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We investigate the effect exerted by spin-polarized fermions on the interaction between superfluid
bosons for a Bose-Fermi mixture residing on an optical lattice, with particular emphasis on the possi-
bility of an induced phase-separation. Using a set of microscopic parameters relevant to a 40K-87Rb
mixture, we show how the phase-separation criterion may be directly probed by means of the critical
superfluid velocity of the bosonic condensate. We report quantitative results for the magnitude of
the superfluid velocity and its dependence on the trap depth, the boson-fermion interaction, and the
fermionic filling fraction. All of these parameters can be controlled experimentally in a well-defined
manner. We propose an experimental setup for probing the critical superfluid velocity.

PACS numbers: 03.75.Lm, 05.30.Jp, 05.30.Fk

I. INTRODUCTION

The scenario of trapped ultracold atoms residing on
tunable optical lattices offers a fertile arena for explo-
ration of fundamental physics. One of the most intriguing
features of such systems is the possibility to exert exper-
imental control over the environment where the atoms
are located. This is accomplished by means of tuning
the frequency of the lasers generating the optical lattice,
a feature which may be used to induce phase transitions
in the system. Trapped ultracold atoms host phases in-
cluding supersolidity, Mott insulation, and superfluidity,
and have been studied extensively (see Refs. [1, 2, 3] and
references therein).

The atoms on the optical lattice may be either bosons,
fermions, or a mixture of both. In particular, it is experi-
mentally possible to generate Bose-Fermi mixtures where
the spins of the fermions are frozen due to the influence
of the confining magnetic trap. Depending on the rel-
ative strength of the intersite hopping and interaction
parameters, respectively, the system enters into a spe-
cific quantum phase. A key observation in this context is
that the interaction between the fermions and the bosons
may strongly influence the preferred ground-state of the
system.

A convenient way of treating Bose-Fermi mixtures the-
oretically is to integrate out the fermionic sector, thus
obtaining an effective interacting boson theory. This is
possible when the fermion-spin is frozen, leading to a
vanishing fermionic on-site interaction. It turns out that
the resulting effective boson-boson interaction Ub is very
sensitive to the presence of a fermionic density [4]. In
fact, the boson-fermion interaction may render the Bose
system thermodynamically unstable and lead to phase-
separation provided the effective boson-boson interaction
becomes attractive. Such a phase-separation is certainly
interesting in its own right, but also represents a serious
obstacle for observing novel quantum phases arising out
of an interacting mixture of bosons and fermions, since
it narrows the parameter range in which the bosons and
fermions coexist.

From an experimental point of view, the phase-
separation criterion may be probed by means of monitor-
ing the critical superfluid velocity in the Bose-Fermi mix-
ture. This has previously been accomplished experimen-
tally in Bose-Einstein condensates by means of stirring
the trapped gas with a blue-tuned laser [5, 6]. The super-
fluid quantum state then becomes energetically unstable
at a critical magnitude of the velocity. Previously, sev-
eral aspects of the critical superfluid velocity have been
investigated in the context of single- and multicomponent
Bose-Einstein condensates [7, 8, 9, 10, 11, 12, 13, 14, 15]
as well as in Fermi superfluids [16, 17, 18].

However, an analysis of the critical velocity for the
bosonic superfluid phase in a Bose-Fermi mixture is still
lacking. Of particular interest is the question of how the
fermion-boson interaction influences the critical velocity
in a Bose-Fermi mixture. Very recently, it was shown in
Ref. [19] how the fermion-boson interaction can be tuned
over a wide range using a Feshbach resonance, allowing
for both an attractive or repulsive character. This finding
opens up new possibilities in terms of probing the vari-
ous quantum phases that may arise in such Bose-Fermi
mixtures [20].

In this paper, we calculate quantitatively the critical
superfluid velocity vc in a Bose-Fermi mixture using a set
of realistic experimental parameters pertaining to a 40K-
87Rb mixture. We focus especially on how vc depends on
the trap depth, the boson-fermion interaction, and the
fermionic filling fraction, which all are parameters that
can be tuned experimentally in a controllable fashion.
Our results yield numbers which are similar in magni-
tude to the critical velocity obtained experimentally in a
Bose-Einstein condensate [5], namely of order O(mm/s).
We also propose an experimental setup for probing the
critical superfluid velocity in a Bose-Fermi mixture.

This work is organized as follows. In Sec. II, we intro-
duce the theoretical framework and previously obtained
results which we will rely on in our study of the critical
superfluid velocity. In Sec. III, we present our main re-
sults, which is a study of how vc is influenced by the trap
depth, the boson-fermion interaction, and the fermionic
chemical potential. We discuss our results in Sec. IV,
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FIG. 1: (Color online) Fermionic density of states on a square
lattice, featuring a van Hove singularity at ε = 0. We consider
two filling fractions characterized by µ/tf = 0.5 and µ/tf =
3.5, respectively. Here, N0 = 1/(2π2tf ).

suggesting also a possible experimental setup which may
probe the predicted effects, and finally conclude in Sec.
V. Note that in order to obtain quantitative results for
vc, we will not use units such that ~ = c = 1, but instead
use their actual values.

II. THEORY

To begin with, we briefly account for the route em-
ployed to obtain our main results. A general Hamiltonian
describing interacting fermions and bosons reads

H = Hf +Hb +Hbf , (1)

where we have defined

Hf =
∫

drψ†f (r)[−~2∇2/(2mf ) + Vf (r)]ψf (r), (2)

and f → b for Hb. The interaction term is

Hbf =
∫

dr
[
gbfψ

†
b(r)ψb(r)ψ†f (r)ψf (r)

+ gbψ
†
b(r)ψ†b(r)ψb(r)ψb(r)

]
. (3)

Above, mα and Vα denote the mass and optical lattice po-
tential for α = {f, b}, whereas gb and gbf are the boson-
boson and boson-fermion interactions, respectively. It
is implicitly assumed above that we are dealing with a
fully spin-polarized fermion system. By expanding the
field operators ψα in Bloch wavefunctions {uk, vk} for a
periodic potential [21],

ψ†f (r) =
1√
N

∑
k

vk(r)c†k,

ψ†b(r) =
1√
N

∑
k

uk(r)b†k, (4)

we arrive at an effective lattice Hamiltonian

H =
∑

k

εk,bb
†
kbk +

∑
k

εk,fc
†
kck

+
Ub
2N

∑
{kj}

b†k1
b†k2

bk3bk4 +
Ubf
N

∑
{kj}

b†k1
bk2c

†
k3
ck4 . (5)

This procedure is justified when the optical potential is
strong enough, typically Vα > Erec

α , where

Erec
α = 2~2π2/(λ2mα) (6)

is the atom recoil energy and λ is the wavelength of the
laser light. For later purposes, we define the optical trap
depth sα = Vα/E

rec
α . In order to evaluate the critical su-

perfluid velocity explicitly from the microscopic param-
eters of an experimental setup, we make use of following
expression for the hopping and interaction parameters
[20]:

tα =
2(Erec

α V 3
α )1/4

√
πe
√

4Vα/Erec
α

,

Ub =
√

32π(Erec
b V 3

b )1/4ab
λ

. (7)

For the fermion-boson interaction, one has

Ubf =
8
√
π(Erec

f V 3
b V

3
f )1/4(1 +mf/mb)abf

λ(
√
Vb +

√
VfErec

b /Erec
f )3/2

. (8)

It is also useful to introduce the scattering lengths
{ab, abf}, which are related to the interaction parame-
ters in Eq. (3) as follows:

ab =
gbmb

4π~2
, abf =

gbfmfmb

2π(mf +mb)~2
. (9)

The onsite potentials in Eqs. (7) and (8) are ob-
tained by relating them directly to the Wannier functions
{U(r),V(r)} used to approximate the wavefunctions in
the lowest Bloch band. For instance, one has [21]:

Ubf = gbf

∫
dr|U(r)|2|V(r)|2, (10)

where we have defined

U(r −R) =
1
N

∑
k

uk(r)e−ıR·k,

V(r −R) =
1
N

∑
k

vk(r)e−ıR·k. (11)

The energy dispersions are dictated by the geometry of
the optical lattice and are proportional to the nearest-
neighbor matrix elements tα, whereas the summation
over {kj} should be taken such that momentum is con-
served in the scattering process.

The Hamiltonian Eq. (5) is now quadratic in the
fermion-sector, which allows us to integrate out the
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fermions in the partition function by using a functional
integral formulation. After doing so, one identifies an
effective boson-boson interaction Ub of the form [4]

Ub = Ub + U2
bfχ(T, q),

χ(T, q) =
1
N

∑
k

F (εk,f )− F (εk+q,f )
εk,f − εk+q,f + ıδ

, δ → 0. (12)

Here, χ(T, q) is the Lindhard function describing the
fermionic polarization-bubble response, and F (ε) = [1 +
eβ(ε−µ)]−1, β = (kBT )−1 is the Fermi distribution func-
tion.

To proceed analytically, we restrict ourselves to the
weak-coupling regime and employ a Bogoliubov mean-
field theory for superfluidity [22] to arrive at the bosonic
quasiparticle excitation spectrum

Eq,b =
√
εq,b{εq,b + 2nb[Ub + U2

bfχ(T, q)]}. (13)

The phase-separation criterion (the point at which the
bosonic excitation energies cease to be real) thus reads

Ub < −U2
bf lim

q→0
χ(T, q). (14)

Phase-separation is triggered by the effective boson-
boson interaction becoming attractive, which leads to a
negative compressibility and an unstable homogeneous
superfluid state [23]. Note that the critical value of Ubf
where phase-separation sets in is independent of the sign
of the interaction Ubf . As an example of how the phase-
separation may be manifested, it was shown in Ref. [24]
how the bosonic density in a Bose-Fermi mixture con-
fined in a three-dimensional harmonic trap would be
strongly enhanced in the center of the trap surrounded by
a fermionic density-shell in the phase-separated regime.

Denoting the Fermi level by εf , one finds that

χ(T, q → 0) =
∫

dεN(ε)∂εF (ε) = −N(εf ). (15)

The effective boson-boson interaction then takes the form
Ueff = Ub − U2

bfN(εf ), and remains at a constant posi-
tive or negative value when varying the temperature in
the regime T � Tf , where Tf is the Fermi temperature.
In a two-dimensional lattice structure, the energy bands
feature saddle points at distinct wavevectors, thus giving
rise to well-known van Hove singularities. In the vicinity
of a van Hove singularity, the DOS is not a smooth func-
tion of the energy and Eq. (15) no longer holds. When
the fermionic chemical potential is tuned to match the
van Hove singularity, the Lindhard function diverges log-
arithmically as follows [25]

χ(T → 0, 0) = −χ0ln
( Ctf
kBT

)
, (16)

in the zero-temperature limit T → 0. Here, χ0 is a prefac-
tor of dimension inverse energy, whereas C is a numerical
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FIG. 2: (Color online) Plot of the critical superfluid velocity
vc for the bosons and its dependence on the trap depth. Here,
we have set (a) µ/tf = 0.5 and (b) µ/tf = 3.5. All other
parameter values are specified in the main text.

prefactor. For a square lattice, one finds χ0 = 1/(2π2tf )
and C ' 18.08, whereas for e.g. a triangular lattice one
would find χ0 = 3/(4π2tf ) and C = 9.04 [25]. It should
be noted that we have considered the static limit ıεn → 0
for the Lindhard function, where εn is a bosonic Matsub-
ara frequency. This approximation is valid for a scenario
where the fermion response-time is much faster than the
bosonic equivalent, which means that one can disregard
retardation effects [25].

III. RESULTS

From now on, we will consider a simple square lat-
tice for concreteness, which is the easiest setup to realize
experimentally. In this case, the van Hove singularity
is located at ε = 0 and the DOS has a bandwidth of
W = 8tf . We find that the energy dispersion in the long
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FIG. 3: (Color online) Plot of the critical superfluid velocity
vc for the bosons and its dependence on the fermion-boson
interaction. Here, we have set (a) µ/tf = 0.5 and (b) µ/tf =
3.5. All other parameter values are specified in the main text.

wavelength limit reads

Eb(T, q → 0) =
√

4nbtba2[Ub + U2
bfχ(T, 0)]|q|. (17)

The critical superfluid velocity vc is obtained in the stan-
dard way

vc = min
( Eb

~|q|

)
, (18)

leading to

vc =
√

4nbtba2[Ub + U2
bfχ(T, 0)]/~. (19)

Some properties of Bose-Fermi mixtures with a fermionic
chemical potential tuned to the van Hove singularity were
discussed in Refs. [4, 21]. Here, we will consider a
situation of a non-zero chemical potential, thus moving
away from half-filling. In order to model a realistic ex-
periment, we will employ the following parameters for a
40K-87Rb Bose-Fermi mixture [26, 27]: TBEC = 100 nK,
mf = 6.64× 10−26 kg, mb = 1.44× 10−25 kg, ab ' 98a0.
Here, a0 ' 52.9×10−3 nm is the Bohr radius. In order to
ensure equal lattice depths sα ≡ s for the fermions and
bosons, measured relative their respective recoil energies
Erec
α , we fix λ = 755 nm [19]. In general, the effective po-

tentials seen by the fermions and bosons can be tuned by
detuning the lattice wavelength relative the wavelengths
λf(b) of the fermions (bosons) according to [28]

Vb
Vf

=
Γfλ4

f∆λb
Γbλ4

b∆λf
(20)

where Γα is the natural linewidth, α = {f, b}. We
set the zero-temperature condensate fraction to nB(T =
0) = 0.5, and employ a mean-field approximation for its
temperature-dependence nB(T ). We will fix the temper-
ature at T/TBEC = 0.6, which should be feasible to reach
experimentally and still within the regime of validity for
a mean-field approximation [29]. The remaining param-
eters that must be specified are the chemical potential
and the boson-fermion scattering length. As shown in
Fig. 1, we will consider two fermion fillings characterized
by µ/tf = 0.5 (close to the van Hove singularity) and
µ/tf = 3.5 (close to the band edge), respectively. The
boson-fermion scattering length abf is tunable, as shown
recently in Ref. [19]. By using a Feshbach resonance,
scattering lengths in a range ±800a0 were reached. We
shall therefore consider both positive and negative scat-
tering lengths, reaching up to several hundreds of a0. In
order to evaluate the critical superfluid velocity, we em-
ploy a numerical solution of the expression:
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vc =

[
4nbtba2

(
Ub −

β

8π2tf
U2
bf

∫ 4tf

−4tf

∫ π/2

0

dεdγ√
[cos2 γ + (ε sin γ/4tf )2] cosh[β(ε− µ)]

)]1/2

(21)

As seen from Eq. (21), it becomes necessary to account
properly for the finite temperature T in order to describe
the physical properties of Bose-Fermi mixtures, unlike
the purely bosonic case.

In what follows, we will investigate how vc depends
on the fermion-boson interaction parameter abf and the
trap depth s, using the set of experimentally realistic pa-
rameters described above. Consider first its dependence
on the trap depth s, as shown in Fig. 2. One of the main
features is that vc exhibits a robustness towards the trap
depth for relatively low values of abf . For high values of
s, one would expect a transition into a Mott insulating
state for commensurate fillings. When the interaction
abf becomes strong compared to the intrinsic bosonic re-
pulsion ab, any increase in trap depth s is much more
efficient in suppressing the critical velocity. We have dis-
tinguished between two fermionic fillings corresponding
to µ/tf = 0.5 and µ/tf = 3.5 in Fig. 2, in order to
compare the cases with a chemical potential close to the
van Hove singularity and close to the band edge, respec-
tively. As seen, the difference is minor except at large
values of the interaction abf , where vc is substantially re-
duced with ∼ 50% for a given trap depth, in addition to
a much smaller critical trap depth s where the superfluid
velocity vanishes.

Next, we consider how the critical superfluid veloc-
ity vc is influenced by the fermion-boson interaction abf .
The result is shown in Fig. 3. Since the critical velocity
in Eq. (21) depends on U2

bf , the sign of the interaction
is irrelevant for the magnitude of vc. Upon increasing
the magnitude of the interaction abf , the superfluid ve-
locity is strongly reduced and eventually vanishes, indi-
cating a phase-separated regime. This may be under-
stood physically b noting that the contribution from the
Lindhard function is negative in Eq. (21), meaning that
the fermionic contribution to the induced boson-boson
interaction is attractive. As the Bose-condensed phase
is unstable towards attractive interactions, the critical
velocity vanishes when the fermionic contribution even-
tually overtakes the intrinsic bosonic repulsion. In Ref.
[19], it was very recently experimentally demonstrated
how the fermion-boson interaction abf could be tuned
in a well-defined manner over a wide range ±800a0 by
exploiting a Feshbach resonance. It should therefore be
experimentally viable to monitor the critical velocity vc
as a function of the interaction abf by using such tech-
niques.

Finally, the mutual dependence on the intrinsic boson-
boson interaction and the fermion-boson interaction is
plotted in Fig. 4, setting µ/tf = 0.5 and s = 5. While
the critical velocity is suppressed with increasing abf , it

FIG. 4: (Color online) Plot of the critical superfluid velocity
as a function of the intrinsic boson-boson scattering length ab

and the boson-fermion interaction abf . We have set µ/tf =
0.5 and considered a trap depth s = 5.

is enhanced by increasing ab. The reason for this is that
the effective boson-boson interaction becomes more re-
pulsive, in favor of the phase-coexistent state. It should
nevertheless be emphasized that above a critical magni-
tude for the effective interaction Ub, a phase transition
from superfluid to Mott insulator takes place. As shown
in Ref. [22], the present mean-field Bogoliubov approach
does not capture this transition as it treats the inter-
action only in a weak-coupling regime. Therefore, the
results reported here are obviously only valid inside the
superfluid regime.

IV. DISCUSSION

The experimental detection of a critical superfluid ve-
locity requires measurements at temperatures well be-
low TBEC, thus in the nano-Kelvin regime. One possible
route to probing the critical velocity was described in Ref.
[5]. There, dissipation in a Bose-Einstein condensed gas
was monitored by means of moving a laser beam through
the condensate at different velocities (see Fig. 5). The
laser effectively plays the role of a massive macroscopic
object which creates a moving boundary condition. The
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Bose�Fermi mixture on optical lattice

Laser�light

FIG. 5: (Color online) Proposed experimental setup for prob-
ing the critical superfluid velocity in a Bose-Fermi mixture.
A laser beam serves as a macroscopic object flowing through
the condensate, thereby creating a moving boundary condi-
tion for the quasiparticle excitations.

main finding in Ref. [5] was that strong heating was ob-
served only above a critical velocity, and the laser was
enabled to move back and forth through the condensate
at a constant velocity by applying a triangular waveform
to an acousto-optic deflector.

In the treatment of the critical superfluid velocity, it
is implicitly assumed that the bosons are in the super-
fluid phase for the relevant parameter regime. In order
to verify this, a full numerical self-consistent solution is
required. Our main purpose here is to report on the
magnitude of the critical velocity and its dependence on
tunable parameters, using a set of realistic parameters
employed in real experiments [19, 26, 29] in which the
bosons indeed were in the condensed state, which should
justify our assumption. Finally, we note that the results
we have obtained quantitatively agree with previous mea-
surements for the critical velocity in Bose-Einstein con-
densates. In particular, vc ∼ 1.6 mm/s was reported in

Ref. [5].

V. SUMMARY

In conclusion, we have studied how the fermion-boson
interaction for a Bose-Fermi mixture residing on an opti-
cal lattice modifies the effective interaction between the
superfluid bosons. In particular, we have investigated
how the phase-separation criteria is manifested through
the critical superfluid velocity. Employing a set of mi-
croscopic parameters relevant to a 40K-87Rb mixture
[19, 26, 29], we report quantitative results for the mag-
nitude of the superfluid velocity and its dependence on
the trap depth, the boson-fermion interaction, and the
fermionic filling fraction. All of these parameters can
be tuned experimentally by means of the laser intensity
and by exploiting Feshbach resonances. We find that
the overall tendency of the boson-fermion interaction is
to suppress vc, and our quantitative results are of similar
magnitude as previous measurements of the critical veloc-
ity in Bose-Einstein condensates, where vc ' 1.6 mm/s
was estimated [5]. We have proposed an experimental
setup for probing the critical superfluid velocity, which
may serve as a direct tool to monitor a phase-separation
scenario in a Bose-Fermi mixture.
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