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Executive Summary

The field of service automation is progressing rapidly, and increasingly complex tasks are being

automated by robots. An area in service automation that has received a lot of attention is Natu-

ral Language Processing (NLP). In today’s digital age, enormous amounts of data are produced,

and most of this data is in a so-called unstructured form, including text in natural language.

Such text holds information that can be very valuable to businesses, but is seen as time con-

suming and difficult to analyze in the business’ perspective. NLP is the computerized approach

to analyzing and representing human language, and can be utilized for automatic extraction of

relevant information from text.

Since the statistical revolution in the late 1980s, much of the research in NLP has been based

on machine learning. Machine learning enables an NLP systems to automatically learn patterns

of language from text samples, and recognize these patterns in new, unseen text. Machine learn-

ing is particularly applicable in language processing, where the rules often are ambiguous and

difficult to process with manual coding. Most modern systems for NLP use supervised learning

to train the machine learning component. This means that relevant information in text must be

manually labeled in order to use the text to train a machine learning model. By selecting which

information is relevant in text samples from a specific domain, the model can be customized to

achieve the goal in that domain.

The aim of this thesis is to provide insight into how a modern NLP system works, its limi-

tations and potential applications. The theoretical aspect of using machine learning in NLP is

presented with focus on the task of extracting information from text in natural language. A case

is introduced with a design of an application for extracting information from emails from the

shipping industry. The machine learning model is trained with emails which have been labeled

for names of ships, contract types, and ports and dates for chartering. Two machine learning

models are trained in an available NLP system called "Watson Knowledge Studio". The first

model is able to recognize and label some of the variables in new emails, but is relatively inac-

curate. The results are improved in the second version of the model by following the practices

recommended in the discussed theory.
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The results of the case confirm the necessity of large amounts of labeled data for robust

training of a machine learning model. The results also indicate that the text should have lin-

guistic structure to a certain degree in order for the underlying rules for grammar in the NLP

system to be exploited for optimal processing. If the language in the domain does not have suf-

ficient linguistic structure, other rule-based methods should also be considered, in addition to

the machine learning method. A hybrid approach may be the best solution in these cases.

The demonstrated case shows how the customization of a machine learning model can be

based on domain knowledge, rather than coding-skills, when the system uses supervised learn-

ing to train the model. This means that the system can reach a larger target group, with more

people able to take advantage of machine learning in NLP. Based on this, it may be assumed

that this method will have a key role in the future of NLP. With development of support for the

Norwegian language, AVO Consulting can potentially benefit from the advantages of using su-

pervised machine learning in NLP.
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Sammendrag

Service-automatisering som forskningsfelt har utviklet seg mye de siste årene, og stadig mer

komplekse oppgaver kan automatiseres av roboter. Et område innen service-automatisering

som har fått mye oppmerksomhet er Natural Language Processing (NLP). I dagens digitale alder

produseres det enorme mengder data, og mesteparten av denne dataen er i en såkalt ustruktur-

ert form, inkludert tekst i naturlig språk. Slik tekst inneholder informasjon som kan være svært

verdifull for firmaer, men er tidkrevende og vanskelig å analysere, sett fra firmaets perspektiv.

NLP handler om å bruke beregningsmetoder for å analysere og representere naturlig språk, og

kan blant annet brukes til å automatisk hente ut relevant informasjon fra tekst.

Siden den statistiske revolusjonen på slutten av 1980-tallet, har mye av forskningen i NLP

dreid seg om maskinlæring. Maskinlæring gjør det mulig for et NLP system å automatisk lære

seg språktrekk fra teksteksempler, og gjenkjenne disse trekkene i annen tekst. Maskinlæring

egner seg svært godt for prosessering av språk, hvor reglene ofte er tvetydige og vanskelige å be-

handle med manuell koding. I de fleste moderne systemer for NLP blir opplæringen av maskin-

læringsmodellen veiledet. Det vil si at relevant informasjon i teksten må markeres manuelt for

at teksten skal kunne brukes til å trene opp en maskinlæringsmodell. Ved å markere hvilken

informasjon som er relevant i teksteksempler fra et spesifikt domene kan modellen tilpasses for

å oppnå målet i det gitte domene.

Målet med denne avhandlingen er å gi et innblikk i hvordan et moderne NLP system fun-

gerer, dets begrensninger og potensielle bruksområder. Det teoretiske rammeverket rundt bruken

av maskinlæring i NLP presenteres, og fokuserer på utvinning av informasjon fra tekst i naturlig

språk. En case introduseres med et design av en applikasjon for å hente ut informasjon fra

emailer fra skipsmeglingsindustrien. Maskinlæringsmodellen trenes opp med emailer som er

markerte for navn på skip, kontrakt-type, samt havn og dato for utleie. Det utvikles to modeller

i et tilgjengelig NLP system kalt "Watson Knowledge Studio". Den første modellen er i stand til å

gjenkjenne og markere noen av variablene i nye emailer, men er relativt upresis. Resultatene

forbedres i den andre versjonen av modellen ved å følge praksiser anbefalt i den diskuterte

teorien.
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Resultatene av casen bekrefter nødvendigheten av store mengder markert data for robust

trening av maskinlæringsmodellen. Resultatene tyder også på at teksten bør ha en viss språklig

struktur for at de underliggende reglene for grammatikk i NLP systemet skal kunne benyttes

for optimal prosessering. Om språket i domenet er av en lav språklig struktur bør også andre

regelbaserte metoder vurderes fremfor maskinlæring. En hybrid tilnærming kan være den beste

løsningen i disse tilfellene.

Den gjennomførte casen demonstrerer at tilpasningen av en maskinlæringsmodell kan baseres

på kunnskap om domenet fremfor kodeforståelse når opplæringen av modellen er veiledet.

Dette gjør at teknologien kan nå en større målgruppe, med mange flere i stand til å dra nytte av

maskinlæring i NLP. Basert på dette kan det antas at denne metoden for maskinlæring vil spille

en sentral rolle i fremtiden for NLP. Ved utvikling av støtte for det norske språket vil antageligvis

maskinlæring i NLP være noe som AVO Consulting kan dra stor nytte av i sin virksomhet.
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Chapter 1

Introduction

1.1 Background

Companies are achieving productivity gains by using Robotic Process Automation (RPA) to per-

form routine, rule-based service processes. These software robots, often referred to as just

“robots”, can perform repetitive tasks previously carried out by humans, so that humans can

focus on more challenging tasks that require creativity and empathy. If implemented well, RPA

can result in high-performing human-robot teams, in which robots and human employees com-

plement one another. Such teams amplify distinctive human strengths while simultaneously

enabling large economic gains. In a study of early adopters of RPA systems carried out by Lacity

and Willcocks (2016), participants report a return on investment of 30% or more during the first

year of implementation. In addition to the financial benefits, robots can increase the speed,

quality and availability of service. The reason for this is that robots can execute structured tasks

quickly and accurately, without the need to rest or sleep. The robotic workforce is also easily

scalable to the work-load, with humans filling in the gaps that require on-the-fly problem solv-

ing, and hands-on customer care.

RPA is currently being used to effectively automate lower-level tasks that involve structured

data and defined outcomes. However, the field of service automation is progressing rapidly, and

as more and more companies see the value of RPA and adapt it in their processes, the demand

for automation of higher-level tasks increases. Higher-level tasks involve unstructured data and

typically require cognitive automation tools to automate. It has been estimated that 80 percent

1
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of business-relevant information originates in unstructured form, primarily text (Shilakes and

Tylman, 1998). Unstructured data is vastly underutilized due to challenges of analyzing and

using it. Exploiting this source of information is an essential component in ensuring enterprise

competitiveness. In order to further explain what is meant by unstructured data, a detailed

definition is given in Section 2.1.

One of the tools that is effectively being used to automate higher-level tasks is called Ma-

chine Learning (ML). Implementation of ML allows the computer to learn from sets of data,

without being explicitly programmed, enabling what is known as cognitive automation.

This thesis includes research in one of the applications of cognitive automation, namely

Natural Language Processing (NLP). Widely used literature on NLP include Jurafsky (2000) and

Manning et al. (1999, 2008). Research on the subject is regularly published in the annual pro-

ceedings of the Association of Computational Linguistics (ACL) and its European counterpart

EACL.

Information Extraction (IE) is an area of NLP that has been gaining increasing recognition

for its capability and applicability in many tasks concerned with analysis of unstructured data.

Publications from the Message Understanding Conferences (1978-1997) describe the first rule-

based approaches to IE (DeJong, 1982; Appelt et al., 1993). The publications; Leek (1997), Mc-

Callum et al. (2000) and Lafferty et al. (2001) describe some of the later developed, trainable

algorithms of ML, which are currently used in many IE systems.

Based on the publications mentioned and other resources, this thesis describes the theory

of NLP and the subcategory of IE. The remaining problems to be researched is how ML can be

implemented in a system for IE, how well the resulting system performs, its applications, and

how the ML approach compares to rule-based approaches in NLP.
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1.2 Problem Description with Objectives

This thesis is a feasibility study of the practicality of using modern systems for natural language

processing. Its main goal is to give AVO Consulting and the department of mechanical and in-

dustrial engineering at NTNU insight in the theory and application of machine learning in nat-

ural language processing. This paper presents:

• Relevant background.

• A proposal of design of an example system relevant to the firm’s processes.

• Implementation of proposed system.

• Experimentation with available data.

• An assessment of the quality of obtained system.

1.3 Limitations

The development of cognitive robots able to perform increasingly more complex tasks has led

to widespread skepticism and fears about how many types of employment will fare in the future.

The media is fueling the fear with headlines like “Robots will take our jobs - and we’re not ready

for it” from the Guardian (Shewan, 2017), while some headlines like “Automation can actually

create more jobs” from the Wall Street Journal (Mims, 2016) present a more optimistic outlook

on the future. What most people agree on is that the labor market will transform due to the de-

velopment of artificial intelligence. Today’s rapid adaptation of robots across several industries

suggests that the transition is inevitable. It is important to consider how humans and robots

can cooperate in a labor market with an increasing number of robots and applicable tasks. This

dilemma is not a focus of this thesis, due to the scope of the study.

The implementation of the proposed design of a system is limited by the time and data avail-

able. The system implemented in Chapter 3 is mainly designed to demonstrate how the tech-

nology can be used in a real scenario.
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1.4 Approach

Publications on the subjects of NLP and ML are studied, and the theory considered relevant to

the case is presented in the thesis. A design of an example system is proposed and implemented

in IBM’s service; Watson Knowledge Studio. This platform incorporates ML, as well as rule-

based tools for processing of natural language, and is suitable for the demonstration purposes

of the case. The proposed system is implemented for processing of emails from the shipping

industry. This data is chosen, based on the supported languages of the application, and the rel-

evance to AVO Consulting’s processes. Two different approaches are compared, and the quality

of the obtained system is assessed by evaluation techniques described in the theory.

1.5 Structure of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives an introduction to some of the

terms and concepts in ML and NLP. The chapter delimits one of the areas in NLP, namely IE.

Relevant algorithms for training ML models for IE and typically used methods for analyzing the

performance of the models are described. Chapter 3 outlines the motivation behind the case

work, and presents the procedure of implementation and the resulting system. In Chapter 4 the

results of the case are summarized and discussed, and conclusions are drawn on the basis of the

discussed theory.



Chapter 2

Theoretical Framework

2.1 Unstructured Data

Unstructured data refers to information that either does not have a pre-defined data model, or is

not organized in a pre-defined manner. Unlike structured data, it is not arranged in a relational

database system and is therefore not readily searchable by simple, straightforward search oper-

ations. Examples of unstructured data may include books, journals, emails, metadata, images,

audio and video. The data can be categorized as either textual or non-textual. The topic of this

thesis concerns the unstructured textual data of natural language.

The term, unstructured data, may seem to imply complete randomness with no inherent

form. This is due to imprecision of the term. In fact, unstructured data incorporates structure

to a certain degree in one of three ways:

1. Structure can be implied, even if not formally defined.

2. Data with some form of structure may still be characterized as unstructured, if its structure

is not helpful for the task at hand.

3. Unstructured data might have some structure, sometimes referred to as semi-structured,

or even be highly structured, but in ways that are unanticipated or unannounced.

Natural language incorporates structure in the form of grammatical rules. However, these

rules often have accepted variations, and the structure of language is often influenced by non-

5



6 CHAPTER 2. THEORETICAL FRAMEWORK

homogeneous grammatical rules and errors of individuals. Probabilistic, or non-categorical

models provide suitable methods for describing structure in variable systems like in natural lan-

guage. The probabilistic models of ML are described in Section 2.5.

Unstructured data is less understood and utilized by companies than the structured coun-

terpart. Unstructured data can hold information that may be useful to businesses. In a report

from the Aberdeen Group (Michael, 2016), businesses using unstructured data were twice as

likely to be satisfied with their data quality and usability.

Unstructured data can be valuable for decision-making in many processes, such as customer-

centric processes, where decisions are made on the basis of interactions between different parts.

Decisions requiring unstructured data typically involve time consuming, manual capture work.

To confidently automate processes that involve this type of decision-making, information has

to be extracted from unstructured data. Tasks involving unstructured data are best handled by

cognitive automation tools. The different service characteristics in each of the two realms of

automation are made evident in Table 2.1.

Table 2.1: Service Characteristics (Lacity and Willcocks, 2016).

Realm of robotic
process automation

Realm of cognitive
automation

Data Structured Unstructured

Process Rules-based Inference-based

Outcome Single correct answer Set of likely answers

Robotic process automation tools
are designed to be used by subject
matter experts to automate tasks
that use rules to process strucutred
data, resulting in a single correct
answer - in other words,
a deterministic outcome

Cognitive automation tools
are designed to be used by
IT experts to automate tasks
that use inferences to interpret
unstructured data, resulting
in a set of likely answers,
as opposed to a single
answer - in other words,
a probabilistic outcome.
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2.2 Natural Language Processing

Natural Language Processing (NLP) is the computerized approach to analyzing human lan-

guage. A detailed definition of the term is proposed in Liddy (2001);

Natural Language Processing is a theoretically motivated range of computational

techniques for analyzing and representing naturally occurring texts at one or more

levels of linguistic analysis for the purpose of achieving human-like language pro-

cessing for a range of tasks or applications. (p. 2)

Elements of this definition can be further detailed. Firstly, ‘naturally occurring texts’ includes

both oral and written language. This thesis deals with text in the form of written language, but

similar techniques and theories can be applied to the analysis of oral language by utilizing a

system for speech recognition (Allen, 2003a).

‘Human-like language processing’ reveals that NLP is considered a discipline within Arti-

ficial Intelligence (AI). While some of the functions of NLP depend on a number of other dis-

ciplines, it is appropriate to consider NLP an AI discipline, as it strives for human-like perfor-

mance.

‘For a range of tasks or applications’ points out that NLP is not usually considered a goal in

and of itself, but rather the means for accomplishing a particular task. NLP is utilized for several

tasks, including Information Extraction (IE), Machine Translation (MT), Question-Answering,

etc.
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2.2.1 Syntactic Ambiguity

NLP is considered a complex field in computer science. To understand human language is to

understand not only the words, but how the words are linked together to create meaning. The

ambiguity of language is what makes NLP a difficult problem for computers to master. Natural

language involves five forms of ambiguity, according to Allen (2003b):

• Simple lexical ambiguity (e.g. “duck” can be a noun (the animal) or a verb (to avoid some-

thing thrown)).

• Structural or syntactic ambiguity (e.g. in “I saw the man with a telescope,” the telescope

might be used for the viewing or might be held by the man being observed).

• Semantic ambiguity (e.g. “go” as a verb has well over 10 distinct meanings in any dictio-

nary).

• Pragmatic ambiguity (e.g. “Can you lift that rock?” may be a yes/no question or a request

to lift the rock).

• Referential ambiguity (e.g. in “Jack met Sam at the station. He was feeling ill. . . ,” it

is not clear who is ill, although the remainder of the sentence might suggest a preferred

interpretation).

In the last decades, the field of NLP has been progressing rapidly. Current NLP systems tend

to implement modules for processing of more forms of ambiguity than before. This can be at-

tributed to the increased availability of large amounts of electronic text, increased computa-

tional speed and memory, and the advent of the internet.
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2.2.2 Brief History of Natural Language Processing

The earliest research in NLP dates back to the late 1940s, with translation being the first computer-

based application related to natural language. The idea was called Machine Translation (MT),

and was brought to general notice in Weaver’s memorandum, simply called “Translation”, in

1949. The early MT systems used dictionary-lookup for appropriate words for translation, and

then reordered the words to fit the word-order rules of the target language. This type of system

did not take any forms of ambiguity of language into account, and therefore produced relatively

poor results. The apparent failure made researchers realize that the task was a lot harder than

anticipated, and relatively little further research in MT was conducted over the next few decades.

In 1988, at the Second TMI conference at Carnegie Mellon University, IBM’s Peter Brown

presented a new approach to MT. Instead of using linguistic rules to translate, this system used

statistical models whose parameters were derived from the analysis of text corpora (Somers,

1998). By looking at several possible solutions and assigning probabilities, statistical approaches

succeeded in dealing with many generic problems in computational linguistics, such as word

sense disambiguation (WSD), part-of-speech (POS) identification, parsing, etc., and became

the standard throughout NLP (Liddy, 2001).

The “statistical revolution” in NLP laid the foundation for the newest technological advance-

ment in NLP, namely Machine Learning.
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2.3 Machine Learning

Modern NLP systems typically incorporate Machine Learning (ML) algorithms. Instead of hand-

writing large sets of rules for NLP, modern systems can rely on ML to automatically process

text. The algorithms are trained to learn the patterns of language from a set of examples, like

books, news articles or other types of text corpus. Systems based on ML algorithms have many

advantages over systems based on hand-produced rules:

• Automatic learning procedures can make use of statistical inference algorithms. These

algorithms are able to deal with unfamiliar input, like words or structures that have not yet

been seen, and erroneous input, like misspelled or accidentally omitted words. While this

also is possible to achieve by hand-writing rules that make soft decisions, it is considered

extremely difficult, error-prone and time-consuming.

• The learning procedure of ML automatically focuses on the most commonly occurring

cases, whereas when writing rules by hand it is often not obvious where the effort should

be directed.

• Systems based on automatically learning rules can be made more accurate by supplying

more input data in contrast to systems based on hand-written rules, which can only be

made more accurate by increasing the volume and complexity of rules. This makes ML

systems more scalable than rule-based systems.

• ML approaches are generally more robust and domain-independent than rule-based ap-

proaches due to the knowledge of the corpus required to write robust rules (Joachims,

2002).

Data gathering and preparation is a vital part of the ML process, since the data is used to

train the model and thus determines how the model will perform. It is important to have a data

set that accurately represents the language of the corpus that is to be processed. The set for

training will typically require some form of curating, for example, by removing text in different

languages or parts of the text that are unique to the training set. The final selection of examples

is used as input to train the ML model. The output of the model will perform as accurately as
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possible on the training set, and if the set is representative, the model is able to perform accu-

rately on sets of new, unseen data. Overfitting can occur when a model learns the detail and

noise of the training data to the extent that it negatively impacts the performance of the model

on new data (Hawkins, 2004). Overfitting can be avoided by testing the model’s ability to gen-

eralize by evaluating its performance on a set of data not used for training, commonly referred

to as test data. Underfitting occurs when the model cannot capture the underlying trends of the

data, and often results in an extensively simple model. Figure 2.1 shows the correlation between

the prediction error and the complexity of a model. The global minimum for validation error

indicates the optimal degree of training; where the best predictive model is obtained.

Figure 2.1: Learning Trade-offs

2.3.1 Ways of Learning

There are essentially two ways of training an ML model for NLP; unsupervised learning and

supervised learning. Unsupervised learning is the task of inferring a function to describe a hid-

den structure in unlabeled data. The fact that the data is unlabeled means that data used for

training has no classification, and that the resulting model can not be evaluated against a man-

ually labeled set. Unsupervised learning is considered a complex task in data science, but if

implemented successfully in NLP, it can mimic the way humans learn language at early ages.

Latent Dirichlet Allocation (Blei et al., 2003), and Skip-Gram models (Mikolov et al., 2013) are

examples of unsupervised learning algorithms that have been shown to work well for problems
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in NLP. Generally, the algorithms used for unsupervised learning involve grouping objects that

share similarities into clusters to discover patterns. How the scores for similarity are applied to

objects is what separates the different algorithms.

Given the abundance of labeled text data and the challenge of labeling it, unsupervised

learning techniques, and semi-supervised learning techniques (using a combination of labeled

and unlabeled data) have gained considerable attention in the field of NLP. The techniques can

model patterns which are not obvious to people, such as the ambiguous form of natural lan-

guage. However, despite the great deal of research in unsupervised learning, practical ML ap-

proaches to NLP are almost exclusively supervised (Klein, 2005). When it comes to domain-

specific language in the industry, supervised learning is the preferred method. In contrast to

unsupervised learning, supervised learning relies on hand-labeled corpora for training. In re-

turn, this labeled data can be used as a "gold standard" for measuring accuracy of the labels

generated by the ML model. New gold standards can be defined by labeling domain-specific

data, which makes the system more adaptable than an unsupervised one. Huang et al. (2014)

states that supervised NLP tasks with sufficiently labeled, domain-specific training data yield

state-of-the-art results.

Popular algorithms used in supervised learning for NLP include logistic regression, Naïve

Bayes, Support-Vector Machines (SVMs), k-Nearest Neighbors and Markov Models. These algo-

rithms all involve some form of statistical inference, which is a crucial part of capturing linguis-

tic knowledge. The key advantage of probabilistic models is their ability to solve the many kinds

of ambiguity problems; almost any problem in NLP can be recast as “given N choices for some

ambiguous input, choose the most probable one” (Jurafsky, 2000). The algorithms for super-

vised learning generate features from the input data, and soft, probabilistic decisions are made

based on attaching real-valued weights to each feature. Thus, the model can express the relative

certainty of several possible answers, and chose the most probable.
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2.4 Information Extraction

The task of Information Extraction (IE) is to derive factual structured information from unstruc-

tured data. This involves presenting relevant parts of unstructured data in a format that is more

easily machine readable. For instance, consider as an example the extraction of information

on traffic incident reports, where one is interested in identifying the vehicles involved, the type

of incident, and the time and date of the incident. By labeling words (also referred to as an-

notating) in the text which are significant to the reader, the relevant information can readily be

extracted. Figure 2.2 shows an excerpt of a traffic incident report and the structured information

derived from that text.

Figure 2.2: Information extraction from a traffic incident report (Sinha and Boyd, 2016).

Nowadays, a significant part of information is transmitted through unstructured, digital doc-

uments, e.g., online news, government documents, corporate reports, medical records, and

social media communication. Extracting information from these documents requires tedious

search operations. Recent advances in IE provide dramatic improvements in the automatic

conversion of the flow of raw textual information into structured data. For this reason, IE is

increasingly being deployed in commercial applications in several domains, including the fi-

nancial, legal, medical and security domain. Furthermore, IE can constitute a core component

in many other NLP applications, such as Machine Translation, Text Summarization, Question

Answering, etc. (Piskorski and Yangarber, 2013). There are several subtasks of IE required to

derive structured information. Typical subtasks include:
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• Named Entity Recognition (NER) is a subtask of IE which involves locating and classifying

named entities in natural language into pre-defined categories. The procedure consists of

taking an unannotated block of text and producing an annotated block of text that high-

lights the names of entities. A named entity can include every part of a text that is easily

distinguishable, such as names of persons, organizations and locations, and expressions

of dates, quantities, etc.

• Co-reference Resolution (CO) requires the identification of multiple mentions of the same

entity in a text. In the sentence “John said he would come”, "John" and "he" refer to the

same person, and should be coreferenced for this entity type. CO is an important step for

natural language understanding for higher level tasks, like IE.

• Relation Extraction (RE) is the task of detecting and classifying relationships between

entities identified in the text. For example, in the sentence “This two-vehicle crash oc-

curred in July 2014 in the state of Colorado” a relationship between the two mentions

"two-vehicle crash" and "the state of Colorado" may be classified as the location of the

incident. Note that the set of relations available in a task is predefined and fixed as part of

the specification of the task.

• Part-of-Speech (POS) tagging is the task of assigning lexical categories such as verb, noun

or adjective to words in a sentence. The POS tag of a word depends on both its defini-

tion and its context, i.e., its relationship with adjacent and related words. POS tagging is

commonly used as an intermediate processing stage for the task of IE. For languages with

substantial amounts of labeled data such as English, the performance of POS tagging has

reached very high levels for tasks like IE (Abend et al., 2010).

• Parsing is the process of identifying the grammatical structure of a sentence. Parsing is

done by converting a sentence into a tree structure whose leaves hold the POS tags to

show how the words are combined to make the sentence. Statistical parsers, tools that

automatically parse sentences, have long been used as the backbone for IE (Chieu et al.,

2003; Miller et al., 2000).
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2.5 Algorithms in Information Extraction

The subtasks of IE, mentioned in the previous section, are concerned with the problem of classi-

fication. NER, CO an RE are needed to create a solid structure of entities from the text, while POS

tagging and Parsing are needed to find the linguistic structure of the text. Algorithms of an ML

model can be trained to automatically perform the relevant subtasks and classify the contents

of documents. To train the algorithms, relevant entities and linguistic structure are manually

labeled in a set of documents. The labeled set is then allocated for training the algorithms. IE

systems are typically used in domains with refined tasks, which means that the corpus requires

labels specific to the domain-language. By manually labeling the corpus, it contains the correct

labels for each input, and can be used as a gold standard for training the ML algorithms. This

process is called supervised classification, and its framework is shown in Figure 2.3.

Figure 2.3: Supervised Classification (Bird et al., 2009).
(a) During training, features from the training set and their associated labels are fed into the ML
algorithm to generate a model. (b) During prediction, features from the new data is fed into the
model, which generates predicted labels.

The feature extractor uses a function that can take account of relations between both data

and labels, and can be any real value. The most commonly applied feature function is the in-

dicator function, which outputs 0 or 1 depending on absence or presence of a feature. The fea-

tures can for instance be capitalization of words, word-ending, or whether the word has been

observed with a label in the training data.
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In most IE systems, the ML model is trained using sequence classifiers. These algorithms

have the advantage of being able to classify several inputs simultaneously. The most common

sequence classifiers for IE tasks are Hidden Markov Model (HMM), Maximum-Entropy Markov

Model (MEMM), and Conditional Random Field (CRF) (McCallum et al., 2000). These sequence

classifiers are algorithms which count occurrences of features and assign probabilities for cer-

tain sequences. For example, in the case of POS tagging, the word following “the” may be ob-

served as a noun 40% of the time, an adjective 40% of the time, and a number 20% of the time

in the training data. By learning this, the system can decide that the word “can” in the context

“the can” is more likely a noun than a verb. This is an example of a sequence of two words, but

more advanced, higher-order algorithms learn the probabilities not only of pairs, but triples or

even larger sequences. In the case of NER, the likelihood of, for example, the name of a per-

son to appear in a sequence of words can be calculated using these sequence classifiers. The

relationships between some of the algorithms commonly used in IE are illustrated in Figure 2.4.

Figure 2.4: Diagram of the relationships between naive Bayes, logistic regression, HMMs, linear-
chain CRFs, generative models, and general CRFs (Sutton and McCallum, 2006).
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One difference between the three most commonly used algorithms in IE is that HMM is a

generative sequence model, while MEMM and CRF are discriminative sequence models. This

means that if X is the feature and Y is the label, HMM finds parameters to maximize the prob-

ability P (X ,Y ), while MEMM and CRF find parameters to maximize the probability P (Y |X ).

Unlike HMM, MEMM and CRF do not need to model the probability P (X ), and therefore do not

assume that the observed features Xi are conditionally independent. This allows for many more

types of features to be used in MEMM and CRF than HMM. HMM and CRF have the advantage

of taking future observations into account when labeling features Xi , while MEMM makes deci-

sions at each step, and can potentially suffer from the "label bias problem". The label bias makes

the algorithm ignore observations in states with low-entropy transition distribution. CRF is a

globally normalized, decriminative sequence model which incorporates the advantages from

both HMM and MEMM, but can in return suffer from a much more expensive training process.

Naive Bayes is the non-sequential counterpart to HMM and is described in Section 2.5.1 to pro-

vide a general understanding of how classification algorithms work.
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2.5.1 Naive Bayes

The naive Bayes model is one of the most important algorithms for text classification and was

first applied to IE in Freitag (1997, 2000). Naive Bayes methods are based on applying Bayes’

theorem with the “naive” assumption of independence between every pair of features. It essen-

tially uses a bag-of-words representation of text, in which the ordering of the words appearing

in the text is ignored. If a word does not occur in a document, the corresponding element in

the bag-of-words representation of the document is typically zero. Otherwise, the element is

assigned a real-valued weight that indicates the importance of the word in the document.

In an ML classification problem with a given class variable c (also referred to as a label), the

main aim of the naive Bayes algorithm is to calculate the conditional probability of an object

with a feature vector x1, x2, ..., xn belonging to that particular class. Bayes’ theorem states the

following relationship:

P (c|x1, x2, . . . , xn) = P (x1, x2, . . . , xn |c)P (c)

P (x1, x2, . . . , xn)
. (2.1)

In order to make the estimate P (x1, x2, . . . , xn |c), naive Bayes makes the simplifying assump-

tion that each occurrence of a feature in a document can be considered as evidence of class

membership, independent of any other feature occurring in the same document. With the naive

independence assumption, it is stated that

P (x1, x2, . . . , xn |c) =
n∏

k=1
P (xk |c), (2.2)

and since P (x1, x2, . . . , xn) is constant given the input, the following classification rule can be

derived from Bayes’ theorem:

P (c|x1, x2, . . . , xn) ∝
n∏

k=1
P (xk |c)P (c) (2.3)

The Maximum A Posteriori (MAP) estimation can then be used to estimate P (c) and P (x1, x2, . . . , xn |c)

from the training data and assign the most probable class cM AP using the formula:

cM AP = argmax
c∈C

P (x1, x2, . . . , xn |c)P (c) (2.4)
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The estimate of P (c) gives prior probability of each label, which is determined by checking

frequency of each label in the training set. P (x1, x2, . . . , xn |c) gives the contribution from each

feature. When combined, the likelihood estimate for each label can be calculated. The label

whose likelihood estimate is the highest is then assigned to the input value. This is demon-

strated in a topic classification example illustrated in Figure 2.5, which uses the naive Bayes

classifier to predict one of three topics for documents; automotive, sports or murder mystery.

Figure 2.5: Calculating label likelihoods in topic classification with naive Bayes (Bird et al., 2009).

In the example training corpus, most documents are automotive, so the prior probability

predicts the "automotive" label for new documents. Features in the new documents also con-

tribute to the final likelihood estimate of the document label. The feature contribution is given

by the probability of features occurring in each of the three types of documents in the training

corpus. For instance, the word "run" may be defined as a feature that occurs in 12% of the sports

documents, in 10% of the murder mystery documents, and in 2% of the automotive documents.

If this word occurs in a new document, the likelihood score will be multiplied by 0.12 for the

sports label, 0.1 for the murder mystery label, and 0.02 for the automotive label. The overall

effect will be to reduce the likelihood score of the murder mystery label slightly more than for

the sports label, and to significantly reduce the score of the automotive label with respect to the
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other two labels.

A likelihood score can be thought of as an estimate of the probability that a randomly se-

lected document from the training set would have both the given label and the set of features,

assuming that the feature probabilities are all independent. The naive independence assump-

tion is unrealistic, as features are often highly dependent on one another. Despite this rather

optimistic assumption, naive Bayes classifiers often outperform far more sophisticated alterna-

tives. The reasons are related to Figure 2.6; although the individual label density estimates may

be biased, this bias might not hurt the posterior probabilities as much, especially near the de-

cision regions. In fact, the algorithm may be able to withstand considerable bias for the savings

in variance that the “naive” assumption earns.

Figure 2.6: The density estimates of labels might have interesting structure (a), that disappears
when the posterior probabilities are formed (b) (Hastie et al., 2009).

Naive Bayes classifiers have worked quite well in many real-world situations, for instance

in topic classification and spam filtering. The naive independence assumption makes the al-

gorithm easy to apply, and it requires less data to get a good result in many cases. However,

because of the assumption, there are certain problems that Naive Bayes cannot solve. When it

comes to tasks that have higher dependency between features, like most of the subtasks of IE,

sequence classifiers are preferred.
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2.6 Evaluation in Information Extraction

In order to decide whether a classification model is accurately capturing a pattern, the model

must be evaluated. The result of this evaluation is important for deciding how trustworthy the

model is, and for what purposes it can be used. In addition, the evaluation can be an effective

tool for guiding the process of making future improvements to the model.

2.6.1 The Test Set

Most evaluation techniques in IE use an allocated test set consisting of labeled data to evaluate

the classification model. Thus, the performance of the model can be evaluated by comparing

the labels in the test set created by people, to the labels generated by the model. A high number

of generated labels identical to the manually created labels indicates that the model is perform-

ing well, and classifies to expectations. It is vital that the corpus of the test set is different from

that of the training set: if the training set is simply re-used for testing, the evaluation results

would imply high performance, independent of the model’s performance on new, unseen data.

When building the test set, there is often a trade-off between the amount of data available

for testing and the amount available for training. The recommended distribution of data for

training and testing varies from 60%/40% to 90%/10%. Generally, the training set should be

larger than the test set to prioritize the "real" accuracy of the model, and the test set should

be large enough to ensure a satisfactory minimum occurrence of all labels. This means that

classification tasks with a large number of defined labels, or infrequent occurrences of labels,

require larger test sets than classification tasks with fewer or more frequently occurring labels.

Additionally, if the test set contains many closely related instances, such as instances drawn

from a single document, then the size of the test set should be increased to ensure that this lack

of diversity does not skew the evaluation results.

Optionally, a portion of the labeled documents can be set aside as a blind set. The point of

using a blind set is to prevent the accuracy from being tainted by, for example, making changes

based only on observed labels in processed documents. While the test set should be studied in

detail to assist in iterative tuning of the model, the blind set should only be an indicator of the

overall performance and not be used to influence the model.
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2.6.2 Precision and Recall

To precisely evaluate classification models, a set of parameters are conventionally employed

(Bird et al., 2009):

• True Positives (TP) are relevant items that were correctly identified as relevant.

• True Negatives (TN) are irrelevant items that were correctly identified as irrelevant.

• False Positives (FP), or Type I errors, are irrelevant items that were incorrectly identified

as relevant.

• False Negatives(FN), or Type II errors, are relevant items that were incorrectly identified

as irrelevant.

These parameters allow for calculation of precision (eq. 2.5) and recall (eq.2.6):

pr eci si on = T P

(T P +F P )
(2.5)

r ecal l = T P

T P +F N
(2.6)

Precision indicates how many of the items that were identified were relevant, while recall

indicates how many of the relevant items were identified. Thus, precision and recall can be seen

as measures of correctness and completeness, respectively (Piskorski and Yangarber, 2013). The

F -measure gives the harmonic mean of precision and recall, and the general formula is defined

as:

F = (1+β2) · pr eci si on · r ecal l

(β2 ·pr eci si on)+ r ecal l
(2.7)

In the general formula for the F-measure,β is a non-negative value used to adjust the relative

weighting of precision and recall. Aβ-value of 1 gives equal weighting to precision and recall and

is referred to as the "F 1 score". β-values lower than 1 give increased weight to precision, while

β-values higher than 1 give increased weight to recall.
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Case: IE from Shipping Industry Emails

3.1 Motivation

Unstructured text can be mined for specific information that is unique to an organization’s in-

dustry or business needs. NLP is a core function for parsing and identifying significant words

in language, and IE is a subcategory of NLP concerned with obtaining useful information in a

structured format. Being able to customize the IE system is essential to realize the full value of

IE in domain specific processes.

A large scope of tasks in IE can be accomplished by the use of carefully constructed reg-

ular expressions (regexes). Examples of entities amenable to such extractions include email

addresses, social security numbers, gene and protein names, etc. These entities share the char-

acteristic that their key features are expressible in standard constructs of regular expressions.

Manually created regexes remain a widely adopted practical solution for IE (Fukuda et al., 1998;

Zhu et al., 2007). Similarly, manually created, or pre-existing lists (referred to as dictionaries)

can be used to extract entities with an anticipated occurrence.

With manual, rule-based approaches to IE, like regexes and dictionaries, systems have been

able to extract entities with relatively high accuracy for certain tasks. The task of extracting in-

formation from shipping industry emails, addressed in this case, has so far been handled with

regexes. Based on feedback from shipbrokers using such systems, an accuracy of 85% is esti-

mated for the systems’ performance (P. Hafsaas, personal communication, May 11 2017). The

potential for improved accuracy with the help of ML is evaluated.

23
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A system for IE which makes use of ML is employed with the goal of assessing the practicality

of the system in processes relevant to AVO Consulting.

3.2 Method

IBM Watson Knowledge Studio (WKS) is a cloud-based application that can be used to auto-

matically extract information from text with the help of ML. A set of documents with annotated

information of interest is needed for the supervised training of an ML model. Documents are

annotated by people in the Ground Truth Editor (GTE). The tool is designed to be easy to use,

so that the development of new systems relies on subject matter knowledge, rather than coding

skills. Annotated documents can be used to train a custom ML model to automatically process

the language of the domain.

WKS has linguistic analysis features incorporated in the software, making the system able

to recognize basic rules of natural language, prior to fitting the ML model to a domain. The

linguistic features include tokenization, POS tagging, parsing, sentence segmentation and se-

mantic role labeling. These features make it possible to apply IE to new domains quickly and

accurately, since the system only requires documents with annotations for entities, relation-

ships and co-references of interest to train the ML model.

WKS currently supports nine languages; English, German, Japanese, Arabic, French, Korean,

Spanish, Italian and Brazilian Portuguese. Norwegian is not supported, but several companies

are showing interest in the support for this language (Hoemsnes, 2017; Staines, 2016). During

the Workshop on WKS, Mark Rice stated that support for the Norwegian language would re-

quire development of a new lexical dictionary and a new POS tagging system, while the same

algorithms used by other supported languages, using the Latin alphabet, can be used for tok-

enization and sentence segmentation (personal communication, March 29, 2017).

WKS has two environments; UIMA and SIRE. The tools of these environments, and the rec-

ommended practices for using them, are described on the basis of the WKS documentation

(IBM, 2016).
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3.2.1 Unstructured Information Management Architecture (UIMA)

A valuable option of WKS is the opportunity to use rule-based tools in combination with ML,

thereby benefitting from the advantages of both techniques. In WKS, the environment for build-

ing rules is called Unstructured Information Management Architecture (UIMA) and consists of

three rule-based tools; rules, dictionaries and regexes. These tools can be used to pre-annotate

documents with entity mentions and potentially accelerate the work of manual annotation. The

tools are refined in the UIMA interface, as shown in Figure 3.1.

Figure 3.1: The UIMA interface. Rules, dictionaries and regexes can be created in the settings
window. The tools’ functions are refined in the editor window. Classes are defined in the class
window.

During rule creation, classes are used to represent information. Classes are basically the

same as entity types. The difference is that classes can have an intermediate form, which allows

for more abstract annotations and the combination of several classes to define a more compre-

hensive class. For example, as shown in Figure 3.1, rules can be used to recognize a date. One

way to do this is by creating three classes; Day, Month and Year, and then use these to define a

fourth class, Date. Conditions of the rules may include the determiner "the" appearing in front

of the class Day, capitalization of the class Month, and the class Year consisting of four numeric

characters, etc. To use this rule annotator, the Date class must be mapped to a corresponding
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entity.

The three tools available in UIMA are described:

• Regexes use a sequence of characters that defines a search pattern to find classes in the

document. The Regex tool that is included in UIMA recognizes expressions that follow

the "java.util.regex.Pattern" syntax. Classes are later mapped to entities, and the rule an-

notator can create annotations for entity mentions found in the document, based on the

defined regexes.

• Rules can be used to capture patterns that occur in documents and convey information

about underlying classes. Rules are different from regexes, since they offer the option of

using POS tags in their conditions to regularly find classes. For example, a condition for

a class, Action, may be that is has a verb POS tag. Classes are later mapped to entities,

and the rule annotator can then create annotations for entity mentions found in the doc-

ument, based on the defined rules.

• Dicitonaries can be used find classes in documents that match terms in the dictionary.

A dictionary annotator associated with an entity type can be used to pre-annotate these

mentions in documents. Dictionaries can also be used to influence the ML training heav-

ily, as the algorithms have a strong disposition to label terms according to the dictionaries,

but are not totally deterministic. Dictionaries are most effective when used as indicators

for manual annotation.
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3.2.2 Statistical Information and Relation Extraction (SIRE)

SIRE refers to the ML environment of WKS. The SIRE toolkit provides trainable NER, RE and CO

components. The components are trained with data that has been manually annotated in the

GTE. Manual annotation consists of identifying and tagging entities mentioned in documents,

mentions that reference the same entity, and the relationship between entities. The tags used

for entities and relationships are first defined in the type system.

Optionally, subtypes and roles can be used to enable more precise entities. By providing

subtypes, the ML model can be trained to differentiate between different mentions of the same

entity. Roles can be used to differentiate between the literal meaning of a mention, and the

actual role it plays in the sentence. For example, in the phrase “the White House vetoed the

bill” the White House can be labeled as an entity; FACILITY, with a role of ORGANIZATION. This

entity is defined in Figure 3.2.

Figure 3.2: An entity type created in the type system. This entity has defined roles and subtypes.

The challenge of using subtypes and roles for more precise entities is that it requires more

training data with examples of the use of these tags. Without sufficient examples of subtypes

and roles in the training data, the ML model will not be able to distinguish between these types

of entities.

By learning the patterns of the manual annotations, new annotations can automatically be

added by the ML model to large sets of new documents. The trained components use maximum

entropy models like MEMM to automatically add these annotations.
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When documents have been annotated in the GTE, WKS automatically allocates documents

in three sets of 70% testing data, 23% test data and 7% blind data. This ratio can be adjusted

to fit a specific task. The performance of a trained ML model can be evaluated by looking at

the results of the annotated test data and blind data. The statistics window in SIRE provides the

precision, recall and F1 score of the ML annotator component, as well as the following metrics:

• Percentage of total annotations shows how many words were annotated with a given en-

tity type or relation type out of the total number of words that were annotated as any

entity type or relation type in the test document set. This value gives an indication of how

prevalent one type of mention is, compared to the other types in the ground truth.

• Percentage of corpus density (by number of words) shows the number of words that were

annotated with a given entity type or relation type out of the total number of words in the

test document set. This value gives an indication of how prevalent mentions of this type

are compared to all of the words in the domain documents.

• Percentage of documents that contain the type shows how many documents contain a

given entity type or relation type. This value gives an indication of how well the documents

represent the domain, and a low percentage for key entity types or relation types is a sign

of under-representation of that particular type in the documents.

In addition to these metrics, SIRE provides the possibility of comparing annotations in the

test data, generated by the ML model, to the annotations added to the test data in the GTE. This

comparison is presented in a confusion matrix. False positives (FP) are entity mentions that

were incorrectly annotated as another entity type, and are listed in the column of the incorrectly

annotated entity type in the confusion matrix. False negatives (FN) are entity mentions that

were missed by the ML model, and are listed in the column labeled "O" in the confusion matrix.
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The following confusion matrix example shows results of an ML annotator run on docu-

ments that deal with traffic incidents. There are two defined entity types; MANUFACTURER

and MODEL.

Table 3.1: Confusion Matrix Example

Entity Types MANUFACTURER O MODEL

MANUFACTURER 515 44 5

O 0 800 2

MODEL 0 21 377

In this example, the ML model correctly annotates 515 mentions of the MANUFACTURER

entity, while 44 mentions are missed, and 5 mentions are incorrectly annotated as mentions of

the MODEL type. 800 words are correctly left unannotated, while 2 words that should not be

annotated are incorrectly annotated as the MODEL entity. 21 mentions of the MODEL entity are

missed, while 377 mentions of this entity are correctly annotated.
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3.2.3 Analysis of Statistics

The scores for precision, recall and F1 reaches their best value at 1 and worst value at 0. A low

precision score indicates a need to improve annotation consistency. A low recall score indicates

a need to add more training data. A low F1 score is an indication of both poor precision and poor

recall. Low scores can occur for many different reasons that depend on the domain, type system

complexity, appropriateness of training documents, human annotator skills, and other factors.

A confusion matrix with entities with particularly many of mislabeled or missed mentions in-

dicates commonly confused entities. The performance of the ML annotator must be tuned to

address low scores and poor entities in the confusion matrix.

3.2.4 Improvement of ML Model Performance

The process of adapting NLP to a new domain with WKS consists of the following steps:

1. Create/Adapt type system.

2. Obtain representative documents.

3. Use UIMA to pre-annotate documents with rules, regexes and dictionaries.

4. Annotate documents manually.

5. Use SIRE to train and test an ML model.

6. Evaluate the test results.

7. Cycle back if necessary.

After evaluating the test results, various actions can be taken to improve the performance of

the ML model. Improvements are made iteratively by creating new versions of the model, until

a satisfactory version is attained.
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The actions required to improve the model depend on the problem. Here are some com-

monly occurring problems and the recommended steps for improvement.

• Low recall is often an indication of an insufficient amount of training data. The recom-

mended size of the training set is around 300.000 words to ensure frequent occurrences of

types.

• Low precision is often an indication of inconsistent annotation. This can be resolved by

creating clear and concise annotation guidelines that show how to annotate mentions

properly under a given set of circumstances. In addition, by having multiple human an-

notators review an overlapping set of documents, commonly confused types can surface,

and inconsistency in manual annotation can be reduced.

• Low percentage of documents that contain a certain type is often an indication of a corpus

that does not fully represent the domain. In this case, the type system and the documents

need to be investigated to ensure that the corpus contains relevant types. A recommended

minimum number of 50 occurrences of mentions in the training set applies to all entity

types.

• If the documents have references to concepts that are important in the domain but are

not represented anywhere in the type system, types need to be added to the type system

that capture the missing concepts or relationships. However, the types system should be

limited to only the most fundamental types, as redundant types can be misused, or not

used at all, and aggravate the performance of the ML model.

After following appropriate steps for improvement, the ML model can be retrained to produce

an updated version. Optionally, the original version of the ML model can be saved, in case

resources must be restored in future iterations, or if the results of the new version are worse, in

which case the version may be reverted. The resources captured in the new version include the

corpus, type system, ground truth and evaluation results, while the dictionaries are excluded

because of complications in handling large or varying types of dictionaries.



32 CHAPTER 3. CASE: IE FROM SHIPPING INDUSTRY EMAILS

3.3 Procedure

A free trial version of WKS is used for this demonstration. See Appendix B for documentation

on registration, browser requirements, assembling a team and creating a project. The free trial

version includes 5 GBs of storage, and the creation of up to 5 projects. Only one user is permit-

ted access, prohibiting the collaboration of multiple domain experts, which is recommended for

development of practical projects. The free trial does not include the option to export ML mod-

els, which prohibits the demonstration of employing the system, but the process of employment

will be described in Section 4.2; Conclusions and Further Work. With the acknowledgement of

these restrictions, this version of WKS is considered appropriate for the demonstration purposes

of the case.

To demonstrate the practices of IBM WKS, a model is trained for analyzing language in the

shipping domain. I have access to 56 emails received by a shipbroker. The emails are outdated,

but fit the purpose of training the model. Documents to be imported in WKS must be either

CSV files or TXT files in UTF-8 format. The original file format of the emails is MSG, and these

files are converted to TXT files in UTF-8 format. The emails are read through, and unneces-

sary text is removed before converting the files. The text selected for processing in one of the

emails is shown as an example in Figure 3.3. By curating the emails, it is ensured that each email

accurately represents the language of the domain that is to be processed.

A document set of 30 emails is created for human annotation. As best practice, the first set

for annotation should be relatively small to define annotation guidelines early and standardize

the process. The first annotations will often be incorrect, as the users rarely know the data well

enough to accurately define and use the first type system.
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Figure 3.3: Example of selected text of an email. On the basis of the information, it can be
concluded that the motor vessel St Paul is estimated available between the 31. of January and
the 1. of February from port RBCT, while the motor vessel Navios Oriana is available between
the 25. and the 26. of January from port Bedi.
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3.3.1 Defining the Type System

Features are created in the type system by defining the types of entities and relationships that

can be annotated in the documents. Entities and relationships that are interesting to look for in

the domain can be created from scratch or imported from type systems of similar domains. In

this case, four entities are defined based on what is believed to be important information to the

shipbroker. The entities are;

• VESSEL defines the name of the vessel.

• PORT defines the port for chartering.

• DATE defines the date chartering.

• CONTRACT defines the type of shipping contract.

Mentions in the documents can be classified as one of these four entities. Two subtypes are

defined for the DATE entity. The subtypes are OPEN and ETA, and may be used to differentiate

between mentions of confirmed dates for chartering and estimated dates for chartering. Two

relation types are defined;

• AVAILABLE defines the relationships between PORT and DATE.

• LOCATION defines the relationship between VESSEL and PORT.

The relation types may be used to differentiate between different chartering proposals in

emails that mention more than one. This is done by annotating the appropriate relationships

between associated entities.
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3.3.2 Rule Creation

The rule-based tools of UIMA are used to pre-annotate mentions of the DATE entity. These

mentions may potentially be annotated entirely by relatively complex regexes, but rules and

dictionaries are used in addition to regex for their demonstrative quality. First, a selection of

nine documents are imported in the UIMA interface as a sample of the corpus to test the tools.

Three classes are defined; DictMonth, RegexYear and RuleDate. The classes DictMonth and

RegexYear are combined with the RuleDate class, which is later mapped to the DATE entity.

Dictionary for annotating months

A dictionary, Month, is set up containing the twelve months of the year. The various ways of

writing the names and abbreviations of the months are added to the surface forms. The entries

are written in lower case, which enables annotation of all occurrences, regardless of case. The

POS tag is set to noun for every month. The dictionary can be seen in Figure 3.4. When the

dictionary is associated with the DictMonth class, all the sample documents are automatically

annotated for every mention of a month reflected in the dictionary.

Figure 3.4: An excerpt of a dictionary created in UIMA. There is one entry for each month of the
year.
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Regex for annotating years

A regex is defined as the following:

Figure 3.5: A regex created in UIMA.

This regex finds numeric values in text which represent years between 1900 and 2099. The

minimum and maximum word tokens are set to 1, meaning that the term can not consist of

more than one token, such as other words, hyphens, etc.

Rule for annotating dates

Next, a rule can be defined for capturing a sequence of text that makes a date interval. This is

done by selecting a text sequence from the sample documents that exemplifies this occurrence.

Conditions of the rule are then defined, based on the characteristics of the sample sequence.

The text sequence "5/9 September 2017" is selected from one of the sample documents. The

conditions are defined as shown in Figure 3.6.

Figure 3.6: A rule created in UIMA with conditions for the first word in the sequence.
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One condition of the rule is that the first word of the sequence consists of numeric character

types. Similarly, the second word must be a punctuation mark, such as a slash. The third word

must be a number, the fourth word must match class DictMonth, and the last word must match

class RegexYear. The rule requires all the words to appear exactly one time, apart from the last

word, RegexYear, which may appear zero or one time. The setup of this condition for RegexYear

can be seen in Figure 3.7.

Figure 3.7: A rule created in UIMA with conditions for the last word in the
sequence. The RegexYear class can occur once in the sequence, or not at all.

This rule is now able to capture the sequence "number + punctuation + number + Dict-

Month + (RegexYear)". A second rule is created to capture the sequence "number + DictMonth

+ punctuation + number + DictMonth". This sequence represents an alternative way of writing

the date interval, which is observed in the sample documents. The class RuleDate is assigned to

represent these sequences.

After saving the rules, they are automatically applied to the sample documents, and se-

quences in the documents that fulfill the conditions are annotated as the RuleDate class. In

the sample document "CTM IO update.txt" the rules are able to correctly annotate "31 JAN/01

FEB" and "25/26 January" with the RuleDate class, as shown in Figure 3.8. The build year of one

of the vessels is annotated by regex with the RegexYear class, but is not annotated by the rule

component, since it does not fulfill its conditions.
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Figure 3.8: A document automatically annotated by the rule component.

The annotations generated by the UIMA tools in the sample documents can be seen for each

individual class. The resulting annotations are displayed in Figure 3.9.

Figure 3.9: Annotations generated by the rule, regex and dictionary in the sample documents.

In the nine sample documents fifteen terms are annotated by the dictionary, twelve terms

are annotated as years by the regex and eight sequences are annotated as dates by the rule.
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Dicitonary for annotating contracts

A new dictionary is created (see Figure 3.10) by manually adding shipping contract types and

assigning the dictionary to the CONTRACT entity. Four types of contracts are added with their

corresponding synonyms and abbreviations as surface forms. Like the Month dictionary, entries

are added in lowercase to include all occurrences, regardless of case, and the POS tags are set to

noun.

Figure 3.10: A dictionary created in UIMA. The dictionary can be used to annotate the relevant
shipping contract types.

The dictionary is only able to annotate one CONTRACT mention in the nine sample docu-

ments, which may be a sign that the entries in the dictionary do not occur frequently.

Dictionaries for annotating ports and vessels

Another way of utilizing the dictionary function of UIMA in this case, is to use a dictionary anno-

tator to automatically annotate all the mentions of ports and vessels. This is done by gathering

the names of all the operational ports and vessels and importing them in two separate dictionar-

ies. These dictionaries are then associated with the PORT entity and the VESSEL entity, respec-

tively. A list of 9406 port names and a list of 2500 vessel names were extracted from Marinetraffic

(2007). The dictionary annotators are used to pre-annotate the first document set. The result-

ing documents have many words incorrectly annotated as the PORT and VESSEL entities. The
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reason for this is that the dictionaries contain entries which can be used in several contexts, in

addition to being a name of a port or a vessel. Therefore, these dictionaries are rejected and not

used to pre-annotate the documents. As a general rule, dictionaries should not contain entries

which can have multiple meanings.
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3.3.3 Annotating in the Ground Truth Editor

The documents are manually annotated in the GTE. The color of annotations and optional key-

board shortcuts can be set up in the GTE settings. The task of annotating entity mentions is

performed by selecting a string of text in a document and applying one of the entity types de-

fined in the type system that most appropriately describes what that string of text represents.

Some of the text has already been annotated by the RuleDate annotator and the DictContract

annotator, and the remaining mentions of mentions are manually annotated. The DATE entity

is specified as either the OPEN subtype or the ETA subtype. The procedure of annotating entity

mentions is shown in Figure 3.11.

Figure 3.11: The entity mode in GTE. "Young Harmony" is annotated as a VESSEL entity,
"Damman" as a PORT entity, and "21-26 jan" as a DATE entity, with subtype OPEN.

Relationships between mentions are annotated by connecting two entity mentions with a

relation type defined in the type system. Relations which can be annotated in WKS are restricted

to be between entity mentions within a single sentence. Annotation of relation types is done in

the relation mode of GTE, shown in Figure 3.12.
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Figure 3.12: The relation mode in GTE. A relationship between PORT and VESSEL is annotated
LOCATION, and a relationship between PORT and DATE is annotated AVAILABLE.

Mentions that coreference the same entity are marked as corefernces. This helps the ML

model recognize that entities which are referred to in different ways are to be associated with

the same entity, thus helping to ensure consistency in the annotations where entity mentions

are not identical. This is done in the coreference mode of GTE, shown in Figure 3.13.

Figure 3.13: The coreference mode in GTE. The two mentions "Young Harmony" refer to the
same entity, and are therefore marked as a coreference chain.

Some annotation choices are unclear, like whether the whole text, "MV Young Harmony",

or just the name, "Young Harmony", should be annotated as the VESSEL entity. The choice

is made to annotate just the name, and the decision is kept throughout the annotation process.
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Consistent annotation is at least as important as correct annotation when it comes to training an

ML model. In addition, shorter entity mentions are better for training because shorter patterns

are more easily recognizable by an ML model.

All the documents are read through carefully to ensure that no annotations are missed. In

addition to learning from what is annotated, an ML model learns from what is not annotated.

Thus, an entity mention that was not captured teaches the model to ignore that particular men-

tion. This can potentially reverse gains made by annotating documents and lead to inaccuracy

in the annotations generated by the ML model.

Training the ML model

Documents that have been annotated thoroughly are marked as complete. Once all the doc-

uments have been completed, the status of the annotation set changes from "in progress" to

"submitted". The submitted documents are then evaluated, typically by a project manager, and

either rejected or accepted. An accepted annotation set is promoted to the ground truth (previ-

ously referred to as the gold standard), which then can be used to train an ML model.

The percentage of documents used for training data, test data and blind data is set to the

default value of 70/23/7. As a result, the first set consisting of 30 documents was partitioned

in 21 documents for training data, 6 documents for test data and 3 documents for blind data.

The process of training and evaluating the ML model is started and takes around ten minutes

to complete in this case. The time it takes for the system to train and evaluate the model largely

depends on the amount of training data used.
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3.4 Results

The annotations generated in the test set are reviewed to determine whether any adjustments

must be made to the ML model to improve its ability to find valid entity mentions, relation

mentions, and coreferences in the documents.

3.4.1 Statistics of ML Model 1.0

A summary of statistics for entity types, relation types, and coreference chains can be viewed

in the details page of the ML model. Figures 3.14, 3.15, 3.16, and 3.17 show statistics of the

annotations made to the 6 test documents of the first set.

Figure 3.14: The F1 score, precision and recall for the entity types in the test set.

The CONTRACT entity is flagged and highlighted because it has an F1 value lower than the

fixed value of 0.5. This indicates that the entity requires investigation and improvement. As

seen in Figure 3.15, the CONTRACT entity rarely occurs in the test set. Only two out of the six

test documents contain this entity, and it only makes up 5% of all the annotations. The values

for the F1 score, precision and recall are all zero for the entity. The entity has far fewer mentions

than the other entities, which leads to inaccurate annotations made by the ML model. The

assumable reason for the low number of CONTRACT entity mentions is that most of the emails

imply a time charter contract, without the need to specify the type of contract.
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The recall of the DATE entity is 0.50, as seen in Figure 3.14. This signifies a relatively low

amount of training data. This score is lower than for the PORT and VESSEL entities, despite the

fact that DATE makes up for the second most annotations out of all the entities, with 34% of the

total annotations. The low recall may be caused by the subtypes defined for the DATE entity.

The subtypes make the entity more precise, by allowing differentiation between the estimated

dates (ETA) and the confirmed dates (OPEN) for chartering. However, to accurately recognize

this difference, the ML model requires more training data with examples of the use of these

subtypes.

Figure 3.15: The percentages for the entity types in the test set.

An observation made from Figure 3.15 is that the percentage of corpus density is very low

for all the entities. Only 4% of the words in the test documents are mentions of one of the four

entities. This indicates that there’s a low representation of entity mentions compared to the

amount of text in the documents, meaning that the corpus does not represent the language

handled in this case very well. However, the corpus density is similarly low across all entities,

meaning that they are equally prevalent. The exception is the CONTRACT entity, which has the

lowest frequency of mentions by far, with only two mentions in the ground truth of the test set.
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Figure 3.16 shows that the F1 scores for relation types AVAILABLE and LOCATION are rela-

tively low. This is not due to consistency of annotations, as seen by the perfect precision values,

but rather insufficient training data, as seen by the low recall values. The precision is presum-

ably high because the relation types only can be annotated between two entities defined in the

type system; VESSEL and PORT for LOCATION, and PORT and DATE for AVAILABLE. The recall,

on the other hand, is most likely low due to the rare occurrence of these relation types in the test

set.

Figure 3.16: The F1 score, precision and recall for the relation types in the test set.

Figure 3.17 only shows the statistics of the VESSEL coreference chains. This is because the

VESSEL entity was the only entity type which was mentioned several times in emails in the test

set. The F1 score for the VESSEL coreference chain is relatively high, presumably because most

of the coreferenced mentions have the exact same syntax, and is therefore easily recognizable

by the ML model.

Figure 3.17: The F1 score, precision and recall for the coreference chains in the test set.
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The statistics show high precision for all entity types, relation types and coreference chains.

This indicates high annotation consistency, meaning that the ML model rarely annotates irrele-

vant mentions, relations or coreferences. This tendency can also be observed in the confusion

matrix shown in Figure 3.18. The rows of the matrix represent annotations from the ground

truth, while the columns represent annotations made by the ML model. "O" indicates words

that were not annotated.

Figure 3.18: The confusion matrix for the entity types in the test set.

The confusion matrix shows that there are two annotations for the CONTRACT entity in the

ground truth which the ML model fails to annotate. The ML model incorrectly annotates a word

as a CONTRACT entity mention that should not have been annotated. The PORT and DATE en-

tities have about half correctly annotated mentions and half missed annotations, while the VES-

SEL entity has five missed annotations out of seventeen. Words that should not be annotated are

by far the most common in the test documents, with 1020 words out of 1061 total words, which

might influence the ML model negatively. The relatively high numbers of missed annotations in

the confusion matrix suggest that the ML model has a disposition to not annotate words.
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3.4.2 Annotating with the ML Model

Once an ML model has been produced, it can be applied for annotation of new documents. A

second document set is created from the remaining 26 emails and is annotated by the ML model.

This reduces the efforts of manually annotating the remaining documents. In addition, it makes

it possible to evaluate the initial performance of the ML model by directly seeing the annotations

it makes. By observing annotations made to new documents, potentially overfit ML models can

be discovered and adjusted by retraining with different training data. The annotations made

can be seen in the GTE of the second set once the ML model has been applied for annotation.

Figures 3.19, 3.20, and 3.21 show the annotations that the ML model was able to generate in the

second document set.

Figure 3.19: Annotation of entity mentions generated by the ML model to one of the documents
in the second set.

The VESSEL entity mentions; "XING JING HAI" and "PAPORA WISDOM" were first missed

and then annotated in later occurrences. This may be due to the ML model expecting the ab-

breviation "MV" in front of the entity, which does not appear in the first occurrences of the VES-

SEL mentions. This can be a sign of an overfit model that has learned a pattern in the training

data to the degree that it does not recognize exceptions in new data. The PORT entity men-

tion; "ZHOUSHAN" is missed by the ML model, possibly because of unexpected abbreviations

appearing in this instance. These mistakes can be resolved by adding more documents with

varying occurrences of mentions to the training set.
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Figure 3.20: Annotation of entity mentions generated by the ML model to one of the documents
in the second set.

The DATE entity mention; "BEG OF MARCH" is missed by the ML model, presumably be-

cause it rarely, or never, occurs in this format in the training set. This mistake may be avoided

by adding conditions for this particular syntax to the RuleDate, or by adding more documents

to the training data that contain this type of syntax.
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Figure 3.21: Annotations of entity mentions and relation mentions generated by the ML model
to one of the documents in the second set.

The entity types; VESSEL, PORT and DATE, as well as the relation types; LOCATION and

AVAILABLE are correctly annotated by the ML model. However, the CONTRACT entity men-

tion "short period" is missed by the ML model. This is presumably caused by the infrequent

occurrences of this entity in the training documents.
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3.4.3 Retraining the ML Model

Some adjustments are made to the type system and the new documents based on the statistics

of the ML model and the observed annotations it makes.

The low percentage of corpus density across all entities indicates a problem with the rep-

resentative properties of the corpus. Extensive curation of the documents is conducted in an

attempt to improve the corpus. Parts of the emails which do not contain relevant entity types,

such as some of the vessel details, are removed from the documents of the second set before

re-importing them in WKS.

The CONTRACT entity rarely occurs in emails. The mentions of this type are considered too

infrequent, and the entity therefore rejected from the type system. The subtypes of the DATE

entity are also removed, since the available training data is limited and considered to be inade-

quate for training precise subtypes.

After adjustments are made to the type system, the updated type system is applied to the

GTE of both document sets. This automatically removes the annotations of the CONTRACT en-

tity and the subtypes of the DATE entity from the first set. The second set requires manual an-

notation of the remaining entity mentions, relations and coreferences that were not annotated

by the ML model.

When annotations for the second set are complete, the set is submitted and the ML model

is retrained with all the 56 annotated documents. This is done by creating a new distribution of

documents in the model settings window, seen in Figure 3.22.
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Figure 3.22: The model settings of the ML model.

The documents are distributed in sets of 75% training data, 25% test data, and 0% blind

data, resulting in a training set of 42 documents and a test set of 14 documents. The blind set is

migrated to the other two sets, since all of the annotations made to the second set have been ob-

served in the GTE, making the blind set less unseen and thereby less purposeful. A new version

of the ML model is then trained and evaluated.
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3.4.4 Statistics of ML Model 1.1

The performance of version 1.1 of the ML model is analyzed by reviewing the summary of statis-

tics for the model. Figures 3.23, 3.24, 3.25 and 3.26 show the statistics for entity types, relation

types and coreference chains in the new test set.

Figure 3.23: The F1 score, precision and recall for the entity types in the new test set.

The overall statistics for the entities in the new document set have have improved with the

added training data and the adjustments made to the type system and the corpus. The recall

values of all the entities are still lower than the precision values. This impacts the F1 scores, or

the weighted averages, negatively. Low recall values mean that the ML model is missing some

mentions altogether, and is typically a result of insufficient training data. The 56 imported doc-

uments have a total size of about 6.000 words, which is much smaller than the recommended

size of 300.000 words. This indicates that the results may be improved significantly with more

added training data.

The precision and recall for the VESSEL entity is lower than in the original test set. The an-

notations of this entity need to be reviewed in the confusion matrix and in the decoding results.
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Figure 3.24: The percentages for the entity types in the new test set.

The corpus density is still alarmingly low for all the entities. This is due to the contents of the

first document set, which is not extensively curated like the second set due to the limited time

available.

Figure 3.25: The F1 score, precision and recall for the relation types in the new test set.

The relation type LOCATION in Figure 3.25 is highlighted because of its low F1 score, which

indicates that the entity requires investigation and improvement.

Figure 3.26: The F1 score, precision and recall for the coreference chains in the new test set.
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The statistics for coreference chains in Figure 3.26 show that the VESSEL entity still is the

only entity type that is coreferenced in the test set. The recall is lower than in the original test

set, which is a development of the low recall value of the actual entity. More missed entity men-

tions of the VESSEL entity leads to less mentions available for coreferencing. Next, the statistics

presented in the confusion matrix in Figure 3.27 are analyzed.

Figure 3.27: The confusion matrix for the entity types in the new test set.

As seen in the confusion matrix, version 1.1 of the ML model generates fewer erroneous

annotations and misses fewer entity mentions than version 1.0, relative to the number of anno-

tations. The VESSEL entity is correctly annotated by the ML model 26 times, while 8 mentions

are missed and 2 words which should not be annotated are mislabeled as the VESSEL entity. The

VESSEL entity mentions are missed the most by the ML model. This indicates that there is an

inaccuracy related to the annotation of this entity.
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3.4.5 Decoding Results

The decoding results show the annotations generated by the ML model in the new test set. Fig-

ures 3.28, 3.29 and 3.30 display the decoding results in three different test documents.

Figure 3.28: Decoding results of one of the test documents. The ML model misses mentions of
the VESSEL entity "MARATHA PROMISE".

Figure 3.29: Decoding results of one of the test documents. The ML model incorrectly annotates
the text "15 JAN" as a DATE entity. The text "AGONISTIS GRK" is incorrectly annotated as a
VESSEL entity, which should consist of just the text "AGONISTIS".
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The decoding results in Figures 3.28 and 3.29 show that the ML model has issues when it

comes to annotating the VESSEL entity. This might be caused by the irregular appearance of the

entity. There are many variations of vessel names and the ML model has trouble recognizing

them. In some cases however, such as the one shown in Figure 3.30, the ML model is able to

correctly annotate the whole document.

Figure 3.30: Decoding results of one of the test documents. The ML mode correctly annotates
all entity types, relation types and coreference chains, according to the ground truth.





Chapter 4

Summary

This thesis presents the theoretical framework of utilizing ML in NLP, with a focus on the task

of extracting information. The theory chapter first addresses unstructured data, and why such

data is difficult to process. An overview of the available methods for training an ML model is pro-

vided. The thesis concentrates on supervised learning, since this is the most commonly used

training method in practical systems. Some of the algorithms and evaluation methods com-

monly used in IE are described with the goal of providing insight in the functionality of current

IE systems.

Furthermore, the thesis gives a proposal of design of an example application, using IE tech-

nology available to AVO Consulting. The proposed application is implemented in WKS. The

implementation procedure is described with focus on best practices recommended in the dis-

cussed theory. Complete implementation of the application requires deployment of the trained

ML model. This is not achieved because of the limitations of the employed version of WKS.

Available data is used for training two versions of the ML model, and the quality of the ob-

tained application is assessed by comparing the results of the two versions. The results of the

second version indicate improvement in the performance of the ML model. The statistics of the

results of the second set give an overall F1 score of 0.8, while the overall F1 score of the first ver-

sion is 0.67. The measures that were carried out for improvement include adding more training

data, curation of documents, and removal of underperforming types and subtypes in the type

system.
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4.1 Discussion

IE is an emerging technology with the potential to transform the way textual information is an-

alyzed and used for many information analysis tasks. When an application has access to the ML

model of an IE system, unstructured data can be passed to the model to automatically extract

relevant information in the structured form of entity types and relation types. This structured

data can be used for several purposes, depending on the goals of specific tasks. For the ship-

ping case, a possible goal may be to automatically create a schedule of shipping plans, with

accompanying port names and vessel names to decrease the analytic time and improve the ac-

curacy of the chartering process. In general, the goal of automation is typically to achieve faster

and more accurate decision making. With IE, information from unstructured data can be made

readily available for use in the decision making process. Figure 4.1 shows an example of WKS

being applied in a customer complaint case. In customer-centric processes like this example,

unstructured data plays an important role for decision making.

Figure 4.1: The unstructured content of a costumer complaint and the corresponding structured
form generated by WKS (Rice, 2017). The structured data is analyzed to identify the cause of the
issues in the complaint. The knowledge acquired from analyzing structured data may be crucial
in further processing.
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Processes that involve analysis of unstructured data, like the one in Figure 4.1, are examples

of higher-lever tasks, which can not be automated with the use of RPA alone. To fully automate

these types of tasks, an IE system like WKS may be used in combination with RPA. Thus, the

RPA software can be given access to information in unstructured data, and execute predefined

decisions based on the information acquired.

IBM Watson Knowledge Studio was used to produce an ML model for annotation of shipping

emails. WKS is an accessible platform for experimentation with data, and the free trial version

provides features sufficient for creating a demonstrative system. The tools provided for training

the model do not require coding skills. This is an advantage for the demonstration purposes of

the case, as the procedures are more visually representable than code. This is also an advantage

in practical systems, as it enables subject matter experts to work in the training process, thereby

aggregating knowledge in the process. Knowledge of the corpus plays a vital part in domain

specific projects.

The set of emails used in the case was chosen based on the availability of data in a language

supported by WKS, and on the relevance to AVO Consulting’s work. Ideally, language processed

by WKS should incorporate grammatical structure to a higher degree than the language of the

emails. An example dataset with suitable language could be used to demonstrate the potential

accuracy of the system. Such example datasets are available from IBM’s website with accompa-

nying tutorials. However, WKS has already been shown to work well with these data sets, and

experimentation with this data is not likely to lead to findings that are relevant to AVO Consult-

ing’s work.

To accurately adapt an ML model for annotation in a specific domain, knowledge of the

domain language and knowledge of what parts of the text that are relevant is important. In

the shipping case, the ground truth was defined based on assumptions regarding what parts of

information in the emails are important to shipbrokers. The subtypes of the DATE entity were

rejected in the final version of the model. This lead to higher accuracy in the annotation of this

entity, but might also lead to crucial information being lost. The subtypes might be important in

order to distinguish between estimated dates and confirmed data. As a best practice, the ground

truth should be established in cooperation with the subject matter experts to capture all parts

of the data that are relevant.
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A weakness of IE systems using supervised learning is that the ground truth, defined by peo-

ple, is assumed to be perfect. This is not always the case, as natural language often contains

forms of ambiguity that are impossible for even people to process. A way to deal with uncer-

tainty is to provide the confidence and the supporting evidence of each of the ML model’s deci-

sions for evaluation, e.g., by flagging instances where the ML model had particularly low confi-

dence. This is not a feature of WKS. Instead, WKS uses the ground truth as the only measure of

the degree of success, thereby basing the statistics of performance entirely on annotations made

by people. An ideal IE system should produce ML models and algorithms that are as “transpar-

ent” as possible, making them easy to understand and improve by real world users.

Rule creation for NLP typically requires much more manual effort than the training of an ML

model. However, rules are more transparent and therefore easier to comprehend and evaluate

than the trained algorithms of an ML model. Another advantage of rules is that their output

is in fixed patterns, which means there is usually no need for post-processing of the linguistic

data structure found by rules. The output of an ML model, on the other hand, requires post-

processing to give it meaning. For example, a date entity annotated by an ML model may have

the form; "5th of June 2017", which may need to be converted to a machine-readable format

like; "05.06.17" for further processing.

WKS provides rule-based tools for annotation of entity types through UIMA. One of the tools

is simply called rules, and can utilize POS-tags in its conditions. This makes it possible to de-

fine complex and robust rules, especially when combined with the other tools; dictionaries and

regexes. The tools can be used to pre-annotate documents, thereby accelerating the process

of annotating documents for the ground truth. When a human annotator begins work on new

documents that were pre-annotated, many mentions can already be annotated based on rules,

dictionaries and regexes. The human annotator thus has more time to focus on assigning entity

types to mentions that require deeper analysis. The rule-based tools are also easy to get started

with, while ML can be used to scale the system over time. However, the final, automatically gen-

erated annotations in WKS are exclusively produced by the ML model. This is not always the

best approach for all types of IE problems. Mentions with linguistic patterns that can easily be

recognized by rule-based annotators may be best handled accordingly. Trying to teach an ML

model these patterns may often be redundant and produce overly complex systems.
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IE systems are traditionally perceived as either completely rule-based or completely ML-

based. A combination of the two techniques may serve as the best solution for many IE tasks,

including the tasks of the shipping case. Current systems for analyzing shipping industry emails

utilize regexes to an estimated accuracy of 85%. With more available data for training, and a

combination of rules and ML, the proposed system may be able to outperform the systems used

today.
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4.2 Conclusions and Further Work

By adding more training data and making slight adjustments in the GTE, significant improve-

ments of the ML model were achieved. This reflects the importance of having large amounts

of training data, and that the work of defining the ground truth is a crucial part of the process

of making an accurate IE system. The size of the corpus used in the case was limited by the

availability of relevant data. Development of sufficient training data for a practical application

requires much more data, and should be carried out by multiple people.

Even with more training data, there is a chance that this application would not perform well

enough to be applied to real tasks. The language of shipping emails is in a format that may

prevent the utilization of some of WKS’s linguistic rules processing. The tokenization, capital-

ization and sentence segmentation in the emails are widely different from the common rules

in the English language. This makes it more difficult for WKS to recognize entity types, relation

types and coreference chains, since it is unable to fully benefit from the built-in processing of

linguistic structure. The challenges of the language in this case imply that better result may be

achieved with rule-based methods. As discussed, a hybrid approach between ML and rules may

serve as the best solution.

The rule-based tools of WKS are utilized for pre-annotation of documents in the shipping

case. However, WKS also has an option for deploying rule-based models for stand-alone an-

notation. This feature is currently only meant for experimental use, since it is still under de-

velopment. Further work with the shipping case could be to implement rule-based models for

annotation of some, or all of the entity types, and compare the results to the ML approach. For

the PORT and VESSEL entity types, the tools would require robust dictionaries and carefully

constructed conditions to be able to annotate the correct names in the text. The DATE entity

may be better suited for rule-based annotation, as demonstrated by the pre-annotation done

with the rules in the case. With further development of these rules, the annotator may be able

to annotate the DATE entity type entirely on its own. With a portion of entity types successfully

being annotated by rule-based models, the ML model may be used as a supplement to annotate

remaining entity mentions, as well as relation mentions and coreferences chains. Some of the

emails in this case mention several chartering plans, and for this reason the ML model may be
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required to annotate relationships and coreferences to differentiate between the different char-

tering plans.

Complete implementation of the IE system means taking full advantage of the automatic

annotation function. To do this, the ML model needs to be made available to external applica-

tions that may utilize the information it provides. First, the model needs to be deployed in WKS.

The WKS service is hosted on Bluemix, which is the cloud platform for IBM. Bluemix can show

the instance name and the port name for a deployed ML model. These IDs are needed as an API

call in the relevant application to gain access to the ML model. The API call can look for known

entity types and relation types in a passed string of text, and return mentions and relationships

recognized by the ML model. By setting up an API call like this, the ML model can be evaluated

by its ability to annotate new documents.

This thesis is meant to serve as a theoretical foundation and a feasibility study of the use

of ML in systems for extracting information. The area of use for systems like WKS is limited

to corpora with a certain degree of linguistic structure. Rule-based approaches should always

be considered in new applications of IE. With WKS, applications for IE can easily be adapted to

specific domains. One of the reasons for this is that the supervised learning technique allows for

annotation and training carried out by everyone, not just IT experts. ML has many advantages

when it comes to processing of natural language, and it will inevitably play a key role in the

future of NLP. With NLP systems supporting the Norwegian language, ML can potentially be

utilized in many processes relevant to AVO Consulting.





Appendix A

Acronyms

RPA Robotic Process Automation

ML Machine Learning

NLP Natural Language Processing

MT Machine Translation

WSD Word Sense Disambiguation

POS Part-of-Speech

SVM Support-Vector Machine

NER Named Entity Recognition

CO Co-reference Solution

RE Relation Extraction

HMM Hidden Markov Model

MEMM Maximum-Entropy Markov Model

CRF Conditional Random Field

WKS Watson Knowledge Studio
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regex Regular Expression

GTE Ground Truth Editor

UIMA Unstructured Information Management Architecture

SIRE Statistical Information and Relation Extraction
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Watson Knowledge Studio Documentation

B.1 Registration

B.2 Browser Requirements
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B.3 Assembling a Team
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