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Abstract

In this thesis we consider explicit finite volume methods that are not limited by the Courant-

Friedrichs-Lewy (CFL) condition, referred to as large time step (LTS) methods. LeVeque

proposed the first LTS method in the 1980’s as an extension of the Godunov method. Since

then, classic concepts in numerical analysis, such as total variation diminishing (TVD)

schemes, modified equation and higher order schemes have been extended to LTS, as well

as approximate Riemann solvers, such as the Roe scheme, the Lax-Friedrichs scheme and

the HLL scheme.

At large time steps, LTS methods often yield entropy violating solutions, and oscilla-

tions appear due to interacting waves, especially for systems of equations. Because of this

reduction in robustness, the maximum allowable time step is in practice limited for many

LTS schemes.

We will look at LTS methods from a new angle, by introducing an artificial flux func-

tion framework. We show how the flux-difference splitting coefficients and numerical

diffusion coefficient can be evaluated numerically from the artificial flux function, which

gives us a convenient way of experimenting with new LTS schemes.

In his master’s thesis, Solberg developed a class of LTS schemes, with an inherent

mechanism for adding numerical diffusion. As an extension of this work, we develop a

new three parameter LTS scheme, denoted LTS-HLLφ, which is the main original contri-

bution in this thesis. We propose special choices of parameters, which appears to give a

good trade off between robustness and accuracy.

Numerical simulations are performed on the Burgers’ equation and the Euler equa-

tions, assessing the robustness and accuracy of the new LTS-HLLφ scheme, compared to

more established LTS schemes.
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Sammendrag

Denne avhandlingen omhandler metoder for høye tidssteg (LTS). Dette er eksplisitte

numeriske metoder som ikke er begrenset av Courant-Friedrichs-Lewy (CFL) betingel-

sen. LeVeque innførte begrepet på 1980-tallet, da han utvidet Godunov-metoden for høye

tidssteg. Senere har klassiske begreper som totalvariasjonsforminskende (TVD) skjema,

modifisert likning og høyere ordens skjema blitt utvidet til LTS. Flere Riemann løsere har

også blitt utvidet til LTS, blant annet Roe-, Lax-Friedrichs- og HLL-skjemaet.

Mange LTS-metoder gir entropi-reduserende og oscillerende løsninger når tidsstege-

ne overstiger CFL-betingelsen. Disse fenomenene er spesielt fremtredende for lignings-

systemer, fordi de ulike bølgene overkjører hverandre. I praksis gir disse fenomenene en

begrensning for størrelsen på tidsstegene.

I denne avhandlingen ser vi på LTS-metoder fra en ny vinkel, når vi introduserer kuns-

tige fluksfunksjoner. I dette rammeverket viser vi hvordan fluksdifferansesplittingskoeffisi-

entene og den numeriske diffusjonskoeffisienten kan utrykkes numerisk for en gitt kunstig

fluksfunksjon. Dette åpner for enkel eksperimentering med nye LTS-skjema i fremtiden.

Solberg utviklet en klasse av LTS-skjema i sin masteroppgave, som har en innebygd

mekanisme for å justere numerisk diffusjon. Det viktigste originale bidraget i denne av-

handlingen er utviklingen av det nye LTS-HLLφ-skjemaet, som er basert på Solbergs skje-

ma. Vi foreslår en metode for å velge parametere for LTS-HLLφ-skjemaet som gir en god

balanse mellom robusthet og nøyaktighet.

Vi gjennomfører numeriske simuleringer på Burgers’ likning og Eulerlikningene, for å

studere hvor robust og nøyaktig det nye LTS-HLLφ-skjemaet er i forhold til mer etablerte

LTS-skjema.
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Preface

The figure on the cover of this thesis shows a simulation of the 2D Burgers’ equation,

where the seven peaks show the evolution from the initial data to the sixth time step. We

see a Gauss curve moving to the left, forming a shock. Solutions were obtained using the

Solberg∗ scheme on a [100× 100] grid, with a maximum Courant number of CFL= 10.

This master’s thesis is a continuation of my project work, concerning source term

treatment in large time step methods. Hence, chapters 2 and 3 in this thesis are heavily

based on content from the previously submitted report [17].

I would like to give a special thanks to my supervisors, Bernhard Müller and Tore

Flåtten for excellent guidance and support throughout this whole process. I would also

like to thank Marin Prebeg and Anders Solberg for fruitful discussions.
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Chapter 1
Introduction

Hyperbolic partial differential equations (PDEs) are important models for many physical

systems, such as, gas dynamics, meteorology, traffic modelling and geophysics to mention

a few [14, 21, 27, 3]. In this thesis we consider a class of PDEs known as hyperbolic

conservation laws

qt + f(q)x = 0,

where q is the vector of conserved variables and f(q) is the flux function.

For scientific and engineering purposes, accurately solving problems of hyperbolic

conservation laws, with minimal computational effort is highly valuable. In the past cen-

tury, different numerical methods have been developed for solving hyperbolic conserva-

tion laws [15, 24]. Unfortunately, in most of these methods, there are trade-offs between

accuracy, stability and computational effort.

Explicit methods are simple to evaluate and well suited for parallel computing. How-

ever, they often fall short compared to implicit methods, since explicit methods are typi-

cally limited by the Courant–Friedrichs–Lewy (CFL) condition [2]

CFL =
∆t

∆x
max

p
|λp|≤ 1,

where CFL is the largest Courant number inherent to the problem, λp is the p-th wave

speed, ∆x is the length of one computational cell and ∆t is the time step. The CFL

condition is typically necessary for stability because most explicit methods cannot handle

convecting conserved quantities more than one computational cell length during one time

step.

Large time step (LTS) methods are explicit finite volume methods that are also stable

for CFL> 1. We can relax the CFL condition to a less strict CFL-like condition,

CFL ≤ k.
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by allowing the conserved quantity to convect for up to k computational cell lengths. When

calculating the value of the conserved quantity in the next time step, we now need to

consider a stencil of (2k + 1) cells.

Most of the LTS methods studied so far, are not very robust for large time steps. En-

tropy violations and unphysical oscillations are typically more frequent at larger time steps,

which in practice limit the maximum allowable time step for many LTS methods. Al-

though diffusive LTS methods are often more robust against these errors, they are also less

accurate. This motivates us to search for new LTS methods that are robust, without being

unnecessarily diffusive.

This thesis on LTS methods is part of an ongoing research project, SIMCOFLOW, at

SINTEF Materials and Chemistry. The ultimate goal of this project is to develop a highly

efficient open source computer code for complex problems in multiphase flow.

1.1 Previous work

The first LTS methods were proposed by LeVeque in a series of papers in the 1980’s

[11, 12, 13], where he generalized the Godunov method for arbitrary Courant numbers.

Although results were promising for scalar equations, LeVeque observed unphysical os-

cillations in the solutions for systems of equations. Harten later extended the entropy

satisfying Harten scheme to LTS, and showed that this method is total variation dimin-

ishing (TVD) [7]. Harten also developed a procedure for creating large time step TVD

schemes, that are second order accurate away from discontinuities.

More recently, Lindquist et al. expressed LeVeque’s original LTS-Godunov method

in closed form [16]. They defined a LTS extension of the Lax-Friedrichs scheme, and

showed that the LTS-Roe scheme and the LTS-Lax-Friedrichs scheme are the least and

most diffusive (2k + 1)-point TVD schemes, respectively. From these LTS schemes, they

produced a hybrid scheme, that combines the sharp resolution of the LTS-Roe scheme

with the robustness of the LTS-Lax-Friedrichs scheme. A random time stepping was also

proposed for reducing entropy violations in the LTS-Roe scheme.

The same year, Prebeg et al. developed a LTS extension of the HLL scheme and

the HLLC scheme [19]. Prebeg later showed that the LTS-HLL scheme with Einfeldt’s

choice of parameters [4], referred to as LTS-HLLE, yield entropy satisfying solutions for

all Courant numbers [18].

In his master’s thesis, Solberg proposed a new LTS scheme, with an inherent mech-

anism for adding numerical diffusion [23]. He use this method to smear out the oscilla-

tions that LeVeque reported in his original articles on LTS methods. Because of Solberg’s

promising results, a large portion of this thesis is devoted to investigating and further de-

veloping this scheme.

1.2 Outline of this thesis

In chapters 2 and 3, a review of hyperbolic conservation laws and explicit finite volume

methods is given. This will give the reader the necessary tools and definitions to tackle

the more advanced topics of large time step methods in chapter 4. In this chapter we

2



present the (2k + 1)-point flux-difference splitting framework, and study the numerical

diffusion of a general flux-difference splitting scheme from a modified equation approach.

In this framework, we briefly discuss the total variation diminishing condition, and present

the LTS-Godunov method, the LTS-Roe scheme, the LTS-Lax-Friedrichs scheme and the

LTS-HLL scheme.

In section 4.5, we look at LTS from a different perspective, when we introduce the

artificial flux function framework. We find the artificial flux function of the LTS-Roe

scheme and the LTS-HLL scheme, as well as a generalized form of Solberg’s CDk̂ scheme

[23], denoted here as the Solberg scheme.

In chapter 5 we present a new three parameter LTS scheme, denoted as LTS-HLLφ,

based on the Solberg scheme and the LTS-HLL scheme. This new scheme is the main

original contribution in this thesis. Using the concepts presented in the previous chapters,

we derive the flux-difference splitting coefficients of the LTS-HLLφ, and discuss how the

three parameters affect the numerical diffusion of the scheme.

Numerical simulations for the inviscid Burgers’ equation and the Euler equations are

presented in chapter 6. Results obtained from the LTS-HLLφ scheme are discussed and

compared to results obtained from the LTS-Roe scheme. Finally, some concluding remarks

and proposals for future work are found in chapter 7.

3
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Chapter 2
Hyperbolic conservation laws

Physical phenomena in fluid dynamics, such as, transport of mass, momentum and energy

are studied by considering the change of conserved quantities over a control volume Ω. A

quantity, qp, is conserved if the change of qp inside Ω equals the net flux of qp through

the boundaries of the control volume, ∂Ω. In general, the flux of one conserved quantity

can depend on other conserved quantities. A system of m conserved quantities, is then

governed by the hyperbolic conservation law,

(2.1)
∂

∂t

∫

Ω

qdV +

∫

∂Ω

f(q) · ndS = 0,

where q(x, t) = [q1, . . . , qm]T is the vector of conserved variables and f(q) · n is the

flux of q through ∂Ω. We will refer to (2.1) as the integral form. Assuming that q is

differentiable, we obtain the differential form

(2.2)
∂q

∂t
+∇ · f(q) = 0,

by applying the divergence theorem. In one space dimension, the differential form reduces

to

(2.3)qt + f(q)x = 0.

In the rest of this thesis we will only consider one-dimensional hyperbolic partial dif-

ferential equations of the form (2.3). However, many of the concepts discussed in the

thesis are extendable to multiple dimensions, e.g. through dimensional splitting [15].

2.1 Characteristic structure

Using the chain rule, we can rewrite (2.3) in the quasi-linear form

(2.4)qt + J(q)qx = 0,

5



where J(q) = ∂f
∂q (q) is the Jacobian matrix of the flux function f(q). A property of

systems of hyperbolic partial differential equations is that the Jacobian matrix is diagonal-

izable with real eigenvalues [15]. We can therefore write J(q) on the from

(2.5)J(q) = RΛR−1,

where R =
(
r1, . . . , rm

)
is the matrix of right eigenvectors, where rp is the p-th right

eigenvector of J(q). The eigenvalue matrix, Λ, is defined as

(2.6)Λ =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λm


 ,

where λp is the p-th eigenvalue of J.

Pre-multiplying (2.4) by R−1 gives the characteristic form

(2.7)wt + Λwx = 0,

where w = [w1, . . . , wm]T is the vector of characteristic variables, defined by

(2.8)∂w = R−1∂q.

Because the rows in Λ only have one non-zero component, we have now transformed

the system of m coupled equations into m uncoupled, scalar equations of the form

(2.9)w
p
t + λpwp

x = 0,

for all p = 1, . . . ,m. We can use this transformation to apply theory developed for scalar

equations on systems of equations. Note that for linear systems, we can use (2.8) to recon-

struct q as the product of the matrix of right eigenvectors, R and the vector of characteristic

variables, w:

(2.10)q =

m∑

p=1

wprp.

2.2 Analytical solution

Let us consider a scalar conservation law on the quasi-linear form (2.4),

(2.11)qt + λ(q)qx = 0,

where λ(q) = ∂f
∂q . We define a characteristic line, X(t), and note that

(2.12)
d

dt
q(X(t), t) = qt(X(t), t) +

dX(t)

dt
qx(X(t), t).

We observe that the left hand side of (2.11) is equivalent to the right hand side of (2.12)

if
dX(t)

dt
= λ(q). Thus, on any characteristic line X(t) = x + λ(q)t, the value of q will

remain constant because d
dt
q(X(t), t) = 0. This means that for any given initial value

q(x, 0), the solution at time t is simply a translation in x-direction at speed λ(q(x, 0)), in

other words,

(2.13)q(x, t) = q(x− λ(q(x, 0))t, 0).

6
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Figure 2.1: Analytical solution of the inviscid Burgers’ equation for the initial data in (2.15). Left:

The conserved quantity, q is convected in space from its initial state (solid line) until a shock is

formed at t = 1 (dashed line). Right: The conserved quantity is constant along characteristic lines.

When t > 1, some points are ambiguously defined.

2.3 Shock formation

Unfortunately, we cannot always use the analytical solution (2.13) for a general nonlinear

conservation law, due to the phenomenon known as shock formation. We will illustrate

this by an example.

Given the inviscid Burgers’ equation

(2.14)qt + qqx = 0,

and the initial data

(2.15)q(x, 0) =





1 if x < 0,

1− x if 0 ≤ x ≤ 1,

0 if x > 1,

we can draw characteristic lines X(t) = x+ q(x, 0)t, and solve the problem using (2.13)

as long as t < 1, as illustrated in figure 2.1. If we naively extend the characteristic lines

beyond t = 1, we see that some points are defined by more than one characteristic line,

thus the value of q(x, t) is ambiguous in these points.

This happens whenever the solution form a discontinuity. We get an ambiguous re-

sult, because the differential equation (2.14) is no longer defined for discontinuous data.

However, as we will see in the next section, we can find meaningful weak solutions for

the ambiguous points. A good way of understanding weak solutions is by studying the

Riemann problem.

7



2.4 The Riemann problem

A Riemann problem is an initial value problem consisting of a conservation law of the

form (2.3) and initial data

(2.16)q(x, 0) =

{
qL if x < 0

qR if x > 0.

where the vectors qL and qR are constant.

As illustrated in the previous section, using the inviscid Burgers’ equation (2.14), dif-

ferential equations are not defined when the initial data is discontinuous. In order to solve

the Riemann problem at x = 0, we need to consider weak solutions of the conservation

laws, that satisfies the corresponding integral equation.

An important weak solution is the shock solution. A shock is characterized by a dis-

continuity moving at speed s in space, without changing shape (see figure 2.2). We can

find the speed of such a discontinuity by integrating (2.16) over a sufficiently large interval

Ω = [−l, l]. This gives

(2.17)
∂

∂t

∫ l

−l

qdx+

∫ l

−l

∂

∂x
f(q)dx = 0,

(2.18)
d

dt
((l − xshock)qR + (xshock + l)qL) + f(qR)− f(qL) = 0,

where xshock is the position of the discontinuity at any given time. Because dl
dt

= 0, the

expression simply reduces to

(2.19)s(qR − qL) = f(qR)− f(qL),

where s = dxshock

dt
is the speed of the discontinuity. In the scalar case, we can find this

speed by simply dividing by (qR − qL), which yields

(2.20)s =
f(qR)− f(qL)

qR − qL
.

For a linear system of m equations, the Jacobian matrix is constant, and we can write

(2.19) as

(2.21)s(qR − qL) = J(qR − qL),

which imply that the scalar s is an eigenvalue of J. By writing q on the form (2.10) we

can define waves as

(2.22)

qR − qL =

m∑

p=1

(wp
R − w

p
L)r

p

=

m∑

p=1

Wp,

8
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Figure 2.2: The shock solution of the inviscid Burgers’ equation for the initial data in (2.15). Left:

The conserved quantity, q is convected in space from its initial state (solid line) until a shock is

formed at t = 1 (dashed line). The shock is simply translated in space (dotted line). Right: The

conserved quantity is constant along characteristic lines. When t > 1, the shock follows the dashed

characteristic line.

where Wp is the p-th wave. Using these definitions, we find that

(2.23)

J(qR − qL) = RΛR−1R(wR −wL)

=

m∑

p=1

λpWp.

Hence, the discontinuity splits into m discontinuities, or waves Wp, traveling at speeds

λp.

Although the shock solution is a valid weak solution of the Riemann problem, it is

not necessarily a unique solution. Since inviscid conservation laws often describe physical

systems where some viscosity is present, we are interested in the unique solution of the

corresponding viscous problem with diminishing viscosity. For a scalar conservation law,

the diminishing viscosity problem is given by

(2.24)qt + f(q)x = νqxx,

where the viscosity coefficient ν → 0. Because solutions of (2.24) ensure non-decreasing

entropy for the Euler equations, we will refer to them as entropy satisfying solutions. It

can by shown that the shock solution is only entropy satisfying when

(2.25)f ′(qL) > s > f ′(qR),

where we assume the flux function f(q) is either convex or concave, i.e. f ′′(q) > 0 or

f ′′(q) < 0 respectively. This is known as the Lax entropy condition [10].
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Figure 2.3: The rarefaction wave solution of a Riemann problem for the inviscid Burgers’ equation.

Left: The conserved quantity is experiencing rarefaction (dashed line). Right: The characteristic

lines of a rarefaction wave spread into an expansion fan.

When the Lax entropy condition (2.25) is not satisfied, the entropy satisfying solution

is a rarefaction wave. A rarefaction wave is, as the name suggests, a gradual reduction in

the density of a conserved quantity, and is associated with expansion in gas dynamics. The

characteristic lines of a rarefaction wave are separating from the discontinuity, forming an

expansion fan in-between, as shown in figure 2.3.

For a system of m equations, the m new discontinuities can be either shocks waves,

rarefaction waves or contact waves. The entropy satisfying solution can be decided by a

more generalized version of the Lax entropy condition [15].

10



Chapter 3
Explicit finite volume methods

Finding an analytical solution of an initial value problem is often very hard, or even im-

possible. It is therefore desirable to find approximate numerical solutions of the problem.

Before we can calculate numerical solutions, we need to convert the initial value problem

into a discrete, arithmetic problem that can be solved by simple operations.

One popular method for discretizing conservation laws on the integral form (2.1), is

to divide the domain into small finite control volumes. Given a one-dimensional control

volume Ω = [xL, xR], we can integrate (2.1) in time over the interval [tn, tn+1]:

∫ tn+1

tn

∫ xR

xL

qtdxdt+

∫ tn+1

tn

∫ xR

xL

f(q)xdxdt = 0. (3.1)

By using the fundamental theorem of calculus and Fubini’s theorem, we can write (3.1)

as

(3.2)

∫ xR

xL

[q(x, tn+1)− q(x, tn)]dx+

∫ tn+1

tn

[f(q(xR, t))− f(q(xL, t))]dt = 0,

Let us now define average values for q and f as

(3.3a)Qn =
1

xR − xL

∫ xR

xL

q(x, tn)dx,

(3.3b)FL =
1

tn+1 − tn

∫ tn+1

tn

f(q(xL, t))dt,

respectively. By using the new definitions in (3.3), we can write (3.2) as

(3.4)Qn+1 = Qn −
tn+1 − tn

xR − xL
(FR − FL).

This expression is valid for any domain, or control volume. In the finite volume method

(FVM), we divide the x-axis into smaller subdomains, Ωj = [xj−1/2, xj+1/2], where

11
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xj+1/2xj−1/2

Fj−1/2 Fj+1/2

Figure 3.1: Computational grid in the finite volume method.

xj±1/2 are the faces of the computational cell j, as illustrated in figure 3.1. We associate

every computational cell with the average value of the cell, defined in (3.3). For each cell

j we have

(3.5)Qn+1
j = Qn

j −
∆t

∆x
(Fj+1/2 − Fj−1/2).

where the grid size ∆x = xj+1/2 − xj−1/2 is assumed to be uniform. Equation (3.5)

implies that the change in Qj during one time step is equal to the net flux entering the

computational cell from the neighbouring cells during the time step.

We now need a way of approximating the fluxes at the interfaces. Explicit finite volume

methods only use values from the previous time step to approximate the fluxes, which

implies that we can calculate Qn+1
j explicitly. Many of the classic explicit schemes only

consider the neighbouring cells in the previous time step, which means that the numerical

flux function,

(3.6)Fn
j−1/2 = F(Qn

j−1,Q
n
j ),

only depends on the two computational cells that are sharing the interface at xj−1/2. We

will refer to such schemes as 3-point schemes, because Qn+1
j depends on the values in

three computational cells.

3.1 The flux-difference splitting formulation

Looking at figure 3.1, the value of Q is piecewise constant function, with discontinuities at

the interfaces between cells. Because of these discontinuities, we need to solve a Riemann

problem on every interface. We can think of the discontinuities as waves entering the

cell from the interfaces. This wave description of the finite volume method (3.5) will be

referred to as the flux-difference splitting formulation. By using the definition of waves

12



(2.22), (3.5) becomes

(3.7)Qn+1
j = Qn

j −
∆t

∆x

m∑

p=1

(
(λp

j−1/2)
+
Wp

j−1/2 + (λp
j+1/2)

−
Wp

j+1/2

)

where (λp
j−1/2)

+
= max(λp

j−1/2, 0) and (λp
j+1/2)

−
= min(λp

j+1/2, 0). For scalar con-

servation laws, we will write this as

(3.8)Qn+1
j = Qn

j −
(
C+

j−1/2∆j−1/2 + C−
j+1/2∆j+1/2

)
,

where we have introduced the shorthand

(3.9a)∆j−1/2 = Qj −Qj−1,

(3.9b)C±
j∓1/2 =

∆t

∆x
λ±
j∓1/2.

We can think of the coefficients C± as a measure of how far a wave will travel during

one time step. If C+
j−1/2 = 1 this means that the wave from the left interface will travel all

the way to the right interface, and C−
j+1/2 = −1 means the wave from the right interface

will travel all the way to the left interface during one time step.

3.2 The Godunov method

As discussed in the previous section, we need to solve Riemann problems on every cell

interface in explicit finite volume methods. In 1959, Godunov proposed solving these

Riemann problems exactly [5], and this method has been named after him. For scalar

equations, the exact unique entropy satisfying solution of the local Riemann problem at

the interface xj−1/2 is obtained using the numerical flux function

(3.10)F̃j−1/2 =





min
q∈[Qj−1,Qj ]

f(q) if Qj−1 < Qj ,

max
q∈[Qj ,Qj−1]

f(q) if Qj−1 > Qj ,

In the Godunov method, we use this exact numerical flux function in (3.4). Although

we can now solve any scalar conservation law, the Godunov method is not always the most

practical method, since we need to solve an optimization problem in order to find F̃j−1/2.

If this cannot be done analytically, we need to use some iterative method (like Newton’s

method), which can be very costly. For non-linear systems, the Godunov method is even

more complex and computationally costly.

3.3 Approximate Riemann solvers

It is often too computationally costly to solve the Riemann problems at the interfaces ex-

actly, and approximate Riemann solvers are therefore often more expedient. Some relevant

approximate schemes are presented below.
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3.3.1 The Roe scheme

In the Roe scheme [20], the Riemann problems on each cell interface are linearized. At

interface xj−1/2, the true Riemann problem is approximated by

(3.11)qt + Ĵj−1/2qx = 0

(3.12)q(x, 0) =

{
Qj−1 if x < xj−1/2

Qj if x > xj−1/2

where Ĵ is a constant matrix known as the Roe matrix. In order for the linearized problem

to be consistent with the true Riemann problem, the Roe matrix must have the following

properties:

Property 1. The linearized problem is hyperbolic, hence, Ĵj−1/2 has real eigenvalues and

linearly independent eigenvectors.

Property 2. When Qj = Qj−1 = Q, the Roe matrix is consistent with the exact Jacobian

matrix in the sense,

(3.13)Ĵj−1/2(Q,Q) = J(Q).

Property 3. The Roe matrix is conservative in the sense that,

(3.14)Ĵj−1/2(Qj −Qj−1) = f(Qj)− f(Qj−1).

From property 1, we know that the Roe matrix can be written in the form

(3.15)Ĵj−1/2 = R̂j−1/2Λ̂j−1/2R̂
−1
j−1/2,

where Λ̂j−1/2 is a matrix with the Roe speeds, λ̂
p
j−1/2, in the diagonal. Using (2.23), we

can write (3.14) as a sum of waves

(3.16)Ĵj−1/2(Qj −Qj−1) =
m∑

p=1

λ̂
p
j−1/2W

p
j−1/2,

giving the following flux-difference splitting coefficients for the Roe scheme:

(3.17)(λp
j−1/2)

± = ±max(0,±λ̂
p
j−1/2),

or for a scalar equation

(3.18)C±
j−1/2 = ±max(0,±ĉj−1/2),

where we have introduced the shorthand

(3.19)ĉ =
∆t

∆x
λ̂.
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Figure 3.2: Illustration of the HLL scheme. The discontinuity is split into two discontinuities,

traveling at speeds sL and sR.

3.3.2 The HLL scheme

Harten, Lax and van Leer [8] proposed approximating the solution of the Riemann prob-

lems at the interfaces as

(3.20)Q(x, t) =





Qj−1 if ζ ≤ sL,

QHLL
j−1/2 if sL ≤ ζ ≤ sR,

Qj if ζ ≥ sR.

where

(3.21)ζ =
x− xj−1/2

t− t0

which means that the discontinuity split into two waves, moving at speeds sL and sR, i.e.

(3.22)s(Qj −Qj−1) = sR(Qj −QHLL
j−1/2) + sL(Q

HLL
j−1/2 −Qj−1).

This is illustrated in figure 3.2. For now, let us assume sL and sR to be known. We

then need to choose QHLL
j−1/2 in such a way that (3.20) is a weak solution of the hyperbolic

conservation law. Given the domain [xL, xR], we can integrate (2.1) in the time interval

[tn, tn +∆t],

(3.23)

∫ xR

xL

q(x, tn +∆t)dx =

∫ xR

xL

q(x, tn)dx−

∫ tn+∆t

tn

[f(xR, t)− f(xL, t)]dt.

If xL ≤ sL∆t + xj−1/2 and xR ≥ sR∆t + xj−1/2, we can evaluate the integrals on

the right hand side using the cell averages (3.3),

(3.24)

∫ xR

xL

q(x, tn +∆t)dx = xRQj − xLQj−1 −∆t(Fj − Fj−1).
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By using the desired solution in (3.20),
∫ xR

xL
q(x, tn + ∆t)dx can be split into three

integrals,

(3.25)

∫ xR

xL

q(x, tn +∆t)dx =

∫ sL∆t

xL

Qj−1dx+

∫ sR∆t

sL∆t

QHLL
j−1/2dx+

∫ xR

sR∆t

Qjdx.

Comparing this to (3.24), we can show that

(3.26)QHLL
j−1/2 =

sRQj − sLQj−1 + Fj−1 − Fj

sR − sL
.

For a linear system, we can insert this into (3.22) and use the wave definition in (2.23).

We then get

(3.27)s(Qj −Qj−1) =

m∑

p=1

(
λ
p
j−1/2 − sL

sR − sL
sR +

sR − λ
p
j−1/2

sR − sL
sL

)
Wp

j−1/2,

which we can also apply to non-linear systems through Roe averaging, described in sec-

tion 3.3.1. We see that the flux-difference splitting coefficients of the HLL scheme are

given by

(3.28)(λp
j−1/2)

± = ±
λ̂
p
j−1/2 − sL

sR − sL
max (±sR, 0)±

sR − λ̂
p
j−1/2

sR − sL
max (±sL, 0),

which for scalar conservation laws can be written as

(3.29)C±
j−1/2 = ±

ĉj−1/2 − cL

cR − cL
max (±cR, 0)±

cR − ĉj−1/2

cR − cL
max (±cL, 0),

using the shorthand

(3.30)cR =
∆t

∆x
sR,

(3.31)cL =
∆t

∆x
sL.

The HLLE scheme

So far we have not discussed how we choose sL and sR. Einfeldt [4] proposed using

(3.32a)sL,j−1/2 = min(λ1(Qj−1), λ̂
1(Q̂j−1/2)),

(3.32b)sR,j−1/2 = max(λ̂m(Q̂j−1/2), λ
m(Qj)).

which ensures that λ̂p(Q̂j−1/2) ∈ [sL, sR], ∀p. Einfeldt’s choice also has Lax entropy

conditions (2.25) built in, so that the scheme reduces to the Roe scheme for the 1st and m-

th wave when the entropy satisfying solution is a shock. We will refer to the HLL scheme

with Einfeldt’s choice of parameters as the HLLE scheme.
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Figure 3.3: Illustration of characteristic lines when CFL> 1.

3.4 The CFL condition

For simple explicit 3-point schemes, the maximal allowed time step is limited by the

Courant-Friedrichs-Lewy (CFL) condition [2]:

(3.33)CFL =
∆t

∆x
max
j,p

|λp
j |≤ 1,

where CFL is the greatest Courant number inherent to the problem. To get a more intuitive

understanding of the CFL condition, let us consider a scalar equation where λj−1/2 > ∆x
∆t .

In this case, the Roe scheme will give C+
j−1/2 > 1, meaning that the wave from the left

interface of cell j should travel through the entire cell, and start entering cell j + 1, as

illustrated in figure 3.3. However, in a 3-point scheme, this is not taken into account when

we perform calculations for cell j + 1.

Because of the CFL condition we are often forced to use small time steps, which is

computationally costly. Since ∆t ∝ ∆x, we must use even smaller time steps when we

refine the grid.
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Chapter 4
Large time step methods

Large time step methods (LTS) are explicit finite volume methods that are not limited by

the CFL condition. In this chapter we show how the flux-difference splitting formulation

(section 3.1) can be expanded to allow for higher time steps, and generalize the approxi-

mate Riemann solvers to LTS. For the sake of simple explanation, we only consider scalar

equations in this chapter. However, we can extend the LTS schemes to non-linear systems

through Roe linearization, described in section 3.3.1.

4.1 Large time step methods

If a wave is allowed to travel further than one cell length during one time step, this implies

the numerical flux function must depend on a wider stencil of cells

(4.1)Fj−1/2 = F (Qj−k, . . . , Qj−1+k).

When k = 1, we have a 3-point scheme that is limited by the CFL condition. In

general, a (2k + 1)-point scheme is limited by a relaxed CFL-like condition

(4.2)CFL =
∆t

∆x
max

j
|λj |≤ k,

where λ = df
dq

. In flux-difference splitting formulation, the change in the conserved

quantity is now a sum of all the waves passing through or ending up inside the cell. In

total, a cell can be affected by up to k waves from the left, and k waves from the right. The

large time step extension of the flux-difference splitting formulation (3.7) is therefore

(4.3)Qn+1
j = Qn

j −

k−1∑

i=0

(
Ci+

j−1/2−i∆j−1/2−i + Ci−
j+1/2+i∆j+1/2+i

)
,

where the coefficient Ci+
j−1/2−i describes how far the wave from interface xj−1/2−i has

traveled into cell j. Note that for 3-point schemes (4.3) reduces to (3.7) where C0±
j∓1/2 =

C±
j∓1/2.
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4.2 Modified equation and numerical diffusion

Because a numerical solution is often based on approximated fluxes and projected onto a

finite number of cells, it will generally not satisfy the hyperbolic conservation law exactly.

If this is the case, we can find modified equations that the numerical solution satisfies more

accurately than the original conservation law.

Bore showed that a (2k + 1)-point explicit finite volume method on the form (4.3),

gives a second order accurate approximation to the modified equation [1],

(4.4)qt + f(q)x =
∆x2

2∆t

[(
N−1∑

i=0

(2i+ 1)(Ci+ − Ci−)− C2

)
qx

]

x

,

where C = ∆t
∆xf

′(q) is the local Courant number. We can also write the modified equation

in terms of a modified flux function f(q)− g(q), where

(4.5)g(q) =
∆x2

2∆t
σ(C)qx,

and σ(C) is the numerical diffusion coefficient

(4.6)σ(C) =
N−1∑

i=0

(2i+ 1)(Ci+ − Ci−)− C2.

We will refer to the error term on the right hand side of (4.4) as the numerical diffusion

of a scheme, because it is proportional to qxx for linear equations. A numerical method

is then a second order approximation of a viscous partial differential equation, where the

numerical viscosity coefficient is νnum = 2∆t
∆x2σ(C). For more detailed derivations of the

modified equation (4.4), we refer to [1].

4.3 The total variation diminishing condition

The CFL condition is not sufficient to ensure stability for a general non-linear conserva-

tion law. In 1983, Harten [6] introduced the stricter total variation diminishing (TVD)

condition,

(4.7)TVn+1 ≤ TVn,

where TV is the total variation given by

(4.8)TVn =
∑

j

|Qn
j −Qn

j−1|.

The TVD condition is a strong stability condition, that guarantees that a scheme will

converge to a weak solutions [10]. Harten showed that a 3-point scheme is unconditionally

TVD if and only if

(4.9)C+
j−1/2 − C−

j−1/2 ≤ 1.
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This was later generalized for (2k + 1)-point schemes by Jameson and Lax [9]. A

(2k + 1)-point scheme is TVD if

(4.10a)C
(i+1)+
j−1/2 − Ci+

j−1/2 ≤ 0, ∀i ≥ 0,

(4.10b)C0+
j−1/2 − C0−

j−1/2 ≤ 1,

(4.10c)C
(i+1)−
j−1/2 − Ci−

j−1/2 ≥ 0, ∀i ≥ 0.

for all j.

4.4 Some large time step methods

When a LTS scheme reduces to a known 3-point scheme for k = 1, and they share many

characteristics, we say that the LTS scheme is a LTS extension of the 3-point scheme. A

few LTS extension are given in the next sections.

4.4.1 The LTS-Godunov method

The LTS-Godunov method, which is characterized by solving every Riemann problem

exactly, was the first LTS-method used by LeVeque in [13]. A closed form formulation of

the method was derived by Solberg in his project work [22], and later published in [16].

The flux-difference splitting coefficients for the LTS-Godunov method are given by

(4.11a)
[Ci+∆]j−1/2 = Qj

+Mj−1/2

(
∆t

∆x
f(q)− (i+ 1)q

)
−Mj−1/2

(
∆t

∆x
f(q)− iq

)
,

(4.11b)
[Ci−∆]j−1/2 = Qj

+Mj−1/2

(
∆t

∆x
f(q) + iq

)
−Mj−1/2

(
∆t

∆x
f(q) + (i+ 1)q

)
,

where the operator M is defined as

(4.12)Mj−1/2(f(q)) =





min
q∈[Qj−1,Qj ]

f(q) if Qj−1 < Qj ,

max
q∈[Qj ,Qj−1]

f(q) if Qj−1 ≥ Qj .

4.4.2 The LTS-Roe scheme

The Roe scheme treats the Riemann problem at every cell interface as a linearized Riemann

problem, and waves are convected unchanged at Roe speed. If a positive wave from the

interface at xj−1/2 passes through cell j + i, this cell is fully affected by the wave, hence

Ci+
j−1/2 = 1. If the wave ends up inside cell j + i, the cell is only partially affected, and

we get 0 < Ci+
j−1/2 = ĉj−1/2 − i < 1. We can perform the same analysis for negative

waves, giving the flux-difference splitting coefficients of the LTS-Roe scheme,
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(4.13a)Ci+ =





1 if i ≤ ĉ− 1

ĉ− i if ĉ− 1 < i < ĉ

0 if i ≥ ĉ

(4.13b)Ci− =





−1 if i ≤ − ĉ− 1

ĉ+ i if − ĉ− 1 < i < −ĉ

0 if i ≥ − ĉ

which we can write more compactly as

(4.14)Ci± = ±max(0,min(±ĉ− i, 1).

If we insert (4.14) into the expression for the numerical diffusion coefficient (4.6), we

can show that
(4.15)σRoe(ĉ) = α(1− α),

where α = ⌈|ĉ|⌉ − |ĉ|. Note that σRoe(ĉ) = 0 when ĉ ∈ Z. Lindquist et al. [16]

showed that the LTS-Roe scheme is the least diffusive LTS scheme that satisfies the TVD

conditions (4.10).

Note that the 3-point LTS-Roe scheme reduces to the original Roe scheme (3.18),

(4.16)C0± = C±

= ±max(0,±ĉ).

4.4.3 The LTS-Lax-Friedrichs scheme

The most diffusive LTS scheme that satisfies the TVD conditions (4.10), is obtained

when C±i
j−1/2 = C

±(i+1)
j−1/2 for all i and j. The LTS-Lax-Friedrichs scheme given in flux-

difference splitting formulation as

(4.17)Ci± =
1

2k
(ĉ± k),

is the only consistent scheme that satisfies this condition [16]. Here, we differentiate

between the local LTS-Lax-Friedrichs scheme, where k = ⌈|ĉ|⌉, and the global LTS-Lax-

Friedrichs scheme, where k = ⌈CFL⌉.

When we insert (4.17) into the expression for the numerical diffusion coefficient (4.6),

we get that

(4.18)σLF (ĉ) = k2 − ĉ2.

4.4.4 The LTS-HLL scheme

The HLL scheme is characterized as a scheme that splits discontinuities into two shock

waves. A LTS extension of the HLL scheme was recently developed by Prebeg et al. [19].

The flux-difference splitting coefficients of this scheme are given by:
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Ci± = ±
ĉ− cL

cR − cL
max (0,min(±cR − i, 1)±

cR − ĉ

cR − cL
max (0,min(±cL − i, 1)).

(4.19)

Note how similar this expression is to the corresponding expression for LTS-Roe

scheme (4.14). In the limit when cL → ĉ and cR → ĉ the LTS-HLL scheme reduce

to the LTS-Roe scheme.

If we insert (4.19) into the general expression for the numerical diffusion coefficient in

(4.6), Prebeg showed in [18] that

(4.20)σHLL(ĉ) = (cR − ĉ)(ĉ− cL) +
ĉ− cL

cR − cL
αR(1− αR) +

cR − ĉ

cR − cL
αL(1− αL),

where αL = ⌈|cL|⌉ − |cL| and αR = ⌈|cR|⌉ − |cR|.

4.5 Artificial flux functions

Another way of defining an approximate Riemann solver is by finding an approximate

equation on the form,

(4.21)qt + f̄(q; qL; qR)x = 0,

that, when solved exactly by the Godunov method, yields the same solution as if we solve

the exact problem using the approximate Riemann solver. We will refer to f̄(q; qL; qR) as

the artificial flux function.

4.5.1 The artificial flux framework

In order to find schemes that are consistent to the exact problem, f̄(q; qL; qR) must have

the following properties:

Property 1. The artificial flux function is Lipschitz continuous.

Property 2. The artificial flux function is consistent with the true flux function in the sense

(4.22a)f̄(qL; qL; qR) = f(qL),

(4.22b)f̄(qR; qL; qR) = f(qR).

Property 3. The artificial flux function is conservative when,

(4.23)

∫ qR

qL

f̄ ′(q; qL; qR)dq = f(qR)− f(qL).

In the next sections, we will mostly express the artificial flux function, f̄(q; qL; qR), in

terms of a relative flux functions F(θ) defined by the relationship

(4.24)f̄(θ(q; qL; qR)) = fL +
∆x

∆t
F(θ)∆,
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where

(4.25)θ =
q − qL

qR − qL
,

and ∆ = qR − qL. This formulation is practical, because an artificial flux function

f̄(q; qL; qR) always satisfies property 2 and property 3 as long as

(4.26a)F(0) = 0,

(4.26b)F(1) = ĉ.

Note that for any relative flux functions, the chain rule gives

(4.27)f̄ ′(q; qL; qR) =
∆x

∆t
F ′(θ),

thus, the function F ′(θ) is a non-dimensional wave speed, whose size determine the num-

ber of cells a wave will travel in one time step.

4.5.2 Some relative flux functions

In (4.24) we defined the relative flux function F(θ). In this section we look at some special

relative flux functions and show how these relate to known approximate Riemann solvers.

The Roe scheme

If we choose F(θ) to be linear,

(4.28)F(θ) = a0 + a1θ,

there is only one choice that satisfies (4.26), namely a0 = 0 and a1 = ĉ. This corresponds

to the artificial flux function

(4.29)f̄(q; qL; qR) = λ̂q,

which is the same linearization as in the Roe scheme. The Roe scheme has a constant

non-dimensional wave speed, as illustrated in 4.1.

The HLL scheme

Another interesting choice of F is a continuous function consisting of two piecewise linear

functions

(4.30)F(θ) =

{
cLθ if θ ≤ θ∗

cLθ
∗ + cR(θ − θ∗) if θ > θ∗

= cLθ + (cR − cL)max(0, θ − θ∗),

where cL and cR are the slopes of the two linear functions and θ∗ is the point of intersec-

tion. When enforcing the consistency condition (4.26) we get that
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F ′(θ)

θ

ĉ

Figure 4.1: The non-dimensional wave speed of the Roe scheme

(4.31)θ∗ =
cR − ĉ

cR − cL
.

which corresponds to QHLL in (3.26) since

(4.32)
q∗ = qL + (qR − qL)θ

∗

=
sRqR − sLqL + f(qL)− f(qR)

sR − sL
.

The non-dimensional wave speed of the HLL schemes consist of two piecewise con-

stant values,

(4.33)F ′(θ) = cL + (cR − cL)H(θ − θ∗),

where H(x) is the Heaviside function. This is illustrated in figure 4.2.

The Solberg scheme

Solberg [23] proposed a LTS scheme in his master’s thesis, which he denoted the Constant-

Diffusion-k̂ (CDk̂) scheme. We will now express a similar scheme in artificial flux formu-

lation, denoted here as the Solberg scheme.

Let the relative flux function F(θ) be a second order polynomial,

(4.34)F(θ) = a0 + a1θ + a2θ
2.
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Figure 4.2: The non-dimensional wave speed of the HLL scheme

When enforcing the consistency conditions (4.26), we find that a0 = 0, a1 = ĉ − a2
and a2 = k̂, where k̂ is a free parameter. With these restrictions, we get a one parameter

scheme

(4.35)F(θ) = (ĉ− k̂)θ + k̂θ2,

with the non-dimensional wave speed

(4.36)F ′(θ) = ĉ− k̂ + 2k̂θ,

which is illustrated in figure 4.3. If we denote the lowest and highest non-dimensional

wave speed in the Solberg scheme as

(4.37a)F ′(0) = cL

= ĉ− k̂,

(4.37b)F ′(1) = cR

= ĉ+ k̂,

we can think of the Solberg scheme as a HLL-type scheme, but where the non-dimensional

wave speed changes linearly between cL and cR in stead of through a discontinuity.

Note that k̂ can be any positive number, while Solberg’s original CDk̂ scheme was

restricted by k̂ ∈ Z. We will discuss the Solberg scheme further in section 5.4.2.
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Figure 4.3: The non-dimensional wave speed of the Solberg scheme

4.5.3 The Godunov method for relative flux functions

We can find the flux-difference splitting coefficients for any scheme defined by a relative

flux function, by replacing the true flux function in the Godunov method (4.11) by an

artificial flux function on the form (4.24). This yields

(4.38a)[Ci+∆] = ∆+M
(
(F(θ)− (i+ 1)θ)∆

)
−M

(
(F(θ)− iθ)∆

)
,

(4.38b)[Ci−∆] = M
(
(F(θ) + iθ)∆

)
−M

(
(F(θ) + (i+ 1)θ)∆

)
.

Since the terms inside the operator M are multiplied by ∆, we can simplify the oper-

ator M as

(4.39)
M(z(θ)∆) =





min
θ∈[0,1]

(z(θ)|∆|) if ∆ > 0,

max
θ∈[0,1]

(z(θ)(−|∆|)) if ∆ < 0.

= min
θ∈[0,1]

(z(θ))∆,

where z(θ) is an arbitrary function.

Using this simplification, we can divide by ∆ in (4.38) to obtain

(4.40a)Ci+ = 1 + min
θ∈[0,1]

(
(F(θ)− (i+ 1)θ)

)
− min

θ∈[0,1]

(
(F(θ)− iθ)

)
,

(4.40b)Ci− = min
θ∈[0,1]

(
(F(θ) + iθ)

)
− min

θ∈[0,1]

(
(F(θ) + (i+ 1)θ)

)
.
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4.5.4 Similarity solutions

A similarity solution can be written as

(4.41)q(x, t) = q̃(ζ)

where

(4.42)ζ =
x− x0

t− t0
.

If the similarity solution satisfies a scalar conservation law, we get that

(4.43)f ′(q̃)q̃′(ζ) = ζq̃′(ζ),

which for q̃′(ζ) 6= 0 reduces to
(4.44)f ′(q̃) = ζ.

Hence, if the derivative of an artificial flux function f̄ ′(q) is an injective function, we

can write the similarity solution in terms of ζ,

(4.45)q̃(ζ) = (f̄ ′)−1(ζ).
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Chapter 5
A new three parameter LTS scheme

As mentioned in section 4.5.2, the Solberg scheme can be thought of as a HLL-type

scheme, where the non-dimensional wave speeds, cL and cR, are connected by a straight

line in stead of by a discontinuity. Can we make a similar scheme that take in arbitrary cL
and cR?

Starting from the non-dimensional wave speed of the HLL scheme, we can connect cL
and cR by a linear function in the interval θ ∈ [θ∗ − φ, θ∗ + φ],

(5.1)F ′(θ) =





cL if θ ≤ θ∗ − φ,

a1 + a2θ if θ∗ − φ < θ < θ∗ + φ,

cR if θ ≥ θ∗ + φ,

where cL, cR and φ are free parameters. We have illustrated this function in figure 5.1.

There is only one choice of a1 and a2 that makes F ′(θ) continuous, that is

(5.2)F ′(θ) =





cL if θ ≤ θ∗ − φ,
cR+cL

2 + cR−cL
2φ (θ − θ∗) if θ∗ − φ < θ < θ∗ + φ,

cR if θ ≥ θ∗ + φ,

where we have inserted a1 = cR+cL
2 − cR−cL

2φ θ∗ and a2 = cR−cL
2φ . By integrating (5.2)

we get that the relative flux function is given by

(5.3)F(θ) =





cLθ if θ ≤ θ∗ − φ,(
cR+cL

2 − cR−cL
2φ θ∗

)
θ + cR−cL

4φ θ2 if θ∗ − φ < θ < θ∗ + φ,

cLθ
∗ + cR(θ − θ∗) if θ ≥ θ∗ − φ.

To ensure that the scheme is consistent, we enforce the conditions in (4.26), which

yields

(5.4)θ∗ =
cR − ĉ

cR − cL
.
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Figure 5.1: The non-dimensional wave speed of the LTS-HLLφ scheme

We have now created a new three parameter LTS scheme, based on the LTS-HLL

scheme and the Solberg scheme, which we will denote as the LTS-HLLφ scheme.

5.1 Similarity solution

Since the non-dimensional wave speeds of the LTS-HLLφ scheme (5.2) is one-to-one for

θ ∈ (θ∗ − φ, θ∗ + φ), we can express the scheme as a similarity solution in this interval

by using (4.45). The similarity solution of the LTS-HLLφ scheme is then

(5.5)q̃(ζ) =





qL if ζ ≤ sL,

2φ qR−qL
sR−sL

(
ζ − sR+sL

2

)
+ qHLL if sL < ζ < sR,

qR if ζ ≥ sR,

which we can also express in one line as

(5.6)
q̃(ζ) = qL +H (ζ − sL)

(
2φ

qR − qL

sR − sL

(
ζ −

sR + sL

2

)
+ qHLL − qL

)

−H (ζ − sR)

(
2φ

qR − qL

sR − sL

(
ζ −

sR + sL

2

)
+ qHLL − qR

)

using the Heaviside function H(x).
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5.2 The flux-difference splitting coefficients

The flux-difference splitting coefficients of the LTS-HLLφ scheme can be written as

Ci± = ±

[
cR − ĉ

cR − cL

+ φ
−(cR + cL)± 2i±max (0,min(±cL − i, 1))

cR − cL

]
max(0,min(±cL − i, 1))

±

[
ĉ− cL

cR − cL

− φ
−(cR + cL)± 2i±max (0,min(±cR − i, 1))

cR − cL

]
max(0,min(±cR − i, 1)).

(5.7)

Proof. The LTS-HLLφ Riemann solver can be written as

(5.8)
Q̃(ζ) = Qj−1 +H (ζ − sL)

(
2φ

Qj −Qj−1

sR − sL

(
ζ −

sR + sL

2

)
+QHLL −Qj−1

)

−H (ζ − sL)

(
2φ

Qj −Qj−1

sR − sL

(
ζ −

sR + sL

2

)
+QHLL −Qj

)

which is equivalent to

(5.9)
Q̃(ζ) = Qj−1 +

H (ζ − sL)

sR − sL

(
2φ

(
ζ −

sR + sL

2

)
+ sR − λ̂

)
(Qj −Qj−1)

−
H (ζ − sL)

sR − sL

(
2φ

(
ζ −

sR + sL

2

)
+ sL − λ̂

)
(Qj −Qj−1)

From [16], we know that for i ≤ 0 we have

(5.10)

∫ i∆x
∆t

(i−1)∆x
∆t

Q̃(ζ)dζ =
∆x

∆t
Qj−1 −

∆x

∆t
C(−i)− (Qj −Qj−1) .

Using the identities,

(5.11a)

∫
H (x− a) dx = max(x− a, 0),

(5.11b)

∫
xH (x− a) dx =

1

2
max(x− a, 0)2 + amax(x− a, 0),

(5.11c)max(x, 0)−max(x− a, 0) = max (0,min(x, a)) ,

max(x, 0)2 −max(x− a, 0)2 = [−2x−max (0,min(x, a))]max (0,min(x, a)) ,

(5.11d)

we can solve the integral in (5.10), and get that
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Ci− = −

[
cR − ĉ

cR − cL

+ φ
−(cR + cL)− 2i−max (0,min(−cL − i, 1))

cR − cL

]
max (0,min(−cL − i, 1))

−

[
ĉ− cL

cR − cL

− φ
−(cR + cL)− 2i−max (0,min(−cR − i, 1))

cR − cL

]
max (0,min(−cR − i, 1)) .

(5.12)

Using the same procedure, we can find a similar expression for Ci+.

By inserting the coefficients (5.7) into the TVD conditions (4.10), we can show that

the LTS-HLLφ scheme is TVD if

(5.13)0 ≤ φ ≤ min(θ∗, 1− θ∗).

5.3 Numerical diffusion coefficient

We can calculate the numerical diffusion of the LTS-HLLφ scheme by inserting the flux-

difference splitting coefficients (5.7) into the expression for the numerical diffusion coef-

ficient (4.6). For the 3-point LTS-HLLφ scheme, this yields

(5.14)σHLLφ(ĉ) = σHLL(ĉ)−
φ

cR − cL
(cR|cL|−|cR|cL) ,

where σHLL(ĉ) is given in (4.20). Note that the numerical diffusion is identical to the

numerical diffusion of the LTS-HLL scheme when cR and cL have equal signs. If cR and

cL have different signs, the numerical diffusion decreases proportionally to φ, because

cR|cL|−|cR|cL > 0. We can therefore conclude that for a 3-point scheme σHLLφ ≤
σHLL.

5.4 Parameter study

In this section, we show how other LTS schemes can be written as special cases of the

LTS-HLLφ scheme, by selecting appropriate parameters. We also discuss which param-

eters give the most robust scheme. A summary of the different LTS schemes, and the

corresponding parameters are listed in table 5.1.

5.4.1 Ceiling schemes

We define a ceiling scheme as a LTS-HLLφ scheme with parameters cR = k and cL = −k,

where k = ⌈|ĉ|⌉. For a ceiling scheme, the flux-difference splitting coefficients simply

reduce to
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(5.15)Ci± =
1

2k
[ĉ± k ∓ φ(2i+ 1)] , ∀i < k.

Inserting this into (4.6), we find that the numerical diffusion of a ceiling scheme is

(5.16)σHLLφ = k2 − ĉ2 −
φ

3
(4k2 − 1).

Lax-Friedrichs

By inspecting the flux difference coefficients (5.15), we see that the local LTS-Lax-Friedrichs

scheme is the ceiling scheme with parameter φ = 0.

Lax-Wendroff

An interesting 3-point scheme is the Lax-Wendroff scheme. It is interesting because it is

the only second order 3-point scheme, and the least diffusive scheme that is linearly stable.

We can define the Lax-Wendroff scheme as a 3-point ceiling scheme, by finding a φ

that gives σ(ĉ) = 0. From (5.16), we see that the diffusion is zero when,

(5.17)φ = 1− ĉ2.

The flux-difference splitting coefficients in (5.15) reduce in this case to,

(5.18)C± =
1

2
(ĉ± ĉ2),

which are identical to the coefficients of the Lax-Wendroff scheme [15].

We can generalize this procedure for a (2k + 1)-point ceiling scheme, and find a LTS

extension of the Lax-Wendroff scheme. The (2k+1)-point ceiling scheme that gives zero

numerical diffusion has the parameter

(5.19)φ = 3
k2 − ĉ2

4k2 − 1
,

which gives the following flux-difference splitting coefficients for the LTS-Lax-Wendroff

scheme

(5.20)C±i =
1

2k

[
ĉ± k ∓ 3

k2 − ĉ2

4k2 − 1
(2i+ 1)

]
, ∀i < k.

Not all schemes are ceiling schemes

By choosing different φ, we can create ceiling schemes with arbitrary numerical diffusion.

However, more than one scheme can give the same numerical diffusion. For instance, if

we choose

(5.21)φ = 3
k − ĉ

2k + 1
,

we get a scheme with the same numerical diffusion as the LTS-Roe scheme. But if we in-

sert this parameter into (5.15), we do not get the same flux-difference splitting coefficients

as for the LTS-Roe scheme, unless k = 1. Noting this, we emphasize that (5.20) is not a

unique LTS extension of the Lax-Wendroff scheme.
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5.4.2 The Solbergφ scheme

Solberg [23] proposed a class of schemes, denoted CDk̂−φ, that in the LTS-HLLφ frame-

work correspond to choosing cL = ĉ − k̂ and cR = ĉ + k̂, where k̂ ∈ Z, but where φ

is a free parameter. With this choice of parameters, Solberg showed that the numerical

diffusion coefficient reduces to

(5.22)σSolbergφ = (1− 2φ)

(
4k̂2 − 1

6
+ α− α2

)
+

2k̂2 + 1

6
.

Note that Solberg used a slightly different parameter, namely, φSolberg = φ

k̂
. The pa-

rameter k̂ refers to the necessary extension of the computational stencil (2(⌈|ĉ|⌉+ k̂)+1).

We can generalize this scheme for all k̂ > 0, since the scheme is simply a special case

of the LTS-HLLφ scheme. The computational stencil is then (2⌈|ĉ|+k̂⌉+1). We will refer

to this generalization of the CDk̂−φ scheme as the Solbergφ scheme. The flux-difference

splitting coefficients of the Solbergφ scheme is

Ci± = ±
1

2

[
max

(
0,min(±(ĉ− k̂)− i, 1)

)
+max

(
0,min(±(ĉ+ k̂)− i, 1)

)]

±
φ

k̂

[
−ĉ± i±

1

2
max

(
0,min(±(ĉ− k̂)− i, 1)

)]
max

(
0,min(±(ĉ− k̂)− i, 1)

)

∓
φ

k̂

[
−ĉ±i±

1

2
max

(
0,min(±(ĉ+ k̂)−i, 1)

)]
max

(
0,min(±(ĉ+ k̂)−i, 1)

)
.

(5.23)

From the condition in (5.13), we can show that the Solbergφ scheme is TVD when

φ ∈ [0, 1
2 ].

In figure 5.2, we have performed a numerical study of the numerical diffusion coef-

ficient of the Solbergφ scheme. The figure suggests that numerical diffusion increases

with increasing k̂, and that the scheme is identical to the LTS-Roe scheme when k̂ → 0.

Increasing φ towards φ = 1
2 , we note that numerical diffusion decreases and is less depen-

dent on Courant number.

The optimal choice of parameters remains an open problem. Adding numerical dif-

fusion removes oscillations, but it also reduces the accuracy. Solberg suggested using

k̂ ∝ CFL, as oscillations are increasingly problematic at higher Courant numbers. How-

ever, we have no a priori knowledge of the appropriate proportionality constant of a given

Riemann problem.

Here, we suggest that the necessary numerical diffusion is also related to the strength

of the discontinuity. We take this into account by defining the parameter k̂ in terms of the

difference between the highest and lowest wave velocity in the Riemann problem. For the

Riemann problem located at xj−1/2, we define

(5.24a)Cmax,j−1/2 =
∆t

∆x
max(λm(Qj−1), λ̂

m
j−1/2, λ

m(Qj)),

(5.24b)Cmin,j−1/2 =
∆t

∆x
min(λ1(Qj−1), λ̂

1
j−1/2, λ

1(Qj)),

(5.24c)k̂∗j−1/2 =
√
Cmax,j−1/2 − Cmin,j−1/2.
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Figure 5.2: The numerical diffusion coefficient of the Solberg scheme as a function of Courant

number.
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LTS scheme φ cL cR

LTS-Roe − ĉ ĉ

LTS-Lax-Friedrichs 0 −k k

LTS-Lax-Wendroff 3 k2−ĉ2

4k2−1 −k k

Solberg 1
2 ĉ− k̂ ĉ+ k̂

Solberg∗ 1
2 ĉ− k̂∗ ĉ+ k̂∗

Solbergφ − ĉ− k̂ ĉ+ k̂

LTS-HLLE 0 E E

LTS-HLLEφ∗ φ∗ E E

Table 5.1: Different LTS schemes expressed as special cases of the LTS-HLLφ scheme. A dash

indicates that the variable is free. E refers to Einfeldt’s choice, defined in (3.32).

The Solbergφ scheme with the parameters k̂ = k̂∗ and φ = 1
2 will be referred to as

the Solberg∗ scheme. By choosing these parameters, we are effectively adding numerical

diffusion proportionally to Courant number, since σ ∼ k̂2 from (5.22), and dependence on

α is minimal.

5.4.3 The LTS-HLLEφ∗ scheme

In general, we can choose cL, cR and φ arbitrarily. A simple way to apply the scheme to

a system of equations is to use Einfeldt’s choice (3.32) of sL and sR, to select cL and cR.

When φ = 0, this reduces to the LTS-HLLE scheme. A well known shortcoming of the

HLLE scheme, is that it is very diffusive on the contact wave of the Euler equations [25].

In order to reduce this problem, we suggest choosing the highest possible value of φ that

satisfies the TVD conditions:

(5.25)φ∗ = min(θ∗, 1− θ∗),

since the analysis in figure 5.2b suggests that high values of φ give low numerical diffusion.
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Chapter 6
Numerical simulations

In this section we perform numerical simulations on the inviscid Burgers’ equation and

the Euler equations for different LTS schemes.

In the scalar tests, we check if the different schemes give accurate and entropy satisfy-

ing solutions.

We will run six tests for the Euler equations; Toro’s five tests and the Woodward-

Colella blast-wave problem [24, 26]. The tests are run at different Courant numbers, for

the LTS-Roe scheme, the LTS-HLLEφ∗ scheme and the Solberg∗ scheme. The purpose of

these tests is to check the robustness of the new schemes in different scenarios.

In all the figures 6.1 to 6.34, the solutions are compared against reference solutions

(dashed line) obtained from a refined grid (N = 10000) at CFL = 0.99. For the transonic

rarefaction test and Toro’s test 2, the reference solution is calculated using a second order

accurate HLLE scheme, while a second order accurate Roe scheme was used for the other

reference solutions. All numerical simulations in this thesis are calculated using adaptive

time stepping. Most of the tests are presented in a similar fashion in [1], and we refer to

this publication for comparisons.

6.1 The inviscid Burgers’ equation

We recall from (2.14) that the inviscid Burgers’ equation is given by

(6.1)qt +

(
1

2
q2
)

x

= 0,

which has the Roe averaged characteristic speed of

(6.2)λ̂ =
1

2
(qR + qL).

Although the Burgers’ equation is simple, certain initial value problems can cause

problems. In this section we will study the initial data in table 6.1.
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Test case qL qM qR x1 x2

1. Transonic rarefaction -1 - 1 0.5 0.5

2. Square pulse 0 1 0 0.3 0.6

3. Double shock 1 0.5 0 0.1 0.2

Table 6.1: Summary of test cases for the Burgers’ equation

6.1.1 Transonic rarefaction

From the Lax entropy condition (2.25), we can show that a rarefaction wave is the correct

entropy satisfying solution for this initial data. The rarefaction wave is transonic, because

the characteristic speed changes sign across the discontinuity. Since qL = −qR, the Roe

speed is zero at x = 0.5. The solution from the LTS-Roe scheme is therefore simply

a stationary shock, regardless of CFL-number or grid resolution, because the LTS-Roe

scheme has no numerical diffusion when ĉ = 0. We see this solution in figures 6.1a

and 6.1b.

The solution in figure 6.1d is obtained during a single time step, using the LTS-HLLE

scheme. We see that this method splits the discontinuity into two shocks moving at dif-

ferent speeds. Since the solution in figure 6.1c is obtained using four time steps, the final

solution consists of 16 shocks, that combined resemble a rarefaction wave.

In figure 6.1f we obtain the exact solution, because the parabolic artificial flux function

in the LTS-HLLEφ∗ scheme mimics the true flux function of the Burger’s equation. Some

errors are introduced because of averaging when using multiple time steps, as we can see

from figure 6.1e.

The global Lax-Friedrichs scheme also successfully solves the transonic rarefaction,

but with very low accuracy due to high numerical diffusion, as we see from figures 6.2a

and 6.2b. A better option is therefore the Solberg∗ scheme, which solves the rarefaction

wave, but accurately after a few time steps, according to figures 6.2c and 6.2d. Note that

solving the problem using the Solberg scheme with parameter k̂ = (k̂∗)2 yields the same

solution as when we use the LTS-HLLEφ∗ scheme (see figures 6.2e and 6.2f).

6.1.2 Square Pulse

The solution of the square pulse test case consists of a rarefaction wave starting at x1 =
0.3m, and a shock wave starting at x2 = 0.6m. Since we expect different solutions for the

two discontinuities, it is a good test for confirming that the Lax entropy condition (2.25) is

satisfied.

We know that the LTS-Roe scheme gives the shock solution for all discontinuities,

unless some diffusion is present. When the local Courant number is an integer, we have

zero diffusion, and can never produce an entropy satisfying solution, regardless of grid

resolution, as we can see from figures 6.3a and 6.3b.

The LTS-HLLE and LTS-HLLEφ∗ scheme successfully distinguish the shock wave

and the rarefaction wave, with only small errors. These errors appear to diminish after

grid refinement, which suggests that the schemes yield entropy satisfying solutions (see

figures 6.3c to 6.3f).
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The local LTS-Lax-Friedrichs scheme is also entropy violating, as we can see from

figures 6.2b and 6.4a. The Solberg∗ scheme and the Solberg scheme with parameter k̂ =
(k̂∗)2 yields similar, entropy satisfying solutions, as we can see from figures 6.4c to 6.2f.

Note that the Solberg scheme with k̂ = (k̂∗)2 gives the same solution as LTS-HLLEφ∗ for

the rarefaction wave, but adds some additional diffusion on the shock wave.

6.1.3 Double shock

This initial data consists of two shock waves traveling at different speeds. The first wave,

starting at x1 = 0.1m is traveling at speed s1 = 0.75m/s, while the second wave, starting

at x2 = 0.2m, is traveling at speed s2 = 0.25m/s. Thus, we expect these two shocks to

merge at x3 = 0.25m at t = 0.2s.

However, if we choose ∆t > ∆tcrit = 0.2s, we cannot capture the shocks merging,

and the first wave will simply overtake the second wave. Something even more interesting

happens if ∆t = 2∆tcrit = 0.4s. At this time step, the first and second wave has exactly

the same relative distance as initially, thus the initial condition is simply transported. In

figure 6.5 we show the solutions at t = 0.4s, t = 0.8s and t = 1.2s, using ∆t = 0.4s.

From figure 6.5a, we see that the LTS-Roe scheme simply translates the discontinuity,

because of the phenomenon described in the previous paragraph. In fact, the same phe-

nomenon can also be observed for the LTS-HLLE scheme and the LTS-HLLEφ∗ scheme,

because all of these methods solve shocks with zero diffusion when the Courant number

is integer.

If we add some numerical diffusion, we can gradually merge the shocks. In the Solberg

scheme, we can add an arbitrary amount of diffusion. We see from figure 6.5 that the shock

waves merge after fewer time steps when we increase k̂ , at the cost of smearing out the

solutions.
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Figure 6.1: Transonic rarefaction. t = 0.2, N = 100
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Figure 6.2: Transonic rarefaction. t = 0.2, N = 100
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Figure 6.3: Square pulse. Solution at t = 0.2s obtained at CFL= 2.5.
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(f) N=1000, Solberg, k̂ = (k̂∗)2

Figure 6.4: Square pulse. Solution at t = 0.2s obtained at CFL= 2.5.
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Figure 6.5: Double shock. N = 1000, CFL= 400, → ∆t = 0.4s
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6.2 The Euler equations

The Euler equations is a nonlinear system of hyperbolic conservation laws, and is a com-

mon model for gas dynamics. In differential form, the system is given by

(6.3)




ρ

ρu

E




t

+




ρu

ρu2 + p

(E + p)u




x

=



0
0
0


 ,

where ρ is the density, u is the velocity, E is the energy density and p is the pressure of a

fluid. If we assume ideal gas, we can use the ideal gas law

(6.4)p = (γ − 1)

(
E −

1

2
ρu2

)
,

where the ratio of specific heats, γ is a fluid property. For air γ = 1.4, which will be used

in this section. For further details on eigenstructure and Roe speeds of the Euler equations,

we refer to chapter 14 in [15].

Five tests for the Euler equations were proposed by Toro in [24]. The initial data of

these test cases are given in primitive variables in table 6.2. We will also consider the

Woodward-Colella blast-wave problem [26], which is presented in section 6.2.6.

Test ρL uL pL ρR uR pR x0 t

1 1.0 0.75 1.0 0.125 0.0 0.1 0.3 0.2

2 1.0 -2.0 0.4 1.0 2.0 0.4 0.5 0.15

3 1.0 0.0 1000 1.0 0.0 0.01 0.5 0.012

4 5.9992 19.5975 460.894 5.9992 -6.19633 46.095 0.5 0.035

5 1.0 -19.5975 1000 1.0 -19.59745 0.01 0.8 0.012

Table 6.2: Summary of Toro’s tests for the Euler equations

These test cases are common benchmark tests for assessing robustness, accuracy and

computational cost of a numerical method. We will test the performance of the LTS-

HLLEφ∗ scheme and the Solberg∗ scheme, and compared to the LTS-Roe scheme.

6.2.1 Toro’s test 1

The solution of this test case consists of a right shock wave, a right contact wave and a left

sonic rarefaction. Because the rarefaction wave is sonic, this particular test case is useful

for testing if the numerical scheme is entropy satisfying. The results of this test are shown

in figures 6.6 to 6.11.

Recall that the Roe scheme has no numerical diffusion when the characteristic speed

is zero, and will therefore yield entropy violations in the rarefaction wave. Note however

that for CFL= 4, the LTS-Roe scheme yields a pretty accurate solution, with only a small

entropy violation and very sharp shock and contact waves. When we increase the CFL-

number further, oscillations start to appear.
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The LTS-HLLEφ∗ scheme yields entropy satisfying solutions, with pretty high accu-

racy up to CFL= 8. At very high CFL-numbers we get some oscillations, but they are less

severe than the ones obtained from the LTS-Roe scheme. The scheme is quite diffusive on

the contact wave, but solves shocks as sharp as the LTS-Roe scheme.

As expected, the Solberg∗ scheme is more diffusive at shocks, compared to the other

schemes. However, the solutions appear to be entropy satisfying and almost smooth for all

the tested Courant numbers.

6.2.2 Toro’s test 2

In test case 2, we have two symmetric rarefaction waves moving away from each other,

with a trivial contact wave between. In the centre, between the rarefaction waves, the

pressure is near vacuum. This test is therefore good for checking a scheme’s positivity

preserving properties. The results of this test are shown in figures 6.12 to 6.15.

Both the LTS-Roe scheme and the LTS-HLLEφ∗ scheme failed to produce a solution

for this test case, because negative values of ρ or p enter the intermediate calculations, and

yield complex values of Q.

However, the LTS-HLLE scheme yield relatively accurate results for this near-vacuum

test, as previously reported by [18]. This can suggest that the LTS-HLLE scheme is more

robust than the LTS-HLLEφ∗ scheme in cases with very low pressure.

The Solberg∗ scheme suffered from the same problem as the LTS-Roe scheme and

the LTS-HLLEφ∗ scheme with our usual parameter. However, the method is stable for

sufficiently high values of k̂ as shown in figures 6.14 and 6.15. Although these solutions

are nice and smooth, we get very low accuracy for CFL> 1.

6.2.3 Toro’s test 3

This test case consists of a left rarefaction wave, a right contact wave and a right rarefac-

tion. The high pressure difference in the Riemann problem gives rise to strong waves. The

results of this test are shown in figures 6.16 to 6.21.

As in test 1, we see that the LTS-Roe scheme yields an entropy violating solution at

the rarefaction wave, but this time it is because the local Courant number is integer, not

because it is zero. The solutions at higher Courant numbers are quite accurate for the

shock and rarefaction wave, but contain strong oscillations in between. The LTS-HLLEφ∗

yields entropy satisfying solutions, that are oscillatory at very high Courant numbers.

The Solberg∗ scheme also gives some oscillations at very high Courant numbers, but

the solution is still quite smooth and accurate compared to the other schemes. We could

remove the oscillations completely, by adding even more numerical diffusion, but this

would also reduce the accuracy.

6.2.4 Toro’s test 4

In this test case, all the characteristic speeds are positive, and the solution consists of two

shocks moving to the right, with a contact wave in between. The results of this test are

displayed in figures 6.22 to 6.27.
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Both the LTS-Roe scheme and the LTS-HLLEφ∗ scheme yield severe oscillations at

high Courant numbers, while the Solberg∗ scheme performs well, with only small oscil-

lations at very high Courant numbers. The LTS-Roe scheme gives the sharpest resolution

on the contact discontinuity.

6.2.5 Toro’s test 5

Test 5 consist of a right moving shock wave, a stationary contact wave and a left moving

rarefaction wave. The results of this test are displayed in figures 6.28 to 6.33.

As in previous tests, both the LTS-Roe scheme and the LTS-HLLEφ∗ scheme yield so-

lutions containing strong oscillations. LTS-Roe give the sharpest resolution for the contact

wave, but suffer from entropy violations on the rarefaction wave. The Solberg∗ scheme

yields nice and smooth solutions, with only minor oscillations at very high Courant num-

bers.

Note that the LTS-Roe scheme lost positivity for CFL= 16, and is therefore calculated

at CFL= 15.8 in figure 6.29.

6.2.6 Woodward-Colella blast-wave problem

As a last test, we will consider the Woodward-Colella blast-wave problem [26]. The initial

data for this test is given by the pressure distribution

(6.5)p(x, 0) =





1000 if x < 0.1

0.01 if 0.1 < x < 0.9

100 if x > 0.9

,

and uniform density and velocity of ρ(x, 0) = 1.0 and u(x, 0) = 0 respectively. The

solution is evaluated at t = 0.038s with reflective boundary conditions. The main purpose

of this test is to evaluate how well the schemes can handle colliding waves, and more

complex problems.

We will also use this test to illustrate how we can increase the accuracy of the scheme,

by adjusting the scheme to be second order accurate away from discontinuities. Here we

use the modified flux and limiting approach by Harten [7]. We refer to [1] for more details.

The density solution is shown in figure 6.34, for the first and second order LTS-Roe,

LTS-HLLEφ∗ and Solberg∗ schemes.

For the first order schemes, we observe that we have increased accuracy at CFL= 5,

compared to CFL= 1. We see that the Solberg∗ scheme is the most diffusive scheme,

while the LTS-Roe scheme is the sharpest.

We observe that the second order accurate schemes resembles the reference solution

much more accurately than the first order schemes. Here, we also observe that higher

Courant numbers yield sharper solutions, and that the LTS-Roe scheme and the Solberg∗

scheme are the least and most diffusive schemes.
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Figure 6.6: Numerical solutions of Toro’s test 1 using LTS-Roe with N = 200.
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Figure 6.7: Numerical solutions of Toro’s test 1 using LTS-Roe with N = 200.
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Figure 6.8: Numerical solutions of Toro’s test 1 using LTS-HLLEφ∗ with N = 200.
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Figure 6.9: Numerical solutions of Toro’s test 1 using LTS-HLLEφ∗ with N = 200.
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Figure 6.10: Numerical solutions of Toro’s test 1 using Solberg∗ with N = 200.
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Figure 6.11: Numerical solutions of Toro’s test 1 using Solberg∗ with N = 200.
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Figure 6.12: Numerical solutions of Toro’s test 2 using LTS-HLLE with N = 200.
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Figure 6.13: Numerical solutions of Toro’s test 2 using LTS-HLLE with N = 200.
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Figure 6.14: Numerical solutions of Toro’s test 2 using the Solberg scheme with N = 200.
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Figure 6.15: Numerical solutions of Toro’s test 2 using the Solberg scheme with N = 200.
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Figure 6.16: Numerical solutions of Toro’s test 3 using LTS-Roe with N = 200.
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Figure 6.17: Numerical solutions of Toro’s test 3 using LTS-Roe with N = 200.
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Figure 6.18: Numerical solutions of Toro’s test 3 using LTS-HLLEφ∗ with N = 200.
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Figure 6.19: Numerical solutions of Toro’s test 3 using LTS-HLLEφ∗ with N = 200.
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Figure 6.20: Numerical solutions of Toro’s test 3 using Solberg∗ with N = 200.
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Figure 6.21: Numerical solutions of Toro’s test 3 using Solberg∗ with N = 200.
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Figure 6.22: Numerical solutions of Toro’s test 4 using LTS-Roe with N = 200.
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Figure 6.23: Numerical solutions of Toro’s test 4 using LTS-Roe with N = 200.
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Figure 6.24: Numerical solutions of Toro’s test 4 using LTS-HLLEφ∗ with N = 200.
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Figure 6.25: Numerical solutions of Toro’s test 4 using LTS-HLLEφ∗ with N = 200.
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Figure 6.26: Numerical solutions of Toro’s test 4 using Solberg∗ with N = 200.
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Figure 6.27: Numerical solutions of Toro’s test 4 using Solberg∗ with N = 200.
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Figure 6.28: Numerical solutions of Toro’s test 5 using LTS-Roe with N = 200.
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Figure 6.29: Numerical solutions of Toro’s test 5 using LTS-Roe with N = 200.
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Figure 6.30: Numerical solutions of Toro’s test 5 using LTS-HLLEφ∗ with N = 200.
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Figure 6.31: Numerical solutions of Toro’s test 5 using LTS-HLLEφ∗ with N = 200.
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Figure 6.32: Numerical solutions of Toro’s test 5 using Solberg∗ with N = 200.
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Figure 6.33: Numerical solutions of Toro’s test 5 using Solberg∗ with N = 200.
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Figure 6.34: Numerical solutions of density for the Woodward-Colella blast-wave problem, with

N = 1000.
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Chapter 7
Conclusion

In this thesis, we presented large time step methods for hyperbolic conservation laws.

We studied different discretization schemes, and compared their robustness and numerical

diffusion. The main results are given below.

7.1 Artificial flux function framework

The artificial flux function framework, presented in section 4.5, gives us a new way of

describing LTS schemes. We showed how finding the artificial flux function of a 3-point

scheme can yield a natural large time step extension of the scheme, through the LTS-

Godunov method. In this framework we can easily construct new, sophisticated schemes.

7.2 The new LTS scheme

A new LTS scheme, denoted LTS-HLLφ, was presented in chapter 5. By changing the

three parameters of the scheme, we showed that the scheme is a generalization of the

following LTS schemes: LTS-Roe, LTS-HLL, LTS-Lax-Friedrichs, LTS-Lax-Wendroff,

the Solberg scheme and the Solbergφ scheme. The flux-difference splitting coefficients

of the LTS-HLLφ scheme in (5.7), is the main original result from this thesis. From this

result, we derived the flux-difference splitting coefficients for the Solbergφ scheme. We

also suggested a method for selecting the parameters of the Solbergφ scheme.

7.3 Numerical simulations

Numerical simulations on the Burgers’ equation demonstrated the limitations of many of

the current LTS methods with regard to entropy violations and wave interaction treatment.

If we can add the right amount of numerical diffusion in the LTS-HLLφ scheme, it seems

like the scheme has the potential to yield very accurate, entropy satisfying solutions for
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different initial data. We also saw that we can use numerical diffusion in shocks, to absorb

errors that appear due to wave interactions.

Numerical simulations on the Euler equations demonstrated that the LTS-Roe scheme

give strong oscillations for systems of equations, for many different test cases. The prob-

lem is increasingly severe for high Courant numbers, and can lead to lack of positivity

in low pressure regions of the domain. Although the LTS-HLLEφ∗ schemes yielded en-

tropy satisfying solutions, it did little to reduce the oscillations. Only the Solberg∗ scheme

yielded robust results for all Courant numbers, and the suggested procedure for selecting

parameters gave a good trade off between accuracy and robustness in most of the presented

test cases. However, it does not guaranty robustness, as Toro’s test case 2 demonstrated.

By adding additional diffusion, we were able to make the Solberg scheme more robust,

although more inaccurate.

7.4 Future prospects

The artificial flux function framework opens up for endless rapid prototyping of new LTS

schemes, as the flux-difference splitting coefficients and the numerical diffusion coeffi-

cient can be evaluated numerically. One suggestion, also mentioned by Solberg [23], is

to choose higher order polynomials as artificial flux functions. An n-th order polynomial

will satisfy the consistency conditions with n − 1 free parameters. By carefully selecting

these parameters, it might be possible to achieve very high order of accuracy, by canceling

the higher order terms of the modified equation.

We still have no sufficient way of determining whether the LTS-HLLφ scheme will be

robust for a given Courant number and initial data. In order to determine this, it might

be interesting to investigate if the scheme is positivity preserving for certain choices of

parameters.
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