
Attacking Message Authentication Codes
in EFC Using Rainbow Tables

Sverre Turter Sandvold

Master of Science in Communication Technology

Supervisor: Stig Frode Mjølsnes, IIK
Co-supervisor: Tord Reistad, Statens Vegvesen

Department of Information Security and Communication Technology

Submission date: June 2017

Norwegian University of Science and Technology

Title: Attacking Message Authentication Codes in EFC
Using Rainbow Tables

Student: Sverre Turter Sandvold

Problem Description:

Electronic Fee Collection (EFC) is one of many systems in the world of intelligent
transportation systems. The main components in EFC are an On-board Unit (OBU)
and a Roadside Equipment (RSE), which uses Dedicated Short-Range Communi-
cations (DSRC) as a communication protocol. The authentication of the OBU is
generated using single Data Encryption Standard (DES), and with a customizable
RSE, it should be possible for a chosen plaintext attack on this authentication value.
The customizable RSE will be made by using a universal software radio peripheral
together with GNU Radio.

In 2003 Philippe Oechslin published a paper describing a cryptanalytic time-
memory trade-off method for breaking hashes, called rainbow tables [1]. Generation
of rainbow tables is highly parallelizable and therefore graphical processing units will
be used for computation to make this attack as fast as possible.

This project will have two main parts. (I) To make a customizable RSE who can
communicate with an OBU and (II) to make an attack on the message authentication
codes (MAC) by conducting a rainbow table attack.

[1] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 617–630. Springer, 2003.

Responsible professor: Stig Frode Mjølsnes, IIK
Supervisor: Tord Ingolf Reistad, Statens Vegvesen

Abstract

Electronic Fee Collection (EFC) is a system for collecting fee from cars
electronically. EFC contains two main components, an On-board Unit
(OBU) and a Roadside Equipment (RSE). Dedicated Short-Range Com-
munications (DSRC) is used as a communication protocol, which is a
wireless protocol operating on frequencies around 5.8 GHz. As more and
more systems take use of EFC and DSRC, it is important to keep security
in mind. Money transactions are involved in EFC, making it a wanted
target for attackers.

In this thesis, the possibilities of conducting an attack on Message Au-
thentication Codes (MACs) in EFC are explored. By stealing a valid key
used in the calculation of a MAC, it can be possible to get authenticated
as another user and hence do not have to pay any fee.

This thesis shows that with a customizable RSE, it is possible to
obtain MACs from OBUs. A customizable RSE is built using a Universal
Software Radio Peripheral and GNU Radio. Unfortunately, the customiz-
able RSE is not able to communicate with an OBU. Some errors are
known, and suggestions on how to solve them are presented. A desktop
DSRC transceiver was bought from Q-Free and is used as an RSE in the
second part of this thesis. MACs are obtained from a test-OBU using the
DSRC transceiver, and it is shown that OBUs can be used as encryption
oracles. Before obtaining MACs, access credentials have to be given by
the OBU. A test-OBU is used to get access credentials. However, access
credentials is not used in every country, making this attack relevant.
Possible attacks for obtaining access credentials are also presented.

Additionally, the use of Data Encryption Standard (DES) for cal-
culating MACs is studied. The biggest weakness of DES is the 56-bit
key, making it feasible to brute-force the entire keyspace. This thesis
shows how a rainbow table can be used to find the key in an OBU.
Rainbow tables are a time-memory trade-off method for finding keys in
a chosen-plaintext attack. A simple rainbow table is implemented in
Python, together with suggestions on how improve the rainbow table
generation.

Sammendrag

Elektronisk bompengeinnkreving (EFC) brukes til å elektronisk samle
inn bompenger fra biler som kjører på bomveier. EFC består av to hoved-
komponenter, en bombrikke (OBU) og en bomstasjon (RSE). Dedikert
kortholdslink (DSRC) blir brukt som kommunikasjonsprotokoll, som er en
tråløs protokoll for frekvenser rundt 5.8 GHz. Ettersom flere og flere tar i
bruk EFC og DSRC, blir det stadig mer viktig å tenke på sikkerheten.
Pengetransaksjoner er innvolvert i EFC, og EFC er derfor et naturlig mål
for angripere.

Denne oppgaven ser på mulighetene til å gjennomføre angrep på
meldingsautentiseringskodene (MAC) i EFC. Ved å stjele en gyldig nøkkel,
som blir brukt til å regne ut MAC-verdier, vil det være mulig å kjøre
gjennom en bomstasjon uten å måtte betale.

Denne oppgaven viser at med en falsk bomstasjon vil det være mulig å
motta meldingsautentiseringskoder fra bombrikker. En falsk bomstasjon
er blitt lagd ved hjelp av en Universal Software Radio Peripheral (USRP)
og GNU Radio. Den falske bomstasjoen fungerer dessverre ikke. Noen
av feilene er kjente, og mulige løsninger til problemene er beskrevet. En
DSRC-bordleser ble kjøpt inn fra Q-Free, og denne blir i siste del av
oppgaven brukt som bomstasjon. Ved hjelp av bordleseren blir meldings-
autentiseringskoder hentet fra en bombrikke, og det blir også vist hvordan
bombrikkene kan bli brukt som krypteringsorakler. For å kunne hente ut
meldingsautentiseringskoder, må man først skaffe seg aksessrettigheter
fra bombrikken. Det ble derfor benyttet en test-bombrikke med kjent
aksessnøkkel. Aksess kontroll blir ikke brukt i alle land, noe som gjør
angrepet beskrevet i denne oppgaven veldig aktuelt. Mulige angrep mot
aksess kontrollen er også presentert.

I tillegg, blir bruken av Data Encryption Standard (DES) diskutert.
Den største svakheten til DES er at nøkkelen kun er 56 bit. Med en så
kort nøkkel vil det være mulig å gjennomføre et brute-force angrep i løpet
av relativt kort tid. Denne oppgaven viser hvordan regnbuetabeller kan
brukes til å finne en nøkkel som har blitt brukt til å lage en meldings-
autentiseringkode. Regnbuetabeller er en metode der man avveier tid og
lagringsplass. Disse tablellene kan bli brukt til å finne nøkler i et kjent
klartekst angrep. En enkel regnbuetablell er utviklet i Python sammen
med forslag til hvordan en slik tabell kan lages best mulig.

Preface

This Master’s thesis is carried out in the 10th semester of my Master of
Science degree in Communication Technology at Norwegian University of
Science and Technology.

I would like to thank my responsible professor Stig Frode Mjølsnes
and my supervisor Tord Ingolf Reistad for their guidance and feedback
during this semester. I also want to thank Ulf Bertilsson for inspirational
meetings and help with building the customizable RSE.

Trondheim, June 2017

Sverre Turter Sandvold

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and Objectives . 2
1.3 Methodology . 2
1.4 Related Work . 3
1.5 Outline . 3

2 Electronic Fee Collection 5
2.1 Overview . 5
2.2 Dedicated Short-Range Communications 6

2.2.1 DSRC Physical Layer . 6
2.3 EFC Functions and Applications . 7
2.4 EFC Frame Contents . 9

2.4.1 Frame Check Sequence . 10
2.5 AutoPASS Elements and Attributes 10
2.6 Security in EFC . 11

2.6.1 Overview . 11
2.6.2 Security Related Data . 11
2.6.3 Access Credentials Calculation 12
2.6.4 Authenticator Calculation . 14

2.7 Data Encryption Standard . 16

3 Making a Customizable RSE 19
3.1 Methodology . 19

3.1.1 Literature Review . 19
3.1.2 Hardware and Software . 20

3.2 Radio Frequency Identification Reader 21

vii

3.3 Building an RSE . 24
3.3.1 Hansen’s Program . 24
3.3.2 Transmitter . 24
3.3.3 Receiver . 29
3.3.4 Results . 31

3.4 RSE624 - Desktop DSRC Transceiver 32
3.5 Recordings With Gqrx . 34
3.6 Results and Discussion . 38

4 Communication between an RSE and an OBU 41
4.1 Message Authentication Codes in EFC 41
4.2 Frame Contents . 42

4.2.1 Frame Check Sequence . 42
4.2.2 Beacon Service Table . 43
4.2.3 Private Window Request . 45
4.2.4 Private Window Allocation 45
4.2.5 Vehicle Service Table . 46
4.2.6 GET_STAMPED.request . 48
4.2.7 GET_STAMPED.response 51

4.3 Results and Discussion . 52
4.3.1 Access Credentials . 53

5 Building a Rainbow Table 55
5.1 Rainbow Tables . 55
5.2 Generating the Rainbow Table . 58

5.2.1 Overview . 58
5.2.2 Precalculations . 59
5.2.3 Encryption Function . 61
5.2.4 Reduction Function . 62
5.2.5 Initial Key Generation . 63
5.2.6 Generating Chains . 63

5.3 Searching in the Rainbow Table . 64
5.4 Improving the Rainbow Table . 66
5.5 Results and Discussion . 66

6 Conclusion 69
6.1 Further Work . 70

References 71

Appendices

A C Code for Frame Check Sequence Calculation 75

B Python Code for the DSRC Program 79

C Python Code for the Rainbow Table 83

List of Figures

2.1 An overview of the main components in EFC. Components relevant for
this thesis, an OBU, an RSE, and the DSRC-link, are inside the dotted
line. Source: [CEN07]. 5

2.2 Message sequence diagram of a complete EFC transaction. 9
2.3 Algorithm of how the Access Key is derived from the Master Access Key. 13
2.4 Algorithm for calculating access credentials based on RndOBU and AcK. 13
2.5 Illustration of access credentials calculation. Source: EN 15509 [CEN07]. 13
2.6 Message sequence diagram for access credentials. 14
2.7 Algorithm for deriving Authenticator Key (AuK) from Master Authenti-

cator Key (MAuK). 15
2.8 Algotrihm for calculating a MAC based on AttributeIDList, RndRSE,

and AuK. 15
2.9 Illustration of calculation of MAC using DES in CBC-mode. Soruce: EN

15509 [CEN07]. 16
2.10 Message sequence diagram when an RSE authenticates an OBU. 16
2.11 Illustration of Cipher Block Chaining mode. Source: [Wik]. 17

3.1 The output from the RFID reader, when reading three RFID tags. The
reader read three unique tags with ID 52, 53, and 9e. 22

3.2 MATLAB graph of a RFID-tag read four times. 23
3.3 Kargas’ sample file with description. Source: [Kar16]. 23
3.4 Signal processing blocks from the GRC transmitter flow chart. 25
3.5 Variables from the GRC transmitter flow chart. 25
3.6 Validity of frame, taken from 7.4.2.1.1 in EN 12795 [CEN03a]. 26
3.7 Screenshot of Thorsrud’s BST, taken from A.1 in Thorsud’s thesis [Tho09]. 27
3.8 Screenshot of the warnings when running the transmitter in GRC. . . . 29
3.9 Screenshot of htop when running the transmitter. Here core number 4

is running at 100 % and is not able to work any faster. This causes a
bottleneck in the transmitter. 29

3.10 Signal processing blocks from the GRC receiver flow chart. 30
3.11 Variables from the GRC receiver flow chart. 31

xi

3.12 The output of the GUI Time Sink for the transmitter. Bits correctly FM0
encoded shown here are "1010 0000 0000 0011 1001 0001 1000 0000." . . 32

3.13 The output of the GUI Time Sink for the receiver. 32
3.14 Python-code for setting up and configuring RSE624. 33
3.15 The signal received when driving pass an RSE, from 9th February 2017. 36
3.16 Recording of the signal between RSE624 and an OBU. In red, a real

transaction, in white a message with many 0’s, and in white a message
with many 1’s. 37

3.17 In red, recording of a transaction between RSE624 and an OBU. In
green, RSE624 sends a message to OBU, and the OBU does not respond.
In white, the transmitter build with GNU Radio from Section 3.3.2, is
recorded. 38

4.1 Message sequence diagram for obtaining MACs. 42
4.2 Python code for calculation of FCS. Subprocess is used to run the code

in Appendix A. 43
4.3 Python functions for deriving Access Credentials Key from Master Key

and how to calculate Access Credentials. 49

5.1 Illustration of Hellman’s traditional tables. r is the number of tables, t
the length of a chain, and n the number of chains in a table. Source:
[Mey11]. 56

5.2 Illustration of Oechslin’s rainbow tables. t is the length of a chain and b
is the number of chains. Source: [Mey11]. 57

5.3 Algorithm for finding secret plaintext to a given hash using rainbow tables. 58
5.4 Python code for encrypting, truncating and merging two plaintexts. . . 61
5.5 Python code for converting a MAC to new key based on the column in

the rainbow table. 62
5.6 Python code for generating initial keys for each chain. Every parity bit is

set to 1. 63
5.7 Python code for generating the chains in the rainbow table. 64
5.8 Python code for finding a MAC in a chain. 65
5.9 Python code for reconstructing a chain until the wanted key is found. . 65
5.10 Output of the Python code in Appendix C. 67

List of Tables

2.1 DSRC protocol stack . 6
2.2 Most important physical layer downlink parameters in DSRC [CEN04a]. 7
2.3 Most important physical layer uplink parameters in DSRC [CEN04a]. . 7
2.4 Overview of DSRC layer 7 and EFC functions [CEN07]. 8
2.5 Specific fields in every DSRC-frame. 10
2.6 Attributes in EID 1 stored in an OBU. 11
2.7 OBU security related data in security level 0. 12
2.8 Additional OBU security related data added in security level 1. 12

3.1 Example of a valid BST, used in the transmitter, received from Q-Free. 27
3.2 RSE624 configuration parameters [Q-F16]. 33
3.3 RSE624 interface protocol for transmitting DSRC-data [Q-F01]. 34
3.4 RSE624 interface protocol for receiving DSRC-data [Q-F01]. 34

4.1 Specific parameters set in a GET_STAMPED.request in a chosen-plaintext
attack. 42

4.2 Frame content of a Beacon Service Table sent from an RSE to an OBU. 44
4.3 Frame content of a Private Window Request sent from an OBU to an RSE. 45
4.4 Frame content of a Private Window Allocation sent from an RSE to an

OBU. 46
4.5 Frame content of a Vehicle Service Table sent from an OBU to an RSE.

The fields needed to calculate access credentials are in bold. 46
4.6 Frame content of a GET_STAMPED.request sent from an RSE to an

OBU. 49
4.7 Frame content of a GET_STAMPED.response sent from an OBU to an

RSE . 51

5.1 An example of initial parameters to be decided before generating a rainbow
table. 59

5.2 Exact result of benchmarking DES with Hashcat on 4 Nvidia GEFORCE
GTX 1080 GPUs. 60

xiii

5.3 An example of how two plaintexts are encrypted, truncated and finally
merged. The DES key used is 00 00 00 00 00 00 00 00 (hex). 62

5.4 An example of how the reduction function is applied to a MAC, at column
number 12. A new key is created based on these two values. 63

List of Acronyms

AcK Access Credentials Key.

AID Attribute Identifier.

AuK Authenticator Key.

BST Beacon Service Table.

CBC Cipher Block Chaining.

CRC Cyclic Redundancy Check.

DES Data Encryption Standard.

DSRC Dedicated Short-Range Communications.

EFC Electronic Fee Collection.

EID Element Identifier.

EPC Electronic Product Code.

FCS Frame Check Sequence.

GHz Gigahertz.

GRC GNU Radio Companion.

GUI Graphical User Interface.

ITS Intelligent Transportation Systems.

LID Link Identifier.

LPDU Link Protocol Data Unit.

xv

MAC Message Authentication Code.

MAcK Master Access Credentials Key.

MAuK Master Authenticator Key.

MHz Megahertz.

NRZI non-returned-to-zero-inverted.

NTNU Norwegian University of Science and Technology.

OBU On-board Unit.

PSK Phase Shift Keying.

RF Radio Frequency.

RFID Radio Frequency Identification.

RSE Roadside Equipment.

RSE624 Q-Free Desktop DSRC Transceiver.

SDR Software Defined Radio.

UHD USRP Hardware Driver.

USRP Universal Software Radio Peripheral.

VST Vehicle Service Table.

XOR Exclusive Or.

Chapter1Introduction

1.1 Motivation

As technology is developing rapidly, the need of Intelligent Transportation Systems
(ITS) increase. One of them is Electronic Fee Collection (EFC), which is a system for
electronically collecting fee on toll roads. EFC uses Dedicated Short-Range Commu-
nications (DSRC) as communication protocol, which operates on radio frequencies
between 5.725 Gigahertz (GHz) and 8.875 GHz. DSRC is a protocol intended for
communication between vehicle and vehicle or vehicle and infrastructure.

The Norwegian toll road system, called AutoPASS is a free-flow system that
uses video tolling and reading of On-board Units (OBUs) using DSRC. This thesis
will only focus on the OBU part of the system. An EFC system contains two main
components, an OBU mounted in the vehicle and a Roadside Equipment (RSE)
mounted usually in a gantry over the roads. The OBUs and RSE used in Norway
are technically very similar to those used in most of Europe as the use of DSRC
OBUs is mandated by the EU (Commission Decision 2009/750/EC and Directive
2004/52/EC).

Security is important in EFC, mainly because money transactions are involved,
but also because it can contain sensitive information on its users. In a draft paper
[Rei] written by Tord Reistad, he describes that an attack on Message Authentication
Codes (MACs) is possible. MACs are used by the RSE to authenticate OBUs. The
final goal of the attack is to build a customizable OBU, that will be authenticated by
a legitimate RSE, as a valid OBU. By stealing the key used for calculating the MAC
from another OBU, and using it in a customizable OBU, another user will have to
pay each time the customizable OBU pass any toll station. By stealing hundreds, or
thousands, of keys, and changing the key in the OBU frequently, it will be almost
impossible to get caught.

1

2 1. INTRODUCTION

1.2 Scope and Objectives

With a customizable RSE it should be possible to conduct an attack on the MACs
and hence steal keys. MACs are used by the RSE to authenticate a user, and the
MAC is therefore calculated by the OBU. The customizable RSE will be used to
obtain MACs, by implementing the DSRC protocol. In Reistad’s draft paper [Rei],
he shows that EFC is theoretically vulnerable for a chosen-plaintext attack. Data
Encryption Standard (DES) is used to calculate MACs and it is calculated over data
controlled by the RSE. DES is a block cipher with a key of only 56 bits, making it
vulnerable against brute-force attacks. Rainbow tables are precomputed tables and
can be used to find a key in a chosen-plaintext attack. The objectives of this thesis
will be to:

1. Make a customizable RSE who can communicate with an OBU

2. Obtain several MACs from an OBU

3. Make an attack on MACs by building a rainbow table

The goal of this thesis is to show that an attack on the MACs is feasible, and
that it is possible with relatively cheap and available equipment. Please note that
building a customizable OBU with shifting keys, is not an objective of this thesis.

1.3 Methodology

A customizable RSE will be made by using a Universal Software Radio Peripheral
(USRP). A USRP is a Software Defined Radio (SDR) made by Ettus and can be
programmed to fit many different applications. GNU Radio provides signal processing
blocks for implementation on SDRs and is used as software on the USRP.

MACs will be obtained from an OBU by using a customizable RSE. A customizable
RSE gives possibilities to construct messages down to bit-level, making it possible to
communicate with a legitimate OBU.

Initially, a goal was to make a rainbow table for Graphics Processing Units
(GPUs). Generating a rainbow table is highly parallelizable, and implementing it
on GPUs will make the generation a lot faster than on Central Processing Units
(CPUs). Properly doing this is very time consuming and is not an easy task without
any experience in GPU programming. Because of lack of time, a rainbow table is
not implemented on GPUs but instead written in Python for CPUs.

1.4. RELATED WORK 3

1.4 Related Work

This thesis will be a continuation of Jonathan Hansen’s Master’s thesis from 2016.
Hansen aimed to set up a test-bed for DSRC applications, and then to analyze the
security of the current protocols. The test-bed was intended to be used to simulate
an RSE and an OBU. Hansen did not manage to finish the test-bed, but his work is
still valuable for this thesis.

1.5 Outline

This thesis is divided into six chapters. The outline is as follows.

Chapter 2 presents a general foundation of EFC and DSRC, including the parts of
the standards that are relevant to fully understand the content of this thesis.

Chapter 3 describes the approach for making a customizable RSE with a USRP
and GNU Radio.

Chapter 4 explains how the communication between an RSE and an OBU works.
It also describes how messages can be constructed to obtain a MAC from an OBU.

Chapter 5 describes how the MACs obtained in Chapter 4 can be broken using
rainbow tables. A simple example of how such a table can be built is presented,
together with suggestions on how to speed up the table generation.

Chapter 6 includes the conclusion of the work done in this thesis. Also, some
suggestions for further work are described and discussed.

Chapter2Electronic Fee Collection

This chapter provides background information on EFC and DSRC. Especially, the
physical layer of DSRC and the security of EFC is described. Finally, the block
cipher used in EFC, DES, is presented.

2.1 Overview

EFC in Norway, and most of Europe, contains two main components, an OBU and
an RSE. An OBU is placed inside a car, while an RSE is placed alongside a toll road.
Figure 2.1 shows an overview of the main components in EFC. The first part of this
thesis will focus on the components and the communication inside the dotted line of
Figure 2.1.

Figure 2.1: An overview of the main components in EFC. Components relevant for
this thesis, an OBU, an RSE, and the DSRC-link, are inside the dotted line. Source:
[CEN07].

5

6 2. ELECTRONIC FEE COLLECTION

2.2 Dedicated Short-Range Communications

As earlier previously, this project focuses on EFC, which uses DSRC as communi-
cation protocol. DSRC follows standards developed by the European Committee
for Standardization (CEN) and the International Organization for Standardization
(ISO). The relevant standard used are:

– EN 12253:2004 Road transport and traffic telematics – Dedicated short-range
communication – Physical layer using microwave at 5.8 GHz [CEN04a]

– EN 12795:2003 Road transport and traffic telematics – Dedicated short-range
communication (DSRC) – DSRC data link layer: medium access and logical
link control [CEN03a]

– EN 12834:2003 Road transport and traffic telematics – Dedicated short-range
communication (DSRC) – DSRC application layer [CEN03b]

– EN 13372:2004 Road transport and traffic telematics (RTTT) – Dedicated
short-range communication – Profiles for RTTT applications [CEN04b]

The first three of these standards, EN 12253, EN 12795, and EN 12834, forms a
three-layered architecture for DSRC, as seen in Table 2.1. EN 13372 specifies DSRC
profiles for Road Transport and Traffic Telematics (RTTT) applications.

Table 2.1: DSRC protocol stack

Layer DSRC Standard
Layer 7 - Application EN 12834
Layer 2 - Data link EN 12795
Layer 1 - Physical EN 12253

2.2.1 DSRC Physical Layer

To be able to build a customizable RSE, it is essential to know the requirements at
the physical layer. These requirements are specified in EN 12253 [CEN04a]. Table 2.2
and Table 2.3 summarize the most relevant parameters of the physical layer of DSRC.

The carrier frequency has two channels, which are at 5.7975 GHz and 5.8025 GHz.
The polarization of the signal transmitted is left-hand circular and is modulated with
a two level amplitude modulation. Bits are encoded using FM0 and transferred with
a bit rate of 500 kbit/s. An OBU is a passive unit, which collects energy from the

2.3. EFC FUNCTIONS AND APPLICATIONS 7

signal sent from an RSE to wake up. OBUs also have a small battery, but this is
only used for calculations, and not for transmitting signals or reading data.

Data sent from an OBU to an RSE is sent on a sub-carrier frequency in either
1.5 MHz or 2.0 MHz away from the carrier frequency. These signals are modulated
using 2-PSK, which are binary phase shift keying. Uplink data is encoded using
non-returned-to-zero-inverted (NRZI) and is sent with a bit rate of 250 kbit/s.

Table 2.2: Most important physical layer downlink parameters in DSRC [CEN04a].

Item No. Parameter Value
D1 Carrier Frequencies Downlink channel 1: 5.7975 GHz

Downlink channel 2: 5.8025 GHz
D5 Polarization Left hand circular
D6 Modulation Two level amplitude modulation
D7 Data Coding FM0
D8 Bit Rate 500 kbit/s
D10 Wake-up Trigger for OBU OBU shall wake on receiving any

frame with 11 or more octets
D13 Preamble 16 bits ± 1 bit. Alternating sequence

of low and high level.

Table 2.3: Most important physical layer uplink parameters in DSRC [CEN04a].

Item No. Parameter Value
U1 Sub-carrier Frequencies 1.5 MHz or 2.0 MHz
U6 Sub-carrier Modulation 2-PSK
U7 Data Coding NRZI
U8 Bit Rate 250 kbit/s

2.3 EFC Functions and Applications

In addition to the DSRC standards described above, EN 14906 and EN 15509 contains
specifications for EFC applications on top of DSRC:

– EN ISO 14906:2011 Electronic fee collection – Application interface definition
for dedicated short-range communication [CEN11]

8 2. ELECTRONIC FEE COLLECTION

– EN 15509:2007 Road transport and traffic telematics – Electronic fee collection
– Interoperability application profile for DSRC [CEN07]

EN 14906 is an application interface for EFC, and provides a specification on the
EFC transaction model, data elements and functions, which can be used to build
an EFC transaction. EN 15509 specifies some specific EFC functions, together with
examples of transactions. In Table 2.4 the EFC functions are listed together with
the corresponding DSRC layer 7 services. A complete EFC-transaction is illustrated
in a message sequence diagram in Figure 2.2.

DSRC-L7 EFC Remark
INITIALISATION - To establish communication between

OBU and RSE
ACTION GET_STAMPED Get data with authenticator from

OBU
GET - Get data from OBU
SET - Write data to OBU

ACTION SET_MMI Invokes a MMI function
ACTION ECHO OBU echoes received data

EVENT-REPORT RELEASE Terminates communication

Table 2.4: Overview of DSRC layer 7 and EFC functions [CEN07].

Constantly, a Beacon Service Table (BST) is sent out from an RSE. When an
OBU enters the communication zone, it evaluates and responds to the BST. The
most relevant fields in the BST are BeaconID and Time. An OBU uses these fields
to evaluate whether it should respond to the BST or not. The OBU has always
stored the most recent BeaconID and Time. When it enters the communication zone
and receives a BST, it checks if the BeaconID differs from the one stored. If not the
BeaconID is equal, it checks if the time difference is more than 255 seconds. If the
result of both these tests is NO, the OBU stores the current Time and do nothing
more. If one of the tests are YES, the OBU creates a new Private LID, stores the
BeaconID and Time, and respond with a message to the RSE.

After a BST is received and evaluated, the OBU answers with a Private Window
Request. Then, the RSE allocates a private window for that OBU, and the OBU
answers with a Vehicle Service Table (VST). Next, a GET_STAMPED is sent back
and fourth. Here the RSE can read data from the OBU. The data can be details on
the contract, account, the vehicle classification, the last transaction, etc. The OBU

2.4. EFC FRAME CONTENTS 9

can also ask the RSE for access credentials and the RSE ask the OBU to authenticate
itself. In the next phases, first, a receipt is sent from the RSE to the OBU, then
ECHO is used to track the OBU, and finally, an EVENT_REPORT is sent to close
the transaction.

AutoPASS has added an extra security mechanism if a transaction fails or if a car
does not have an OBU. In such case, a picture of the car’s plate number is captured,
and the bill is sent to the owner of the car.

RSE OBU

Beacon Service Table
Private Window Request

Private Window Allocation
Vehicle Service Table

GET-STAMPED.request
GET-STAMPED.response

SET.request
SET.response

ECHO.request
ECHO.response

EVENT-REPORT.request

Figure 2.2: Message sequence diagram of a complete EFC transaction.

2.4 EFC Frame Contents

Chapter 5 in EN 12795 [CEN03a] specifies the frame format for DSRC transmissions.
All transmissions are in frames where each frame consists of some specific fields.
These fields are shown in Table 2.5.

10 2. ELECTRONIC FEE COLLECTION

Table 2.5: Specific fields in every DSRC-frame.

Description Octets
Flag 1
Link Address Field 1-4
MAC Control Field 1
LPDU 1-128
Frame Check Sequence 2
Flag 1

All frames start and end with a flag. The flag is specified to be 0111 1110 (7E
hex) [CEN03a]. The Link Address Field contains either a private Link Identifier
(LID), a multicast LID or a broadcast LID. The MAC1 Control Field is one octet
long and is used to indicate whether the frame contains an LPDU, the direction of
the transmission, to allocate and request public and private windows, and to specify
the type of the LPDU. All LPDUs starts with one octet LLC Control Field which is
used to designate command and response. The final part of the LPDU holds the data
sent in the frame and can be up to 128 octets long. All of these fields are transmitted
with the least significant bit first in each octet.

2.4.1 Frame Check Sequence

All frames include a 16-bit Frame Check Sequence (FCS). The FCS is calculated over
the content of the Link Address Field, the MAC Control Field, and the LPDU. The
generator polynomial used is X16 + X12 + X5 + 1, with the initial value FFFF (hex),
which is also called CRC-CCITT [CEN03a]. The 16-bit FCS is the one’s complement
of the resulting remainder. The FCS is transmitted with the coefficient of the highest
term first.

2.5 AutoPASS Elements and Attributes

AutoPASS-OBUs holds 5 different elements, which all are identified with an Element
Identifier (EID). Each element contains many attributes, which can be addressed by
an Attribute Identifier (AID). The first element is used for EFC and is called the
AutoPass element. The third element is used for public ITS applications. Element 2,
4 and 5 are reserved for future use and are not used today.

When constructing and sending messages from the RSE to the OBU, you can
specify which element and attribute you want to read. All of the attributes listed in

1Please note that in this section MAC is an acronym for medium access control and not message
authentication code.

2.6. SECURITY IN EFC 11

Table 2.6 are read only, except receipt data 1 & 2 who can both be read and written.
The communication channel between the OBU and the RSE is not encrypted, which
means that all messages transmitted can be sniffed and recorded by a radio.

Table 2.6: Attributes in EID 1 stored in an OBU.

AttributeID Category Value Length (in
octets)

0 Contract EFC-ContextMark 6
4 Contract Authenticator 5=1+4
16

Vehicle

Vehicle Licence Plate Number 17
17 Vehicle Class 1
18 Vehicle Dimensions 3
19 Vehicle Axles 2
20 Vehicle Weight Limits 6
22 Vehicle Specific Characteristics 4
23 Vehicle Authenticator 5=1+4
24 Equipment Equipment OBU-ID 5=1+4
26 Equipment Status 2
32 Payment Payment Means 14
33 Receipt Receipt Data 1 28
34 Receipt Data 2 28

2.6 Security in EFC

2.6.1 Overview

EN 15509 defines two different levels of security, 0 and 1. Security level 0 require
only authentication of the OBU and have no protection of user related data on the
OBU. Security level 1 support security level 0, and has also access control, so the
OBU can authenticate the RSE.

2.6.2 Security Related Data

Table 2.7 shows which security related data that is stored in an OBU supporting
security level 0. It has eight different authentication keys of 8 octets, a key reference
used in the calculation of the authentication value, and a random number of 4 octets
received from an RSE. Table 2.8 shows additional data stored in the OBU when
security level 1 is used. Opposite to authentication keys, there is only one access key.
The access master key is 8 octets and is used for calculation of access credentials
(AC_CR).

12 2. ELECTRONIC FEE COLLECTION

Table 2.7: OBU security related data in security level 0.

Name Length
(in octets)

Remarks

AuthenticationKey 1 8 Private
AuthenticationKey 2 8 Private
AuthenticationKey 3 8 Private
AuthenticationKey 4 8 Private
AuthenticationKey 5 8 Private
AuthenticationKey 6 8 Private
AuthenticationKey 7 8 Private
AuthenticationKey 8 8 Private
KeyRef 1 Reference to the AuthenticationKey used

in computation of authenticator
RndRSE 4 Random number sent from RSE to OBU

for computation of authenticator

Table 2.8: Additional OBU security related data added in security level 1.

Name Length
(in octets)

Remarks

Master Access Key 8 Private
AC_CR 1+4 Calculated using RndOBU and the AccessKey
AC_CR-KeyRef 2 Reference to the key generation and the

diversifier for the computation of AC_CR-key
RndOBU 4 Random number sent from OBU to RSE for

computation of access credentials

2.6.3 Access Credentials Calculation

If security level 1 is used, the RSE have to calculate access credentials. In the VST,
sent from an OBU to an RSE, a random number (RndOBU) is included together
with a key reference. The key reference is used to derive the Access Credentials Key
(AcK) from a Master Access Credentials Key (MAcK). How the AcK is derived from
the MAcK, is described in Figure 2.3.

2.6. SECURITY IN EFC 13

a) Let VAL = AC_CR-KeyRef || AC_CR-KeyRef || AC_CR-KeyRef ||
AC_CR-KeyRef

b) Compute AcK = 3DES[MAcK](VAL)

Figure 2.3: Algorithm of how the Access Key is derived from the Master Access Key.

Triple-DES is used when calculating AcK, with the MAcK as key and VAL as
input. After the AcK is calculated, the next step is to calculate access credentials.
Access credentials is calculated as described in Figure 2.4. Figure 2.5 illustrates
how DES is used to calculate access credentials. Note that DEA refers to the Data
Encryption Algorithm, which is the algorithm of DES.

a) Let I = RndOBU || 00 00 00 00

b) Compute O = DES[AcK](I)

c) Let AC_CR = Sub(O,0,4)

Figure 2.4: Algorithm for calculating access credentials based on RndOBU and AcK.

Figure 2.5: Illustration of access credentials calculation. Source: EN 15509 [CEN07].

14 2. ELECTRONIC FEE COLLECTION

The access credentials value is the first 4 byte (32 bit) of the output of a DES
encryption with AcK as key and I as input. This value is sent from the RSE to the
OBU in a GET_STAMPED.request. Then, the OBU evaluates the value received,
and if OK, the communication continues. If not OK, no more messages are sent from
the OBU to the RSE. A message sequence diagram of a transaction using access
credentials is shown in Figure 2.6.

RSE OBU

BST
Generate RndOBU

Calculate AC-CR.self

VST [RndOBU, AC-CR-ref]

Calculate AcK from MAcK

Calculate AC-CR

GET-STAMPED.request [AC-CR]

AC-CR = AC-CR.self ?

Figure 2.6: Message sequence diagram for access credentials.

2.6.4 Authenticator Calculation

An authenticator is used in both security level 0 and security level 1. The RSE
include a random number (RndRSE) in the GET_STAMPED.request and challenge
the OBU to calculate a MAC based on this number. First, an authenticator key is
derived from one of the eight Master Authenticator Keys (MAuKs) stored in the
OBU. Then the Authenticator Key (AuK) is derived from the MAuK according to
the algorithm shown in Figure 2.7.

CompactPAN is calculated by taking the first half of Personal Account Number
XORed with the second half. Contract Provider is known to both the OBU and
the RSE. In Figure 2.10 a message sequence diagram explains the message flow for

2.6. SECURITY IN EFC 15

obtaining a MAC from the OBU. The algorithm for calculating a MAC based on
AttributeIDList, RndRSE, and AuK is shown in Figure 2.8. Figure 2.8 illustrates
how DES in CBC-mode is used to calculate an authenticator (MAC). The leftmost
32 bits of the output is sent as the MAC.

a) Let CompactPAN = Sub(PAN,0,4) XOR Sub(PAN,4,4)

b) Let VAL = CompactPAN || Contract Provider || 00

c) Compute AuK = 3DES[MAuK](VAL)

Figure 2.7: Algorithm for deriving Authenticator Key (AuK) from Master Authenti-
cator Key (MAuK).

a) Let M = AttributeIDList(Payment Means) || RndRSE || 00 00

b) Let D1 = I1 = Sub(M,0,8), D2 = Sub(M,8,16), and D3 = Sub(M,16,24)

c) Compute O1 = DES[AuK](I1)

d) Compute O2 = DES[AuK](I2 = O1 XOR D2)

e) Compute O3 = DES[AuK](I3 = O2 XOR D3)

f) Let MAC = Sub(O3,0,4)

Figure 2.8: Algotrihm for calculating a MAC based on AttributeIDList, RndRSE,
and AuK.

16 2. ELECTRONIC FEE COLLECTION

Figure 2.9: Illustration of calculation of MAC using DES in CBC-mode. Soruce: EN
15509 [CEN07].

RSE OBU

BST
VST

Generate RndRSE

GET-STAMPED.request [RndRSE, KeyRef]
GET-STAMPED.response [MAC]

Figure 2.10: Message sequence diagram when an RSE authenticates an OBU.

2.7 Data Encryption Standard

DES is used in calculations of both MACs and access credentials, and is a symmetric-
key algorithm used for encryption of data. It was developed in the early 1970s and
was first published in 1975 by International Business Machines Corporation (IBM).
In 1977 DES was standardized by the National Security Agency (NSA), and was in
1977 published as an official Federal Information Processing Standard in the United
States [NIS99].

DES is a block cipher, which means that the key is applied to a block of plaintext
rather than one bit or the whole plaintext at the same time. In simple words, DES
takes 64 bit of plaintext and returns 64 bit of ciphertext. The key is also 64 bit long,

2.7. DATA ENCRYPTION STANDARD 17

but only 56 bit is used, as 8 of the 64 bits are used as parity bits. The parity bits
are used to ensure that each byte is of odd parity.

First, the plaintext is split into blocks of 64 bits and later split into two smaller
blocks of 32 bit. Then 16 rounds, or iterations, are applied to these 32-bit blocks
where 16 different keys (subkeys) are used. The subkeys are 48 bits long and are
derived from the 56-bit key through a key schedule. Before and after the 16 rounds,
an initial and a final permutation is done to the block. Neither the initial nor the
final permutation has cryptographic significance.

All block ciphers have a mode of operation. A mode of operation describes how
all the 64-bit blocks are linked together and are done to provide confidentiality
and authenticity. In FIPS publication 81 [NIS80], DES’s modes of operation are
described. These are Electronic Codebook (ECB), Cipher Block Chaining (CBC),
Cipher Feedback (CFB), and Output Feedback (OFB).

In EFC, DES use CBC-mode, with an initialization vector (IV) of zeros. Fig-
ure 2.11 illustrates CBC. First, 64-bit plaintext is XORed with an initialization
vector, then, the DES algorithm is applied. The next block of plaintext is always
XORed with the output of the previous DES encryption.

Figure 2.11: Illustration of Cipher Block Chaining mode. Source: [Wik].

Today, DES is considered insecure [NIS], mainly due to the short key. In 1998
Triple DES was published. Triple DES has a key of 168-bit, three times as much as
single DES. The first third of the key is used for one DES encryption, the second
for a DES decryption, and finally, the third for a new DES encryption. In EFC
Triple DES is used to derive both authenticator and access credentials keys from
their master key. When calculating MACs and access credentials, single DES is used.

Chapter3Making a Customizable RSE

The objective for the first part of this thesis is to make a customizable RSE. A
customizable RSE is a radio that can both send and receive messages to and from an
OBU. Without this, it would not be possible to communicate with an OBU, and not
be able to attack MACs sent from OBUs. This chapter describes how a customizable
RSE is built, and the requirements set for such an implementation.

3.1 Methodology

3.1.1 Literature Review

Before building an RSE, it is important to study relevant literature and to find
related work. The DSRC standards EN 12253 [CEN04a], EN 12795 [CEN03a],
and EN 12834 [CEN03b], defines the requirements for an RSE, and are therefore
important. Especially, the physical layer of DSRC is studied, which is presented in
Section 2.2.1.

Related Work

In 2016, Jonathan Hansen wrote his Master’s thesis at Norwegian University of
Science and Technology (NTNU) with the title "Wireless USRP Test-bed for DSRC
Applications" [Han16]. He tried to build a customizable RSE, but unfortunately, he
did not completely succeed. Most of his work was based on Einar Thorsrud’s thesis,
"Programvaredefinert Radio - Mulige Hyllevareløsninger for DSRC-anvendelser," from
2009 [Tho09].

Thorsrud also aimed to build a customizable RSE, by using a USRP and GNU
Radio. His implementation worked with test files, but it was not able to communicate
with an OBU. Thorsrud used a USRP 1 with motherboard version 4.5 and GNU
Radio version 3.2. Because neither the hardware nor the software version was the
same from Hansen as Thorsrud, Hansen had to do some modifications.

19

20 3. MAKING A CUSTOMIZABLE RSE

3.1.2 Hardware and Software

After studying both Hansen’s and Thorsrud’s program, whom both used a USRP
and GNU Radio, it was an easy choice to choose the same hardware and software.
Even though neither of them succeeded in making an RSE, the value of their work
will save much time.

USRP

Hansen used a USRP N200 with a CBX daughterboard, and the very same USRP
will be utilized in this thesis. A USRP is a product in the family of SDRs. SDRs are
radios where most of the complex signal handling involved are placed in software. By
doing this, a radio can be reprogrammed to fit a lot of different tasks [ARR]. USRPs
are produced by Ettus Research and are designed for radio frequency applications up
to 6 GHz and support multiple antenna systems [Etta]. Currently, Ettus Research
provides four different categories of USRPs, X series, networked series, bus series
and embedded series. In addition to the USRPs, a lot of various accessories, RF
daughterboards, antennas, and cables are provided.

USRP N200 is part of the USRP Networked Series, and comes with a Gigabit
Ethernet interface, allowing data streams up to 50 MS/s. As mentioned, a CBX
daughterboard is attached to the motherboard. The daughterboard provides a full-
duplex RF front end and covers a frequency band from 1.2 GHz to 6 GHz [Ettb].
Together with the daughterboard, the USRP also need antennas in the wanted
frequency band. Two omnidirectional vertical antennas, called VERT2450, were used
by Hansen. These cover frequencies from 2.4 to 2.5 GHz and 4.9 to 5.9 GHz.

GNU Radio

GNU Radio is an open-source development platform for SDRs. It provides signal
processing blocks and can be used both with or without external RF hardware. GNU
Radio has pre-made filters, channel codes, equalizers, demodulators, decoders, and
many other blocks used in signal processing systems. It is also possible to create
new blocks if needed. GNU Radio’s wiki page provides a lot of guides, tutorials, and
examples of how to write a new block. Blocks can be written in either Python or
C++.

There also exist a graphical user interface, called GNU Radio Companion (GRC).
In GRC signal processing applications can be created by drag-and-drop blocks
together. GRC makes it very much easier to create applications, and it is also
possible to write own blocks for GRC.

GNU Radio also contains the GNU Radio USRP Hardware Driver (UHD) package,
which is the interface to the UHD library for sending and receiving data between

3.2. RADIO FREQUENCY IDENTIFICATION READER 21

USRPs. The two most important blocks in this package are USRP Source and USRP
Sink, which act as a receiver/transmitter [Radc].

Both Hansen and Thorsrud used GNU Radio, and Hansen’s program was attached
with his thesis, so this can be imported and used directly. GNU Radio and UHD
are together installed with the "build-gnuradio" script made by Marcus Leech. By
running the command below, the installer "build-gnuradio" is downloaded, made
executable, all the dependencies are installed, and the latest version of both UHD
and GNU Radio is downloaded from Git [Radb].

$ wget http ://www. sbrac . org / f i l e s / bui ld−gnuradio && chmod a+
x bui ld−gnuradio && ./ bui ld−gnuradio

As an option to GNU Radio, National Instruments has developed a program called
LabVIEW. LabVIEW is a system engineering software mainly used for visualizing
data from any I/O device, such as a USRP. Without any experience in either GNU
Radio or LabVIEW, GNU Radio was chosen because both Thorsrud and Hansen
had used it.

Computer

An OptiPlex 7040 computer, with 64-bit Linux Ubuntu 16.04 LTS, is attached to
the USRP by Gigabit Ethernet. The computer has an Intel Core i7-6700 CPU at
3.40 GHz with four cores and eight threads. The main memory is 32 GB.

3.2 Radio Frequency Identification Reader

To get started before the DSRC implementation, Radio Frequency Identification
(RFID) programs was studied. RFID uses electromagnetic fields to identify RFID-
tags. Several passive RFID-tags operating in the frequency band around 900 MHz,
was available for testing. FasTrak, the EFC system used in California in the United
States, uses RFID technology near 915 MHz to read data from an OBU.

After browsing the web for suitable RFID applications, "Gen2 UHF RFID Reader"
[Kar16] by Nikos Kargas, was chosen. Jonathan Hansen also studied this program in
his thesis [Han16]. This program matches the hardware that will be used for building
a customizable RSE later on, pretty well. Kargas’ hardware was a USRP N200 with
an RFX900 daughterboard and two circularly polarized antennas with 7dbi gain.
The hardware utilized in this thesis for the RFID-reader was a USRP N200 with an
SBX daughterboard and two linear polarized antennas with 3dbi gain. Hopefully,
without the same hardware, this program could work to read some RFID-tags.

22 3. MAKING A CUSTOMIZABLE RSE

Kargas’ program was downloaded from GitHub [Kar16], and GNU Radio and
UHD was installed with the "build-gnuradio" script described above. When Hansen
studied this program, he early ran into problems reading RFID-tags. The same
problem as Hansen early occurred, where the program ran just fine with test files,
but with real-time execution, no tags were read.

First, the installation of the program was checked. Ensuring that the program is
correctly installed is important and after re-installing the program several times, and
even with a clean install of Ubuntu, no tags were read. Nothing solved the problem,
so Kargas was contacted by email. He taught the antennas was causing the problem
and suggested to try with circularly polarized antennas.

As a result of this, Nils Torbjörn Ekman and Terje Mathiesen at NTNU was
contacted. Mathiesen said that it should be possible to read RFID-tags with two
linear polarized antennas, by just positioning them correctly. The angle between the
two linear antennas has to be 90 degrees for the program to work. Also changing the
TX gain in the program from 0 to 20 could solve the problem. With this configuration
done, the program was able to read RFID-tags with a range of about 5 cm.

Unfortunately, the read-range is very short, and the tag must be held almost
between the antennas. Although the short range, this is not a big problem as the
program only will be used for testing. The output of the program, when trying to
read some RFID tags, is shown in Figure 3.1. Kargas’ program only shows 8 of
the 128-bit Electronic Product Code (EPC), so after modifying the program, the
program printed out the entire 128-bit EPC. Figure 3.2 shows a MATLAB plot of
the signals when the program read the same RFID-tag four times in a row. Kargas
added an example file with an explanation, which is shown in Figure 3.3.

Figure 3.1: The output from the RFID reader, when reading three RFID tags. The
reader read three unique tags with ID 52, 53, and 9e.

3.2. RADIO FREQUENCY IDENTIFICATION READER 23

Figure 3.2: MATLAB graph of a RFID-tag read four times.

1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
m

p
lit

u
d
e

Time (us)

Query (reader−to−tag) ACK (reader−to−tag)

EPC (tag−to−reader)RN16 (tag−to−reader)

Figure 3.3: Kargas’ sample file with description. Source: [Kar16].

24 3. MAKING A CUSTOMIZABLE RSE

This result is promising for the implementation of DSRC. Although the range for
RFID-tags was very short, this may be increased by changing the gain values for RX
and/or TX. Also changing antennas may solve the problem.

3.3 Building an RSE

3.3.1 Hansen’s Program

When building a customizable RSE, I chose to try to improve and to find the mistakes
in Hansen’s program from 2016. His program was downloaded from BIBSYS Brage
[Han], and the blocks were loaded into GRC.

Hansen included three programs together with his master thesis, a DSRC-
transmitter, a DSRC-receiver, and a DSRC-transceiver. Initially, he only made
a transmitter and a receiver, but because he only had one USRP, and GNU Radio
do not allow two programs to run simultaneously, he made a single program with
the blocks from both the transmitter and the receiver. In the following subsections,
on how the transmitter and receiver are implemented, is described separately.

3.3.2 Transmitter

In section 4.1.4 in Hansen’s thesis [Han16], he describes how he built the DSRC
program. Hansen recreated Thorsrud’s program in GRC, but due to a different
version of GNU Radio, some modifications had to be done. After carefully reading
both Hansen’s and Thorsrud’s thesis, the recreation done by Hansen was verified
to be correct. Also, Hansen added a Graphical User Interface (GUI) Time Sink, to
visualize the transmitted signal.

The final GRC flow chart for the transmitter is shown in Figure 3.4. The
transmitter consists of four blocks; a vector source, a pulse shaper, a short-to-
complex converter, and the UHD block, USRP Sink. The vector source takes a binary
string as input and sends the vector to the pulse shaper block. The pulse shaper
block is not a standard GNU Radio block but was made by Hansen. This block does
both FM0 encoding, modulation and pulse shaping according to the specifications in
EN 12253 [CEN04a]. The next block is just a converter, which converts the signal
from data type short to complex. Finally, the data is sent to the USRP Sink. Also, a
file source is added, which can replace the vector source, as it may be more practical
to read data from a file.

3.3. BUILDING AN RSE 25

Figure 3.4: Signal processing blocks from the GRC transmitter flow chart.

Some of the blocks mentioned above take variables to define their behavior.
Figure 3.5 shows these variables, and most of them are copied from Hansen’s program.
From Hansen’s program, some of these have been changed. Hansen set the frequency
to 5.8 GHz, but this is changed to 5.7975 GHz. The reason for this change is explained
in the next subsection. The gain variable is increased from 1 to 5, to be sure that
the signal sent from the USRP is strong enough for the OBU. The other variables
are not changed, and have been verified to fulfill the specification.

Figure 3.5: Variables from the GRC transmitter flow chart.

As earlier explained, both Hansen and Thorsrud failed to build a working RSE.
Their programs are well described, and most of their work seems to be correct.
However, some small errors are found in the transmitter. In the following, the
findings and corrections are presented.

Frequency

As presented earlier, the frequency of the transmitter is changed from 5.8 GHz to
5.7975 GHz. In Table 2.2, item number D1 specifies two downlink channels, one at

26 3. MAKING A CUSTOMIZABLE RSE

5.7975 GHz and one at 5.8025 GHz. Changing the frequency is a small change but
can affect the result of the transmitter. EN 12253 also specifies that the minimum
frequency range for an OBU is between 5.975 and 5.815 GHz, so with a transmitter
with frequency at 5.8 GHz, the OBU should be able to receive the signal. Even
though both frequencies should work, the frequency was changed to 5.7975 GHz.

Antennas

As a result of the antenna-problem when reading RFID-tags, new antennas was
bought. The two VERT2450 antennas were replaced by left-hand circular polarized
antennas for 5.8 GHz from SpiroNET. These antennas fulfill the specification of item
number D5 in Table 2.2.

BST/Vector Source

Hansen does not mention in his thesis how he constructed the BST. In the program
attached with his thesis, the input to the vector source was only an alternating
sequence of 1’s and 0’s. Section 7.4.2.1.1 in EN 12795 [CEN03a] describes how a
received frame shall be considered. In Figure 3.6 this section is almost directly copied.

7.4.2.1.1 Validity of frame
The MAC sublayer shall inspect all received frames to assess their validity. A

received frame shall be considered valid if:

(a) the frame is correctly delimited by start and end flags according to 5.1;
and

(b) the frame contains a number of bits corresponding exactly to an integer
number of octets; and

(c) the frame contains a valid link address field according to 5.2 containing
the private LID of an SAP; and

(d) the frame contains a MAC control field according to 7.3.2; and

(e) the frame does not consist of too many octets; and

(f) the frame contains a valid FCS field according to 5.5.

If the frame received is not valid it shall be discarded. If a non-valid frame is
received in a private window, reallocation may be undertaken according to

7.5.2.2.3.

Figure 3.6: Validity of frame, taken from 7.4.2.1.1 in EN 12795 [CEN03a].

3.3. BUILDING AN RSE 27

As stated in Figure 3.6, there are many requirements to be fulfilled for a frame
to be considered valid. A valid BST was received on request from Q-Free, to be sure
that this part was correct. The valid BST is shown in Table 3.1. A more detailed
description of how BST messages are constructed is described in Section 4.2.2.

Thorsrud, on the other hand, used a preamble consisting of 16 1’s, which he
repeated 312 times before sending the BST. Then, he had a BST of 68 bits. He has
not mentioned how this BST is constructed or what it means, but by doing a quick
check against the requirements in Figure 3.6, it is easy to see that this is not a valid
frame/BST. It has not a start or a stop flag (0111 1110), and the number of bits
does not correspond exactly to an integer number of octets. Without knowing what
the bits indicate, it is hard to say if it fails on more of the requirements, but failing
at least two is more than enough not to be considered as a valid frame.

Figure 3.7: Screenshot of Thorsrud’s BST, taken from A.1 in Thorsud’s thesis
[Tho09].

Table 3.1: Example of a valid BST, used in the transmitter, received from Q-Free.

Octet Attribute/Field Bit Hex
1

Preamble
1010 1010 AA

2 1010 1010 AA
3 Start flag 0111 1110 7E
4 Broadcast LID 1111 1111 FF
5 MAC control field 1010 0000 A0
6 LLC control field 0000 0011 03
7 Fragmentation header 1001 0001 91
8 BST { 1000

Option indicator 0
000 80

Continued on next page

28 3. MAKING A CUSTOMIZABLE RSE

Table 3.1 – continued from previous page
Octet Attribute/Field Bit Hex

9 BeaconID.ManufacturerID 0000 0000 00
10 0011 0

000 30
11 BeaconID.IndividualID 0000 0110 06
12 0000 0011 03
13 1110 1100 EC
14

Time

0000 1110 0E
15 0111 0101 75
16 1101 0101 D5
17 0010 1000 28
18 Profile 0000 0000 00
19 MandApplications 0000 0001 01
20 Option indicator 0000 0001 01
21 ProfileList } 0000 0000 00
22

Frame check sequence
0100 1100 4C

23 0011 1110 3E
24 Stop flag 0111 1110 7E

GNU Radio Warnings

When running the transmitter in GRC with the USRP attached to the computer, a
UHD warning appears in the console window. As seen in Figure 3.8, the requested
TX sample rate is not supported by the hardware. The warning disappears if the
sample rate is changed from 16 MSps to 16.66667 MSps. If this is a real problem or
not, is not clear. The difference between the numbers is so small that it hopefully
will not cause any problem.

Figure 3.8 does not only shows the UHD warning, but it also shows a lot of U’s.
These are printed out to the console constantly when the program is running. U’s
indicates underrun and occurs when the application does not supply samples fast
enough to the USRP. Underrun may be a big problem, as the USRP Sink do not
receive data fast enough. In GNU Radio’s mailing list forum, a suggestion is to lower
the sample rate to solve the problem [Radd]. By lower the sample rate to 4 MSps,

3.3. BUILDING AN RSE 29

the U’s disappears, but then the sample rate is very low, causing the signal not to
be as sharp as it should.

After some investigation, it became apparent that it is the pulse shaper block
which is causing the problem. It is too slow, and by using a process viewer, it is
clear that one of the CPU cores is not capable of working fast enough. A screenshot
of htop1 is shown in Figure 3.9. It is not an easy fix to remove this problem. The
task of the pulse shaper block can not be done in parallel because it handles a data
stream. A solution that may solve, or at least decrease, the problem, would be to
re-write the pulse shaper block from Python to C++. GNU Radio’s wiki page says
that when performance is important, GNU Radio blocks should be written in C++
[Rada]. Because of lack of both time and experience in C++, this has not been done
in this thesis but is highly recommended for future work on the customizable RSE.

Figure 3.8: Screenshot of the warnings when running the transmitter in GRC.

Figure 3.9: Screenshot of htop when running the transmitter. Here core number 4 is
running at 100 % and is not able to work any faster. This causes a bottleneck in the
transmitter.

3.3.3 Receiver

Similarly to the transmitter, Hansen’s receiver is downloaded and studied. The
receiver is a bit more complex than the transmitter, and consist of even more
blocks. The GRC flow chart is shown in Figure 3.10, and the variables are shown in
Figure 3.11.

1http://hisham.hm/htop/

30 3. MAKING A CUSTOMIZABLE RSE

The first block is a USRP Source block, which receives data from the USRP RX2
antenna. Then, a frequency filter and an MPSK receiver are added. The Frequency
Xlating FIR Filter block performs frequency translation, channel selection, and
decimation. The MPSK Receiver block performs carrier frequency and phase locking
for PSK modulated signals. Then two blocks are added to convert the data type
and recover the binary bits before the nrzi_to_nrz_bb block is applied. This block
converts from non-return-to-zero-inverted encoding to non-return-to-zero encoding.
Finally, the result is added to a file.

The only parameters that have been changed from Hansen’s receiver are the
frequency from 5.8 to 5.7975 GHz and the gain from 1 to 5.

Figure 3.10: Signal processing blocks from the GRC receiver flow chart.

3.3. BUILDING AN RSE 31

Figure 3.11: Variables from the GRC receiver flow chart.

3.3.4 Results

By combining the blocks from the transmitter and the receiver together, you will
get a transceiver. A transceiver can both transmit and receive a signal, and in this
case, it can do it simultaneously. By running the transceiver, two windows with the
output of the GUI Time Sink for both the transmitter and the receiver is shown.
Figure 3.12 shows the output for the transmitter part of the transceiver. A part
of the BST from Table 3.1 is shown as correctly FM0 encoded. The output seems
correct according to how FM0 encoded signals should be. The bits in Figure 3.12
are: 1010 0000 0000 0011 1001 0001 1000 0000. By looking in Table 3.1, these bits
can be found from octet 5 to 8.

The output in the GUI Time Sink for the transmitter seems correct, but it is
hard to test if it works. One of Hansen’s problems was that he was not able to test or
verify the program. A normal OBU gives no visual feedback, and you are therefore
dependent that both the transmitter and the receiver is working to make sure the
program works. Back in 2009, Thorsrud had an OBU with LED. With such an OBU,
it is easy to see if the transmitter is working. After contacting Q-Free, an OBU with
LED was obtained.

The LED-OBU has two different diodes, a yellow and a red. The yellow light
indicates that the OBU wake up as a result of receiving a modulated signal on the
right frequency. The red light indicates that the OBU has received a valid BST and
that it responds. Running the transmitter with the LED-OBU in front of the USRP,
the yellow light was indicating that the OBU woke up. Unfortunately, the red light
remained off, indicating that a valid BST was not received.

Without any answer from an OBU to the USRP/RSE, it is very hard to test
the receiver. The output of the GUI Time Sink for the receiver, when both the

32 3. MAKING A CUSTOMIZABLE RSE

transmitter and the receiver is running together, is shown in Figure 3.13. The output
looks like noise, and it is not possible to decode the signal. Without any possibilities
to test the receiver any further, it was difficult to find the errors in the program.

Figure 3.12: The output of the GUI Time Sink for the transmitter. Bits correctly
FM0 encoded shown here are "1010 0000 0000 0011 1001 0001 1000 0000."

Figure 3.13: The output of the GUI Time Sink for the receiver.

3.4 RSE624 - Desktop DSRC Transceiver

A desktop DSRC transceiver, called RSE624, was bought from Q-Free to be able to
communicate with an OBU within this semester. With this reader, DSRC-messages
can be constructed down to bit-level, which makes it very practical for the task of
this thesis. The reader was connected to a computer using USB. In the user manual
[Q-F16], some serial port configuration parameters were specified. These parameters
are shown in Table 3.2. With the Python library serial [Lie], all these parameters
were set, and the reader was successfully connected to the computer.

3.4. RSE624 - DESKTOP DSRC TRANSCEIVER 33

Table 3.2: RSE624 configuration parameters [Q-F16].

Parameter Value
Baud rate 57600
Data bits 8
Parity Even
Stop bits 2

In Figure 3.14 some Python code is included. Here the library serial is imported.
The serial port is configured to the variable "ser" with the parameters from Table 3.2.
Timeout is set to 0.1 seconds, to ensure that the reader waits at least 0.1 seconds
when trying to read messages from an OBU. At last, time.sleep(0.1) is added, to
avoid that the reader sends out the BST before it is ready to send out messages.

import s e r i a l
import time

try :
s e r = s e r i a l . S e r i a l (’ /dev/ttyUSB0 ’ , //

baudrate=57600 , //
timeout =0.1 , //
by t e s i z e = s e r i a l .EIGHTBITS, //
pa r i t y=s e r i a l .PARITY_EVEN, //
s t opb i t s=s e r i a l .STOPBITS_TWO)

pr in t " Connected to " + s e r . name
except :

sys . e x i t (" Error connect ing dev i ce ")

time . s l e e p (0 . 1)

Figure 3.14: Python-code for setting up and configuring RSE624.

Together with the user manual, an interface protocol [Q-F01] is included with
RSE624. This protocol specifies how DSRC frames are constructed in the reader.
Table 3.3 and Table 3.4 are almost directly copied from the interface protocol [Q-F01].
These tables show how the messages are constructed. Every message transmitted
from the RSE starts with *F, and every message received starts with *I.

34 3. MAKING A CUSTOMIZABLE RSE

Table 3.3: RSE624 interface protocol for transmitting DSRC-data [Q-F01].

Character No. Value Comment
1-2 *F DSRC Transmit
3-4 Config Bit 0: Keep alive (0=on/1=off)

Bit 1-2: Keep alive interval
(00=32ms, 01=60ms, 10=100ms, 11=11ms)
Bit 3-6: NA
Bit 7: Protocol (0=DSRC, 1=LDR)

5-6 Length # of data bytes + CRC(2) + stop flag(1) + 3
bytes

7-(6+2N) Data DSRC/LDR frame. N = data bytes
(7+2N)-(10+2N) FCS/CRC CRC16 computed on Data
(11+2N)-(12+2N) Stop flag 7E (hex)

Table 3.4: RSE624 interface protocol for receiving DSRC-data [Q-F01].

Character No. Value Comment
1-2 *I DSRC Receive
3-4 Length # of data bytes + CRC(2)
5-(4+2N) Data DSRC/LDR frame. N = data bytes
(5+2N)-(8+2N) FCS/CRC CRC16 computed on Data

3.5 Recordings With Gqrx

It is not easy to fully understand a physical signal by just reading the specifications.
Therefore I was recommended by Ulf Bertilsson to do some recording of a real RSE,
to visualize the signal. With a laptop, a USRP and Gqrx, it is possible to visualize
the received signal in a waterfall. Gqrx is an open source SDR receiver, build on
GNU Radio and Qt [Gqr]. Together with a USRP B200mini and a MacBook Pro,
some recordings with Gqrx were done.

In Figure 3.15, a recording of the signal received when sitting in a car who drives
pass an RSE is shown. The car’s speed is around 40 km/h, so the transaction between
the OBU (in the car) and the RSE is done in under a second. Because of much
noise and the danger of standing on a road when trying to receive signal, the next
recordings are taken from a transaction between the Desktop DSRC Transceiver,
RSE624, and an OBU.

3.5. RECORDINGS WITH GQRX 35

In Figure 3.16, three different scenarios are shown. First, in the red frame, a real
transaction between an OBU and the RSE is captured. How this transaction is built
is explained in Chapter 4. In the red frame, it can be seen that the carrier frequency
is 5.7975 GHz and the sub-frequencies are at 5.796 and 5.799 GHz. From Table 2.3,
this matches the specification well, with sub-carrier frequency 1.5 MHz away from
the carrier frequency. Without having it verified, or finding anything about it in the
specification, a hypothesis could be that the RSE sends data approximately 0.5 MHz
away from the carrier frequency. So the beam at the carrier frequency (5.7975 GHz)
is used to wake up the OBU and give it the energy to work, data from RSE to OBU
are sent at 5.797 and 5.798 GHz, and data from OBU to RSE are sent at 5.796 and
5.799 GHz.

In the green frame, a DSRC message is transmitted in repeat, containing 90 % of
0’s, but still fulfilling the requirements of a valid frame as explained in Figure 3.6. In
the white frame, a message with 90 % if 1’s is sent from the RSE to an OBU. From
the screenshot, it may seem that the OBU gives some answer to the message, even
though the message is not a valid BST, but a valid DSRC message.

Also in Figure 3.17, three different scenarios are shown. Again, in red, a real
transaction, where the sub-frequencies are very clear. In green, the RSE sends out
the same BST over and over again, but the OBU has blocked that RSE (more about
this in Section 4.2.2). Here the signals at 5.797 and 5.798 GHz are clear (data from
RSE to OBU), but the signals at 5.796 and 5.799 GHz are very weak. Why they are
weak, and not completely gone, is still a question, but maybe the OBU responds
with a very short message. In the white frame, the RSE624 is turned OFF, and
the transmitter explained in Section 3.3.2 is turned ON. Observe that the carrier
frequency, at 5.7975 GHz, seems correct, but the sub-frequencies at 0.5 MHz and 1.5
MHz away from the carrier is not there.

It is hard to find some clear conclusion from this, but it is still valuable. This
recording can be used to compare the RSE built in GNU Radio with a working RSE,
as RSE624.

36 3. MAKING A CUSTOMIZABLE RSE

Figure 3.15: The signal received when driving pass an RSE, from 9th February 2017.

3.5. RECORDINGS WITH GQRX 37

Figure 3.16: Recording of the signal between RSE624 and an OBU. In red, a real
transaction, in white a message with many 0’s, and in white a message with many
1’s.

38 3. MAKING A CUSTOMIZABLE RSE

Figure 3.17: In red, recording of a transaction between RSE624 and an OBU. In
green, RSE624 sends a message to OBU, and the OBU does not respond. In white,
the transmitter build with GNU Radio from Section 3.3.2, is recorded.

3.6 Results and Discussion

This chapter describes how a customizable RSE can be build and the requirements
of an RSE. Jonathan Hansen’s work on building a customizable RSE from 2016 is
studied, and a lot of errors and mistakes are found and corrected. Unfortunately, the
DSRC transceiver is still not working correctly, but the program is heading in the
right direction. Because of lack of time, a desktop DSRC transceiver, RSE624, was
bought from Q-Free. RSE624 is a customizable RSE, with possibilities to construct
DSRC messages down to bit level. In the next chapter, this transceiver will be used
for communication with an OBU. Some recording of the signals sent between an RSE
and an OBU is also captured, and greater understanding of the signal is achieved.

The communication between an RSE and an OBU in DSRC is not encrypted,
which may be a security weakness of EFC. With no encryption, an attacker with a

3.6. RESULTS AND DISCUSSION 39

radio receiver can sniff the communication and may read sensitive information sent
in the transaction. However, this chapter explains how hard it is to understand the
signal and the physical layer in DSRC. No encryption also open possibilities for a
replay attack, where real signals are recorded and later replayed. Replay attacks are
also a hard task for an attacker because the signal in EFC is very complex.

Chapter4Communication between an RSE
and an OBU

In the second part of this thesis, the objective is to obtain MACs from an OBU.
To be able to do this, many messages have to be constructed correctly based on
information received from the OBU. DSRC and EFC are explained in Section 2.2
and Section 2.3. This chapter explains how the messages needed to obtain MACs
can be constructed.

4.1 Message Authentication Codes in EFC

With a customizable RSE like RSE624, it is possible to send and receive messages
with an OBU. In Norway, security level 1 is used, so to get MACs from an OBU,
access credentials is needed. A test-OBU with a known MAcK is used for testing.

MACs are part of the GET_STAMPED.response sent from an OBU to an RSE.
As explained in Section 2.6, MACs are generated over AttributeIDList and a random
number, RndRSE. Because these values are sent from the RSE, a chosen-plaintext
attack is possible. In a chosen-plaintext attack, the attacker can use the OBU as
an encryption oracle. In this way, the random number can be changed to many
different values, and the OBU responds with the corresponding MAC. Then, many
plaintext-ciphertext pairs are obtained.

It is also possible to use an empty AttributeIDList. With an empty AttributeI-
DList, the MAC is only calculated over 8 bytes, meaning only one DES-encryption
is needed. A GET_STAMPED.request can be constructed as shown in Table 4.1.
ActionType is 00 (hex), which indicates that it is a GET_STAMPED.request. At-
tributeIDList is 00 (hex), indicating that no attributes are wanted. Nonce length
is 04 (hex), because RndRSE is 4 bytes long, and finally RndRSE contain 4 bytes
freely chosen by the attacker.

41

42 4. COMMUNICATION BETWEEN AN RSE AND AN OBU

Table 4.1: Specific parameters set in a GET_STAMPED.request in a chosen-plaintext
attack.

Parameter Value (in hex) Remark
ActionType 00 00 specifies a GET_STAMPED.request
AttributeIDList 00 Empty attribute list
Nonce Length 04 Length of RndRSE
RndRSE XX XX XX XX 4 byte chosen by the attacker

4.2 Frame Contents

To obtain a MAC from an OBU, some messages have to be sent between the RSE
and the OBU. A message sequence diagram is shown in Figure 4.1, and a closer
description of each message follow below.

RSE OBU

Beacon Service Table

Private Window Request

Private Window Allocation

Vehicle Service Table

GET-STAMPED.request
GET-STAMPED.response

Figure 4.1: Message sequence diagram for obtaining MACs.

4.2.1 Frame Check Sequence

Some trouble were experienced when trying to calculate the correct FCS. Mostly
the problem was caused by big/little-endian and converting between these. In
the Interface Protocol [Q-F01] to the reader RSE624, an example C-code for FCS
calculation was included. Unfortunately, this program did not completely work, but
finally, after some time and modifications, a working FCS-program was running.

4.2. FRAME CONTENTS 43

In Appendix A the C-code used for calculating FCS is included. Please note that
the program outputs the FCS in wrong order. ABCD is outputted as CDAB. Using
subprocess [Fou] in Python, it is possible to run the compiled output file from C. In
Figure 4.2, the function "gen_crc" is shown. This function uses subprocess to send
data to a.out and receives the FCS back. Then the FCS is reordered to correct order.

de f gen_crc (data) :
c rc3 = subproces s . check_output (" . / a . out " + data , s t d e r r=
subproces s .STDOUT, s h e l l=True)

crchex = hex (i n t (c rc3))
i f l en (crchex) == 5 :
I f the CRC i s too shor t
crchex = crchex [3] + crchex [4] + " 0 " + crchex [2]

e l s e :
crchex = crchex [4] + crchex [5] + crchex [2] + crchex [3]

r e turn crchex

Figure 4.2: Python code for calculation of FCS. Subprocess is used to run the code
in Appendix A.

4.2.2 Beacon Service Table

In Table 4.2, an example of a BST is shown. The first three octets are RSE624
specific and follow the protocol shown in Table 3.3 and Table 3.4. Octet 3, 4, and 5
are all link layer specific. Octet 4 is Broadcast LID, the first 7 bits is chosen and set
to 1111 111, and the last bit is set to 1, which indicates that the LID only is one
octet. The MAC Control Field is set to 1010 0000, which indicates that the frame
contains an LPDU and that the direction of the transmission is downlink (from RSE
to OBU), and that the RSE allocates a uplink window. The LLC Control Field is
set to 0000 0011 indicating that it is unacknowledged connectionless, as specified in
8.3.2.1 in EN 12795 [CEN03a].

Octet 7 to 21 are part of the data unit and starts with a fragmentation header. A
fragmentation header contains a fragmentation indicator, a PDU number, a fragment
counter and finally an extension indicator. The bits are set according to 6.3.3 in EN
12834 [CEN03b] and are not essential for the tasks of this thesis.

The next part of the frame is the BST, which contains BeaconID and a 32 bit
UNIX time-stamp. The option indicator indicates that EID is not present and that
AID = 1 (electronic fee collection). Finally, the FCS is calculated, and a stop flag is
added.

44 4. COMMUNICATION BETWEEN AN RSE AND AN OBU

Table 4.2: Frame content of a Beacon Service Table sent from an RSE to an OBU.

Octet Attribute/Field Bit Hex
1 DSRC Transmit *F
2 Config 0000 0000 00
3 Length 0001 1000 18
4 Broadcast LID 1111 1111 FF
5 MAC control field 1010 0000 A0
6 LLC control field 0000 0011 03
7 Fragmentation header 1001 0001 91
8 BST { 1000

Option indicator 0
000 80

9 BeaconID.ManufacturerID 0000 0000 00
10 0011 0

BeaconID.IndividualID

000 30
11 0000 0110 06
12 0000 0011 03
13 1110 0001 E1
14

Time

0101 1001 59
15 0000 1001 09
16 1001 1011 9B
17 1110 0110 E6
18 Profile 0000 0000 00
19 MandApplications 0000 0001 01
20 Option indicator 0000 0001 01
21 ProfileList } 0000 0000 00
22

Frame check sequence
0111 0011 73

23 0010 0000 20
24 Stop flag 0111 1110 7E

4.2. FRAME CONTENTS 45

4.2.3 Private Window Request

When the OBU receives a BST, it evaluates the fields BeaconID and Time. If the
tests succeeds, a new Private LID is created. Together with a MAC control field, the
Private LID is sent from the OBU to the RSE. In Table 4.3, an example of a Private
Window Request is shown. Note that the reader (RSE624) automatically removes
the start and stop flag when receiving messages.

Table 4.3: Frame content of a Private Window Request sent from an OBU to an
RSE.

Octet Attribute/Field Bit Hex
1 DSRC Receive *I
2 Length 0000 0111 07
3

Private LID

1110 1010 EA
4 1010 0100 A4
5 0110 0100 64
6 1100 0101 C5
7 MAC control field 0110 0000 60
8 Frame check sequence 1101 0000 D0
9 1100 1001 C9

4.2.4 Private Window Allocation

Similarly to a Private Window Request, a Private Window Allocation only consists
of the Private LID and a MAC control field. The MAC control field specifies if it is
a request or an allocation. In Table 4.4, an example of a Private Window Allocation
is shown.

46 4. COMMUNICATION BETWEEN AN RSE AND AN OBU

Table 4.4: Frame content of a Private Window Allocation sent from an RSE to an
OBU.

Octet Attribute/Field Bit Hex
1 DSRC Transmit *F
2 Config 0000 0000 00
3 Length 0000 1011 0B
4

Private LID

1110 1010 EA
5 1010 0100 A4
6 0110 0100 64
7 1100 0101 C5
8 MAC control field 0010 1000 28
9 Frame check sequence 1001 1100 9C
10 0000 0111 07
11 Stop flag 0111 1110 7E

4.2.5 Vehicle Service Table

After the OBU has received a BST and a private window is requested and allocated,
the OBU sends a VST to the RSE. EFC-ContextMark is one of the most important
elements in a VST. It contains information about CountryCode, IssuerIdentifier,
TypeOfContract and ContextVersion. These fields are necessary information for
the RSE when handling the transaction. Next, in a VST, a reference to the access
credentials key is included together with a random number (RndOBE). These fields
are used by the RSE when calculating access credentials. An example of a VST is
shown in Table 4.5.

Table 4.5: Frame content of a Vehicle Service Table sent from an OBU to an RSE.
The fields needed to calculate access credentials are in bold.

Octet Attribute/Field Bit Hex
1 DSRC Receive *I
2 Length 0011 1010 3A
3

Private LID

1110 1010 EA
4 1010 0100 A4
5 0110 0100 64
6 1100 0101 C5

Continued on next page

4.2. FRAME CONTENTS 47

Table 4.5 – continued from previous page
Octet Attribute/Field Bit Hex

7 MAC control field 1100 0000 C0
8 LLC control field 0000 0011 03
9 Fragmentation header 1001 0001 91
10 VST { 1001 0000 90
11 Profile 0000 0000 00
12 Applications 0000 0010 02
13 OptionIndicator 1100 0001 C1
14 EID 0000 0001 01
15

Parameter
0000 0010 02

16 0001 0000 10
17 Country code 0011 0000 30
18

IssuerIdentifier
1100 0000 C0

19 0011 0011 33
20

TypeOfContract
0000 0000 00

21 0000 0001 01
22 Context version 0000 0010 02
23

Container
0000 0010 02

24 0000 0010 02
25 AC_CR-MasterKeyRef 0000 0000 00
26 AC_CR-Diversifier 0010 1010 2A
27

Container
0000 0010 02

28 0000 0100 04
29

RndOBE

0100 1101 4D
30 1000 1011 8B
31 1101 1001 D9
32 0001 1001 19
33 Option indicator 1100 0001 C1
34 EID 0000 0010 02
35

Parameter
0000 0010 02

36 0001 0000 10
37 CountryCode 0011 0000 30

Continued on next page

48 4. COMMUNICATION BETWEEN AN RSE AND AN OBU

Table 4.5 – continued from previous page
Octet Attribute/Field Bit Hex
38 IssuerIdentifier 1100 0000 C0
39 0011 0011 33
40

TypeOfContract
0000 0000 00

41 0000 0010 02
42 ContextVersion 0000 0010 02
43

Container
0000 0010 02

44 0000 0010 02
45 AC_CR-MasterKeyRef 0000 0000 00
46 AC_CR-Diversifier 0010 1010 2A
47

Container
0000 0010 02

48 0000 0100 04
49

RndOBE

0100 1101 4D
50 1000 1011 8B
51 1101 1001 D9
52 0001 1001 19
53

EquipmentClass
1111 0011 F3

54 0000 0001 01
55

ManufactureID
0000 0000 00

56 0000 0011 03
57

OBU-status
0000 0011 03

58 0000 0000 00
59

Frame check sequence
0101 0011 53

60 1010 1010 AA

4.2.6 GET_STAMPED.request

Because the test-OBU use security level 1, access credentials have to be calculated
and have to be included in GET_STAMPED.request to receive more messages from
the OBU. As explained previously, the test-OBU has known Master Access Key.
Access credentials were calculated following the algorithms explained in Section 2.6.
Python functions for how the access key is derived from the master access key, and
how access credentials are calculated, are shown in Figure 4.3. The python library

4.2. FRAME CONTENTS 49

PyDes [Whi] is used for both DES and Triple DES encryption, in CBC mode and
0000 0000 as initialization value.

from pyDes import ∗

de f f ind_ack (mack , key r e f) :
k = t r i p l e_de s (mack , CBC, " \0\0\0\0\0\0\0\0 ")
re turn k . encrypt (key r e f ∗4) . encode (’ hex ’)

de f ca lc_accr (ack , rndobe) :
k = des (ack , CBC, " \0\0\0\0\0\0\0\0 ")
re turn k . encrypt (rndobe + //

b" \x00\x00\x00\x00 ") . encode (’ hex ’)

Figure 4.3: Python functions for deriving Access Credentials Key from Master Key
and how to calculate Access Credentials.

As described to begin with in this chapter, we want the MAC to be calculated
over an empty attribute list and the random number. In Table 4.6, ActionType and
AttributeIDList is 00, and the random number, RndRSE, is set to 00 00 00 00 (hex).
RndRSE is freely chosen bytes, and to obtain a second MAC, it can, for example, be
set to FF FF 00 00.

Table 4.6: Frame content of a GET_STAMPED.request sent from an RSE to an
OBU.

Octet Attribute/Field Bit Hex
1 DSRC Transmit *F
2 Config 0000 0000 00
3 Length 0000 1011 25
4

Private LID

1110 1010 EA
5 1010 0100 A4
6 0110 0100 64
7 1100 0101 C5
8 MAC control field 1010 1000 A8
9 LLC control field 0111 0111 77
10 Fragmentation header 1111 0001 F1

Continued on next page

50 4. COMMUNICATION BETWEEN AN RSE AND AN OBU

Table 4.6 – continued from previous page
Octet Attribute/Field Bit Hex
11 ACTION.request { 0000

AccessCredentials 1
ActionParameter 1
IID 0
Mode 1 0D

12 EID 0000 0001 01
13 ActionType 0000 0000 00
14 Access Credentials 0000 0100 04
15

AC_CR

1111 1010 FA
16 0111 1010 7A
17 1010 1011 AB
18 0111 0010 72
19 ActionParameter 0001 0001 11
21 AttributeIDList 0000 0000 00
22 Nonce length 0000 0100 04
23

RndRSE

0000 0000 00
24 0000 0000 00
25 0000 0000 00
26 0000 0000 00
27 KeyRef_OP } 0110 1111 6F
28 Fragmentation header 1111 0001 F1
29 GET.request { 0110

AccessCredentials 1
ActionParameter 0
IID 0
Mode 0 68

30 EID 0000 0001 01
31 AccessCredentials 0000 0100 04
32

AC_CR }

1111 1010 FA
33 0111 1010 7A
34 1010 1011 AB

Continued on next page

4.2. FRAME CONTENTS 51

Table 4.6 – continued from previous page
Octet Attribute/Field Bit Hex
35 0111 0010 72
36 Frame check sequence 0001 1101 1D
37 0001 0011 13
38 Stop flag 0111 1110 7E

4.2.7 GET_STAMPED.response

In a GET_STAMPED.response, the wanted MAC is included as Operator Authenti-
cator. It is a 4-byte value, which means only the first half of the DES output is sent.
For the test-OBU, the MAC is 87DD1D11, when the RndRSE is 00000000.

Table 4.7: Frame content of a GET_STAMPED.response sent from an OBU to an
RSE

Octet Attribute/Field Bit Hex
1 DSRC Receive *I
2 Length 0011 1010 17
3

Private LID

1110 1010 EA
4 1010 0100 A4
5 0110 0100 64
6 1100 0101 C5
7 MAC control field 1100 0000 D0
8 LLC control field 0000 0011 F7
9 LLC status field 0000 0000 00
10 Fragmentation header 1111 0001 F1
11 ACTION.response { 0001

IID 0
ResponseParameter 1
ReturnStatus 0
Fill 0 14

Continued on next page

52 4. COMMUNICATION BETWEEN AN RSE AND AN OBU

Table 4.7 – continued from previous page
Octet Attribute/Field Bit Hex
12 EID 0000 0001 01
13 ResponseParameter 0001 0010 12
14 AttributeList 0000 0000 00
15 Authenticator 0000 0100 04
16

OperatorAuthenticator }

1000 0111 87
17 1101 1101 DD
18 0001 1101 1D
19 0001 0001 11
20 Fragmentation header 1111 0001 F1
21 GET.response { 0111

IID 0
AttributeList 0
ReturnStatus 1
Fill 0 72

22 EID 0000 0001 01
23 ReturnStatus } 0000 0010 02
24

Frame check sequence
1111 1111 FF

25 0111 0000 70

4.3 Results and Discussion

This chapter shows that it is possible to send a GET_STAMPED.request to an OBU
with an empty AttributeIDList. A direct consequence of this is that the MAC is
calculated over a known plaintext, and that OBUs can be used as encryption oracles,
producing a lot of plaintext-ciphertext pairs. Attacking MACs can be done with a
chosen-plaintext attack, which will be described in Chapter 5.

In the GET_STAMPED.response frame content in Section 4.2.7, the MAC "87
DD 1D 11" is received from the test-OBU. The MAC is only 32 bit, meaning that
the second half of the DES-output is not included.

In Appendix B the complete Python code for communicating with an OBU is
included. The program ran two times with different RndRSE to obtain two different

4.3. RESULTS AND DISCUSSION 53

MACs. With only half of the output, the total number of possible keys are 224. If we
obtain another MAC, the number of possible keys are reduced down to only one, or
at least a few. With a third MAC, this would not be a problem, as the third value
can be used to verify that the key found is correct. Changing RndRSE to "FF FF 00
00", the MAC received is "E5 CF FC 13".

The program calculates Access Credentials and receives two MACs from the
test-OBU. As earlier explained, OBUs blocks the communications if the BeaconID is
the same or the time difference is less than 255 seconds. In the program, BeaconID
is changed from the first to the second BST to avoid BST-blocking from the OBU.

4.3.1 Access Credentials

It is worth mentioning that in Norway, security level 1 is used. In security level 1,
the OBU asks for access credentials from the RSE. Without correct calculation of
this, it is not possible to obtain MACs from OBUs. Chapter 5, explains an attack for
finding the key used in the computation of the MAC. With possibilities to conduct
such an attack, the only real security mechanism left in EFC is the access control.

Attacking the access control is not as easy as attacking MACs. When calculating
access credentials, the OBU chooses a random number which the access credentials
shall be calculated over, as explained in Section 2.6.3. The random number, RndOBU,
is 32 bit, resulting in at most 232 different access credential values for each key, AcK.
The KeyRef used to derive AcK from a master key, is only 16 bit, resulting in only
216 different master keys.

Building a customizable OBU, and let it communicate with a legitimate RSE
could be a solution to this problem. By placing it in the communication zone of an
RSE, and then iterate through every possible KeyRef, all 65 536 access keys will be
obtained. Because of the truncation, where only the leftmost 32 bits is sent, you will
need at least 131 072 transactions to be able to obtain every access key. Estimating
that it is possible to obtain 10 access keys per second, the total time would be around
3.6 hours. Such an attack is easily detectable for the RSE because it will receive
much non-valid transaction in a very short amount of time.

Another possibility is to study how the random number is generated in OBUs. Is
it random? Can it generate 232 different numbers, or does it only use a few of them?
This would be very interesting to investigate. There are only two values that change
between each transaction, the private LID and the random number, RndOBU. My
guess is that the random number is depended on a known value and that it should
be possible to anticipate the random number, or even better, be able to choose what
the random number should be.

Chapter5Building a Rainbow Table

This chapter will present some of the most basic functions for creating a rainbow
table, and also some suggestions on how to improve the generation of a rainbow
table.

5.1 Rainbow Tables

Rainbow tables are precomputed tables used for reversing cryptographic hash func-
tions. This method is invented by Philippe Oechslin and was first published in his
paper "Making a Faster Cryptanalytic Time-Memory Trade-Off" in 2003 [Oec03]. In
1980, Martin Hellman described a method for reducing the time of cryptanalysis as a
cryptanalytic time-memory trade-off by precalculating data. Two years later, in 1982,
Ronald Rivest improved Hellman’s technique by introducing distinguished points.

Figure 5.1 illustrates Hellman’s traditional tables. It consist of several tables,
where each table contains a lot of chains. A chain is build by applying a hash function
and a reduction function to a start value (m1,0) over and over again. A reduction
function is not an inverse of the hash function, but it is a function used to map
hashes back to plaintexts. It is only the start (m1,0) and the end value (m1,t) that
are stored in the table. The reduction function is equal in each table, but is different
for each table.

Oechslin proposed a new way of pre-calculating the data, namely rainbow tables.
Rainbow tables has only one table, where each column has it own reduction function.
By doing it this way, the probability of merges decrease. For a merge to arise, a
collision have to occur at the exact same column. Figure 5.2 illustrates Oechslin’s
rainbow tables. If a color is assigned to each reduction function, it will form a
the colors of a rainbow. Rainbow tables can also be used for attacking encryption
functions, like DES, when both the plaintext and the ciphertext is known. In that
case, a DES-key is used as start value and a ciphertext as end value.

55

56 5. BUILDING A RAINBOW TABLE

Figure 5.1: Illustration of Hellman’s traditional tables. r is the number of tables, t
the length of a chain, and n the number of chains in a table. Source: [Mey11].

5.1. RAINBOW TABLES 57

Figure 5.2: Illustration of Oechslin’s rainbow tables. t is the length of a chain and b
is the number of chains. Source: [Mey11].

After the rainbow table for a specific hash function is generated, the next step will
be to search for a hash in the rainbow table. The hash is known, but the corresponding
plaintext is not. The algorithm is quite simple and is shown in Figure 5.3. The first
part of the algorithm, is to find the chain that has the wanted plaintext and hash.
If the hash is not found in any of the end values stored in the table, the reduction
function from the last column is applied. Then the new value is hashed, before a
new search among the end values is done. If still not found, the two last reduction
functions is applied together with the hash function. This is done over and over again
until the hash is found. When the hash is found in a chain, that chain is recreated
from the start value until the hash and the corresponding plaintext is found.

58 5. BUILDING A RAINBOW TABLE

Rainbow tables are an excellent trade-off between time and memory. It does not
store entire rainbow chains, like complete look-up tables, but uses a bit more time
for searching and finding the secret plaintext.

1. Look for the hash in the rainbow table.

a) If found: Go to step 2
b) If not: Reduce the hash with the N last reduction functions. Go back

to step 1. N += 1.

2. Take the plaintext value of that hash and hash it.

a) If the two hash values match: The plaintext just hashed is the secret
plaintext.

b) If not: Apply the reduction function and go to step 2.

Figure 5.3: Algorithm for finding secret plaintext to a given hash using rainbow
tables.

5.2 Generating the Rainbow Table

5.2.1 Overview

Initially, one of the goals for this thesis was to implement a rainbow table on
a computer with GPUs. Such implementation would give some numbers of how
long time it would take to generate a table, but also to crack the MACs obtained.
Because each chain can be created separately, generating a rainbow table is highly
parallelizable. It is not an easy task to implement and generate a rainbow table
at full size. There are many things to have in mind, and some aspects as memory
handling and threading are crucial to getting the wanted speed and output. Because
of lack of both time and knowledge of GPU programming, a simple rainbow table
for CPUs is created in Python.

Recall that the MAC only is 32-bit and not the entire 64-bit output of a DES
encryption. With two plaintext-ciphertext pairs, the possible key space is reduced to
only a few. Several possible keys may occur because two keys can produce the very
same first halves of a ciphertext. With a third plaintext-ciphertext pair, this should
not be a problem, as the third pair can be used for verifying the keys found.

5.2. GENERATING THE RAINBOW TABLE 59

5.2.2 Precalculations

There are many choices to be made before generating a rainbow table. Ideally, we
want a perfect rainbow table. A perfect rainbow table is a table, where every end
value in the table is unique [Oec03]. With a perfect rainbow table and 256 keys
generated, the probability of finding a key is close to 100 %.

As previously explained, rainbow tables are a time-memory trade-off, meaning a
decision on how you want to trade time for memory in your rainbow table need to
be done. In Table 5.1 an example of some critical parameters to be decided before
generating a rainbow table is shown. The total amount of different keys in DES is
256. Storing one chain in a file takes 35 Bytes, and with a hard drive of 3 TB, there
is room for storing up to 9.42 x 1010 chains. If you want to generate a table that
contains 256 DES-encryptions, each chain has to have a length of 764 587. However,
loops, merges and reuse of the same key more than once will occur. A rainbow table
with 256 DES-encryptions will not cover the entire key space. Generating a table
with 100 % probability of containing the key will be almost infinitely big, but when
attacking DES-keys in EFC, this is not a requirement. The goal is not to attack one
single OBU, but rather a bunch of them. Then it is not critical if the rainbow table
is not able to find the key for one of the OBUs.

Table 5.1: An example of initial parameters to be decided before generating a rainbow
table.

Total # of keys 256

Storage 3 TB
Byte per chain 11 Bytes
Total amount of chains 3 TB / 35 Bytes = 9.42 x 1010

of keys generated 256 = chains * chainlength
Chainlength 256 / 9.42 x 1010 = 764 587

The previous paragraph explains how some rainbow table parameters can be
calculated based on available storage and how many keys the table should contain.
However, time is also an important factor. The rainbow table can be generated a
long time before the actual attack, but with applying the encryption function 256

times, this will take much time.

At NTNU, Department of Information Security and Communication Technology’s
hacker group, Itemize, has a computer with 4 Nvidia GEFORCE GTX 1080 GPUs
installed. To get some numbers of how long it would take to generate a 3 TB
big rainbow table on this machine, Hashcat was installed. Hashcat "is the world’s
fastest and most advanced password recovery utility, supporting five unique modes of

60 5. BUILDING A RAINBOW TABLE

attack for over 200 highly-optimized hashing algorithms"[Has]. Using the benchmark
function in Hashcat, Itemize’ computer can do about 74 000 mega hashes per second
(4 x 18500 MH/s). The exact result of the benchmark done in Hashcat is shown in
Table 5.2.

Table 5.2: Exact result of benchmarking DES with Hashcat on 4 Nvidia GEFORCE
GTX 1080 GPUs.

GPU 1 18560.9 MH/s
GPU 2 18551.4 MH/s
GPU 3 18505.6 MH/s
GPU 4 18422.1 MH/s
Total 74040.1 MH/s

Generating a table with the parameters described in Table 5.1, the encryption
function will be running 256 times. As will be outlined in the next section, each
encryption function contains 2 DES-encryptions, resulting in a total of 257 DES-
encryptions.

257

74000 × 106 H/s
= 1.95 × 106 seconds (5.1)

1.95 × 106 s

60 × 60 × 24 = 22.5 days (5.2)

By the calculation above, it will take over 22 days only to do the encryption
function. On top of that time for the reduction function and chain and key generation
have to be added. These are not so time-consuming tasks, but still, have to be taken
into account. Also, the start and end points, have to be written to one or several
files, and the tables have to be sorted. Without any numbers of how long these tasks
will take, it is hard to estimate the total time of generating a rainbow table with the
parameters set in Table 5.1. However, because the rainbow table generation can be
done before the attack, and the fact that the generation time is in order of days and
not months, a rainbow table of 3 TB, may be a reasonable size.

It is also important to know something about how long it would take to search in
a rainbow table before generating it. Longer chains lead to longer searching time,
but with a computer like the one mention above, this will not be a problem. At most,

5.2. GENERATING THE RAINBOW TABLE 61

the total number of encryptions/reductions are the sum of an arithmetic progression
from 1 to 764 587.

Sn = n (a1 + an)
2 (5.3)

Sn = 764587 (1 + 764587)
2 = 2.92 × 1011 (5.4)

2 × 2.92 × 1011

74000 × 106 H/s
= 7.90 seconds (5.5)

By the equations above, we can see that the highest count of total encryption-
s/reductions is 2.92 × 1011. The computer mentioned above will use under 8 seconds
for only the DES encryptions. The most time-consuming task would be to compare
the current value with all the end keys in the rainbow table. Next, one chain has to
be reconstructed until the key is found. Without an actual table or implementation,
it is hard to estimate the time for this.

5.2.3 Encryption Function

As said, to reduce the number of possible keys to only a few, two MACs are combined
in the rainbow table. In Figure 5.4 Python code for encrypting two plaintexts and
combine them to only one output is shown. First plaintext1, 00 04 00 00 00 00 00 00
(hex), is encrypted with DES using the current key and in CBC-mode with an initial
vector. Then, plaintext2, 00 04 FF FF 00 00 00 00 (hex), is encrypted in the same
way as plaintext1. Finally, the last halves of the output are removed, and the output
is combined into one output. PyDES [Whi] is used for encryption. Table 5.3 gives
an example of how two plaintexts are encrypted, truncated and finally merged.

from pyDes import ∗

de f crypt (key) :
p l a i n t ex t 1 = " \x00\x04\x00\x00\x00\x00\x00\x00 "
p l a i n t ex t 2 = " \x00\x04\ x f f \ x f f \x00\x00\x00\x00 "
k = des (key , CBC, " \0\0\0\0\0\0\0\0 ")
o1 = k . encrypt (p l a i n t ex t 1) . encode (’ hex ’) [: 8]
o2 = k . encrypt (p l a i n t ex t 2) . encode (’ hex ’) [: 8]
output = (o1+o2) . decode (’ hex ’)
re turn output

Figure 5.4: Python code for encrypting, truncating and merging two plaintexts.

62 5. BUILDING A RAINBOW TABLE

Table 5.3: An example of how two plaintexts are encrypted, truncated and finally
merged. The DES key used is 00 00 00 00 00 00 00 00 (hex).

Plaintext1 (in hex) Plaintext2 (in hex)
Plaintext 00 04 00 00 00 00 00 00 00 04 FF FF 00 00 00 00
DES encrypted E6 D5 F8 27 52 AD 63 D1 1E B5 B7 EB 3F 76 9D 86
Truncated E6 D5 F8 27 1E B5 B7 EB
Merged E6 D5 F8 27 1E B5 B7 EB

5.2.4 Reduction Function

A reduction function can be chosen freely by the attacker and has only a few
requirements. An essential prerequisite to a reduction function is that it reduce a
ciphertext back to a key, in a way it can be reproduced and that it are pretty random
[Oec03]. Ideally, it should produce a unique plaintext for each ciphertext, in a way
that two different ciphertexts do not produce the same key. Avoiding merges are
almost impossible to achieve. With a different reduction function on each column,
the possibility for merges between chains is very low, because the same ciphertext
has to occur in the very same column for a merge to be created.

One of the great features of DES is that the input, output, and key is all of the
same sizes, meaning that the output can almost be used as the next key directly.
Figure 5.5 shows how the reduction function for this rainbow table works. It takes a
MAC and a column as input. The column is just an integer telling for which column
in the rainbow table the reduction function is being applied. Both the MAC and
the column is converted to hexadecimal. Then, the last N characters of the MAC is
removed, where N equals the length of the column in hex. Finally, the MAC and
column are merged to return a new key based on the MAC and the column. Table 5.4
gives an example of how a MAC and a column number together creates a new key.

de f r educt ion (mac , column) :
mac = mac . encode (’ hex ’)
macstr ing = s t r (mac)
columnhex = hex (column)
newkey = macstr ing [:16− l en (columnhex [2 :])]+columnhex [2 :]
r e turn newkey [−16 :] . decode (’ hex ’)

Figure 5.5: Python code for converting a MAC to new key based on the column in
the rainbow table.

5.2. GENERATING THE RAINBOW TABLE 63

Table 5.4: An example of how the reduction function is applied to a MAC, at column
number 12. A new key is created based on these two values.

MAC Column
Input E6 D5 F8 27 1E B5 B7 EB 12
Input (hex) E6 D5 F8 27 1E B5 B7 EB C
Strip key E6 D5 F8 27 1E B5 B7 E C
Key = MAC || Column E6 D5 F8 27 1E B5 B7 EC

5.2.5 Initial Key Generation

Generating initial keys for each chain is not as easy that it might seem. Without the
parity bits in DES-keys, a simple for loop, iterating up from 00 00 00 00 00 00 00
00 (hex), would have done the job just fine. With every 8th bit as a parity bit, a
simple for loop would for each key generated 256 (28) other keys producing the same
ciphertext.

Figure 5.6 shows how the initial keys are generated in this rainbow table. The
current key number is taken as input and converted to a 56-bit number. For every
7th bit in the raw key (key without parity bits), a "1" is added as the parity bit.
Finally, the key is converted back to hexadecimal and padded with zeros that may
disappear at the converting.

de f key_generation (keynumber) :
x = bin (keynumber)
rawkey = x [2 :] . z f i l l (56)
tempkey = " "
f o r j in range (0 , 56 , 7) :

tempkey += rawkey [j : j +7] + " 1 "
key = hex (i n t (tempkey , 2)) [2 :] . z f i l l (16)
re turn key . decode (’ hex ’)

Figure 5.6: Python code for generating initial keys for each chain. Every parity bit
is set to 1.

5.2.6 Generating Chains

With a working encryption function, reduction function, and the initial key generation,
the next step is to generate the chains. First, a decision of how many chains and
how long each chain should have to be made. Figure 5.7 shows a Python function
for generating the chains. The chain number and the length of each chain are taken
as input, and an initial start key is generated for that chain using the key generation

64 5. BUILDING A RAINBOW TABLE

function described in Section 5.2.5. It is important to store the start key and the
current end hash at all times. It is these two values that are stored in the final
rainbow table. Then, the current end hash is encrypted and reduced as many times
as the chain is long. Finally, the start key and the final end hash are stored in a
table. The if/else-sentence is just for ensuring that the final value of the chain is not
reduced after it is encrypted.

g l oba l t ab l e
t ab l e = []

de f chain_maker (chainNumber , cha in l ength) :
s t a r tk ey = key_generation (chainNumber)
endhash = s ta r tkey
f o r y in range (cha in l ength) :

i f y < chain length −1:
endhash = reduct i on (crypt (endhash) , y)

e l s e :
endhash = crypt (endhash)

chain = star tkey , endhash
tab l e . append (chain)
re turn None

Figure 5.7: Python code for generating the chains in the rainbow table.

5.3 Searching in the Rainbow Table

Rainbow tables are often pre-computed before the actual attack. When the table
is generated, and at least two MACs are obtained from the OBU, the next step is
searching and finding the key used in that OBU. As explained in Section 5.1, that
first, we look at the MAC in the table (end hash), if it is not there the reduction
function for the last column and encryption is applied to the MAC. The new value is
again checked against the end values in the table, and if no match, the reduction
function for the column before that last is applied. Finally, when the modified MAC
match an end hash in the table, that chain is recreated from the start key until the
original MAC, and the key is found.

In Figure 5.8 and Figure 5.9 two Python functions are included, find_hash and
hash_found. Find_hash finds in which chain how holds the MAC, and hash_found
recreates a chain and prints out where the key was found and what the key is. After a
key is found in the rainbow table, it should be verified with a third plaintext-ciphertext
pair.

5.3. SEARCHING IN THE RAINBOW TABLE 65

de f f ind_hash (mac , tab le , cha in l ength) :
p r i n t " \nLooking f o r key f o r MAC: "
p r i n t mac . encode (" hex ")
omac = mac
f o r y in range (cha in l ength) :

f o r x in range (l en (t ab l e)) :
i f omac == tab l e [x] [1] :

r e turn hash_found (x , tab le , cha in length , mac , omac)
omac = mac
f o r i in range (cha in length−2−y , cha in length −1, 1) :

i f i < 0 :
break

omac = reduct i on (omac , i)
omac = crypt (omac)

re turn " \nHash not in t ab l e \n "

Figure 5.8: Python code for finding a MAC in a chain.

de f hash_found (x , tab le , cha in length , mac , omac) :
s t a r tk ey = tab l e [x] [0]
x += 1
fmac = crypt (s t a r tk ey)
p r i n t (’ \nEndkey found : %r ’ %omac . encode (" hex "))
p r i n t (’ S ta r t key : %r ’ % s ta r tk ey . encode (" hex "))
p r i n t (’ Chain : %r ’ %x)
l a s t k ey = s ta r tkey

f o r z in range (cha in l ength) :

i f mac == fmac :
p r i n t (’ \nKey found : %r ’ % l a s t k ey . encode (" hex "))
p r i n t (’ Chain nr %r ’ %x)
p r in t (’ Place nr %r ’ %(z+1))
re turn " "

e l s e :
i f z < chain length −1:

l a s t k ey = reduct ion (fmac , z)
fmac = crypt (r educt i on (fmac , z))

e l s e :
fmac = crypt (fmac)

re turn " Something went wrong "

Figure 5.9: Python code for reconstructing a chain until the wanted key is found.

66 5. BUILDING A RAINBOW TABLE

5.4 Improving the Rainbow Table

In this section, some suggestions for improving the rainbow table are presented.
There is a lot of small improvements that can be done for saving both time and
space.

With the current method, both the start value and the end value stored is 64-bit.
As earlier explained, 8 of these bits are used for parity check and does not effect the
encryption. Removing the parity bits in the start value, which is a key, will save in
total 1 Byte per chain. The end value in a chain is not a key but a 64-bit MAC value,
so no bits can be stripped. By saving 1 Byte per chain, even more chains can be
generated in the same amount of space. However, adding parity bits to the stripped
key, will add more time for searching in the table.

Recall that Hellman’s originally time-memory trade-off tables consisted of many
tables where each table had its reduction function. In rainbow tables, there is one
big table where each column has its reduction function. This gives rainbow tables
much lower risk of merges than the traditional Hellman’s table. In Steven Meyer’s
Master’s thesis from 2011, he stated that creating more rainbow tables with different
reduction functions will lower the risk of merges. "(...) the best performance on a
single rainbow table is 86 % due to the quantities of merges. Therefore it becomes
necessary to create more tables" [Mey11]. Meyer attacked MD4 passwords and not
DES, so there might be a difference between the probability of merges in MD4 and
DES.

Meyer also presents a method to avoid spending time on generating chains that
already has merged. By pausing the chain generation, sort the table, remove the
duplicates, and then continue to generate the chain, he saved about 3 % of the total
generation time.

When searching in a rainbow table, the search will be a lot faster if the table
is already sorted by the end values. By doing this, it is also very easy to see and
remove chains that end with the same value. Removing merges will save both time
and memory.

5.5 Results and Discussion

In this chapter, methods of how to create a rainbow table for attacking MACs
obtain from an OBU is presented. Unfortunately, a complete rainbow table was
not generated, so no real MACs were attacked. However, implementing a rainbow
table on GPUs, require a lot of time and experience in both GPU programming and
rainbow table generation. Hopefully, this chapter will be helpful for future work on

5.5. RESULTS AND DISCUSSION 67

this table. A lot of serious calculations and trade-offs have to be made to achieve the
wanted result.

The complete Python code is included in Appendix C. It includes all the functions
described above. It also sorts the table and writes the table to a CSV-file. Threading
is also used to speed up the generation of chains. Finally, it searches for the MAC
"87 DD 1D 11 E5 CF FC 13". The MAC is a combination of the MACs received from
the test-OBU as explained in Chapter 4.

In Figure 5.10 the output of the Python code in Appendix C is shown. The code
produces ten chains with a chain length of 50. First, the generated rainbow table is
printed out, sorted by the end value. Then some statistics of the current rainbow
table generation is shown, and finally, it searches for the MAC "87 DD 1D 11 E5 CF
FC 13."

The program ran on a computer with an Intel Core i7-6700 CPU with 8 3.40
GHz cores and Python 2.7.12 installed.

0101010101010101 438 cb8f0216f72bb
010101010101010d 495433743 c 7 1 9 f f f
0101010101010109 4 ab7687f32afe254
0101010101010105 67 c6aaa2aa628139
010101010101010 f 90 fc68034b089604
0101010101010103 a1b2c8c5912c3a6f
010101010101010b a4b91 f4 f1 f e48417
0101010101010107 b751adadcaf8b6a8
0101010101010111 ca249d32d96bad73
0101010101010113 d0609114067e7caf

Generated 10 cha ins o f l ength 50 in 0.4260389804840088 s
Total 6.938893903907228 e−15 o f a l l keys
Genarating a l l would take 1946939.6182172378 years

Looking f o r key f o r MAC:
87 dd1d11e5c f f c13

Hash not in t ab l e

Gen time : 0.4260389804840088
Search time : 0.9797370433807373
Total time : 1.4058301448822021

Figure 5.10: Output of the Python code in Appendix C.

Chapter6Conclusion

This Master’s thesis has looked at the possibilities of conducting a chosen-plaintext
attack on MACs in EFC. MACs are calculated over data controlled by the RSE, and
with a customizable RSE, a chosen-plaintext attack may be possible. Rainbow tables
are a perfect time-memory trade-off method for chosen-plaintext attacks like this.
Due to the use of single DES, and the fact the key is only 56-bit, a rainbow table
can be generated in reasonable time.

The first objective was to "make a customizable RSE who can communicate with
an OBU". Chapter 3 describes how a customizable RSE is made by using a USRP and
GNU Radio. Jonathan Hansen’s program from 2016 is studied, and a lot of his work
is verified to be correct. However, some critical errors are found and corrected. The
antennas have been replaced with left-hand circular antennas, the gain is increased,
the frequency is corrected, and a valid BST is created. The signal generated by
the transmitter seems to be correct. Unfortunately, neither the transmitter nor the
receiver is working correctly, so the first objective is not achieved. However, the
program is heading in the right direction. The most crucial mistake at this moment
is the bottleneck caused by the pulse shaper block. A solution may be to rewrite the
block from Python to C++, but it is not sure that this will solve the problem.

The second objective was to "obtain several MACs from an OBU". How MACs are
obtained is described in Chapter 4. A desktop DSRC transceiver bought from Q-Free
is used to communicate with an OBU, and two MACs are obtained. A program for
obtaining MACs is written in Python, and this can be almost directly used when
the customizable RSE from Chapter 3 is working. It is worth mentioning that the
MACs are obtain from a test-OBU. In Norway, security level 1 is used, meaning that
access credentials are needed in order to communicate with an OBU. The test-OBU
have a known master access key, so access credentials can be correctly calculated for
that OBU.

69

70 6. CONCLUSION

The third and last objective was to "make an attack on MACs by building a
rainbow table". Rainbow tables in general and how a rainbow table can be constructed,
are described in Chapter 5. With several plaintext-ciphertext pairs obtained and
the use of DES with the short 56-bit key, rainbow tables are perfect. Initially, one
of the goals of this thesis was to implement a rainbow table on GPUs. Because of
lack of both time and experience in GPU programming, this was not done. A simple
rainbow table is created in Python, showing the most basic features of a rainbow
table. Also, some suggestions on how to save both time and space are presented.
Even though a complete rainbow table is not built and MACs are not attacked, this
chapter is very valuable for further work on this project.

This thesis shows that an attack on MACs in EFC is feasible. However, it is
only possible when security level 0 is used. The only real security mechanism in
EFC is the access credentials and not the authentication of OBUs. In Section 4.3.1 a
possible attack on access credentials is described, but this attack is easily detectable,
and it is not sure if it is possible to conduct.

6.1 Further Work

For further work, it will be natural to continue to work on the customizable RSE.
Rewriting the pulse shaper block to C++, may solve the problem, and should be one
of the first tasks to be done. By cooperating with companies working with this, like
Q-Free or Norbit, building a customizable RSE should be possible. These companies
have much experience in this field and may contribute with much valuable guidance.

Implementing a rainbow table in full scale on GPUs would be a fun and interesting
task. A lot of calculations and trade-offs have to be done. This thesis gives an
explanation of the most basic features of building a rainbow table for attacking EFC,
which is valuable for future work on this table.

Finally, it would be interesting to spend even more time studying EFC. Especially,
finding a good way to obtain access credentials as mention in Section 4.3.1. This
could be either to obtain every access key or be able to anticipate the random number
sent from the OBU. Other security weaknesses in EFC may also be found.

References

[ARR] ARRL. Software defined radio. http://www.arrl.org/software-defined-radio.
Accessed: 2017-05-18.

[CEN03a] CEN. EN 12795:2003 Road transport and traffic telematics - Dedicated short-
range communication (DSRC) - DSRC data link layer: medium access and logical
link control. Technical report, European Committee for Standardization, May
2003.

[CEN03b] CEN. EN 12834:2003 Road transport and traffic telematics - Dedicated short-range
communication (DSRC) – DSRC application layer. Technical report, European
Committee for Standardization, November 2003.

[CEN04a] CEN. EN 12253:2004 Road transport and traffic telematics - Dedicated short-
range communication - Physical layer using microwave at 5.8 GHz. Technical
report, European Committee for Standardization, April 2004.

[CEN04b] CEN. EN 13372:2004 Road transport and traffic telematics (RTTT) - Dedicated
short-range communication - Profiles for RTTT applications. Technical report,
European Committee for Standardization, April 2004.

[CEN07] CEN. EN 15509:2007 Road transport and traffic telematics - Electronic fee
collection - Interoperability application profile for DSRC. Technical report,
European Committee for Standardization, March 2007.

[CEN11] CEN. EN ISO 14906:2011 Electronic fee collection - Application interface definition
for dedicated short-range communication. Technical report, European Committee
for Standardization, August 2011.

[Etta] Ettus. About Ettus Research. https://www.ettus.com/about. Accessed: 2017-05-
18.

[Ettb] Ettus. CBX. https://www.ettus.com/product/details/CBX. Accessed: 2017-05-
25.

[Fou] Python Software Foundation. Subprocess management. https://docs.python.org/
2/library/subprocess.html#.

[Gqr] Gqrx. Welcome to gqrx. http://gqrx.dk/. Accessed: 2017-05-30.

71

http://www.arrl.org/software-defined-radio
https://www.ettus.com/about
https://www.ettus.com/product/details/CBX
https://docs.python.org/2/library/subprocess.html#
https://docs.python.org/2/library/subprocess.html#
http://gqrx.dk/

72 REFERENCES

[Han] Jonathan Hansen. Wireless USRP Test-bed for DSRC Applications - attachment.
http://hdl.handle.net/11250/2405115. Accessed: 2017-05-26.

[Han16] Jonathan Hansen. Wireless USRP Test-bed for DSRC Applications. Master’s
thesis, Norwegian University of Science and Technology, 2016.

[Has] Hashcat. Hashcat. https://github.com/hashcat/hashcat. Accessed: 2017-05-15.

[Kar16] Nikos Kargas. Gen2 UHF RFID Reader. https://github.com/nikosl21/
Gen2-UHF-RFID-Reader, 2016.

[Lie] Chris Liechti. pyserial 2.7. https://pypi.python.org/pypi/pyserial/2.7.

[Mey11] Steven Meyer. Breaking 53 bits passwords with Rainbow tables using GPUs.
Master’s thesis, Ecole polytechnique federale de Lausanne, September 2011.

[NIS] NIST. NIST Withdraws Outdated Data Encryption Stan-
dard. https://www.nist.gov/news-events/news/2005/06/
nist-withdraws-outdated-data-encryption-standard. Accessed: 2017-06-05.

[NIS80] NIST. FIPS PUB 81 - DES Modes of Operation, December 1980.

[NIS99] NIST. FIPS PUB 46-3 - Data Encryption Standard, October 1999.

[Oec03] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In
Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science, pages 617–630. Springer,
2003.

[Q-F01] Q-Free. QF-RPC Interface Specification, 201.

[Q-F16] Q-Free. RSE624 User Manual, June 2016.

[Rada] GNU Radio. Guided Tutorial GNU Radio in C++. https://wiki.gnuradio.org/
index.php/Guided_Tutorial_GNU_Radio_in_C%2B%2B#4.1_C.2B.2B_or_
Python.3F. Accessed: 2017-05-29.

[Radb] GNU Radio. InstallingGRFromSource. https://wiki.gnuradio.org/index.php/
InstallingGRFromSource#Using_the_build-gnuradio_script. Accessed: 2017-05-
25.

[Radc] GNU Radio. UHD Interface. https://gnuradio.org/doc/doxygen/page_uhd.html.
Accessed: 2017-05-25.

[Radd] GNU Radio. USRP underflow issue. http://gnuradio.4.n7.nabble.com/
USRP-underflow-issue-td54034.html. Accessed: 2017-05-29.

[Rei] Tord Ingolf Reistad. Securing EN 15509 against brute-force attacks. Unpublished.

http://hdl.handle.net/11250/2405115
https://github.com/hashcat/hashcat
https://github.com/nikosl21/Gen2-UHF-RFID-Reader
https://github.com/nikosl21/Gen2-UHF-RFID-Reader
https://pypi.python.org/pypi/pyserial/2.7
https://www.nist.gov/news-events/news/2005/06/nist-withdraws-outdated-data-encryption-standard
https://www.nist.gov/news-events/news/2005/06/nist-withdraws-outdated-data-encryption-standard
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_C%2B%2B#4.1_C.2B.2B_or_Python.3F
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_C%2B%2B#4.1_C.2B.2B_or_Python.3F
https://wiki.gnuradio.org/index.php/Guided_Tutorial_GNU_Radio_in_C%2B%2B#4.1_C.2B.2B_or_Python.3F
https://wiki.gnuradio.org/index.php/InstallingGRFromSource#Using_the_build-gnuradio_script
https://wiki.gnuradio.org/index.php/InstallingGRFromSource#Using_the_build-gnuradio_script
https://gnuradio.org/doc/doxygen/page_uhd.html
http://gnuradio.4.n7.nabble.com/USRP-underflow-issue-td54034.html
http://gnuradio.4.n7.nabble.com/USRP-underflow-issue-td54034.html

REFERENCES 73

[Tho09] Einar Thorsrud. Programvaredefinert radio - mulige hyllevareløsninger for DSRC-
anvendelser. Master’s thesis, Norwegian University of Science and Technology,
2009.

[Whi] Todd Whiteman. pyDes 2.0.1. https://pypi.python.org/pypi/pyDes/.

[Wik] Wikipedia. Block cipher mode of operation. https://en.wikipedia.org/wiki/
Block_cipher_mode_of_operation. Accessed: 2017-06-02.

https://pypi.python.org/pypi/pyDes/
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

AppendixAC Code for Frame Check Sequence
Calculation

#inc lude <s td i o . h>
#inc lude <s td i n t . h>
#inc lude " crc16 . h "
#inc lude <ctype . h>
#inc lude <s t d l i b . h>
#inc lude <s t r i n g . h>

in t hc to i (const char h) {
i f (i s d i g i t (h))

re turn h − ’ 0 ’ ;
e l s e

re turn toupper (h) − ’A ’ + 10 ;
}

i n t main (i n t argc , const char ∗ argv []) {

uint16_t va l ;
char cdata [2 0 0] ;
s t r cpy (cdata , argv [1]) ;

unsigned char udata [(s i z e o f (cdata)−1) / 2] ;
const char ∗p ;
unsigned char ∗up ;

f o r (p=cdata , up=udata ; ∗ p ; p+=2,++up) {
∗up = hc to i (p [0]) ∗16 + hc to i (p [1]) ;

}
va l = crc16_calc (udata , s t r l e n (argv [1]) /2) ;
p r i n t f ("%u\n" , va l) ;

75

76 A. C CODE FOR FRAME CHECK SEQUENCE CALCULATION

re turn 0 ;
}

#inc lude <s tdde f . h>

#i f n d e f crc16_h
#de f i n e crc16_h

uint16_t crc16_ca lc (const uint8_t ∗ data , s i z e_t s i z e) ;

char p r i n t c r c (uint16_t value) ;

#end i f /∗ crc16_h ∗/

//#inc lude <in t type s . h>
#inc lude <s tdde f . h>
#inc lude <s td i o . h>
#inc lude <s td i n t . h>

const uint16_t f c s t ab [2 5 6] =
{
0x0000 , 0x1189 , 0x2312 , 0x329b , 0x4624 , 0x57ad , 0x6536 , 0

x74bf ,
0x8c48 , 0x9dc1 , 0 xaf5a , 0xbed3 , 0xca6c , 0xdbe5 , 0xe97e , 0

x f8 f7 ,
0x1081 , 0x0108 , 0x3393 , 0x221a , 0x56a5 , 0x472c , 0x75b7 , 0

x643e ,
0x9cc9 , 0x8d40 , 0xbfdb , 0xae52 , 0xdaed , 0xcb64 , 0 x f 9 f f , 0

xe876 ,
0x2102 , 0x308b , 0x0210 , 0x1399 , 0x6726 , 0x76af , 0x4434 , 0

x55bd ,
0xad4a , 0xbcc3 , 0x8e58 , 0x9fd1 , 0xeb6e , 0 xfae7 , 0xc87c , 0

xd9f5 ,
0x3183 , 0x200a , 0x1291 , 0x0318 , 0x77a7 , 0x662e , 0x54b5 , 0

x453c ,
0xbdcb , 0xac42 , 0x9ed9 , 0x8f50 , 0 x fbe f , 0xea66 , 0xd8fd , 0

xc974 ,
0x4204 , 0x538d , 0x6116 , 0x709f , 0x0420 , 0x15a9 , 0x2732 , 0

x36bb ,

77

0xce4c , 0 xdfc5 , 0xed5e , 0 xfcd7 , 0x8868 , 0x99e1 , 0xab7a , 0
xbaf3 ,

0x5285 , 0x430c , 0x7197 , 0x601e , 0x14a1 , 0x0528 , 0x37b3 , 0
x263a ,

0xdecd , 0 xcf44 , 0 xfddf , 0xec56 , 0x98e9 , 0x8960 , 0xbbfb , 0
xaa72 ,

0x6306 , 0 x728f , 0x4014 , 0x519d , 0x2522 , 0x34ab , 0x0630 , 0
x17b9 ,

0 xef4e , 0 xfec7 , 0xcc5c , 0xddd5 , 0xa96a , 0xb8e3 , 0x8a78 , 0
x9bf1 ,

0x7387 , 0x620e , 0x5095 , 0x411c , 0x35a3 , 0x242a , 0x16b1 , 0
x0738 ,

0 x f f c f , 0xee46 , 0xdcdd , 0xcd54 , 0xb9eb , 0xa862 , 0 x9af9 , 0
x8b70 ,

0x8408 , 0x9581 , 0xa71a , 0xb693 , 0xc22c , 0xd3a5 , 0xe13e , 0
xf0b7 ,

0x0840 , 0x19c9 , 0x2b52 , 0x3adb , 0x4e64 , 0x5fed , 0x6d76 , 0
x7c f f ,

0x9489 , 0x8500 , 0xb79b , 0xa612 , 0xd2ad , 0xc324 , 0 xf1bf , 0
xe036 ,

0x18c1 , 0x0948 , 0x3bd3 , 0x2a5a , 0x5ee5 , 0 x4f6c , 0x7df7 , 0
x6c7e ,

0xa50a , 0xb483 , 0x8618 , 0x9791 , 0xe32e , 0 xf2a7 , 0xc03c , 0
xd1b5 ,

0x2942 , 0x38cb , 0x0a50 , 0x1bd9 , 0x6f66 , 0 x7eef , 0x4c74 , 0
x5dfd ,

0xb58b , 0xa402 , 0x9699 , 0x8710 , 0 x f3a f , 0xe226 , 0xd0bd , 0
xc134 ,

0x39c3 , 0x284a , 0x1ad1 , 0x0b58 , 0 x7fe7 , 0x6e6e , 0 x5cf5 , 0
x4d7c ,

0xc60c , 0xd785 , 0xe51e , 0 xf497 , 0x8028 , 0x91a1 , 0xa33a , 0
xb2b3 ,

0x4a44 , 0x5bcd , 0x6956 , 0x78df , 0x0c60 , 0x1de9 , 0 x2f72 , 0
x3efb ,

0xd68d , 0xc704 , 0 x f59 f , 0xe416 , 0x90a9 , 0x8120 , 0xb3bb , 0
xa232 ,

0x5ac5 , 0x4b4c , 0x79d7 , 0x685e , 0x1ce1 , 0x0d68 , 0 x3 f f3 , 0
x2e7a ,

0xe70e , 0 xf687 , 0xc41c , 0xd595 , 0xa12a , 0xb0a3 , 0x8238 , 0
x93b1 ,

78 A. C CODE FOR FRAME CHECK SEQUENCE CALCULATION

0x6b46 , 0 x7acf , 0x4854 , 0x59dd , 0x2d62 , 0x3ceb , 0x0e70 , 0
x1 f f9 ,

0 x f78 f , 0xe606 , 0xd49d , 0xc514 , 0xb1ab , 0xa022 , 0x92b9 , 0
x8330 ,

0x7bc7 , 0x6a4e , 0x58d5 , 0x495c , 0x3de3 , 0x2c6a , 0 x1ef1 , 0
x0f78

} ;

uint16_t crc16_ca lc (const uint8_t ∗ data , s i z e_t s i z e) {

uint16_t f c s v a l = 0 x f f f f ;
s i z e_t i ;
f o r (i = 0 ; i < s i z e ; i++) {

f c s v a l = (f c s v a l >> 8) ^ f c s t ab [(f c s v a l ^ data [i]) &
0 x f f] ;
}
re turn ~ f c s v a l ;

}

unsigned char ∗ p r i n t c r c (uint16_t value) {
char ∗ hexcode [5] ;
s p r i n t f (∗ hexcode , "%0x " , va lue) ;
puts (∗ hexcode) ;
r e turn ∗hexcode ;

}

AppendixBPython Code for the DSRC
Program

import s e r i a l , time
from pyDes import ∗
from b i n a s c i i import unhex l i f y
import os
import sys
import subproces s
import datet ime
import b i n a s c i i
import s t r u c t
from datet ime import datet ime

try :
s e r = s e r i a l . S e r i a l (’ /dev/ttyUSB0 ’ , baudrate=57600 ,
t imeout =0.1 , by t e s i z e = s e r i a l .EIGHTBITS, pa r i t y=s e r i a l .
PARITY_EVEN, s t opb i t s=s e r i a l .STOPBITS_TWO)

pr in t " Connected to " + s e r . name
except :

sys . e x i t (" Error connect ing dev i ce ")

time . s l e e p (0 . 1)

de f gen_bst (beaconID) :
dt = s t r (datet ime . now())
p r i n t dt [0 : 1 9]
time2 = hex (i n t (time . mktime (time . s t rpt ime (dt [0 : 1 9] , ’%Y−%m

−%d %H:%M:%S ’))) − time . t imezone)
data = "FFA00391800030 " + " 0603E" + s t r (beaconID) + time2
[2 :] + " 00010100 "

79

80 B. PYTHON CODE FOR THE DSRC PROGRAM

re turn " ∗F00 " + hex (i n t (s t r (l en (data) /2+6))) [−2 :] + data +
gen_crc (data) + " 7e\ r "

de f gen_crc (data) :
c rc3 = subproces s . check_output (" . / a . out " + data , s t d e r r=
subproces s .STDOUT, s h e l l=True)

crchex = hex (i n t (c rc3))
pr in t "CRC: \ t " + crchex
i f l en (crchex) == 5 :
pr in t " For kort CRC! ! ! "
crchex = crchex [3] + crchex [4] + " 0 " + crchex [2]

e l s e :
crchex = crchex [4] + crchex [5] + crchex [2] + crchex [3]

r e turn crchex

de f gen_private_window_allocation (l i d) :
data = l i d + " 28 "
re turn " ∗F000B" + data + gen_crc (data) + " 7E\ r "

de f f ind_ack (mack , key r e f) :
k = t r i p l e_de s (mack , CBC, " \0\0\0\0\0\0\0\0 ")
re turn k . encrypt (key r e f ∗4) . encode (’ hex ’)

de f ca lc_accr (ack , rndobe) :
k = des (ack , CBC, " \0\0\0\0\0\0\0\0 ")
re turn k . encrypt (rndobe + b" \x00\x00\x00\x00 ") . encode (’ hex
’)

de f make_get_stamped (l i d , accr , num) :
e id = " 01 "
f r ag = "F1"
i f num == 1 :

rnd = " 0000 "
e l s e :

rnd = "FFFF"
data = l i d + "A877 " + f r ag + " 0D" + e id + " 0004 " + accr +
" 1100 " + " 04 " + rnd + " 0000 " + " 6F" + f r ag + " 68 " + e id +
" 04 " + accr

81

return " ∗F00 " + hex (i n t (s t r (l en (data) /2+6))) [−2 :] + data +
gen_crc (data) + " 7e\ r "

de f main () :
bst = gen_bst (1)
s e r . wr i t e (bst)
re sponse = s e r . r e ad l i n e ()
r = response . s p l i t (" ∗ ")
r2 = r [−1]
data = r2 [3 : −5]
l i d = data [0 : 8]
pwa = gen_private_window_allocation (l i d)
s e r . wr i t e (pwa)
vst = s e r . r e ad l i n e () . s p l i t (’ ∗ ’) [−1]
k ey r e f = unhex l i f y (vst [4 7 : 5 1])
ack = find_ack (mack1 , k ey r e f)
accr = ca lc_accr (unhex l i f y (ack) , unhex l i f y (vst [5 5 : 6 3]))
accr = accr [0 : 8]
get_stamped = make_get_stamped (l i d , accr , 1)
s e r . wr i t e (get_stamped)
gsa = se r . r e ad l i n e () . s p l i t (’ ∗ ’) [−1]
i f i n t (gsa [1 : 3]) == 17 :

p r i n t "Auth 1 : \ t \ t " + gsa [2 9 : 3 7]
e l s e :

p r i n t "No auth r e c e i v ed "

time . s l e e p (0 . 1)

bst = gen_bst (2)
s e r . wr i t e (bst)
re sponse = s e r . r e ad l i n e ()
r = response . s p l i t (" ∗ ")
r2 = r [−1]
data = r2 [3 : −5]
l i d = data [0 : 8]
pwa = gen_private_window_allocation (l i d)
s e r . wr i t e (pwa)
vst = s e r . r e ad l i n e () . s p l i t (’ ∗ ’) [−1]
k ey r e f = unhex l i f y (vst [4 7 : 5 1])

82 B. PYTHON CODE FOR THE DSRC PROGRAM

ack = find_ack (mack1 , k ey r e f)
accr = ca lc_accr (unhex l i f y (ack) , unhex l i f y (vst [5 5 : 6 3]))
accr = accr [0 : 8]
get_stamped = make_get_stamped (l i d , accr , 2)
s e r . wr i t e (get_stamped)
gsa = se r . r e ad l i n e () . s p l i t (’ ∗ ’) [−1]
i f i n t (gsa [1 : 3]) == 17 :

p r i n t "Auth 2 : \ t \ t " + gsa [2 9 : 3 7]
e l s e :

p r i n t "No auth r e c e i v ed "

mack1 = b ’ \x53\x56\x56\x2d\x74\x65\x73\x74\x62\x72\x69\x6b\
x31\x31\x31\x30 ’

main ()

AppendixCPython Code for the Rainbow
Table

from pyDes import ∗
import os
import time
import s t r u c t
from random import randint
import csv
import thread ing

de f crypt (key) :
p l a i n t ex t 1 = " \x00\x04\x00\x00\x00\x00\x00\x00 "
p l a i n t ex t 2 = " \x00\x04\ x f f \ x f f \x00\x00\x00\x00 "
k = des (key , CBC, " \0\0\0\0\0\0\0\0 ")
o1 = k . encrypt (p l a i n t ex t 1) . encode (’ hex ’) [: 8]
o2 = k . encrypt (p l a i n t ex t 2) . encode (’ hex ’) [: 8]
output = (o1+o2) . decode (’ hex ’)
re turn output

de f r educt ion (mac , column) :
mac = mac . encode (’ hex ’)
macstr ing = s t r (mac)
columnhex = hex (column)
output = macstr ing [:16− l en (columnhex [2 :])]+columnhex [2 :]
r e turn output [−16 :] . decode (’ hex ’)

de f make_chains (chains , cha in l ength) :
threads = []
f o r x in range (cha ins) :

83

84 C. PYTHON CODE FOR THE RAINBOW TABLE

t = thread ing . Thread (t a r g e t=chain_maker , args=(x ,
cha in l ength))

threads . append (t)
t . s t a r t ()
f o r thread in threads :

thread . j o i n ()
re turn

de f key_generation (keynumber) :
x = bin (keynumber)
rawkey = x [2 :] . z f i l l (56)
tempkey = " "
f o r j in range (0 , 56 , 7) :

tempkey += rawkey [j : j +7] + " 1 "
key = hex (i n t (tempkey , 2)) [2 :] . z f i l l (16)
re turn key . decode (’ hex ’)

de f chain_maker (chains , cha in l ength) :
s t a r tk ey = key_generation (cha ins)
endhash = s ta r tkey
f o r y in range (cha in l ength) :

i f y < chain length −1:
endhash = reduct i on (crypt (endhash) , y)

e l s e :
endhash = crypt (endhash)

chain = star tkey , endhash
tab l e . append (chain)
re turn None

de f f ind_hash (mac , tab le , cha in l ength) :
p r i n t " \nLooking f o r key f o r MAC: "
p r i n t mac . encode (" hex ")
omac = mac
f o r y in range (cha in l ength) :

f o r x in range (l en (t ab l e)) :
i f omac == tab l e [x] [1] :

r e turn hash_found (x , tab le , cha in length , mac , omac)
omac = mac
f o r i in range (cha in length−2−y , cha in length −1, 1) :

i f i < 0 :
break

85

omac = reduct i on (omac , i)
omac = crypt (omac)

re turn " \nHash not in t ab l e \n "

de f hash_found (x , tab le , cha in length , mac , omac) :
s t a r tk ey = tab l e [x] [0]
x += 1
fmac = crypt (s t a r tk ey)
p r i n t (’ \nEndkey found : %r ’ %omac . encode (" hex "))
p r i n t (’ S ta r t key : %r ’ % s ta r tk ey . encode (" hex "))
p r i n t (’ Chain : %r ’ %x)
l a s t k ey = s ta r tkey

f o r z in range (cha in l ength) :

i f mac == fmac :
p r i n t (’ \nKey found : %r ’ % l a s t k ey . encode (" hex "))
p r i n t (’ Chain nr %r ’ %x)
p r in t (’ Place nr %r ’ %(z+1))
re turn " "

e l s e :
i f z < chain length −1:

l a s t k ey = reduct ion (fmac , z)
fmac = crypt (r educt i on (fmac , z))

e l s e :
fmac = crypt (fmac)

re turn " Something went wrong "

de f main (chains , cha in length , mac) :
s t a r t = time . time ()
make_chains (chains , cha in l ength)
tab l e1 = tab l e
tab l e1 = sor t ed (table1 , key=lambda pa i r : pa i r [1])
f o r i in tab l e1 :

p r i n t i [0] . encode (" hex ") + " \ t " + i [1] . encode (" hex ")
end1 = (time . time () − s t a r t)
t o t a l = (cha ins ∗ cha in l ength) /2.0∗∗56
a l l e = ((end1 ∗(2 .0∗∗56)) / (cha ins ∗ cha in l ength))
/(60∗60∗24∗365)

86 C. PYTHON CODE FOR THE RAINBOW TABLE

pr in t (" \nGenerated %r cha ins o f l ength %r in %r s " %(
chains , cha in length , end1))

p r i n t (" Total %r o f a l l keys " %t o t a l)
p r i n t (" Genarating a l l would take %r years " %a l l e)
s t a r t 2 = time . time ()
p r i n t find_hash (mac , tab le , cha in l ength)
p r i n t "Gen time : \ t %r " %(end1)
p r i n t " Search time : \ t %r " %(time . time ()−s t a r t 2)
p r i n t " \nTotal time : \ t %r " %(time . time ()−s t a r t)
with open (’ t e s t _ f i l e . csv ’ , ’w ’) as c s v f i l e :

w r i t e r = csv . wr i t e r (c s v f i l e)
[w r i t e r . writerow (r) f o r r in t ab l e]

g l oba l t ab l e
t ab l e = []

mac = ’ 87DD1D11E5CFFC13 ’ . decode (’ hex ’)

main (10 ,50 ,mac)

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Scope and Objectives
	Methodology
	Related Work
	Outline

	Electronic Fee Collection
	Overview
	Dedicated Short-Range Communications
	DSRC Physical Layer

	EFC Functions and Applications
	EFC Frame Contents
	Frame Check Sequence

	AutoPASS Elements and Attributes
	Security in EFC
	Overview
	Security Related Data
	Access Credentials Calculation
	Authenticator Calculation

	Data Encryption Standard

	Making a Customizable RSE
	Methodology
	Literature Review
	Hardware and Software

	Radio Frequency Identification Reader
	Building an RSE
	Hansen's Program
	Transmitter
	Receiver
	Results

	RSE624 - Desktop DSRC Transceiver
	Recordings With Gqrx
	Results and Discussion

	Communication between an RSE and an OBU
	Message Authentication Codes in EFC
	Frame Contents
	Frame Check Sequence
	Beacon Service Table
	Private Window Request
	Private Window Allocation
	Vehicle Service Table
	GET_STAMPED.request
	GET_STAMPED.response

	Results and Discussion
	Access Credentials

	Building a Rainbow Table
	Rainbow Tables
	Generating the Rainbow Table
	Overview
	Precalculations
	Encryption Function
	Reduction Function
	Initial Key Generation
	Generating Chains

	Searching in the Rainbow Table
	Improving the Rainbow Table
	Results and Discussion

	Conclusion
	Further Work

	References
	C Code for Frame Check Sequence Calculation
	Python Code for the DSRC Program
	Python Code for the Rainbow Table

