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Figure 1. Scene rendered with a model of the ray tracer. 

Platform for advanced digital design education 

NTNU and ARM are developing a platform for teaching advanced digital design built around a 

Hardware Ray Tracer. The goal is to carefully documenting all steps in the design process of the Ray 

Tracer, starting from the requirement capture, architecture exploration and modelling, specification 

writing, RTL implementation and finally creating a working prototype.  

 

Ray Tracing in Hardware is an excellent case for exploring and documenting topics such as:  

• Best practice design and verification processes of a system of relatively high complexity. 

• Modelling on different abstraction levels with the aim to understand system performance, 

system scalability, memory bandwidth analysis and quantization effects in mathematical 

computations. 

• Sub-System design with common sub blocks such as memory system, processor elements 

and interconnects. 

Assignment text
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• Examples of how to efficiently implement a large range of mathematical operations in 

hardware.   

• Understanding how the Hardware Ray Tracer can be integrated into a larger SoC together 

with CPU, display controller and memory controller. 

Project thesis “Design of a Hardware Ray Tracer for digital design education” 

In the project thesis “Design of a Hardware Ray Tracer for digital design education” submitted 

December 2016 by NTNU student Jonas Agentoft Eggen modelling and design exploration of a 

hardware ray tracer was described. Through extensive design exploration with constant refinement 

of the model Eggen arrived at a proposal for the architecture, instruction set and microarchitecture 

for a scalable multicore ray tracer. As a part of this work, Eggen carried out analysis of numeric 

precision, throughput, and scalability of the multicore system.  

 

Master thesis description 

In this master thesis, the goal is to refine the microarchitecture for the ray tracer core proposed in 

the project thesis, propose an interconnect that scales well with the number of cores, write RTL 

code, verify the design and synthesize the design targeting a Xilinx Zynq-7000 FPGA. Extract examples 

from the thesis work that helps demonstrating important aspects of digital design.  
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Abstract

Digital design is a large and complex field of electronic engineering, and learning
digital design requires maturing over time. The learning process can be facilitated
by making use of a single learning platform throughout a whole course.

A learning platform built around a hardware ray tracer can be used in illustrating
many important aspects of digital design. A unified learning platform allows
students to delve into intricate details of digital design while still seeing the bigger
picture. Effects of changing parameters at a low level in the ray tracer design can
be seen at the top-level straight away. This kind of fast feedback can help keep
students motivated through the learning process.

Throughout this thesis, many interesting examples of both assignments and
student discussions are presented. These cover topics such as technology dependent
optimisations, low power design techniques, verification and means of accelerating
the design process. The combination of these examples and the implementation
effort in this thesis is a good starting point for a learning platform.

Ray tracing is a parallel problem well suited for processing in a multi-core
architecture. Here, a system that can be synthesised with a parameterisable
number of processing cores is proposed. Each of the cores interleave processing
of rays using fine-grained multithreading. Large parts of the system have been
implemented using the SystemVerilog hardware description language. Tools used
in exploring the impact of architectural changes have been developed and results
from these are discussed. The implementation is verified through simulations
and partly using formal methods. Synthesis results for a Xilinx Zynq SoC are
presented and discussed.

Simulation and synthesis results indicate that the ray tracer can render a VGA
frame at 25 frames per second in a 32-core configuration. This configuration
utilises ∼ 77 % of the LUTs on the target FPGA, leaving room for additional logic
on the device.
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Sammendrag

Digitaldesign er et stort og komplekst felt innen elektronikk. Det å lære digitalde-
sign krever modning over tid. Læringsprosessen kan lettes ved å benytte én enkelt
læringsplattform gjennom et helt emne.

En læringsplattform bygget rundt en raytracer kan brukes til å illustrere mange
viktige aspekter ved digitaldesign. En enhetlig læringsplattform gjør det mulig
for studenter å fordype seg i intrikate detaljer innen digitaldesign samtidig som
de kan ha et overblikk over hele systemet. Resultater av parameterendringer på
et lavt nivå i raytracerens design kan ses på toppnivå med en gang. Slike raske
tilbakemeldinger kan hjelpe studenter med å holde motivasjonen oppe gjennom
læringsprosessen.

Gjennom hele oppgaven presenteres mange interessante eksempler på både opp-
gaver og studentdiskusjoner. Disse dekker emner som teknologiavhengige opti-
maliseringer, energisparingsteknikker, verifisering og metoder for å effektivisere
designprosessen. Kombinasjonen av disse eksemplene og arbeidet med implementa-
sjonen i denne oppgaven gir et godt utgangspunkt for en læringsplattform.

Raytracing er et parallelliserbart problem godt egnet for prosessering med en
flerkjernearkitektur. Her foreslås et system som kan syntetiseres med et parame-
teriserbart antall kjerner. Hver kjerne prosesserer stråler (rays) med finkornet
(fine-grained) multithreading. Store deler av systemet er blitt implementert i
SystemVerilog. Verktøy for å undersøke virkninger av arkitektoniske endringer er
utviklet og resultater fra disse diskuteres. Implementasjonen er verifisert gjennom
simuleringer og delvis ved hjelp av formelle metoder. Synteseresultater for en
Xilinx Zynq SoC presenteres og diskuteres.

Resultater fra simuleringer og syntese indikerer at raytraceren kan generere 25
bilder i sekundet gitt en 32-kjerners konfigurasjon. Denne konfigurasjonen bruker
∼ 77 % av LUTene på FPGAen. Dette betyr at det er plass til øvrig logikk på
enheten.
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Chapter 1

Introduction &
Motivation

Digital design is a field within electronics that has experienced great growth since
the first integrated circuits (ICs) were introduced in the 1960s. Since then, ICs
have become ubiquitous, and found in virtually all electronic devices. Competent
engineers are vital to keep up the progress in the field. Educating these engineers
can be facilitated by making use of one single learning platform throughout a
whole course on digital design.

Computer graphics is another field that has come to take a huge part of people’s
lives. Since the term was first coined in 1960 [The+08], it has found applications
in computer aided design, medical imaging, scientific visualisation, video games,
special effects in movies and more. Now, with virtual reality on the rise, the
demand for more powerful hardware is not showing any sign of decline.

Because of this, designing a learning platform for digital design around a hardware
ray tracer is a natural choice. The system complexity is kept at a moderate level,
while still demonstrating key concepts of digital design. The learning platform
guides students through the phases of digital design, resulting in a system that
offers a visual output. A visual output can help motivate students to really
understand how the system works, and thus learn digital design. Students that in
a few years will be important in defining the technology of tomorrow.

The benefit of a platform of this complexity is that it can be used as an example
throughout a whole course. It can be used to demonstrate everything from
‘requirement capture, architecture exploration and modelling, specification writing,

1



2 CHAPTER 1. INTRODUCTION & MOTIVATION

RTL implementation [to] finally creating a working prototype.’ ([Gje17])

This thesis is a continuation of the project thesis ‘Design of a Hardware Ray
Tracer for digital design education’ [Egg16]. In that thesis, a high level functional
model was provided [Gje17]. This model was analysed and broken down into
more specialised models. The result of this was a system that was partitioned in
a way that had a parameterisable number of processing cores. This allowed for
scalable performance, and it was found that achieving a frame rate of 24 frames
per second (FPS) at VGA resolution required 74 cores when running at 50 MHz.
The project thesis concluded by recommending improvements to the design in
order to make implementation feasible.

In this master’s thesis, improvements to the architecture proposal from [Egg16].
Models developed during the project thesis have been adapted, and used in both
performance analyses and in verifying correctness of the register-transfer level
(RTL) implementation. RTL for a large part of the system, including the processing
elements and their interconnect, has been implemented using SystemVerilog. The
RTL has been synthesised for a field-programmable gate array (FPGA) target.
The impact of varying important design parameters has been analysed through
simulations and synthesis.

1.1 Main contributions

The main contributions of this thesis are:

• The specification from [Egg16] has been improved and extended.

• Devised a multi-core architecture where cores are fully utilised due to the
use of fine-grained multithreading.

• Implemented RTL for large parts of the system and made an assembler for
the instruction set architecture (ISA).

• Simulated and synthesised the RTL.

• Verification of the implementation through simulation.

• Analyses of expected system level performance.

• Learning examples and proposal for use of presented material in a course
on digital design.
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1.2 Thesis outline

Some necessary background theory is given in Chapter 2. It gives an introduction to
ray tracing, number representation formats, the digital design process, the targeted
development board and interconnect design. Chapter 3 lists the requirements
for both the hardware ray tracer and its specification documents. Some of the
requirements were addressed during the work on the project thesis, and some
are entirely new. Important results from the project thesis are summarised in
Chapter 4. Chapter 5 describes the design process of the ray tracer system. Results
of design choices are also found in this chapter. This presentation method is
chosen as it is in accordance with the design process of a digital system. Anecdotal
learning examples are scattered around in this chapter, providing the author’s
view on various themes. Chapter 6 discusses the viability of this system as a
learning platform. An example of how one of the modules in the system can
be integrated into a digital design course is also given. Finally, Chapter 7 sums
everything up, and lists work that remains before the hardware ray tracer can be
used in digital design education.
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Chapter 2

Background

This chapter presents some background theory that is necessary for the under-
standing of Chapters 4 and 5. The ray tracing algorithm is introduced. Basics of
the fixed-point and floating-point number representations are presented. A short
introduction to a typical design flow is given. The ZedBoard development board
and interconnects in digital systems are introduced. Sections 2.1 and 2.2 has been
taken directly from [Egg16].

2.1 Ray tracing

Ray tracing is a rendering algorithm that can produce realistic looking images.
It achieves this by tracing light through the image plane, and simulates their
interaction with the objects in the scene. A scene refers to a description of objects
to be rendered, lighting, camera viewpoint amongst other parameters. The ray
tracing algorithm can simulate many optical effects like reflection, refraction,
scattering and dispersion.

Figure 2.1 illustrates the basic concepts of the ray tracing algorithm. A primary
ray is cast from the camera position through a pixel in the image. Intersection
tests against the objects in the scene are performed in order to find the closest
intersecting object. A shadow ray is traced towards the light source, to determine
if the object is in shadow. A local illumination model is then applied for the
hit object. In recursive ray tracing, reflection and refraction rays can then be
generated and are traced in the same way. The contributions from each term is
then summed and the final pixel colour is returned.

5
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Light Source

Scene Object

Shadow Ray
Primary Ray

Image

Camera

Figure 2.1: Ray tracing visualised [Hen08]
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The recursive ray tracing algorithm has been around since 1980 [Whi80]. Since
then, a lot of effort has been put into making ray tracing more efficient and
feature-rich [Suf07]. The work has mainly focused on improving the runtime of
the algorithm in scenes with a large number of objects. A naive implementation
of the algorithm will try to intersect any ray with all objects in the scene. This
is very inefficient for large scenes, and has been solved by subdividing the scene
objects into data structures of objects that are cheap to perform intersection tests
on. These data structures allow for a major reduction in the number of needed
intersection tests.

2.2 Number representations

There exist many ways to represent numbers in digital systems. The choice of
representation has a big impact on the design, performance etc. of the system.
Here, only fixed-point and floating-point numbers will be considered due to the
popularity of those representations. Also, no literature recommending any other
number formats for use in ray tracing have been found. For more in-depth coverage
of fixed-point and floating-point numbers, refer to [EL04].

2.2.1 Fixed-point representation

31 16 15 0

Integer part Fractional part

Figure 2.2: Fixed-point format with 16 bit reserved for the integer part, and 16 bit
for the fractional part.

Fixed-point numbers represent real numbers using a fixed number of bits before
and after the binary point. Figure 2.2 shows a fixed-point format with 16 bit
reserved for the integer part, and 16 bit for the fractional part. For signed numbers,
one can choose signed number representation freely (i.e. sign-magnitude, two’s
complement, etc.).

2.2.2 Floating-point representation

Floating-point numbers also represent real numbers. As opposed to fixed-point
numbers, the binary point can float. This allows for a great dynamic range at
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31 30 23 22 0

Si
gn Exponent Mantissa

Figure 2.3: IEEE Standard 754 Single-precision floating-point format

the cost of less precision, rounding errors and relatively complex implementa-
tion [EL04]. In defining a floating-point system, there are many parameters
that must be determined. The IEEE Floating-point Standard 754 [IEEE08]
defines the format, rounding modes, special values, operations, gradual underflow
and more. The format of a single-precision floating-point number is shown in
Figure 2.3.

For normalised values, the number, x, represented by the floating-point format
is:

x = (−1)s × 1.f × 2e−e0 , (2.1)

where s is the sign, f is the mantissa and e is the exponent. e0 is a bias defined
in [IEEE08]. In single-precision numbers e0 = 127. For denormal numbers, zero,
infinity and NaN, refer to [EL04].

To minimise the complexity of the implementation, one can choose to not imple-
ment some features of the standard. Gradual underflow, an expensive treatment of
very small numbers, can be avoided by flushing-to-zero. Special values like infinity
and not a number (NaN) can also be avoided [VB08]. Choosing a single rounding
mode and not implementing exceptions will also keep the cost of implementation
low. These optimisations will not only benefit the implementation cost, but the
area of the implementation should also be smaller.

For details regarding implementation of floating-point operators, refer to [IEEE08;
EL04; Mul+10].

2.3 Design

Here, some important aspects of digital design that are covered in this thesis are
introduced.

2.3.1 Design process

In designing a digital system, a typical design process often starts with requirement
capture. In this phase, requirements for the system are gathered. The results
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of this are both high-level product requirements as well as low-level engineering
requirements. Once the requirements are set, an iterative phase of architecture
exploration starts. Here, high-level analyses of different possible system architec-
tures are performed. The most promising architectures are then analysed further
by e.g. modelling in high-level programming languages. The results from this
phase is the high-level models, block diagrams and specifications.

Using the specification from the architecture exploration, RTL code is written.
The functional correctness of this code is verified using the methods that will be
discussed in Section 2.4. In order to measure the power, performance and area
(PPA) of the design, synthesis and simulation of the RTL is performed in this
phase.

2.3.2 Clock gating

During the design process, low power design techniques can be applied. A common
and easily implemented technique is clock gating. This lowers dynamic power
consumption of the design by avoiding excess toggling.

2.3.3 False paths

In static timing analysis (STA), a false path is a timing path that never will
be exercised in the final design. Should a false path be one of the critical
paths in the system, this can potentially lead to routing congestion and reduced
performance.

Figure 2.4 can be used to illustrate what a false path is. As the multiplexers in
the system are both controlled by the same signal, sel, the path from B to Y is a
false path.

A

B

C

sel

Y

X
0

1
0

1

Figure 2.4: Example used in illustrating a false path
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2.4 Verification

Functional verification of the design is an important part of the design process.
Following a verification plan, various aspects of the design are exercised. Different
techniques are often used in verifying different parts of the design. Simulation
based verification uses logic simulation with predefined or randomised inputs to
exercise the design. Formal verification is a method where stated properties of
the design are mathematically proven to be correct.

For simulation, there exist several metrics that say something about the extent to
which the design has been exercised. Code coverage says something about how well
various parts of the code has been exercised by the testbench, and is supported by
most logic simulators. While 100 % code coverage means that all the code in the
design has been executed, it does not necessarily imply that all functionality has
been fully tested. In verifying this, functional coverage can be used. Functional
coverage tells us how well the functionality has been exercised. SystemVerilog,
and thus most electronic design automation (EDA) tools, implement support for
functional coverage.

2.5 ZedBoard

The ZedBoard is a development board featuring a Xilinx Zynq System on Chip
(SoC) [Avn14]. In addition to this, it is fitted with useful peripherals like 512 MB
DDR3 memory, an HDMI transmitter and more.

The SoC on the board is an XC7Z020CLG484-1. This is divided into a processing
system and a programmable logic section [Xil16]. The processing system holds
a dual core ARM CPU running at up to 667 MHz. The CPU has a vector
floating-point unit (VFPU) for accelerating vector operations. The programmable
logic is a regular field-programmable gate array (FPGA). A high-bandwidth AXI
interconnect between the sections allows for tight coupling of the two.

2.6 Interconnect

In designing or choosing an interconnect, the main goals are often performance
and scalability. There are often trade-offs between latency and throughput of the
interconnect.
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There are many parameters to a bus protocol. Width of the address, data
and control lines play an important role in the performance of the intercon-
nect. Additionally, transfer modes, topologies and arbitration schemes must be
designed.

2.6.1 AXI

Advanced eXtensible Interface (AXI) is a high-performance bus standard by ARM.
All of Xilinx’s intellectual property (IP)-blocks have AXI interfaces. It is often
used as the main interconnect in high performance SoCs.

2.6.2 APB

‘The APB bus standard defines a bus that is optimized for reduced interface
complexity and low power consumption’ ([PD10]). Advanced Peripheral Bus (APB)
is mainly used for modules with low bandwidth requirements, e.g. status/control
registers for peripherals.

2.6.3 Ready/valid handshaking

Ready/valid handshaking is a commonly used handshaking method in digital
systems. It is for instance used in the AXI standard [ARM13]. In the AXI
standard, there are many rules for how the handshaking process should go down,
but these are not universal for any ready/valid interface. The most important
feature of this handshaking method is that data is transferred if the slave is ready
and the master has valid data at a clock edge. This event is referred to as a
transaction, whereas the term accept refers to both ready and valid being asserted.
An example transaction is illustrated in Figure 2.5.

Most blocks in this thesis use ready/valid handshaking for their interfaces.

clk

data payload

valid

ready

Figure 2.5: Ready/valid handshaking example
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Chapter 3

Requirements

Tables 3.2 and 3.3 list the requirements for the specification document and the
ray tracer itself. Most of the requirements are taken directly from the project
thesis. REQ_DELIV_001 and REQ_DELIV_002 are the only new requirements
in this thesis. The tables indicate whether the requirements have been addressed
or not and in which thesis they are addressed. A legend for the symbols used is
shown in Table 3.1

Table 3.1: Legend for requirement tables

Symbol Description
Requirement addressed during project thesis.
Requirement addressed during project thesis. No additional work done
during master to address the requirement.
Requirement addressed during master’s thesis.
Requirement addressed during master’s thesis. Improvements over
project thesis work.

13
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Table 3.2: Requirements for the specification document

Requirement ID Description Project Master
REQ_ARCH_001 The specification must list all the requirements for the Hardware

Ray Tracer.
Ch. 3

REQ_ARCH_002 All datastructures for primitives, colors, rays and materials must be
specified.

REQ_ARCH_003 The specification must explain what Ray Tracing is. Sec. 2.1
REQ_BSPEC_001 The specification must describe the functionality of the engine.
REQ_BSPEC_002 Microarchitecture must be specified. Use block diagrams and other

figures.
Ch. 5

REQ_BSPEC_003 Interfaces must be described. Sec. 5.1
REQ_BSPEC_004 The specification must contain an analysis of performance, quan-

tization effects, and scalability. This analysis may involve addi-
tional modelling effort. Data from this analysis must prove that
the proposed microarchitecture is likely to meet the functional and
performance requirements.

Sec. 5.8

REQ_ISA_001 A suitable Instruction Set Architecture (ISA) must be specified. Sec. 5.4
REQ_LEARN_001 One or more submodules with different complexity that are suitable

as examples of various challenges and problems in digital design must
be identified.

REQ_LEARN_002 One or more problems regarding the development of the Ray Tracer
that has been solved by modelling must be presented.

Ch. 5

REQ_LEARN_003 Propose two solutions for the design of one of the submodules.
Explain why one is better than the other.
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Table 3.2: Requirements for the specification document (continued)

Requirement ID Description Project Master
REQ_LEARN_004 Identify or deliberately design sub-optimal performance in the system.

Create an assignment/case-study out of this.
REQ_LEARN_005 Create learning examples for interesting problems encountered during

the work with the thesis.
Ch. 5

Table 3.3: Requirements for the Hardware Ray Tracer

Requirement ID Description Project Master
REQ_FUNC_001 The Ray Tracer must be able to execute the ray tracer algorithm

given by the python model.
Ch. 5

REQ_FUNC_002 The Hardware Ray Tracer must be programmable. It must be easy
to change the ray tracer program that is running on the Hardware.

Ch. 5

REQ_FUNC_003 The Ray Tracer must implement the ISA. Ch. 5
REQ_FUNC_004 The Ray Tracer must support primitives such as spheres and planes

as defined in the architecture specification.
REQ_FUNC_005 The Ray Tracer must support simple animation of frames.
REQ_PERF_001 The Ray Tracer performance must have a scalable performance from

10 frames per second up to 60 frames per second for scenes with one
plane and one sphere rendered with VGA resolution. (This could
e.g. be achieved through a system with a parameterizable number of
cores).

Sec. 5.8
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Table 3.3: Requirements for the Hardware Ray Tracer (continued)

Requirement ID Description Project Master
REQ_PERF_002 The utilization of all functional units should be as high as possible

and preferably above 50 % while the ray tracing algorithm is running.
This ensures a high performance to area ratio and an efficient use of
available resources.

REQ_TECH_001 The target technology is high end Xilinx FPGAs. The design may
contain technology specific optimizations.

Ch. 5

REQ_DELIV_001 Write SystemVerilog RTL code for the processing core. Sec. 5.6
REQ_DELIV_002 Propose an interconnect that scales well with the number of cores. Sec. 5.1



Chapter 4

Project thesis summary

This chapter will give a short summary of the project thesis [Egg16]. A lot of
the content in this chapter is taken directly from the project thesis. However, all
figures are updated for consistency with the rest of the thesis. The architecture
specification, where data structures, message formats and control/status registers
are specified, can be found in Appendix A. For more details, refer to [Egg16].

The project thesis takes the reader through the process of designing a hardware
ray tracer for educational purposes. Ray tracing is a parallel problem, and is
well suited for implementation in hardware. This specific ray tracer is not very
feature-rich, but still demonstrates important aspects of digital design. An initial
Python model was provided by [Gje17] as a starting point for further development.
The model was simplified by removing certain features such as refraction and
support for rendering other objects than spheres. This reduces the complexity of
the system while keeping the educational value.

In order to model different aspects of the system, two additional models were
developed. A transaction-level modeling (TLM) model was created to see how
well the partitioned system worked. To verify that the ISA could execute the
algorithm, an ISA-simulator along with an assembled version of the algorithm
was developed. The models and tools developed during the project thesis have
been used extensively throughout the work on both the project and master’s
thesis.

17
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4.1 Top-level system block diagram

During the work with the project thesis, the foundation for this master’s thesis
was laid. An important result is the top-level system block diagram shown in
Figure 4.1. This diagram shows the system that the ray tracer will be a part of.
Blocks that are contained within the green area will be implemented on the FPGA.
Blocks partly in the green area may need to be implemented using additional
hardware.1

CPU
Ray

Tracer

Memory
Controller

Display
Controller

Memory Display

AXI bus matrix

FPGA

APB

AX
I

AX
I

AX
I

AX
I

IRQ

Figure 4.1: Top-level system block diagram

The central processing unit (CPU) generates scenes to be rendered by the ray
tracer and saves them in memory. The CPU then commands the ray tracer to
render the scene. As the ray tracer renders a scene, the pixels are buffered in
memory. Once finished rendering, the display controller will fetch the frame from
memory and output it to a display. The CPU can control and read the status of
the ray tracer over APB (see commands/statuses in Appendix A.3).

1This is clarified in Section 5.1.1.
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4.2 Ray tracer block diagram

Figure 4.2 shows the system-level block diagram designed in [Egg16]. All blocks
from Figure 4.1 are still shown, the only difference being that the internals of
the ray tracer are displayed in the dark cyan area. The partitioning is a result of
inspecting the high-level model. Initial rays are generated by the ray manager,
and assigned to the cores that perform the actual ray tracing. During ray tracing,
the cores read scene data from the object buffers as needed (see Appendix A.1 for
data structures). The ray tracer has a parameterisable number of cores in order
to have a scalable performance.

Ray manager

Memory
Controller

CPU

Display
Controller

Core 2 Objectbu�er 1

Status

Scene

Pixel
bu�er

Command
Scene addr.

Custom bus fabric

MemoryDisplay

Core 1

Core n Objectbu�er n/2

Core n-1

AXI bus matrix

A
PB

IRQ

Figure 4.2: Ray tracer block diagram as of [Egg16]. Blocks contained in the green
area will be implemented on the FPGA. Blocks contained in the dark cyan area
represent the ray tracer.

As discussed, the ray tracer starts rendering once the CPU commands it to start.
The CPU does that by telling the ray manager where the scene is located in
memory and issuing a run-command. Using the scene data, the ray manager will
command the object buffers to fetch all objects in memory. When the object
buffers are filled, the ray manager will start issuing rays to the cores in the system
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using the messages defined in Appendix A.2. Once cores finish tracing a ray, they
send the resulting pixel back to the ray manager. The ray manager buffers up a
few pixels before sending them to the frame buffer located in memory. After all
rays have been traced, the ray manager sends an interrupt request (IRQ) to the
CPU. The CPU will then tell the display controller to display the frame before
starting the process over for the next frame.

4.2.1 Ray datapath

By inspecting the high-level model and taking the partitioning described in
Section 4.2 into account, the instruction set shown in Table 4.1 was designed. This
was shown to be sufficient to execute the ray tracing algorithm fairly efficiently.
Loading of fixed-point data from the object buffers were done in software. Square
roots and inverse square roots as well as exponentiations were approximated in
software as well. The instruction set is later altered in Section 5.4.1.

Table 4.1: Instruction set from [Egg16]

Name Assembly Operation
Add add $rd, $ra, $rb R[rd] = R[ra] + R[rb]
Subtract sub $rd, $ra, $rb R[rd] = R[ra] − R[rb]
Shift left logical sll $rd, $ra, x R[rd] = R[ra] << x
Shift right logical srl $rd, $ra, x R[rd] = R[ra] >> x
Load upper immediate lui $rd, x R[rd] = {x, 16’b0}
Or immediate ori $rd, $ra, x R[rd] = R[ra] | {16’b0, x}
Subtract immediate subi $rd, $ra, x R[rd] = R[ra] − x
Multiply immediate muli $rd, $ra, x R[rd] = R[ra] ∗ x
Load word lw $rd, x[$ra] R[rd] = M[R[ra] + x]
Load byte lb $rd, x[$ra] R[rd] = {24’b0, M[R[ra] + x]}

Floating-point add fadd $rd, $ra, $rb R[rd] = R[ra]
FP
+ R[rb]

Floating-point sub fsub $rd, $ra, $rb R[rd] = R[ra]
FP
− R[rb]

Floating-point mul fmul $rd, $ra, $rb R[rd] = R[ra] FP∗ R[rb]
Branch if equal beq $rd, $ra, x PC = x if R[rd] == R[ra]
Branch if positive bpos $rd, x PC = x if R[rd] >= 0
Branch if negative bneg $rd, x PC = x if R[rd] < 0

The instruction set has been shown to be executable using the datapath shown
in Figure 4.3. An ISA-simulator modelling this datapath was created in [Egg16].
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An assembled version of the ray tracing algorithm was successfully run using this
ISA-simulator.
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Figure 4.3: Core datapath from [Egg16]. The dotted red lines represent pipeline
registers for all signals that pass through them. The two register file blocks
represent reading and writing to and from the same physical register file.

4.3 Project thesis results

Using the mentioned models, data used to predict system performance has been
extracted. By analysing this data, it was found that achieving a frame rate of 24
FPS at VGA resolution requires 74 cores when running at 50 MHz. Implementing
this many cores on an FPGA will present problems in terms of area and design
of interconnect. Figure 4.4 shows an example of a scene rendered using the
ISA-simulator.
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Figure 4.4: Scene rendered using ISA-simulator

4.4 Future work

A proposal for future work was described at the end of the project thesis. The
most important points from this list were:

• System-level design. Examine the ZedBoard and Zynq, and determine how
system-level blocks maps to the resources on these.

• Analyses and design of thread interleaving scheme.

• Interfaces and interconnect between ray cores and ray manager.

• Interfaces and interconnect between object buffers and ray cores.

• Interfaces and interconnect between object buffers and ray manager.

• Improvements to the ISA.

• Deciding upon final instruction formats.

• Deciding whether to implement the ray manager as a dedicated hardware
unit or using a general-purpose processor.

• Implementing a fixed-point to floating-point instruction.

• Implementing the system in RTL.

• Synthesising the RTL for the target FPGA.



Chapter 5

Design process

In this chapter, large parts of the ray tracer will be designed, implemented and
tested. This work builds upon what was presented in Chapter 4. System-level
design will be discussed in Section 5.1. Here, implementation on the Zynq SoC, as
well as refinement of ray tracer blocks will be discussed. Sections 5.2 to 5.4 will
go through the design of the thread interleaving scheme, communication protocols
and the ISA. Design and modelling of floating-point operators will be covered in
Section 5.5. Sections 5.6 to 5.8 cover implementation, verification, synthesis and
performance analysis.

The ray tracing algorithm is very parallelisable. In this system, one initial ray is
cast per pixel, and these rays are traced by independent threads. Due to this, the
terms thread, ray and pixel will be used interchangeably, depending on what suits
the situation best.

Rendering of VGA frames at 24 FPS should be assumed where nothing else is
explicitly stated. The system is designed around the ZedBoard [Avn14], that
features a Xilinx Zynq SoC [Xil16]. This thesis will mainly focus on digital design,
and thus the programmable logic part of the SoC.

23
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5.1 System-level design

In [Egg16], the communication between the ray manager and the cores were
not fully specified. Figure 4.2 showed a custom bus matrix as well as some
wiring between the ray manager and the cores. By itself, this is not enough
to enable communication, as the cores themselves has no way of receiving or
sending any data. Addressing this issue, this section will focus on interfaces and
interconnects.

5.1.1 Ray tracer

In Figure 5.1, the first step towards a working interface between the ray manager
and cores is shown. This figure abstracts away the ray cores and their interconnect,
as the dual core array will be discussed in Section 5.1.2. Ray requests are generated
by the ray generator and sent over a ready/valid interface to the dual core array.
As results are calculated, they are sent back to the pixel handler over another
ready/valid interface. These interfaces will be discussed in Section 5.3. In this
thesis, only the dual core array and its submodules will be implemented, while
performance of the ray manager will be analysed.

Ray manager

Memory
Controller

CPU

Display
Controller

Dual core array

Status Scene

Object bu�er data Requests Results

Pixel
handler

Ray
generator

Object
bu�er

initialiser

Command
Scene addr.

DDR3
Memory

Display

Legend

HDMI 
transmitter

Resistor
network
(4 bit DAC)

Memory Interconnect
Programmable logic

Processing system

Zynq SoC

ZedBoard

AXI

AXI

AXI

APB

IRQ

AXI<->APB

HDMI

or

VGA

AXI

AXI

Figure 5.1: Ray tracer block diagram.

As seen from the figure, many components have been moved around and some are
added when compared to Figure 4.2. As opposed to that block diagram, this maps
directly to resources available on the ZedBoard and Zynq [Avn14; Xil16]. Some
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other changes within the programmable logic section have also been performed.
In [Egg16], each object buffer had an AXI interface in order to fetch data from
memory. It was pointed out that this was far from optimal, as each object buffer
will fetch the same data. To make this more efficient, propagation of the data
was mentioned as a better alternative. This has now been implemented into
the design using the object buffer initialiser. This module initialises all object
buffers in the dual core array. The object buffer initialisation will be discussed in
Section 5.1.5.

As mentioned in [Egg16], the ray manager could be implemented in the CPU,
potentially accelerating development. This is possible as the ray manager is a
relatively low-throughput module. Performance analyses considering this will be
performed in Section 5.8.2.

5.1.2 Dual core array

As mentioned, the dual core array is used to abstract away the ray cores and their
interconnect. Figure 5.2 shows the dual core array. It consists of a chain of feeder
elements that is the interconnect feeding requests to the cores, as well as a chain of
drain elements that routes results out of the array. The dual cores are also chained
together, allowing for initialisation of object buffers (see Section 5.1.5).

Feeder

Dual
core 0

ray_request

obj_buf_init

ray_resultDrain

Feeder

Dual
core 1

Drain

Feeder

Dual
core n-1

Drain

Figure 5.2: Dual core array. Each dual core holds two ray cores, one instruction
memory and one object buffer.

Internally, the feeder elements register incoming requests, and passes them on to
either a dual core or the next feeder element the next clock cycle. This given that
the dual core or the next feeder element is ready to accept a new request. In case
both are ready, the dual core has the highest priority. The way this is designed,
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requests reaching the end of the feeder chain will be stuck waiting for dual core
n− 1. This could have been overcome by looping requests back to the start of the
chain. However, as shown by Figure 5.18 in Section 5.8.1, system performance is
not greatly affected by this.

The drain elements work in the same way, accepting results from either a dual
core or the previous drain in the chain. The result is registered and propagated to
the next drain element the next clock cycle. Also here, dual cores are prioritised.
Dual cores are given the highest priority as this guarantees that the dual core can
start processing a new ray. The dual cores themselves will be further discussed in
Section 5.1.3.

Registering the requests and results in the feeder and drain elements helps the
synthesis tool avoid routing congestion on the FPGA. The elements break timing
in the forward direction (i.e. the valid and payload signals). In Section 5.7.4,
experiments with also breaking timing in the reverse direction (i.e. the ready
signal) are conducted. The widths of the request and result buses are equal to the
width of the messages transmitted over them. This helps in simplifying the design
process. The message formats are shown in Sections 5.3.2 and 5.3.3. Internally in
the dual core array, all interfaces use ready/valid handshaking.

Learning example 5.1: Avoiding routing congestion

By inserting register slices on the request and result buses, the fan-out
of the ray generator is reduceda. This lowers the burden of place and
route for the synthesis tool by avoiding routing congestion on the FPGA.
Had register slices not been used, and purely combinatorial arbitration
between the cores applied, the ray generator would have to drive each
of the ray cores directly. For this to meet timing, the synthesis tool
would have to place all ray cores physically close to the ray generator. In
configurations with many cores, this is not physically possible, and would
result in the synthesis tool giving up, giving a low operating frequency for
the system.

As mentioned, only the ready and payload signals are registered, while a
combinatorial ready-path through all register slices are still present. It is
assumed that this might become a problem, and register slices that break
timing in the reverse direction have been designed. Experiments with these
are performed in Section 5.7.4.

aAlso the fan-in of the pixel handler is reduced. The same arguments as for the
fan-out of the ray generator are valid for this.
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5.1.3 Dual core

Making dual cores a separate entity was a natural choice. In [Egg16] it was pointed
out that block RAM (BRAM) on Xilinx FPGAs are dual ported [Xil13], and to
fully utilise this, each instruction memory and object buffer should be shared
by two ray cores. As shown in Figure 5.3, a purely combinatorial ‘arbitration’
between the two cores is used. The core labelled Ray core 0 has the highest
priority for both requests and results. The ray core will be discussed in Section 5.3.
The instruction memories and object buffers will be discussed in Sections 5.1.4
and 5.1.5, respectively.

Ray
core 0

Instruction
memory

Object
bu�er

Ray request arbitration logic

Ray result arbitration logic

ray_request

obj_buf_init obj_buf_init_r

ray_result

Ray
core 1

Figure 5.3: Dual core

Learning example 5.2: Performance density

Performance density is a measure of the performance delivered per unit
area. Keeping this high is a goal for most digital systems. Here performance
density is increased by sharing the same physical instruction memory and
object buffer between two ray cores.
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5.1.4 Instruction memory

The instruction memory has a simple interface. It performs a synchronous read of
the instruction memory every clock cycle. In order for it to map to dual ported
BRAM, it has two independent read ports. As instructions are read every clock
cycle, no read enable is needed. Figure 5.4 shows an example timing diagram for
the instruction memory.

clk

instr_addr A1 A2 A3 A4

instruction D1 D2 D3

Figure 5.4: Instruction memory interface example waveform

5.1.5 Object buffer

The object buffers play the same role in this system as caches hold in more complex
systems: keeping frequently used data readily available to the processing elements.
The only difference is that the data held by the object buffers is constant for a
whole frame. This is because the simple scenes this system is designed to render
are small enough to be stored in their entirety in BRAM close to the ray cores.
The object buffer memory layout is shown in Figure A.5.

The read interfaces are simple. Inputs are the object address and a read enable,
while the read data is available at the output the following clock cycle. Just like
the instruction memory, two cores share the same object buffer in order to increase
performance density. The read enable signal is used to increase energy efficiency
(see learning example 5.3). In Figures 5.5 and 5.6, signals c0_obj_addr and
c1_obj_addr holds the addresses from ray cores 0 and 1, respectively. c0_obj_-
read_en and c1_obj_read_en are the read enable signals, while c0_obj_data
and c1_obj_data holds the read data.

As seen from Figures 5.2 and 5.3, all object buffers are chained together. This
chain is used in propagating initialisation data to all object buffers in the system.
The object buffer initialiser (from Figure 5.1) pushes data to the first object buffer
in the chain, that stores the data and propagates it onward to the next object
buffer and so on. The data on in_init_data is stored to the address in_init_addr
when the signal in_init_load is high. These signals are all pipelined through to
the next object buffer in the chain using the signals out_init_data, out_init_addr
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and out_init_load. By chaining and pipelining object buffers, routing congestion
is avoided (remember learning example 5.1).

This is all implemented using one BRAM, one multiplexer, a register and a flip-flop
(FF). The BRAM is set to write-first synchronisation [Xil13], eliminating the need
for registering that as well. As seen in Figure 5.5, port A of the BRAM is shared
between the initialisation interface and core 0’s read interface. This means that
reading and writing using these at the same time is not possible. This is not a
problem, as the system architecture specifies that object buffer initialisation is
never to occur at the same time as ray tracing.

Block RAM

in_init_load

in_init_addr
in_init_data

c0_obj_addr
c0_obj_read_en

c1_obj_addr

W_EN_A

R_EN_A

R_EN_B

ADDR_A
D_IN_A

D_OUT_A

ADDR_B D_OUT_B

out_init_load

out_init_addr
out_init_data

c0_obj_data

c1_obj_data
c1_obj_read_en

en

Figure 5.5: Block diagram of object buffer

Learning example 5.3: Improving energy efficiency

In digital circuits, dynamic power is consumed when signals toggle (re-
member Section 2.3.2). Due to this, unnecessary toggling of signals should
be avoided. In this section, a read enable was added to the object buffer,
keeping the output of the BRAM unchanged when no read is needed. We
even have a clock enable on the register for the address, further improving
energy efficiency (see Figure 5.5).



30 CHAPTER 5. DESIGN PROCESS

clk

in_init_addr A1 A2

in_init_load

in_init_data D1 D2

c0_obj_addr A1 A2

c0_obj_read_en

c0_obj_data D1 D2

c1_obj_addr A1 A2

c1_obj_read_en

c1_obj_data D1 D2

out_init_addr A1 A2

out_init_load

out_init_data D1 D2

Figure 5.6: Object buffer interfaces example waveform
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5.2 Thread interleaving

In the ray datapath presented in [Egg16] (Figure 4.3), both data hazards and
control hazards pose a problem. [Egg16] proposed interleaving of 4 threads in a
round-robin fashion to overcome the data hazard, while the control hazard was
not discussed. However, the control hazard is also eliminated by interleaving in
the way that was proposed. This multithreading technique is commonly referred
to as interleaved multithreading [LGH94], a variant of fine-grained multithreading
[HP12].

As previously mentioned, all threads are independent. This is what enables thread
interleaving to be effective in eliminating the hazards. Both hazards will be
discussed, starting with the data hazard.

The data hazard in this architecture is a read after write (RAW) data hazard
[HP12; PH14]. A RAW hazard occurs when an instruction tries to access a result
of a previous instruction, where the result is not yet calculated or available in the
register file. Utilising thread interleaving, this situation is avoided by interleaving
processing of independent threads. By interleaving a sufficient number of threads,
it can be guaranteed that the result of an instruction is stored in the register file
by the time the next instruction in the same thread fetches its operands. This
does however require storing multiple program counters (PCs) and register file
segments.

In the datapath shown in Figure 4.3, operands are read in stage S1 and stored in
S3. This means that interleaving of two threads would be enough to eliminate
the RAW hazard. However, [Egg16] specified that the register file was to be
implemented in BRAM. To map directly to BRAM, data written is not available
for reading before the next clock cycle. Xilinx refers to this mode of read/write
synchronisation as read-first [Xil13]. This means that one will have to interleave
at least three threads to avoid the data hazard. This has been rounded up to
four, allowing for a 2 bit thread id to keep track of the thread executing in each
pipeline stage. This id is used in selecting the thread PC and register file segment.
The effects of using write-first synchronisation or even LUTRAM is discussed in
learning example 5.5.

The control hazard is also a result of the architecture shown in Figure 4.3. The
PC is read in S0, and updated in S2. This means that interleaving of two threads
is enough to eliminate also this hazard.

Table 5.1 illustrates how different threads are being executed in the different
pipeline stages. The PC of each thread is also shown, demonstrating how it is
updated in S2 (but first visible in S3).
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Table 5.1: Illustration of thread interleaving. #N indicates the N th clock cycle.
S corresponds to the stages in Figures 4.3 and 5.12. T is for thread and PC refers
to the different program counters.

#0 #1 #2 #3 #4 #5 #6 #7
S0 T0 T1 T2 T3 T0 T1 T2 T3
S1 T0 T1 T2 T3 T0 T1 T2
S2 T0 T1 T2 T3 T0 T1
S3 T0 T1 T2 T3 T0
PC0 0 0 0 1 1 1 1 2
PC1 0 0 0 0 1 1 1 1
PC2 0 0 0 0 0 1 1 1
PC3 0 0 0 0 0 0 1 1

Learning example 5.4: Dependency removal

Thread interleaving is one method that can be applied to remove the
effects of pipeline dependencies. What other methods are there, and could
they be used in this system? How would using these methods impact the
performance and complexity of the system?

Alternatives to thread interleaving include code scheduling, pipeline stalling
and operand forwarding. By using operand forwarding, only the data
hazard is resolved. The control hazard could then have been solved by e.g.
branch prediction or a branch delay slot [PH14]. Thread interleaving was
chosen as it completely eliminates the need for stalling, giving higher and
predictable performance.

In considering other methods, the performance (density) impact of these
would have to be evaluated. Analyses using pen and paper as well as
simulations would be the way to go.

Learning example 5.5: Register file implementation

There are many different properties to consider when implementing the
register file. In [Egg16], a BRAM mapped register file with read-first
synchronisation was specified. Here, a short comparison of the different
alternatives is presented. Where adding pipeline stages is discussed, these
are to be placed between the read and write of the register file (i.e. between
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S1 and S3 in Figure 4.3).

• Keeping the implementation from [Egg16] is naturally the first pos-
sibility.

• Keeping the register file as it is, but introducing another pipeline
stage could improve performance of the system.

• Changing the synchronisation mode to write-first. This would require
some additional logic in the register file. Using this synchronisation
mode gives two alternatives:

– Add two additional pipeline stages, potentially increasing fmax

significantly.

– Go down to only interleaving two threads.

• Implementing the register file using LUTRAM and using asynchron-
ous read. This gives the same alternatives as BRAM with write-first
synchronisation gave.

The effects of implementing these alternatives would have to be analysed
and simulated in order to conclude which is ‘best’. Performance and area
are important keywords in this analysis.
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5.3 Ray core

The ray core is essentially a wrapper for the ray datapath, providing ready/valid
interfaces for incoming ray requests and outgoing results. It manages and keeps
track of each of the four threads in the ray datapath. A block diagram showing
the ray core is shown in Figure 5.7.

Ray datapath

Ray request handler

ray_request

Request bu�er

ray_result

Instruction
memory

Object
bu�er

Ray result handler
Result bu�er

Figure 5.7: Ray core block diagram

The ray request handler accepts ray requests into the request buffer and assigns
them to idle threads. The ray datapath then starts tracing the ray from the
request. Once finished tracing, the ray datapath loads the resulting pixel colour
into the result buffer, and the ray result handler sends the colour out on the
result interface. The following sections will describe these interfaces in more
depth.

5.3.1 Commands and statuses

Communication between the ray core and the ray datapath is facilitated by the
use of command and status registers for each thread in the system. The legal
commands and statuses are shown in Tables 5.2 and 5.3, respectively.
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Table 5.2: Commands

Command Encoding Description
NONE 00 The core should keep doing what it is doing
START 01 The core should start processing a ray
RESBUF_GNT 10 The core is granted access to the result buffer

Table 5.3: Statuses

Status Encoding Description
IDLE 00 The core is idle
BUSY 01 The core is tracing a ray
RESBUF_REQ 10 The core requests access to the result buffer

The commands are issued by the request and result handlers, while statuses are
reported by the ray datapath. The state of each thread is made up of a command,
a status and the coordinates of the pixel being rendered by that thread. This
is all held in a table used for tracking the state of the individual threads. An
example of this is shown in Table 5.4.

Table 5.4: Table for thread state tracking. The table holds example data.

Thread x y Command Status
0 12 20 NONE BUSY
1 12 28 RESBUF_GNT RESBUF_REQ
2 12 30 NONE RESBUF_REQ
3 12 19 START IDLE

Learning example 5.6: Assertions

Not all combinations of commands and statuses are legal. For example,
RESBUF_GNT should only be given to exactly one thread at a time, and
only if the thread actually requested it. Another example is that a BUSY
thread should never be given a START command. Assertions for these
and other properties can been written and used in the system testbenches.
Some of these properties can be proven using formal methods.
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5.3.2 Ray request handler

The ray request handler accepts ray requests on a ready/valid interface. The
ray request format (see Figure 5.8) was designed in [Egg16], and holds the pixel
coordinates of the ray (x, y) as well as the ray direction as a vector of three
single-precision floating-point numbers.

0316395104114

x y direction_x direction_y direction_z

Figure 5.8: Ray request format

Once a ray request is accepted, it is stored in a buffer. The request handler assigns
the ray to a thread by copying the pixel coordinates into the thread’s row in
the thread state tracking table and setting the command to START. The thread
in ray datapath will then start executing, and starts off by executing the POP
instruction three times, reading in each of the ray direction components. Once
this is done, the thread sets its status to BUSY, and the request interface is ready
to accept new requests again.

5.3.3 Ray result handler

The ray result handler is responsible for sending pixel colours from the ray
datapath out on the result interface. This is also a ready/valid interface. The
ray result format is shown in Figure 5.9, and was also discussed in [Egg16]. Here,
the pixel colour is represented by an RGB triplet of 8 bit unsigned integers. The
result handler stores the result in a result buffer until it is accepted on the result
interface.

0715233242

x y R G B

Figure 5.9: Ray result format

When a thread has successfully traced a ray, it will request access to the result
buffer by setting its status to RESBUF_REQ. Should the ray result handler be
idle, it will grant access by setting the thread command to RESBUF_GNT. At
the same time, it will initialise the result buffer with the pixel coordinates saved
in the thread state table. Now, the thread will execute the PUSH instruction
thrice, to store each RGB component in the result buffer. The thread is now freed,
and is ready to accept new requests. The result handler is ready to accept new
results once the buffered result has been sent out on the result interface.
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5.4 Ray datapath

The ISA and ray datapath designed in [Egg16] has some shortcomings. Most
importantly, the ray datapath had no means of communicating with the rest of
the system. Furthermore, the proposed way of eliminating pipeline dependencies
was not integrated in the architecture. In this section, both shortcomings are
addressed based upon the discussions in Sections 5.2 and 5.3.

The instruction set has been extended and altered compared to Table 4.1, resulting
in increased system performance. The new instruction set and ray datapath is
shown in Table 5.5 and Figure 5.12.

5.4.1 Instruction set

The instruction set presented in [Egg16] has been extended to enable communica-
tion with the request and result handlers of the ray core. Some other alterations
enabling more compact and thus faster executing assembly code have been made.
Table 5.5 shows the current instruction set. The final assembly code is shown in
Appendix B.
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Table 5.5: Instruction set

Name Assembly Operation Format Opcode
Add add $rd, $ra, $rb R[rd] = R[ra] + R[rb] R 00000
Subtract sub $rd, $ra, $rb R[rd] = R[ra] − R[rb] R 00001
Shift right logical srl $rd, $ra R[rd] = R[ra] >> 1 R 00010
Load upper immediate lui $rd, x R[rd] = {x, 16’b0} I 00011
Add immediate addi $rd, $ra, x R[rd] = R[ra] + x I 00100
Subtract immediate subi $rd, $ra, x R[rd] = R[ra] − x I 00101
Multiply immediate muli $rd, $ra, x R[rd] = R[ra][15:0] ∗ x I 00110
Load word lw $rd, x[$ra] R[rd] = M[R[ra] + x] I 00111
Load byte lb $rd, x[$ra] R[rd] = {24’b0, M[R[ra] + x]} I 01000
Load FX1.7 lfx $rd, x[$ra] R[rd] = fx2fp(M[R[ra] + x]) I 01001

Floating-point add fadd $rd, $ra, $rb R[rd] = R[ra]
FP
+ R[rb] R 01010

Floating-point sub fsub $rd, $ra, $rb R[rd] = R[ra]
FP
− R[rb] R 01011

Floating-point mul fmul $rd, $ra, $rb R[rd] = R[ra] FP∗ R[rb] R 01100
Branch if equal beq $ra, $rb, x PC = x if R[ra] == R[rb] B 01101
Branch if positive bpos $ra, x PC = x if R[ra] >= 0 B 01110
Branch if negative bneg $ra, x PC = x if R[ra] < 0 B 01111
Branch if command bceq y, x PC = x if y == command B 10000
Set status stat x status = x I 10001
Pop request buffer pop $rd R[rd] = reqbuf; reqbuf «= 32 R 10010
Push result buffer push $ra resbuf = {resbuf[..], fp2uint(R[ra])} I 10011

Floating-point add imm faddi $rd, $ra, x R[rd] = R[ra]
FP
+ {x, 16’b0} I 10100

Floating-point mul imm fmuli $rd, $ra, x R[rd] = R[ra] FP∗ {x, 16’b0} I 10101
Add upper immediate addui $rd, $ra, x R[rd] = R[ra] + {x, 16’b0} I 10110
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The differences between the new instruction set and the one designed in [Egg16]
are summarised in Table 5.6.

Table 5.6: Alterations of instruction set

Mnemonic Status Comment
SRL Modified Shift right logical is only used in approximations, and

always used to shift by 1 bit. It has therefore been
replaced by a constant right shift of 1 bit. In Table 4.1,
it was a parameterisable shift by x.

SLL Removed Shift left logical was only used for converting fixed-
point numbers to floating-point numbers. As a new
instruction (LFX) that combines loading and convert-
ing a fixed-point number to floating-point has been
introduced, SLL has been removed.

ORI Removed Or immediate was used for loading constants and set-
ting bits. The same functionality can easily be achieved
using ADDI.

ADDI New Add immediate is used for loading constants. This
replaces ORI, as it is more versatile. Additionally, the
required required is already in place.

MULI Modified Multiply immediate is now a 16× 16 bit multiplier in-
stead of 32× 16 bit. This was changed as a result of
inspecting the assembly code, and finding that the num-
bers to be multiplied would never require a 32× 16 bit
multiplier. This change allows the multiplication to be
implemented using only one DSP element instead of
two for the wider multiplier.

LFX New This instruction is used to load FX1.7 numbers from
the object buffer and convert them to floating-point.
The implementation of this is discussed in Section 5.4.2.

BCEQ New Branch if command is added to allow a thread to act
upon commands from the request and result handlers.
These commands were shown in Table 5.2.

STAT New This instruction sets the status of the currently execut-
ing thread. The legal statuses were shown in Table 5.3.
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Table 5.6: Alterations of instruction set (continued)

Mnemonic Status Comment
POP New Pop request buffer is used to read in the ray direction

of a request. This instruction must be executed once
per component of the ray direction, i.e. three times in
total. The 32 LSBs are shifted out of the request buffer
and read by the core. This was further discussed in
Section 5.3.

PUSH New Push result buffer converts the floating-point operand
into an 8 bit unsigned integer and pushes it to the
result buffer. The conversion between floating-point
and the unsigned integer is discussed in Section 5.4.3.

FADDI New Add floating-point immediate does not need any new
hardware, as it uses the same muxing logic as LUI.
It saves one instruction when performing the inverse
square root approximation.

FMULI New Multiply floating-point immediate does not need any
new hardware, as it uses the same muxing logic as LUI.
This saves another instruction when performing the
inverse square root approximation.

ADDUI New Add upper immediate does not need any new hard-
ware, as it uses the same muxing logic as LUI. This
saves an instruction when performing the square root
approximation.

As seen in Table 5.6, many new instructions have been added. The instructions
BCEQ, STAT, POP and PUSH were added first. These are the instructions that
allow communication between the datapath and the ray core. After adding these,
the instruction set contained 20 instructions, and the opcode width had to be
increased from 4 to 5 bit. Having increased the opcode width, adding even more
instructions were not seen as a problem. LFX, FADDI, FMULI and ADDUI were
then added. These instructions are used in optimising the assembly code for speed
and size.

In [Egg16], four different instruction formats were considered (R, I, X and Y).
With new instructions, X and Y have been swapped for the new instruction format
B. The instruction formats are shown in Figure 5.11, and Table 5.5 shows what
instruction format each instruction uses. In the B-format, a new field (y) has
been added. This field is used by the BCEQ instruction.
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The ISA-simulator has been updated to reflect the discussed changes. Statistics
generated by the simulator has been used to analyse the effects of the modifications
to the ISA. Figure 5.10 shows a comparison of the total number of instructions
executed in order to render the scene in Figure 4.4 given different revisions of
the code and ISA. As seen from this, the addition of communication gave an
increase of 2.22 % in the number of instructions. Adding communication to the
ray datapath was a necessity, and could not have been avoided. Due to this, one
can argue that the optimisations of the code and ISA has given a decrease of
9.82 % in the number of instructions.
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Figure 5.10: Number of instructions used in rendering a VGA frame given different
revisions of the code and instruction set. Annotations show the relative change
from one particular revision to another. The data is extracted from the ISA-
simulator, and does not model congestion nor the ray core. Numbers used in
creating this figure can be found in Table B.1.

By reusing variables, redundant calculations of the same values were removed. E.g.
memory address calculations were performed way more often than necessary. The
redundant calculations allowed for register reuse and better readability [Egg16].
Inspecting the assembly program after LFX was added, it was found that one
register was never used. Due to this, a commonly used base memory address was
assigned to this register. This change gave a significant reduction in the number
of instructions by 3.12 % at the cost of lower code readability.
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In addition to reducing the execution time of the assembly program, the optimisa-
tions have made the assembly program shorter. The project thesis revision of the
assembly program, was 275 instructions long, while the optimised version is 229
instructions long. This has allowed halving the address space for the instruction
memory from 9 bit to 8 bit. This is reflected in the PC width and the x field of
the B-format (see Figure 5.11).

0101115162021252630

OP rd ra rbR-format
015162021252630

OP rd ra xI-format
0789101115162021252630

OP ra rb y xB-format

Figure 5.11: Instruction formats

5.4.2 Fixed-point to floating-point conversion

The material descriptor shown in Appendix A.1 makes heavy use of fixed-point
numbers. The FX1.7 fixed-point format has 1 bit reserved for the integer part and
7 bit for the fractional part. Loading these from memory and converting them to
floating-point was previously done using the software routine shown in Listing 5.1.
Now, this sequence can be replaced by the new instruction lfx $18, 12[$23].
As shown in Figure 5.10, introducing LFX reduces the total execution time by
∼ 5.60 %.

Listing 5.1: Excerpt of assembly code showing the fixed-point to
floating-point conversion routine from [Egg16].

365 lb $18, 12[$23] ; load k_refl as fx1.7
366 ori $18, $18, 0x8000 ; put in 2.0
367 sll $18, $18, 15 ; shift it up to the right position
368 lui $28, 0x4000 ; load 2.0
369 fsub $18, $18, $28 ; sub loaded 2.0 to get k_refl as FP32

Implementing this instruction in hardware is done by appending a small block
to the output of the object buffer. It was found that the bits from the FX1.7
format more or less map directly into the format of a single-precision floating-
point number. The small differences should be handled well by the synthesis tool.
Due to this, a case statement mapping all 256 different FX1.7 numbers to their
corresponding floating-point values was made.
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Standalone synthesis of this module requires 12 look-up tables (LUTs). When
instantiating this module in the ray datapath, no results for the module are
reported by the synthesis tool. This is probably due to the module being absorbed
into surrounding logic, reducing the area to virtually 0.

Learning example 5.7: Hardware/software codesign

‘[T]he first release of a product may contain a sizable software component
(for time to market and flexibility reasons) while later releases may im-
plement part of this software in hardware for performance and/or cost
reasons’ ([MG97]).

This is exactly what has been demonstrated in this section.

5.4.3 Floating-point to integer conversion

The PUSH instruction requires floating-point numbers to be converted to 8 bit
unsigned integers. Here, 0.0 should map to the integer 0, and 1.0 should map to
255. Numbers higher than 1.0 should saturate to 255. I.e. the operation to be
performed is x = min{round(y × 255), 255}, where y is the floating-point number
and x the resulting integer.

Investigating the floating-point number representation, it was found that by
adding 1.0 to y, bits 15 to 22 of the result is given by round(y × 256). When y is
greater than 1.0, this can be detected by checking the exponent of the addition
result.

Implementing this requires very little logic if using the floating-point unit (FPU)
to do perform the addition. The extra logic needs to check the exponent of the
addition result, and explicitly set x to 255 if an overflow occurred.

The method described here scales the resulting colours in the rendered image by
256 instead of 255. This error is considered to be negligible in comparison with
the errors introduced by using the approximations to the square root and inverse
square root operations discussed in [Egg16].

5.4.4 Further optimisations

Analysis of data from the ISA-simulator has shown that the SUBI instruction was
executed 5 611 174 times when rendering a frame using the final version of the
ISA. By inspecting the assembly code, it can be seen that the SUBI instruction
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is always followed by a branch instruction. This means that the SUBI could be
replaced by one or several decrement and branch instructions, which would reduce
the total number of instructions by ∼ 4.40 %. This has not been implemented in
the current ISA.

Learning example 5.8: Decrement and branch

The decrement and branch instruction is a common instruction in many
ISAs. Implementation of this could make for an interesting student discus-
sion and/or assignment.

5.4.5 Block diagram

Figure 5.12 shows the ray datapath that has been designed to enable execution of
the ISA with interleaving of threads. Comparing this to the datapath from [Egg16]
(Figure 4.3), it is clear that some changes has taken place. Thread interleaving has
been incorporated using a 2 bit thread id in indexing the PC array and register
file. The thread id is also used as an index when reading commands and updating
statuses (see Table 5.4).

A fixed-point to floating-point conversion unit, FX2FP, has been appended to
the object buffer, enabling implementation of the LFX instruction. Reading
the request buffer and writing to the result buffer is handled by the two new
blocks with the same names. Between the FPU and result buffer, a block named
FP2UINT is inserted. This handles saturation and bit selection of the FPU result
according to the method described in Section 5.4.3.
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Figure 5.12: Ray datapath. The dotted red lines represent pipeline registers for all signals that pass through them.
The two register file blocks represent reading and writing to and from the same physical register file. The same
applies for the PC array.
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5.5 Floating-point unit

In this section, design of the floating-point operators in the instruction set will be
discussed. The instruction set makes use of floating-point addition, subtraction
and multiplication. Addition and subtraction is implemented as one combined
unit, while multiplication is implemented on its own.

In order to do this, the IEEE floating-point standard [IEEE08] and [EL04; Mul+10;
Fie16; Bru09] were studied. Operators that are fully compliant to the IEEE
standard may not be necessary for this application, and restricting the feature
set of the implementations will be discussed. Python models of the operators has
been developed and tested in the ISA-simulator.

5.5.1 Required features

Proper handling of denormal numbers is generally referred to as expensive both in
terms of area, complexity and time [Mul+10]. Because of this, omitting support
for denormal numbers should be considered for this application. Handling of the
special values inf and NaN is also costly in the same way as denormals. Proper
rounding of results can be both complex and costly in terms of area and execution
time as well.

In considering omitting support for denormal numbers, the ISA-simulator was
used. The simulator was extended to report how often denormal numbers occurred
as operands or results of the floating-point operators. This revealed that denormal
numbers rarely appeared. This motivated an attempt to see what happened if
denormal numbers were treated as zero. Denormal inputs were treated as zero
and denormal results explicitly set to zero1. Rendering a full scene after these
alterations yielded the exact same rendered image as before. Due to this discovery,
implementing support for denormal numbers was deemed unnecessary.

Neither NaN nor inf are used by the program in any way, and would result
in undefined behaviour. Because of this, support for neither will be implemen-
ted.

Using native Python floating-point operators, it is not possible to change to
another rounding mode than the default (round to nearest, ties to even). Due to
this, the effects of disabling rounding could not be modelled at this stage, and
will rather be considered in Section 5.5.2.

1This is referred to as flushing-to-zero [Mul+10].
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5.5.2 Modelling

Models of the floating-point operators have been developed in Python. Modelling
the arithmetic operators in Python is advantageous. First off, the model can
easily be verified by comparing results with native operators. This was done
for both random inputs and ranges of numbers. Additionally, the floating-point
operators could easily replace the native Python operators in the ISA-simulator.
An example frame was rendered using the simulator, and produced exactly the
same results as the native operators. Seeing that the models produced correct
results for both random inputs and inputs from the ISA-simulator, the models
were presumed to be functionally correct.

Having plugged the operator models into the ISA-simulator, the effects of disabling
rounding2 was investigated. Rendering a frame with rounding disabled resulted
in some anomalies in the rendered frame compared to that of Figure 4.4. For a
few pixels in the frame, each RGB component has been shown to differ by ±1.
The visual quality of the rendered image is not affected by this. The performance
impact of disabling rounding is discussed in Section 5.7.1.

Learning example 5.9: Sign of add/sub result

Determining the sign of a multiplication product is simple, you just have
to XOR the operand signs.

Determining the sign of a result from the add/sub operation is more
complex. The sign depends upon the signs of the operands, the operation
being performed and the relative magnitude of the operands; it is a function
of 7 bit. Deriving the truth table for this is a cumbersome and mind twisting
task. I made a small script that by the help of random multiplicands
generated this truth table based upon the sign generated by the FPU in
my computer.

2Disabling rounding is essentially the same as the rounding mode round toward 0.
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5.6 Implementation

RTL for the dual core array (Section 5.1.2) and all its submodules has been
implemented. The RTL implementation has been found to successfully run the
assembly program from [Egg16] with the alterations discussed in Section 5.4.1
(shown in Appendix B). Simulating the dual core array has been found to produce
the exact same results as the ISA-simulator did.

5.6.1 RTL

RTL for the dual core array and all its submodules has been implemented using
SystemVerilog. In doing this, some of Xilinx’s coding guidelines have not been
followed, mainly to make the RTL more technology independent and synthesisable
for e.g. application-specific integrated circuits (ASICs). This is further discussed
in learning example 5.10. To infer BRAMs and DSP elements, inference patterns
described in [Xil13] were followed.

Learning example 5.10: Technology independence

Xilinx has many coding guidelines for their FPGAs that conflict with those
of ASICs [Xil13]. Some of these are reproduced here:

• ‘To initialize the content of a Register at circuit power-up, specify a
default value for the signal modeling it.’

• ‘Avoid operational set/reset logic whenever possible. There may
be other, less expensive, ways to achieve the desired effect, such as
taking advantage of the circuit global reset by defining an initial
contents.’

• ‘Always describe the clock enable, set, and reset control inputs of Flip-
Flop primitives as active-High. If they are described as active-Low,
the resulting inverter logic will penalize circuit performance.’

These guidelines are not followed in this thesis, mainly in order to make
the RTL more technology independent, and synthesisable for e.g. AS-
ICs. As stated by the guidelines, this might lead to lower than optimal
performance.

Implementing the modules in RTL was a relatively quick process, as the interfaces
and functionality of all modules had been specified prior to implementation.
Further accelerating development, the FPU was initially implemented using a
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behavioural model. This helped take focus away from the details of the floating-
point units during verification of the system-level functionality.

The behavioural model of the floating-point unit was implemented using Sys-
temVerilog’s shortreal operators. After verifying the system-level functionality,
synthesisable RTL for the FPU was implemented. Also this was an uncomplic-
ated process, as the Python models developed in Section 5.5 was at a low level.
Pipeline stages were not part of the Python model, and were positioned in what
was assumed to be the middle of the floating-point modules.

Learning example 5.11: Behavioural models

Behavioural models in the RTL can be really helpful when it comes to
getting test and verification started early. It helps take focus away from
the details of submodules, while still allowing verification of system-level
behaviour.

5.6.2 Assembler

The assembly program developed in [Egg16] and Section 5.4.1 has to be translated
into machine code. In order to do this, an assembler has been developed. The
assembler created here is a two-pass assembler. During the first pass over the
assembly program it builds a table of all labels found in the program. The second
pass assembles each instruction using the table from the first pass.

The machine code is built according to Table 5.5 and Figure 5.11. To stay up
to date with the RTL code, the assembler reads out the opcode mappings from
the Verilog code. The assembled machine code is saved to a file that is used to
initialise the instruction memories.

Learning example 5.12: Single source of constants

The opcode mappings are written down in a type package common for
the whole ray tracer. The assembler analyses the Verilog type package
in order to always use the current opcode mappings. This is a technique
that can help avoid unnecessary debugging due to inconsistencies between
different versions of code.
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5.6.3 Verification strategy

Each of the submodules have been individually verified. Starting from modules
within the ray datapath and all the way up to the dual core array. Some
modules have been verified using testbenches and some using formal verification.
All RTL simulations has been performed using QuestaSim 10.5c by Mentor,
a Siemens Business3, while formal verification is performed by OneSpin 360 -
Version 2016_12(74) by OneSpin Solutions GmbH. Where whole frames have
been rendered, the scene seen in Figure 4.4 has been used. Assertions were written
for critical assumptions in the code.

Ray datapath

The first RTL module that was implemented and tested was the ray datapath. To
test this module, some of the ray core functionality had to be mimicked by the
testbench. Additionally, behavioural models of an object buffer and an instruction
memory was developed for this. All instructions were tested using simple and
small assembly programs created especially for this purpose. Some implementation
errors were identified and corrected using this method.

Testing the ray datapath more exhaustively, the full ray tracer program was run
for a single pixel using a single thread. In order to do this, the ISA-simulator
was altered so that it could dump the contents of its object buffer. This data
was used in initialising the behavioural model of the object buffer. A ray request
along with its corresponding ray result was also extracted from the simulator.
The testbench mimicked the functionality of the ray request handler in order to
feed the request in to the ray datapath. Simulating this returned the exact same
colour as the simulator did for that pixel.

As mentioned, this only executed using one thread, while the three other threads
were idle. Extending this testbench to test all threads were seen as unnecessary,
as this will be easier to test using the testbench for the ray core.

Ray core

The ray core was tested with more than one request, allowing processing by
all threads in the datapath. This was enabled through further extending the
ISA-simulator. The simulator was now used to dump all requests and results for
a full frame. This was fed in through the request interface of the ray core and

3Formerly Mentor Graphics, Inc
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results were captured at the result interface. A tool used for comparing the results
of the simulator and the RTL model was made. This showed that the results
from the RTL model were identical to the ones of the simulator. The behavioural
models of the object buffer and instruction memory were used here as well.

Dual core

The dual core was easily verified using essentially the same testbench as for the ray
core, as it implements the same interface for requests and results. The instruction
memory was removed from the testbench, as the dual core implements its own
instruction memory. The dual core also implements an object buffer. In order to
fill this, the testbench had to mimic an object buffer initialiser.

Dual core array

Before attempting to test the full dual core array, the feed and drain elements
of the dual core array were verified using formal verification tools. See learning
example 5.13 for more about this. The dual core array was also found to render
the whole scene identically to the ISA-simulator.

Learning example 5.13: Formal verification

For the feeder and drain elements, no testbenches were made. These
modules were verified exclusively using formal tools. This made verification
both quick and simple.

During verification, a bug was uncovered by OneSpin. Using the provided
counterexamplea, the problem was easily identified and fixed.

For formal tools to be effective, properties that cover all possible design
behaviour must be written. Helping users verify this, formal verification
tools provide completeness checkers. These tools are used in verifying that
a property suite covers all possible design behaviour. As this property suite
has not been checked for completeness, this would make for an interesting
student assignment.

aA waveform showing an example of a property not holding.
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Floating-point units

Verification of the floating-point operator implementations was performed by
testbenches applying both random numbers as well as ranges of numbers. After
running several hundred million input vectors without error, the behavioural code
in the FPU was replaced with these synthesisable implementations. The testbench
for the dual core array was then run and gave the same results as before.

Keep in mind that the floating-point units have not been exhaustively verified.
By testing 600 million input vectors, only 0.000 000 003 % of the possible inputs
have been exercised. However, as the frame was rendered correctly, and proper
verification of floating-point units is beyond the scope of this thesis, further
verification effort was deemed to be unnecessary.

Code coverage

A coverage report for the dual core array and all its submodules is attached in
Appendix E. This has been generated as a result of a simulation rendering the
frame in Figure 4.4. 100 % coverage is attained for most coverage types. This
indicates that this testbench exercises the design well.

Statement coverage reaches 100 % for all modules but the fixed-point to floating-
point converter (fx2fp). This was anticipated prior to enabling coverage, as the
scene does not contain all possible FX1.7 numbers. However, this module being
generated by a script, is presumed to be functionally correct. This module has
low coverage for all coverage types, and this same argument holds for these
types.

The reasons for other coverage types not reaching 100 % have been investigated.
Low coverage of finite-state machine (FSM) transitions are caused by reset not
being asserted while the FSMs are in all possible states. A signal used in ensuring
a known state at power up is causing low coverage of some expressions. Finally,
the testbench is always ready to accept results, causing low coverage of ‘FEC
Condition Terms’. Tests of toggling this signal at random occasions have been
conducted and found not to produce any problems. This was not done during this
simulation, as the results were to be used in performance analysis as well.

For all other coverage types where 100 % coverage is not reached, this is caused
by signals used for performance logging. A signal counting the number of active
threads (see Section 5.8) is an example of this.
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Learning example 5.14: Limitations of code coverage

While code coverage is a great tool in verifying that all design code has
been executed, it has its limitations. Firstly, it does not say anything about
the functionality of the design. This implies that e.g. missing features will
not be identified.

While coverage of states can be checked, the combination of all legal states
is not. Using state machines as an example, one can verify that all states
and transitions between them are covered. However, one cannot check that
the combination of two FSMs cover all legal combinations of states.

These are some of the limitations associated with code coverage. Most
limitations are overcome by the use of functional coverage.
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5.7 Synthesis

Synthesis results for of various modules and configurations have been collected.
In this section, some of these are presented and discussed. For more synthesis
results, see Appendix C.

All synthesis results are obtained with the ZedBoard in mind. Xilinx’s Vivado
2016.4 has been used in synthesising for the XC7Z020CLG484-1 device with
‘Vivado Synthesis Defaults (2016)’ and ‘Vivado Implementation Defaults (2016)’.
Where nothing else is specified, the target frequency has been set to 100 MHz.

Please note that all synthesis results are obtained with the frame id being part of
the message formats. The purpose of the frame id was to keep utilisation of the ray
cores high at all times, but has been removed as its effect was found to be minimal.
Further information about the purpose of the frame id is given in Section 5.8.1.
It is assumed that synthesis results would not change significantly by removing
the frame id. Removal should slightly lower the usage of FFs and LUTs, while it
is assumed that the operating frequency would remain unchanged.

5.7.1 Floating-point units

During design and implementation of the floating-point units, some aspects
were left for exploration during synthesis. The performance impact of disabling
rounding has to be explored. How good the pipeline stage placement performed
in Section 5.6.1 is must also be analysed.

Synthesising the dual core with rounding disabled has shown to give an increase
in operating frequency of 6.78 % compared to leaving rounding enabled. At the
same time, the LUT count went down by 2.15 %. As discussed in Section 5.5.2
the visual quality of a rendered frame is not affected by disabling rounding. Due
to this, rounding will be disabled for all further results and discussions.

Synthesis results indicate that the placement of the pipeline registers is close to
optimal. I.e. the path delays in and out of the pipeline registers are equally large.
Another advantage of the placement is that one of the pipeline registers has been
absorbed by a DSP element. This helps improve timing while lowering the overall
resource usage.

Resource sharing between the arithmetic logic unit (ALU) and FPU has been
considered. It is possible to share the significand multiplier of the floating-point
multiplier with the ALU. The significand adder of the floating-point adder could
also be shared with the ALU. Experiments with resource sharing have shown that
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it has a negative impact on the clock frequency. This is due to the extra logic
needed to share the resources, and the resources being in the critical path of the
design. Also, as seen in Table 5.7, the usage of DSP elements is quite low, and
trying to use fewer at the cost of performance is not necessary.

Learning example 5.15: Resource sharing

Resource sharing can be used in order to reduce circuit area and thus
maximise performance density. As discussed in this section, a multiplier
can be shared by the ALU and FPU. In order to do this, a multiplexer has
to be used in selecting either the operands from the ALU or the FPU. This
multiplexing adds some area, while also adding to the delay path.

By employing resource sharing, energy efficiency can either go up or down
[CB95; RJD98]. Static power consumption will generally go down as the
area is decreased. Dynamic power consumption on the other hand, can
go either up or down. If a lot more toggling occurs due to the resource
sharing, the dynamic and thus total power consumption can increase. The
cause of this excess toggling would be low correlation between the operands
of the ALU and FPU.

5.7.2 False path elimination

As seen in Figure 5.12, the ALU and FPU operands are selected using multiplexers.
When synthesised, a path from the command registers through the ALU’s adder
to the ALU result pipeline register was reported as a critical path in the design.
The command register is only used for the BCEQ instruction, where the output
of the adder is not relevant. This indicates that this path is a false path, and that
the synthesis tool was unable to recognise this. To circumvent this problem, the
multiplexers were instead internalised into the RTL of the ALU and FPU.

Learning example 5.16: False path elimination

In this section, the code that generated a false path was explicitly removed.
Another way around the problem would be to use synthesis directives,
informing the synthesis tool that the path is indeed a false path. Here,
changing the RTL was chosen, as it keeps the code more portable.
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5.7.3 Synthesis of dual core array

Different configurations of the dual core array have been synthesised. Figure 5.13
shows how fmax goes down as more cores are added to the dual core array. At 20
dual cores, the synthesis tool is no longer able to meet the timing requirements.
As seen in Table 5.7, ∼ 96 % of the LUTs are used when synthesising 20 dual
cores. This contention is likely to be the cause of the slight drop in fmax. This is
also the reason why synthesis of more than 20 dual cores is not possible. The peak
in fmax for 4 dual cores is deemed to be due to randomisation by the synthesis
tool. As seen in Appendix C, peak fmax at higher target frequencies is achieved
for one dual core.
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Figure 5.13: Maximum clock frequency for different configurations of the dual
core array.

Table 5.7: Resource usage of synthesised dual core array given different number
of dual cores (N). The last row shows the total number of available resources of
each type.

N LUT LUTRAM FF BRAM DSP
1 2574 388 1052 2 6
2 5165 776 2108 4 12
4 10 320 1552 4212 8 24
8 20 548 3104 8428 16 48
16 41 002 6208 16 984 32 96
20 51 098 7760 21 232 40 120

Available 53 200 17 400 106 400 140 220
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As seen from Table 5.7, the resource usage scales almost linearly with the number
of dual cores. The usage of LUTRAMs, BRAMs and DSPs scales perfectly linearly.
Linear regression of the number of LUTs and FFs gives R2 ≈ 0.999 99. The slight
increase in usage of FFs per dual core is explained by increased effort to meet
timing requirements by the synthesis tool. Despite of this, timing was not met for
20 dual cores.

Analysing the timing report for the case with 20 dual cores, it was found that the
critical paths in the design was through the FPUs. Another significant path was
the combinatorial ready-path through the feeder and drain elements in the dual
core array. Attempts to increase the maximum clock frequency will be discussed
in Section 5.7.4.

From Table 5.7, one can see that when synthesising 20 dual cores, ∼ 96 % of the
LUTs on the FPGA are in use. In order to ensure that there is enough space for
the system-level blocks discussed in Section 5.1, further analyses will be based
upon a configuration with 16 dual cores, occupying ∼ 77 % of the LUTs on the
device.

Synthesising the dual core array with 16 dual cores at different target frequencies
gives a peak clock frequency of 102.78 MHz, given ftarget = 142.86 MHz. At the
same time, the usage of LUTs are 2.31 % higher than that of ftarget = 100.00 MHz
yielding fmax = 100.05 MHz. A plot of the resulting operating frequencies is
shown in Figure 5.14. This implies that performance density drops slightly when
synthesised at 142.86 MHz, and that synthesis at 100 MHz is a good trade-off.
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Figure 5.14: Maximum clock frequency for different target frequencies. The array
of dual cores was synthesised with 16 dual cores.
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5.7.4 Increasing clock frequency

In an attempt to increase ray tracer performance, experiments with increasing
operating frequency has been carried out. Inspecting the timing reports, it is
found that the paths with the worst negative slack are in the floating-point adders.
Manual retiming of the adders was not attempted, as the paths seemed to be
reasonably balanced.

Although the paths appeared to be balanced, automatic retiming by the synthesis
tool was turned on. Synthesis gave the exact same results as those presented
in Figure 5.14. Inspecting the synthesis log, it seemed as though the tool was
not able to perform retiming for the critical paths it identified. Furthermore, the
paths that after synthesis ended up having the worst negative slack (floating-point
adders), were not identified in the retiming step. This indicates that retiming
of the FPU would have to be done manually, but with little gain in operating
frequency.

In Section 5.2, it is pointed out that by interleaving four threads, one can add
another pipeline stage in the ray datapath. Introducing additional pipeline stages
in the FPU seems to be the only way to increase the operating frequency. Looking
at Figure 5.12, this should not be very complicated; a pipeline stage between S1
and S2 should be relatively easy to fit in. The ALU has no problems with timing,
it is left unchanged. Figure 5.15 shows the placement of the new pipeline stage.
Here, S2 is the new stage and S3 is the old S2 stage.
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Figure 5.15: Illustration of new pipeline stage placement

In the floating-point multiplier, an additional pipeline register was inserted after
the significand multiplier, fully utilising the DSP’s internal registers. In the
floating-point adder, the timing report was used in order to move the pipeline
stages to their optimal position. After synthesising this for a range of target
frequencies, it was concluded that the floating-point adder was no longer in the
critical path.

As mentioned in learning example 5.1, the combinatorial ready-paths through the
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chain of feeder and drain elements in the dual core array are quite substantial for
configurations with many cores. After insertion of the new pipeline stage in the
core datapath, the ready-paths were the new critical paths in the design. These
paths were broken by inserting register slices designed to break the ready-path in
the middle of the chains.

Synthesising this gave an increase in fmax by ∼ 25 % compared to the results
presented earlier. At this point, further increasing the operating frequency requires
more effort, and will have to be done at a later stage. Due to limited time, the
architecture discussed in this section has not been fully verified. Additionally, no
detailed simulation or synthesis results have been collected. Because of this, this
architecture will not be used in further discussions.

5.7.5 Summary

The dual core array seems to scale quite well. As seen in Figure 5.13, fmax goes
down as more cores are added. This seems to be due to contention on the FPGA
rather than any real scalability problems of the design. At 16 dual cores, the
combinatorial ready-paths through the feeder and drain chains are beginning
to become significant. They are not the critical paths, but could very well be
the cause of contention. It has been shown that these paths can be broken by
inserting reverse register slices in the middle of the chains.

In Section 5.7.4, it was found that introducing another pipeline stage in the
ray datapath and FPU gives a performance increase of ∼ 25 %. Even higher
performance could be attainable by exploring the other architectural changes
outlined in learning example 5.5.
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5.8 Performance and scalability

In this section, the performance of the system will be analysed. Important design
parameters will be varied to see how well the system scales. In all analyses, only
VGA frames are considered. Figure 5.16 illustrates how many instructions that
are executed in generating each pixel of the scene in Figure 4.4. This figure will
be used in discussions throughout this section.
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Figure 5.16: Pseudocoloured frame showing how many instructions that are
executed in generating each pixel of the scene in Figure 4.4. The data is extracted
from the ISA-simulator.

The ray manager is an important component in the system. While it has not been
discussed to a great extent in this thesis, its performance is important to analyse.
The pseudocode in Algorithm 1 will be used for this. On lines 3 and 4 the scene
is read in and the coordinate system is set up. The loop on line 6 loops over all
pixels in the image frame, calculating the initial ray direction of each pixel. The
initial ray direction is then handed over to the dual core array where a ray core
will calculate the colour of that pixel.
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Algorithm 1: Ray manager pseudocode
1 while True do
2 Wait for request from CPU
3 Read scene information
4 Set up coordinate system
5 Initialise object buffers
6 for all pixels do
7 ray = calculate ray direction
8 pixel colour = raytrace(ray)
9 end

10 Send IRQ to CPU
11 end

5.8.1 Thread activity over time

Here, two bottlenecks that were anticipated early in the work with this thesis
will be discussed. Firstly, it was assumed that the time spent doing calculations
associated with lines 3 to 5 of Algorithm 1 would be a bottleneck in the system.
The other anticipated bottleneck was ramping up and down of the number of
active threads. Ramping up refers to the number of clock cycles from the first
request is issued until full utilisation of all cores is reached. Conversely, ramping
down is the number of clock cycles from the last time all threads were active until
the last result is sent out of the system.

In order to mask the effect of these bottlenecks, a frame id was added. This was
added to all requests and responses, as well as stored in the thread state table
(Table 5.4). The idea was that every other frame would be assigned frame ids 0 and
1, allowing rendering frames back-to-back. To fully support this, the object buffer
and ray tracer architectures would have to be altered as well. Due to the reasons
presented below, support for the thread id was never fully implemented.

To analyse how the number of active threads ramp up and down, the RTL has
been instrumented with debug signals that report the number of active threads
at any time. This is logged by the dual core array testbench and saved to a file
after simulation. Analysing this data has helped get insight into the performance
bottlenecks of the system.

As seen from Figure 5.17, the ramping is barely noticeable for a VGA frame
rendered using 16 dual cores and 2 cycles between each request (this last part will
be further discussed in Section 5.8.2).
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Figure 5.17: Screenshot of a tool used in visualising the number of active threads
over time. Here, data for 16 dual cores with 2 cycles between each request is
shown.



5.8. PERFORMANCE AND SCALABILITY 63

By zooming in on the plot, it was found that all 128 threads were active after
only 360 clock cycles! As seen in Figure 5.18, ramp down is a bit worse, with 3400
cycles from the last time 128 threads were active until the result was accepted by
the testbench. Adding these together, this means that the ramping accounts for
3400+360
3 994 252 ≈ 0.094 % of the time spent ray tracing.
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Figure 5.18: Number of active threads over time. Here, data for 16 dual cores
with 2 cycles between each request is shown. Only the 3400 last cycles are shown.
Rolling mean for this area does not exist when using a centred window of 10 000
cycles.

By looking at lines 3 to 5 of Algorithm 1, one can come up with a rough estimate
of the number of clock cycles the ray manager will need to execute them. Greatly
overestimating this to 50 000 allows the CPU to spend a few cycles from receiving
an IRQ before issuing a new scene to the ray manager. Rendering frames back-
to-back, each new frame will be generated every 3 994 252 clock cycles (from
Figure 5.17). Adding 50 000 clock cycles to this corresponds to an increase in
rendering time by less than 1.3 % compared to back-to-back rendering.

All in all, ramping up and down of the number of requests account for less than
0.1 % of the time spent by the dual core array. Overestimating the time spent by
the ray manager and CPU, a performance improvement of less than 1.3 % would
be achieved by rendering frames back-to-back. This is negligible, and it is assumed
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that adding the frame id will negatively impact performance density. Due to all
of this, it has been decided that the frame id should not be implemented after
all. With proper analysis of this prior to implementation, implementation of the
frame id would never have been attempted.

Learning example 5.17: Proper analysis

As seen in this section, proper analysis of a problem should be done before
trying to come up with countermeasures. Making an example out of
this could help students learn from my mistakes. In a class discussion,
the lecturer can present the problem with the number of active threads
ramping up and down. The students could then be given some time to
discuss the problem in pairs, letting them try to come up with solutions.
After this, the data presented in this section could be revealed to students,
letting them see that the problem might not have as big of an impact as
they (and I) first thought.

5.8.2 Effects of varying ray manager performance

To properly model the performance of the ray tracer, the performance of the ray
manager has to be taken into account. As the ray manager has not yet been
implemented, an educated guess will have to be made. Here, the pseudocode for
the ray manager will be analysed, and its performance estimated. Recall that, as
discussed in Section 5.1.1, implementation of the ray manager can be done either
in software on the Zynq’s CPU or as a specialised hardware unit.

The loop over all pixels in Algorithm 1 has been expanded into Algorithm 2. This
shows the actual calculations performed in calculating the initial ray directions,
and will be used to analyse how often the ray manager can issue a new request.
The calculation of Rp might seem costly in terms of execution time. However,
there are a lot of constants involved, and a lot of the code can be moved outside
the inner loop. Doing this, Rp can be calculated using only three additions (or one
vector addition) in the inner loop. Calculating Rd requires normalising Rp − Cp.
As Cp is a constant, this subtraction can be moved outside the inner loop. All
in all, the calculations needed in the inner loop are one vector addition and one
vector normalisation. It is presumed that the calculations that has been moved
out of the inner loop will be negligible when amortised over the inner loop.

Considering this, a pipelined hardware unit should be able to issue one request
every clock cycle. Anticipating that the hardware unit does not need to be this
powerful, the system performance given one request every second clock cycle is
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Algorithm 2: Pseudocode of loop in ray manager
Input: Frame size w × h
Input: Midpoint of screen Ps

Input: Camera position Cp

Input: uvn frame vectors u and v
Input: Frame constants A, B, C and D

1 for j = 0→ h− 1 do
2 for i = 0→ w − 1 do
3 Rp = Ps + (u((i + 0.5)×A−B)) + (v((−j − 0.5)× C −D))
4 Rd = normalise(Rp − Cp)
5 Issue Rd to dual core array
6 end
7 end

analysed instead. This is because running on 100 MHz only requires a new pixel
to be generated every 13.6 clock cycles on average (given an FPS of 24).

As the Zynq’s CPU has a VFPU [Xil16], it is assumed that it will be able to
push out a new request every 5 to 10 clock cycles. If running the CPU at full
speed (667 MHz), it will run at 6.67 times the speed of the programmable logic,
resulting in a throughput similar to that of a specialised hardware unit. If it is
not necessary to run the CPU at full speed, power savings can be achieved by
running it at e.g. 100 MHz. Due to this, analyses of the effects of issuing requests
every 2, 5 and 10 clock cycles will be performed. From now on, ‘reqcycles’ refers
to the number of clock cycles between each issued request.

In the dual core array testbench, the impact of this on the system performance has
been modelled using these numbers. Figure 5.19 shows the relative performance
delivered by each individual ray core in the array for different number of dual
cores and reqcycles. As the ray manager performance is lowered (i.e. reqcycles
goes up), the overall system performance goes down. This indicates that the ray
manager is becoming a bottleneck in the system. This performance drop can be
explained by looking at Figure 5.20.

As seen in Figure 5.20, the number of active threads is way lower than the
number of available threads in the system for a large part of the time. This figure
shows data for the case of 32 dual cores with 10 cycles between each request,
corresponding to the lower right point in Figure 5.19. This shows that in this
configuration, having 32 dual cores is not giving any significant performance
improvement, as full utilisation is only achieved for a short period of time (around
the 2 000 000 clock cycle tick mark). To get a linear performance increase by
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Figure 5.19: Relative performance per core given different ‘reqcycles’. For the
numbers used in generating this figure, refer to Appendix C.

adding cores, it is essential that the ray manager can issue requests at the same
rate as they are processed.

Explaining the shape of the plot of the number of active threads, one can look at
Figure 5.16 and Algorithm 2. Requests are issued in a row-major order, meaning
that the section from 0 to 400 000 clock cycles correspond to the darkest area of
Figure 5.16. After that, the number of active threads are ramped up because we
are covering more and more of first sphere. All other features of Figure 5.16 can
be explained in the same way.
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Figure 5.20: Number of active threads over time. Here, data for 32 dual cores
with 10 cycles between each request is shown.

5.8.3 System performance

The performance of the system can be estimated using the simulation and synthesis
results presented in Figures 5.13 and 5.19. Table 5.8 shows both the estimated
FPS and the FPS per dual core.

Table 5.8: FPS per dual core given different number of dual cores (N) and varying
reqcycles. The target frequency for the synthesis tool was 100 MHz.

Reqcycles: 2 Reqcycles: 5 Reqcycles: 10
N FPS FPS/N FPS FPS/N FPS FPS/N
1 1.59 1.59 1.59 1.59 1.59 1.59
2 3.19 1.60 3.19 1.60 3.19 1.60
4 6.46 1.62 6.46 1.62 6.46 1.62
8 12.56 1.57 12.56 1.57 12.50 1.56

16 25.05 1.57 24.93 1.56 23.20 1.45
20 31.06 1.55 30.51 1.53 26.98 1.35
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The diminishing returns that can be observed are a result of both fmax and
thread utilisation dropping as more cores are added. The highest FPS per dual
core is observed for the configuration with 4 dual cores. This is exclusively due
to the peak in fmax seen in Figure 5.13. For the case of reqcycles 2 and 5, the
performance scales well as cores are added. The small decline in performance
per core is mainly due to the clock frequency declining. When new requests are
generated every 10th clock cycle, performance per core drops significantly as cores
are added. This is due to low utilisation of the available threads, as discussed in
Section 5.8.2.

Note that the performance is strongly dependent upon the scene composition.
Figure 5.16 shows that the number of instructions executed in tracing rays for the
different pixels in the frame vary a lot. The average number of clock cycles used
in rendering that specific frame was 415. If one were to zoom in at the yellow
areas, making them cover the whole frame, each pixel in the frame would require
1088 cycles. This translates into a drop in FPS by almost two thirds. Conversely,
zooming in on parts of the scene without any objects would make the FPS go
up. This will be limited by the ray manager performance, as it may become a
bottleneck (as seen in Section 5.8.2).

The FPGA is just large enough to allow rendering this particular scene in 24
FPS. For slightly more complex scenes, the FPS will drop below 24. Should the
alternative ray datapath discussed in Section 5.7.4 be used, one can assume that
the FPS would go up by ∼ 25 %.
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Learning platform
viability

The hardware ray tracer can be used in illustrating many key concepts of digital
design. This thesis has taken the reader through the iterative design process,
starting where the project thesis ‘Design of a Hardware Ray Tracer for digital
design education’ [Egg16] left off. During the work on this thesis, some parts
designed in the project thesis have been refined in order to optimise performance.
These parts of the thesis can be used in illustrating the iterative nature of digital
design, where refinements occur continuously.

In Section 5.6, important discussions considering implementation of digital sys-
tems were presented. RTL coding, inference patterns for FPGAs, technology
independent design and more was covered. Additionally, an assembler for the ISA
was implemented. The system was verified using both simulations and formal
methods. These are all topics well suited for student assignments. Students can
e.g. be instructed to implement a small part of the system and verify that it works
according to a set of given requirements.

Performance and scalability analyses are important parts of digital design, and
thorough coverage of this was given in Section 5.8. Assignments where students
analyse performance and propose performance improving design changes could be
made. Here, students should be urged to make back-of-the-envelope calculations
and block diagrams.

All in all, this shows that the discussions in Chapter 5 cover large parts of the
design process. This thesis has presented results of design choices as the choices
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have been made. These results have been analysed, and further decisions based
upon them. This kind of fast feedback is the essence of the iterative design process.
Together with the anecdotal learning examples, the work presented in this thesis
can be adopted as assignments, project work, student discussions, lectures and
more. While the system has been implemented using SystemVerilog, adapting the
material for a course on VHDL should not require much effort.

6.1 Register file example

An example of a module that can be examined during a course is the register file.
High level requirements can be broken down to engineering requirements in a class
discussion. Important themes to cover include the choice of implementation using
BRAM or LUTRAM. In this discussion, students should consider the effects of
adding multiply-accumulate (MAC) and/or multiply-add (MADD) instructions.1
Low power design techniques like clock gating should also be considered as part
of the discussions.

Later, students can implement their proposed architecture in RTL. To do this,
they should study inference patterns in [Xil13]. Depending on the course focus,
different verification methods can be used. Students could be provided with a
simple testbench, and told to examine the code coverage the testbench gives.
Finding that it does not give 100 % coverage, they will have to extend the testbench
with more test cases. This example can easily be extended to functional coverage
and even formal verification.

1This will require three read ports, and thus three BRAMs if implemented using BRAM.



Chapter 7

Conclusion

In this master’s thesis, large parts of a ray tracing system have been implemented
in RTL. The system is capable of rendering a simple VGA frame at ∼ 25 FPS in
a 32-core configuration. This configuration occupies ∼ 77 % of the LUTs on the
target FPGA.

To optimise the performance of the system, the specification from the project
thesis [Egg16] has been improved. ISA extensions have resulted in significant
performance increases. In addition, an updated system-level block diagram,
interconnect design, thread interleaving method and message protocols have been
specified. Floating-point operators for addition and multiplication have been
modelled and implemented.

RTL for the dual core array has been implemented. An assembler for the ISA was
developed and used in generating machine code for the ray datapath. Simulations
have shown that the implementation generates the exact same results as the ISA-
simulator built in [Egg16]. It has been demonstrated that the RTL is synthesisable
for the target FPGA. The RTL has been verified using both simulation and formal
methods.

The discussions in this thesis can be adapted for a course on digital design. The
learning examples scattered around in the thesis can be used as starting points
for interesting student discussions and assignments.

Most of the system-level requirements have been met. The requirements that
have not been addressed are part of the proposed future work.
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7.1 Future work

While simulation and synthesis of the dual core array have shown promising results,
there is still room for architectural improvements. Suggested improvements:

• Verify the architecture with 25 % performance increase (see Section 5.7.4)
and use this. Also check the resulting performance density for all cases
listed in learning example 5.5.

• Consider adding either MAC and/or MADD to the ISA. This will require
more logic in the ray cores, but will also increase the performance per core.
Performance density should be considered here.

• Further optimisations of the ISA. E.g. the suggested decrement and branch
instruction.

• Adding a hardware unit performing
√

x and 1√
x
. This will remove the effects

of the software approximations introduced in [Egg16]. As such a unit is likely
to have a rather high latency, implementation will require alterations to the
multithreading scheduler. Implemented cleverly, overall system performance
might increase. If this unit becomes large, sharing it between several ray
cores might be needed to keep performance density high.

• Proper verification of floating-point operators.

• Compare floating-point performance and area of this thesis’ implementations
to other implementations. E.g. ‘Xilinx Floating-Point Operator IP’, Altera’s
hardened floating-point units [Vis16] and the open source implementations
available from OpenCores.

• REQ_PERF_002 states that ‘The utilisation of all functional units should
be as high as possible and preferably above 50 % while the ray tracing
algorithm is running’. While the ISA has been designed for high utilisation
of its functional units, no analysis of this has been performed.

To get a working system with an FPGA rendering frames in real-time, some work
must be done at the system-level:

• Design of a ray manager with all that encompasses:

– It is a relatively low-throughput module, and several implementations
should be considered. It could be implemented as a specialised hardware
unit, in the ARM CPU on the Zynq SoC or using a soft microprocessor
like Altera’s Nios or Xilinx’s MicroBlaze.
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– Determining how writing to the frame buffer should be implemented.
This could be done by 1 AXI transaction per pixel, or one could buffer
up several pixels before sending them as a chunk. Sending one by one is
not efficient in terms of energy consumption or bus utilisation. However,
complexity and area should be lower than that of the buffering solution.

• Implementing the system on the ZedBoard. This includes creating a display
controller and interfacing with the processing system (see Figure 5.1).
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Appendix A

Architecture specification

Here, the architecture specification from [Egg16] is reproduced. Some alterations
to the text has been made to make it independent of the whole project thesis
document.

A.1 Data structures

Data structures used to hold the scene, objects and materials are introduced. All
numbers encoded using the FX1.7 fixed-point format have a legal range of 0.0 to
1.0.

32 bit floating-point.
Unsigned integer.
Fixed-point. FX1.7
Reserved bits. Set to 0.

Figure A.1: Data structures legend

Figure A.2 shows the scene descriptor data structure. It specifies the position
of the light, camera and the point that the camera is looking towards. cam_-
fov defines the camera’s horizontal view angle in degrees. The frame size is
given in W10. The last four fields identify the memory location and size of the
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sphere array and material array. These refer to arrays of Figures A.3 and A.4,
respectively.

0781516232431

light_x_positionW0
light_y_positionW1
light_z_positionW2
cam_x_positionW3
cam_y_positionW4
cam_z_positionW5

cam_x_pointW6
cam_y_pointW7
cam_z_pointW8

cam_fovW9
screen_y_size screen_x_sizeW10

sphere_array_ptrW11
sphere_array_sizeW12
material_array_ptrW13
material_array_sizeW14

Figure A.2: Scene descriptor

Figure A.3 describes a sphere. The sphere is specified by its position, squared
radius and reciprocal radius.

The materials are described by Figure A.4. ar is the colour of the ambient
reflection, ad the diffuse colour and as the specular colour. k_refl is the reflection
coefficient. All of these parameters are used in the Phong reflection model
[Pho75].

The object buffers hold copies of some of the data in the scene, all objects and all
materials. The memory layout of the object buffer is shown in Figure A.5.
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0781516232431

sphere_x_positionW0
sphere_y_positionW1
sphere_z_positionW2
sphere_r_squaredW3
sphere_r_inverseW4

material_idW5

Figure A.3: Sphere descriptor

0781516232431

ar_b ar_g ar_rW0
ad_b ad_g ad_rW1
as_b as_g as_rW2

shininess k_reflW3

Figure A.4: Material descriptor
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0781516232431

light_x_positionW0
light_y_positionW1
light_z_positionW2
cam_x_positionW3
cam_y_positionW4
cam_z_positionW5

sphere_array_sizeW6
Array of spheres

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Array of materials
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure A.5: Object buffer memory layout
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A.2 Message formats

Having presented the data structures, it is time to discuss the message formats
used in communicating between the ray manager and ray cores. Figure A.6 shows
the request sent from the ray manager to a core. This request holds the x and y
coordinate of the pixel being rendered. This works as an ID, and is also included in
the response from the core to the ray manager. Given VGA-resolution, 640× 480
pixels, x needs to be dlog2 640e bit = 10 bit wide. y is dlog2 480e bit = 9 bit
wide. The direction is a three-element vector of single-precision floating-point
numbers.

0316395104114

x y direction_x direction_y direction_z

Figure A.6: Ray request

After finishing the ray tracing of the request, the core sends a response containing
the calculated colour of the pixel. This is represented as single-precision floating-
point numbers, as seen in Figure A.7. In this master’s thesis, a different ray
response format seen in Figure 5.9 is used in place of this.

0316395104114

x y R G B

Figure A.7: Ray response

A.3 Ray manager control/status registers

The ray tracer is to be part of a bigger system, and will be controlled by for
example a CPU. The ray manager needs to know where the scene is located, and
when it should start processing it. A way for the CPU to query the status of the
ray tracer is also in place. All registers are accessed over APB.

Figure A.8 shows the layout of the command register, along with the legal values
of the command field. This register can both be read and written. The names of
the commands are self-explanatory. The unused encodings are reserved for future
use. The address of this register is 0x00000000.
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02331

command

000 COMMAND_NOP
001 COMMAND_RUN
010 COMMAND_STOP
011 COMMAND_CLEAR_IRQ

Figure A.8: Command register

Figure A.9 shows the layout of the status register, along with the legal values
of the status field. This register is read only. The names of the statuses are
self-explanatory. The progress field indicates the rendering progress as an 8 bit
integer. The unused encodings are reserved for future use. The address of this
register is 0x00000004.

02378151631

progress status

000 STATUS_IDLE
001 STATUS_BUSY

Figure A.9: Status register

Figure A.10 shows the layout of the scene address register. This register can both
be read and written to. The address field holds the physical address of the scene
descriptor. The address of this register is 0x00000008.

031

address

Figure A.10: Scene address register
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Assembly code

The numbers used in making Figure 5.10 are shown in Table B.1. Listing B.1
shows the final version of the assembly program.

Table B.1: Number of instructions used in rendering a VGA frame given different
revisions of the code and instruction set. The data is extracted from the ISA-
simulator, and does not model congestion nor the ray core.

Code/ISA revision Instructions Cum. diff % change
Project thesis 138 245 949
Communication added 141 317 949 3 072 000 2.22
LFX added 133 398 747 −4 847 202 −3.51
Reuse of variables in code 129 233 505 −9 012 444 −6.52
ADDUI, FMULI and FADDI added 127 429 186 −10 816 763 −7.82

Listing B.1: Assembly program from [Egg16] with alterations dis-
cussed in Section 5.4.1.

1 waitreq:
2 bceq 0, waitreq ; wait for command to change

from ’none’↪→

3 pop $dir_z
4 pop $dir_y
5 pop $dir_x
6 stat 1 ; set status to ’busy’
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7

8 lw $orig_x, 12[$0] ; Load cam position from object
buffer↪→

9 lw $orig_y, 16[$0]
10 lw $orig_z, 20[$0]
11 add $color_r, $0, $0 ; Initialise color registers

(FP zero and UINT zero is the same)↪→

12 add $color_g, $0, $0
13 add $color_b, $0, $0
14 lui $k_refl, 0x3f80 ; Upper bits of 1.0 in FP32.

Lower bits are zero↪→

15 lui $rec_surf, 0xffff ; Should never have this many
objects in scene..↪→

16

17 addi $rec_left, $0, 2 ; Hard coded recursion depth!
Could be param from scene.↪→

18

19 raytraceloop:
20 addi $isect_surface, $0, 0xff ; Initial isect_surface
21 lui $18, 0x7f00 ; min_t = 1.7014118e38
22

23 lw $23, 24[$0] ; num_spheres (p)
24

25 main_dec_p:
26 subi $23, $23, 1
27 beq $23, $rec_surf, main_dec_p
28 bneg $23, sphereloopdone
29

30 muli $24, $23, 24
31

32 lw $25, 28[$24] ; center_x
33 lw $26, 32[$24] ; center_y
34 lw $27, 36[$24] ; center_z
35 lw $24, 40[$24] ; radius_squared
36

37 fsub $25, $25, $orig_x ; dP_x
38 fsub $26, $26, $orig_y ; dP_y
39 fsub $27, $27, $orig_z ; dP_z
40 fmul $28, $dir_x, $25 ; udP x factor
41 fmul $29, $dir_y, $26
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42 fadd $28, $28, $29 ; udP x,y factor
43 fmul $29, $dir_z, $27
44 fadd $28, $28, $29 ; udP all factors
45

46 fmul $29, $dir_x, $28 ; u_x * udP
47 fsub $29, $25, $29 ; A_x
48 fmul $29, $29, $29 ; A.A x factor
49

50 fmul $30, $dir_y, $28 ; u_y * udP
51 fsub $30, $26, $30 ; A_y
52 fmul $30, $30, $30 ; A.A y factor
53 fadd $29, $29, $30 ; A.A x,y factor
54

55 fmul $30, $dir_z, $28 ; u_z * udP
56 fsub $30, $27, $30 ; A_z
57 fmul $30, $30, $30 ; A.A z factor
58 fadd $29, $29, $30 ; A.A all factors
59

60 fsub $24, $24, $29 ; D
61

62 bneg $24, main_dec_p ; if (D < 0): continue
63

64 ; Used registers from here:
65 ; udP: $28, D: $24, min_t: $18
66

67 ; start sqrtapprox_a
68 srl $24, $24 ; as_int(D) >> 1
69 addui $24, $24, 0x1fc0 ; sqrtD : $24 (0x1fc0 =

as_int(1.0f) >> 1)↪→

70 ; end sqrtapprox_a
71

72 fsub $19, $28, $24 ; t = udP - sqrtD
73

74 bpos $19, tchosen
75 fadd $19, $28, $24 ; (t = udP + sqrtD) if t < 0
76

77 tchosen:
78 bneg $19, main_dec_p ; if (t < 0): continue
79

80 fsub $20, $19, $18 ; t - min_t
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81 bpos $20, main_dec_p ; if (t > min_t): continue
82

83 add $18, $19, $0 ; min_t = t
84 add $isect_surface, $23, $0 ; isect_surface = p
85

86 goto main_dec_p
87

88

89

90 sphereloopdone:
91

92 addi $19, $0, 0xff ; Initial isect_surface
93 beq $isect_surface, $19, welldone
94

95 fmul $19, $dir_x, $18 ; dir_x * min_t
96 fadd $orig_x, $orig_x, $19 ; orig_x += dir_x * min_t
97 fmul $19, $dir_y, $18 ; dir_y * min_t
98 fadd $orig_y, $orig_y, $19 ; orig_y += dir_y * min_t
99 fmul $19, $dir_z, $18 ; dir_z * min_t

100 fadd $orig_z, $orig_z, $19 ; orig_z += dir_z * min_t
101

102 muli $18, $isect_surface, 24
103 lw $19, 32[$18] ; center_y
104 lw $20, 36[$18] ; center_z
105 lw $21, 44[$18] ; radius_inverse
106 lw $18, 28[$18] ; center_x
107

108 fsub $isect_normal_x, $orig_x, $18
109 fmul $isect_normal_x, $isect_normal_x, $21
110

111 fsub $isect_normal_y, $orig_y, $19
112 fmul $isect_normal_y, $isect_normal_y, $21
113

114 fsub $isect_normal_z, $orig_z, $20
115 fmul $isect_normal_z, $isect_normal_z, $21
116

117

118

119 ; calculate local color
120 lw $20, 0[$0] ; Light posx
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121 lw $21, 4[$0]
122 lw $22, 8[$0]
123 fsub $20, $20, $orig_x ; shadow ray direction
124 fsub $21, $21, $orig_y
125 fsub $22, $22, $orig_z
126 fmul $23, $20, $20 ; Dot product before norm.
127 fmul $24, $21, $21
128 fadd $23, $23, $24
129 fmul $24, $22, $22
130 fadd $23, $23, $24
131 srl $24, $23 ; Invsqrtapprox_a
132 lui $25, 0x5f37 ; magic constant
133 addi $25, $25, 0x59df ; magic constant
134 sub $24, $25, $24 ; ~Invsqrtapprox_a
135 fmuli $23, $23, 0xbf00 ; Invsqrtapprox_b ; x * (-0.5f)
136 fmul $23, $23, $24 ; * y
137 fmul $23, $23, $24 ; * y
138 faddi $25, $23, 0x3fc0 ; 1.5f + ((-0.5)*x * y*y)
139 fmul $23, $24, $25 ; ~Invsqrtapprox_b
140 fmul $20, $20, $23 ; vector norm.
141 fmul $21, $21, $23 ; vector norm.
142 fmul $22, $22, $23 ; vector norm.
143

144 lw $23, 24[$0] ; num_spheres
145

146 muli $23, $23, 24
147

148 muli $24, $isect_surface, 24
149 lw $24, 48[$24] ; material_id
150 muli $24, $24, 16
151

152 add $31, $23, $24 ; material ptr
153

154 lfx $24, 28[$31] ; AR
155 lfx $25, 29[$31] ; AG
156 lfx $23, 30[$31] ; AB
157

158 fmul $24, $24, $k_refl ; Doing this multiplication here in
order to save a few registers.↪→

159 fmul $25, $25, $k_refl
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160 fmul $23, $23, $k_refl
161 fadd $color_r, $color_r, $24
162 fadd $color_g, $color_g, $25
163 fadd $color_b, $color_b, $23
164

165 lw $23, 24[$0] ; num_spheres (p)
166

167 dec_p:
168 subi $23, $23, 1
169 beq $23, $isect_surface, dec_p
170 bneg $23, loopdone
171

172 muli $24, $23, 24
173

174 lw $25, 28[$24] ; center_x
175 lw $26, 32[$24] ; center_y
176 lw $27, 36[$24] ; center_z
177 lw $24, 40[$24] ; radius_squared
178

179 fsub $25, $25, $orig_x ; dP_x
180 fsub $26, $26, $orig_y ; dP_y
181 fsub $27, $27, $orig_z ; dP_z
182 fmul $28, $20, $25 ; udP x factor
183 fmul $29, $21, $26
184 fadd $28, $28, $29 ; udP x,y factor
185 fmul $29, $22, $27
186 fadd $28, $28, $29 ; udP all factors
187

188 fmul $29, $20, $28 ; u_x * udP
189 fsub $29, $25, $29 ; A_x
190 fmul $29, $29, $29 ; A.A x factor
191

192 fmul $30, $21, $28 ; u_y * udP
193 fsub $30, $26, $30 ; A_y
194 fmul $30, $30, $30 ; A.A y factor
195 fadd $29, $29, $30 ; A.A x,y factor
196

197 fmul $30, $22, $28 ; u_z * udP
198 fsub $30, $27, $30 ; A_z
199 fmul $30, $30, $30 ; A.A z factor
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200 fadd $29, $29, $30 ; A.A all factors
201

202 fsub $24, $24, $29 ; D
203

204 bneg $24, dec_p ; if (D < 0): continue
205

206 bpos $28, done ; if (udP > 0): return local_color
207

208 goto dec_p
209

210 loopdone:
211 ; Reuseable registers from here: $23 and up!
212

213 fmul $24, $20, $isect_normal_x ; N dot L x factor
214 fmul $25, $21, $isect_normal_y ; N dot L y factor
215 fadd $24, $24, $25
216 fmul $25, $22, $isect_normal_z ; N dot L z factor
217 fadd $29, $24, $25 ; N dot L
218

219 bneg $29, done
220

221 lfx $25, 32[$31] ; AD
222 lfx $26, 33[$31] ; AD
223 lfx $27, 34[$31] ; AD
224

225 fmul $24, $29, $k_refl
226

227 fmul $25, $25, $24
228 fmul $26, $26, $24
229 fmul $27, $27, $24
230

231 fadd $color_r, $color_r, $25
232 fadd $color_g, $color_g, $26
233 fadd $color_b, $color_b, $27
234

235

236 fsub $20, $20, $dir_x
237 fsub $21, $21, $dir_y
238 fsub $22, $22, $dir_z
239
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240 fmul $23, $20, $20 ; Dot product before norm.
241 fmul $24, $21, $21
242 fadd $23, $23, $24
243 fmul $24, $22, $22
244 fadd $23, $23, $24
245 srl $24, $23 ; Invsqrtapprox_a
246 lui $25, 0x5f37 ; magic constant
247 addi $25, $25, 0x59df ; magic constant
248 sub $24, $25, $24 ; ~Invsqrtapprox_a
249 fmuli $23, $23, 0xbf00 ; Invsqrtapprox_b ; x * (-0.5f)
250 fmul $23, $23, $24 ; * y
251 fmul $23, $23, $24 ; * y
252 faddi $25, $23, 0x3fc0 ; 1.5f + ((-0.5)*x * y*y)
253 fmul $23, $24, $25 ; ~Invsqrtapprox_b
254 fmul $20, $20, $23 ; vector norm.
255 fmul $21, $21, $23 ; vector norm.
256 fmul $22, $22, $23 ; vector norm.
257

258 fmul $24, $20, $isect_normal_x ; N dot H x factor
259 fmul $25, $21, $isect_normal_y ; N dot H y factor
260 fadd $24, $24, $25
261 fmul $25, $22, $isect_normal_z ; N dot H z factor
262 fadd $29, $24, $25 ; N dot H
263

264 ; CODE FOR REPSQUARING
265 lb $25, 41[$31] ; shininess
266 subi $25, $25, 1
267 beq $25, $0, donesquaring
268

269 repsquare:
270 fmul $29, $29, $29
271 subi $25, $25, 1
272 bpos $25, repsquare
273

274 donesquaring:
275

276 lfx $25, 36[$31] ; AD as fx1.7
277 lfx $26, 37[$31] ; AD as fx1.7
278 lfx $27, 38[$31] ; AD as fx1.7
279
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280 fmul $24, $29, $k_refl
281

282 fmul $25, $25, $24
283 fmul $26, $26, $24
284 fmul $27, $27, $24
285

286 fadd $color_r, $color_r, $25
287 fadd $color_g, $color_g, $26
288 fadd $color_b, $color_b, $27
289

290

291 done: ; ~calculate_local_color
292

293

294 lfx $18, 40[$31] ; k_refl as fx1.7
295

296 fmul $k_refl, $k_refl, $18
297

298 ; Not doing anything with our scene. .4*.4*.4 > .05
299 faddi $18, $k_refl, 0xbd4e ; -0.05029297
300 bneg $18, welldone ; if (k_refl < 0.05): break
301

302

303 add $rec_surf, $isect_surface, $0
304

305 fmul $18, $dir_x, $isect_normal_x
306 fmul $19, $dir_y, $isect_normal_y
307 fadd $18, $18, $19
308 fmul $19, $dir_z, $isect_normal_z
309 fadd $18, $18, $19 ; Ri_dot_N
310

311 fmuli $18, $18, 0x4000 ; 2*Ri_dot_N. Could be
implemented by fadd $18, $18, $18↪→

312

313 fmul $19, $isect_normal_x, $18
314 fsub $dir_x, $dir_x, $19
315 fmul $19, $isect_normal_y, $18
316 fsub $dir_y, $dir_y, $19
317 fmul $19, $isect_normal_z, $18
318 fsub $dir_z, $dir_z, $19
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319

320

321

322 subi $rec_left, $rec_left, 1
323 bpos $rec_left, raytraceloop
324

325 welldone:
326

327 stat 2 ; request access to resbuf
328

329 resbuf_w:
330 bceq 0 resbuf_w ; waiting for ’resbuf_gnt’
331

332 push $color_r
333 push $color_g
334 push $color_b
335

336 stat 0
337 goto waitreq



Appendix C

Simulation and synthesis
results

This chapter presents all simulation and synthesis results, whereas Chapter 5 only
presented parts of these.

C.1 Simulation results

The number of clock cycles executed in rendering the frame is shown in Table C.1.
Plots of the number of active threads over time for all configurations in this table
is shown below.

Table C.1: Number of clock cycles needed to render one VGA frame.

N Reqcycles: 2 Reqcycles: 5 Reqcycles: 10
1 63 869 699 63 869 690 63 869 665
2 31 935 484 31 935 728 31 935 985
4 15 968 742 15 968 870 15 969 051
8 7 985 524 7 985 501 8 024 148
16 3 994 252 4 013 757 4 312 303
20 3 195 919 3 253 425 3 678 770
32 1 997 994 2 157 575 3 074 812
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Active threads
Active threads (rolling mean, N=10,000)
Available threads

Figure C.1: Legend for all plots of active threads vs. time
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C.2 Synthesis results

Here, the number of LUTs and the achieved frequency fmax for different target
frequencies (ftarget) is shown in Tables C.2 and C.3. The number of LUTRAMs,
FFs, BRAMs and DSP elements stay the same for all target frequencies. Refer to
Table 5.7 for these numbers.

Table C.2: Number of LUTs in the dual core array when synthesised with different
target frequencies. N refers to the number of dual cores in the array.

ftarget (MHz) N = 1 N = 2 N = 4 N = 8 N = 16 N = 20
50.00 2571 5158 10 323 20 558 41 021 51 114
66.67 2570 5160 10 327 20 563 41 015 51 132
71.43 2569 5158 10 328 20 557 40 992 51 113
76.92 2573 5162 10 336 20 553 40 989 51 083
83.33 2569 5159 10 329 20 560 41 008 51 100
90.91 2569 5159 10 322 20 547 40 991 51 105

100.00 2574 5165 10 320 20 548 41 002 51 098
111.11 2581 5168 10 337 20 558 41 023 51 098
125.00 2617 5231 10 436 20 766 41 419 51 590
142.86 2653 5308 10 559 21 004 41 949 52 104

Table C.3: fmax of dual core array in MHz when synthesised with different target
frequencies. N refers to the number of dual cores in the array.

ftarget (MHz) N = 1 N = 2 N = 4 N = 8 N = 16 N = 20
50.00 80.88 75.86 76.06 78.58 68.14 58.22
66.67 87.82 85.37 83.20 84.77 69.22 72.03
71.43 90.79 84.02 84.60 83.75 74.41 75.77
76.92 88.92 83.02 82.44 84.20 80.08 82.75
83.33 90.35 89.14 85.44 88.06 88.29 85.84
90.91 94.88 92.43 94.84 92.94 92.55 92.00

100.00 101.60 102.00 103.23 100.33 100.05 99.26
111.11 104.63 104.28 104.16 101.28 99.85 97.14
125.00 105.36 104.54 100.18 100.05 98.08 98.87
142.86 108.30 107.49 104.86 105.14 102.78 100.08
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Appendix D

Attachment overview

Here, an overview over the structure of the attached zip file is given.

D.1 Design files

The SystemVerilog design files are in this folder. Before this can be synthesised,
the assembler has to be run, generating the instruction memory.

design/
alu.sv
drain.sv
drain_full.sv .........Drain breaking timing in both directions
dual_core.sv
dual_core_array.sv
dual_core_array_synthwrapper.sv ..........Used for synthesis
feeder.sv
feeder_full.sv........Feeder breaking timing in both directions
fp32_add.sv
fp32_add_2s.sv...........................Used in Section 5.7.4
fp32_mul.sv
fp32_mul_2s.sv...........................Used in Section 5.7.4
fpu.sv
fpu_2s.sv.................................Used in Section 5.7.4
fx2fp.sv...............................Generated by fx2fp.py
instruction_memory.sv
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object_buffer.sv
ray_core.sv
ray_datapath.sv
ray_datapath_2s.sv ......................Used in Section 5.7.4
register_file.sv
reverse_regslice.sv.........Register slice breaking ready-path
types_pkg.sv...............Type package holding constants etc.

D.2 Verification

Before running simulations of the Verilog code, the ISA-simulator must be run
first. This generates requests, object buffer data and the expected results. Tools
for analysis of results are included.

verification/
active_threads.py ...Tool used in analysing # of active threads
drain_property.sv
dual_core_array_tb.sv
dual_core_tb.sv
feeder_property.sv
fp32_add_tb.sv
fp32_mul_tb.sv
fpu_tb.sv
fx2fp_tb.sv
object_buffer_tb.sv
ray_core_property.sv
ray_core_tb.sv
ray_datapath_tb.sv
responseparser.py.......Used in verifying correctness of results
reverse_regslice_property.sv

D.3 Code generators

These Python scripts are used to generate code.
generators/

assembler.py......................Assembler from Section 5.6.2
fp2uint.py ...........................Used in designing fp2uint
fx2fp.py................Generates Verilog code for fx2fp module
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D.4 ISA-simulator

Running the ISA-simulator simulates the system functionality. It runs the assembly
program in program.txt. During runtime, statistics are generated. Additionally,
requests, results and object buffer contents are logged and saved to verilog/, for
use in Verilog simulations.

isasim/
fpu/..............................Copies of FP-operator models

fp32_add.py
fp32_mul.py

rayman/
color.py
core.py ................................Ray datapath model
cpu.py
isectpoint.py
material.py
memory.py
objbuffer.py
program.txt .............Assembly program (same as Ap. B)
ray.py
raymanager.py..........................Ray manager model
scene.py....................................Reads scene file
sphere.py
uvnframe.py
vector.py

results/.......................Results/statistics are stored here
comparator.py...................Compares results from runs
statsreader.py.........Tool used in generating e.g. Fig. 5.16

run.py......................................Runs the simulator

D.5 Scene files

The sample scene shown in Figure 4.4 is attached. A low-resolution version for
faster simulations is also attached.

scenes/
scene_rgb_simple......................Scene seen in Figure 4.4
scene_rgb_simple_lowres.......100× 100 version of same scene
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D.6 Data structure documentation

Data structure documentation generator by [Gje17]. Updated in accordance with
[Egg16].

doc/
Makefile.............................Generates and opens html
datastructures.html
datastructures.xml................Data structure specification
datastructures.xsl.................................Stylesheet

D.7 FP-operator modelling

These models were used in exploring and verifying the floating-point operators.
They were discussed in Section 5.5. fp32_sqrt.py has not been discussed in the
thesis. It was used in experiments with a dedicated 1√

x
and
√

x-unit.
fpu/

addsub_sign.py......................Generates sign truth table
fp32_add.py ................................Model of FP-adder
fp32_mul.py .........................Model of FP-multiplicator
fp32_sqrt.py.................Experiment with 1√

x
and
√

x-unit
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Coverage report

Coverage Report Summary Data by file

==================================================================
=== File: /home/jonasae/src/rayman/verilog/alu.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 50 50 0 100.0
Branches 48 48 0 100.0
Toggle Bins 131 131 0 100.0

==================================================================
=== File: /home/jonasae/src/rayman/verilog/drain.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 12 12 0 100.0
Branches 4 4 0 100.0
FEC Expression Terms 17 17 0 100.0
Toggle Bins 944 784 160 83.0

==================================================================
=== File: /home/jonasae/src/rayman/verilog/dual_core.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
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---------------- ------ ---- ------ ---------
Stmts 8 8 0 100.0
Branches 2 2 0 100.0
FEC Expression Terms 14 14 0 100.0
Toggle Bins 1182 961 221 81.3

==================================================================
=== File: /home/jonasae/src/rayman/verilog/dual_core_array.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 6 6 0 100.0
Toggle Bins 806 656 150 81.3

==================================================================
=== File: /home/jonasae/src/rayman/verilog/dual_core_array_tb.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 41 41 0 100.0
Branches 12 12 0 100.0
FEC Condition Terms 4 3 1 75.0
FEC Expression Terms 3 3 0 100.0
Toggle Bins 812 530 282 65.2

==================================================================
=== File: /home/jonasae/src/rayman/verilog/fpu.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 29 29 0 100.0
Branches 26 26 0 100.0
FEC Condition Terms 2 2 0 100.0
Toggle Bins 343 343 0 100.0

==================================================================
=== File: /home/jonasae/src/rayman/verilog/fpu/fp32_add.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 169 169 0 100.0
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Branches 371 371 0 100.0
FEC Condition Terms 2 2 0 100.0
FEC Expression Terms 10 10 0 100.0
Toggle Bins 1036 1028 8 99.2

==================================================================
=== File: /home/jonasae/src/rayman/verilog/fpu/fp32_mul.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 22 22 0 100.0
Branches 6 6 0 100.0
FEC Condition Terms 3 3 0 100.0
FEC Expression Terms 7 7 0 100.0
Toggle Bins 694 688 6 99.1

==================================================================
=== File: /home/jonasae/src/rayman/verilog/fx2fp.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 131 29 102 22.1
Branches 130 28 102 21.5
Toggle Bins 64 26 38 40.6

==================================================================
=== File: /home/jonasae/src/rayman/verilog/feeder.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 13 13 0 100.0
Branches 6 6 0 100.0
FEC Expression Terms 18 18 0 100.0
Toggle Bins 458 448 10 97.8

==================================================================
=== File: /home/jonasae/src/rayman/verilog/instruction_memory.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 4 4 0 100.0
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Toggle Bins 124 124 0 100.0

==================================================================
=== File: /home/jonasae/src/rayman/verilog/object_buffer.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 9 9 0 100.0
Branches 6 6 0 100.0
Toggle Bins 236 234 2 99.1

==================================================================
=== File: /home/jonasae/src/rayman/verilog/ray_core.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 93 93 0 100.0
Branches 64 64 0 100.0
FEC Condition Terms 16 16 0 100.0
FEC Expression Terms 4 4 0 100.0
FSMs 82.1

States 9 9 0 100.0
Transitions 14 9 5 64.2

Toggle Bins 1100 922 178 83.8

==================================================================
=== File: /home/jonasae/src/rayman/verilog/ray_datapath.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 71 71 0 100.0
Branches 45 45 0 100.0
FEC Expression Terms 10 6 4 60.0
Toggle Bins 916 826 90 90.1

==================================================================
=== File: /home/jonasae/src/rayman/verilog/register_file.sv
==================================================================

Enabled Coverage Active Hits Misses % Covered
---------------- ------ ---- ------ ---------
Stmts 4 4 0 100.0
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Branches 6 6 0 100.0
Toggle Bins 156 156 0 100.0

TOTAL ASSERTION COVERAGE: 100.0% ASSERTIONS: 64

Total Coverage By File (code coverage only, filtered view): 88.5%
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