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Abstract

The Norwegian Space Centre wants a commitment to national nano- and micro-satellite projects
to cover strategical national interests. AISSat-1 was launched in 2010, and AISSat-2 in 2014.
AIS operates on 160 MHz, and on a satellite platform that is significantly smaller than the
wavelength, which poses a challenge for the design of the AIS antenna.

To aid the design of the AIS antenna, and other antenna systems for small satellites, it is
useful to have a tool that allows for simulation of the antenna system’s radiation characteristics
with decent accuracy and short computational time, and without the need to create a 3D CAD
model of the antennas and satellite platform.

The software tool SmallsatArray was developed in this thesis work to fill this need. The
software targets antenna arrays where the satellite platform is electrically small compared to the
wavelength, thus having a minimal impact on the radiation from the antennas. Through rotation
of imported radiation patterns from CST or HFSS and 3D Array calculations, the software lets
the user construct arbitrary three-dimensional antenna arrays and calculate the total field of the
antenna systems. The results can be displayed using a wide range of plotting options, and can
easily exported.

The SmallsatArray software offers a very fast alternative to full-wave simulation software
and was found to provide satisfactory accuracy even as the wavelength is reduced close to the
satellite dimensions.
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Sammendrag

Norsk romsenter ønsker en satsing på nasjonale småsatellittprosjekter for a dekke strategiske
nasjonale behov. AISSat-1 ble skutt opp i 2010, og AISSat-2 i 2014. AIS opererer på 160 MHz,
og på satellittplattformer som er betydelig mindre enn bølgelengden, noe som er en utfordring
for design av AIS antennen.

For å forenkle designprosessen av AIS-antennen, samt andre antennesystemer for små satel-
litter, er det nyttig å ha et designverktøy som muliggjør simulering av antennesystemets strålings-
karakteristikk med god nøyaktighet og med rask beregningstid, og uten å behøve en 3D CAD-
modell av antennene og satellitten.

Programvaren SmallsatArray ble utviklet i arbeidet med denne oppgaven for å svare dette
behovet. Programvaren fokuserer på antennearray hvor satellittplattformen har liten elektrisk
størrelse i forhold til bølgelengde, og som følge gir liten innvirkning på strålekarakteristikken
fra antennene. Ved å rotere stålingsdiagram importert fra CST eller HFSS og kombinere disse
med 3D-antenneteori, lar programmet brukeren designe vilkårlige tredimensjonale antennear-
ray og beregne det totale, samlede strålingsdiagrammet for antennesystemet. Resultatene kan
fremvises med et bredt utvalg av plottalternativer, og kan enkelt eksporteres.

SmallsatArray programvaren gir et hurtig alternativ til “full-wave” simuleringsverktøy med
god nøyaktighet, selv når bølgelengden reduseres til å nærme seg satellittens størrelse.
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Chapter 1
Introduction

1.1 Context

The space industry has seen a great influx in nano- and microsatellites in later years, and the
number of small satellites launched is predicted to continue to grow year over year [6]. The
CubeSat standard has become a very popular way for universities to engage in space-technology
activities, while there is a considerable number of other standards popular in the private and na-
tional sectors.

Norway’s first national satellites, AISSat-1 (2010) and AISSat-2 (2014), are nanosatellites
based on the modular GNB (Generic Nanosatellite Bus) [4]. These satellites receive AIS (Au-
tomatic Identification System) signals transmitted by ships. AIS was initially intended only
to be received by other vessels and land based stations, but these satellites demonstrated the
capability of receiving the AIS signal from space. This lets the supervision of vessels expand
beyond the horizon, which is extremely important for Norway because of the vast ocean areas
it controls and the increased maritime activity in the Arctic region caused by the melting of the
Arctic ice.

Because of the success of these satellites, the Norwegian Space Centre wants an increased
focus on small national satellites. Norsat-1 and Norsat-2, both scientific research satellites [5],
are planned to be launched in 2017, while AISSat-3 is planned to be built [7]. The AIS receiver
used in the AIS satellites have four available antenna ports, giving the potentioal to improve the
detectability of the AIS signals using an array. Norsat-1 will, in addition to investigating solar
radiation and space weather, experiment with improving the detectability of the AIS signals
using two antennas.

1.2 Previous Work

In the semester before the work began on this thesis, a preparation project was was completed
for 7.5 credits, the same as a regular subject at NTNU. In this project, work on the Smallsa-
tArray software, developed during this thesis, began. The project focused on calculating array
factor of arbitrary thee-dimensional antenna arrays. Through this work, the formula to calcu-
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late arbitrary three-dimensional antenna arrays was found and validated. The MATLAB GUI
program developed in the project had the following capabilities:

• Import far-field radiation diagrams from CST or HFSS, limited to specific exported for-
mats

• Generate radiation patterns for an isotropic radiation source or a variable length dipole
antenna element

• Rotate the absolute value of radiation pattern by two rotation angles (ZY-rotation)

• Calculate array factor on the total field of arbitrary three-dimensional antenna arrays

• Plot the normalised field pattern or normalised directivity in either polar plot or 3D

This project was not only limited by the time frame dedicated to the project, but also by the
way the software was structured. Important strategical decisions of how the data is stored and
handled needed to be decided at an early stage in the project, which proved to limit the poten-
tial of the software at a later stage when more functionality was added. For example; all the
antennas analysed in the project had a radiation pattern that was symmetrical around the Z-axis,
and it was therefore concluded that two rotational axes would be sufficient. Another example is
that the radiation patterns did not consider the polarisation of field, because the plots they were
validated against were only given as absolute values.

It was discovered in the later stages of the preparation project that to add the desired func-
tionalities, the whole program would have to be restructured and rebuilt from the ground up.

1.3 Aim of the Thesis
The thesis’ aim is to continue the work on and improve upon the software developed in the
preparation project. A list of the desired functionalities of the software is given below:

• Import far-field radiation diagrams from CST or HFSS in all formats

• Separating the θ̂ - and φ̂ -components of the field to evaluate the polarisation

• Have the ability to rotate by three rotation angles, making it possible to achieve any
orientation of the antenna element

• Rotation of the field components

• Expand plot options to include rectangular and 2D plot options, plotting true directivity,
and the choice of plotting individual field components and axial ratio

• Improving the user experience by, for example, allowing for saving and opening arrays
configured in the software, shortening computational time, and automatically updating
input fields with known values

The thesis also aims to give a good description of the software such that it would be possible
for others to continue to improve the software and add functionalities.
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1.4 Outline
First, chapter 2 gives an insight into the methods available for analysing antenna radiation and
reasoning behind the strategy for designing the SmallsatArray software. Chapter 3 gives the
theory behind analysis and calculation of the radiation patterns that is used in the thesis and in
the program.

In chapter 4, the SmallsatArray software is presented, giving an overview of the core vari-
ables and data structures in the program, the core calculations of the program and how the
theory from chapter 3 is implemented. The chapter also explores some of the features of the
program and its usage, as well as giving an insight into the structure of how the GUI connects
to the associated script.

Chapter 5 explains the experiments that were set up in order to test and validate the func-
tionality of the software. The result from the tests are the given in chapter 6. Finally in chapter 7
we reach the conclusion, and suggestions for future work related to the software are presented.

3
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Chapter 2
Background

2.1 EM Simulation Software

The most accurate software tools available to analyse antenna radiation are full-wave EM-
simulation software such as ANSYS HFSS and CST Microwave Studio. These require a 3D
model of the antennas and the satellite platform, and then solves Maxwell’s equations with re-
spect to the boundary conditions introduced by the 3D model.

The results are usually very close to physical experiments, but have the disadvantage of
being expensive software and being time consuming in both the creation of the 3D model, and
the computational time. For example; simulating the the model described in section 5.2 in CST
on a powerful desktop computer took about three minutes, and this simulation must be repeated
for any change in the 3D model, such as changing the antenna position, no matter how small
the change is.

2.2 SatAF

Gabriele Roseti at EPFL developed a program named ”Satellite Array Factor”, or ”SatAF” for
short, as part of his PhD thesis [8]. The SatAF software covers the needs described in section
1.1, however, nor the SatAF source code or the software itself has been made publicly avail-
able. Some source code was provided in the appendix the PhD thesis, however it was found to
be more difficult to analyse and implement this code, or parts of it, than to find solutions for the
SmallsatArray software independently.

The PhD thesis does provide useful analyses on the effects that the satellite platform has
on radiation characteristics of the antenna system. Roseti found that for low directive radia-
tion sources in the presence of a metallic object which size is comparable to the wavelength,
the radiation pattern would be greatly affected by the scattering and diffraction caused by the
object. However, for more directive radiation sources the currents induced in the satellite plat-
form would be smaller and therefore affect the radiation pattern to a lesser extent. Roseti also
states that the satellite platform will have a negligible effect on the radiation pattern for satellites
where the wavelength is significantly larger than the satellite platform.

5



2.3 Strategy
Roseti states that the radiation from sources around a satellite body is the result of three com-
ponents:

• Direct radiation from the sources

• Diffraction and scattering of the field by the satellite body

• Mutual coupling between the elements

Because this thesis is mainly focusing on AIS on nanosatellites, which means the wave-
length is about ten times the size of the platform, it is assumed that the radiation of the elements
should not be greatly affected by the satellite platform. In addition the latter two points are very
difficult to analyse. The SmallsatArray software will therefore only take the direct radiation
from the radiation sources into consideration.

The SmallsatArray software tool is meant to analyse the far-field radiation pattern of the
antenna system and the polarisation of the field. It is therefore only interesting to look at the
relative values and parameters between the elements and at the general shape of the radiation
pattern. Because of this, the radiation patterns of each element should be normalised to their
average radiated power so that their contribution to the total field is weighed fairly. The relative
excitation of the fields can then be used to cause some elements to contribute more than others.

Considering the formerly mentioned criteria and assumptions, the software needs to preform
the following operations:

1. Calculate or import the radiation pattern

2. Convert radiation pattern to RMS-normalised E-field

3. Rotate the radiation pattern to represent the desired orientation of the antenna element

4. Calculate the array factor and the total field from all the elements in the array with respect
to their position relative to each other

5. Plot the radiation diagram

In addition to preforming these operation, the software should be easy to use, have an intu-
itive interface, and have a fast computational time.

6



Chapter 3
Basic Theory

This chapter covers the basic theory for analyses of radiation patterns and the theory used in the
SmallsatArray software. First, section 3.1 and 3.2 covers the coordinate systems and different
field parameters. Section 3.3 present some analytical formulas for radiation patterns before
section 3.4 and 3.5 explain the rotation of the fields and the calculation of the total field.

3.1 Coordinate system
The analysis of antenna arrays and their radiation patterns uses both spherical and Cartesian
coordinate systems. For the position of the elements in the array, it is usually more intuitive
to use Cartesian coordinates, while the radiation pattern is more intuitively seen with spherical
coordinates. The spherical coordinate system used (ISO convention) in this thesis and in the
SmallsatArray software is shown in figure 3.1.

Most mathematical operations and functions are much simpler to describe using Cartesian
coordinates, and it is often necessary to convert points or vectors from one coordinate system
to the other. The relation between the coordinate systems are

x(θ ,φ) = r sinθ cosφ r(x,y,z) =
√

x2 + y2 + z2

y(θ ,φ) = r sinθ sinφ θ(x,y,z) = arccos
z
r

z(θ) = r cosθ φ(x,y) = arctan
y
x

(3.1)

A special case occurs in the conversion from Cartesian to spherical when x = 0. As can be
seen in equation 3.1, this will result in φ being undefined, even though for a non-zero y-value
φ should be either π/2 or 3π/2. This needs to be taken into consideration when doing this
conversion.

In order to decompose arbitrary field vectors into their θ̂ - and φ̂ -components it is necessary
to know the tangential unit vectors θ̂ and φ̂ which are also shown in figure 3.1. For an arbitrary
vector~v(θ ,φ ,r), the tangential unit vectors, in spherical coordinates, will be

θ̂ = (θ +π/2,φ ,1)

φ̂ = (π/2,φ +π/2,1)
(3.2)

which, using the relation given in (3.1), can be written in Cartesian coordinates as

7



Figure 3.1: Spherical coordinates in ISO convention.

θ̂ = (cosθ cosφ ,cosθ sinφ ,−sinθ)

φ̂ = (−sinφ ,cosφ ,0)
(3.3)

A mathematical proof that the vectors in equation 3.2 and 3.3 satisfies the desired properties
of the tangential unit vectors is given in the appendix section A.1.

If a arbitrary field vector E(θ ,φ) is given and needs to be decomposed into its θ̂ - and φ̂ -
components, this is done by taking the scalar projection of the field vector onto the tangential
unit vectors.

Eθ (θ ,φ) = θ̂ ·E(θ ,φ)
Eφ (θ ,φ) = φ̂ ·E(θ ,φ)

(3.4)

3.2 Radiation Pattern
The radiation pattern or antenna pattern is defined as: “The spatial distribution of a quantity
which characterizes the electromagnetic field generated by an antenna” [3]. Although this refers
to a transmitting antenna, the properties of a receiving antenna will be identical.

For the work in this thesis, the radiating antenna will be at a distance from the receiving an-
tenna that is much greater than the wavelength, This means that far-field approximation can be
used, which means that the radial component of the radiated field can be neglected, and only the
tangential field components need to be evaluated. It also means that the position (translation) of
the individual antenna elements will have a negligible effect on its associated radiation pattern.
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The radiation pattern of an antenna or antenna system can be expressed in many different
ways. Commonly used are the electric and magnetic E- and H-fields, radiation intensity, U ,
directivity, D, gain, G, and power, P.

The SmallsatArray software plots using directivity or E-pattern, but can import data in any
of the formats mentioned above. It is therefore necessary to establish methods to covert between
them.

3.2.1 Composition of Complex Field Vectors

For the calculations described in this thesis, the fields are considered harmonic and are therefore
best described in phasor form. The complex vector field is decomposed into magnitude and
phase for each of the θ̂ - and φ̂ -components in the following way:

E(θ ,φ) = θ̂Eθ (θ ,φ)+ φ̂Eφ (θ ,φ) = θ̂E0
θ (θ ,φ)e

jΦθ (θ ,φ)+ φ̂E0
φ (θ ,φ)e

jΦφ (θ ,φ) (3.5)

where E0
θ

and E0
φ

give the magnitudes of the θ̂ - and φ̂ -components of the electric field respec-
tivly, and Φθ and Φφ are the phase angles.

3.2.2 Electric and Magnetic Field

The E- and H-field give the electric and magnetic field strength respectively. The E-field is
expressed in volts per metre and the H-field in ampere per metre. They are both complex vector-
fields with magnitude, phase and direction for any point within the region they are defined.
The relation between the fields are given by Maxwell’s equations. In the far-field the relation
simplifies to

Er(θ ,φ)' 0
Eθ (θ ,φ)'+ηHφ (θ ,φ)

Eφ (θ ,φ)'−ηHθ (θ ,φ)

(3.6a)

Hr(θ ,φ)' 0

Hθ (θ ,φ)'−
Eφ (θ ,φ)

η

Hφ (θ ,φ)'+
Eθ (θ ,φ)

η

(3.6b)

[1, p. 137] .
From equation 3.6 it can be seen that the electric and magnetic fields are in-phase in the

far-field, and the magnitude relation is given by the wave impedance η , which means that the
shape of the Eθ and Hφ radiation patterns will be (nearly) identical, and likewise for Eφ and Hθ .
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3.2.3 Radiation Intensity
The radiation intensity is defined by IEEE as ”In a given direction, the power radiated from an
antenna per unit solid angle” [3]. It can be found from the electric field as

U(θ ,φ) =
r2

2η
|E(r,θ ,φ)|2 = 1

2η
|E(θ ,φ)|2 (3.7)

As can be seen from equation 3.7, the radiation intensity is independent of the distance from
the antenna, and is therefore only a far-field parameter.

3.2.4 Directivity
Directivity is defined as

D(θ ,φ) =
U(θ ,φ)

U0
= 4π

U(θ ,φ)

Prad
(3.8)

The average radiation intensity U0 is found from dividing the total radiated power by the
solid angle of a whole sphere, 4π;

U0 =
Prad

4π
(3.9)

The total radiated power is obtained by integrating the radiation intensity over the entire
solid angle of 4π .

Prad =

‹
U(θ ,φ)dΩ =

ˆ 2π

0

ˆ
π

0
U(θ ,φ)sinθ dθ dφ (3.10)

where sinθ appears because the distance on the sphere for each step dφ near the poles is shorter,
in the same way as the longitudinal lines on a globe are more closely spaced near the poles on
a globe than at the equator.

3.2.5 Gain and Realised Gain
The gain of an antenna is closely related to its directivity, but also takes into account the effi-
ciency of the antenna. It is defined as “The ratio of the radiation intensity, in a given direction,
to the radiation intensity that would be obtained if the power accepted by the antenna were
radiated isotropically.”[3], and is expressed mathematically as

G(θ ,φ) = 4π
U(θ ,φ)

Pin
(3.11)

A possible way of converting the gain to directivity is to treat it as the radiation intensity
and run it through the function (3.8)

D(θ ,φ) = 4π
G(θ ,φ)‚
G(θ ,φ)dΩ

=
ZZ4π

4πU(θ ,φ)

��Pin‚
ZZ4π

U(θ ,φ)

��Pin
dΩ

= 4π
U(θ ,φ)‚
U(θ ,φ)dΩ

(3.12)

Another property of the directivity that is exploited in the SmallsatArray software is that the
directivity itself can be run through the same function and still come out as the directivity:
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D(θ ,φ) = 4π
D(θ ,φ)‚
D(θ ,φ)dΩ

= 4π

ZZ4π
U(θ ,φ)

��Prad‚
ZZ4π

U(θ ,φ)

��Prad
dΩ

= 4π
U(θ ,φ)‚
U(θ ,φ)dΩ

(3.13)

This method works for any radiation pattern expressed in a unit of power, thus a generalised
function can be made such that any radiation patten expressed in power (W) can be transformed
to directivity.

3.2.6 RMS-Normalised E-Field

When calculating the total field of an array it is important to know that the contribution of each
antenna in the array is accurately accounted for. When radiation patterns are imported from
CST or HFSS, their values depend on the radial distance between the antenna and the observ-
ing field monitor. SmallsatArray is oriented around the relative values between each antenna
element and offers the option to change the relative amplitude of the exciting signal, I0. This is
shown in more detail in section 3.5.

To ensure that the fields are represented fairly, they are all normalised to their average ra-
diated power and then multiplied by the excitation signal. In the SmallsatArray software, the
RMS-normalised E-field is used in all calculations which is found by normalising the E-field to
the square root of the average radiated power:

ERMS(θ ,φ) =
E(θ ,φ)√

U0
=
√

D(θ ,φ) (3.14)

As the conversion from the H- to the E-field was shown in (3.6), from E-field to radiation
intensity in (3.7) and from E-field to RMS-normalised in (3.14), it is possible to find ERMS from
any type of radiation pattern from a generelasid function.

3.2.7 Normalisation

A normalised radiation pattern is a radiation pattern where the maximum value is unity, or 0
dB. This is found by dividing the respective field by its maximum value:

ENorm(θ ,φ) =
E(θ ,φ)

Emax
(3.15a)

DNorm(θ ,φ) =
D(θ ,φ)

Dmax
(3.15b)

3.3 Analytical Formulas for Radiation Patterns

In addition to importing radiation patterns, SmallsatArray lets the user generate isotropic radi-
ators and dipole elements within the program.
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3.3.1 Isotropic Radiator

The isotropic radiator is a useful inclusion in the software because it enables the opportunity
of visualising the array factor by itself. The isotropic radiator is defined by the IEEE as: “A
hypothetical, lossless antenna having equal radiation intensity in all directions”[3]. Since the
isotropic radiator is defined by the radiation intensity, the polarisation of the element can be
chosen. In this program the polarisation of the isotropic source is set to be purely in the θ̂ -
component.

E(θ ,φ) = θ̂(θ ,φ) (3.16)

3.3.2 Dipole Antenna

A thin dipole antenna of length l, aligned with the Z-axis and exited by a current I0, can be
described analytically by the formula

E(θ ,φ ,r)≈ θ̂Eθ (θ ,φ ,r)≈ θ̂ jη
I0e− jkr

2πr

[
cos(kl

2 cosθ)− cos(kl
2 )

sinθ

]
(3.17)

[1]
Since the fields in the SmallsatArray software are converted to the RMS-normalised E-field

at a later stage, (3.17) can be simplified to

Eθ (θ ,φ)≈ j
cos(kl

2 cosθ)− cos(kl
2 )

sinθ
(3.18)

3.4 Rotation

When an antenna element is rotated in the program, the corresponding radiation pattern needs
to be rotated.

3.4.1 Rotation Matrices

A rotational transformation can be done with rotation matrices. Two of the basic rotation ma-
trices used are given below.

Ry(β ) =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 and Rz(α) =

cosα −sinα 0
sinα cosα 0

0 0 1

 (3.19)

[9, p. 36]
These can be combined in the following way to do three consecutive rotations:
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RZY Z(α,β ,γ) = RZ(α)RY (β )RZ(γ)

=

cosα −sinα 0
sinα cosα 0

0 0 1

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

cosγ −sinγ 0
sinγ cosγ 0

0 0 1


=

cosα cosβ cosγ− sinα sinγ −cosα cosβ sinγ− sinα cosγ cosα sinβ

sinα cosβ cosγ + cosα sinγ −sinα cosβ sinγ + cosα sinγ sinα sinβ

−sinβ cosγ sinβ sinγ cosβ


(3.20)

The matrix in (3.20) is known as the ZYZ-Euler Angle Transformation and it can be used to
rotate to any orientation [9, p. 48].

Figure 3.2 shows an illustration of the ZYZ-rotation. Reading the rotation from left to right,
the object is first rotated by an angle α around the Z-axis of the fixed coordinate system, then
by an angle β around the rotated Y-axis, and finally around rotated Z-axis by an angle γ . If the
rotation matrix combination is read from right to left, which better explains the rotation mathe-
matically, the object is first rotated around the fixed Z-axis by the angle γ , then around the fixed
Y-axis by β and then again around the fixed Z-axis by α .

Figure 3.2: Illustration of ZYZ-rotation

It is also useful to have the inverse rotation which can be found by reversing the rotation
angles and order or by transposing the matrix [9, p. 34]:
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Rzyz(α,β ,γ)−1 = Rz(−γ)Ry(−β )Rz(−α)

=

cos−γ −sin−γ 0
sin−γ cos−γ 0

0 0 1

 cos−β 0 sin−β

0 1 0
−sin−β 0 cos−β

cos−α −sin−α 0
sin−α cos−α 0

0 0 1


=

 cosγ sinγ 0
sin−γ cosγ 0

0 0 1

cosβ 0 sin−β

0 1 0
sinβ 0 cosβ

 cosα sinα 0
sin−α cosα 0

0 0 1


=

 cosα cosβ cosγ + sin−α sinγ sinα cosβ cosγ + cosα sinγ sin−β cosγ

cosα cosβ sin−γ + sin−α cosγ sinα cosβ sin−γ + cosα cosγ sin−β sin−γ

cosα sinβ sinα sinβ cosβ


=

 cosα cosβ cosγ− sinα sinγ sinα cosβ cosγ + cosα sinγ −sinβ cosγ

−cosα cosβ sinγ− sinα cosγ −sinα cosβ sinγ + cosα cosγ sinβ sinγ

cosα sinβ sinα sinβ cosβ


= RT

ZY Z
(3.21)

3.4.2 Rotation of Radiation Patterns
The far-field radiation pattern E(θb,φb) gives the complex field components in a direction
given by θb and φb. The rotation of the radiation pattern from a coordinate system obθbφbrb
to oaθaφara using a rotation matrix Ra

b is written as

E(θa,φa) = Ra
bE(θb,φb)

= Ra
b
[
θ̂bEθ (θb,φb)+ φ̂bEφ (θb,φb)

] (3.22)

Using the Cartesian form of the tangential unit vector from (3.3), the rotation is written as

E(θa,φa) = Ra
b

Eθ (θb,φb)

cosθb cosφb
cosθb sinφb
−sinθb

+Eφ (θb,φb)

−sinφb
cosφb

0

 (3.23)

We still need to express (θb,φb) in terms of (θa,φa). For this, consider the rotation of a
vector~v(θb,φb,rb = 1) written in Cartesian formxa

ya
za

= Ra
b~v(θb,φb,rb = 1) = Ra

b

sinθb cosφb
sinθb sinφb

cosθb

 (3.24)

Using the relation between spherical an Cartesian coordinates given in (3.1), θa and φa are
given by

ra =
√

x2
a + y2

a + z2
a

θa = arccos
za

ra

φa = arctan
ya

xa

(3.25)
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Finally, the rotated field vectors can be decomposed by taking the dot product between the
field vector and the tangential unit vectors, which is essentially a scalar projection

Eθ (θa,φa) = θ̂a ·E(θa,φa)

Eφ (θa,φa) = φ̂a ·E(θa,φa)
(3.26)

3.5 Array Factor
The calculation of the radiated field from an array of antenna elements can be broken down into
the element factor and the array factor such that the total field is

E(total) = [E(single element at reference point)]× [array factor] (3.27)

[1, p. 287].

The array factor is based on the the interference between the radiated fields of the elements
in the array. The interference can be destructive or constructive depending on the phase differ-
ence between the elements at the point of observation. The phase differences at the observation
point are the result of the phase differences in the excitation signals and the phase differences
due to the difference in distance from the observer to each element.

The relative phase difference between the elements due to the relative spatial distance be-
tween the elements is found by relating the the phase of all elements to the origin of the coordi-
nate system.

For an element positioned at P(x,y,z), the phase angle relative to the origin from an obser-
vation angle given by θ and φ is

Φx(θ ,φ) = kxsinθ cosφ

Φy(θ ,φ) = kysinθ sinφ

Φz(θ ,φ) = kzcosθ

(3.28)

where k = 2π/λ , known as the wave number, converts distance into phase angle.

For an array of elements exited by a current amplitude In
0 and phase delay Φn, the array

factor is

AF =
N

∑
n

In
0 exp( jΦx(θ ,φ)Φy(θ ,φ)Φz(θ ,φ)Φn) (3.29)

If all the elements in the array are of the same type and orientation, the total field can be
found by simply multiplying the element factor and the array factor as shown in equation 3.27,
however if the elements have different radiation characteristics they must also be included in
the summation

Total field =
N

∑
n

In
0 En(θ ,φ)exp( jΦx(θ ,φ)Φy(θ ,φ)Φz(θ ,φ)Φn) (3.30)
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If all the elements radiation patterns are normalised to the same power level, for example
the average radiated power, the element factors can be summed separately and then multiplied
by the array factor.
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Chapter 4
The SmallsatArray Software

Figure 4.1: Screen-shot of the GUI

In this chapter, we first look at how the radiation patterns and element properties are represented
in the software in section 4.2. Then some of the core calculation of the program are described in
section 4.3. Some other features and the usage of the program is described in sections 4.4 and
4.5. Finally some insight into the structure of the program is given using flowcharts in section
4.6.

4.1 Description
The SmallsatArray software is a tool to be used for simulating antenna arrays for small satel-
lites. The software can generate radiation patterns for isotropic radiators and variable length
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dipole elements. It can also import 3D radiation diagrams exported by CST Microwave Studio
and HFSS. For HFSS, the data should be given in a unit of power and in decibels, for example
directivity (dB), while for CST they can have any format.

The software provides a wide range of plotting options for the far-field of the antenna array
and lets the user easily export the figures. It is also possible to save and open the designed
antenna arrays either as an array of elements, or as a single antenna.

The software has been made publicly available under an MIT License, which can be found
in appendix C, granting anyone the right use, copy, modify, merge, publish, distribute, subli-
cense, and/or sell copies of the Software.

The software is available at https://github.com/EvenBirk/SmallsatArray both as
MATLAB script and figure, and as an executable running with MATLAB Runtime allowing
anyone who don’t have a MATLAB license run the software.

4.2 Data Handling and Core Variables

4.2.1 Radiation pattern

Representing a radiation pattern in spherical coordinates in a data structure is similar to drawing
a map of the earth on a flat map. For a rectangular map a cylindrical projection has to be used,
where the longitudinal lines run parallel vertically. This causes the top and bottom parts of the
map to be stretched.

If the radiation pattern has a given resolution in spherical coordinates of, for example, 1°,
so that between each point where the field is observed there is an angle of 1° θ or φ , the spa-
tial resolution varies between the equator and the poles. For θ = 0°, at the pole, any angles
of φ refers to the same point in space. In SmallsatArray the radiation patterns are stored in a
θ ∈ [0,π]×φ ∈ [0,2π] matrix, so for a resolution of 1° the matrix dimensions will be 361×181,
where the entire top and bottom row of the matrix each have 361 entries of the same point ob-
served at different angles of φ .

The advantage of this representation is that it is easy to index the entries since consecu-
tive rows and columns represent one step by the angular resolution. It is also the projection
used in the files exported by CST and HFSS, simplifying the importation procedure. A flaw of
this projection occurs when rotating the radiation patter. This is discussed more in section 4.3.3.

To keep track of the polarisation of the field, SmallsatArray use two of the formerly men-
tioned matrix containing the θ̂ - and φ̂ -components of the field. Using complex entries in the
matrices, both the magnitude and phase of the field are represented.

While the indices represent degrees, the calculations need the angular values given in ra-
dians. There is therefore a 1× 181 array vector holding the radian values for θ ∈ [0,π] and a
1×361 array vector for φ ∈ [0,2π] to compliment the field matrices.
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Property Data Type Description
Type String Isotropic, Dipole or Imported
Excitation Complex double Complex variable with the amplitude and phase of the

excitation
Position 1×3 double Contains the [x,y,z] position of the element
Rotation 1×3 double Contains the [α,β ,γ] rotation angles in radians for the

desired rotation of the element
CurrentRotation 1×3 double Contains the [α,β ,γ] rotation angles in radians for the

current rotation state of the element
Dimensions Struct Struct with the field ‘L’ holding the length of the an-

tenna, only for dipole
Tag String Holds the elements name/label, which is shown in the

GUI element table
Compare Boolean Marks the element to be used for compare mode
E Struct Struct containing the fields ‘Theta’ and ‘Phi’, each of

which are 361× 181 complex doubles for the θ̂ - and
φ̂ -component of the RMS-normalised E-field

E nonrot Struct Same as the E-property, but this is not changed when
the field is rotated.

Table 4.1: Description of the Element-objects properties

The program initially had the option to change the angular resolution so that the user could
choose to prioritise either computational time or detail. During the development of the program
it became apparent that a resolution of 1° gave sufficient levels of detail while maintaining very
fast computations. This option was therefore removed as it simplified the programming tasks,
but the remains of this functionality is still present in many of the functions.

4.2.2 Element Properties
All the properties of the elements are kept in a variable named Element. This is an 1xN object
array, where N is the total number of elements in the array, containing all the parameters of each
element and its field. Table 4.1 gives an overview of the properties of the Element object.

4.3 Core Calculations
The source code for the functions described in this chapter is provided in appendix B. The fol-
lowing subsections describe the functions in detail to aid in interpreting the code and connecting
it to the theory given in chapter 3.

4.3.1 Importing and Generating Radiation patterns
CST and HFSS use different file formats (.txt and .csv) for the exported far fields, but both files
consist of a long table where the first two columns give the θ and φ angles, while the following
columns contain various field parameters. The source code for importing function and its nested
functions is given in appendix B.1. The import function prompts the user to choose whether
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they want to import from CST or HFSS before letting the user select the file to import. The first
step in the importing process is to determine the angular resolution of field to be imported, then
φ ×θ matrices are created whose dimensions is based on the resolution, as explained in section
4.2.1. The the function then simply goes through the list line-by-line, converts the listed angles
to indices and stores the listed field values in the matrices after converting to linear field values.
Even H-fields are converted using (3.6), for CST-files. Finally the field is interpolated to the
resolution used by the program.

For HFSS, the given radiation pattern is expected to be expressed in decibels and in a unit of
power. For CST-files, the function reads the headers of imported file to determine what values
are provided. Another difference between HFSS and CST is that the function only reads phase
values for CST-files. For HFSS-files the phase is set to be 0 over the whole field.

4.3.2 Calculating Field Values

The normalisation of the fields to the average radiated power is done by a function called RMS-
Field, which source code is provided in appendix B.2. The function first converts the input
fields to radiation intensity (U) using (3.7) and then finds the total radiated power Prad using
a numeric version of (3.10). Since the integration is done numerically, the total solid angle is
summed up during the integration, instead of using 4π to find U0 as in (3.9). The input fields
are finally divided by the average power (U0) as in (3.8), or the square root of it, as in (3.14)
depending on the options chosen in the input.

4.3.3 Rotating Radiation Patterns

The program does the rotations for one cell in the radiation pattern matrices at a time. The
first step in the rotation process is to find the relation of the θ and φ angles in the initial and
rotated coordinate systems. This is using the formula given in (3.24) and (3.25. In the program,
however, this relation is found in the reverse order using the rotation matrix (3.21). The rotation
is done reversely to ensure that all cells in the output matrices for the fields are filled.

When the radiation pattern is rotated around the Y-axis by, for example, 90°, many cells
from the top and bottom rows will map into the same cells for the matrices of the rotated pat-
tern, while cells that are mapped from θ = 90° to the poles will only fill one of the 361 cells
in that row. By rotating reversely, each cell in the matrices of the rotated radiation pattern is
mapped to a cell in the matrices representing the radiation pattern in the initial coordinate sys-
tem.

Many of the cells for the rotated radiation pattern will map to the same cells in the initial
radiation pattern, while some cells in the initial radiation pattern will not be mapped to by any
cells in the rotated pattern. Thus some information is lost in the rotation.

The source code for the function rotating the radiation patterns can be found in appendix
section B.3.
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Variable Options
Plot style Polar, rectangular, 2D, 3D
Field value Absolute value, θ̂ -component, φ̂ -component, AR
Field type RMS E-pattern, directivity
dB linear, dB
Normalisation off, on
Smoothing off, on
dB min Any value

Table 4.2: Overview over available plot options

4.3.4 Calculating the Total Field

The summation of the elements radiation pattern is preformed using (3.30) and the implemen-
tation is shown in the source code in the appendix, section B.4. Before each elements radiation
pattern is summed, matrices for the phase variations due to the position of the element are set
up, similarly to (3.28). After the total field is calculated, it calls the RMSField function to nor-
malise the field to the average power.

This function is a good example of how the computational time of the program has been
kept low. In the function created in the preparation project, only one cell of the matrices were
summed at a time, causing the computation of the total field to be as much as about 10 seconds
for arrays of 10 elements. With the new implementation of the function, the computation time
is reduced to a fraction of a second.

4.3.5 Plotting

The software offers many options for the plotting of the radiation patterns. Table 4.2 gives an
overview on the options that can be chosen for the plot.

In addition there is also the option of choosing the intersecting plane for polar and rectangu-
lar plots. Finally there is also an option to select to select any number of the antenna elements
to compare by plotting their radiation patterns on top of each other.

Figure 4.2 showcases the four different plot styles available. Observe also the markers gen-
erated for the main lobe and the half-power beam-width and the display of the main-lobe’s value.

It is also possible to export the plots generated by the program and save them as a .png
image. To make this work the program has to open a figure temporarily in a new window in
which the a copy of the plot is generated. After saving the file, this window is closed auto-
matically, however there is an issue in the case where there is a discontinuity in the plot where
one of the HPBW markers should be placed. When this happens, the plotting function will
generate an error which causes the program to abort all calculations. When this happens, the
temporary plot window is left open and the plot is not saved. The plot can be saved manually
in the temporary window, and the user can continue to use the program after closing the window.

The full source code for the functions related to plots are provided in the appendix B.5.

21



Figure 4.2: The four different plot styles available in SmallsatArray

4.4 Other Features
The Software tool also offers the options of saving and opening arrays created in the program.
The flowcharts in figure 4.10 and 4.11 gave an overview of how these functions work. The
file-format for these files is .rpt. When saving an array of of antennas, the user has the option
of saving the session as an array, in which case opening the file will bring back the exact con-
figuration open in the program when saving, or to combine the array into a single element. The
latter option gives the lets the user, for example, configure two different arrays which they save
as a single element, and later open these two arrays as single elements and compare them with
the compare functionality in the program.

4.5 Using the Software
The software is, of course, meant to be played and experimented with, and to be used in any way
the user wants. A lot of time has gone into making sure that errors do not occur, and that the
calculations are correct, no matter what button the user presses at any time. It is though difficult
to predict all actions other users could think of, and therefore bugs and errors can occur. If the
program is dysfunctional, it is best to simply close and reopen it. If this does not work, MAT-
LAB must also be relaunched. This is because MATLAB stores global variables even when the
SmallsatArray software is restarted. All global variables are cleared or set to their default value
during the initialisation of the program, so this is unlikely to happen.
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A possible work-flow to design an antenna array is provided below.

1. Set the system frequency

2. Select the element type

3. Enter the antenna’s parameters (excitation, position, rotation)

4. Press the (Add/Update Element button)

5. Repeat from point 2 until all the elements are configured

6. Use the plot options to analyse the field

7. Make adjustments to the elements’ properties or system frequency

8. Repeat from step 6 to find the desired radiation pattern

If the user wants to edit a parameter of an element, they can simply click on the cell in the
GUI table for that parameter and the input fields will automatically be with the properties of the
selected element, and the parameter that was selected will be highlighted, making it very easy
to make changes to an array.

When importing a radiation pattern, it is important to remember that the position of the
antenna(s) in the CST or HFSS simulation is not noted in the far-field radiation diagrams that
are imported. Therefore an imported radiation pattern will show up in the program, by default,
as being positioned at the origin, while the phase values of the radiation patterns are from a
simulation where the position could be different.

Consider, for example the test case in section 5.2, where the satellite platform is centred on
the Z-axis, while the element is placed at the corner of the satellite. If this radiation pattern is
rotated by α = 180° in SmallsatArray, it will also translate the element to the opposite corner.

4.6 Structure
For a GUI program created in MATLAB, the associated script does not run continuously. When
opening the GUI, an opening function is run from the script. In the SmallsatArray software, the
opening function is used to set global functions to default parameters. The global variables that
don’t have default values are cleared so that there is no possibility that values from previous
sessions will interfere with the program.

After the opening function, the GUI remains passive until an object in the GUI that is as-
sociated with a function in the script is manipulated by the user. The flow chart in figure 4.3
shows how manipulation of the different objects in the GUI shown in figure 4.1 connects to
the functions in the code. The functions that are called by GUI objects are known as callback
functions. The following flow charts show the operations from each of the callback functions
called by the GUI in figure 4.3.
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The callback functions have the input variables handles, eventdata and hObject. Only the
variables that are used by the function are listed in the flow charts. The handles variable contains
all the values and properties of the objects in the GUI. It is from this variable that data such as
the element properties are read and stored in global variables in the MATLAB script. After
running the functions that have been called, the handles variable is returned to the GUI, so by
editing its values, it is possible to change the GUI. The eventdata variable contains information
about what actions the user has done, for example what cell in the GUI table of elements the
user clicked and what happened to it. The hObject variable simply refers to the object that
initialised the function.
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Figure 4.3: Flow chart showing the connection between the GUI and the associated script.25



Figure 4.4: Flow chart for the function called when pressing the Add/Update Element button.
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Figure 4.5: Flow chart for the function called when pressing the Delete Element button.
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Figure 4.6: Flow charts for the functions called when changing the element number in the GUI (left)
and when selecting an element type from the drop-down menu (right).
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Figure 4.7: Flow charts for the functions called when changing a checkbox in the table of elements in
the GUI (left), and when selecting a cell in the in the table (right).
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Figure 4.8: Flow charts for the functions called when pressing the Plot button (top left), and two different
plot callbacks that are called by many actions in the GUI. plot1 Callback (top right) is called when the
plotting values needs to be recalculated. plot2 Callback (bottom) is called when there is just a change in
the plotting plane or the plot style.
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Figure 4.9: Flow chart for the function called when the system frequency is changed.
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Figure 4.10: Flow chart for the function called when pressing the Open... button
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Figure 4.11: Flow chart for the function called when pressing the Save... button
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Figure 4.12: Flow chart for the function called when pressing the Export... button
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Chapter 5
Experiments

In order to validate the results calculated by the SmallsatArray software, three test cases have
been set up. Firstly we want to ensure that the radiation patterns that are imported are interpreted
and displayed correctly. The second test case considers an antenna array of four folded PIFA
elements on a satellite platform which size is less than a third of the wavelength. The third test
case uses an array of two monopole elements on a 2U CubeSat platform where the wavelength
is only slightly longer than the size of the platform.

5.1 Importing Radiation Patterns From CST
To test that the importation and display of the fields are correct, a loop antenna was simulated
in CST and the far-field was exported in all available formats. These formats include, in both
linear and decibel values:

• Directivity

• Gain

• Realised gain

• E-field

• E-pattern

• H-field

• Power pattern

All the 14 exported radiation pattern were then imported into the SmallsatArray software
and plotted on top of each other using the compare-functionality.

Importing radiation patterns in decibel values of the directivity from HFSS has already been
validated in the preparation project [2] to this thesis. Because the program normalises all im-
ported radiation patterns to the average radiated power, all files from HFSS containing values
of power expressed in decibels are expected to work with the program.

Results from the next test case were used to test the axial ratio calculations of the program.
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5.2 4 PIFA elements on a Cubic Satellite
This test is set up to test the abilities of the program for combining radiation patterns when the
satellite platform is small compared to the wavelength. When this is the case, the placement
of the element on the satellite platform is expected to have a smaller impact on the radiation
pattern.

In this test case (see figure 5.1a), an array of four folded PIFA elements, operating at
956 MHz (λ = 314mm), where an element is placed in each of the corners of the upwards-
facing side of the 10× 10× 10 cm3 satellite platform, and consecutive elements are given a
rotation and phase delay of 90° to the prior, is considered. This is a configuration which gives
excellent circular polarisation and moderate directivity on a small platform.

In addition to the control (figure 5.1a), two configurations of a single element were simu-
lated in CST. One where a single element was placed in the corner of the platform (figure 5.1b)
and one where a single element was placed at the centre of the satellite (figure 5.1c). All the
simulations were done with the satellite platform centred on the Z-axis.

The exported far-fields from the two latter simulations were then imported into the Small-
satArray software and placed in an array. For the simulation of the element that was placed
at the corner of the platform, only a rotation around the Z-axis and a phase delay was con-
figured for the elements. This is because the simulation from CST already contains the phase
delays caused by the placement of the object. Reading from the exported file, the listed phase
at θ = 90°,φ = 0° is 257°, while at θ = 90°,φ = 180° is 175°. For the centred element simula-
tion, the imported elements were translated by ±40mm on the X- and Y-axis in addition to the
rotation and phase delay. This test set-up was shown in figure 4.1.

5.3 2 Angled Monopole Elements on a 2U CubeSat
This test set-up consists of a 2U CubeSat model with two monopole elements, angled at 45°
away from the platform, are placed near opposite edges at the top of the satellite, see figures
5.2 and 5.3. The wavelength here is also λ = 314mm while the height of the satellite model
is h = 213mm, thus the placement of the antenna on the satellite is expected to have a greater
impact on the radiation pattern.

This test will fully utilise the functionality of the software, including; importing radiation
patterns, rotation about three axes and translation and combination of the fields.

5.3.1 CST
Five simulations were done in CST:

1. One antenna was excited and the antenna was aligned with and centred on the Z-axis
(figure 5.2a)

2. The satellite upright and centred on the Z-axis, and one element was exited (figure 5.2b)
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(a) 4 elements (b) single element placed in at the corner

(c) Single centred element

Figure 5.1: Test set-up for 4 PIFA elements on a cubic platform
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3. The satellite upright and centred on the Z-axis, and both elements were exited without
phase delay

4. The satellite upright and centred on the Z-axis, and both elements were exited with a 90°
phase delay

5. With a single element centred on the satellite and the Z-axis (figure 5.2c)

5.3.2 SmallsatArray
In the SatelliteArray software, three of the radiation patterns from the CST simulations were
imported and combined into the array; configurations (1) (2) and (5) from the list in the previ-
ous subsection. All these were simulated at 0° and 90° phase delay between the elements.

For configuration (2), only a rotation around the Z-axis was used to place the second ele-
ment in the array because, as discussed previously, the phase resulting from the position of the
element is already present in the exported radiation pattern.

For configurations (1) and (6), the elements were rotated by α =±90°,β =−45°,γ = 90°
and translated to ±50mm. The base of the antenna was placed at the origin in the simulation,
and this remains true after the rotation in SmallsatArray. Therefore the translation is with refer-
ence to the base of the antenna and not the centre.

5.3.3 Physical Experiment
The physical experiment was conducted in the antenna laboratory at NTNU Trondheim. The
anechoic chamber measures 10m×6m×4m, and is reflection-free for frequencies above∼1 GHz.
The satellite model was operating at a frequency of 956 MHz. Three planes of the field were
evaluated; θ = 90°,φ = 0° andφ = 90° (XY, XZ and YZ). The satellite position on the rotating
platform can be seen in figure 5.3. The transmitting antenna, figure 5.4, was rotated to receive
either the θ̂ - or φ̂ -component of the field.

To get the desired phase delay, different combinations of cables were used. It was not
possible to achieve the exact phase delay that were wanted. The phase delays between the
cables were measured to be:

Goal Realised Phase
β = 0° 14°
β = 90° 89°
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(a) Antenna along Z-axis (b) Satellite placed flat

(c) Centred antenna element

Figure 5.2: CST model of a 2U CubeSat with monopole antennas
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(a) Position 1, XY-plane, θ = 90°

(b) Position 2, YZ-plane, φ = 90°

(c) Position 3, XZ-plane, φ = 0°

Figure 5.3: The three satellite orientations evaluated in the physical experiment for the CubeSat model
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Figure 5.4: The receiving antenna in the anechoic chamber oriented to receive the vertical field compo-
nent
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Chapter 6
Results

This chapter gives the results from the three experiments presented in chapter 5.

6.1 Importing Radiation Patterns From CST
Figure 6.1 shows a comparison between a screen-shot of CST and the imported fields in the
SmallsatArray software. While the plot from SmallsatArray appears to only have one plot, it
does show 14 plots on top of each other that are identical. They are also identical to the plots
from CST.

Figure 6.2 compares the 3D-plot of the axial ratio from CST and SmallsatArray. In this
case the difference between CST and SmallsatArray are more substantial. Although the results
from SmallsatArray cannot be trusted entirely, it can be used to give an indication that there is
circular polarisation present.

6.2 4 PIFA elements on a Cubic Satellite
In this section, we will compare the results from

1. The control test of the four-element array simulated in CST (figure 5.1a)

2. The four-element array calculated in SmallsatArray by combining the imported simula-
tion result of the single element placed at the corner of the platform (figure 5.1b)

3. The four-element array calculated in SmallsatArray by combining the imported simula-
tion result of the single element placed in the centre of the satellite platform (figure 5.1c)

A 3D-plot of the radiation pattern from the array can be seen in figure 6.3. It is evident from
the plot that the radiation pattern is quite symmetrical about the XZ- and YZ-plane. We will
therefore only analyse the radiation pattern in the XZ-plane, where φ = 0.

Figure 6.4 shows the results for the θ̂ -component of the field. The results from the corner-
placed element (3.) appears to be nearly identical to the CST-control, while the results found
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(a) CST, θ -component, φ = 90° (b) AISSim, θ -component, φ = 90°

(c) CST, φ -component, θ = 90° (d) AISSim, φ -component, θ = 90°

Figure 6.1: Results of importing radiation patterns in various formats

(a) CST (SmallsatArray) (b) CST

Figure 6.2: Comparing 3D-plots of axial ratio from CST and SmallsatArray

44



Figure 6.3: 3D-plot of the RMS-normalised E-pattern from the 4 PIFA element array

using the centred element has a larger back-lobe than the CST-control.

Figure 6.5 shows the φ̂ -component in the same plane. Again, the results found using the
corner-placed element are very similar to the CST-control, while the results found using the
centred element show a greater radiation in the back.

6.3 2 Angled Monopole Elements on a 2U CubeSat
In this section we compare

1. Simulation of the array done in CST

2. Results from the physical measurements

3. The field calculated in SmallsatArray from the CST-simulation where the antenna was
aligned with the Z-axis (figure 5.2a)

4. The field calculated in SmallsatArray from the CST-simulation where the satellite was
placed upright (figure 5.2b)

5. The field calculated in SmallsatArray from the CST-simulation where antenna was cen-
tred on the platform (figure 5.2c)

Figures 6.6, 6.7 and 6.8 shows the results from having the elements in-phase for the three
evaluated planes; XY (θ = 90°), XZ (φ = 0°) and YZ (φ = 90°), respectively. The results from
CST and SamallsatArray (4) appear to be identical. The results from the physical measurements
also lie close to these, however the radiation pattern has been shifted slightly because of the 14°
phase delay between the elements. We can also see that the calculations done in SmallsatAr-
ray using the Z-aligned antenna simulation (3), are still very close to the formerly mentioned
plots. Finally the configuration where the antenna was centred on the satellite platform (5) has
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(a) CST (1.) (b) SmallsatArray, corner-placed element (2.)

(c) SmllsatArray, centred element (3.)

Figure 6.4: Directivity (dB) of θ̂ -component from four PIFA elements on a cubic satellite, φ = 0°
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(a) CST (1.) (b) SmallsatArray, corner-placed element (2.)

(c) SmllsatArray, centred element (3.)

Figure 6.5: Directivity (dB) of φ̂ -component from four PIFA elements on a cubic satellite, φ = 0°
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been affected by the different placement on the satellite body, however it does provide a good
estimation of the field.

The test with a phase delay of 90° are shown in figures 6.9, 6.10 and 6.11, for the tree
different evaluated planes. Again, the two simulations done in SmallsatArray using plots from
simulations where the element was placed on the edge of the platform ((3) and (4)) are very
close to the simulation done in CST. The results from the physical measurements are also very
close to these results except for a few abnormalities, most notably the plot in figure 6.9a. The
calculations done using the element centred on the platform differs the most from the other
plots, but the essential features of the radiation patten are visible.

6.3.1 Computational Time
It is, of course, important to take into account the time it took to preform the analysis using
the different methods. Table 6.1 gives on overview of the approximate time is took to prepare
and conduct the calculations or experiment. The preparation time for SmallsatArray does not
include the set-up and simulation of an antenna in CST, which is needed for calculations of
antennas other than dipole elements. However, it is rare to get the array right on first attempt,
and it is here that the fast computations of the SmallsatArray is a big advantage.

Method Experiment Preparation Computation time
SmallsatArray 3 minutes <0.5 seconds
CST 30 minutes 3 minutes
Physical experiment 1 week 1 workday

Table 6.1: Comparison of preparation time and computational time of the methods of analysis for the
test described in section 5.3 and analysed in section 6.3
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(a) CST simulation (1) (b) Physical experiment (2)

(c) SmallsatArray using simulation of Z-
aligned antenna (3)

(d) SmallsatArray using simulation of upright
satellite (4)

(e) SmallsatArray using simulation of centred
element (5)

Figure 6.6: CubeSat measurements. Normalised directivity for φ̂ -component at θ = 90°,β = 0°
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(a) CST simulation (1) (b) Physical experiment (2)

(c) SmallsatArray using simulation of Z-
aligned antenna (3)

(d) SmallsatArray using simulation of upright
satellite (4)

(e) SmallsatArray using simulation of centred
element (5)

Figure 6.7: CubeSat measurements. Normalised directivity for θ̂ -component at φ = 0°,β = 0°
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(a) CST simulation (1) (b) Physical experiment (2)

(c) SmallsatArray using simulation of Z-
aligned antenna (3)

(d) SmallsatArray using simulation of upright
satellite (4)

(e) SmallsatArray using simulation of centred
element (5)

Figure 6.8: CubeSat measurements. Normalised directivity for θ̂ -component at φ = 90°,β = 0°
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(a) CST simulation (1) (b) Physical experiment (2)

(c) SmallsatArray using simulation of Z-
aligned antenna (3)

(d) SmallsatArray using simulation of upright
satellite (4)

(e) SmallsatArray using simulation of centred
element (5)

Figure 6.9: CubeSat measurements. Normalised directivity for φ̂ -component at θ = 90°,β = 90°
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(a) CST simulation (1) (b) Physical experiment (2)

(c) SmallsatArray using simulation of Z-
aligned antenna (3)

(d) SmallsatArray using simulation of upright
satellite (4)

(e) SmallsatArray using simulation of centred
element (5)

Figure 6.10: CubeSat measurements. Normalised directivity for φ̂ -component at φ = 0°,β = 90°
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(a) CST simulation (1) (b) Physical experiment (2)

(c) SatelliteArray (1)
(d) SmallsatArray using simulation of upright
satellite (4)

(e) SmallsatArray using simulation of centred
element (5)

Figure 6.11: CubeSat measurements. Normalised directivity for θ -component at φ = 90°,β = 90°
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Chapter 7
Conclusion

The SmallsatArray software was developed on the assumption that the total field of an antenna
array, on a satellite platform with electrically small dimensions, could be calculated accurately
using only the contribution from the direct radiation from the antenna elements, neglecting the
contributions from coupling between the elements, and the scattering and diffraction of the field
by the satellite platform.

The simulations in SmallsatArray where the imported radiation patterns came from simula-
tions where the antenna elements’ placement on the satellite platform had the same symmetry
to the platform as in their placement in the array, the results were highly accurate. From this
we can conclude that the coupling between the elements did not make a significant contribution
to the radiation pattern and can rightfully be neglected. These results also verify the methods
for rotation of the radiation pattern and the calculation of the array factor with respect to the
antenna elements position in the array.

In the simulations where the imported radiation pattern came from a simulation where the
antenna element had a different symmetry in its placement on the satellite platform than in the
simulated array, the results show that the radiation patterns were affected by the scattering and
diffraction caused by the satellite platforms. Though the simulations from SmallsatArray still
provided decent accuracy. The test-cases evaluated in this thesis had satellite platform that was
only slightly smaller than the wavelength, so the calculations are expected to be even more ac-
curate when the electrical size of the satellite is decreased.

In summary, the SmallsatArray software provides very fast simulation of arrays with re-
spectable accuracy. It offers a wide range of plot options and has many useful features to make
the program user friendly and responsive. Personally, I am very satisfied with the user interface
of the program and its ease-of-use, but I have spent hundreds of hours with the program, so I
can only hope others will find it intuitive.

7.1 Future Work
A problem with the current state of the SmallsatArray software is that it is difficult for the user
to visualize the elements in the antenna array. It would be very helpful to have a visual repre-
sentation of the array and its elements. A possible solution is to have a separate figure where
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the antenna elements are drawn in, however having two figures that needs to be accessed by the
scrip would, from my experience, add a lot of complexity to the code.

Another place where the program is lacking is in visualising the polarisation. A simple plot
of the axial ratio exits in the program, but as seen in the results in figure 6.2, this is not accurate
enough. The implementation of the axial ratio is probably incorrect as it does not consider the
phase between the field components, only their magnitude. There are also other ways to plot
the polarisation in CST such as different options for Ludwig 2AE and Ludwig 3 that could be
implemented in this program.

It would also be very useful to relate the radiation patterns to the satellite in orbit. This
could be accomplished by plotting the contour of the radiation pattern for different power levels
on a globe or map of the earth, given the height and position in the orbit. The ship AIS antenna
is vertically polarized, so it would be a very useful feature to see polarisation loss factor also
included in the view.

To further test current state of the program, I would like to see a test of the program versus
an array where the coupling between the antenna elements is strong, possibly strong enough
to invalidate the results from the SmallsatArray software. I am also interested in seeing sim-
ulations in the program with satellites where the wavelength is even greater compared to the
satellite than the cases tested in this thesis. I predict that when the relative wavelength is larger,
the results will be even more accurate when moving the antennas around on the platform.

Having a larger selection of elements built-in to the program would also be a useful addition.
Common element types for satellites such as monopoles and patch antennas could possibly be
calculated using analytical formulas or some default radiation patterns from CST simulations
can be stored within the program somehow.

The function for calculating the total field was, for a long time during the thesis work, the
slowest calculation in the program. This was an issue because it had to be run every time an
element was added, and took longer and longer the more elements were added. By changing the
function from calculating single cells in the matrices at a time to simply adding or multiplying
entire matrices together after setting up matrices handling the transformation of each cell, the
computational time was reduced to almost nothing. The slowest calculation currently in the
program is the function for rotating the field. It is not a big issue because it takes less than a
second and the computational time remains constant for any number of elements in the array,
but if this function can be made with matrix multiplication and -addition instead of evaluating
each cell individually, the program can be made even more responsive.

EM-simulation software such as CST offers optimization tools find the best antenna param-
eters for the desired radiation characteristics. Because of the extremely fast calculations in the
SmallsatArray software compared to CST, there is a potential for preforming very fast optimiza-
tion in this software. This perhaps not so useful for fine-tuning the array, as this should be done
in EM-simulation tools for serious design considerations, but could be used to discover array
configurations that are unlikely to be found through an iterative or intuitive design approach.
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Appendix A
Mathematical Proofs

A.1 Tangential Unit Vectors for Spherical Coordinates
The tangential unit vectors described in section 3.1 needs to satisfy the following conditions:

1. They must both have a length of unity

2. They must both be normal to the vector they represent

3. φ̂ must be only in the xy-plane

4. They must be normal to each other

(1) is evident from the spherical form of the vectors where r = 1. (2) is prooven in (A.1a)
and (A.1b). (3) is seen in (A.1b) where the z-component is zero. (4) is prooven in (A.1c)

~v · θ̂ = [θv,φv,r]spherical · [π/2,φv,1]spherical

= [r sinθv cosφv,r sinθv sinφv,r cosθv]

· [sin(θv +π/2)cosφv,sin(θv +π/2)sinφv,cos(θv +π/2)]
= [r sinθv cosφv,r sinθv sinφv,r cosθv] · [cosθv cosφv,cosθv sinφv,−sinθv]

= r(sinθ cosθ cos2
φ + sinθ cosθ sin2

φ − sinθ cosθ)

= r sinθ cosθ(sin2
φ + cos2

φ −1) = 0

(A.1a)

~v · φ̂ = [r sinθ cosφ ,r sinθ sinφ ,r cosθ ] · [sinπ/2cos(φ +π/2),sinπ/2sin(φ +π/2),cosπ/2]
= r[sinθ cosφ ,sinθ sinφ ,cosθ ] · [−sinφ ,cosφ ,0]
= r(−sinθ sinφ cosφ + sinθ sinφ cosφ +0) = 0

(A.1b)

θ̂ · φ̂ = [sin(θ +π/2)cosφ ,sin(θ +π/2)sinφ ,cos(θ +π/2)]
·[sinπ/2cos(φ +π/2),sinπ/2sin(φ +π/2),cosπ/2]

= [cosθ cosφ ,cosθ sinφ ,−sinθ ] · [−sinφ ,cosφ ,0]
= −cosθ sinφ cosφ + cosθ sinφ cosφ +0 = 0

(A.1c)
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Appendix B
Source Code

B.1 Importing Radiation Patterns

Listing B.1: ImportElement function and nested functions
1 %-------------------Import Element -----------------------------------------
2 function ImportElement(handles)
3 UpdateMsgBox(handles ,'Importing element data ...');
4
5 % Fetching element number
6 n = round(str2num(handles.n.String));
7
8 global Element thetar phir
9

10 % Prompting format selection
11 format = questdlg('Select input format ',...
12 'Select input format ','CST','HFSS','CST');
13
14 switch format
15 case 'CST'
16 [cstfile ,directory] = uigetfile('*.txt','Select a file to import ');
17
18 % Checking valid input
19 if cstfile == 0
20 UpdateMsgBox(handles ,'Importing element data failed.');
21 return;
22 end
23
24 % Clearing variable
25 if not(size(Element ,2)>n)
26 Element(n).E_nonrot =[];
27 end
28
29 Element(n).Tag = cstfile;
30
31
32 %Assuming input format:
33 %Theta|Phi|Abs(tot)|Abs(theta)|Phase(theta)|Abs(phi)|Phase(phi)|Ax.Ratio
34
35 A = cstread(strcat(directory ,cstfile));
36 H = cstheadread(strcat(directory ,cstfile));
37
38 %Checking angle units units
39 if strcmp(H{2},'[deg.]')
40 angleunit = 'deg';
41 else
42 error('elmTyp_Callback: Unknown angle unit');
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43 end
44
45 % Calculating resolution
46 ImportedEF.res = A(2,1)-A(1,1);
47
48 % Reading data and storing in desired data structures and
49 % units
50 for i=1: size(A,1)
51 t_idx = A(i,1)/ImportedEF.res+1;
52 p_idx = A(i,2)/ImportedEF.res+1;
53 ImportedEF.theta(p_idx ,t_idx) = A(i,4);
54 ImportedEF.phi(p_idx ,t_idx) = A(i,6);
55 %ImportedEF.tot(p_idx ,t_idx)=A(i,3);
56 ImportedEF.t_phase(p_idx ,t_idx) = A(i,5);
57 ImportedEF.p_phase(p_idx ,t_idx) = A(i,7);
58 end
59
60 % Checking scale
61 if any(strfind(H{6},'dB'))
62 ImportedEF.theta = dB2lin(ImportedEF.theta);
63 ImportedEF.phi = dB2lin(ImportedEF.phi);
64 end
65
66 % Checking unit for power
67 if any(strcmp(H{5},{'Abs(Grlz)','Abs(Dir.)','Abs(Gain)','Abs(P)'})) ||

any(strcmp(H{5},{'Abs(E)','Abs(V)','Abs(H)'})) && any(strfind(H{6},'
dB'))

68 ImportedEF.theta = sqrt(ImportedEF.theta);
69 ImportedEF.phi = sqrt(ImportedEF.phi);
70 end
71
72 if any(strcmp(H{5},{'Abs(H)'}))
73 thetamag = ImportedEF.theta;
74 thetaphase = ImportedEF.t_phase;
75
76 ImportedEF.theta = ImportedEF.phi;
77 ImportedEF.t_phase = ImportedEF.p_phase;
78
79 ImportedEF.phi = thetamag;
80 ImportedEF.p_phase = thetaphase;
81 end
82
83
84 case 'HFSS'
85 [FileName ,PathName ,FilterIndex] = uigetfile('*.csv','Select a file to

import ');
86 A = csvread(strcat(PathName ,FileName) ,1,0);
87
88 Element(n).Tag = FileName;
89
90 % Calculating resolution
91 ImportedEF.res = abs(A(1,1)-A(2,1));
92
93 % Reading data and storing in desired data structures and
94 % units
95 for i=1: size(A,1)
96 [i_p , i_t]=r2t(d2r(A(i,2)), d2r(A(i,1)), ImportedEF.res);
97
98 ImportedEF.theta(i_p ,i_t)=dB2lin(A(i,3));
99 ImportedEF.phi(i_p ,i_t)=dB2lin(A(i,4));

100 ImportedEF.tot(i_p ,i_t)=...
101 sqrt(ImportedEF.theta(i_p ,i_t)^2+...
102 ImportedEF.phi(i_p ,i_t)^2);
103 end
104 ImportedEF.t_phase=zeros(size(ImportedEF.theta));
105 ImportedEF.p_phase=zeros(size(ImportedEF.phi));
106
107 otherwise
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108 return;
109 end
110
111
112 Element(n).E_nonrot.Theta =...
113 Interpol2(ImportedEF.theta ,ImportedEF.t_phase ,thetar ,phir);
114 Element(n).E_nonrot.Phi =...
115 Interpol2(ImportedEF.phi ,ImportedEF.p_phase ,thetar ,phir);
116
117 Element(n).Type = 'Imported ';
118
119 Element(n).CurrentRotation = [0,0,0];
120
121
122 UpdateMsgBox(handles ,'Importing element data ... Done!');
123
124
125 %-------------------Reading text files exported by CST ---------------------
126 function [A] = cstread(filename)
127 % Import data from text file.
128 % Script for importing data from the following text file:
129 %
130 % C:\ Users\Ola\git\master -thesis\NorSat -3_FF.txt
131 %
132 % To extend the code to different selected data or a different text file ,
133 % generate a function instead of a script.
134
135 % Auto -generated by MATLAB on 2017/03/28 15:35:09
136
137 % Initialize variables.
138 %filename = 'C:\Users\Ola\git\master -thesis\NorSat -3_FF.txt ';
139 %filename = uigetfile ('*.txt ','Select a file to import ');
140 startRow = 3;
141
142 % Format for each line of text:
143 % column1: double (%f)
144 % column2: double (%f)
145 % column3: double (%f)
146 % column4: double (%f)
147 % column5: double (%f)
148 % column6: double (%f)
149 % column7: double (%f)
150 % column8: double (%f)
151 % For more information , see the TEXTSCAN documentation.
152 formatSpec = '%8f%16f%21f%20f%20f%20f%20f%20f%[^\n\r]';
153
154 % Open the text file.
155 fileID = fopen(filename ,'r');
156
157 % Read columns of data according to the format.
158 % This call is based on the structure of the file used to generate this
159 % code. If an error occurs for a different file , try regenerating the code
160 % from the Import Tool.
161 dataArray = textscan(fileID , formatSpec , 'Delimiter ', '', 'WhiteSpace ', '', '

EmptyValue ' ,NaN ,'HeaderLines ' ,startRow -1, 'ReturnOnError ', false , '
EndOfLine ', '\r\n');

162
163 % Close the text file.
164 fclose(fileID);
165
166 % Post processing for unimportable data.
167 % No unimportable data rules were applied during the import , so no post
168 % processing code is included. To generate code which works for
169 % unimportable data , select unimportable cells in a file and regenerate the
170 % script.
171
172 % Create output variable
173 A = [dataArray {1:end -1}];
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174 % Clear temporary variables
175 clearvars filename startRow formatSpec fileID dataArray ans;
176
177
178 %-------------------Read the header from the CST -file ----------------------
179 function [H] = cstheadread(filename)
180
181 fileID = fopen(filename ,'r');
182 s = fscanf(fileID ,'%c');
183 fclose(fileID);
184
185 h{1} = '';
186 i = 1;
187 j = 1;
188 while s(i) ~= '-'
189 if strcmp(s(i),' ') && (not(strcmp(s(i-1),' ')) || not(strcmp(s(i-1),'')))
190 j = j + 1;
191 h{j} = '';
192 elseif s(i) == ']' || s(i) == ')'
193 h{j} = strcat(h{j},s(i));
194 j = j + 1;
195 h{j} = '';
196 elseif strcmp(s(i),'[')
197 j = j + 1;
198 h{j} = s(i);
199 else
200 h{j} = strcat(h{j},s(i));
201 end
202
203 i = i + 1;
204 end
205
206 j = 1;
207 %H = cell (1);
208 for i=1: length(h)
209 if strcmp(h{i},']') || strcmp(h{i},')')
210 H{j-1} = strcat(H{j-1},h{i});
211 elseif strcmp(h{i},'')
212 continue;
213 else
214 H{j} = h{i};
215 j = j + 1;
216 end
217 end
218
219
220 %-------------------Interpolate complex field ------------------------------
221 function Field = Interpol2(V,W,Xq,Yq)
222 % Interpolates field and phase values and constructs complex matrix
223 % V is a matrix containing field values
224 % W is a matrix containing phase values
225 % Xq is an array of theta meassurement points for the output field
226 % Yq is an array of phi meassurement points for the output field
227 x = 0:pi/(size(V,2) -1):pi;
228 y = 0:2*pi/(size(V,1) -1):2*pi;
229 [X,Y] = meshgrid(x,y);
230 [Xq ,Yq] = meshgrid(Xq ,Yq);
231
232 U = V.*exp(1i.*d2r(W));
233
234 Field = interp2(X,Y,U,Xq ,Yq);
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B.2 Calculating RMS-Normalised E-field

Listing B.2: Source code for normalising fields to average power
1 %-------------------Normalise field to average power -----------------------
2 function [varargout] = RMSField(varargin)
3 % RMSFIELD Normalises the field to the average power
4 % RMSFIELD(A) normalises E to its average power
5 % RMSFIELD(A,B) normalises Et and Ep to the average power of
6 % A^2+B^2
7 % RMSFIELD(_,'Name ',Value)
8 %
9 % Calculates the RMS -value of input fild(s)

10 % If the input has one field , it is normalised to its RMS value
11 % If the input has two fields , they are normalised to the RMS value of
12 % their combined value
13 % Options: dB , boolean power , boolean
14
15 global thetar
16
17 narginchk (1,6);
18
19 args = varargin;
20
21 %Default values
22 dB = false;
23 power = false;
24 Z0 = 377;
25
26 %Checking dB option
27 for i=1: length(args)
28 if strncmpi('dB',args{i},3)
29 if varargin{i+1} == true
30 dB = true;
31 end
32 args{i} = [];
33 args{i+1} = [];
34 args = args(~ cellfun('isempty ',args));
35 break
36 end
37 end
38
39 %Checking power option
40 for i=1: length(args)
41 if strncmpi('Power ',args{i},3) || strncmpi('power ',args{i},3)
42 if varargin{i+1} == true
43 power = true;
44 end
45 args{i} = [];
46 args{i+1} = [];
47 args = args(~ cellfun('isempty ',args));
48 break
49 end
50 end
51
52 nfields = length(args);
53
54 %Calculating rms
55 switch nfields
56 case 1
57 if dB == true
58 U = 10.^( abs(args {1}) ./10);
59 else
60 U = args {1};
61 end
62 if power == false
63 U = U.^2;
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64 end
65
66 case 2
67 if dB == true
68 U = 10.^( abs(args {1}) ./10) +10.^( abs(args {2}) ./10);
69 else
70 U{1} = abs(args {1});
71 U{2} = abs(args {2});
72 end
73 if power == false
74 U = U{1}.^2+U{2}.^2;
75 else
76 U = U{1}+U{2};
77 end
78
79 otherwise
80 error('RMSField: number of inputfields must be 1 or 2');
81 end
82
83 % U is now radiation intensity. (Power , linear)
84 Prad = 0;
85 Totang = 0;
86 %thetar = linspace(0,pi ,size(U,2));
87 for ii=1: size(U,1)
88 for i=1: size(U,2)
89 Prad = Prad + U(ii,i)*sin(thetar(i))*d2r (1) ^2;
90 Totang = Totang + sin(thetar(i))*d2r (1) ^2;
91 end
92 end
93
94 U0 = Prad ./( Totang);
95
96 if power == false
97 U0 = sqrt(U0);
98 end
99

100 %Outputing fields
101 switch nfields
102 case 1
103 if dB == true
104 varargout {1} = args {1} -10.* log10(U0);
105 else
106 varargout {1} = args {1}./U0;
107 end
108 case 2
109 if dB == true
110 varargout {1} = args {1} -10.* log10(U0);
111 varargout {2} = args {2} -10.* log10(U0);
112 else
113 varargout {1} = args {1}./U0;
114 varargout {2} = args {2}./U0;
115 end
116 end
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B.3 Rotating Radiation Pattern

Listing B.3: Source code for the RoteteElement function
1 %-------------------Rotates element n--------------------------------------
2 function RotateElement(handles , n)
3 global thetar phir res Element
4
5 Rotation = Element(n).Rotation -Element(n).CurrentRotation;
6
7 if Element(n).Rotation == [0,0,0]
8 Element(n).E = Element(n).E_nonrot;
9 return;

10 elseif Rotation == [0,0,0]
11 return;
12 else
13 Rotation = Element(n).Rotation;
14 end
15
16 UpdateMsgBox(handles , strcat('Rotating element ',num2str(n),'...'));
17
18
19 % Reverse order rotation without interpolation
20
21 % Setting up rotation matrix for reverse rotation
22 Rr = rotZ(-Rotation (3))*rotY(-Rotation (2))*...
23 rotZ(-Rotation (1));
24
25 % Setting up rotation matrix for regular rotation
26 Rf = rotZ(Rotation (1))*rotY(Rotation (2))*...
27 rotZ(Rotation (3));
28
29
30 for i=1: length(thetar)
31 for ii=1: length(phir)
32 %Setting up index vector for rotation
33 [x,y,z] = s2c(thetar(i),phir(ii) ,1);
34
35 %Rotating index vector reversely
36 v = Rr*[x;y;z];
37
38 %Converting index vector to spherical coordinates
39 [u(1),u(2),u(3)] = c2s(v(1),v(2),v(3));
40
41 %Converting index vector to matrix indecies
42 [i_p ,i_t] = r2t(u(1),u(2),res);
43
44 %Setting up field vector for rotation
45 %Theta component spherical vector coverted to Cartesian
46 [Et(1),Et(2),Et(3)] = s2c(thetar(i_t)+pi/2,phir(i_p),Element(n).E_nonrot

.Theta(i_p ,i_t));
47
48 %Phi component spherical vector coverted to Cartesian
49 [Ep(1),Ep(2),Ep(3)] = s2c(pi/2,phir(i_p)+pi/2,Element(n).E_nonrot.Phi(

i_p ,i_t));
50
51 %Combining field components
52 E = Et+Ep;
53
54 %Rotating field vector
55 rE = Rf*[E(1),E(2),E(3)]';
56
57 %Creating reference tangential vectors at target rotation
58 [v_ref_t (1),v_ref_t (2),v_ref_t (3)]=s2c(thetar(i)+pi/2,phir(ii) ,1);
59 [v_ref_p (1),v_ref_p (2),v_ref_p (3)]=s2c(pi/2, phir(ii)+pi/2,1);
60
61 %Decomposing rotated field vector using tangential reference vectors
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62 Et = dot(rE,v_ref_t);
63 Ep = dot(rE,v_ref_p);
64
65 %Removing NaN values
66 if isnan(Et)
67 Et = 0;
68 end
69 if isnan(Ep)
70 Ep = 0;
71 end
72
73 %Writing to element variable
74 Element(n).E.Theta(ii ,i) = Et;
75 Element(n).E.Phi(ii ,i) = Ep;
76 end
77 end
78
79 Element(n).CurrentRotation = Element(n).Rotation;
80
81 UpdateMsgBox(handles , strcat('Rotating element ',' ',num2str(n),'... Done!'));
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B.4 Calculating Total Field

Listing B.4: TotalField function
1 %-------------------Calculate total field ----------------------------------
2 function TotalField(handles)
3
4 UpdateMsgBox(handles , strcat('Calculating total field ...'));
5
6 global E thetar phir f Element c
7
8 %Reading array size
9 N = size(Element ,2);

10
11 %Setting up constants for calculation
12 k = 2*pi*f/c;
13
14 %Clearing E variable
15 E.Theta = zeros(length(phir),length(thetar));
16 E.Phi = zeros(length(phir),length(thetar));
17
18 for n=1:N
19 PHIx = exp(1i*k*Element(n).Position (1)*cos(phir ')*sin(thetar));
20 PHIy = exp(1i*k*Element(n).Position (2)*sin(phir ')*sin(thetar));
21 PHIz = exp(1i*k*Element(n).Position (3)*ones(length(phir) ,1)*cos(thetar));
22 PHIsp = PHIx.*PHIy.*PHIz;
23
24 E.Theta = E.Theta + Element(n).E.Theta.* PHIsp.* Element(n).Excitation;
25 E.Phi = E.Phi + Element(n).E.Phi .* PHIsp.* Element(n).Excitation;
26 end
27
28 UpdateMsgBox(handles ,'Normalising field ...');
29 [E.Theta ,E.Phi] = RMSField(E.Theta ,E.Phi ,'dB',false);
30 UpdateMsgBox(handles ,'Normalising field ... Done!');
31 E.Abs = sqrt(abs(E.Theta).^2+ abs(E.Phi .^2));
32
33
34 UpdateMsgBox(handles , strcat('Calculating total field ... Done!'));
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B.5 Plotting Field

Listing B.5: Source code for functions related to plotting
1 %-------------------Update plot --------------------------------------------
2 function UpdatePlot(handles)
3 UpdateMsgBox(handles ,'Updating plot ...');
4
5 global Element
6
7 compare = {Element (:).Compare };
8
9 props = whos('compare ');

10
11 switch props.class
12 case 'cell'
13 compare = cell2mat(compare);
14 end
15
16 if ~any(compare) || nnz(compare) == 1
17
18 CalcPlotData(handles)
19
20 ScalePlotData(handles);
21
22 PlotData(handles);
23
24 else
25
26 s = handles.plotType.String(handles.plotType.Value);
27 if strcmp(s,'2D') || strcmp(s,'3D')
28 return;
29 error('Cannot compare in 2D or 3D plot');
30 end
31
32 k = 1;
33 for n=1: length(compare)
34 if compare(n) && k == 1
35 CalcCompPlotData(handles ,n)
36
37 ScalePlotData(handles);
38
39 PlotData(handles);
40
41 k = k + 1;
42
43 elseif compare(n)
44 CalcCompPlotData(handles ,n)
45
46 ScalePlotData(handles);
47
48 hold on
49 PlotData(handles);
50 hold off
51
52 k = k + 1;
53 end
54 end
55 end
56 UpdateMsgBox(handles ,'Updating plot ... Done!');
57
58
59 %-------------------Calculate plot data ------------------------------------
60 function CalcPlotData(handles)
61 UpdateMsgBox(handles ,'Calculating plot data ...');
62 global E PlotData
63
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64 PlotData = [];
65 s = handles.plotValue.String;
66 k = handles.plotValue.Value;
67
68 switch s{k}
69 case 'Abs'
70 PlotData = sqrt(abs(E.Theta).^2 + abs(E.Phi).^2);
71 case 'Theta'
72 PlotData = abs(E.Theta);
73 case 'Theta Phase'
74 PlotData = angle(E.Theta);
75 case 'Phi'
76 PlotData = abs(E.Phi);
77 case 'Phi Phase'
78 PlotData = angle(E.Phi);
79 case 'Axial Ratio'
80 Em = E.Theta - 1i.*E.Phi;
81 Ep = E.Theta + 1i.*E.Phi;
82
83 t = angle(Em./Ep)./2;
84
85 Ex = E.Theta .*sin(t)-E.Phi.*cos(t);
86 Ey = E.Theta .*cos(t)-E.Phi.*sin(t);
87
88 PlotData = abs(Ey./Ex);
89 case 'Theta/Phi'
90 PlotData = abs(E.Theta)./abs(E.Phi);
91 case 'Phi/theta'
92 PlotData = abs(E.Phi)./abs(E.Theta);
93 end
94
95 % Field pattern or power pattern
96 s2 = handles.plotField.String;
97 k2 = handles.plotField.Value;
98
99 if strcmp(s2{k2},'Directivity ') && not(strcmp(s{k}, 'Axial Ratio '))

100 PlotData = PlotData .^2;
101 % elseif strcmp(s2{k2},'E-pattern ') && not(strcmp(s{k}, 'Axial Ratio '))
102 % PlotData = PlotData .*4.0862;
103 % if handles.dbCheck.Value == true
104 % PlotData = PlotData .^2;
105 % end
106 end
107 UpdateMsgBox(handles ,'Calculating plot data ... Done!');
108
109 %-------------------Calculates plot data for compare mode ------------------
110 function CalcCompPlotData(handles , n)
111 UpdateMsgBox(handles ,strcat ({'Calculating plot data for element '},num2str(n),'

...'));
112 global Element PlotData
113
114 PlotData = [];
115 s = handles.plotValue.String;
116 k = handles.plotValue.Value;
117
118 switch s{k}
119 case 'Abs'
120 PlotData = sqrt(abs(Element(n).E.Theta).^2 + abs(Element(n).E.Phi).^2);
121 case 'Theta '
122 PlotData = abs(Element(n).E.Theta);
123 case 'Theta Phase'
124 PlotData = angle(Element(n).E.Theta);
125 case 'Phi'
126 PlotData = abs(Element(n).E.Phi);
127 case 'Phi Phase'
128 PlotData = angle(Element(n).E.Phi);
129 case 'Axial Ratio'
130 Em = Element(n).E.Theta - 1i.* Element(n).E.Phi;
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131 Ep = Element(n).E.Theta + 1i.* Element(n).E.Phi;
132
133 t = angle(Em./Ep)./2;
134
135 Ex = Element(n).E.Theta .*sin(t)-Element(n).E.Phi.*cos(t);
136 Ey = Element(n).E.Theta .*cos(t)-Element(n).E.Phi.*sin(t);
137
138 PlotData = abs(Ey./Ex);
139 case 'Theta/Phi'
140 PlotData = abs(Element(n).E.Theta)./abs(Element(n).E.Phi);
141 case 'Phi/theta'
142 PlotData = abs(Element(n).E.Phi)./abs(Element(n).E.Theta);
143 end
144
145 % Field pattern or power pattern
146 s2 = handles.plotField.String;
147 k2 = handles.plotField.Value;
148
149 if strcmp(s2{k2},'Directivity ') && not(strcmp(s{k}, 'Axial Ratio '))
150 PlotData = PlotData .^2;
151 elseif strcmp(s2{k2},'E-pattern ') && not(strcmp(s{k}, 'Axial Ratio'))
152 PlotData = PlotData .*4.0862;
153 if handles.dbCheck.Value == true
154 PlotData = PlotData .^2;
155 end
156 end
157 UpdateMsgBox(handles ,strcat ({'Calculating plot data for element '},num2str(n),'

... Done!'));
158
159
160 %-------------------Scale plot data for plot options -----------------------
161 function ScalePlotData(handles)
162 UpdateMsgBox(handles ,'Scaling plot data ...');
163 %Manual settings
164 smoothen.bool = handles.smoothen.Value;
165 %smoothen.bool = true;
166 smoothen.n = 10;
167
168 global PlotData E plotlims thetar phir
169
170 norm = handles.normCheck.Value;
171 dB = handles.dbCheck.Value;
172
173 s = handles.plotValue.String;
174 k = handles.plotValue.Value;
175
176 switch s{k}
177 case {'Abs', 'Theta ', 'Phi'}
178
179 switch norm
180 case true
181 m = max(max(PlotData));
182
183 PlotData = PlotData ./m;
184 case false
185
186 end
187
188 switch dB
189 case true
190 PlotData = 10.* log10(PlotData);
191 case false
192
193 end
194
195 case 'Axial Ratio'
196
197 end
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198
199 % Removing NaN , Inf and too small values
200 for i=1: size(PlotData ,2)
201 for ii=1: size(PlotData ,1)
202 switch dB
203 case true
204 if PlotData(ii,i) > plotlims.dB(2)
205 PlotData(ii,i) = plotlims.dB(2);
206 elseif PlotData(ii,i) < plotlims.dB(1) || isnan(PlotData(ii,i))
207 PlotData(ii,i) = plotlims.dB(1);
208 end
209 case false
210 if PlotData(ii,i) > plotlims.lin (2)
211 PlotData(ii,i) = plotlims.lin(2);
212 elseif PlotData(ii,i) < plotlims.lin (1) || isnan(PlotData(ii,i))
213 PlotData(ii,i) = plotlims.lin(1);
214 end
215 end
216 end
217 end
218
219 if smoothen.bool == true
220 if 1 %Stable
221 for i=1: size(PlotData ,2)
222 PlotData(:,i) = smooth(PlotData(:,i),smoothen.n);
223 end
224
225 for i=1: size(PlotData ,1)
226 PlotData(i,:) = smooth(PlotData(i,:),smoothen.n);
227 end
228
229 else %Experimental
230
231 [theta3 ,phi3] = meshgrid(thetar ,phir);
232
233 if dB == true
234 rho3 = PlotData - plotlims.dB(1);
235 else
236 rho3 = PlotData;
237 end
238
239 [X,Y,Z] = s2c(theta3 ,phi3 ,rho3);
240
241 V(:,:,1) = X;
242 V(:,:,2) = Y;
243 V(:,:,3) = Z;
244
245 W = smooth3(V);
246
247 %[theta3 ,phi3 ,rho3] = c2s(W(:,:,1),W(:,:,2),W(:,:,3));
248
249 PlotData=sqrt(W(:,:,1) .^2+W(:,:,2) .^2+W(:,:,3) .^2);
250 end
251 end
252 UpdateMsgBox(handles ,'Scaling plot data ... Done!');
253
254
255 %-------------------Plot Data ----------------------------------------------
256 function PlotData(handles)
257 UpdateMsgBox(handles ,'Plotting ...');
258 global PlotData res thetar phir plotlims Element
259
260 if isempty(PlotData)
261 return;
262 end
263
264 PlotMat = [];
265
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266 s = handles.plotType.String;
267 k = handles.plotType.Value;
268
269 dB = handles.dbCheck.Value;
270 norm = handles.normCheck.Value;
271
272 D0 = max(max(PlotData));
273 limits (2) = D0;
274
275 if dB == true
276 limits (1) = plotlims.dB(1);
277 if limits (2) < 0
278 limits (2) = 0;
279 end
280 else
281 limits (1) = plotlims.lin (1);
282 if limits (2) < 1
283 limits (2) = 1;
284 end
285 end
286
287 limits (2) = ceil(limits (2) *100) /100;
288
289 if limits (2) > 100
290 limits (2) = 100;
291 end
292
293 if dB == true
294 i = 2;
295 ticks (1) = plotlims.dB(1) +10;
296 while ticks(i-1)<limits (2) -10
297 ticks(i) = plotlims.dB(1) +10*i;
298 i = i + 1;
299 end
300 ticks(i) = limits (2);
301 else
302 i = 2;
303 ticks (1) = plotlims.lin(1) +0.25;
304 while ticks(i-1)<limits (2) -0.25
305 ticks(i) = plotlims.lin(1) +0.25*i;
306 i = i + 1;
307 end
308 ticks(i) = limits (2);
309 end
310
311 switch s{k}
312 case {'Polar', 'Rectangular '}
313 Plane = handles.plotplane.SelectedObject.String;
314 PlaneAngle = round(handles.plotAngSlider.Value);
315
316 PlotMat (1,:) = 0:2*pi /360* res :2*pi;
317
318 switch Plane
319 case 'Phi'
320 for i = 1:size(PlotMat ,2)
321 [i_p , i_t] = r2t(PlotMat(1,i),d2r(PlaneAngle),res);
322
323 PlotMat(2,i) = PlotData(i_p ,i_t);
324
325 label = '\theta ';
326 end
327 case 'Theta '
328 PlotMat (2,:) = PlotData(:,mod(PlaneAngle ,180) +1);
329
330 label = '\phi';
331
332 % For tilted theta plane:
333 % R = rotY(-(pi/2-d2r(PlaneAngle)));
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334 % for i = 1:size(PlotData ,1)
335 % [x,y,z] = s2c(pi/2,phir(i) ,1);
336 % q = R*[x,y,z]';
337 % [u,v,r] = c2s(q(1),q(2),q(3));
338 % [i_p ,i_t] = r2t(u,v,res);
339 % PlotMat(2,i)= PlotData(i_p ,i_t);
340 % end
341 end
342
343 switch s{k}
344 case 'Polar '
345 polarplot(PlotMat (1,:),PlotMat (2,:));
346 rlim(limits);
347
348 ax = gca;
349 d = ax.ThetaDir;
350 ax.ThetaDir = 'counterclockwise ';
351 ax.ThetaZeroLocation = 'top';
352
353 case 'Rectangular '
354 PlotMat (1,:) = r2d(PlotMat (1,:));
355 plot(PlotMat (1,:),PlotMat (2,:));
356 xlim ([0 ,360]);
357 ylim(limits);
358
359 xlabel(label);
360
361 if dB == true
362 ylabel('dB');
363
364 end
365 end
366
367 case '2D'
368 [Y,X] = meshgrid(thetar ,phir);
369
370 X = r2d(X);
371 Y = r2d(Y);
372
373 R = PlotData -min(min(PlotData));
374 Rmax = max(max(R));
375
376 % Red
377 C(:,:,1) = subplus(-cos(pi.*R./Rmax));
378 % Green
379 C(:,:,2) = sin(pi.*R./Rmax);
380 % Blue
381 C(:,:,3) = subplus(cos(pi.*R./Rmax));
382
383
384 surf(X,Y,PlotData ,C,'FaceColor ','interp ','MeshStyle ','none');
385 view (0 ,90);
386 axis ([0 ,360 ,0 ,180]);
387 rotate3d off
388 xlabel('\phi');
389 ylabel('\theta ');
390 set(gca ,'Ydir','reverse ');
391
392 case '3D'
393 [az,el] = view;
394
395 [theta3 ,phi3] = meshgrid(thetar ,phir);
396
397 if dB == true
398 rho3 = PlotData - plotlims.dB(1);
399 else
400 rho3 = PlotData;
401 end
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402
403 [X,Y,Z] = s2c(theta3 ,phi3 ,rho3);
404
405 R = sqrt(X.^2+Y.^2+Z.^2);
406 Rmax = max(max(R));
407
408 % Colour matrix
409 % Red
410 C(:,:,1) = subplus(-cos(pi.*R./Rmax));
411 % Green
412 C(:,:,2) = sin(pi.*R./Rmax);
413 % Blue
414 C(:,:,3) = subplus(cos(pi.*R./Rmax));
415
416 surf(X,Y,Z,C,'FaceColor ','interp ','MeshStyle ','both','LineWidth ' ,0.001,'

EdgeAlpha ' ,0.1,'LineStyle ','-','EdgeLighting ','none');
417 set(gca ,'DataAspectRatio ' ,[1 1 1])
418 h=rotate3d;
419 set(h,'Enable ','on');
420 xlabel('x');
421 ylabel('y');
422 zlabel('z');
423
424 view(az,el);
425 otherwise
426 error('Unsupported plot type');
427
428
429 end
430
431 %Filling inn supplimentary information
432 FieldTypeStr = handles.plotField.String(handles.plotField.Value);
433 FieldValue = handles.plotValue.String(handles.plotValue.Value);
434
435 switch FieldValue {1}
436 case 'Abs'
437 FieldValueStr = 'Absolute value ';
438 case 'Theta '
439 FieldValueStr = 'Theta component ';
440 case 'Phi'
441 FieldValueStr = 'Phi component ';
442 case 'Axial Ratio'
443 FieldValueStr = 'Axial ratio';
444 end
445
446
447 if strcmp(FieldTypeStr ,'Directivity ')
448 maxstr = 'D_0';
449 else
450 maxstr = 'E_0';
451 end
452
453
454 % Unit label
455 if dB == true && strcmp(FieldTypeStr ,'Directivity ') && norm == false
456 unitlabel = 'dBi';
457 elseif dB == true && strcmp(FieldTypeStr ,'Directivity ') && norm == true
458 unitlabel = 'dB';
459 elseif dB == false && strcmp(FieldTypeStr ,'Directivity ')
460 unitlabel = '';
461 elseif dB == true && strcmp(FieldTypeStr ,'E-pattern ')
462 unitlabel = 'dBV';
463 elseif dB == false && strcmp(FieldTypeStr ,'E-pattern ')
464 unitlabel = 'V';
465 end
466
467 compare = {Element (:).Compare };
468

76



469 props = whos('compare ');
470
471 switch props.class
472 case 'cell'
473 compare = cell2mat(compare);
474 end
475
476 switch s{k}
477 case {'2D', '3D'}
478 % Colormap
479 r = linspace(0,Rmax);
480
481 map(:,1) = subplus(-cos(pi.*r./Rmax));
482 map(:,2) = sin(pi.*r./Rmax);
483 map(:,3) = subplus(cos(pi.*r./Rmax));
484
485 map = abs(map)./max(max(map));
486
487 % Colorbar
488 if dB == true
489 tickLbl = linspace(plotlims.dB(1),max(max(PlotData)) ,10);
490 else
491 tickLbl = linspace(0,Rmax ,10);
492 end
493
494 tickLbl = round(tickLbl ,2);
495
496 c = colorbar('TickLabels ',tickLbl ,'Ticks ',linspace (0,1,10));
497 colormap(map);
498 c.Position = c.Position + [0.12 ,0 ,0 ,0];
499
500 % Colorbar label
501 c.Label.String = unitlabel;
502 c.Label.Rotation = 0;
503 c.Label.Position = c.Label.Position + [0.5 ,0 ,0];
504
505 % Title
506 if strcmp(FieldValue ,'Axial Ratio')
507 title(FieldValueStr);
508 return;
509 end
510 title(strcat(FieldValueStr ,{' of '},FieldTypeStr));
511 return;
512 case {'Polar','Rectangular '}
513
514 % Title
515 if strcmp(Plane ,'Theta ')
516 planestr = '\theta ';
517 else
518 planestr = '\phi';
519 end
520
521
522
523 if strcmp(FieldValueStr ,'Axial ratio ')
524 title(strcat(FieldValueStr ,{', '},planestr , {' = '},num2str(

PlaneAngle), {char (176)}));
525 return;
526 else
527 title(strcat(FieldValueStr ,{' of '},FieldTypeStr ,{', '},planestr , {'

= '},num2str(PlaneAngle), {char (176)}));
528 end
529
530 if strcmp(s{k},'Polar ')
531 D0pos = [d2r (315),D0+(D0 -limits (1))*0.05];
532 HPBWpos = [d2r (312),D0];
533 else
534 D0pos = [370,(D0 -limits (1))/2+ limits (1)];
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535 HPBWpos = [370 ,(D0 -limits (1))/2+ limits (1) -1];
536 end
537
538 % Mainlobe marker
539 [M,I] = max(PlotMat ,[],2);
540
541 text(D0pos (1),D0pos (2),strcat(maxstr ,{' = '},...
542 num2str(round(PlotMat(2,I(2)) ,2)),{' '},unitlabel),...
543 'VerticalAlignment ','bottom ','HorizontalAlignment ','left');
544 hold on
545 line([ PlotMat(1,I(2)),PlotMat(1,I(2))],[limits (1),D0],'LineWidth ' ,1.5,'

Color ','red');
546 hold off
547
548 if any(compare)
549 return;
550 end
551
552 % HPBW markers
553 if dB == true && strcmp(FieldTypeStr ,'Directivity ')
554 HP = max(PlotMat (2,:)) -10*log10 (2);
555 elseif dB == false && strcmp(FieldTypeStr ,'Directivity ')
556 HP = max(PlotMat (2,:))*0.5;
557 elseif dB == false && strcmp(FieldTypeStr ,'E-pattern ')
558 HP = max(PlotMat (2,:))*sqrt (0.5);
559 elseif dB == true && strcmp(FieldTypeStr ,'E-pattern ')
560 HP = max(PlotMat (2,:)) -10*log10(sqrt (2));
561 end
562
563 HPi = [];
564 i = 1;
565
566 while isempty(HPi) && i<length(PlotMat)
567 if PlotMat(2,mod(I(2)-i-1,length(PlotMat))+1) < HP
568 HPi(1) = mod(I(2)-i-1,length(PlotMat))+1;
569 break;
570 end
571 i = i+1;
572 end
573
574 if ~isempty(HPi) && abs(PlotMat(2,HPi (1))-HP) > abs(PlotMat(2,HPi (1) +1)-

HP)
575 HPi (1) = HPi (1) +1;
576 end
577
578 HPi (2) = 1i;
579 i = 1;
580
581 while ~isreal(HPi(2)) && i<length(PlotMat)
582 if PlotMat(2,mod(I(2)+i-1,length(PlotMat))+1) < HP
583 HPi(2) = mod(I(2)+i-1,length(PlotMat))+1;
584 end
585 i = i+1;
586 end
587
588 if real(HPi (1)) == real(HPi (2)) || ~isreal(HPi (2))
589 HPi = [];
590 end
591
592 if ~isempty(HPi) && abs(PlotMat(2,HPi (2))-HP) > abs(PlotMat(2,HPi (2) -1)-

HP)
593 HPi (2) = HPi (2) -1;
594 end
595
596
597
598 hold on
599 for i=1: length(HPi)
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600 line([ PlotMat(1,HPi(i)),PlotMat(1,HPi(i))],[limits (1),D0],'LineWidth
',1,'Color','m');

601 end
602 hold off
603
604 % HPBW label
605 if ~isempty(HPi)
606 HPBW = mod(( PlotMat(1,HPi (2))-PlotMat(1,HPi (1))) ,2*pi);
607
608
609 if strcmp(s{k},'Polar ')
610 HPBW = round(r2d(HPBW) ,1);
611 else
612 HPBW = round(HPBW ,1);
613 end
614
615 text(HPBWpos (1),HPBWpos (2),strcat ({'HPBW = '},...
616 num2str(HPBW),char (176)),...
617 'VerticalAlignment ','bottom ','HorizontalAlignment ','left');
618 end
619
620
621
622
623 end
624 UpdateMsgBox(handles ,'Plotting ... Done!');
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Appendix C
Copyright Licence

The software is available at https://github.com/EvenBirk/SmallsatArray both as MAT-
LAB script and figure, and as an executable running with MATLAB Runtime allowing anyone
who don’t have a MATLAB license run the software.

Listing C.1: MIT License for SmallsatArray
1 MIT License
2
3 Copyright (c) 2017 Even Birkeland
4
5 Permission is hereby granted , free of charge , to any person obtaining a copy
6 of this software and associated documentation files (the "Software "), to deal
7 in the Software without restriction , including without limitation the rights
8 to use , copy , modify , merge , publish , distribute , sublicense , and/or sell
9 copies of the Software , and to permit persons to whom the Software is

10 furnished to do so , subject to the following conditions:
11
12 The above copyright notice and this permission notice shall be included in all
13 copies or substantial portions of the Software.
14
15 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , EXPRESS OR
16 IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY ,
17 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER
19 LIABILITY , WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING FROM ,
20 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 SOFTWARE.
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