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Abstract

This master’s thesis is a part of an interdisciplinary research project dealing with

modeling of obstructive sleep apnea syndrome (OSAS). Its main goal is to extend

an existing 2D code for compressible flow into the third dimension and verify it.

The code solves the compressible Navier-Stokes equations by a high order finite

difference method. The message passing interface (MPI) has been used for par-

allelization. The results are compared with results from the 2D program. Grid

refinement studies are made, and 3D structures are observed in a simulation

that is run on a grid with high-resolution on the high performance computing

cluster Vilje.
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Chapter 1

Introduction

This chapter gives an introduction to obstructive sleep apnea, its causes, symp-

toms and ways of treatment. The main tasks of the research group are intro-

duced and how this master thesis is related to that work.

1.1 Obstructive Sleep Apnea

According to Ho [3] obstructive sleep apnea is characterized by recurrent episodes

of obstruction of the upper airway, which make that the patient repeatedly stop

breathing during sleep. The obstruction is caused by the collapsing soft palate

blocking the airway in the phase of sleep when the muscles are relaxed called

rapid eye movement (REM) phase.

Figure 1.1 shows how the soft palate behaves in different stages. The left sketch

illustrates normal behavior where air flows freely during sleep. In the middle

sketch, the soft palate causes snoring by collapsing and blocking the air from

the nose. The right sketch shows the OSA case. The soft palate collapse blocks

the air from nose and mouth so the brain has to wake up the patient from REM
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phase of sleep to obtain some air. This figure is taken from [1].

Figure 1.1: Behavior of soft palate in REM sleep [1]

1.1.1 Symptoms

Typically this disease is recognized by family members because it is often con-

nected with snoring. Symptoms are for example day sleepiness, lack of con-

centration. But OSA can result in prolonged hypoxemia, sleep deprivation, and

other complications leading to cardiovascular diseases.

When OSA appears, the brain tries to arouse the body to resume breathing. But

it leads to bad quality of sleep.

1.1.2 Treatment

There are two basic ways how to treat this disease, which are mentioned in the

Journal of Clinical Sleep Medicine [4]. The methods are behavioral and surgi-

cal. The first one is to educate the patient. He or she should lose weight, stop

smoking, avoid alcohol and sleeping pills before night, try to change the sleep

position. For example reducing neck fat leads to reducing the number of apnea

episodes. The second one is surgery. There are lots of ways how to proceed with
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operations. Common ones are nasal, oral and hypo pharyngeal procedures [4].

1.1.3 Computational fluid dynamics study of nasal airways

According to [5] physical models reconstructed from Computed tomography

(CT) and Magnetic resonance imaging (MRI) images are often impractical and

inaccurate. Computational fluid dynamics (CFD) attempt to generate three-

dimensional nasal models from various CT scans. Commercial tools are often

used for these purposes.

Interesting results were published by [6], where the steady-state simulation was

validated by rhinoresistometric data and resin models. Other steady laminar

and turbulent simulations were validated by Particle image velocimetry (PIV)

investigations of a silicon model by [7]. Hoerschler and Schröder [8] compare

steady and unsteady flow in a nose-like model.

1.2 High order finite difference method for the compressible

Navier-Stokes equations

High order methods have become more and more popular in CFD. They are

used to obtain highly accurate simulations for simple geometries. Such finite

difference methods for the compressible Navier-Stokes equations are presented

by [9]. High order accurate finite difference summation by parts (SBP) operators

are used for discretizing the equations. High efficiency of a 5th order scheme

was obtained with Re = 100, and robustness was demonstrated. The similar

study was made by [10] with different boundary conditions (far-field boundary
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conditions) and Reynolds number equal to 500.

Various tests were reviewed for high order methods on unstructured grids [11].

More information about high order methods and their importance for CFD sim-

ulations can be found in the review [12].

1.3 Master Project and its Part in Research Group

The main goal of the research project "Modeling of obstructive sleep apnea"

currently performed by NTNU, SINTEF and St. Olavs Hospital [13] is to find out

if nasal surgery will be successful. Up to now, there is no way how to find this

out before the surgery is done. The success rate is less than 50 %. In 10 % of the

cases, the post-operative state is worse than before the operation.

The work is divided into 4 work packages:

• WP1 Clinical Research

• WP2 Soft Tissue Modeling

• WP3 Mathematical Modeling of Fluid-Structure Interaction

• WP4 CFD Modeling for Prediction of Success of OSAS Surgery

This master’s thesis is part of WP3 Mathematical Modeling of Fluid-Structure

Interaction. Its main objectives are listed below:

• to extend an existing high order 2D Navier-Stokes code to 3D

• to verify and validate the high order 3D compressible Navier-Stokes code

for flow in a simplified geometry of the human upper airways.
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1.4 Structure of the Report

The rest of the report is organized as follows: Chapter 2 gives an introduction to

viscous compressible flow, the perturbation form of the compressible Navier-

Stokes equations, coordinate transformation and boundary conditions.

Then numerical methods used in the program are introduced in chapter 3. Also

numerical boundary conditions are described there, such as non-reflecting and

periodic boundary conditions.

The chapter 4 describes results for various test cases. This chapter deals with

verification and validation. Conclusions and outlook are given in chapter 5.

Appendix A gives a brief manual how to upload the code into the high-performance

computational cluster Vilje.
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Chapter 2

Compressible fluid flow

This chapter contains the description of the equations the equations modeling

the compressible fluid flow and their transformation into different coordinate

systems. The 3D Navier-Stokes equations are used in dimensionless perturba-

tion form. This form was chosen to minimize computational errors when dis-

cretizing the Navier-Stokes equations at low Mach numbers.

2.1 Nondimensional 3D Navier-Stokes equations in perturba-

tion form

According to [14] the conservative form of the 3D Navier-Stokes equation in per-

turbation formulation is written as

U′
t +F′c

x +G′c
y +H′c

z = F′v
x +G′v

y +H′v
z , (2.1)
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where U′ is vector of conservative perturbation variables and defined by

U′ = U−U0 =



ρ

ρu

ρv

ρw

ρE


−



ρ0

0

0

0

(ρE)0


, (2.2)

where ρ is the density, u, v and w are the velocity components in x-, y-, and z-

directions and E is the specific total energy. The subscripts in 2.1 denote deriva-

tives, i. e., U′
t = ∂U′

∂t , F′c
x = ∂F′c

∂x , etc.

The inviscid perturbation flux vectors F′c , G′c and H′c and viscous perturbation

flux vectors F′v , G′v and H′v are defined by

F′c =



(ρu)′

(ρu)′u′+p ′

(ρv)′u′

(ρw)′u′

((ρH)0 + (ρH)′)u′


, (2.3)

G′c =



(ρv)′

(ρu)′v ′

(ρv)′v ′+p ′

(ρw)′v ′

((ρH)0 + (ρH)′)v ′


, (2.4)
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H′c =



(ρw)′

(ρu)′w ′

(ρv)′w ′

(ρw)′w ′+p ′

((ρH)0 + (ρH)′)w ′


, (2.5)

F′v =



0

τ′xx

τ′x y

τ′xz

u′τ′xx + v ′τ′x y +w ′τ′xz +κT ′
x


, (2.6)

G′v =



0

τ′y x

τ′y y

τ′y z

u′τ′y x + v ′τ′y y +w ′τ′y z +κT ′
y


, (2.7)

H′v =



0

τ′zx

τ′z y

τ′zz

u′τ′zx + v ′τ′z y +w ′τ′zz +κT ′
z


, (2.8)

where p is pressure, T is temperature, H is total enthalpy, τi j is the viscous stress

tensors component and κ is the heat conduction coefficient calculated from the

constant Prandtl number Pr = 0.72. The prime denotes the perturbation vari-
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able with respect to stagnation condition.

2.1.1 Nondimensional quantities

The symbol 0 is used for stagnation variables. They are stagnation density ρ0,

stagnation speed of sound c0 and stagnation pressure p0

p0 =
ρ0c2

0

γ
, (2.9)

where γ is the ratio of specific heats given by

γ= cp

cv
, (2.10)

which is γ= 1.4 for air. cp is the specific heat at constant pressure and cv is the

specific heat at constant volume.

The nondimensional quantities are defined as follows

x? = x

L
(2.11)

z? = z

L
(2.12)

ρ? = ρ

ρ0
(2.13)

E? = E

c2
0

(2.14)

(ρE)? = ρE

ρ0c2
0

(2.15)

v? = v

c0
(2.16)

y? = y

L
(2.17)

t? = t · c0

L
(2.18)

T ? = T

T0
(2.19)

p? = p

γp0
(2.20)

u? = u

c0
(2.21)

w? = w

c0
(2.22)

19



Re0 = ρ0c0L

µ0
(2.23) Pr0 =

cpµ0L

κ0
(2.24)

L stands for a characteristics length. Reynolds number Re0 is defined in terms

of the stagnation speed of sound c0.

A special choice is made for the nondimensional viscosity µ? and the nondi-

mensional heat conduction coefficient κ?:

µ? = 1

Re0

µ

µ0
, (2.25)

κ? = 1

(γ−1)Pr0Re0

κ

κ0
. (2.26)

With this choice, the nondimensional and dimensional forms of the compress-

ible Navier-Stokes equations coincide.

2.1.2 Definition of perturbation variables

The superscript ? is skipped below. Dimensionless perturbation variables are

defined as follows

density ρ′ is:

ρ′ = ρ−1. (2.27)

The dimensionless perturbation momentum density components (ρu)′, (ρv)′,

(ρw)′ are

(ρu)′ = (ρu) (2.28)

(ρv)′ = (ρv) (2.29)

(ρw)′ = (ρw). (2.30)
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The dimensionless total energy and total enthalpy density are

(ρE)′ = ρE − (ρE)0, (2.31)

(ρH)′ = (ρE)′+p ′ (2.32)

where (ρE)0 = 1
γ(γ−1) is dimensionless stagnation value of the total energy den-

sity. For the viscous stress tensor components dimensionless perturbation ve-

locity vector u′ is needed, which is computed as

u′ = (ρu)′

1+ρ′ , (2.33)

so viscous stress is:

τ′ =µ(∇u′+ (∇u′)T )− 2

3
µ(∇·u′)I, (2.34)

where I is identity matrix and µ is the dimensionless viscosity determined from

the Sutherland law

µ= 1

Re
T 1.5 1+Sc

T +Sc
(2.35)

and Sc = 110
301.75 is the nondimensional Sutherland constant. For perfect gas di-

mensionless temperature perturbation T ′ is obtained as:

T ′ = γp ′−ρ
1+ρ . (2.36)

The dimensionless pressure perturbation for perfect gas becomes

p ′ = (γ−1)((ρE)′− 1

2
((ρu)′ ·u′). (2.37)
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2.2 Coordinate transformation of the Navier-Stokes equations

To discretize the compressible Navier-Stokes equations by the finite difference

method, the physical domain for flow over a soft palate is transformed into a

Cartesian computational domain cf. figure 2.1.

Figure 2.1: Computational and physical domains for over a soft human palate

The transformed coordinates are

ξ= (x, y, z), (2.38)

η= (x, y, z), (2.39)

ζ= (x, y, z). (2.40)

If the physical domain is already Cartesian the ξ represents x-direction, the η

represents y-direction and the ζ represents z-direction.

The metric terms of the coordinate transformation are formulated in conserva-

tive form to be able to reproduce uniform flow, when the Navier-Stokes equa-
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tions and metric terms are discretized by finite difference methods [15].

ξ̂x = (yηz)ζ− (yζz)η, (2.41)

η̂x = (yζz)ξ− (yξz)ζ, (2.42)

ζ̂x = (yξz)η− (yηz)ξ, (2.43)

ξ̂y = (zηx)ζ− (zζx)η, (2.44)

η̂y = (zζx)ξ− (zξx)ζ, (2.45)

ζ̂y = (zξx)η− (zηx)ξ, (2.46)

ξ̂z = (xηy)ζ− (xζy)η, (2.47)

η̂z = (xζy)ξ− (xξy)ζ, (2.48)

ζ̂z = (xξy)η− (xηy)ξ, (2.49)

where ξ̂, η̂ and ζ̂ mean

ξ̂a = ξa

J
, (2.50)

η̂a = ηa

J
, (2.51)

ζ̂a = ζa

J
, (2.52)

where a ∈ {x, y, z} and ξx = ∂ξ

∂x , which is similar for other expressions.

The Jacobian determinant of this transformation is defined as
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1

J
=

∣∣∣∣∣∣∣∣∣∣
xξ yξ zξ

xη yη zη

xζ yζ zζ

∣∣∣∣∣∣∣∣∣∣
. (2.53)

The computation of the determinant yields using equations (2.41) – (2.43)

1

J
= xξ · ξ̂x +xη · η̂x +xζ · ζ̂x . (2.54)

The 3D Navier-Stokes equations in dimensionless perturbation form after coor-

dinate transformation read

Û′
t + F̂′c

ξ+ Ĝ′c
η+ Ĥ′c

ζ = F̂′v
ξ + Ĝ′v

η+ Ĥ′v
ζ , (2.55)

where

Û′ = U′

J
(2.56)

F̂′c = 1

J
(ξxF′c +ξy G′c +ξzH′c) (2.57)

Ĝ′c = 1

J
(ηxF′c +ηy G′c +ηzH′c) (2.58)

Ĥ′c = 1

J
(ζxF′c +ζy G′c +ζzH′c) (2.59)

F̂′v = 1

J
(ξxF′v +ξy G′v +ξzH′v ) (2.60)

Ĝ′v = 1

J
(ηxF′v +ηy G′v +ηzH′v ) (2.61)
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Ĥ′v = 1

J
(ζxF′v +ζy G′v +ζzH′v ) (2.62)

2.2.1 Coordinate transformation in code

The coordinate transformation enters the program code is in subroutines called

METRIC_NUMERI and METRIC_JACOBI. The relations described in equations

(2.41) – (2.52) are coded in METRIC_NUMERI. METRIC_JACOBI is a short sub-

routine for computing the Jacobian determinant (eq. 2.53).

2.3 Physical boundary conditions

The boundary conditions are established for the physical domain. In this case

3 different types are used: periodic, adiabatic no-slip and non-reflecting char-

acteristic boundary conditions. Only the adiabatic no-slip boundary conditions

are outlined here, while the other two conditions are described in chapter 3,

which deals with the numerical solution. The domain is shown in Figure 2.2 for

better orientation in this problem. This domain arrangement is used for verifi-

cation with the existing 2D version of the code.

2.3.1 Adiabatic no-slip boundary conditions

The no-slip boundary condition implies zero velocity the walls. Adiabatic walls

allow no heat conduction. The boundary conditions at an adiabatic no-slip wall

are

u = v = w = 0 (2.63)
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Figure 2.2: Computational domain with boundary conditions

and
dT

d y
= 0. (2.64)

A special approach is used for the pressure computation. It is computed directly

from Navier-Stokes equations and no assumption is made. The relation for the

dimensionless perturbation pressure is described in equation (2.37). Based on

this pressure perturbation the dimensionless perturbation density at the wall is

computed from

ρ′ = γp ′−T ′

1+T ′ . (2.65)

2.3.2 Inlet and outlet boundary conditions

The velocity value is prescribed at the inlet and the pressure value is entered at

the outlet. As mentioned above, non-reflecting characteristic boundary condi-

tions used at inlet and outlet are described in chapter 3.
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Chapter 3

Numerical solution

The Navier-Stokes equations (3.46) are discretized by different types of discretiza-

tions for temporal and spatial parts of the equations. These discretizations are

described in sections 3.1 and 3.2 below. The standard Runge-Kutta method is

used for the discretization in time and 6th order discretization schemes are used

to approximate the spatial derivatives in the interior and 3th order schemes are

used at the boundary for space discretization. The summation by parts (SBP)

operator is used for the spatial derivative.

3.1 Discretization in time

The standard Runge-Kutta method is used for finding numerical solution for

the Navier-Stokes equations in time. The spatial derivatives are approximated

in each of the 4 Runge-Kutta stages, which are

k1 =∆tR(U′n), (3.1)

k2 =∆tR(U′n + c2k1), (3.2)
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k3 =∆tR(U′n + c3k2), (3.3)

k4 =∆tR(U′n + c4k3), (3.4)

U′n+1 = U′n +b1k1 +b2k2 +b3k3 +b4k4, (3.5)

where R(U′) is residuals vector and U′ is defined in (2.2). The time step ∆t is

applied in subroutine RESIDUAL, where each of the residuals is multiplied by

the time step and divided by the cell volume.

The values of the coefficients bi are written in table 3.1.

Coefficient bi Value

b1 1/6
b2 1/3
b3 1/3
b4 1/6

Table 3.1: Coefficients bi for 4 stages of the Runge-Kutta scheme

The second parameter ci is used in different stages of the Runge-Kutta method

and its values are shown in table 3.2.

Coefficient ci Value

c2 1/2
c3 1/2
c4 1

Table 3.2: Coefficients ci for 4 stages of the Runge-Kutta scheme

The time derivative in the Navier-Stokes equation is calculated as

Û′
t = R(U), (3.6)

where R(U) are residuals, which are functions of the Conservative variables. U′

is defined in equation (2.2), U′
t is from Navier-Stokes equations (3.46) and resid-
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uals are the rest of the same equations.

3.1.1 Time discretization in the code

Several subroutines are used to evaluate the time derivative. They are listed be-

low with their main functions.

SAVEA saves the previous solution, it is placed before Runge-Kutta (RK) stages

SWEEPA does 4 stages of RK, subroutines listed below called from this subrou-

tine

RESIDUAL calculates residuals

BOUNDV corrects solution for adiabatic no-slip wall

STOREQ saves solution between stages of RK

FILCET 6th order filter in η direction

FILCXSI 6th order filter in ξ direction

FILET 6th order filter in ζ direction

STOREF saves solution after filtration

3.2 Discretization in space

Discretization in space is made by the summation by parts operator Q defined

by [2] with 6th order accuracy in the interior and 3rd order near boundaries. This

accuracy is accomplished by special coefficients qi j .
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Q =



q11 q12 q13 q14 q15 0 0 0 0 . . .

q21 0 q23 q24 q25 q26 0 0 0 . . .

q31 q32 0 q34 q35 q36 0 0 0 . . .

q41 q42 q43 0 q45 q46 q47 0 0 . . .

q51 q52 q53 q54 0 q56 q57 q58 0 . . .

0 q62 q63 q64 q65 0 q67 q68 q69 0. . .

0 0 −1
60

9
60

−45
60 0 45

60
−9
60

1
60 0. . .

... . . . ...

. . . qi j



, (3.7)

where i goes from 1 to 6 and j goes from 1 to 9 and values of qi j are listed in

table 3.3

q11 −1.5825335189391164188 q45 0.42710082726876904895
q12 1.9968007424231323418 q46 −0.14377682403433476395e −1
q13 0.0047988863653014872884e −2 q47 0.13435342414629595074e −1
q14 −0.66986592424353432486 q51 −0.86915492361728238331e −1
q15 0.25079981439421691455 q52 0.29554398882823409928
q21 −0.45374732928216654180 q53 −0.23775972239854428505
q23 0.20413995948833208469 q54 −0.58114341331302103170
q24 0.42505341435666916396 q56 0.75652321103635055647
q25 −0.19379006076750187297 q57 −0.16452964326520248826
q26 0.18344016204667166126e −1 q58 0.18281071473911387584e −1
q31 −0.24160826263371449650e −2 q62 −0.25155437851495019140e −1
q32 −0.45229312676749047092 q63 0.79610054564964270222e −1
q34 0.23791958686831427518 q64 0.17590922581676217438e −1
q35 0.34541374646501905816 q65 −0.68025083141176381057
q36 −0.12862412393950571745 q67 0.73970913906075203762
q41 0.17061018846799776078 q68 −0.14794182781215040752
q42 −0.47641039995023947254 q69 0.16437980868016711947e −1
q43 −0.12035827579772345587

Table 3.3: Coefficients qi j for summation by parts operator Q [2]

This operator is used for all spatial derivatives except for derivatives for direc-
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tions where the periodic boundary is applied. More about this boundary condi-

tion can be found in subsection 3.4.1 Periodic boundary condition.

3.3 Stability of numerical solution

Two ways how to select time step are implemented in the code. The first one

is a fixed time step ∆t . The second one is a time step ∆t dependent on the

Courant-Friedrichs-Lewy condition number (CFL) and the von Neumann num-

ber (VNN). As described in [16] the Courant-Friedrichs-Lewy and von Neumann

numbers are defined as

C F L =∆t

( |U (ξ)|
∆ξ

+ |U (η)|
∆η

+ |U (ζ)|
∆ζ

+ c

√
|5ξ|2
∆ξ2

+ |5η|2
∆η2

+ |5ζ|2
∆ζ2

)
, (3.8)

where U (ξ) = ∂ξ

∂t +u ·5ξ, U (η) = ∂η

∂t +u ·5η, U (ζ) = ∂ζ

∂t +u ·5ζ, 5=
(
∂
∂x , ∂

∂y , ∂
∂z

)T

and

V N N =∆t ·max

(
4

3

µ

ρ
,
γµ

ρPr

)
·
((5ξ
∆ξ

)2 +
(5η
∆η

)2 +
(5ζ
∆ζ

)2
)
. (3.9)

The CFL condition is in the program divided according to the transformed coor-

dinates, and results are shown in every direction separately. For correct results,

Courant number should not be bigger than 1. VNN should not be bigger than

0.5. This formula is also divided into three directions and results are shown in

every direction as well.
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3.4 Numerical boundary conditions

Two types of boundary conditions are chosen for numerical purposes: periodic

and non-reflecting characteristic boundary conditions. They are described in

subsections below (3.4.1 and 3.4.2).

3.4.1 Periodic boundary conditions

Periodic boundary conditions are assumed in the z-direction, i. e. periodic

boundary conditions

U ′(x, y, z, t ) =U ′(x, y, z + zp , t ), (3.10)

where zp is the period. The idea of the numerical implementation is shown in

the figure 3.1.

Figure 3.1: Numerical implementation of periodic boundary condition

An equidistant grid in the ζ-direction with grid spacing∆ζ= 1 is assumed, where
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Z is the number of grid points in the z-direction. We have z4 = 0 and zZ−2 =
zp . Only U ′

i , j ,k for k = 4, . . . , Z − 3 needs to be computed, because the periodic

boundary condition implies U ′
i , j ,3 =U ′

i , j ,Z−3.

Three overlapping points are used, because in this code a 6th order finite differ-

ence method with a 7-point stencil is used, i. e. 3 points to the left and right of

each point. Note that the grid points z1, z2, z3, zZ−2, zZ−1, zZ are periodically

extending the domain as illustrated in Fig. 3.1.

Thus, a special subroutine is used for the approximation of the derivatives in

ζ-direction. E. g. uζ is approximated by

Dζui , j ,k = 1

60
(−ui , j ,k−3 +9ui , j ,k−2 −45ui , j ,k−1 +45ui , j ,k+1 −9ui , j ,k+2 +ui , j ,k+3).

(3.11)

Since the transformed viscous flux vector in the ζ-direction Ĥ′v contains ζ-derivatives

computed at k = 4, . . . , Z −3, we apply the same treatment described above, cf.

Fig 3.1 to Ĥ′v before approximating Ĥ′v
ζ similar to (3.11).

3.4.2 Non-reflecting characteristic boundary conditions

According to [17] non-reflecting boundary conditions can be used at inlet and

outlet to reduce the reflection of acoustic waves, when numerical methods are

implemented.

The non-reflecting boundary conditions by [17] are called Navier-Stokes char-

acteristic boundary conditions (NSCBC) and target direct numerical simulation

of turbulent flows. But they are also suitable for low Reynolds number flow.

33



The vector d introduced by [18] is given by characteristic analysis and for trans-

formed coordinates is given as

d1

d2

d3

d4

d5


:=



L2 + |ξ̂|
c · (L5 −L1)

η̂x

|5η̂|L3 + ζ̂x

|5ζ̂|L4 + ξ̂x
ρ

(L5 +L1)
η̂y

|5η̂|L3 + ζ̂y

|5ζ̂|L4 + ξ̂y

ρ
(L5 +L1)

η̂z

|5η̂|L3 + ζ̂z

|5ζ̂|L4 + ξ̂z
ρ

(L5 +L1)

c · |ξ̂| · (L5 −L1)


, (3.12)

where L1, L2, L3, L4, L5 are given below in eq. 3.30.

Poinsot and Lele’s [17] characteristic boundary conditions are based on Local

One-Dimensional Inviscid (LODI) relations and in transformed coordinates they

are described as

J−1 ·



1 0 0 0 0

0 ρ 0 0 0

0 0 ρ 0 0

0 0 0 ρ 0

0 0 0 0 1
γ−1


·



ρt

ut

vt

wt

pt


+



U ρξ̂x ρξ̂y ρξ̂z 0

0 Uρ 0 0 ξ̂x

0 0 Uρ 0 ξ̂y

0 0 0 Uρ ξ̂z

0 γp
γ−1 ξ̂x

γp
γ−1 ξ̂y

γp
γ−1 ξ̂z U 1

γ−1


·



ρξ

uξ

vξ

wξ

pξ


= 0,

(3.13)

where

U = ξ̂xu + ξ̂y v + ξ̂z w (3.14)

and the second matrix is labeled as B and the vector that multiplies B is named

Vξ. In this system the η̂- and ζ̂- derivatives are neglected. For the LODI system
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the following equation is also valid

J−1 ·



ρ

u

v

w

p


t

+



d1

d2

d3

d4

d5


= 0. (3.15)

The columns of the matrix R are defined by the eigenvectors of the matrix B.

The eigenvalues of R are determined by

det (B−λI) = 0, (3.16)

i. e.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U −λ ρξ̂x ρξ̂y ρξ̂z 0

0 U −λ 0 0 ξ̂x
ρ

0 0 U −λ 0
ξ̂y

ρ

0 0 0 U −λ ξ̂z
ρ

0 γpξ̂x γpξ̂y γpξ̂z U −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
U−λ

)2

·
[(

U−λ
)3

−
(
U−λ

)
·c2

(
ξ̂x

2+ξ̂y
2+ξ̂z

2
)]

= 0

(3.17)

Thus, the eigenvalues of B are

λ1 =U − c
√
ξ̂x

2 + ξ̂y
2 + ξ̂z

2
, (3.18)

λ2 =λ3 =λ4 =U , (3.19)
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λ5 =U + c
√
ξ̂x

2 + ξ̂y
2 + ξ̂z

2
. (3.20)

The eigenvectors corresponding to these eigenvalues are

v1 =
(
− |ξ̂|

c
ξ̂x
ρ

ξ̂y

ρ

ξ̂z
ρ

−c · |ξ̂|
)T

, (3.21)

v2 =
(
1 0 0 0 0

)T

, (3.22)

v3 =
(
0 η̂x

|5η̂|
η̂y

|5η̂|
η̂z

|5η̂| 0
)T

, (3.23)

v4 =
(
0 ζ̂x

|5ζ̂|
ζ̂y

|5ζ̂|
ζ̂z

|5ζ̂| 0
)T

, (3.24)

v5 =
(
|ξ̂|
c

ξ̂x
ρ

ξ̂y

ρ

ξ̂z
ρ

c · |ξ̂|
)T

. (3.25)

Thus the matrix R is

R =



− |ξ̂|
c 1 0 0 |ξ̂|

c

ξ̂x
ρ

0 η̂x

|5η̂|
ζ̂x

|5ζ̂|
ξ̂x
ρ

ξ̂y

ρ
0

η̂y

|5η̂|
ζ̂y

|5ζ̂|
ξ̂y

ρ

ξ̂z
ρ

0 η̂z

|5η̂|
ζ̂z

|5ζ̂|
ξ̂z
ρ

−c · |ξ̂| 0 0 0 c · |ξ̂|


. (3.26)

The inverse of R is

R−1 =



0 ρ

2 ·
η̂z ζ̂y−η̂y ζ̂z

Q
ρ

2 ·
η̂x ζ̂z−η̂z ζ̂x

Q
ρ

2 ·
η̂y ζ̂x−η̂x ζ̂y

Q
−1

2c|ξ|

1 0 0 0 −1
c2

0 |5η| · ξ̂y ζ̂z−ξ̂z ζ̂y

Q |5η| · ξ̂x ζ̂z−ξ̂z ζ̂x
Q |5η| · ξ̂x ζ̂y−ξ̂y ζ̂x

Q 0

0 |5ζ| · ξ̂z η̂y−ξ̂y η̂z

Q |5ζ| · ξ̂x η̂z−ξ̂z η̂x

Q |5ζ| · ξ̂y η̂x−ξ̂x η̂y

Q 0

0 ρ

2 ·
η̂z ζ̂y−η̂y ζ̂z

Q
ρ

2 ·
η̂x ζ̂z−η̂z ζ̂x

Q
ρ

2 ·
η̂y ζ̂x−η̂x ζ̂y

Q
1

2c|ξ|


, (3.27)
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where

Q = ξ̂x(η̂z ζ̂y − η̂y ζ̂z)+ η̂x(ξ̂y ζ̂z − ξ̂z ζ̂y )+ ζ̂x(η̂y ξ̂z − η̂z ξ̂y ). (3.28)

As the vector L is defined by

L = R−1 ·Vξ, (3.29)

its components are given by

L1

L2

L3

L4

L5


=



uξ · ρ2 ·
η̂z ζ̂y−η̂y ζ̂z

Q + vξ · ρ2 ·
η̂x ζ̂z−η̂z ζ̂x

Q +wξ · ρ2 ·
η̂y ζ̂x−η̂x ζ̂y

Q − pξ
2c|ξ|

ρξ− pξ
c2

uξ · |5η| · ξ̂y ζ̂z−ξ̂z ζ̂y

Q + vξ · |5η| · ξ̂x ζ̂z−ξ̂z ζ̂x
Q +wξ · |5η| · ξ̂x ζ̂y−ξ̂y ζ̂x

Q

uξ · |5ζ| · ξ̂z η̂y−ξ̂y η̂z

Q + vξ · |5ζ| · ξ̂x η̂z−ξ̂z η̂x

Q +wξ · |5ζ| · ξ̂y η̂x−ξ̂x η̂y

Q

uξ · ρ2 ·
η̂z ζ̂y−η̂y ζ̂z

Q + vξ · ρ2 ·
η̂x ζ̂z−η̂z ζ̂x

Q +wξ · ρ2 ·
η̂y ζ̂x−η̂x ζ̂y

Q + pξ
2c|ξ|


. (3.30)

The physical meaning of Li can be found by looking at the linearized 1D Euler

equations for one-dimensional inviscid acoustic waves. The amplitude A1 is

given by

A1 = p ′−ρcu′ (3.31)

and it is associated with (R−1v)1. And L1 represents the time variation of the

wave amplitude A1 as the rest of Li represent the Ai amplitudes.

3.4.3 Inflow

These values are imposed at the inlet

u(0, y, z) = ui n(y, z), (3.32)
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v(0, y, z) = 0, (3.33)

w(0, y, z) = 0, (3.34)

T (0, y, z) = Ti n(y, z). (3.35)

ρ(0, y, z) is computed at the inlet boundary from the continuity equation with

respect to acoustics waves using L1. The imposed conditions at the inlet give

L3 =L4 = 0, (3.36)

L5 =−L1, (3.37)

L2 =−2(γ−1)
|ξ̂|
c

L1 (3.38)

so d1 (eq. 3.12) is

d1 =L2 +
|ξ̂|
c
· (L5 −L1) =−2γ

|ξ̂|
c

L1 (3.39)

and the continuity equation from which ρ at the inlet is computed is

J−1ρt+d1+ρu(ξ̂x)ξ+ρv(ξ̂y )ξ+ρw(ξ̂z)ξ+[ρuη̂x+ρv η̂y+ρw η̂z]η+[ρuζ̂x+ρv ζ̂y+ρw ζ̂z]ζ = 0.

(3.40)

3.4.4 Outflow

The outflow boundary condition is supposed to impose an ingoing wave de-

scribed by

L1 = K (p −p∞)+L exact
1 , (3.41)
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where L exact
1 stands for exact value of L1 and it is called perfectly non-reflecting

according to [18], its value is given in equation (3.44). K is a constant defined as

K =σ(1−M 2)
c

L
, (3.42)

whereσ is constant (σ= 0.25) and M is the maximum Mach number in the flow,

which is defined as

M = Umax

c
. (3.43)

L exact
1 in transformed coordinates is

L exact
1 =

(
− U

2c|ξ̂|ξx

+ 1

2ξx

)
pexact

x · (−2cξx), (3.44)

where −2cξx is a scaling factor and pexact
x is

pexact
x =−2µ

Umax

l 2
. (3.45)

The rest of the Li components (3.30) stay as written in the equation (3.30). Thus

the Navier-Stokes equations at the outlet are computed as

Û′
t +Qdi + F̂′c

ξ+ Ĝ′c
η+ Ĥ′c

ζ = F̂′v
ξ + Ĝ′v

η+ Ĥ′v
ζ , (3.46)

where i ∈ {1,2,3,4,5} and
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Q =



1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0

u2+v2+w2

2 ρu ρv ρw 1
γ−1


. (3.47)

These inflow and outflow boundary conditions are parts of subroutine RESID-

UAL. It changes directly the residuals at inlet and outlet. For the inlet, only resid-

ual DR for density is changed. For the outlet, all residual vector components are

overwritten.
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Chapter 4

Results

Various test cases were realized for checking for checking the 3D program. The

first test is uniform flow. Verification was made for 3D channel flow by setting

it corresponding to the 2D case. The next test was made with a discontinuity at

the inlet which was used for grid refinement study. The last case was 3D channel

flow with prescribed velocity components u0 and w0 at the inlet.

4.1 Uniform flow

The uniform flow test is based on initializing the whole channel by the same

value and obtaining the same value after one time step. It is used as the first

check of the converted 3D code. The reason for this test is to show that the terms

for the numerical transformation , eq. (2.41) – (2.52), are correctly implemented.

The simulation is initialized by a uniform velocity field

u = (0.2,0,0)T . (4.1)

The uniform density and pressure perturbations are
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ρ′(t = 0) = 0, (4.2)

p ′(t = 0) = 0. (4.3)

The grid is equidistant and 21 points are used in each direction for each block

of the grid. This test is made with four blocks with a wall placed in the middle

of the y-direction. Each block is a part of the computational domain which is

handled by a different processor in parallel. The Reynolds number and Mach

number are

Rei n = ρ0ui nL

µ0
= 378 (4.4)

and

Mi n = ui n

c0
= 0.2, (4.5)

respectively, where ui n = 68.6ms−1. The boundary conditions are described in

Fig. 2.2.

A result of this simulation is shown in Fig. 4.1, namely the x-component u of the

velocity vector. The v and w velocities are equal to 0. After one time step, there

are no changes in the channel, except for the vicinity of the walls, which means

that the numerical terms are implemented correctly to reproduce uniform flow

away from the vicinity of the walls for a Cartesian grid. Note that uniform flow

was not assumed at the walls, where du
d y 6= 0. However, this part of the compu-

tational domain is not significant for this test case, in which uniform flow away

from the vicinity of the walls is checked. The flow variables at the boundaries

including the walls are determined by the boundary conditions. The results are
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checked after one time step. The visualization of the simulation is made by the

Open Source program Paraview.

Figure 4.1: Simulation of uniform flow, velocity u

4.2 Reproduction of the 2D results with the 3D code

The purpose of this test case is to exactly reproduce the same solution as the

one with the 2D program with the same initial conditions.

The 3D perturbation flow is simulated by the settings shown in Fig. 2.2. The

non-reflecting numerical boundary conditions are used for inlet and outlet, the

periodical boundary condition is applied in the z-direction. The physical bound-

ary conditions of adiabatic walls are introduced in the y-direction. The bound-

ary conditions at the inlet (x = 0) and the outlet (x = 0.2) are defined as

u(0, y, z) = (Mi n,0,0)T , (4.6)
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T ′(0, y, z) = 0, (4.7)

p ′(0.2, y, z) = 0, (4.8)

where Mi n = 0.2. The initial velocity vector is set to 0 in the whole domain except

for the inlet. The Reynolds number is set as Rei n = 378. The grid is equidistant

with 21 points in each directions. To be able to easily compare 2D and 3D cases

∆z is set to 1. ∆x = 0.01 and ∆y = 0.06 for both cases.

Results are compared in the steady state. This state is obtained after approxi-

mately 10 000 time steps with∆t = 5 ·10−3. The development of the residuals for

the 3D case is shown in Figure 4.2a for Rρ, 4.2b for Ru, 4.2c for Ry , 4.2d for Rz

and 4.2e for the energy residual RE , where Rρ, Ru, Rv , Rw and RE are the compo-

nents of the residual vector that is computed in each time step. The 2-norms of

the residuals are scaled by dividing them by the 2-norms of the corresponding

residuals at time level n = 1. The 2-norm of a residual component Rn
l is defined

by

||Rn
l ||2 =

√
∆x ·∆y ·∆z · ∑

i , j ,k

R2
li , j ,k

. (4.9)

Thus, we consider
||Rn

l ||2
||R1

l ||2
, (4.10)

where l ∈ {ρ,u, v, w,E }.

The comparison of the 2D and 3D x-velocity contours is shown in Figures 4.3a

for 2D and 4.3b for 3D results. The results in the x-y domain are the same in

any plane normal to the z-direction. The middle plane (k = 10) was chosen for

visualization in Figure 4.3b.
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(a) ρ residual Rρ (b) ρu residual Ru

(c) ρv residual Rv (d) ρw residual Rw

The velocity u in each plane k ∈ {1, . . . ,kmax} was compared as

ek = ||u3Dk −u2D ||2. (4.11)

The error ek was computed and its values are the same for each k, ek = 1.69·10−8.

The comparison of velocity profiles for x = 0.15 and k = 10 is shown in Fig. 4.4a

and Fig. 4.4b. The profiles are almost the same for both 2D and 3D case with the

(e) Energy residual RE

Figure 4.2: Plots of the 2-norms of the components of the residual vector
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(a) 2D velocity u (b) 3D velocity u, k = 10

Figure 4.3: Velocity u contours with Mi n = 0.2, Rei n = 378 for 2D and 3D channel flow

maximum deviation below 2 ·10−7.

(a) 2D and 3D velocity profiles u for x = 0.15 (b) Comparison u3D −u2D , k = 10 for x = 0.15

Figure 4.4: Velocity u profile with Mi n = 0.2, Rei n = 378 for 2D and 3D channel flow

Thus, the 2D results are accurately reproduced by the 3D code.

4.2.1 Rotation of the periodic and adiabatic no-slip boundary conditions

A rotation of the periodic and adiabatic no-slip boundary conditions was made.

The periodic boundary conditions are introduced in the y-direction and the adi-

abatic no-slip boundary conditions are imposed in the z-direction. The ∆y was

set to 1 and∆z = 0.06. All others initial parameters stay as introduced in the test

case in the beginning of this section 4.2.

The development of the residuals for the second 3D case is shown in Figure 4.2a

for Rρ, 4.5b for Ru, 4.5c for Ry , 4.5d for Rz and 4.5e for the energy residual RE .

All residuals Fig. 4.5a – 4.5e are the same as in the previous case with respect to

axes rotation. ek is computed as
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(a) ρ residual Rρ (b) ρu residual Rx

(c) ρv residual Ry (d) ρw residual Rz

ek = ||u1k −u2k ||2, (4.12)

where k ∈ {1,2, . . . ,kmax} and u1 is the first test case, u2 is the second one. The

comparison for each k has the same results

eku = ||u1k −u2k ||2 =O (10−16), (4.13)

(e) Energy residual RE

Figure 4.5: Plots of the 2-norm of the components of the residual vector for the second channel
flow test with walls in z-direction and periodic boundary conditions in y-direction
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ekv = ||v1k −w2k ||2 =O (10−16), (4.14)

ekw = ||w1k − v2k ||2 =O (10−16). (4.15)

4.3 Grid refinement study

The purpose of this study is to verify the influence of the computational grid

on the results. Three simulations with different numbers of grid points are de-

scribed.

The grid refinement study was performed for equidistant grids with Rei n = 1000

and Mi n = 0.5. The time step ∆t was decreased to 10−4 s on all grids to be able

to obtain a stable computation. The final time of the simulations was 200 s. The

velocity in the z-direction w0 was introduced with a discontinuity. The initial

conditions are

ρ′
0 = 0, (4.16)

p ′
0 = 0, (4.17)

u0 = M , (4.18)

v0 = 0, (4.19)

w0 = 0.01 ·u0, k ∈ {1, . . . ,
kmax −1

2
}, (4.20)

and

w0 =−0.01 ·u0, k ∈ {(kmax +1)/2, . . . ,kmax}. (4.21)

The initial condition for w0 is shown in Fig. 4.6. The grid refinement study is

performed for 21, 41 and 61 grid points in each direction.
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Figure 4.6: The initial values of w0 along the z-axis

The convergence was checked for all of the cases used for the grid refinement

study. The residuals results Rui , where i ∈ {21,41,61} are shown in Fig. 4.7 – 4.9.

Figure 4.7: ρu residual Ru for 21 grid points for test with (4.16 – 4.21)

The results of the ek norm are shown in Figure 4.10 for comparison between

grids with 21 and 41 points and in Figure 4.11 for 41 and 61 points. The ek norm

is defined as

ek = ||lgk − l(g+1)k ||2, (4.22)
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Figure 4.8: ρu residual Ru for 41 grid points for test with (4.16 – 4.21)

Figure 4.9: ρu residual Ru for 61 grid points for test with (4.16 – 4.21)
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Figure 4.10: The comparison between grids with 21 and 41 points for test with (4.16 – 4.21)

where l ∈ {ρ,u, v, w,E }, g = 1 for 21, g = 2 for 41 and g = 3 for 61 points.

According to the ek norm, the difference between the results with 21 and 41

grids points is quite high. The difference between 41 and 61 grid points has

similar accuracy. Thus, for the current problem, the resolution of 41 grid points

is recommended. The computational time grows fast with the number of grid

points, for 21 points the CPU time was roughly 50 minutes, for 41 points 6 hours

and for 61 points 10 hours. These tests were run on a personal computer. This

code was not run in parallel.

The results of this simulations are shown for 41 grid points, Fig. 4.12a – 4.12i,

which proved to be more accurate than 21 grids points. The planes xy, xz and

yz are chosen with the value i = imax+1
2 for the x-direction, j = jmax+1

2 for the y-

direction and k = kmax+1
2 for the z-direction.

The discontinuity influence can be seen in Fig. 4.12a, where the velocity profile
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Figure 4.11: The comparison between grids with 41 and 61 points for test with (4.16 – 4.21)

u is deformed and its values are bigger than in the previous case Fig. 4.4b. The

velocity v in the plane xy increased as well, Fig. 4.12b and the velocity w is

developing a small velocity profile.

The Fig. 4.12d and 4.12f shows the influence of the discontinuity to the u and w

velocities from the different angle of view. In the Fig. 4.12e are shown structures

of the v velocity, whose values are almost zero in the middle of the channel due

to symmetry.

The proper functioning the of periodic boundary conditions is visualized in the

Fig. 4.12g and 4.12h. The last Fig. 4.12i displays how the discontinuity is intro-

duced and goes through the whole domain in the w velocity.
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(a) u for 41 grid points test in xy plane, z = 0.06 (b) v for 41 grid points test in xy plane , z = 0.06

(c) w for 41 grid points test in xy plane , z = 0.06 (d) u for 41 grid points test in xz plane, y = 0.06

4.4 3D test case

The last test is chosen with the following parameters. The inlet velocity vector is

u0 = (Mi n,0,0.1 ·Mi n), where Mi n = 0.02 and Rei n = 1000. The grid is equidistant

with 41 points in each direction. ∆t = 10−3 and simulation time t = 100 s, which

is the time when graphs are made. Initial pressure and density are

ρ′
0 = 0, (4.23)

p ′
0 = 0. (4.24)
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(e) v for 41 grid points test in xz plane, y = 0.06 (f) w for 41 grid points test in xz plane, y = 0.06

(g) u for 41 grid points test in yz plane, x = 0.1 (h) v for 41 grid points test in yz plane, x = 0.1

(i) w for 41 grid points test in yz plane, x = 0.1

Figure 4.12: Contours of velocity components in xy, xz and yz planes for 41 grid points test
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Since periodic boundary conditions are introduced in the z-direction, all xy planes

for k ∈ {1, . . . ,kmax} are the same. k = kmax+1
2 was chosen for visualization in the

xy plane.

The profile is developing for u and w velocities component in the xy plane ac-

cording to Fig. 4.13a and Fig. 4.13c. Since the w velocity at the inlet is ten times

smaller than the u velocity, the flow developed less at the end time of simula-

tion. The v velocity in the plane xy has positive and negative values near the

walls, this is shown in Fig. 4.13b. The velocity components are shown also in

planes xz (Fig. 4.13d, 4.13e, 4.13f). The profile is not developed as in the xy

plane because the periodic boundary conditions are introduced there. Results

in the plane yz are visualized in Fig. 4.13g, 4.13h, 4.13i. In the yz planes the ve-

locity components are seen to be zero at the walls in the y-direction. Once more

the w velocity is ten times smaller than the u velocity. These planes (xz, yz) are

always taken with the value i = imax+1
2 for the x-direction and j = jmax+1

2 for the

y-direction.

The results are plotted in Matlab.

(a) u for 3D test in xy plane, z = 0.06 (b) v for 3D test in xy plane, z = 0.06
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(c) w for 3D test in xy plane, z = 0.06 (d) u for 3D test in xz plane, y = 0.06

(e) v for 3D test in xz plane, y = 0.06
(f) w for 3D test in xz plane, y = 0.06

(g) u for 3D test in yz plane, x = 0.1 (h) v for 3D test in yz plane, x = 0.1
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(i) w for 3D test in yz plane, x = 0.1

Figure 4.13: Contours of velocity components in xy, xz and yz planes for 3D channel flow test
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Chapter 5

Conclusions and outlook

The main goal of this master thesis was to extend an existing 2D compress-

ible Navier-Stokes code into the third dimension and to get the physical under-

standing of compressible flow and its numerical solution. The goal was accom-

plished. The most challenging part of the code conversion into the third dimen-

sion was to implement non-reflecting boundary conditions. The discretization

of the conservative form of the metric terms for the 3D coordinate transforma-

tion also required a lot of work. Periodic boundary conditions were added as

part of my job. The most time-consuming part was to debug the code to make

it work properly.

The code was tested for several tests cases (uniform flow, 2D case extended

into the third dimension, and 3D channel flow) and the results were reported

in chapter 4. The grid refinement study showed how the solution depends on

the number of grid points for structured grids.

The 3D code works for low Mach and Reynolds number with no complication.

The challenge for further work will be to compare the results of this code with a

physical experiment in 3D and to implement high order filter for the ζ-direction,
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which is currently not used in this code.
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Appendix A

High-performance computational cluster

Vilje

This chapter is based on [19]. The present research was supported in part by

computational resources at NTNU provided by NOTUR [20]. Vilje is a high-

performance computational cluster that belongs to NTNU. Table A.1 gives in-

formation about its operating environment [19].

Operating system SUSE Linux Enterprise Server 11
Scheduler PBS
Compilers Intel and GNU C and Fortran
MPI library SGI MPT

Table A.1: Vilje operating environment

The manufacturer is SGI. The cluster has 19.5 racks (1404 nodes) and 22 464

cores and it has 467 teraflops theoretical peak performance. Node details are

introduced in table A.2 below.
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Number of nodes 1404
Processors per node 2 eight-core processors per node
Processor speed 2.6 GHz
L3 Cache 20 MB / 8 cores
Memory 2GB per core / 32 Gib per Node
Memory type DDR3 1600 MHz-SDRAM

Table A.2: Vilje node details

A.1 Code uploading

Login is possible only by the secure shell command ssh. The same authentica-

tion and security are used by the command scp for transferring the data. Module

files have to be loaded before compilation. In this code case, the module files are

gcc/4.9.1 for compiler and mpt/2.13 for SGI MPT module. These modules are

loaded by

Listing A.1: Module load before execution of code

1 module load gcc / 4 . 9 . 1

2 module load mpt/2.13

These commands are part of a bash file named job.sh. The file is listed below.

Listing A.2: job.sh file

1 # ! / bin / sh

2

3 #PBS −N ns_2d_v_fsi_2

4 #PBS −A ntnu260

5 #PBS −l walltime =100:00:00

6 #PBS −l s e l e c t =1: ncpus =32: mpiprocs=6

7

64



8 module load gcc / 4 . 9 . 1

9 module load mpt/2.13

10

11 cd $PBS_O_WORKDIR

12

13 mpirun −n 6 . / ns_2d_v_fsi

The first line says that this file is a bash file. The set of commands is meant

for Vilje. It is a specification of the number of processors, time requested and

the name of user’s code. cd command is a command for switching between

directories and the last command runs the code in parallel.

The last command needed for submitting the job to the pbs queue

Listing A.3: Command for running the code

1 qsub job . sh

This command sets the program into a queue and returns a notification of the

number of your job. The job identifier is used to name the output from the job

together. When the job is done, output files are created in the user’s file.
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