and quantum computing3,4,5,6, this field of
research is presently studied extensively.6,7 Usual electronic
devices are based on the properties of flowing electrons
through circuits, whereas spintronic devices are based on
direction and number of flowing spins. In many spintronics
devices, like magnetic tunnelling junctions, spin polarized
currents are generated when an imbalance between spin
up and down carriers occurs. This imbalance can arise
e.g. by using magnetic materials or applying a magnetic
field. The discovery of the giant magnetoresistance (GMR)
effect8 today forms the basis of the leading technology for
information storage by magnetic disc drives. Spin coupling
and its advantageous high speeds at very low powers9 of
these devices promise applications for logic and storage
applications.10,11,12

The possibility of a π-state in a S|F|S systems was pre-
dicted theoretically in Refs.13,14 and has been observed
experimentally.15 Near such a transition point, the junction
ground state energy has two minima versus φ at φ = 0 and
φ = π. The coexistence of stable and metastable 0 and π
states in the transition zone can produce two flux peaks for
one external quantum flux in superconducting quantum inter-
ference device (SQUID)-like geometry, and renders the sys-
tem a qubit.16 The characteristic length of the ferromagnetic
layer where the first 0–π transition occurs is of the order of
the magnetic coherence length ξF . In the dirty limit, that is
achievable in most of the experimentally studied S|F|S struc-

tures. Here, ξF is given by
√
D/h where D denotes the dif-

fusion constant and h is the magnitude of ferromagnetic ex-
change field. Therefore, the experimental observation of such
0-π transitions in nanoscale devices requires a low exchange
energy h. Such conditions were achieved using weak ferro-
magnetic CuNi or PdNi alloys. The experimental observa-
tions of the critical charge-current oscillations shows such 0-
π transitions as a function of the ferromagnet thickness and
temperature.15,17,18,19 The consequence of the exchange split-
ting at the Fermi level20is that the Cooper pairs wave function
shows damped oscillations in the ferromagnet, resulting in the
appearance of the well known π-state in S|F|S systems.13 In
contrast to the usual 0-state in superconductor-normal metal-
superconductor junctions, the phase shift equal to π across
the junction in the ground state reverses the direction of the
supercurrent,15 and considerably changes the density of states
(DOS) in the F metal.17 The π-states can also be observed in
nonmagnetic junctions of high-Tc superconductors21 and in
non-equilibrium nanoscale superconducting structures.22

In the ballistic limit, the transport properties of a S|F|S
junction can be understood on a microscopic level in terms
of Andreev bound-states.23 The 0–π transition is then due to
the spin dependence of the Andreev bound states.24 Because
of the averaging of the quasiclassical Green’s function25 over
momentum directions, the relevant equations simplify in the
dirty transport regime. This averaging of Green’s function
can be understood by noting that in the presence of impuri-
ties and scattering centers, the direction of motion of elec-
trons are random and physical quantities should be averaged
over all directions. This averaging is valid as long as the
mean free path of the diffusive layer is much smaller than
length scales of the system that are superconducting coher-
ence length ξS =

√
D/∆0 and the decay length of Cooper
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pairs wave functions inside ferromagnet ξF =
√
D/h, where

∆0 is the superconducting order parameter. The charge-
current Ic(φ) and the local DOS are two principle quantities
that are strongly influenced by the proximity effect. These
two quantities were studied for various geometries by using
of quasiclassical Green’s function in clean and dirty limits in
several works, e.g.26,27,28,29,30,31,32,33,34,35,36.

Up to now, the majority of works studying S|F|S junctions
have considered a homogeneous exchange field in the fer-
romagnet, including half-metallic ferromagnets.37,38,39,40,41 In
the presence of inhomogeneous magnetization textures, sev-
eral new effects have been predicted in the literature includ-
ing the possibility of a long-range triplet component. Such
an inhomogeneous magnetization texture may be created ar-
tificially by setting up several layers of ferromagnets with
misaligned magnetizations.42,43,44,45,46,47 Alternatively, inho-
mogeneous magnetization may arise naturally in the presence
of domain walls or non-trivial patterns for the local ferro-
magnetic moment. An example of the latter is the conical
ferromagnet Ho. Very recently, two theoretical studies have
predicted qualitatively new effects in S|F and S|F|S hybrid
structures where F is a conical ferromagnet48,49. Due to the
inhomogeneous nature of the magnetization in Ho, the spin-
properties of the proximity-induced superconducting correla-
tions are expected to undergo a qualitative change compared
to the case of homogeneous ferromagnetism. Such changes
may also be expected in the domain-wall case. A more re-
alistic modeling of hybrid structures involving superconduc-
tors and ferromagnets demands that such non-trivial magneti-
zation textures and also the spin-dependent properties of the
interface regions50,51 are taken into account seriously. It was
recently shown that the latter may induce qualitatively new
features in the local DOS of S|F layers52 and S|N layers with
magnetic interfaces53.

Another consequence of inhomogeneous magnetization, be
it in the form of multiple misaligned layers or intrinsic non-
uniformity within a single ferromagnetic layer, is that the
Josephson current should become spin-polarized. This has
been noted by several authors in the context of superconduc-
tors coexisting with helimagnetic or spiral magnetic order56,57

as well as ferromagnetic superconductors54,55. However, the
spin-polarization of the Josephson current has not been stud-
ied in the arguably simplest case of a single ferromagnetic
layer with inhomogeneous magnetization contacted by two
conventional s-wave superconductors.

To this end, we develop in this paper a model for an S|F|S
junction where both inhomogeneous magnetization and spin-
active interfaces are incorporated, and then proceed to solve
the problem numerically. More specifically, we will investi-
gate variations of spin- and charge- currents versus changing
of the thickness of F layer dF for a hybrid S|F|S structure with
s-wave superconductors. We find that a spin-current flows
through the junction whenever the magnetization is inhomo-
geneous, and that it features discontinuous jumps whenever
the junction undergoes a 0–π transition. We compare these
variations for three types of magnetization textures i.e., homo-
geneous, domain wall, and a conical exchange field. We also
show that for certain values of dF , the critical charge-current

vanishes whereas a pure spin-current flows through the sys-
tem. Moreover, we demonstrate how it is possible to obtain a
pure spin-current by tuning the phase difference between the
superconductors.

II. THEORY

To investigate the behavior of the ferromagnetic Josephson
junction, we employ a full numerical solution of the quasiclas-
sical equations of superconductivity25 in the diffusive limit58,
which allows us to access the full proximity effect59 regime.
Importantly, we also take into account the spin-dependent
phase-shifts (spin-DIPS) microscopically60 that are present at
the superconductor|ferromagnet interfaces. For the purpose of
stable and efficient numerical calculations, it is convenient to
employ the Ricatti-parametrization of the Green’s function as
follows:61,62,63

ĝ =
(
N (1− γγ̃) 2Nγ

2Ñ γ̃ Ñ (−1 + γ̃γ)

)
. (1)

Here, ĝ2 = 1̂ since

N = (1 + γγ̃)−1 Ñ = (1 + γ̃γ)−1. (2)

We use . . . for 2 × 2 matrices and ˆ. . . for 4 × 4 matrices. In
order to calculate the Green’s function ĝ, we need to solve
the Usadel equation58 with appropriate boundary conditions
at x = −dF /2 and x = dF /2. We introduce the supercon-
ducting coherence length as ξS =

√
DS/∆0. Following the

notation of Ref.48, the Usadel equation reads

D∂(ĝ∂ĝ) + ı[ερ̂3 + diag[h · σ, (h · σ)T ], ĝ] = 0, (3)

and we employ the following realistic boundary conditions for
all our computations in this paper:50

2ζdF ĝ∂ĝ = [ĝBCS(φ), ĝ] + ı(GS/GT )[diag(τ3, τ3), ĝ] (4)

at x = −dF /2. Here, ∂ ≡ ∂
∂x and we defined ζ = RB/RF as

the ratio between the resistance of the barrier region and the
resistance in the ferromagnetic film. The barrier conductance
is given by GT , whereas the parameter GS describes the spin-
DIPS taking place at the F side of the interface where the mag-
netization is assumed to parallel to the z-axis. The boundary
condition at x = dF /2 is obtained by letting GS → (−G̃S)
and ĝBCS(φ)→ [−ĝBCS(−φ)] in Eq. (4), where

γ
BCS

(φ) = ıτ2s/(1 + c)eıφ/2,

γ̃
BCS

(φ) = γ
BCS

(φ)e−ıφ. (5)

Above, G̃S is allowed to be different from GS in general.
For instance, if the exchange field has opposite direction at
the two interfaces due to the presence of a domain wall, one
finds G̃S = −GS . The total superconducting phase differ-
ence is φ, and we have defined s = sinh(ϑ), c = cosh(ϑ)
with ϑ = atanh(∆0/ε) using ∆0 as the superconducting gap.
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Note that we use the bulk solution in the superconducting re-
gion, which is a good approximation when assuming that the
superconducting region is much less disordered than the ferro-
magnet and when the interface transparency is small, as con-
sidered here. We use units such that ~ = kB = 1.

The values ofGS andGT may be calculated explicitly from
a microscopic model, which allows one to characterize the
transmission {tjn,σ} and reflection amplitudes {rjn,σ} on the
j ∈ {S, F} side. Under the assumption of tunnel contacts
and a weak ferromagnet, one obtains with a Dirac-like barrier
model50,51,60

GT = GQ
∑
n

Tn, GS = 2GQ
∑
n

(
ρFn −

4τSn
Tn

)
(6)

upon defining Tn =
∑
σ |tSn,σ|2 and

ρFn = Im{rFn,↑(rFn,↓)∗}, τSn = Im{tSn,↑(tSn,↓)∗}. (7)

For simplicity, we assume that the interface is characterized
byN identical scattering channels. Omitting the subscript ’n’,
the scattering coefficients are obtained as:

rFσ = (kFσ − kSσ − ıkSσZσ)/Dσ,

tSσ = 2
√
kSσk

F
σ /Dσ, (8)

with the definitions Dσ = kSσ + kFσ + ıkSσZσ and

kSσ =
√

2mSµS , k
F
σ =

√
2mF (µF + σh). (9)

Here, Zσ = Z0 +σZS is the spin-dependent barrier potential.
Defining the polarization P = h/µF in the ferromagnet and
the polarization ν = ZS/Z0 for the barrier, we will set P = ν.

In this paper we will consider three types of inhomogeneous
magnetic textures: Bloch, Néel and a conical structure. These
structures are all different from a homogenous magnetic tex-
ture. The first two types of magnetic textures are assumed
to be located at the center of the F layer. The Bloch model
is demonstrated by h = h(cos θŷ + sin θẑ) and its struc-
ture is shown in Fig. 1. Similarly, the Néel model reads
h = h(cos θx̂+ sin θẑ) where we defined θ as follows63:

θ = − arctan(x/dW ). (10)

Here, dW is the width of domain wall and we assumed that the
center of F layer is located at the origin, i.e, x = 0 as shown
in Fig. 1.

For the conical case, we adopt a model where the magnetic
moment rotates on the surface of a cone with defined apex
angle α and turning angle β. This structure is shown in Fig.1
(α and β will determine the kind of material in use). If we
assume that the distances of interatomic layers are a,64 the
spiral variation in the exchange field can be written as

h = h(cosαx̂+ sinα[sin(βx/a)ŷ + cos(βx/a)ẑ]). (11)

To characterize the transport properties of the system, we
define the normalized charge and spin current densities ac-
cording to:

Ic
Ic,0

=
∣∣∣ ∫ ∞

0

dε̃ Tr
{
ρ̂3

(
ǧ
∂ǧ

∂x̃

)K}∣∣∣, (12)

FIG. 1: (Color online) i) The S|F|S junction with Bloch domain
wall of ferromagnet and ii) with conical type of ferromagnet. The
magnetization texture for the Neel wall is obtained by replacing the
x-component of the magnetization with an y-component in case i).
The blue arrows show the magnetic moments in F layer. The mag-
netic moment for Bloch/Neel domain wall has two components and
for conical type has three components.

and
Izs
Is,0

=
∫ ∞

0

dε̃ Tr
{
ρ̂3τ̂3

(
ǧ
∂ǧ

∂x̃

)K}
, (13)

respectively, where ε̃ = ε/∆0, x̃ = x/dF , and ρ̂3 =
diag(1, 1,−1,−1). Here Ic and Izs are the charge- and the
z-component of the spin-current flowing in the x̂-direction,
respectively. The normalization constants are:

Ic,0 =
N0eD∆0

8dF
, Is,0 =

~Ic,0
2e

, (14)

where N0 is the normal state DOS per spin and D is the dif-
fusion constant. In general, the spin-current for other compo-
nents of spin polarization j ∈ {x, y, z} is given as:

Ijs
Is,0

=
∫ ∞

0

dε̃ Tr
{
ρ̂3ν̂j

(
ǧ
∂ǧ

∂x̃

)K}
, ν̂j =

(
τj 0
0 τj

∗

)
.

(15)

Above, ρ̂i, τ̂i, and τi are Pauli matrices that are defined
in the appendix C and the reader may consult Appendix B
for the derivation of the expression for Ijs/Is,0. Under the
assumption of an equilibrium situation, the Keldysh block of
Green’s function reads:

ĝK = [ĝR − ĝA] tanh(βε/2), (16)

where ĝRand ĝA = −(ρ̂3ĝ
Rρ̂3) are Retarded and Advanced

blocks of ǧ respectively, and β = 1/T is inverse temperature.

III. RESULTS AND DISCUSSION

We now present our main results of this paper, namely a
study of how the critical currents depend on the thickness dF
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of the junction in the presence of homogeneous and inhomo-
geneous exchange field and spin-active interfaces. In order to
focus on a realistic experimental setup, we choose the junction
parameters as follows. For a weak, diffusive ferromagnetic al-
loy such as PdxNi1−x, the exchange field h/∆0 is tunable by
means of the doping level x to take values in the range meV
to tens of meV. Here, we will fix h/∆0 = 15, which typi-
cally places the exchange field h in the range 15-25 meV. The
thickness dF of the junction is allowed to vary in the range
dF /ξS ∈ [0.5, 1.2], which is equivalent to 9 − 21.6 nm for
a superconducting coherence length of ξS = 18 nm as can
be obtained for e.g. Nb. This range of layer thicknesses dF
are experimentally feasible.65 The ratio of GS/GT is calcu-
lated according to the microscopic expressions given in the
previous section only for uniform and domain wall exchange
fields because we will set GS = 0 for the conical ferromag-
net. We choose µF = 1 eV and µS = 10 eV for the Fermi
level in the ferromagnet and superconductor, respectively, and
consider a relatively low barrier transparency of Z0 = 3. The
electron massmF andmS in both the F and S regions is taken
to be the bare one (' 0.5 MeV). Any change in effective mass
translates into an effective barrier resistance due to the Fermi-
wavevector mismatch, which thus is captured by the param-
eter Zσ . The interface region is assumed to exhibit a much
higher electrical resistance than in the bulk of the ferromagnet,
and we set ζ = RB/RF = 4. For more stability in our com-
putations we used the Ricatti parametrization and also inserted
a small imaginary part δ = 5 × 10−3∆0 in the quasiparticle
energy ε, effectively modeling inelastic scattering. A consid-
erable amount of CPU-time was put into the calculations of
the current, as we solved for a fine mesh of both quasiparticle
energies ε and phase differences φ for each value of the width
dF . As will be discussed in detail below, we find that for S|F|S
structures with spin-singlet s-wave superconducting leads, a
spin-current exists only for domain wall structures and con-
ical type of the ferromagnet layer, whereas it vanishes com-
pletely in the case of a homogeneous exchange field. Both the
charge- and spin-current are evaluated in the middle of the F
region, x = 0. The charge-current is conserved throughout the
system, and its magnitude is thus independent of x. The spin-
current, on the other hand, is not conserved and in fact suffers
a depletion close to the S|F interfaces and vanishes completely
in the superconducting regions. The critical charge-current is
given by Icc =maxφ{Ic(φ)}, and the phase giving the critical
current may be denoted φc. We define the critical spin-current
as Ics=Is(φc), which means that we are effectively consider-
ing the spin-polarization of the critical charge-current, which
should be the most sensible choice physically in a current-
biased scenario. Note that this is different from the maximum
value of the spin-current as a function of φ.

A. Critical currents vs. thickness dF for homogeneous
exchange field

First, we consider how the charge- and spin-currents are
influenced by changing the thickness of F layer dF in the ho-
mogeneous magnetic texture case. We fix the temperature at
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FIG. 2: (Color online) The variation of the normalized critical
charge-current versus the thickness of a homogeneous F layer. The
inset panel zooms in on the behavior near the 0-π transition. As long
as the exchange field is constant, we find that the spin-current Is

vanishes.

T/Tc = 0.2, and use the microscopic expression for spin-
DIPSGφ at the two boundaries. The result is shown in the Fig.
2. The critical charge-current in the region of dF from 0.5ξS
to 1.2ξS vanishes at one point. This point is the first 0-π tran-
sition point. We found that, for all strengths of the exchange
field and spin-DIPS, the spin-current Is is zero. Unlike the
case of spin-triplet superconductors, we can not see any spin-
current even for x̂ and ŷ directions of spin polarization66,67. In
fact, one can confirm this finding analytically for all compo-
nents of spin polarization at least for linearized Usadel equa-
tion and transparent boundaries. The reason for the vanish-
ing spin-current will become clear from the discussion in the
following section, when noting that only the Sz = 0 odd-
frequency triplet and even-frequency singlet components are
induced by the proximity effect in the ferromagnetic region.

B. Critical currents vs. thickness dF for Bloch and Néel
domain walls

We now turn our attention to the first example of a non-
trivial magnetization texture in the ferromagnet, namely the
scenario of a Bloch or Neel domain wall. We use the same
values for h and T as in the previous section, and set the do-
main wall width dW to dW /dF = 0.5 and assume that it is
centered in the ferromagnet. Although the domain-wall struc-
ture dictates that the magnetization is not fully directed along
the z-axis at the interfaces, we have verified numerically that
the influence of the spin-DIPS parameter GS is negligible for
our choice of parameters, such that we still can use the bound-
ary conditions in Sec. II.

The results of the variation of the normalized critical spin-
and charge-currents vs. dF /ξS are shown in the Fig. 3 , con-
sidering here a Bloch wall texture. Contrary to the homoge-
neous case considered in the previous section, we now see
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FIG. 3: (Color online) The variations of normalized critical spin-
and charge-currents vs. increasing the thickness dF of F layer with a
Bloch domain wall structure.

that a finite spin-current flows through the system. For this
type of magnetization texture, we note that the spin-current
only exists for one component of the spin polarization: the x̂-
component. Only one component of the spin-current would
be present also in the Neel domain wall case, as we shall ex-
plain below. The spin-current features a discontinuous jump
at the same value of the thickness where the charge-current
undergoes a 0–π transition, namely dF /ξS ' 0.6. For this
value of thickness the spin-current has a rapid variation. We
have checked numerically with a very high resolution of dF (a
step of 5×10−4 for dF /ξS) that this result does not pertain to
noise or any error. For this type of magnetization texture, we
also note that a spin-current only exists for one component of
the spin polarization: the x̂-component. We will explain the
reason for both the presence of such jumps in the spin-current
and the polarization properties later.

We now explain why only one component of the spin-
polarization is present both in the Bloch and Neel domain wall
case. In order to understand the reason for this, it is instruc-
tive to consider the interplay between the triplet anomalous
Green’s function f , given by

f =
[f↓ − f↑

2
,− i(f↓ + f↑)

2
,
f↑↓ + f↓↑

2

]
(17)

and the local direction of the exchange field h. In S|F prox-
imity structures, f tends to align as much as possible with h.
For a homogeneous exchange field h in the z-direction, one
thus obtains that only the Sz = 0 opposite-spin pairing triplet
component ft = fz is present, as is well-known. Consider
now the Bloch domain wall case. The f -vector then contains
only y- and z-components. Now, the spin expectation value
of the Cooper pair is provided by

〈S〉 ∝ ı(f × f∗), (18)

and we immediately infer that only a spin-polarization in the
x-direction will be present. A similar line of reasoning for

the Neel domain wall case leads to the result that only a spin-
polarization in the y-direction is present. Since we are eval-
uating the spin-current in the middle of the F region, the z-
component of the local exchange field is absent there. In
that case, 〈S〉 should equal to zero according to our argument
above. The reason for why a finite spin-current is neverthe-
less obtained must be attributed to a lag between the f and h
vectors, such that they do not follow each other exactly. One
would expect that for a slower variation of the local exchange
field, the lag would decrease.

C. Critical currents vs. thickness dF for conical type of
magnetization texture

Finally, we turn our attention to the conical model for mag-
netization, relevant to Ho. For simplicity, we set the GS = 0
at the two boundaries at −dF /2 and d/2. The distance be-
tween the atomic layers a is equal to 0.02dF , α = 4π/9, and
rotating angle β = π/6 per interatomic layer. These values of
a, α and β are chosen based on the actual lattice parameters
of Ho. The result of the investigation of how the critical spin-
and charge-currents vary as a function of dF /ξS is shown in
the Fig. 4. In this case, we see a qualitatively new behavior
for the charge-current as compared to the previous two sub-
sections where we treated a homogeneous exchange field and
a domain-wall ferromagnet, respectively. In Fig. 4, one ob-
serves a superimposed pattern of fast oscillations on top of
the usual 0–π oscillations, which are slower. This is in agree-
ment with the very recent work by Halasz et al.49, who also
reported the generation of rapid oscillations on top of the con-
ventional 0–π transitions of the current in the weak-proximity
effect regime. These faster oscillations pertain to the inho-
mogeneous magnetization texture considered here, although
they are not seen in the domain-wall case. This fact indicates
that they are sensitive to the precise form of the magnetiza-
tion structure in the ferromagnet, and that they do not appear
simply as a result of a general inhomogeneity.

As can be seen in the Fig. 4, the critical-charge current has
five local minima, out of which three are 0–π transition points.
In Fig. 4, the first dotted horizontal line indictates a minima
which is irrelevant to a 0–π transition, whereas the three fol-
lowing dotted lines indicate minima which correspond to such
transitions. The last local minima is located near dF /ξS = 1.2
and is not indicated by a dotted line in Fig. 4. This is in con-
trast to the homogeneous and domain wall case, where only
one 0–π transition point is seen in the range of dF considered
here. As for the spin-current, the behavior is similar to the
Bloch wall structure, with a rapid variation at the transition
point. As mentioned previously, we have investigated these
discontinuous jumps of the spin-current with a very high reso-
lution for dF to ensure that do not stem from numerical errors
or noise. We now proceed to an explanation for this effect.
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FIG. 4: (Color online) Plot of the normalized critical spin- and
charge-current vs. the normalized thickness dF of the F layer for
a conical type of magnetization texture. All three components of the
spin polarization have a considerable magnitude in the entire range
of dF considered here.

D. Origin of the discontinuous jumps in the spin-current

In order to understand the mechanism behind the discon-
tinuous jumps of the spin-current near the 0–π transition of
the junction, we revert briefly to the original definition of the
critical spin-current. It is defined as Is(φc) where φc is the
value of the superconducting phase difference which gives the
maximum (absolute) value of the charge-current. In effect,
the critical spin-current is the spin-polarization of the critical
charge-current, which is distinct from the maximum value of
the spin-current. We now consider in detail the current-phase
relation for both charge- and spin-transport near the transi-
tion point located at dF /ξS ' 0.772 (see Fig. 4). The result
for the current-phase relation is shown in Fig. 5, where we
consider several values of dF near the transition point. From
bottom to top, they range from dF /ξS = 0.7655 to 0.7725
in steps of 1 × 10−3. A key point is that we have verified
numerically that the charge-current is antisymmetric with re-
spect to φ = π whereas the spin-current is symmetric around
this value. More specifically, whereas

Ic(φ) = −Ic(2π − φ) (19)

we find numerically that the spin-current satisfies

Is(φ) = Is(2π − φ) (20)

This is consistent with the finding of Ref.66 where transport
between spin-triplet superconductors has been investigated.
As a result, it suffices to restrict our attention to the range
φ ∈ [0, π]. Next, we note that the charge-current is nearly
sinusoidal to begin with (bottom curves of Fig. 5). Upon in-
creasing dF , and thus approaching the transition point, higher
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FIG. 5: (Color online) Plot of the current-phase relation for the
charge- and spin-currents. We are considering a conical magnetiza-
tion texture, and the curves range from dF /ξS = 0.7655 to 0.7725
in steps of 1×10−3 in the charge-current panel. For the spin-current
panels, the variation of the current-phase relation upon changing dF

is negligible and we give results only for dF /ξS = 0.7725. Note that
the critical spin-current nevertheless varies strongly with dF near the
transition points as shown in Fig. 4, since the critical phase displays
a strong dependence on dF in this regime.

harmonics in the current-phase relation become more protru-
dent for the charge-current. However, the spin-current re-
mains virtually unafffected by an increase in dF , and we plot
the result only for dF /ξS = 0.7725. Upon increasing dF , the
critical phase φc moves away from π/2 to lower values due
to the presence of higher harmonics in the current-phase rela-
tion. At the transition point, the phase jumps in a discontinu-
ous manner to φc > π/2 (dotted arrow in Fig. 5). Now, the
charge-current has a similar magnitude (in absolute-value) for
this new value of φc. The spin-current, on the other hand, has
a different symmetry with respect to φ as seen in Fig. 5, and
varies less rapidly with dF . Therefore, the spin-polarization
of the current makes a discontinuous jump at the transition
point.

IV. SUMMARY

In summary, we have considered the transport of charge
and spin in a nanoscale S|F|S Josephson junction when the
magnetization texture is inhomogeneous in the ferromagnetic
layer. More specifically, we have investigated how charge
and spin Josephson currents are affected by the presence of
Bloch/Neel domain walls and conical ferromagnetism, includ-
ing also the spin-active properties of the interfaces. We find
that a spin-current flows through the junction whenever the
magnetization is inhomogeneous, and that it features discon-
tinuous jumps whenever the junction undergoes a 0–π tran-
sition. In the case of a Bloch/Neel domain-wall, the spin-
current can be seen only for one component of the spin polar-
ization (the component perpendicular to both the local direc-
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tion of the exchange field and that of its derivative), whereas in
the case of conical ferromagnetism the spin-current has three
components. For a homogeneous exchange field, the spin-
current vanishes. We explain the polarization properties of
the spin-current by considering interplay between the triplet
anomalous Green’s functions induced in the ferromagnetic re-
gion and the local direction of the magnetization vector in
the ferromagnet. Moreover, we show how the discontinuous
jumps in the spin-current stem from the different symmetries
for the current-phase relation when comparing the charge-
and spin-current. While the charge-current obeys the well-
known relation Ic(φ) = −Ic(2π − φ), the spin-current satis-
fies Is(φ) = Is(2π−φ), where φ is the superconducting phase
difference. Our results open up new perspectives for appli-
cations in superspintronics by exploiting Josephson junctions
with non-homogeneous ferromagnets.
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APPENDIX A: USEFUL RELATIONS FOR THE GREEN’S
FUNCTION

By introducing the auxiliary quantities

∂xN = −NDN , ∂xÑ = −Ñ D̃Ñ , (A1)

where we have defined

D = (∂xγ)γ̃ + γ(∂xγ̃), D̃ = (∂xγ̃)γ + γ̃(∂xγ), (A2)

we find that the matrix derivative of the Green’s function ∂xĝR

has the following components:

(∂xĝR)11 = −DN − (1− γγ̃)NDN ,

(∂xĝR)12 = 2(∂xγ)Ñ − 2γÑ D̃Ñ ,
(∂xĝR)21 = 2(∂xγ̃)N − 2γ̃NDN ,

(∂xĝR)22 = D̃Ñ + (1− γ̃γ)Ñ D̃Ñ (A3)

The indices above refer to particle-hole space, and each of the
above elements is thus a 2× 2 matrix in spin-space.

APPENDIX B: QUASICLASSICAL EQUATION FOR THE
SPIN-CURRENT

We here show how the matrix structure in the analytical ex-
pression Eq. (15) for the spin-current is obtained in the qua-
siclassical approximation. The starting point is the quantum

mechanical expression for the expectation value of the spin-
current:

〈jS(r)〉 =
1

2m
〈Im{Ψ†(r)∇rdiag(σ,σ∗)Ψ(r)}〉, (B1)

with a fermion operator basis Ψ given as

Ψ†(r) = (ψ†↑(r), ψ†↓(r), ψ↑(r), ψ↓(r)). (B2)

Above, σ is the Pauli matrix vector. It should be noted that the
spin-current jS is a tensor since it has a flow-direction in real
space in addition to a polarization in spin-space. For clarity,
we consider in what follows the σ2-component corresponding
to the polarization in the ŷ-direction, as an example. We then
get from Eq. (B1) [using that Im{ız} = Re{z} for a complex
number z]

〈jyS(r)〉 =
1

2m
Re{−〈ψ†↑(r)∇rψ↓(r)〉+ 〈ψ†↓(r)∇rψ↑(r)〉

+ 〈ψ↑(r)∇rψ
†
↓(r)〉 − 〈ψ↓(r)∇rψ

†
↑(r)〉}

=
1

4m
lim

r→r′
(∇r −∇r′)[〈ψ†↑(r)ψ↓(r′)〉

− 〈ψ†↓(r)ψ↑(r′)〉+ 〈ψ↓(r)ψ†↑(r
′)〉

− 〈ψ↑(r)ψ†↓(r
′)〉]. (B3)

Using the notation of Ref.68, we define the following repre-
sentation for the Keldysh Green’s function:(

ĜK(r, r′)
)
mn

= −ı
∑
j

(ρ̂3)mj
〈

[Ψ(r)j ,Ψ†(r′)n]−
〉
.

(B4)

It then follows from anticommutation that e.g. :

〈ψ†↑(r)ψ↓(r′)〉 =
1
2
〈ψ†↑(r)ψ↓(r′)〉+

1
2
〈ψ†↑(r)ψ↓(r′)〉

= −1
2
〈ψ↓(r′)ψ†↑(r)〉+

1
2
〈ψ†↑(r)ψ↓(r′)〉.

(B5)

In this way, we can rewrite the last lines of Eq. (B3) as:

〈jyS(r)〉 =
1

8m
lim

r→r′
(∇r −∇r′)[ı

(
ĜK(r, r′)

)
21

− ı
(
ĜK(r, r′)

)
12
− ı
(
ĜK(r, r′)

)
34

+ ı
(
ĜK(r, r′)

)
43

]

= − 1
8m

lim
r→r′

(∇r −∇r′)Tr{ρ̂3

× diag(τ2, τ2∗)× ĜK(r, r′)}. (B6)

For the x and z-components, one replaces τ2 with τ1 and τ3,
respectively.

APPENDIX C: PAULI MATRICES

The Pauli matrices that are used in this paper are
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τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −ı
ı 0

)
, τ3 =

(
1 0
0 −1

)
,

1 =
(

1 0
0 1

)
, 1̂ =

(
1 0
0 1

)
, τ̂i =

(
τi 0
0 τi

)
,

ρ̂1 =
(

0 τ1
τ1 0

)
, ρ̂2 =

(
0 −ıτ1

ıτ1 0

)
, ρ̂3 =

(
1 0
0 −1

)
.
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