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Abstract

In this work, we study the acoustic impedance of Isotropic Conductive Adhesives (ICAs) consisting

of silver coated monodisperse polymer spheres. These ICAs are intended to be used as thermal

conductive isolation and matching layers in dual frequency ultrasound transducers because of their

low acoustic impedance. In order to design the transducer layers, it is necessary to understand how

the geometric parameters (such as particle size, coating thickness and particle density) alter the

acoustic impedance. As far as the author know, there are no studies of the acoustic impedance of

these ICAs. We use the Finite Element Method (FEM) and the Three Phase Model (TPM) (also

known as the Generalized Self-Consistent Method) to approximate the effective acoustic impedance

of composites and compare our results to experimentally measured acoustic impedances. Finally,

we use the models to do numerical experiments in design. In conclusion, the TPM is just as good as

the Finite Element (FE) model at approximating the homogeneous properties. However, we show

that the composite used as a transducer layer may be too thin to be assumed homogeneous at a

macroscopic level. Large particles seem favourable to use in thermal conductive transducer layers,

and polystyrene is more favourable than PMMA as the core material.
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Chapter 1
Introduction

Ultrasonic treatment and imaging is based upon the use of an ultrasonic transducer. The transducer

transmits acoustic waves into the body, commonly approximated as pressure waves, i.e. assuming

the shear modulus of tissue is 0. By transmitting a continuous wave for a longer time period, tissue

is heated due to thermoviscous losses in the wave propagation, and this effect is used in treatment.

Images are made from echoes owing to reflections as the acoustic waves get reflected at interfaces

of materials of different acoustic impedance. The longitudinal acoustic impedance is defined as

ZL = ρcL (1.1)

where ρ and cL is the density and longitudinal wave velocity of the material, respectively. Acous-

tic impedance and how it affects reflection and transmission of acoustic energy will be further

explained in chapter 2. Images are created by measuring the time delay and magnitude of the re-

flected waves. An imaging transducer thus sends out short pulses and records the echoes, whereas

a treatment transducer may transmit a continuous acoustic wave. Treatment transducers usually

transmit greater intensity, compared to imaging transducers. One limiting factor is heat generation,

which causes delamination of the layers.

SURF Technologies develops dual frequency transducers that transmit both Low Frequency

(LF) and High Frequency (HF) pulses. The LF pulse is used to manipulate the non-linear elasticity

of the medium observed by the HF pulse to achieve optimal noise suppression.[20] This technique

3



Chapter 1. Introduction

is known as SURF (Second-order UltRasound Field) imaging. When designing the transducer stack

used in SURF imaging, one uses what is known as isolation layers between the LF section and the

HF section. Myhre et. al. [19] have shown that these isolation layers are of alternating high and

low impedance, and suggested that these high impedance layers might function as heat sinks in the

transducer stack.

SURF Technologies AS together with Conpart AS are exploring the possibility of using com-

posites comprising silver coated monodisperse polymer spheres in polymer adhesive as a way of

increasing the thermal conductivity of the low impedance isolation layers used in the ultrasound

transducer stack. By increasing the thermal conductivity of the transducer layers, they can transport

heat from the piezoelectric (PE) elements to the high impedance layers which can function as heat

sinks. This type of conductive composite is known as an Isotropic Conductive Adhesive. As we

will show in chapter 2, these transducer layers need specific mechanical properties to optimize the

transmitted intensity into tissue.

There have been extensive studies of how solid particle reinforced adhesives alter the mechan-

ical properties of transducer layers, and these particle reinforced layers are what is normally used

to alter the acoustic impedance of transducer layers. As far as the author of this thesis know of,

there is no information on how polymers reinforced with metal coated polymer spheres will alter

the mechanical properties. We will in this thesis therefore shed some light on the mechanical prop-

erties and their impact on the acoustic impedance by doing numerical experiments in the design of

the ICA. Note that whenever impedance is mentioned in this thesis, it is the longitudinal specific

acoustic impedance.

Transducer layers need specific acoustic impedances, typically higher than the impedance of

polymers. The common practice is to modify the polymers by mixing in metal powder to increase

the acoustic impedance. By using the coated polymer spheres instead, one can utilize the necessary

metal by moving it out to the periphery of the particles and obtain connectivity between the highly

conductive particles. This is illustrated in fig. 1.1 for isolation layers.

An extensive amount of work has gone into developing the scripts used to generate FE models

and to post-process data. The most important scripts can be found at https://github.com/

sindrebl/mastersthesis_scripts where there is a README file that explains the use.

4
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LF HF

(a) Connectivity is not achieved using traditional transducer layers.

LF HF

(b) Connectivity is achieved by using coated polymer spheres.

Figure 1.1: Transducer stack with a LF transducer, three isolation layers and a HF transducer.
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Chapter 1. Introduction

These are just the basic scripts, as we have used a great number of models which usually require

some changes for each case. We recommend the reader to take a look at these scripts while reading

through chapter 3.

Chapter 2 covers relevant theory of elasticity and elastic waves, ultrasound and transducer layers,

thermal conductivity using ICA and the Three Phase Model. Last is a section covering

the Finite Element Method.

Chapter 3 explains the methods used to approximate the acoustic impedance using ABAQUS and

MATLAB. We also present the method we use to compare our approximations to ICA

and the method used for the numerical experiment in design. A verification study and

its results are presented, and these results are used for all FE models for the rest of the

thesis.

Chapter 4 presents the result of the comparison study and the numerical experiment in design.

Chapter 5 discusses the assumptions made in the FE model, how well the FE model and TPM

describes the ICA, as well as discussing the design of the composite.

Chapter 6 presents the concluding remarks as well as future work that we would be interested in

doing.

6



Chapter 2
Theory

In this chapter, we cover the relevant equations of elastic materials, and use them to derive expres-

sions for the longitudinal and transverse velocity of stress waves. We will then cover the theory

of reflection and transmission of stress waves and how they apply to ultrasound transducer layers.

This is essential in order to understand the problem we address and in the understanding of the

analyses and discussions later on. We also present the Three Phase Model, an analytic homoge-

nization method that will be tested whether appropriate for use in our case. We finish with some

background theory on the Finite Element Method.

2.1 Elastic Materials

The following theory is adapted from [11, 12]. A material is said to be elastic if, under isothermal

conditions, the stress depends only on the strain. There is a unique relation between stresses and

strains in the body and the stored elastic energy is independent of the strain path. Further, a material

is said to be hyperelastic if there exists a strain energy function U0 (εij) such that

σij =
∂U0

∂εij
, (2.1)

where σij and εij is the second order stress and strain tensor, respectively. As a result of eq. (2.1)

the stresses are functions of the strains for hyperelastic materials: σij = σij (εij), thus implying

7



Chapter 2. Theory

that there is a one-to-one relation between stresses and strains. Therefore, a hyperelastic material

falls under the definition of elastic materials. Note that it is not necessarily the other way around.

2.1.1 Linear Elastic Materials

If the relation between the stress and strains in a material is linear, it is said to be linear elastic. The

most general form of a linear elastic material is defined by the generalized Hooke’s law

σij = Cijklεkl, (2.2)

where Cijkl is a forth order tensor of elastic constants, or compliances. The compliance tensor has

34 = 81 components. Under the assumption that the forces on a continuum only are contact forces

and body forces, the law of balance of angular and linear momentum (known as Euler’s 1. & 2.

axiom) implies that the stress matrix is symmetric:

σij = σji. (2.3)

Using the Green strain tensor for infinitesimal strains

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
⇔ εkl =

1

2
(uk,l + ul,k) , (2.4)

where uk is the displacement in the direction of the coordinate axis xk. From eq. (2.4) it is

straightforward to see that the strain tensor is symmetric, i.e. εkl = εlk.

The symmetries implied by eqs. (2.3) and (2.4) are referred to as the minor symmetries. Using

these symmetries

σij = σji ⇒ Cijkl = Cjikl, (2.5)

εkl = εlk ⇒ Cijkl = Cjilk, (2.6)

and the compliance tensor is reduced from 81 to 36 independent coefficients. We now assume the

material to be hyperelastic, and consider the stress-strain relation using the strain energy function

8



2.1 Elastic Materials

U0 as in eq. (2.1).

σij =
∂U0

∂εij
= Cijklεkl, (2.7)

By differentiating σij with respect to εkl, we find an expression for the compliance tensor

Cijkl =
∂σij
∂εkl

=
∂2U0

∂εkl∂εij
=

∂2U0

∂εij∂εkl
= Cklij. (2.8)

By introducing the assumption of hyperelasticity, it implies that the compliance tensor exhibits in

addition to the minor symmetries, the major symmetries

Cijkl = Cklij, (2.9)

and the compliance tensor is reduced further to 21 independent coefficients, a symmetric 6-by-6

matrix.

2.1.2 Isotropic Elasticity

For an isotropic elastic material, there are no preferred directions of orientation; the compliances at

a given particle must be the same for all possible choices of Cartesian coordinate systems:

C∗
ijkl = Cijkl, (2.10)

where C∗
ijkl and Cijkl are the compliance matrices for a coordinate system with basis vectors (e∗i )

and (ei), respectively. For further simplification of the compliance tensor, a transformation rule for

the tensor is needed. First, by integrating eq. (2.7), the strain energy function U0 for a linear elastic

material yields

U0 =
1

2
Cijklεijεkl. (2.11)

Now, by expressing the strain energy function in two basis systems (e∗i ) and (ei)

U0 =
1

2
C∗
ijklε

∗
ijε

∗
kl =

1

2
Cmnrsεmnεrs, (2.12)

9
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where the relation between the two bases is given by a transformation matrix a: e∗i = aijej . Using

the transformation rule for a second order tensor gives εmn = aimajnε
∗
ij and εrs = akralsε

∗
kl.

Inserting these expressions into eq. (2.12), we get

(
C∗
ijkl − aimajnakralsCmnrs

)
ε∗ijε

∗
kl = 0. (2.13)

Since ε is arbitrary, the expression inside the parenthesis is zero, and we have the transformation

rule for Cijkl as

C∗
ijkl = aimajnakralsCmnrs. (2.14)

By systematically rotating the system about the x1, x2 and the x3 axis, using the rotation matrices:
1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 ,


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 and


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , (2.15)

the compliance tensor is reduced to only two unknowns, the Lamé parameters, λ and µ, and we

can express the compliance tensor as

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (2.16)

where δij is the Kronecker Delta. Substituting eq. (2.16) into eq. (2.2), results in the generalized

Hooke’s law for isotropic materials:

σij = λεkkδij + 2µεij, (2.17)

εij = − λ

2µ (3λ+ 2µ)
σkkδij +

1

2µ
σij. (2.18)

Now, let us introduce the volumetric strain, εv, and hydrostatic stress, σH, as

εv = εii and σH =
1

3
σii. (2.19)

10



2.1 Elastic Materials

By computing the hydrostatic stress, using eq. (2.17), we find a relation between hydrostatic stress

and volumetric strain, namely the bulk modulus, κ, as

σH = κεv, κ = λ+
2

3
µ. (2.20)

The relation between the Lamé constants and the much-used elastic moduli, namely Young’s mod-

ulus, E, shear modulus, G, and Poisson’s ratio, ν is given by

λ =
νE

(1 + ν) (1− 2ν)
and µ = G =

E

2 (1 + ν)
. (2.21)

The Young’s modulus and Poisson’s ratio can also be expressed using the bulk modulus and shear

modulus as

E =
9κµ

3κ+ µ
and ν =

3κ− 2µ

2 (3κ+ µ)
. (2.22)

2.1.3 Elastic Waves

The theory is adopted from [10, 22]. The governing equation for wave propagation in three-

dimensional infinite media can be derived from The Cauchy’s equation of motion:

ρü = ρf +∇σ ⇔ ρüi = ρfi + σij,j, (2.23)

where fi is a body force and üi is the acceleration in the direction of the coordinate axis xi. Equa-

tion (2.23) is valid for motions in any continuum, both solids and liquids. Rewriting it using

eqs. (2.4) and (2.17), we get what is known as the Navier equations

ρüi = (λ+ µ)uj,ij + µui,jj + ρfi. (2.24)

The vector equivalent of eq. (2.24) is

ρü = (λ+ µ)∇ (∇ · u) + µ∇2u + ρf . (2.25)

11
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Introducing the Helmholtz Decomposition as

u = ∇Ψ +∇×H, ∇ ·H = 0, (2.26)

where a vector field u is expressed as the gradient of a scalar, Ψ, and the curl of the zero-divergence

vector, H. By neglecting the body forces in eq. (2.25) and expressing u using eq. (2.26), we get

ρ
(
∇Ψ̈ +∇× Ḧ

)
= (λ+ µ)∇ [∇ · (∇Ψ +∇×H)] + µ∇2 (∇Ψ +∇×H) . (2.27)

Then, using the following vector identities

∇2u = ∇ (∇ · u)−∇× (∇× u) and ∇ · (∇×H) = 0, (2.28)

eq. (2.27) is reduced to

∇
[
(λ+ 2µ)∇2Ψ− ρΨ̈

]
+∇×

[
µ∇2H− ρḦ

]
= 0, (2.29)

which is only satisfied if both terms vanish. This gives us the wave equations

∇2Ψ =
1

c2
L

∂2Ψ

∂t2
, (2.30)

∇2H =
1

c2
T

∂2H

∂t2
, (2.31)

where

c2
L =

λ+ 2µ

ρ
and c2

T =
µ

ρ
(2.32)

are the longitudinal and transverse wave velocity, respectively. Expressing it using the relation from

eq. (2.21) yields

c2
L =

(1− ν)

(1 + ν)(1− 2ν)

E

ρ
and c2

T =
1

2(1 + ν)

E

ρ
. (2.33)
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uI uT

uR

medium 1 medium 2

x = 0 x

Figure 2.1: An incident wave being reflected and transmitted at the interface between two media of different
acoustic impedance

2.1.4 Reflection and Transmission

Theory adopted from [22]. We are interested in finding an expression for the reflected and trans-

mitted intensity of the acoustic waves. To do so, we need to find the expressions for both the

reflected and transmitted stress and velocity field. We start by introducing a harmonic plane longi-

tudinal displacement wave, ui, propagating along coordinate axis xi, described by the 1D version

of eq. (2.30). It has the following general solution

ui = A1e
i(kxi−ωt) + A2e

−i(kxi+ωt), (2.34)

where k = ω/cL is the wave number, ω is the angular frequency and A1 & A2 are the wave

amplitudes. The first term in eq. (2.34) describes a wave propagating in the positive xi-direction,

known as the forward propagating wave, and the second term describes the backward propagating

wave. Consider the problem in fig. 2.1. An incident harmonic plane longitudinal displacement

wave, uI, is propagating in the positive x-direction in medium 1. At the interface between the

two media, it divides into two components; a transmitted displacement wave, uT, and a reflected

displacement wave, uR. Consider the incident waveform as

uI = AIei(k
(1)x−ωt), k(1) =

ω

c
(1)
L

, (2.35)
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where the superscript “(1)” denotes medium 1. In this case, the reflected wave form can be written

as

uR = ARe−i(k
(1)x+ωt). (2.36)

and the transmitted wave form propagating in the second medium is

uT = ATei(k
(2)x−ωt), k(2) =

ω

c
(2)
L

, (2.37)

where AR and AT are unknown amplitudes of the waves. The entire elastic field in medium 1 is

u(1) = uI + uR = AIei(k
(1)x−ωt) + ARe−i(k

(1)x+ωt), (2.38)

and in medium 2,

u(2) = uT = ATei(k
(2)x−ωt). (2.39)

At the interface, the displacement and the stresses must be the same for medium 1 and 2. This gives

us the following boundary conditions at the interface:

u(1)|x=0 = u(2)|x=0, (2.40)

σ(1)|x=0 = σ(2)|x=0. (2.41)

Using the generalized Hooke’s law for isotropic materials eq. (2.17) and the assumption of infinite

span in the transverse direction, the strains in transverse directions can be neglected. The normal

stress can then be written as

σ11 = (λ+ 2µ) ε11 = (λ+ 2µ)
∂u1

∂x1

. (2.42)

We find expressions for the incident, transmitted and reflected stress field by substituting eqs. (2.35)

to (2.37) into eq. (2.42), which yields
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σI =
(
λ(1) + 2µ(1)

)
ik(1)AIei(k

(1)x−ωt), (2.43)

σR = −
(
λ(1) + 2µ(1)

)
ik(1)ARe−i(k

(1)x+ωt), (2.44)

σT =
(
λ(2) + 2µ(2)

)
ik(2)ATei(k

(2)x−ωt). (2.45)

It follows that the stress fields in medium 1 and 2 are

σ
(1)
11 =

(
λ(1) + 2µ(1)

)
ik(1)

(
AIei(k

(1)x−ωt) − ARe−i(k
(1)x+ωt)

)
, (2.46)

σ
(2)
11 =

(
λ(2) + 2µ(2)

)
ik(2)ATei(k

(2)x−ωt). (2.47)

We want to find the relation between the incident amplitude and the reflected and transmitted

amplitude. First, the continuity in displacement at the interface must be fulfilled. Substituting

eq. (2.38) and eq. (2.39) into eq. (2.40), yields

AI + AR = AT. (2.48)

Second, the continuity in stress at the interface must be fulfilled. Substituting eq. (2.46) and

eq. (2.46) into eq. (2.41) yields

(
λ(1) + 2µ(1)

)
k(1)

(
AI − AR

)
=
(
λ(2) + 2µ(2)

)
k(2)AT. (2.49)

Finally, using that

λ(n) + 2µ(n) = ρ(n)[c
(n)
L ]2, k(n) =

ω

c
(n)
L

and n = 1, 2, (2.50)

where n is the medium number, we get the following system:

AI + AR = AT (2.51)

ρ(1)c
(1)
L

(
AI − AR

)
= ρ(2)c

(2)
L AT. (2.52)
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Using the definition of acoustic impedance ρ(n)c
(n)
L = Zn, and solving the system, gives

AR =
Z1 − Z2

Z1 + Z2

· AI, (2.53)

AT =
2Z1

Z1 + Z2

· AI. (2.54)

The stress reflection and transmission coefficients are obtained as follows:

R12
σ =

σR

σI

∣∣∣∣
x=0

= −A
R

AI
=
Z2 − Z1

Z1 + Z2

, (2.55)

T 12
σ =

σT

σI

∣∣∣∣
x=0

=

(
λ(2) + 2µ(2)

)
k(2)

(λ(1) + 2µ(1)) k(1)

AT

AI
=
Z2

Z1

AT

AI
=

2Z2

Z1 + Z2

, (2.56)

where the superscript “12” of the coefficients means that the wave propagates from medium 1 to

medium 2. A similar argument for the velocity field, u̇, provides

R12
u̇ =

u̇R

u̇I

∣∣∣∣
x=0

= −A
R

AI
=
Z2 − Z1

Z1 + Z2

, (2.57)

T 12
u̇ =

u̇T

u̇I

∣∣∣∣
x=0

=
AT

AI
=

2Z1

Z1 + Z2

. (2.58)

The power flow through a unit area normal to the direction of propagation is defined as the

intensity, J , of the wave.

J =
∂

∂t

(
Φ

S
u

)
=

Φ

S
u̇ = σu̇, (2.59)

where Φ is a traction force on a surface S. The intensity transmission coefficient, is obtained as

T 12
J =

JT

J I

∣∣∣∣
x=0

=
T 12
σ T

12
u̇ σ

Iu̇I

σIu̇I
=

4Z1Z2

(Z1 + Z2)2
. (2.60)

2.2 Ultrasound Transducer

In this section, we present the layers that constitute the ultrasound transducer and the design criteria

to optimize the transmitted intensity. Most of the theory is adapted from [3].
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2.2.1 Piezoelectric Element

An ultrasound transducer can be made of a plate of piezoelectric material with thin metal elec-

trodes on each surface. If a voltage source is coupled to the electrodes, the PE plate either con-

tracts/expands. If pressure is applied to the PE plate, it generates a voltage between the electrodes.

Therefore, the PE plate can function as a coupling between acoustic waves and electrical voltage.

When it gets excited by an electric voltage, it will in the same manner as a spring pulled out from

its equilibrium, start to vibrate around its original thickness in its resonance frequency (also known

as centre frequency), f0.

If we connect a vibrating PE plate to tissue, it will cause the surface of the tissue to vibrate

and therefore radiate a beam of acoustic waves, known as an ultrasound beam, into the tissue.

Because a PE plate is very stiff, its displacement amplitude is low even though the pressure force

might be large. For the soft tissue, a large pressure force would generate a large displacement.

The small displacement amplitudes generated by the vibration of the PE plate, does not couple

the energy effectively into the soft tissue, because small deformations in the tissue means small

pressure forces, and the transmitted intensity is therefore low. This was explained in section 2.1.4,

by means of the acoustic impedance.

As can be seen by investigating the coefficient of transmitted intensity in eq. (2.60), T 12
J can be

written as

T 12
J = 1− (Z1 − Z2)2

(Z1 + Z2)2 = 1−R12
J , (2.61)

and it is obvious that to increase the transmitted intensity, the acoustic impedance of the PE plate

and the tissue should be as similar as possible. Because we cannot manipulate the tissue, the

acoustic impedance of the PE plate should be decreased. This is done by dicing the PE plate into

small bars of less than half a wavelength (Λ/2) in width. The wavelength is defined as

Λ =
c

f
(2.62)

where c is the sound velocity of the material and f is the frequency. The space between the bars

is filled with epoxy, creating a composite piezoelectric material. The soft epoxy in-between the

bars allows the bars to compress/expand more freely, as there is less straining in transverse direc-
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tion. Thus, the expansion/compression imposed by the Poisson’s ratio experiences less resistance.

Another reason for using the composite PE, is not to reduce the acoustic impedance, but to reduce

transverse waves in the PE plate. In the same way as the plate vibrates in the thickness mode,

the plate may also vibrate in the transverse direction. In pulse echo measurements, one usually

drives the transducer on a wide frequency range, such that resonant modes outside the a Λ/2 mode

can be excited and disturb the ultrasound beam from the transducer. This is usually avoided using

composite PE material, because the thin bars will have a single thickness mode of vibration in the

frequency range of interest.

f I fT

fR

bIbT

bR

Backing, Z0 Piezoelectric element, Z1 Matching layer, Z2

Figure 2.2: The forward and backward propagating waves and their transmitted and reflected waves

When the PE elements are excited, they generate two pressure waves; a forward and a backward

propagating wave. At surfaces of the PE elements, there usually is a mismatch in the acoustic

impedance. Thus, partly reflecting and transmitting the wave, generating two new waves. The two

reflected waves will propagate to the opposite interfaces and again be transmitted and reflected.

This back and forth reflection, illustrated in fig. 2.2, is known as ringing, and will continue until

all the energy is transmitted out. The length of the generated pulse is decided by the ring down of

the element. A long ring down results in a long pulse and a narrow bandwidth. To reduce the ring

down, usually one or multiple matching layers are placed between the PE elements and the tissue.

2.2.2 Matching Layers

The matching layer is placed between the piezoelectric element and the load. For a medical ultra-

sonic transducer, this means between the PE of high impedance(Z0), and the body tissue of low
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Z0 Z1 Z2

L = Λ
4

R01
σ < 0 R12

σ < 0

R10
σ > 0 R21

σ > 0

σI

R01
σ σ

I

T 01
σ σ

I T 01
σ T

12
σ σ

I

R12
σ T

01
σ σ

I

R10
σ R

12
σ T

01
σ σ

I

Figure 2.3: When a wave hits an interface, parts of it gets reflected and transmitted equivalent to the trans-
mission and reflection coefficients. The stress reflection coefficient is positive when propagating from a
high to a low impedance medium, and negative when propagation from a low to a high impedance medium
(Z0 > Z1 > Z2).

impedance(Z2). The ideal impedance of the matching layer is the impedance that maximizes the

transmitted intensity.

JT = σTu̇T = T 01
σ T

12
σ σ

I · T 01
v T

12
v u̇

I

=
2Z1

Z0 + Z1

2Z2

Z1 + Z2

σI · 2Z0

Z0 + Z1

2Z1

Z1 + Z2

u̇I

JT =
16Z2

1Z2Z0

(Z0 + Z1)2(Z1 + Z2)2
J I

(2.63)

We now have the transmitted intensity, JT, as a function of the variable Z1. Finding the maximum

transmitted intensity by altering the impedance of the matching layer is an optimization problem:

∂JT

∂Z1

= 0 ⇒ Z2
1 = Z0Z2. (2.64)

The ideal thickness is the one that makes forward propagating reflected waves in phase. As

illustrated in fig. 2.3 it is the distance needed for the wave R10R12T01σ
I and T01σ

I to stay in phase

as they propagate in to medium 2. First we inspect the phase shifts imposed by the reflection
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coefficients. From equation eq. (2.55) we see that

R12
σ =

Z2 − Z1

Z1 + Z2

=


> 0, if Z1 < Z2

= 0, if Z1 = Z2

< 0, if Z1 > Z2

(2.65)

if the stress wave propagates from a high to low impedance (Z1 > Z2), the reflection coefficient

is negative, and positive from low to high (Z1 < Z2). The wave R10R12T01σ
I has been reflected

twice, where R12
σ < 0 and R10

σ > 0. The negative reflection coefficient gives the reflected wave a π

phase shift. For the waves to be in phase, we set the exponent in the wave equation equal to zero:

kx− ωt = 0 ⇒ k(2L)− π = 0, (2.66)

where k is the wavenumber and L is the thickness of the matching layer. The distance traveled

inside the matching layer is thus equal to 2L. Using that the wavenumber k = 2π/Λ, we get the

ideal thickness of the matching layer to be

L =
Λ

4
. (2.67)

This is also the case when the wave propagates from the tissue into the transducer. Therefore, a

layer with impedance somewhere between the two adjacent layers (Z0 ≶ Z1 ≶ Z2) has what is

known as a Λ
4

thickness resonance. If the layer has the ideal thickness, it is known as a quarter-wave

impedance transformer.

2.2.3 Isolation Layer

Theory presented here is taken from [19, 20]. When designing the ultrasound stack used in SURF

imaging, the High Frequency transducer is placed in front of the Low Frequency transducer with

multiple isolation layers in between. These insulation layers make up the isolation section, which

has two functions; preventing propagation from the HF section into the LF section, and serving as
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a matching structure for the LF section to the load. The reflection at HF/isolation interface should

be as high as possible to avoid backward propagating waves, thus the isolation section should

have a very low acoustic impedance. Myhre et al. [20] shows that using an odd number of a Λ/4

isolation layers is advantageous for achieving a low HF backing impedance, and that odd numbered

layers should have a low acoustic impedance and even numbered layers should have a high acoustic

impedance. The high impedance layers can be represented by copper, which has a high thermal

conductivity and high sound speed. High sound speed means thicker material, as its thickness

is decided by its wavelength. The combination of large thickness and high thermal conductivity

makes the copper layer suitable as a heat sink in the transducer stack.

2.3 Thermal Conductivity Using ICA

Traditionally, Isotropic Conductive Adhesives are made of an epoxy mixed with metal fillers, usu-

ally metal flakes. Silver flakes are the most widely used because of its high conductivity and ease of

manufacturing.[9] However, a downside of using silver flakes is the high cost of silver. The amount

in vol% of silver flakes used in traditional ICA typically range from 20-30 vol%. Gakkestad et al.

[9] have shown that a thermal conductivity of 1 W m−1 K−1 can be achieved by using only 1.4 vol%

of silver when using metal coated polymer spheres. Achieving the same with silver flakes requires

16 vol% silver. This clearly demonstrates the cost benefits of the silver coated polymer spheres. Re-

ducing the amount of silver also has another benefit when used in an ultrasound transducer. Silver

has a high acoustic impedance, thus reducing the amount also reduces the acoustic impedance of

the ICA, which is important for the isolation layers. Jain et al. [14; 15] has studied how the different

geometric properties affect the electrical conductivity, and it is known that the thermal conductivity

is proportional to the electrical conductivity (Weidemann-Franz law). We can thus use these results

to evaluate how the geometric properties affect the thermal conductivity. Unsurprisingly the con-

ductivity increases with an increase in shell thickness. Gakkestad et al. [9] shows how the same

thermal conductivity is obtained with less vol% when larger particles are used. They explain the

result by saying that the thermal conductivity is dependent on the thermal resistance of the particles

and the thermal contact resistance between the particles. Larger particles need fewer contact points
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over the same thickness, thus larger particles are advantageous. Jain et al. [15] achieves a better

conductivity for the smaller particles, but also argues that the silver is more efficiently used when

applied to larger spheres.

2.4 Homogenization of Heterogeneous Material

Theory adapted from Christensen [7]. The developments in the present chapter assume conditions

of linear elastic behavior. Further, the individual phases are assumed homogeneous and isotropic.

2.4.1 Representative Volume Element

We assume there exists a characteristic dimension of the inhomogeneity, for example, in a system

of spherical inclusions, this could be the radius of spheres or the distance between the spheres. This

characteristic dimension is a gross idealization of a necessarily statistical description of the hetero-

geneous system. For every heterogeneous system, if one increases a length scale long enough, there

is a length scale where the heterogeneous properties can be averaged in a meaningful way. Call the

length scale of averaging δ. This scale, δ must be of a dimension much larger than the characteristic

length of the inhomogeneity. If δ is small compared to the characteristic dimension of the body,

we say that the material is macroscopically homogeneous. The material can be idealized as being

effectively homogeneous, and problems of mechanical nature can be solved using these average

properties associated with the length scale δ.

Now, let us introduce a volume element of the heterogeneous material. If this volume element

has a dimension identical to the averaging dimension, δ, it is known as a Representative Volume

Element (RVE).

2.4.2 Volumetric Averaging

For an RVE the average stress is defined by

〈σij〉 =
1

V

∫
V

σij (xi) dv, (2.68)
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and the average strain by

〈εij〉 =
1

V

∫
V

εij (xi) dv, (2.69)

where V designates its volume.

Using the most general form of a linear elastic material defined in eq. (2.2), the effective com-

pliance tensor, designated by Ceff
ijkl is defined through its presence in the relation

〈σij〉 = Ceff
ijkl 〈εkl〉 . (2.70)

The problem of interest is a two-phase heterogeneous system, where one material is assumed

continuous, the matrix, and the other is in the form of discrete inclusions. Both are assumed

isotropic, and the stress strain relationship can be expressed using eq. (2.17) for the two materials

by

σM
ij = λMε

M
kkδij + 2µMε

M
ij , (2.71)

for the matrix phase and by

σI
ij = λIεI

kkδij + 2µIεI
ij, (2.72)

for the inclusion phase.

The average stress formulation eq. (2.68) can be written as

〈σij〉 =
1

V

∫
V−

∑N
n=1 Vn

σM
ij dv +

1

V

N∑
n=1

∫
Vn

σI
ijdv, (2.73)

where there are N inclusions inside the RVE. The first integral designates the matrix region, and

the second integral designates the inclusions. By writing out the stress in the first integral using the

relation in eq. (2.71), and decomposing it, we get

Ceff
ijkl 〈εkl〉 = λMδij 〈εkk〉+ 2µM 〈εij〉+

1

V

N∑
n=1

∫
Vn

(
σI
ij − λMδijε

M
kk − 2µMε

M
ij

)
dv. (2.74)

We have up till now used superscripts on stresses and strains to describe the material they “operate”
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Chapter 2. Theory

in. The material is represented by the Lamé constants; thus, we drop the superscripts and rewrite

eq. (2.74):

Ceff
ijkl 〈εkl〉 = λMδij 〈εkk〉+ 2µM 〈εij〉+

1

V

N∑
n=1

∫
Vn

(σij − λMδijεkk − 2µMεij) dv. (2.75)

This formula is of use for derivation of effective properties. The derivations of some of these can be

found in [7]. This paper will only present one homogenization scheme for nondilute suspensions,

namely the Three Phase Model.

2.4.3 Three Phase Model

a

b

Figure 2.4: The Three Phase Model [7]. The hatched area is the equivalent homogeneous medium.

The Three Phase Model, also known as the Generalized Self Consistent Method, was first in-

troduced by Kerner [16], but has later been criticized for its brevity and assumptions [6]. It is the

work of Christensen and Lo [5] that is most precise, and the following theory is therefore adapted

from their work. The TPM is used to find the equivalent homogeneous medium of a two-phase

composite, comprising spherical inclusions in a continuous matrix. The TPM is composed of one

particle surrounded by a layer of matrix in a ratio a/b, and the particle-matrix sphere with radius b

is called a composite sphere. This composite particle is embedded in the equivalent homogeneous

medium, as shown in fig. 2.4. It requires that the effective medium possesses the same average

conditions of stress and strains as the model in fig. 2.4. The objective is to solve for the stiffness
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2.4 Homogenization of Heterogeneous Material

properties of an equivalent homogeneous medium, such that under the same applied displacement

conditions, this equivalent homogeneous medium stores the same energy U as the configuration of

fig. 2.4. The derivation is left out, but can be found in Christensen and Lo [5]. The effective bulk

modulus is found to be

κ = κM +
(κI − κM)ϑI

1 + (1− ϑI)
[
(κI − κM)/(κM + 4

3
µM)

] , (2.76)

where ϑI = (a/b)3 is the volume fraction of inclusions, subscript I and M denote the inclusion and

matrix phase, respectively. The solution for the shear modulus is presented on the same form as in

[7]; as the solution of the quadratic equation

A

(
µ

µM

)2

+ 2B

(
µ

µM

)
+ C = 0, (2.77)

where

A = 8

(
µI

µM

− 1

)
(4− 5µM)η1ϑ

10/3
I − 2

[
63

(
µI

µM

− 1

)
η2 + 2η1η3

]
ϑ

7/3
I

+ 252

(
µI

µM

− 1

)
η2ϑ

5/3
I − 50

(
µI

µM

− 1

)
(7− 12νM + 8ν2

M)η2ϑI + 4(7− 10νM)η2η3,

(2.78)

B = −2

(
µI

µM

− 1

)
(1− 5νM)η1ϑ

10/3
I + 2

[
63

(
µI

µM

− 1

)
η2 + 2η1η3

]
ϑ

7/3
I

− 252

(
µI

µM

− 1

)
η2ϑ

5/3
I + 75

(
µI

µM

− 1

)
(3− νM)η2νMϑI +

3

2
(15νM − 7)η2η3,

(2.79)

C = 4

(
µI

µM

− 1

)
(5νM − 7)η1ϑ

10/3
I − 2

[
63

(
µI

µM

− 1

)
η2 + 2η1η3

]
ϑ

7/3
I

+ 252

(
µI

µM

− 1

)
η2ϑ

5/3
I + 25

(
µI

µM

− 1

)
(ν2

M − 7)η2ϑI − (7 + 5νM)η2η3,

(2.80)
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with

η1 = (49− 50νIνM)

(
µI

µM

− 1

)
+ 35

µI

µM

(νI − 2νM) + 35(2νI − νM),

η2 = 5νI

(
µI

µM

− 8

)
+ 7

(
µI

µM

+ 4

)
,

η3 =
µI

µM

(8− 10νM) + (7− 5νM).

(2.81)

2.5 Finite Element Method

The Finite Element Method is a method for solving partial differential equations of field problems.

The field problem is discretized into elements and solved using the boundary conditions and in-

terpolation functions. We assume that the reader is familiar with Finite Element Analysis (FEA).

However, some of the theory is presented here. The commercial FEA program Abaqus 6.14-1 by

Dassault Systèmes Simulia Corp. is used to for numerical analysis. All the following theory is

adapted from [4, 8].

The basic assumption of FEM states that a field variable can be expressed using nodal displace-

ments and interpolation functions, i.e.

u = Nd, (2.82)

where u is the vector containing the displacement field, N is the interpolation functions matrix, and

d is the nodal displacement vector. For problems of time-independent loading, the problem can be

approximated by

Kd = Fext, (2.83)

where K is the stiffness matrix and Fext is the external loading vector. The stiffness matrix is

K =

∫
V

BTCBdv (2.84)

where C is the compliance tensor from eq. (2.2) and B is the strain-displacement matrix. The
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2.5 Finite Element Method

strain-displacement matrix, B, is related to N in the same way as ε is related to u:

ε = ∆u, (2.85)

B = ∆N, (2.86)

where ∆ is an operator matrix dependent on the problem we are solving. Because we will ap-

proximate our model using axisymmetric approximation, ∆ will take a specific form and will be

presented in section 2.5.1. The shape function N is decided by what type of elements we choose to

use.

The integral in eq. (2.84) is solved by Gauss quadrature. When specifying elements in ABAQUS,

one can choose to use full integration or reduced integration elements. Full integration is defined

as the quadrature rule with the lowest order that exactly integrates the stiffness matrix. It may lead

to an over stiff solution, due to the assumed displacement field. The real solution will always be

displaced in the displacement field that requires the least energy. Reduced integration is the inte-

gration rule of one order lower than the full integration. Using reduced integration has its benefits;

it reduces computational time, but it may also improve the accuracy of the FE result, because it

“softens” the too stiff estimate. However, reduced integration may lead to spurious energy modes;

deformation modes that does not absorb energy. A remedy is to use enhanced hourglass control in

ABAQUS.

2.5.1 Axisymmetric Stress and Strains

If a solid can be generated by revolving a plane figure about an axis in space, it is axisymmetric.

It is best described using the cylindrical coordinates r, θ and z, as is illustrated in fig. 2.5. If the

loading is axisymmetric as well, we can assume

uθ = 0 and σrθ = σθz = εrθ = εθz = 0. (2.87)

Because we can remove the two shear stresses and strains, the stress and strain vectors are reduced

from six to four components, and a problem that used to be three-dimensional is now for an arbitrary
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r

z

θ

r

z

θ

σrr(εrr)

σθθ(εθθ)

σzz(εzz)

σzr(εzr)

dr

dθ

Figure 2.5: Axisymmetric stress and strains [4]

value of θ, reduced to two dimensions. The stresses and strains for an axisymmetric volume element

can be seen in fig. 2.5 and the strain vector is

ε =


εrr

εθθ

εzz

2εzr

 =


∂
∂r

0

1
r

0

0 ∂
∂z

∂
∂z

∂
∂r


ur
uz

 = ∆u (2.88)

where ∆ is the same operator as in eq. (2.86).

2.5.2 Explicit Method

The theory is adapted from [1, 8]. We are in this thesis going to solve a time dependent problem,

thus we must solve the dynamic equilibrium equation, which is approximated with a set of ordinary

differential equations (ODE) in time:

M d̈ +Gḋ +Kd = Fext, (2.89)

where M is the mass matrix, G is the damping matrix, and K and Fext are the stiffness matrix and

external load vector as before.
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2.5 Finite Element Method

To model wave propagation in our FE model, we must solve the dynamic differential equation

using the direct integration explicit method. ABAQUS/Explicit solves the dynamic equilibrium

equation with the velocity lagging by half a time step

M d̈n +Gḋn− 1
2

+Kdn = Fext
n , (2.90)

and approximates the velocities and accelerations by the half step central differences

ḋn+ 1
2

=
1

∆t
(dn+1 − dn) , (2.91)

ḋn− 1
2

=
1

∆t
(dn − dn−1) , (2.92)

d̈n =
1

∆t2
(dn+1 − 2dn + dn−1) , (2.93)

where the subscript “n” signifies that the variable is evaluated at time step tn. Substituting eqs. (2.92)

and (2.93) into eq. (2.90) and solving for dn+1 yields

1

∆t2
Mdn+1 = Fext

n +

(
2

∆t2
M − 1

∆t
G−K

)
dn −

(
1

∆t2
M − 1

∆t
G

)
dn−1. (2.94)

ABAQUS/Explicit uses diagonal (lumped) mass matrix, thus there is no equation solving necessary

to find dn+1, and every time step has a low computational cost. Lumped mass matrix together with

the central difference method will also be more accurate, because the central difference method

gives a period contraction, while the diagonal mass matrix gives a period elongation. Further

explanation can be found in [8].

Explicit methods are conditionally stable, which means that there is a critical time step ∆tcr

that must not be exceeded. If it does, the numerical process will “blow up” and become unstable.

The critical time step, ∆tcr, is

∆tcr ≤
Lelem

cL

, (2.95)

where Lelem is the characteristic length of the smallest element and cL is the longitudinal wave

velocity of the material. Equation (2.95) is known as the CFL-condition after Courant, Friedrichs,

and Lewy. It can be interpreted that ∆tcr must be small enough that information does not propagate
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more than the distance between adjacent nodes during one time step.

In ABAQUS/Explicit it is possible for the user to decide the increment size or use the automatic

time incrementation method. The automatic time incrementation requires no user intervention, and

can be based on a global or element-by-element estimation [1]. The global estimation is not used

when there are infinite elements included in the model. We will in our simulations use the infinite

elements to damp out reflections, which we will discuss in more detail in sections 2.5.3 and 3.2.

We will therefore use the automatic time incrementation which compute the stable time increment

using the CFL-condition element-by-element. The automatic time incrementation method is con-

venient in our case, because our models have many variations in design that alter the minimum

sized elements, materials used and so on. It would therefore be cumbersome to decide the time

increment ourselves of every model.

2.5.3 Infinite Elements

The theory is adapted from [1]. Infinite elements can be used for problems in which the region

of interest is small compared to the surrounding medium. It is particularly of concern in dynamic

analysis, when the boundary of the mesh may reflect energy back into the region being modeled.

If only finite elements are used, the mesh should be extended to a far distance from the region of

interest, so that the influence of the boundaries is considered small enough to be neglected. This

approach can be very inefficient since a great number of elements are used outside the area of

interest. A better approach is to use infinite elements: elements defined over semi-infinite domains

with suitably chosen decay functions.

The dynamic response of the infinite elements is based on the consideration of plane waves

propagating normal to the boundary. Let us consider a wave propagating along the x1-axis. The

approach is similar for waves along the x2- and x3-axis. First, we introduce distributed damping on
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2.5 Finite Element Method

the boundary between the finite and infinite elements, such that

σ11 = −αLu̇1, (2.96)

σ12 = −αTu̇2, (2.97)

σ13 = −αTu̇3, (2.98)

where the dampening constants αL and αT are to be chosen to avoid reflections of the longitudinal

and transverse wave energy back into the finite region. Rewriting the equations for an incident and

reflected plane displacement wave

uI = AIei(k
(1)x−ωt), (2.35)

uR = ARe−i(k
(1)x+ωt). (2.36)

The normal stress, σ11, in the finite region is equal to eq. (2.46). Expressing σ11 using uI and uR,

yields

σ11 = (λ+ 2µ) ik
(
uI − uR

)
. (2.99)

The displacement field in the finite region is u = uI + uR, making

u̇ = −iω
(
uI + uR

)
. (2.100)

Substituting eqs. (2.99) and (2.100) into eq. (2.96), yields

(λ+ 2µ− cLαL)uI − (λ+ 2µ+ cLαL)uR = 0, (2.101)

where it has been used that cL = ω/k. To damp out reflections, we can ensure that the displacement

field is not reflected by setting uR = 0. Then for any arbitrary uI, we get

αL =
λ+ 2µ

cL

= ρcL = ZL. (2.102)

31



Chapter 2. Theory

A similar argument for shear waves provides

αT = ρcT = ZT. (2.103)

From the above discussion, we see that the infinite elements will damp out all reflections if the

material behavior close to the boundary is linear elastic and that the incident waves are plane and

normal to the boundary. These boundaries work quite well even in cases that involve non-plane

body waves that do not impinge normal on the boundary, provided that they are arranged so that

the dominant direction of wave propagation is normal to the boundary.[1]

32



Chapter 3
Finite Element Approximation of a Composite

Material

We will use the commercial Finite Element Analysis program Abaqus 6.14-1 by Dassault Systèmes

Simulia Corp. to do FEA. All the Finite Element models are made from python scripts developed by

the author. Python is a general-purpose programming language, and ABAQUS can read the scripts

and generate the FE models, run simulations and operate on the outputs. Creating models using

scripts is of great convenience when doing numerical experiments in design, because of the great

number of different models needed. All the analyses are using the functions in myUtilites.py

to generate models, and depending on the different design variables of interest, different for-loops

are created. An example is found in the file CreateModel Comparison.py. It is the actual

script used to approximate the results in section 4.1, and shows the convenience of creating basic

functions that can be run using different types of loops. All the data in the following chapter are

extracted from ABAQUS and post processed in MATLAB as explained in sections 3.6 and 3.7.

The models will be used to numerically approximate the effective acoustic impedance of a hetero-

geneous material comprising silver coated, mono-disperse polymer spheres in a polymer adhesive.

The material is manufactured by Conpart AS, and is supposed to transfer heat in an ultrasound

transducer while being the isolation and matching layers [19]. Because we want the material to be

an Isotropic Conductive Adhesive, the volume fraction of spheres must be above the percolation

limit, which Conpart AS has found to be approximately 40 vol%. We must limit our model in order
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Chapter 3. Finite Element Approximation of a Composite Material

to verify its acceptability, so that we can use it for numerical experiments in design. Based on pre-

vious composite samples and the interest of this thesis, we have narrowed the geometric parameters

to be inside the following range:

R = 5− 15 µm, (3.1)

η = 100− 230 nm, (3.2)

ϑp = 45− 55%, (3.3)

where R is the radius of the core, η is the shell thickness and ϑp is the volume fraction of particles.

Our FE model must be able to represent the material we want to simulate; thus, we need to create

a representative volume element.

The speed of sound in a material varies with frequency and it is therefore necessary to calculate

acoustic impedance at the frequency range of interest. In section 3.11 we present material samples

and their measured acoustic impedance. We want to compare our approximations with these results,

and should therefore use the same centre frequency when defining the pressure pulse used in our FE

models. The pressure pulse is presented in section 3.4. As there is no direct way of extracting the

acoustic impedance of the composite in ABAQUS, we need to measure the longitudinal velocity of

the composite. To do so, we create a FE model that simulates a stress wave propagating through

the composite, induced by a pressure pulse applied to the surface. This pressure pulse will then

simulate the pressure a transducer layer would be exposed to, when it is attached to excited PE

elements. From the simulations, we may estimate the transit time of the pressure wave from the

top to bottom of the FE model, and knowing the distance traveled, the bulk velocity and acoustic

impedance of the material can be calculated using the relation

cL =
∆d

∆t
(3.4)

where ∆d is the distance between two points of measure and ∆t is the time delay. We will measure

the stress at the top and bottom of our RVE. The transit time of the pressure wave will be found by

using cross-correlation of the pressure in the top elements and the pressure in the bottom elements,

and is further explained in section 3.6. In the real composite the particles are randomly dispersed in
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the matrix, as they are mixed into the adhesive. Random packing of spheres is a major topic beyond

the scope of this thesis, we hence introduce some simplifications: The physical three-dimensional

problem is assumed to be axisymmetric, reducing it to a two-dimensional problem, but also limiting

it to an ordered system of spheres. The axisymmetric approximation is illustrated in fig. 3.5. The

spheres must be stacked on top of each other in a straight line, because a sphere with centre outside

the axis of revolution would result in a torus, not a sphere. From inspections of the composite [21],

one has seen that not only are the spheres in contact, they even “solder” together during curing of

the adhesive, as shown by fig. 3.1. The contact zone varies proportionally with the thickness of the

silver layer, and has a length of ∼ 1 µm for the thickest silver coating. If we assume the contact

area to be circular, it is unlikely that one cuts straight through the centre of the circular contact area.

The contact area in fig. 3.1 might therefore seem smaller than it actually might be.

Two different FE models will be used; the ordered and random axisymmetric model. The

ordered model is a highly ordered axisymmetric model, where all the spheres are evenly spaced.

The random model allows spheres to be in direct contact in the z-direction. We call it the random

model because the number of spheres that are in contact (creating chains) in our model can be

decided randomly. The idea, which we explore in sections 3.10.1 to 3.10.3, is that a model where

all the spheres are connected and a model where no spheres are connected may act as bounds for

the distribution of all the random models.

For convenience, the constituents are assumed linear elastic and isotropic. It is further assumed

perfect bonding between the core and shell, and shell and matrix. This means neglecting any loss

due to viscous effects in the viscoelastic polymers, as well as loss due to friction between the

constituents.
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Chapter 3. Finite Element Approximation of a Composite Material

Figure 3.1: Representative cross-sections of contact zones between two particles of radius 15 µm with shell
thickness varying from 270 nm Ag (a), 150 nm Ag (b), 100 nm Ag (c), and 60 nm Ag (d). In the three
thickest coatings, the metallurgic connections were observable in the contact zones. For the 60 nm Ag no
such continuous contacts were observed [21].

3.1 Unit Cells

When we create the FE models, we must make sure it is possible to change the radius of the core,

R, the shell thickness, η, the volume fraction of particles, ϑp, and the number of spheres, N . We

therefore introduce what we call our unit cells. They will act as building blocks for our RVEs, as

the RVEs will be built by stacking unit cells on top of each other. Because we are creating two

types of FE models, we also need two types of unit cells; one for the ordered system and a second

for the random system. The unit cells are illustrated in fig. 3.2. When we create the ordered unit

cell, we want a sphere to have the same distance to the spheres above and below, as to the adjacent

spheres in the horizontal plane, thus the height, i.e.

h = 2w (3.5)

where w is the width of the cell, and is found by considering the volume fraction of particles in the

adhesive. First by using the volume of a sphere and a cylinder

Vsphere =
4

3
π(R + η)3, Vcell = 2w(πw2) (3.6)
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and substituting them into the volume fraction, we get an expression for the width of the unit cell

ϑp =
Vsphere
Vcell

⇔ w = 3

√
2

3ϑp
(R + η) . (3.7)

Now, when we create the random unit cell, we base it on the design of the ordered unit cell. In that

way, we have full control of both the volume fraction and the width of the model, regardless of the

length of a chain of spheres in contact. Because of the possibility of sphere contact, the ordered unit

cell must be split into two new ones; one that just includes the sphere, and a second that includes

the cutoff (adhesive). These two cells together constitute the random unit cell. The splitting of the

ordered unit cell is illustrated by dashed red lines in fig. 3.2a. These two cells can then be stacked

separately, as spheres are connected.

η
R

w

2w

Q

Q
(a) the ordered unit cell

η
R

w

2(R + η)

2w − 2(R + η)

(b) the random unit cell

Figure 3.2: The ordered and the random unit cell. The red dashed lines drawn on the ordered unit cell is
where the cell is split to create the two cells that constitute the random unit cell; one of pure matrix and the
other of the composite.

Whenever cells are in contact, their shells will merge together as shown in fig. 3.3. A bottom

sphere will only have this contact zone on top, where it is connected to another sphere. In the same

way, a top sphere is only connected at the bottom and middle spheres are connected on both top

and bottom. Note that the contact width, is the length of the radius of the contact zone, due to the

axisymmetry. Now as the building blocks of the RVEs are clearly defined, we need to decide how

many unit cells (or particles) we need to include in our FE model for it to be a RVE. This topic will

be addressed in section 3.10, where we do a convergence study of the longitudinal velocity with

respect to number of particles included in the model.
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ξ

Figure 3.3: The contact zone between two particles. The radius of the contact zone is denoted ξ.

3.2 Boundary Conditions and Infinite Elements

Before we can run any simulations, we need to define our boundary conditions. The material

is supposed to be a matching/isolation layer inside an ultrasound transducer. From eq. (2.67)

A B

CD

r

z

Figure 3.4: The model is compressed in
the z-direction, and shows the top and bot-
tom sphere. The spheres in-between are left
out.

we know that the thickness of the matching/isolation

layer is a Λ/4. Typical lateral dimensions of ultra-

sound transducers are 15-25 mm in diameter [3], which is

around 30−50Λ. We can therefore start by assuming infi-

nite extent in the x- and y-direction. We then idealize the

material as an array of space filling hexagonal columns,

and approximate each column by an axisymmetric cylin-

der, as seen in fig. 3.5. The height of the model is de-

cided by a convergence study in section 3.10. A pres-

sure pulse will be evenly distributed on the top boundary,

DC, in fig. 3.4. The stress will be measured on the bot-

tom boundary, AB, and the z-axis is the axis of revolu-

tion. Due to the assumed infinite extent in x and y direc-

tion, the displacement in the r-direction is zero. This is

because any adjacent RVE will be exposed to the exact

same force and have the exact same deformation, creat-

ing a balance in forces in the radial direction at the BC

boundary. To avoid any reflections of the propagating stress at the bottom boundary, the adhesive

is assumed to extend infinitely in the negative z-direction at AB boundary. Instead of creating a
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x

y

z

r =
√
x2 + y2

Figure 3.5: The composite is first idealized as an array of space filling hexagonal columns, and then each
column is approximated by an axisymmetric cylinder consisting of the particles in adhesive.

model that extends long enough for the reflections not to be an issue, ABAQUS has what is known

as infinite elements. These are elements that dampen out all the energy entering, cancelling out

any reflected stress, as described in section 2.5.3. Having total reflection on the other boundaries is

necessary, as these reflections will capture the stress waves from adjacent spheres, as illustrated in

fig. 3.6.

Figure 3.6: The arrows demonstrate stress waves reflected at the boundary. The lighter arrows are those
propagating in an adjacent RVE. If the boundary was not there, stress propagating from the adjacent RVE
would coincide with the reflected stress. Thus, full reflection at the boundary is necessary to capture stress
waves propagating from adjacent RVEs.

3.3 Choice of Elements

When applied to a dynamic analysis, higher-order elements tend to produce noise when stress

waves move across a FE mesh. [8] We will therefore avoid higher-order elements in our analysis.

It should be mentioned that ABAQUS/Explicit only allows higher-order triangular elements. All

elements will use reduced integration, and the quadrilateral elements will use enhanced hourglass
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control as a remedy for spurious energy modes. Triangular elements do not have any such modes.

The elements used are

shell: CAX4R (quadrilateral 4-noded axisymmetric element with reduced integration),

core/matrix: CAX3 (triangular 3-noded axisymmetric element).

3.4 The Pressure Pulse

In ABAQUS the user specifies a pressure force using a magnitude, Pmag and an amplitude, Pamp (t).

The magnitude is a constant that is multiplied with a time dependent amplitude. We will use a

magnitude of 1000 g m−6 s−2, which corresponds to 1 MPa:

Pmag = 1 MPa. (3.8)

The amplitude is designed to be similar to the pulse used to measure sound velocity of material

samples in section 3.11, and is the convolution of a sine function of the specified centre frequency,

f0 and a square cosine window, as follows

Pamp (t) =

sin(2πf0t) · cos2
(
2πf0

t−t0
n

)
for t ∈ [0, 2t0],

0 elsewhere,
(3.9)

where t0 is the time shift of the cosine function and n is the number of half sines included in the

pulse. The pressure pulse, P (t), is the product of the magnitude and amplitude, i.e.:

P (t) = Pmag · Pamp (t) . (3.10)

We want a short pulse with centre frequency;

f0 = 5 MHz. (3.11)
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Figure 3.7: The pulse multiplied with its 1MPa magnitude, and used as a pressure force in ABAQUS.

We therefore decide to include four half sines, n = 4, as this short pulse would have a broad band-

width similar to the one used for the experiment, but still long enough so that its centre frequency

is well defined. The time displacement of the cosine window, t0, can then be found to be

2πf0t0 =
nπ

2
⇒ t0 =

n

4f0

(3.12)

The pressure pulse and its frequency spectrum is plotted in fig. 3.7, and it obvious that there is a

distinct centre frequency at 5 MHz.

3.5 Materials

The materials used in ABAQUS are summarized in table 3.1. The densities of all the materials

except silver was provided by Conpart AS, and found in table 3.1, column ρCP . Conpart did not

have any information on the other mechanical properties, and the necessary properties are therefore

taken from the literature. We will use the density provided by Conpart in ABAQUS, and the density

from the literature is just there as a tool of comparison. The exception is of course silver, where the

density given in the literature is the one that will be used.
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Table 3.1: Material parameters used in the FE models. The velocity is calculated using the density given by
Conpart AS.

λ [GPa] µ [GPa] E [GPa] ν ρ [g cm−3] ρCP [g cm−3] cL [m s−1]
Silver [18] 78.9 27.8 76.0 0.37 10.49 - 3580
PMMA [2] 4.37 2.00 5.37 0.343 1.175 1.16 2686
Epoxy (3012) [2] 4.44 1.59 4.35 0.368 1.18 1.12 2608
Polystyrene (PS) [2] 3.21 1.27 3.45 0.358 1.053 1.05 2340

3.6 Time Delay Estimation

Classical Time Delay Estimation (TDE) techniques consists of identifying the maximum value of

the cross-correlation between a reference and a delayed signal. In our case, we use the stress in the

top elements as the reference signal, and the stress in the bottom elements as the delayed signal. The

approximated cross-correlation, R̂XC, and time delay, D̂XC, for discrete signals can be estimated

using direct correlation:

R̂XC (τ) =
1

M

M∑
m=1

x (mT ) y (mT + τ) , (3.13)

D̂XC = argmax
{
R̂XC (τ)

}
, (3.14)

where T is the time step, m specifies an index in the signal vector, (M − 1)T is the estimation

window width and τ is the shifted time lag. We will use the MATLAB-function xcorr(x,y)

to find the approximated cross correlation between the delayed signal x and lagged copies of the

reference signal y as a function of the lag. Because these are discrete signals, our cross-correlation

accuracy is limited by the resolution of our signals. The actual maximum of the cross-correlation

is most likely found somewhere between sampling points; thus, interpolation is necessary. We

follow the procedure of Jacovitti and Scarano [13], which suggest that the correlation function can

be approximated by a convex parabola in the neighbourhood of its maximum, i.e.:

R̂XC(τ) = aτ 2 + bτ + c (3.15)
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∆d

∆t

Integration point

Figure 3.8: Because of the size of the model, only the very top and bottom is included. The stresses are
measured in the integration points in the top and bottom elements, and the time delay is approximated as
the shift between the pulses. The light grey triangles represent the matrix elements, the dark grey squares
represent the shell elements and grey triangles represent the core elements. The infinite elements are the
vertically aligned squares at the bottom.
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where a, b and c are parameters fitting the measured correlation. Using eq. (3.14) yields

D̂XC = − b

2a
. (3.16)

Let lm represent the lag that maximizes R̂XC in eq. (3.13) before interpolation, and T be the time

steps, so that R̂XC
m (lmT ) represent the maximum of the discrete correlation obtained by using the

xcorr-function in MATLAB. If we use the two adjacent points, R̂XC
m−1 and R̂XC

m+1, we can solve

eq. (3.16) into the following parabolic interpolation:

D̂XC =

 R̂XC
m−1 − R̂XC

m+1

2
(
R̂XC
m+1 − 2R̂XC

m + R̂XC
m+1

) + lm

 · T. (3.17)

In ABAQUS we can specify the sampling frequency by specifying the number of samples for

the total time period. Unfortunately, these time steps are not necessarily equally sized. The cross-

correlation returns the lag (number of time steps) needed to give the best match between the ref-

erence and the delayed signal. If these steps vary in length, multiplying the lag with one specific

time step would most certainly lead to a wrong result. Thus, uniform time steps are necessary and

we re-sample all the data in MATLAB.

To optimize the TDE, we can filter the stresses in the top and the bottom elements, so that the

bottom stresses resemble the top stresses as much as possible. In that way, we remove any trailing

vibrations in the bottom stress. If they are not removed, these might shift the cross-correlation later

in time, resulting in an incorrect transit time of the stress wave. We therefore manipulate the stress

to filter out vibrations by using a Tukey window, as shown in fig. 3.9. The length of the unfiltered

zone is set by the pulse length, so that it only manipulates the trailing vibrations.
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Figure 3.9: Red and blue curves correspond to the filtered normal stresses in the z-direction at top and
bottom element, respectively. The dashed lines are the corresponding Tukey windows and the dotted lines
are the unfiltered stresses. We clearly see the trailing vibrations and how they are eliminated using the Tukey
window.

3.7 Velocity Estimation

The velocity of the composite can be estimated by using eq. (3.4), by assuming constant velocity.

The time delay has been estimated by using the cross-correlation as explained in the previous

section. We now need to find the distance between the points of measure to be able to approximate

the velocity. First, what needs to be considered is that the stresses are measured in the integration

points of the elements. Because we have chosen to use reduced integration elements, there is only

one integration point per element, located in its centre, as shown in fig. 3.10.

A

B

C

O Ox =
Ax +Bx + Cx

3
, (3.18)

Oy =
Ay +By + Cy

3
. (3.19)

Figure 3.10: The location of the integration point, O,
of a triangle element with reduced integration.

When the integration points are located, we can easily find the distance between the top and bottom

45



Chapter 3. Finite Element Approximation of a Composite Material

elements. Utilizing the fact that there is an equal number of elements along the top and bottom

edges of supposedly same size, we can expect that every bottom element has a belonging top ele-

ment located at the same position in the radial direction. The stresses in these opposite elements

are used to estimate the time delay, and we therefore also measure the distance between the in-

tegration point of these opposite elements, as illustrated in fig. 3.8. We can then use eq. (3.4) to

calculate the average constant velocity of the column of composite material between these two el-

ements. Figure 3.11 shows the approximated velocity profile of the composite with two different

core material, which tells us that they vary differently depending on the core material. The model

with polystyrene as core material has a much lower velocity close to its centre, than the model with

PMMA as the core material. This is no surprise, as the velocity in polystyrene is lower than the

velocity in PMMA. What is more surprising is that the difference is larger when we use PMMA as

the core, even though it has a velocity much closer to that of the epoxy.
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(a) Polystyrene is used as the core material.

0 2 4 6 8 10 12 14 16
2605

2610

2615

2620

2625

2630

Radial position [µm]

c L
[m

s−
1
]

(b) PMMA is used as the core material.

Figure 3.11: The velocity profiles of the axisymmetric model with parameters: R = 15 µm, η = 0.1 µm,
ϑp = 0.55 and a mesh size of 0.25 µm. Each mark represent velocity of one element column. Note the scaling
difference of the two plots; the difference between the minimum and maximum is 9m s−1 and 22m s−1 for
polystyrene and PMMA as core material, respectively.

When the velocity for every column is estimated, we need to average the velocities in order to

find the parameters describing the homogeneous approximation of the heterogeneous ICA. Because

our FE model is axisymmetric, we must take into account that every element represents an annulus,

as each element is supposed to be revolved around the symmetry axis. The annulus furthest out
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z

ra7b7

Figure 3.12: The velocity of the material must be approximated by a weighted average because of the
axisymmetric approximation. Note that this figure is for illustration purposes only. The graph has a much
finer resolution than the annuli. The velocity across an element is constant.

from the symmetry axis has a much greater area, then the innermost, and should therefore weigh

more in an averaging of the velocity. We do a weighted average

¯̇u =
N∑
n=1

u̇n
b2
n − a2

n

w2
, (3.20)

where n is the element number, N is the total number of elements along the bottom edge and a and

b are the inner and outer radius of the element annulus, as illustrated in fig. 3.12 for the seventh

element. Henceforth, every reference to the FE models’ velocities are the weighted velocities.

3.8 Computational Costs

When we use explicit integration methods, the cost per time step is low, but so is the critical time

step. As we know from eq. (2.95), the critical time step is proportional to the size of the elements;

smaller elements give smaller time steps. Figure 3.13 shows the section between two particles with

and without connection, which tells us that for the FE model to capture the geometry of connected

particles, it needs small elements. A single small element (with large stiffness, which is the case

for silver) may seriously reduce the ∆tcr for the entire FE mesh. [8] The computational cost are

therefore higher for the random FE models, than for the ordered FE models.
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(a) Two particles with connection. (b) Two particles with no connection.

Figure 3.13: R = 5.0 µm, η = 0.1 µm and ξ = 0.5 µm. The overall mesh size is 0.25 µm. We can see how
the element size is reduced to capture the geometry of the connection zone.

3.9 Two-Step Homogenization scheme

The Three Phase Model is used for homogenization of a two-phase composite. In our case, we

want to use it to find the effective properties of a three-phase composite. We must therefore use it

in two steps; first we find the effective properties of a homogeneous particle and then we use that

effective particle and homogenize the composite, as illustrated in fig. 3.14. When we later use the

TPM, it is this two-step scheme we refer to.

Figure 3.14: The composite must be homogenized in two steps; first the two-phase particles, then the
composite with the homogeneous particles.
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3.10 Verification of the FE model

To do numerical experiments using the FE models, the models need to be verified in the range of

interest. We will do three types of verification studies:

• RVE Verification where we study the length scale of averaging of the model, i.e. the size

of the FE model needed for the heterogeneous ICA to be approximated as a homogeneous

material.

• Mesh Independence where we study the mesh dependency of the FE models.

• Random Model Boundaries where we study the random distribution of acoustic impedance

using the random FE model, and whether the fully connected and ordered FE models might

function as bounds on the distribution.

We will first represent the method used, followed by the results and in the end a discussion of these

results. We choose to include this part in the method chapter of the thesis, because the results of the

study are used to verify the models we will use for our numerical experiments later in this thesis.

3.10.1 Method

RVE Verification

We want to verify the size of our FE model, making sure it is a RVE. By means of the homog-

enization theory in section 2.4.1, we let the radius of a sphere be the characteristic dimension of

the inhomogeneity, and the length scale of averaging be the height of the model. Because of the

way the model is created, the height of the model is decided by how many spheres we include,

thus our length scale of averaging is related to the number of spheres used in our model. To be

able to reduce computational cost, but also making sure the model gives adequate result, we must

study how many spheres we must include in the model for it to be an RVE. By doing simulations

on a model with the exact same geometric parameters, and only changing the number of spheres

included, we can study the convergence of the model with respect to number of spheres.

We want to find the necessary height for the model to be homogeneous, which is when the

velocity with respect to number of particles included converge. Let us assume that the model
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including the most particles has the exact solution of the longitudinal velocity. The velocity error

of a model with fewer particles can then be expressed as

εRVE
cL

(N) =
|ĉ(N)

L − ĉNX
L |

ĉNX
L

, 2 ≤ N ≤ X. (3.21)

where ĉ(N)
L is the approximated longitudinal velocity of a model with N particles and ĉNX

L is the

assumed exact longitudinal velocity when X particles are included, being the model with the most

particles.

Because we are going to do simulations on various designs, the model must be valid for all

these variations. If we can create one model that captures the worst possible design in terms of

simulation errors, we can use the verification of that model as a measure of the necessary model

size needed for it to be an RVE. However, this is easier said than done, as we do not know what

design is the worst.

We will assume that the length scale of averaging, δ, is the same for all models, thus the height

of all the models is the same, independent of the size of the particles. The total height of both the

FE model with continuous contact between spheres and the ordered model is

δ = 2w ·N, (3.22)

where N is the number of spheres included. Substituting eq. (3.7) into eq. (3.22) yields

δ = 2 3

√
2

3ϑp
(R + η)N. (3.23)

This hypothesis must be tested, so we will do simulations on three models of different radius,

5 µm, 10 µm and 15 µm and use that result to find the necessary height. The shell thickness will

not contribute much to the total height of the model; however, the thinnest shell has the smallest

elements. Even if we chose the global mesh size to be 0.25 µm, a shell thinner than this has smaller

elements for it to capture the geometry. It is known that abrupt changes in element size should

be avoided, because a disturbance appears in the gradient field in the neighbourhood of an abrupt

element size change [8]. We want to verify the worst possible design of the FE model, and therefore
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choose the volume fraction of particles and shell thickness so that we have the densest packed FE

model with the thinnest shell in our range of interest, i.e.:

η = 0.1 µm and ϑp = 0.55 vol%. (3.24)

Table 3.1 tells us that PMMA has a higher longitudinal velocity than polystyrene, but how it will

affect the necessary height is not clear to us at this point. We therefore study both PMMA and

polystyrene as the core material. Summing up the parameters:

R = 5 µm, 10 µm and 15 µm, η = 0.1 µm, ϑp = 0.55 and ξ = 0.5 µm. (3.25)

To reduce computational cost, we only use the ordered model when we study polystyrene. To

further test our hypothesis stating that δ is equal for all models in the range stated in eqs. (3.1)

to (3.3), we do two more convergence studies, one with PMMA as the core material and another

with polystyrene, but now we choose

R = 8 µm, η = 0.2 µm, ϑp = 0.45 and ξ = 1.5 µm. (3.26)

The results are presented in section 3.10.2, where we first present the results with PMMA as the

core material in figs. 3.15 to 3.18, then for polystyrene in figs. 3.19 to 3.22.

Mesh Independence

To decide the proper mesh for all future models, we must examine their mesh dependency. We will

do two studies; a pure material convergence study, and a composite convergence study. In the first

one, we compare the approximated velocity to the material velocity in table 3.1, and in the latter,

we compare the approximated velocity to the approximation using the finest meshing. The error in

meshing is calculated by

εpure
cL

=
|ĉL − cL|

cL

for the pure material and (3.27)

εcomp
cL

=
|ĉL − c̄L|

c̄L

for the composite, (3.28)
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where c̄L is the approximated velocity with the finest meshing. We expect the mesh error to be

largest at the core-shell and shell-adhesive interfaces, due to the transition in element size, element

type and material. By increasing the number of particles in our model, we also increase the number

of interfaces. From the results of the RVE verification study in section 3.10.2, we know that the

model with the smallest particles needs to include the most particles to fulfil our requirement of

the RVE size. Thus, we believe that the smallest particles will create the worst design in terms of

simulation errors, and therefore use the following geometric parameters:

R = 5 µm, η = 0.1 µm, ϑp = 0.55, and for the random, ξ = 0.5 µm. (3.29)

We will do two pure material convergence studies; one for each of the FE models where we

use silver as the material. The idea is that since silver has the greatest velocity, it will be the

most sensitive material to a bad mesh. We will construct the model just like before, with cores,

shells, matrix and contact zones, but now every constituent will consist of silver. The height of the

model has been decided by the result of the RVE Verification in section 3.10.2. When we study

the random model, all the spheres are linked together. We will also do two composite convergence

studies using PMMA as the core material for each of the two models. The results are presented in

tables 3.2 to 3.5 and fig. 3.23.

Random Model Boundaries

The random model is created such that spheres can be connected in the z-direction, to try to capture

the effect of percolation. How many spheres that make up a chain is unknown and random. We can

do many simulations to create a selection to be able to say anything about the random distribution

of acoustic impedance. This is computational expensive, so if we instead can come up with the

geometries that create the lowest and greatest velocities, they may function as boundaries for all

random geometries. Our immediate thought is that the velocity of the FE model is highest when all

the particles are connected, and lowest when no particles are connected. We will use three designs

where we only change the radius, use PMMA as the core material, a mesh size of 0.5 µm and

R = 5 µm, 10 µm and 15 µm η = 0.2 µm, ϑp = 55%, and ξ = 0.5 µm. (3.30)
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We then do twelve simulations for each design, ten simulations using the random model with

random chain lengths, one with continuous contact between spheres and one using the ordered

model. In this study, we mainly use the random model, which has a high computational cost,

explained in section 3.8. We therefore want to reduce the cost by using the mesh size 0.5 µm, and

table 3.5 tells us that the error is approximately 0.11 % for continuous connected particles. The

result is plotted in fig. 3.24.
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3.10.2 Results

We here present the results of the studies described in section 3.10.1. We start by presenting the

results of the RVE verification studies, then follows results from the mesh independence studies

and last we present results of the random model boundaries study.

RVE Verification The results of the RVE verification study are presented in figs. 3.15 to 3.22, in

the same order as in section 3.10.1; first for the models with PMMA as the core material and radii

R = 5 µm, 10 µm, 15 µm and 8 µm,

then for the models with polystyrene as the core material.
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Figure 3.15: Model with parameters: R = 5 µm, η = 0.1 µm, ϑp = 0.55 and for the random FE model:
ξ = 0.5 µm. PMMA is used as the core material. A model with only two spheres has an error of 17.8%
and 18.8% for the ordered and random model, respectively. However, by including 22 spheres we reduce the
error down to only 0.04% and 0.06%.

54



3.10 Verification of the FE model

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

Nr of spheres

εR
V

E
c L

Ordered
Random

(a) Error of the velocity plotted against the
number of spheres.

0 10 20 30
2000

2200

2400

2600

Nr of spheres

c L
[m

s−
1
]

Ordered
Random

(b) Actual approximated velocity plotted
against number of spheres.

Figure 3.16: Model with parameters: R = 10 µm, η = 0.1 µm, ϑp = 0.55 and for the random FE model:
ξ = 0.5 µm. PMMA is used as the core material. A model with only two spheres has an error of 9.3% and
9.9% for the ordered and random model, respectively. However, by including twelve spheres we reduce the
error down to 0.13% and 0.12%.
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Figure 3.17: Model with parameters: R = 15 µm, η = 0.1 µm, ϑp = 0.55 and for the random FE model:
ξ = 0.5 µm. PMMA is used as the core material. A model with only two spheres has an error of 5.0% and
5.5% for the ordered and random model, respectively. However, by including eight spheres we reduce the
error down to 0.01% and 0.15. Note that the study stopped at 26 spheres for the random FE model, which
means that the error is measured against the value at X = 26.
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Figure 3.18: Model with parameters: R = 8 µm, η = 0.2 µm, ϑp = 0.45 and for the random FE model:
ξ = 1.5 µm. PMMA is used as the core material. A model with only two spheres has an error of 14.8%
and 16.6% for the ordered and random model, respectively. However, by including 14 spheres we reduce the
error down to 0.25% and 0.51%.
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Figure 3.19: Model with parameters: R = 5 µm, η = 0.1 µm, ϑp = 0.55. Polystyrene is used as the core
material. A model with only two spheres has an error of 10.1%. However, by including 20 spheres we reduce
the error down to only 0.15%.
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Figure 3.20: Model with parameters: R = 10 µm, η = 0.1 µm, ϑp = 0.55. Polystyrene is used as the core
material. A model with only two spheres has an error of only 1.2%. However, by including ten spheres we
reduce the error down to 0.16%.
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Figure 3.21: Model with parameters: R = 15 µm, η = 0.1 µm, ϑp = 0.55. Polystyrene is used as the core
material. A model with only two spheres has an error of 1.1%. If we include six spheres we reduce the error
down to 0.14%.
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Figure 3.22: Model with parameters: R = 8 µm, η = 0.2 µm, ϑp = 0.45. Polystyrene is used as the core
material. A model with only two spheres has an error of 9.5%. If we include 12 spheres we reduce the error
down to 0.16%.
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Mesh Independence

The results from the pure material studies are tabulated in tables 3.2 and 3.3, and the results from

the composite studies are tabulated in tables 3.4 and 3.5. We note that the error using the coarsest

mesh is less than 1 %, and the error is greatest for the composites. We also note the small difference

in error, while there is a great difference in numbers of elements used (Nelem). The velocity profile

of the models in table 3.4 are plotted in fig. 3.23, and shows how the number of elements increase

the resolution of the velocity profile.

Table 3.2: Mesh study of the ordered FE model with silver as the only material.

Mesh Size [µm] ĉL [m s−1] εpure
cL

[%] Nelem

1.0 3582.5 0.07 3639
0.5 3582.2 0.06 13926

0.25 3579.5 0.01 53698
0.125 3581.5 0.04 193807

Table 3.3: Mesh study of the random FE model with silver as the only material.

Mesh Size [µm] ĉL [m s−1] εpure
cL

[%] Nelem

1.0 3581.4 0.04 5198
0.5 3580.5 0.01 15120

0.25 3582.0 0.06 54123
0.125 3578.6 0.04 198874

Table 3.4: Mesh study of the ordered FE model for the composite with PMMA as the core material.

Mesh Size [µm] ĉL [m s−1] εcomp
cL

[%] Nelem

1.0 2535.5 0.23 3639
0.5 2532.6 0.11 13926

0.25 2532.2 0.10 53698
0.125 2533.5 0.15 193807

0.0625 2529.7 - 770802
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Table 3.5: Mesh study of the random FE model for the composite with PMMA as the core material.

Mesh Size [µm] ĉL [m s−1] εcomp
cL

[%] Nelem

1.0 2573.2 0.2 5198
0.5 2566.8 0.04 15120

0.25 2568.3 0.01 54123
0.125 2565.5 0.09 198874

0.0625 2567.9 - 767697

0 1 2 3 4 5
2520

2530

2540

2550

Radial position [µm]

c L
[m

s−
1
]

1.0 µm
0.5 µm
0.25 µm
0.125 µm
0.0625 µm

Figure 3.23: Velocity profile of the composite using the ordered FE model with PMMA as the core mate-
rial. Each mark represents an elements’ integration point. The lines between the marks are there only for
illustration, as the velocity is constant over the elements. The models are tabulated in table 3.4.
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3.10 Verification of the FE model

Random Model Boundaries

The results from the random model boundaries are plotted in fig. 3.24. We note that the ordered

model is not the lower boundary, but it seems like the continuous connected model is the upper

boundary for the random distribution.

4 6 8 10 12 14
2400

2450

2500

2550

2600

Radius [µm]

c L
[m

s−
1
]

Connected
Random
Ordered

Figure 3.24: The fully connected model might function as a upper limit, but the ordered does not function
as a lower limit, as it is closer to an average than a boundary.

3.10.3 Discussion

RVE Verification

We will first discuss the results from the models with PMMA as the core material. We use eq. (3.23)

for the three models, i.e.:

δ5 = 2 3

√
2

3ϑp
(R5 + η)N5, (3.31)

δ10 = 2 3

√
2

3ϑp
(R10 + η)N10, (3.32)

δ15 = 2 3

√
2

3ϑp
(R15 + η)N15, (3.33)

where the subscripts refer to the radius used in the model. Substituting R15 and R10 in these
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equations with 3R5 and 2R5, respectively and neglecting the thickness of the shell, yields

δ = 2 3

√
2

3ϑp
R5N5, (3.34)

δ = 2 3

√
2

3ϑp
2R5N10, (3.35)

δ = 2 3

√
2

3ϑp
3R5N15, (3.36)

where we have assumed that the length scale of averaging is the same for all models (δ5 = δ10 =

δ15 = δ). We get the following relation for the necessary number of spheres in the RVE

N5 = 2N10 = 3N15. (3.37)

The plots in figs. 3.15 to 3.17 show the error and longitudinal velocity for with different con-

figurations, and tells us that the necessary number of particles for the model to represented by a

homogeneous material is

N5 = 22, (3.38)

N10 = 12, (3.39)

N15 = 8, (3.40)

which almost satisfies eq. (3.37). Note the scaling difference of the different error plots. Because

2N10 and 3N15 make the upper bound, we use eq. (3.33) to decide the height of the RVE, our length

scale of averaging:

δPMMA = δ15 = 2
3

√
2

3 · 0.55
(15 µm + 0.1 µm) · 8 = 257.6 µm. (3.41)

It should be noted that we have assumed that the height is valid for any sphere radius in the

range of 5− 15 µm, and that a change in the volume fraction and shell thickness is not considered.

We test the height criteria in eq. (3.41) on the configuration in eq. (3.26) which is plotted in fig. 3.18.
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3.10 Verification of the FE model

Let N8 be any whole number greater or equal to what we get using the height 257 µm, i.e.:

N8 ≥
257 µm

2 3
√

2
3·0.45

(8 µm + 0.2 µm)
= 13.7, ⇒ N8 = 14. (3.42)

From the plot in fig. 3.18 we see that the error for N = 14 is down to 0.25% and 0.51%. Compared

to the other results, these are higher values, but we can clearly see a tendency of convergence at

N = 14 thus the assumption of δPMMA = 257 µm gives a fair approximation for the necessary

height, even when we change the volume fraction, shell thickness and contact width.

We use the same procedure for the result with polystyrene as the core material:

N5 = 20, (3.43)

N10 = 10, (3.44)

N15 = 6, (3.45)

and again, using eq. (3.37), we have N10 as the upper bound. The necessary height of the FE model

with polystyrene as the core material is found to be

δPS = δ10 = 2
3

√
2

3 · 0.55
(10 µm + 0.1 µm) · 10 = 215 µm. (3.46)

In the same way as before, we test the height criteria in eq. (3.46) on the configuration in

eq. (3.26):

N8 ≥
215 µm

2 3
√

2
3·0.45

(8 µm + 0.2 µm)
= 11.5, ⇒ N8 = 12. (3.47)

From the plot in fig. 3.22 we see that for N = 12, the error is down to 0.16%, thus the assumption

of δPS = 215 µm gives a fair approximation of the necessary height.

We did not do a convergence study of polystyrene as the core material with continuously con-

nected spheres. This is because the results of the continuously connected PMMA shows the same

pattern as the ordered model. To reduce computational costs, we use the result of the fully ordered

model with polystyrene as the core material to decide the necessary height of the RVE for the ho-
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mogeneous approximation of the heterogeneous ICA. What should be noted is that to be able to do

a homogeneous representation, the height of the FE model must be greater than 215 µm and 257 µm

when we use polystyrene and PMMA as the core material, respectively. By using the definition of

wavelength in eq. (2.62), we get

ΛPMMA
L ≈ 508− 524 µm, (3.48)

ΛPS
L ≈ 482− 489 µm, (3.49)

where we have used the velocity cNX
L . The range in wavelength is because of the difference in

velocity when using different core radii. What we see is that the necessary height to approximate

the composite as a homogeneous material is

δPMMA ≈ 0.5ΛPMMA
L (3.50)

δPS ≈ 0.44ΛPS
L (3.51)

Because the composite is intended to be a transducer layer of a Λ/4 ≈ δ/2 in thickness, it seems

as if the composite may not be regarded as a homogeneous material. The wavelength is decided

by the velocity of the material, which varies with the thickness when it is thinner than δ. We are

therefore left with an implicit problem to decide the Λ/4 thickness of the material:

thickness L =
cL (L)

4f0

. (3.52)

The velocity plots in figs. 3.15 to 3.22 shows that all the plots has a slight increase in velocity

before they flatten out to what we here call the homogeneous longitudinal velocity, cNX
L . We know

from eqs. (3.50) and (3.51) that the velocity of a Λ/4 layer should be similar to the velocity ap-

proximated by half the model size as for the homogeneous RVE; NΛ/4 = N/2. If this velocity

proves to be somewhat similar to the homogeneous velocity, we can use the homogeneous velocity

to approximate the thickness of the Λ/4 layer. Equation (3.52) can then be written as

thickness L =
cNX

L

4f0

. (3.53)
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3.10 Verification of the FE model

The number of particles needed for the FE model to have a thickness of a Λ/4 is then found by

substituting δ in eq. (3.23) for L in eq. (3.53). Solving for NNX
Λ/4 yields

NNX
Λ/4 ≥

cNX
L

8f0
3
√

2
3·ϑp (R + η)

. (3.54)

Let R = 10 µm, η = 0.1 µm, ϑp = 0.55 as in fig. 3.16. The velocity, cNX
L , is approximated to be

cNX
L = 2593 m s−1,

which, by substituting into eq. (3.54), gives

NNX
Λ/4 ≥ 5.8297.

If we now do the exact same, but now use the velocity approximated with six particles;

cN6
L = 2616 m s−1,

we get

NN6
Λ/4 ≥ 5.88.

This tells us that the velocity calculated for the homogeneous material might be used to approximate

the Λ/4 thickness of composite. If there is a way to estimate the homogeneous velocity without

using FE models, this estimate can be used to approximate the number of particles needed for it

to be a quarter wavelength transducer layer. The FE model can then be used to approximate the

acoustic impedance of the heterogeneous layer. We are not able to test this hypothesis, because the

material samples (tabulated in table 3.6) used for measurement are much too thick (L >> Λ/4).

To test it, we need to do measurements on composite samples with a Λ/4 thickness, which at this

point has not been done. We therefore recommend to investigate this is a later study with samples of

the correct thickness. We recommend also doing analyses and measurements with different centre

frequencies, such that it might be possible to find an expression for the height with respect to the
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wavelength, particle size and shell thickness. Note also that the velocity plots have an interestingly

close shape to that of a sinc-function and a converging exponential function. It may therefore be

possible to find a mathematical expression that describes the velocity with respect to number of

spheres. Unfortunately, we did not have time to investigate this any further. In the next chapter, we

do a numerical study of design, and to simplify the analysis, we use the homogeneous case where

the number of spheres included does not affect the approximated velocity. We found the necessary

height with polystyrene as the core to be

N ≥ 215 µm

2 3
√

2
3·ϑp (R + η)

(3.55)

and with PMMA

N ≥ 257 µm

2 3
√

2
3·ϑp (R + η)

(3.56)

under the assumption of neglecting the shell thickness. If the shell thickness is increased, the

assumption might be a source of error when calculating the necessary number of spheres calculated

by eq. (3.55) and eq. (3.56).

When we look at the different velocity plots in figs. 3.15b, 3.16b and 3.17b where PMMA is

the core material, we see a decrease in the homogeneous velocity when using smaller particles.

Smaller core radius and a constant shell thickness gives a larger volume fraction of silver, and

since silver has a larger velocity than PMMA, we would expect a smaller core radius to increase

the homogeneous velocity. This is not the case, and when using cores of 5 µm and 10 µm, the

velocity is below that of any of the constituents. Smaller particles do increase the number of

particles used in the FEA, but we see that when we use more particles in the models, it does not

alter the homogeneous velocity result. Because the model is built on the basis of volume fraction

of particles, a larger particle only increases the total size of the model. This means that the only

difference between the result in figs. 3.15b and 3.17b is the volume fraction in the particles. We

can therefore interpret this result that there might be possible to increase the thickness of silver

coating and at the same time reduce the velocity. This would be ideal for a material that needs a

low acoustic impedance and a high thermal conductivity. This hypothesis is investigated further in
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3.10 Verification of the FE model

section 5.3.

Mesh Independence

The tables 3.2 to 3.5 and fig. 3.23 tells us that the error difference for the different mesh sizes is

very small, even though there is a large difference in number of elements used. The largest error

difference is found in the composite using the ordered FE model. The coarsest mesh has an error of

0.23 % to the finest mesh, whereas the finest mesh has approximately 200 times as many elements!

The top and bottom of the particles are areas where we most likely have stress concentrations.

Stress concentrations are a source of numerical error in FEA, thus it needs finer meshing. The

random model has much smaller elements on the top and bottom of the particles, because of the

contact zones (see fig. 3.13), which act as a mesh refinement at the critical points. This mesh

refinement may be the reason for why we see a greater error using the ordered model than the

continuously connected model. The largest error, using the ordered model is still below 0.3 %. The

small error may be because the velocity is calculated using a weighted average, as described in

section 3.7. This averaging scheme may smear out the error of the different elements. By the looks

of fig. 3.23 we see how the resolution of the velocity profile is decided by the number of elements.

The velocity profiles using the coarsest and finest mesh, 1.0 and 0.0625 µm stands out. The coarsest

model shows an almost linear velocity profile, while the finest meshing has a velocity below all the

other models. We will not use the finest mesh due to the high computational cost of using it. Since

the velocity of the three other models are quite similar, we henceforth use the 0.25 µm mesh, unless

other is specified.

Random Model Boundaries

Our initial thought was that the continuously connected model and the ordered model could act as

bounds of to the random distribution. From the looks of fig. 3.24, this thought is clearly not correct.

The ordered model is far from the lowest velocity approximated with the random model. It seems

like the fully connected model might function as a upper bound, but the 30 random models do not

give enough information to prove or disprove it. The ordered model is closer to the centre of the

spread, so instead of using it as a boundary, we will instead use it as a mean. This is not entirely

correct, but a good enough approximation for the scope of this thesis.
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3.11 Comparing the FE Model with the ICA

The longitudinal wave velocity can be measured using ultrasound. One method is the so-called

discrete frequency method, and its theory follows that of [23]. Two identical ultrasound transducers

are mounted opposite each other in a water chamber. One of the transducers is used as an emitter

and the other as receiver, and they both have resonance frequency at the centre frequency of interest.

The pulse is chosen long enough so that its centre frequency is well-defined, yet short enough to

avoid interference due to multiple reflections within the sample. A sample of thickness L, whose

longitudinal velocity is to be estimated, is inserted so that the ultrasound pulse is transmitted normal

to the surface and through the sample. By comparing the arrival time of the pulse with and without

the sample, the longitudinal wave velocity of the sample can be estimated as

cL =
cw

1 + cw∆t/L
(3.57)

where cw is the velocity of water, ∆t is the difference in arrival time of the pulse with and without

the sample, and L is the thickness of the sample. SURF Technology AS has measured the longi-

tudinal velocity of seven samples provided by Conpart AS, and the data is found in table 3.6. As

mentioned in opening of this chapter, there is an uncertainty in the adhesive density of 10 % due to

shrinking of the adhesive during curing. This is a systematic error, as it is related to the adhesive

mixture, and should be constant if the same mixture in the adhesive is used. The effective density

of the adhesive, ρeff
M , is calculated by assuming a 5 % increase of the density tabulated in table 3.1.

It is the effective density that is used to calculate the effective acoustic impedance Zeff. We will

then use the FE model and the TPM to approximate the acoustic impedances for identical material

compositions, so that we can compare the models to the actual materials. We have not included any

shrinking of the adhesive in our approximation. The relative error of the FE model is calculated by

εeff =
Zeff − ZFEM

Zeff . (3.58)

The results are plotted in fig. 4.1 and tabulated in tables 4.1 and 4.2. SURF Technology AS have

reported that there may be some errors in measured velocities of the samples. The ultrasound
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probes used in the test-rig have a beam-width of about 10 mm, which also is the diameter of the

composite samples. This is problematic because parts of the sound beam go around the sample and

into the receiver. The sample must be very well aligned with the beam to minimize the waves going

around the sample. We would therefore recommend to do new measurements on samples with a

diameter well above 10 mm. SURF Technology AS suggest samples of at least 25 mm. They also

report that the samples had a rough surface, which also may contribute to errors. Our FE models

have not been verified for composites with a shell thickness of 70 nm or radius of 20 µm. We have

chosen to include them anyways, because we only have measured velocities for a few composite

samples.
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3.12 Numerical Experiment in Design

When improving a design, one wants to learn how a quantity of interest is affected by changes in

certain design variables. In our case, we want to reduce the acoustic impedance and increase the

amount of silver in the material. We have a reason to believe that this can be done by changing

certain geometric parameters and material properties. We have in the previous sections verified our

FE model in a range of different numerical design variables. As long as we stay inside this range,

we can undertake analyses of design [8]. From the analyses, we hope to learn the sensitivity of the

acoustic impedance in each design variable, so that we can select the most favorable design. For

most of the studies we will use the ordered model. We know from the results plotted in fig. 3.24,

that the ordered model can be used as a mean of the random distribution of models.

In this chapter, we start by doing a sensitivity study of elastic properties, where we study the

effects the elastic properties of the different constituents have on the acoustic impedance. SURF

Technology AS and Conpart AS are designing the composite planned to be used in ultrasound

transducers. As we mentioned in section 3.5, Conpart do not know the exact elastic properties

of the materials included in the composite. They also have an uncertainty in the density of the

adhesive of about 10 % due to shrinking during curing. The motivation for doing a sensitivity

study of the elastic properties is to see how much a slight change in the different materials alter the

acoustic impedance. The information obtained from the analyses can also be used as guidelines in

choosing the materials in the different constituents of the composite. For every constituent, we will

do three studies; Young’s modulus, E, Poisson’s ratio, ν and density, ρ. We then do analyses where

we alter the geometric parameters of the design. We are interested in how much an impact the

different properties and parameters have on the overall acoustic impedance. If a parameter changes

the velocity AND the density of the material, we might experience a double effect, or a cancelling

effect, since both these parameters are included in the calculation of the acoustic impedance.

The geometric properties and elastic parameters will be altered by±10%, and the impact of the
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change will be calculated by

∆90 =

(
1− ZX90%

ZX100%

)
· 100%, (3.59)

∆110 =

(
ZX110%

ZX100%

− 1

)
· 100%, (3.60)

where X denotes the parameter/property being altered. This can be the radius, R, Young’s mod-

ulus, E, or any other parameter of interest and the % denotes the percentage of the initial param-

eter/property. Z is the approximated acoustic impedance calculated using the ordered FE model.

The exception is the analysis of the contact width. We expect a less distinctive change in the

acoustic impedance when we alter the contact width, thus we alter it by ±50%.

When doing numerical experiments in design, one wants to isolate as many parameters and ef-

fects as possible. This is not much of an issue when we vary the elastic properties, but when we alter

the geometric parameters, this is sometimes easier said than done. Geometric parameters might be

tightly intertwined, and not as easy to isolate. From the velocities and density in table 3.1 we can

expect that an increase in volume fraction of silver will increase the overall acoustic impedance,

while an increase in volume fraction of polystyrene will decrease the acoustic impedance. If we

always change the geometric properties so that the volume fractions are kept constant, the different

properties are isolated. This is what we call scaling, and by doing this we can isolate the effect of

particle size. Let us say we instead increase the shell thickness, whilst keeping the core radius and

particle fraction constant. By increasing the shell thickness, we also increase the particle radius.

The volume fraction of particles is kept constant, but because we increased the shell thickness, the

fraction of shell in the particle has increased, and we have thus also reduced the volume fraction of

core material,

ϑcore =
Vcore

Vparticle

=
R3

(R + η)3
, ϑshell = 1− ϑcore =

R3

(R + η)3
. (3.61)

An increased shell thickness increases the amount of silver and reduces the amount of polystyrene,

where both procedures has the effect of increasing the overall impedance. If we instead increase the

core radius whilst keeping the shell thickness constant, we reduce the amount of silver and increase
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the amount of polystyrene, both procedures having the effect of decreasing the overall impedance

of the material. By increasing the young’s modulus, we know from the longitudinal velocity in

eq. (2.33) that we increase the velocity of the material. By increasing the Poisson’s ratio, we also

increase the velocity. However, by increasing the density, we reduce the velocity, but because the

acoustic impedance is a product of velocity and density, an increase in density will increase the

impedance. Thus, by increasing any of the elastic properties, we increase the acoustic impedance.

To evaluate whether the homogenization method using the Three Phase Model from section 2.4.3

is applicable for our problem, we do the exact same parametric studies using the TPM. We then

compare the results to the results using the FE model. The acoustic impedance approximated using

the TPM is denoted Z̄. The elastic properties that will be altered for every constituent are:

• Young’s modulus, E.

• Poisson’s ratio, ν.

• Density, ρ.

The geometric parameters that will be altered are:

• Sphere radius, R.

• Shell thickness, η.

• Contact width, ξ.

• Volume fraction of particles, ϑp.

In section 3.10.3, we saw how the homogeneous velocity of the composite decreased as the core

radius decreased. We know from eq. (3.61) that a reduced core radius and a constant shell thickness

results in a reduced volume fraction of core and an increased volume fraction of shell. Therefore,

we have seen that the velocity of the composite is reduces as the shell fraction is increased. We will

therefore try to find a volume fraction of the shell, ϑshell, that minimizes the acoustic impedance.

We use the TPM to study a composite with ϑp = 50 vol%. We will also use the TPM to see if there

is a volume fraction of particles, ϑp in the range 45 vol% to 55 vol% that minimizes the acoustic
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impedance of the composite. The range is decided so that it is above the percolation limit and below

what we have been told to be a too viscous mixture. The results are plotted in figs. 4.10 and 4.11.

All the studies are based on the ordered model, unless other is specified. The initial geometry

is:

R0 = 10 µm, η0 = 0.2 µm, ϑp0 = 50 %, (3.62)

where the subscript ”0” denotes the initial geometry. This gives an initial distribution of materials

47 % Core material,

3 % Shell material,

50 % Matrix material.

When we do analyses of the contact width, we use the random model with a continuous connected

system, and the same initial geometry as in eq. (3.62), but now also an initial contact width

ξ0 = 1.0 µm. (3.63)

For all the models we use

Core material: Polystyrene,

Shell material: Silver,

Matrix material: Epoxy,

Mesh size: 0.25 µm.
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Results

This chapter presents the results of the comparison study and numerical experiment. The methods

used to get the results are described in sections 3.11 and 3.12, respectively.

4.1 Comparing the FE Model with the ICA

The measured acoustic impedances in table 3.6 are plotted in fig. 4.1. As mentioned in section 3.11

the acoustic impedance is calculated using the density of the adhesive calculated with 5 % shrinking.

The error bars in fig. 4.1 span the error in acoustic impedance, where the lowest is for a material

with no shrinking of the adhesive and the greatest is for a material with a shrinkage of 10 %. The

approximations using the ordered FE model is marked by dark diamonds and the TPM as light

squares. The density of the matrix material used in the approximations is the one tabulated in

table 3.1 with no shrinking. Values are plotted in fig. 4.1 and tabulated in tables 4.1 and 4.2.

Table 4.1: The acoustic impedance of the particles plotted in fig. 4.1a. The unit of the tabulated impedances
are MRayl, and is left out to make the table more readable.

ID Core R [µm] η [nm] ϑp [vol%] Zmin Zeff Zmax ZTPM ZFEA εeff[%]

CA102-1 styrene 5 70 48 3.05 3.13 3.21 3.11 3.12 0.39
CA101-1 styrene 5 140 50 3.5 3.56 3.64 3.52 3.51 1.35
CA101-2 styrene 5 140 48 3.41 3.48 3.56 3.5 3.5 0.44
CA101-3 styrene 5 200 48 3.74 3.81 3.89 3.79 3.78 0.78
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Figure 4.1: The measured acoustic impedances from table 3.6 are plotted as circles with error bars repre-
senting the shrinking of adhesive. The approximations by the ordered FE model are represented by dark
diamonds and TPM by light squares.

Table 4.2: The acoustic impedance of the particles are plotted in fig. 4.1b. The unit of the tabulated
impedances are MRayl, and is left out to make the table more readable.

ID Core R [µm] η [nm] ϑp [vol%] Zmin Zeff Zmax ZTPM ZFEA εeff[%]

CA101-1 styrene 5 140 50 3.5 3.56 3.64 3.52 3.51 1.35
CA101-2 styrene 5 140 48 3.41 3.48 3.56 3.5 3.5 0.44
CA102-2 styrene 10 140 48 3.39 3.47 3.56 3.11 3.12 10.1
CA102-3 PMMA 15 140 48 3.28 3.36 3.44 3.28 3.28 2.48
CA101-4 PMMA 20 140 48 3.23 3.31 3.4 3.22 3.21 2.89
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4.2 Numerical Experiment in Design

The results from the procedure in section 3.12 are presented in this section on the following order:

• Young’s modulus, E.

• Poisson’s ratio, ν.

• Density, ρ.

• Sphere radius, R.

• Shell thickness, η.

• Contact width, ξ.

• Volume fraction of particles, ϑp.

• Ideal concentration of silver layer and particles.

We present the results for both the FE models and the TPM in the same tables and figures. It should

be noted that the FE model is presented as marks in the plots, whereas the TPM is presented as

continuous lines. When we study the elastic properties, the results for all three constituents (core,

shell and matrix) are plotted in the same figures. The belonging TPM-lines has the same colours

as the FE model marks for the same constituents. The TPM (blue lines) and the FE model (black

marks) have different colours when we study the geometric parameters.
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4.2.1 Young’s Modulus
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Figure 4.2: The Young’s modulus is varied from 90%-110% of the initial Young’s modulus, E0, of the
materials. Note that the marks are values approximated using the ordered FE model, whereas the lines are
approximated using the TPM.

Table 4.3: Young’s modulus of the core.

Core E100% E90% E110% ∆90[%] ∆110[%]
E[GPa] 3.45 3.105 3.795 - -
Z[MRayl] 3.301 3.243 3.356 1.8 1.7
Z̄[MRayl] 3.298 3.238 3.354 1.8 1.7

Table 4.4: Young’s modulus of the shell.

Shell E100% E90% E110% ∆90[%] ∆110[%]
E[GPa] 76.0 68.4 83.6 - -
Z[MRayl] 3.301 3.277 3.325 0.7 0.7
Z̄[MRayl] 3.298 3.273 3.322 0.7 0.7

Table 4.5: Young’s modulus of the matrix.

Matrix E100% E90% E110% ∆90[%] ∆110[%]
E[GPa] 4.35 3.915 4.785 - -
Z[MRayl] 3.301 3.208 3.386 2.8 2.6
Z̄[MRayl] 3.298 3.211 3.377 2.6 2.4
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4.2.2 Poisson’s Ratio
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Figure 4.3: The Poisson’s ratio is varied from 90%-110% of the initial Poisson’s ratio, ν0, of the material.
Note that the marks are values approximated using the ordered FE model, whereas the lines are approximated
using the TPM.

Table 4.6: Poisson’s ratio of the core.

Core ν100% ν90% ν110% ∆90[%] ∆110[%]
ν 0.3580 0.3222 0.3938 - -

Z[MRayl] 3.301 3.215 3.427 2.6 3.8
Z̄[MRayl] 3.298 3.213 3.419 2.6 3.7

Table 4.7: Poisson’s ratio of the shell.

Shell ν100% ν90% ν110% ∆90[%] ∆110[%]
ν 0.370 0.333 0.407 - -

Z[MRayl] 3.301 3.290 3.314 0.3 0.4
Z̄[MRayl] 3.298 3.287 3.310 0.3 0.4

Table 4.8: Poisson’s ratio of the matrix.

Matrix ν100% ν90% ν110% ∆90[%] ∆110[%]
ν 0.368 0.331 0.405 - -

Z[MRayl] 3.301 3.164 3.491 4.1 5.8
Z̄[MRayl] 3.298 3.164 3.485 4.1 5.7
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4.2.3 Density
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Figure 4.4: The density varied from 90%-110% of the initial density, ρ0, of the materials. Note that the
marks are values approximated using the ordered FE model, whereas the lines are approximated using the
TPM.

Table 4.9: Density of the core.

Core ρ100% ρ90% ρ110% ∆90[%] ∆110[%]
ρ[g cm−3] 1.05 0.945 1.155 - -
Z[MRayl] 3.301 3.240 3.360 1.9 1.8
Z̄[MRayl] 3.298 3.237 3.357 1.8 1.8

Table 4.10: Density of the shell.

Shell ρ100% ρ90% ρ110% ∆90[%] ∆110[%]
ρ[g cm−3] 10.49 9.441 11.539 - -
Z[MRayl] 3.301 3.265 3.337 1.1 1.1
Z̄[MRayl] 3.298 3.261 3.334 1.1 1.1

Table 4.11: Density of the matrix.

Matrix ρ100% ρ90% ρ110% ∆90[%] ∆110[%]
ρ[g cm−3] 1.12 1.008 1.232 - -
Z[MRayl] 3.301 3.236 3.365 2.0 1.9
Z̄[MRayl] 3.298 3.229 3.365 2.0 2.0
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4.2.4 Radius
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Figure 4.5: The core radius varied from 90%-110% of the initial radius, R0, of the core. Note that the marks
are values approximated using the ordered FE model, whereas the lines are approximated using the TPM.

When we change the core radius whilst keeping the shell thickness and volume fraction of particles

constant, we change two parameters; the volume fraction of the core and the volume fraction of the

shell. If we increase the R, we reduce the amount of silver, because the volume fraction of silver

per particle is reduced, reducing the total volume fraction of silver. Let us assume that the thinnest

shell possible to manufacture is 100 nm. We can then reduce the volume fraction by increasing the

core radius. We therefore want to see how much the change of core radius with a constant shell

thickness will change the overall properties. We can expect a decrease in acoustic impedance.

90%R0 ≤ R ≤ 110%R0, η = η0, ϑp = ϑp0. (4.1)

Table 4.12: Radius of the core.

Radius R100% R90% R110% ∆90[%] ∆110[%]
R[µm] 10.0 9.0 11.0 - -

Z[MRayl] 3.301 3.363 3.250 1.9 1.5
Z̄[MRayl] 3.298 3.361 3.246 1.9 1.6

81



Chapter 4. Results

4.2.5 Shell Thickness
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Figure 4.6: The shell thickness varied from 90%-110% of the initial thickness, η0, of the shell. Note that
the marks are values approximated using the ordered FE model, whereas the lines are approximated using
the TPM.

The most direct and obvious way of increasing the amount of silver in the model, is to increase the

shell thickness. By changing the thickness of silver, we increase the radius of the particle, and thus

we reduce the volume fraction of the core. We can expect an increase in acoustic impedance

R = R0, 90%η0 ≤ η ≤ 110%η0, ϑp = ϑp0. (4.2)

Table 4.13: Thickness of the shell.

Thickness η100% η90% η110% ∆90[%] ∆110[%]
η[µm] 0.2 0.18 0.22 - -

Z[MRayl] 3.301 3.244 3.357 1.7 1.7
Z̄[MRayl] 3.298 3.240 3.354 1.7 1.7
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4.2.6 Scaling
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Figure 4.7: The radius and shell thickness is varied from 90%-110% of the initial radius and thickness, R0

and η0. Note that the marks are values approximated using the ordered FE model, whereas the lines are
approximated using the TPM.

We want to investigate how the size of the particle changes the overall properties. By increasing

the radius whilst keeping the shell and particle fraction constant, we can see how much the particle

size affects the overall velocity. We alter the core radius, whilst keeping the volume fraction of

particles constant, i.e.:

90%R0 ≤ R ≤ 110%R0, η =
R

R0

η0, ϑp = ϑp0. (4.3)

Table 4.14: Scaling of the particle.

Scaling R100%, η100% R90%, η90% R110%, η110% ∆90[%] ∆110[%]
R[µm] 10.0 9.0 11.0 - -
η[µm] 0.2 0.18 0.22 - -

Z[MRayl] 3.300 3.302 3.302 0.0 0.0
Z̄[MRayl] 3.298 3.298 3.298 0.0 0.0
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4.2.7 Contact Width
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Figure 4.8: The contact width is varied from from 50%-150% of the initial contact width, ξ0. Note that the
marks are values approximated using the ordered FE model, whereas the lines are approximated using the
TPM.

The contact width between the particles is believed capable to be altered by increasing the amount

of silver ions, Ag+, in the adhesive before curing. These ions might then move along the shell and

“solder” the particles together. How it is done is not of importance, let us just say it is possible.

By increasing the contact width, we also increase the amount of silver in the material and reduce

the amount of matrix material. Note that the velocity is approximated correctly in ABAQUS, but

when we calculate the impedance in post-processing, the density multiplied with the velocity in

the equation for acoustic impedance does not include the additional silver due to the contact width.

The density used to calculate the impedance is therefore slightly less than the actual amount.

R = R0, η = η0, ϑp = ϑp0, 50%ξ0 ≤ ξ ≤ 150%ξ0. (4.4)

Table 4.15: Contact width between particles.

Contact Width ξ100% ξ50% ξ150% ∆50[%] ∆150[%]
ξ[µm] 1.0 0.5 1.5 - -

Z[MRayl] 3.329 3.245 3.329 0.1 0.0
Z̄[MRayl] 3.298 3.298 3.298 0.0 0.0
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4.2 Numerical Experiment in Design

4.2.8 Volume Fraction of Particles
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Figure 4.9: The particle concentration is varied from from 90%-110% of the actual contact width, ϑp0. Note
that the marks are values approximated using the ordered FE model, whereas the lines are approximated
using the TPM.

By decreasing the particle fraction, we decrease the amount of core material and shell material,

and increase the amount of matrix material. Since the core material is polystyrene, we expect

an increase in acoustic impedance when we decrease the volume fraction of core material, but a

reduction in silver would mean a decrease in impedance. These two effects work against each other,

so the expected effect is somewhat unclear when we changing the volume fraction of particles.

R = R0, η = η0, 90%ϑp0 ≤ ϑp ≤ 110%ϑp0. (4.5)

Table 4.16: Volume fraction of particles.

volume fraction ϑp100% ϑp90% ϑp110% ∆90[%] ∆110[%]
ϑp[%] 50 45 55 - -

Z[MRayl] 3.301 3.263 3.340 1.2 1.2
Z̄[MRayl] 3.298 3.260 3.335 1.1 1.1
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4.2.9 Ideal Concentration

The velocity and impedance with respect to the volume fraction of shell in the particles are plotted

in fig. 4.10. The volume fraction of particles, ϑp, is 0.5. The velocity does indeed decrease with an

increase in shell fraction. However, it is the acoustic impedance that is of interest, which increases

with the shell fraction. The velocity and impedance with respect to the volume fraction of particles,

ϑp, is plotted in fig. 4.11. The velocity decreases with an increased volume fraction and the acoustic

impedance increases.
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Figure 4.10: The volume fraction of shell in the particle is varied from 0 to 1.The velocity and acoustic
impedance is approximated using the TPM.
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Figure 4.11: The volume fraction of particles is varied from 0.45 to 0.55.The velocity and acoustic
impedance is approximated using the TPM.
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Chapter 5
Discussion

In this chapter we discuss the assumptions made in the FE model. We then discuss how well the

FE model and TPM describes the ICA, based on the results in found in sections 4.1 and 4.2 as well

as discussing the design of the composite.

5.1 FE Model Approximations

We modelled the composite using axisymmetric elements in ABAQUS. This assumption introduces

a systematic ordering of particles. If we assume that waves only propagate along the z-direction,

the waves furthest out in the r-direction will not propagate through any particles, whereas waves

at the center will propagate through the center of all particles. Christensen states in [7] that for

the heterogeneous composite to provide an attenuation effect, due to incoherent scattering by the

inhomogeneities, it must be of a random nature. Christensen also says that in many practical

problems, a heterogeneous material can be assumed homogeneous (in the manner of scattering

effects) if the inhomogeneities are small compared to the wave length. If we use the wavelength

found in eqs. (3.48) and (3.49) and the diameter of the particles as the characteristic length of the
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inhomogeneities, we see that the particles with a diameter of 30 µm is

2R

ΛPMMA
L

≈ 5.9 %, (5.1)

2R

ΛPS
L

≈ 6.2 %, (5.2)

of the wavelength, thus attenuation due to scattering is not of an issue and the axisymmetric sim-

plification is acceptable. However, there is attenuation in the composite. Friction due to sliding

contact between particle-adhesive and particle-particle and viscoelastic effects are sources of loss.

We have in the FE models assumed perfect bonding between the constituents which neglects the

loss of friction. It is a fair assumption because the scope of this thesis has been to give clarity to

how the elastic properties and geometric parameters affect the acoustic impedance. This is also the

reason for why we used an elastic representation of the viscoelastic polymers. The mechanical loss

in a material used as a transducer layer is of great interest, and we would recommend in a later study

to simulate it by introducing a loss interface layer surrounding the particles like what has been done

in [17]. This layer lumps together possible loss mechanisms and provides a mean for describing

the composite behaviour without knowing what happens at the interface. Parameters deciding the

size and loss in the layer can then be decided be doing a curve fit with measured attenuation.

5.2 Comparing the FE Model with the ICA

The results in fig. 4.1 and tables 4.1 and 4.2 tells us that the deviations between the measured

values and the approximations are small. For the particles with a core radius 5 µm, the error is below

1.35 %. The particles with a shell thickness 140 nm, has an error below 2.89 %. The exception being

the material sample “CA102-2”, which has a relative error of 10.1 %. It should be noted that the

density used in the approximations corresponds to the adhesive without any shrinking. Therefore,

the approximations should be at the bottom of the error bars. The results seem therefore better than

they are, as the approximations seem to overestimate the acoustic impedance of the composite. The

best match is for the particles with PMMA as the core material and a shell thickness of 140 nm, as

these are closest to the minimum. This is not entirely correct, because the composite samples used
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5.2 Comparing the FE Model with the ICA

in the experimental measuring probably have experienced some shrinking. From the expression of

the longitudinal velocity in eq. (2.32), which we repeat here for convenience

c2
L =

λ+ 2µ

ρ
, (2.32)

we see how a higher density (caused by shrinking) will reduce the velocity. Let us say we know

the density of the sample; ρeff. If we want to calculate the minimum and maximum impedance, we

should consider how the density might differ when measuring the velocity as well

(cmin
L )2 =

λ+ 2µ

ρeff · ρ
eff

ρmin , (5.3)

(cmax
L )2 =

λ+ 2µ

ρeff · ρ
eff

ρmax . (5.4)

The density of the composite “CA101-2”, which has particles of radius 5 µm, shell thickness

140 nm and a particle packing of 48 vol%, can be found to be

ρmin = 1.48 g cm−3, ρeff = 1.51 g cm−3 and ρmax = 1.54 g cm−3, (5.5)

where min, eff and max corresponds to 0 %, 5 % and 10 % shrinking of the adhesive, respectively.

Substituting eq. (5.5) in eqs. (5.3) and (5.4) yields,

(cmin
L )2 = (ceff

L )2 · 1.02, (5.6)

(cmax
L )2 = (ceff

L )2 · 0.98, (5.7)

which slightly compensate for the change in density when we calculate the acoustic impedance.

The error bars in fig. 4.1 should therefore be shorter. The measured impedance and the approx-

imations do show a good match, but because of the numerous sources of error we cannot say if

the approximations over or underestimates the acoustic impedance. We therefore agree with SURF

Technology to do new measurements on samples with diameter 25 mm and a smoother surface. A

better control of the shrinking process should be emphasized.
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5.3 Numerical Experiment in Design

Our first observation from the results in figs. 4.2 to 4.8 is that there is good match between the

FE models with a size above the homogeneous limit and the TPM. It may therefore be possible to

use the TPM to approximate the properties of homogeneous representation of the heterogeneous

ICA. The TPM assumes spherically shaped particles, which in our case does not involve an ap-

proximation. The ICA consists of monodisperse coated particles, and for both steps in our two-step

scheme, described in section 3.9, the inclusions are spherical; first the spherical core is embedded

in the silver matrix, then the effective homogeneous spherical particle is embedded in the epoxy

matrix. The use of perfectly shaped spheres may be the reason for the good fit between our FE

approximations and the TPM.

The most sensitive elastic parameter is the Poisson’s ratio of the matrix material, as we can see

from table 5.1. When it is changed to 110 % of ν0 the acoustic impedance increases by 5.8 %. We

mentioned in the opening of this chapter how there is an uncertainty in the matrix density (due to

shrinking of the adhesive during curing) of approximately 10 %. From the result in table 4.11, a

10 % uncertainty in matrix density results in an uncertainty of 2 % in the acoustic impedance of

the composite. The parameters and properties that changes the impedance the most are listed in

table 5.1. It shows that the three elastic properties of the matrix material are among the top four,

which tells us that altering the matrix material makes the biggest impact on the acoustic impedance.

We will therefore recommend changing the matrix material to reduce the acoustic impedance. Even

though the Poisson’s ratio is lower for PMMA, the Young’s modulus and density is greater, so we

would recommend using polystyrene as the core material.

In section 3.10.3, we made a statement that there may be an ideal ratio of core and shell, because

the velocity was reduced when silver was added. In fig. 4.10 we used the TPM to plot the velocity

and acoustic impedance of the composite while varying the core-shell ratio and the volume fraction

of particles. If the TPM is trustworthy, which it seems to be by the match in figs. 4.2 to 4.9, it

tells us that the velocity is decreasing with the increase of silver, while the acoustic impedance is

increasing. Because we are interested in a low impedance composite, we see from fig. 4.11 that no

particles give the lowest impedance. If we have a particle fraction, ϑp = 50 vol%, fig. 4.10 tells
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5.3 Numerical Experiment in Design

Table 5.1: The parameters are sorted from the most to the least sensitive to change with respect to the
acoustic impedance. This table is just a reordering of the results found in section 4.2

Parameter ∆90 [%] ∆110 [%]

νmatrix 4.1 5.8
νcore 2.6 3.8
Ematrix 2.8 2.6
ρmatrix 2 1.9
ρcore 1.9 1.8
Ecore 1.8 1.7
R 1.9 1.5
η 1.7 1.7
ϑp 1.2 1.2
ρshell 1.1 1.1
Eshell 0.7 0.7
νshell 0.3 0.4
R, η 0 0
ξ 0 0

us that particles without shell gives the lowest acoustic impedance. The composite is introduced

to increase the thermal conductivity, and therefore should include a layer of silver. The thickness

of the silver will increase the impedance, and it must therefore be made a trade-off between the

acoustic impedance and the thermal conductivity. To reduce the thermal contact resistance, we

can reduce the number of contact points between particles by increasing the size of the particles.

The particles can be scaled such that the core-shell ratio is constant, which we have seen from

section 4.2.6 do not alter the acoustic impedance. We sum up our most important observations:

• The TPM is just as good as the FE model to approximate the homogeneous properties of the

material. However, the Λ/4 layer might be too thin to be assumed homogeneous.

• It is the adhesive material that changes the acoustic impedance the most, second is the core

material. We therefore recommend looking at other options for adhesive material, and we

recommend using polystyrene over PMMA as the core material.

• Larger particles increases the thermal conductivity, and as long as they are scaled, the size do

no alter the acoustic impedance.
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Chapter 6
Conclusion

The work conducted in this thesis concerns the development of a method to approximate the acous-

tic impedance of composites comprising silver coated polymer spheres in a polymer adhesive using

FEA. Our results agree well with both real values and the analytic TPM. The TPM proves to be an

efficient and cheap method to approximate the homogeneous acoustic impedance, and if we only

are interested in the homogeneous approximation of the heterogeneous ICA, the TPM is just as

good as the FE model. However, we show that the composite used as a transducer layer may be

too thin to be assumed homogeneous at a macroscopic level. We have not succeeded in finding

an ideal geometric configuration that will give both a low acoustic impedance as well as a high

thermal conductivity, as these properties are inversely proportional to each other. However, larger

particles are favourable to increase the thermal conductivity, and as long as the particles are scaled,

we have not seen any change in acoustic impedance. In conclusion, large particles are better to use

in an isolation layer, and polystyrene is more favourable than PMMA as the core material.

6.1 Future Work

Much of the work in this thesis has gone into understanding how the mechanical properties of a

composite material alter its acoustic impedance. There is much more to learn and many factors that

can be included. We will end by summing up some future work that would be interesting to do:

• Test whether the Λ/4 thick composite can be assumed homogeneous by measure the acous-
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tic impedance on samples at approximately a Λ/4 thickness. These samples should have a

diameter of about 25 mm and a smooth surface.

• Measure the longitudinal and transverse sound velocity on adhesive samples to calculate the

mechanical properties.

• Do analyses and measurements with different centre frequencies, such that it might be pos-

sible to find a mathematical expression for the homogenization height, δ, with respect to the

wavelength, particle size and shell thickness.

• Use viscoelastic material model when modelling the polymers, to study viscous loss.

• Include loss interface layers similar to what has been done in [17].

• Simulate thermal conductivity in a three-dimensional model and do a experimental study in

design with respect to thermal conductivity.
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