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Summary

Large high voltage rotary machines are commonly utilized in gas processing plants for op-
erations such as dewatering and compression. The availability of these machines are very
critical as the operation down times are generally associated with expensive production
loss. Therefore this is no surprise that industries put a lot of effort in ensuring the maxi-
mum availability of these machines. However accurate failure prediction of such machines
is challenging due to the complexity associated with technicality, data collection, testing
and condition monitoring, etc.

This project addresses such an issue regarding the high voltage motors in Kollsnes gas
processing plant that are currently in operation. It is operated by Gassco and Statoil serves
as technical service provider. Karsten Moholt AS conducts the condition monitoring and
ABB conducts the assessment of the conditions of these motors and claims to predict time
to failure of an individual machine with certain confidence level. However, this prediction
method is under the copyright of ABB and how the process works is not known by any
other party. Therefore it leaves some room for further investigations regarding estimation
of remaining useful life and in addition the current prognostics practice is limited to unit
level.

In this situation, Statoil is interested in estimating remaining useful life of the motors
due to ageing in order to reduce uncertainty regarding operation outage and to support
overall maintenance decisions. They are further interested in extending the boundary of
unit level prognostic to system level prognostic because the demand for motor operation
varies depending on the two seasonal periods- summer and winter. In addition, they would
like to explore the possibility of developing a simulator that is capable of estimate remain-
ing useful life of a motor (or possibly the system) under given current health condition,
previous history and future probable usage profile of the machine in order to further facil-
itate maintenance decision making process.

Various approaches have been taken by researchers to address the issues in high voltage
rotary machine prognostic but there are still remaining many challenges that are making
the whole prognostic process complicated. The main focus of this thesis is to develop a
degradation model for the rotary machines in order to estimate remaining useful life under
the given current health condition and make a possible transition from unit level prognostic
to system level prognostic. The required preliminary task of prognostic estimation involves
finding a good indicator that describes the health condition of a motor reasonably well.

During the process, it’s been observed that, failure due to ageing process in stator wind-
ing insulation is the most critical failure mechanism in high voltage rotary machines and
the health of a motor basically depends on the condition of the stator winding insulation.
It’s been noticed that, ageing processes can be influenced by multiple stresses acting in
synergistic fashion which makes any sort of life modeling or degradation modeling very
difficult. It’s been further noticed that regardless of the stress acting most dominantly on a
failure process, the final failure usually occurs due to electrical ageing. Further progress in
the study leads to the conclusion that, partial discharge test is currently the most acceptable
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testing method for health condition indication of an insulation system among the available
methods.

Under the assumption that condition monitoring data is available, statistical approach
based on non-homogeneous Gamma process has been employed for the degradation mod-
eling in order to estimate remaining useful life of a given rotary machine. Important
properties of Gamma process has been discussed in correlation with the rotary machine
prognostic. Associated parameters have been calculated with a 95% confidence interval.
Quality of parameter estimation has been discussed for several inspection strategies. In
case of prognostic, current condition (actual degradation level) has been incorporated with
remaining useful life estimation. This is due to the fact that, condition-based prognostic
tends to be more accurate than traditional age-based prediction. Some relevant insights
have been discussed and a demonstration have been provided regarding possible transition
from unit level prognostic to system level prognostic.

Based on expert opinion provided by Statoil and literature surveys, non-homogeneous
Gamma process appears to be the most appropriate for degradation modeling of wind-
ing insulation system utilizing partial discharge information. However reminding of the
famous quote by George E. P. Box, ”All models are wrong but some are useful”; pro-
posed model requires to go through some validation process with the help of useful field
data. Nevertheless the proposed model is full of possibilities for making transition from
a theoretical model to a more practical model as more information becomes available. In
addition, application of such degradation modeling is not only limited to this specific case.
Gamma process is already a popular choice for this purpose and non-homogeneous gamma
process have significant implications for civil engineering applications.

This thesis proposes an initial framework for prognostics of remaining useful life of
high voltage rotary machines under the assumption of non-linear degradation increment of
insulation system. It shows potential for further research leading to some interesting and
useful outcomes in this particular area of research.
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Chapter 1
Introduction

This chapter starts with underlying motivation behind this thesis along with the specific
objectives that are targeted to achieve. Then it describes the scope and limitations as-
sociated with the achievement of the objectives. An overview of the approach is briefly
discussed further by acknowledging the associated limitations. Finally it provides a blue
print of rest of the report structure.

1.1 Motivation
Regardless of the types of industrial sectors, maintenance cost has a growing trend due to
the expansion of capital inventory, increasing requirements for the functioning of system
and outsourcing of maintenance (Dekker and Scarf, 1998). In oil and gas industry, a need
of corrective maintenance may incur a huge cost as production loss is very expensive
along with high unplanned maintenance cost. Therefore, maintenance optimization plays
a great role in reducing cost by planning minimum maintenance action ahead of an actual
breakdown. In addition, quite often the maintenance decisions are taken under uncertainty
in terms of time to failure (lifetime) and/or actual deterioration (Van Noortwijk, 2009).
This leads to a possibility that the maintenance action is conducted either too early (and/or
more often than necessary) or too late.

Traditional reliability approach is one way to help maintenance planning and decision
but this approach is rather a general reliability estimation of identical units and mostly
useful to manufacturers of mass production (Heng et al., 2009). In addition to that, in
reality, data for employing such approach may be unavailable or non-existing for some
systems or units which make traditional reliability approach inappropriate and leaves a
room for better alternatives.

This thesis is motivated by the optimal maintenance planning and decision making re-
garding the High Voltage (HV) compressor units in Kollsnes gas processing plant that de-
pict a similar scenario, mentioned above. The problem statement of this thesis is proposed
by Statoil, the technical service provider of the plant. These compressors fall under the
category of HV rotary machines and reliability of these machines are usually quite high.
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Chapter 1. Introduction

However failure of these machines during a demand period would result in a huge oppor-
tunity cost due to expensive production loss. In addition, the maintenance inspection or
condition monitoring is not readily available and generally quite expensive. For example,
some of the tests are destructive to the unit being tested which itself degrades the condition
of the unit. Furthermore, the machines have some unique and customized features and the
operating conditions vary depending on many other factors related to operating environ-
ment and usage profile. Therefore, utilizing failure data from similar machines has not
been proven to be an useful option as well. All of these factors constitute a very complex
problem leading the maintenance decisions to be taken under great uncertainty. Statoil is
interested to know remaining operational life of these compression unit in order to support
maintenance decisions regarding repair and replacement of the machines. They identified
the ageing of HV motor’s insulation system as the most critical factor for the production
availability and this thesis will limit it’s discussions accordingly.

Given the scenario, in order to aid optimal maintenance decision, transition from tra-
ditional reliability approach towards Condition Based Maintenance (CBM) is necessary
which basically utilizes current health condition of an unit to predict the future condi-
tion. This approach is more customized to the units and it is not entirely dependant on
historical failure data. Remaining Useful Life (RUL) estimation is a key factor in CBM
and it is generally defined as the period of time remaining until the termination of the
product/component. The concept of RUL has been used widely in operational research,
reliability and statistical literature. In case of Kollsnes gas processing plant where there
are no failure data of the machines are available, estimation of RUL based on the current
condition of the component and the future usage profile can be of great interest. This the-
sis approaches this problem of machine prognostics with the purpose of understanding the
associated challenges and look for possible solutions and/or useful recommendations for
further research.

1.2 Objectives

In order to estimate RUL accurately, it is inevitable to understand the degradation mech-
anism of the unit and/or system in order to find an appropriate condition indicator that
can reasonably describe the degradation process. Therefore the first part of the this thesis
discusses about relevant degradation mechanisms and prognostic condition indicator and
the second part discusses regarding quantitative implications. Following tasks have been
identified in order to approach the problem.

• Literature review on the degradation mechanism of HV motor insulation system and
connect it to the discussion of a condition indicator for prognostics.

• Literature review on the prognostics and degradation modeling in relevance with
rotary machines prognostics. This objective sets the boundary of this thesis.

• Development of a degradation model and discussion of it’s behavior under different
conditions. In addition, establishment of parameter estimation from training data-
set.
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1.3 Scopes and Limitations

• Estimation of unit level RUL with test data-set by incorporating the known degra-
dation level at current time and discussions of the results. In addition, providing a
demonstration of unit level prognostics to system level prognostics.

• Connecting the study of unit level RUL prognostics with the problem under consid-
eration in form of recommendation, future research, data requirement and transition
towards system level prognostics.

1.3 Scopes and Limitations

The scope of this thesis is limited to the study of prognostics based on statistical anal-
ysis. Actual physical feature of the component has not been strictly considered due to
couple of reasons- limited accessibility to such information and the stochastic degrada-
tion modeling being the main point of interest for the author. Unavailability of any sort
of actual field data was the biggest obstacle towards directly approaching the problem.
Therefore only simulation has been used under some assumptions developed based on the
communication with the representative of Statoil regarding the problem statement. The
discussions of this thesis is rather more general pointing towards similar problems. Some
of the justification requires more rigorous studies in order to validate the applicability of
the proposed degradation model to the given problem. However, the study is useful in
terms of Non-homogeneous Gamma Process (NHGP) degradation modeling which has
practical implications in other disciplines. Finally the main focus of this thesis is unit level
RUL estimation and the discussion of system level RUL estimation is limited to simple
demonstration.

1.4 Approach

The main building block of this thesis is the literature review. In order to develop a degra-
dation model, available modelings under similar assumptions are studied in order to estab-
lish and propose an appropriate model. In the absence of actual field data, simulations are
implemented for the demonstrations and illustrations of the modeling results. Regarding
literature search, NTNU’s digital subscription facility in major journal database provided
by Oria.no, is extensively utilized.

1.5 Structure of the Report

Rest of the chapters are structured as follows. Chapter 2 provides problem overview and
set up the background for rotary machine prognostics. Chapter 3 first discusses degrada-
tion modeling in general for the engineering system and later becomes more specific to
HV rotary machines. Based on the selected degradation model, chapter 4 describes the
mathematical background, development and estimation process of required parameters.
In addition, it describes the simulation process and training data-set. Chapter 5 utilizes
simulation data to estimate RUL to study the behavior under different parameter values,
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inspection frequency etc and discusses the interpretations of the results. Chapter 6 con-
cludes with additional remarks, future research and associated challenges.
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Chapter 2
Overview of the Problem

In 2015 Norway sold 115 Billion Sm3 gas that hit a new record and in 2016 gas sales were
at the same record level as 20151. In order to process and distribute the gas received from
offshore producers, there are quite a few onshore facilities in Norwegian shelf from Kårstø
in the south to Melkøya in the north. Kollsnes is one of those many gas processing plants
located in Øygarden municipality in Hordaland, which is in north-west of Bergen operated
by Gassco and Statoil is technical service provider2. This chapter will provide a system
overview and relevant background information necessary for the study of rotary machine
prognostics.

2.1 Kollsnes Gas Processing Plant
Kollsnes is an important hub facility that receives gas from offshore producers and dis-
tribute the gas to different customers. Rich gas from Troll, Kvitebjørn and Visund in the
North Sea is sent to Kollsnes where it gets separated into gas, natural gas liquids (NGL)
and condensate. During the process, it goes through two major processings- dewatering
and compression before being exported by pipelines to the relevant customers. The gas
is then transported to United Kingdom and continental Europe via Sleipner gas field3and
Draupner S and E platforms4. While on the other hand, NGL is transported to Mongstad
via the vestprosess pipeline5. Figure 2.16 shows simplified receiving and distribution chan-
nel of Kollsnes gas processing plant.

1Norwegian Petroleum website (http://www.norskpetroleum.no/en/production-and-
exports/oil-and-gas-production/)

2Gassco website (https://www.gassco.no/en/our-activities/processing-plants/
Kollsnes-processing-plant/)

3Operated by Statoil that consists of a riser platform for gas export- (http://www.statoil.com/en/
OurOperations/ExplorationProd/ncs/sleipner/Pages/default.aspx)

4Operated by Gassco and it is a key hub of submarine gas pipeline network in Norway- (https://www.
gassco.no/en/our-activities/pipelines-and-platforms/draupner-SE/)

5Norwegian Petroleum website (http://www.norskpetroleum.no/en/production-and-
exports/onshore-facilites/
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Figure 2.1: Receiving and distribution network of Kollsnes gas processing plant

2.2 System Overview

Gas compression system in Kollsnes is carried out by 6 parallel compression trains and
each compressor’s power consumption rating is upto 42MW. A variable speed drive (VSD),
a motor, a gearbox and a compressor are the main basic units for each compression train
set as shown in figure (2.2).

Figure 2.2: Main components of one compression train (source: Statoil)

Kollsnes gas processing plant is divided into two time periods based on the production
demand- winter and summer. During the winter season the capacity requirement is full
and all 6 compressor trains are required to function. If any of the compression train fails
during the demand period, significant production loss is expected. On the other hand,
during summer, only part of the total capacity is required and a reduced portion of the
compression trains can fulfill the demand.

Statoil is convinced that, the most critical component of one compressor train is the
motor’s condition that contributes most to the uncertainty about its availability. It can be
assumed that, all motors are identical where the first 5 motors were commissioned in 1996
and approaching their predicted end life. Whereas the 6th motor is relatively new which

6Gassco website- (https://www.gassco.no/static/transport-2.0/)
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was commissioned in 2006 and thus expected to have a relatively longer remaining life.
Figure 2.3 shows the overall schematic of the system.

Figure 2.3: Kollsnes gas processing plant consisting of 6 compression trains (source: Statoil)

The motors in question are HV large synchronous motors. Several statistical surveys
dealing with failure causes of HV rotating machines agree that the breakdown of winding
insulation is a major failure cause ((Bruetsch et al., 2008)). Statoil identifies the ageing
of stator winding insulation as the most critical degradation mechanism and rotor winding
insulation condition may also be significant. Due to enough degradation of motor winding
insulation exceeding a threshold point, winding short circuits may occur which can cause
an immediate motor breakdown and put it out of the operation.

Main components of a synchronous motor are main frame, stator and rotor. Stator is
the stationary part that creates a rotating magnetic field and the rotor is the rotary part that
consists of an electromagnet for developing a rotor magnetic field by dc excitation. Then
it rotates at the synchronous speed with the rotating magnetic field of stator. Figure 2.47

shows the main components of a synchronous motor. Stator and rotor conduct the mag-
netic field through the winding coils and the insulation material isolates high voltage from
ground and conductors, thus reducing the chance of short circuits and winding failures. It
also conducts heat from the conductors for rotating machines.

Critical Factor for Motor Health Condition

Isolation quality between conducting materials is crucial for the proper functioning of
the motor system. It basically physically and electrically separates two conducting parts
of an electrical device to prevent shock hazards and ground loops. It is also used for
separating high voltage and low voltage circuits. Electrical Insulation System (EIS) is
a means of achieving isolation in electrical machines and it is composed of insulating

7Image source- (http://www.bitlanders.com/blogs/synchronous-motor/201606)
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Figure 2.4: Main components of a synchronous motor

materials and conductors. Insulation materials have very small electrical conductivity to
serve the purpose of isolation.

One justification for the EIS to get more attention is due to the fact that, organic mate-
rials are primary constituent in winding insulation system. Mechanical strength of organic
materials are significantly lower than the stator components that are generally made of
copper or steel (Stone, 2005). Therefore, health condition of stator winding insulation
defines the life of a stator winding more than the stator core or conduit.

2.3 Degradation Mechanism
Based on the literature review and referring to IEC60505 (2011) standard, primarily it is
observed that, ageing in EIS is not dominated by a single stress rather multiple stresses
influence during the process. All stresses can eventually lead to electrical ageing although
it is not necessary that electrical stress is the most dominating one. For instance, Bruetsch
et al. (2008) shows that, electrical stress does not dominate ageing of mica (polymeric
material) insulation alone rather it’s a combination of different stresses where thermal and
mechanical stresses are the most important ones. In addition, it should be mentioned that,
contaminants and defects in the insulation material is always playing it’s part in deterio-
rating the condition of EIS besides the above mentioned stresses. Some of the important
ageing processes are briefly discussed below-

2.3.1 Ageing Process of Stator Winding Insulation
According to IEC60505 (2011), ”ageing (intrinsic and extrinsic) is irreversible changes
of the properties of an EIS due to action by one or more stresses”. Different stresses con-
tribute to the aging process of winding insulation that eventually lead to degradation of

8



2.3 Degradation Mechanism

an EIS. These significant stresses are thermal, electrical, mechanical and environmental
(ambient) and they are broadly classified as TEAM stresses. Ageing of an EIS can be
influenced by a single stress or by a combination of stresses. Even in the case of one
dominant stress factor, other factors can play vital role in a synergistic fashion. For ex-
ample, polymeric materials in EIS undergo thermal and electrical degradation with strong
synergistic effects (Montanari et al., 2002). This section provides a general overview of
ageing mechanisms influenced by TEAM stresses according to IEC60505 (2011) standard
and relevant literature.

Thermal Ageing

According to IEC60505 (2011), thermal ageing process involves chemical reaction in in-
sulation system, changes in material, thermo-mechanical stress (due to thermal expansion
and/or contraction) and modification of electric stress. These ageing processes may even-
tually result in EIS failure8. For example, due to physical and chemical changes in material
or thermo-mechanical stress, delamination and crack progression may occur in EIS. Fur-
ther it can result in loss of mechanical strength or external contaminants can penetrate to
cause insulation failure. Alternatively, loss of mechanical strength or external contaminant
can also contribute to electrical ageing leading to insulation failure.

Thermal stress due to the operating temperature of winding, is the most commonly
acknowledged cause of gradual deterioration of insulation. High operating temperature
above a threshold limit causes chemical reaction in modern day insulation which con-
tributes in insulation brittlement and delamination for all types of insulation (Stone, 2005).

For large machines, thermo-mechanical stress is an important issue that results from
thermal (or load) cycling. It arises from the variation of thermal stress due to the quick
change in operating temperature of windings as a result of sudden or rapid change of ma-
chine loads. Insulation materials have lower coefficient of thermal expansion than copper
which implies a relatively slower expansion of insulation materials. It results in shear
stress between the conductors and insulation and after a number of thermal load cycles,
the bond may collapse in stator winding (Stone, 2005).

Electrical Ageing

It is observed from the description of ageing process in IEC60505 (2011), electrical break-
down due to electrical ageing is usually the final failure of an EIS. This general observation
is also consistent in terms of HV rotary machines as Bruetsch et al. (2008) shows that, al-
though most dominating stresses associated with ageing in a HV rotary machine with mica
insulation are thermal and mechanical stresses but electrical ageing is usually the final fail-
ure.

Electrical ageing involves the effects of Partial Discharge (PD), electrical tracking,
electrical treeing etc. PDs can directly lead to EIS failure or can turn into tracking or
treeing. It is observed as symptoms for most of the degradation mechanisms found in
stator winding insulation in motors and generators rated 6 kV or above (Tetrault et al.,
1999).

8Here failure is defined by end-point criterion which is according to IEC60505 (2011)- moment when a system
is no longer able to fulfil its service purposes
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Figure 2.5: (a) PD locations in an EIS (b) PD leading to tracking (Paoletti and Golubev, 1999)

Paoletti and Golubev (1999) defines PD as ”an electrical pulse or discharge in a gas-
filled void or on a dielectric surface of a solid or liquid insulation system”. Within the
insulation system these PD charges can occur in any void such as in between copper con-
ductor and insulation wall, grounded motor frame and outer insulation wall or within itself
(see figure 2.5). Electrical tracking is the formation of continuous conducting paths across
the surface of the insulation resulting from surface erosion under voltage application (Ka-
maraju, 2009). In such situation, current leakage occurs between two insulated points
and can give rise to a flashover (arc) along the completed tracking pathway. Surface con-
tamination influences electrical tracking and can occur in the end-windings of a rotating
machine (Kamaraju, 2009). Electrical treeing is one of the main causes of degradation and
breakdown of insulating materials (Danikas and Tanaka, 2009). It is an initiation of vol-
ume failure of the insulation material which progresses by producing many fine dendritic
degradation paths (Wiley, 2011). The breakdown path of tracking occurs on the surface
while treeing occurs through the surface.

Mechanical and Ambient Ageing

Based on IEC60505 (2011) stator coil or stator bar can be subjected to mechanical stress
due to the mechanical vibration when the coils are loose in the stator slot. It causes ground-
wall insulation to abrade (Stone, 2005).

Table 2.1: Degradation mechanisms due to mechanical stress (IEC60505, 2011)

Degradation Mechanism Cause
Failure of insulation components Large number of low-level stress cycles
Thermo-mechanical effects Thermal expansion and/or contraction
Rupture High level of mechanical stress
Abbrasive wear Relative motion between components
Insulation creep Electrical, thermal or mechanical stress

Several ambient stresses have the potential to influence rotor and stator winding insu-
lation deterioration such as condensed moisture on the windings, oil, humidity, abrasive
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particles, dirt and debris, etc. Even if ambient stresses may not be responsible for ageing
of insulation directly, however they have synergistic potential to accelerate another type of
stress to accelerate the ageing process (IEC60505, 2011).

2.4 Remaining Useful Life
The concept of RUL is the basis for this thesis and therefore it is introduced here briefly.
The word ’useful’ is rather an economic aspect as the technical lifetime of an industrial
machine is often much longer than it’s economic lifetime (Ahmadzadeh and Lundberg,
2014). Si et al. (2011) defines RUL as ”the useful life on an asset at a particular time
of operation” where RUL is a random variable that depends on the asset’s current age,
the operating environment and the observed condition monitoring or health information.
Furthermore future usage profile of an equipment should also be taken into account in
prognostic of failure prediction.

Figure 2.6: Illustration of RUL definition (Xiongzi et al., 2011)

RUL can be considered as a time dependant random variable as it depends on the
condition of an equipment at time t. A formal definition of RUL(t) corresponding to the
RUL at time t can be given as:

RUL(t) = inf{h : X(t+ h) ∈ SL | X(t) /∈ SL} (2.1)

where:
X(t) = condition indicator of the unit at time t
X(t+ h) = prognosis of the unit for an additional time unit h at any time after t
SL = set of failed or unacceptable states of the unit
X(t) can be depended on both past operational conditions and future usage profile and

from the definition, condition indicator X(t) and unacceptable states (SL) must be defined
in order to estimate RUL(t) reasonably. Figure 2.6 illustrates the RUL definition with
current condition t0 and when system reaches a certain unacceptable level at t1.

11



Chapter 2. Overview of the Problem

Reaching to a failed state is generally defined by setting up a threshold level. When
the degradation process first exceeds this pre-defined threshold, it’s called First Passage
Time (FPT) and can be defined with respect to a predefined failure threshold L and time
to failure T as follows-

TL = inf{t > 0 : X(t) ≥ L} (2.2)

Degradation process along with threshold determines the probability density function
(PDF) of RUL. However, statistical models for prognostics of RUL independent of thresh-
old are also possible if the failure data are available (Xu and Wang, 2012). In this thesis,
it’s been assumed that, a deterministic failure threshold level is known.

2.5 Prognostic Condition Indicator
Estimation of RUL requires a defined set of failed states (SL) and information about cur-
rent health condition. However there are numerous ways for an EIS can fail. For example,
stator winding insulation itself has more than 20 failure processes (Stone and Culbert,
2010). A single test or method can not be sensitive for all the degradation mechanisms
alone and therefore identifying the most relevant degradation mechanism(s) is crucial in
order to estimate RUL. Condition indicators or diagnostic parameters then can be cho-
sen that are characterizing the ageing process for monitoring the condition. For instance,
hot-spot temperature is considered as one of the most important diagnostic parameters for
transformers to calculate RUL, while in case of rotating machines, a single parameter is
not enough but dissipation factor (tanδ) is one of the most important one (Trnka et al.,
2014).

As discussed earlier, all the ageing processes described above usually ends up with
electrical failures. More specifically in HV large rotary machines, severe insulation failure
commonly occur due to PD formation which is considered as one of the most impor-
tant symptoms of insulation failure (Younsi et al., 2010). There are different condition
indicators or diagnostic parameters that gives information about insulation health. For ex-
ample, PD pulse voltage at rated voltage is capable of detecting PD (Stone, 2005). On the
other hand, capacitance between the stator conductor and the grounded core can indicate
possible thermal deterioration, moisture absorption and end winding contamination while
measure of dielectric losses can provide indication of general condition of stator insulation
(Younsi et al., 2010).

Realizing the absence of a clear established guidelines for selecting a prognostic con-
dition indicator for HV rotary machines, this section is dedicated to discussions regarding
the selection of a possible useful prognostic condition indicator that are available.

2.5.1 Diagnostic vs. Prognostic Condition Indicator
Often the concept of diagnostics and prognostics are confused and the concepts are not
clearly distinguished in most of the literature. Lee et al. (2014) attempts to provide a clear
definition and underlines the differences as follows-

”Diagnostics is conducted to investigate or analyze the cause or nature of a condition,
situation, or problem, whereas prognostics is concerned with calculating or predicting the
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future as a result of rational study and analysis of available pertinent data. In terms of
the relationship between prognostics and diagnostics, diagnostics is the process of detect-
ing and identifying a failure mode within a system or sub-system; while prognostics is the
process of generating a rational estimation of the remaining useful life and/or remain-
ing performance life until complete failure occurs. Prognostic, in its simplest form, is to
monitor and detect the initial indications of degradation in a component, and be able to
consistently make accurate predictions.”

2.5.2 Measurement of HV Motor’s Health Condition
Several off-line tests and on-line monitoring techniques are available to measure the health
condition of an EIS. Off-line tests refer to the measurements that require taking the test
subjects out of operation while on-line monitoring is possible during the normal opera-
tion (Stone et al., 2004). Insulation Resistance (IR), Polarization Index (PI), High-pot and
PD tests etc. are some common diagnostic tests for winding insulation of HV rotary ma-
chines. Paoletti and Golubev (1999) studies the comparison between the above mentioned
traditional tests and on-line PD monitoring in terms of evaluating the insulation condition.

Table 2.2 summarizes the comparison and shows that, when original insulation condi-
tion is good and marginal, all the test readings are indifferent. When insulation condition
is dry and delaminated, PD test detects the presence of insulation voids while traditional
tests provide a false result. Further insulation deterioration can be correctly detected by
both traditional and PD test but traditional tests fail to distinguish between poor and unac-
ceptable condition and the regions of insulation voids. Only near-failure condition is more
accurately evaluated by traditional tests because PD intensity doesn’t continue to increase
until failure in stator windings, rather it tends to level off (Stone, 2012).

Table 2.2: Comparison between PD test and traditional test results

Real condition
of insulation

Insulation
Resistance (IR)

Polarization
Index (PI) Hi-Pot Test On-line PD

monitoring

Perfect High Good
Linear leakage
current vs. Voltage
is minimal

Unmeasurable
PD activity

Minimal void
formation Fair Fair

Linear leakage
current vs. Voltage
is stable

Minimal PD
activity observed

Dry but insulation
delaminated False fair False fair

False linear
leakage current
vs. Voltage

PD observed

Poor Low Poor
High leakage
current.

High positive polarity
discharges.

Unacceptable Low Poor High leakage current
High negative polarity
discharges.

Near failure condition Very low Very low High leakage current. Minimal PD activity

A single individual test is not sufficient to facilitate RUL estimation of a component
(Stone and Culbert, 2010) and there is no straightforward path to choose the most ap-
propriate test. Above mentioned off-line tests are most widely accepted but each test is
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effective for diagnosing certain types of insulation problems (Lee et al., 2005). Although
off-line tests can detect many associated problems with the winding insulation, however,
it requires operation outage. Therefore frequent off-line tests are not economical as opera-
tion outage in oil and gas industry is subjected to huge cost. Furthermore, applied stresses
during the tests are not subjected to actual operating stresses (Younsi et al., 2010) and thus
estimated RUL might differ from the actual value. Another important limitation of off-line
tests is that, they are not frequently conducted and the test condition of each tests are not
identical to each other which makes assessing a motor’s present condition or predicting
RUL very difficult (Younsi et al., 2010).

As oppose to off-line test, on-line monitoring provides more accurate and reliable di-
agnostic information regarding the insulation condition (Younsi et al., 2010) due to the
fact that, the measurements can be obtained under actual operating conditions without an
outage (Lee et al., 2005).

Based on 50 years of experience in relevant field, Stone and Warren (2006) claims that,
PD testing is capable of giving reasonably early warning about the likelihood of winding
failure. On-line PD monitoring is a powerful tool to assess the insulation condition in
form-wound stators and very similar to off-line PD test (Stone, 2005). In last 10 years, pe-
riodic PD measurement has been replaced with continuous PD monitoring during normal
motor and generator operations (Stone, 2013). PD testing and monitoring receives quite
an attention in maintaining high voltage rotary machines. Trend in PD magnitude has been
adopted as primary method to determine whether insulation maintenance is necessary or
not but it’s been claimed that in severely deteriorated insulation, PD will not increase in-
definitely until the insulation fails (Stone, 2013). However, despite the limitations, both
off-line PD testing and on-line monitoring seems to be widely accepted as an effective tool
specially in recent days.

2.5.3 A Potential Candidate- PD

PDs are measured as voltage pulses and during positive waveform cycle, a discharge (par-
tial short-circuit) results in negative polarity pulse (−Qm) and during the negative wave-
form cycle a PD results in positive polarity pulse (+Qm) (Paoletti and Golubev, 1999).
They further describe the relationships between the positive and negative polarity PD
pulses and the probable root causes that are summarized in table 2.3.

The pick magnitudeQm denotes the severity of deterioration in the worst spot of wind-
ing and total PD activity (number of pulses per second) denotes how widespread the de-
terioration of winding is. However, Qm is more indicative about how close the winding
failure is (Warren and Power, 2003).

Table 2.3: Interpretation of PD test results (Paoletti and Golubev, 1999)

PD test result Probable root cause

Positive polarity pulses prevalent
Voids between insulation & iron core/winding

end turns or surface tracking
Negative polarity pulses prevalent Voids between the copper conductor & insulation
Equally prevalent Voids within the insulation material itself
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This is promising that, peak PD magnitude (Qm) shows some correlation with in-
sulation health and can probably be a good candidate as a condition indicator for RUL
estimation. However this claim raises several other questions. PD is rather a cause or a
symptom. It’s not an intrinsic property of a material and there is no absolute PD mag-
nitude that accurately describes the condition of a stator winding insulation (Zhu et al.,
2001). Therefore to define a set of unacceptable states, it is essential to know what is an
acceptable PD level in relation with insulation health condition.

What is an Acceptable Level of PD?
In order to support industries to plan appropriate maintenance by observing the gradual
deterioration of stator winding, a paper9 with comparison of thousands of PD test results
was presented in 1998 and updated annually in Iris Rotating Machines Conference (IRMC)
and this database was established by keeping the following significant parameters constant
(Warren and Power, 2003):

• Test instrument bandwidth and noise separation techniques

• Types of sensors

• Operating voltages

• Operating gas coolant (if applicable)

• Quality of design, manufacturing and installation

On the other hand, type of insulation system, machine type and winding type was
found to be insignificant. For example, Stone and Warren (2006) analyzed the database
to determine the effect on Qm by operating voltage for air-cooled stators that used 80-pF
sensor for PD monitoring (table 2.4). The table can be interpreted as, for a 13-15 kV air-
cooled stator, 25% of tests had a Qm value below 44 mV and 90% of tests had Qm value
below 508 mV. Therefore, if a similar machine is tested and yielded a Qm value of 500
mV, it means the machine is likely to have a deteriorated stator as it’s PD level is higher
than 90% of the similar machines.

Table 2.4: Distribution of Qm for air-cooled stators

Operating voltage
2-4kV 6-8kV 10-12kV 13-15kV >16kV

25% 7mV10 17mV 35mV 44mV 37mV
50% 27 42 88 123 69
75% 100 116 214 246 195
90% 242 247 454 508 61511

9Original paper- V. Warren, ”How much PD is too much PD?” Iris Rotating Machinery Conference, USA,
March 1998 is not found by the author of this report)

10mV- Millivolt
11strong influences by few manufacturers
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Qm
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New windings

Rapid 
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Figure 2.7: Typical trend in PD magnitude of stator windings (Stone, 2012)

In contrast, PD activity trend of two identical motors operating at the same site had
been studied by Zhu et al. (2001). One motor (A) had lower PD magnitude compare
to other motor (B) at a certain time. However, the PD magnitude of motor A increased
significantly over a short period of time. They demonstrated that, motor A failed before
motor B despite having a lower PD magnitude. They further explained that, stable PD
activity indicates that deterioration didn’t progress much and therefore motor B survived
longer.

The purpose of presenting these examples is to show that, the result of the database
can be compared with actual test result to get an overview of PD activity in the similar
machines. However trending of PD activity over time for a given machine is considered
more reliable for diagnosis of severe insulation deterioration (Warren and Power, 2003). In
addition, saturation of PD trend (see figure 2.7) after a strong increase for a period of time
requires some attention. If the initial PD data is not available, then stable PD test reading
can lead to misleading interpretation as the winding can be either in good condition or in
the saturated phase where it’s about to fail soon (Stone, 2005).

In summary, there is no absolute level of PD magnitude value associated with the
risk of failure and meaningful interpretation is only possible by the means of trending
and comparing a machine with identical and/or similar machines using the same monitor-
ing method and keeping the previously mentioned significant parameters constant (Stone,
2005).

In this thesis, PD measurement has been considered as the condition indicator of insu-
lation health despite of it’s limitations due to the lack of better alternatives.

PD Measurement and Interpretation

Stone (2005) describes PD monitoring principle in detail. PDs create small current pulses
that propagate through stator winding. After that, Fourier transform is used to generate
high frequencies up to several hundred megahertz. Sensitive devices to high frequencies
can detect these PD electrical pulses which are then processed by PD monitoring system.

PD measuring instruments measure the number, magnitude and phase position with
respect to the 60 Hz AC cycle. The pick positive (+Qm) and the pick negative (−Qm)
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Figure 2.8: Typical PD measurement w.r.t. a 60 Hz AC cycle

represents the highest PD pulses with a minimum PD repetition rate12of 10 pulses per
second. Qm is considered to be a reasonable predictor of insulation condition because
higher value of Qm indicates more deteriorated winding compare to another winding with
a lower value (Stone and Warren, 2006). Figure 2.8 shows typical PD data from one
phase with respect to the 60 Hz AC cycle where vertical axis represents +Qm and −Qm
in millivolts and horizontal axis represents phase angle. Dots represent the number of the
occurrences of PD in a particular magnitude and phase position. Peak PD magnitude (Qm)
for this phase is -400 mV and +200 mV (Stone and Warren, 2006) .

12number of partial discharge pulses during one cycle of an AC waveform (Paoletti and Golubev, 1999)
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Chapter 3
Overview of Prognostics and
Degradation Modeling

There have been much research done and still going on in the field of prognosis and degra-
dation modeling in close connection with CBM of engineering assets which is evident
from numerous publications. There are some useful review papers that organize these vast
amount of works in different categories. Jardine et al. (2006) reviews developments in
diagnostics and prognostics implementing CBM and focuses the increasing trend of using
multiple sensors in CM. This paper is however more general to the mechanical systems.
Ahmadzadeh and Lundberg (2014) attempts to generally describes typical approaches of
RUL estimation and discusses their advantages and disadvantages. Heng et al. (2009)
review prognostic techniques based only on rotating machines and discuss about incom-
plete trending data and effects of maintenance actions. Si et al. (2011) addresses modeling
development of RUL estimation focusing on statistical data driven approaches.

3.1 Literature Review on Prognostics

In machinery prognosis, the remaining operational (useful) life, future condition or proba-
bility of reliable operation of an equipment are forecast based on observed condition mon-
itoring data in order to reduce downtime, spares inventory, maintenance costs and safety
hazards (Heng et al., 2009). Compared to the past, the machinery design and construction
has become more complex that require better maintenance strategies with increasing cost.
In addition maintenance decisions are generally taken under uncertainties and therefore
ineffective maintenance decisions can cost a huge expenditure for the industries. There-
fore the maintenance practices shifted from a corrective maintenance strategy towards pre-
ventive maintenance and from their the transition is towards CBM in recent days. CBM
provides a health assessment of machinery based on collected condition monitoring or
inspection data without interrupting normal operation of machine to determine required
maintenance action prior to any predicted failure (Grall et al., 2002).
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In the category of machinery prognostics, there have been much research on the spe-
cific field of rotary machine prognostics as well and Heng et al. (2009) covers a wide range
of prognostic techniques and identify their merits and weaknesses and discusses associated
challenges. Ma (2007) discusses the need of paradigm shift from the condition monitoring
being used only as a maintenance alarm tool to more holistic future prediction in order to
achieve total engineering asset management. George Vachtsevanos (2006) discusses intel-
ligent fault prognostic techniques such as model-based. probability-based and data-driven
techniques etc. for engineering systems with some examples.

Heng et al. (2009) groups the existing approaches of rotary machine prognostics as
traditional reliability approaches, prognostic approaches and integrated approaches. In
traditional reliability approaches, predictions are based on the event records of identical
units and estimate population characteristics such as Mean Time To Failure (MTTF) and
reliability of the unit. Parametric failure models like Poisson, Weibull, exponential etc.
have been in use for modeling reliability. In reality when the historical event records for
similar machines are not available, this approach is not very useful. In contrast, prognostic
approaches use condition monitoring data to predict future reliability and health of the
unit. This approach is the main topic of this thesis and therefore it will be discussed in
more detail in the upcoming section. Integrated approach combines both above mentioned
approaches where condition monitoring data is complemented with the reliability data for
prognostic purpose.

3.1.1 Condition Based Prognostic Approaches
George Vachtsevanos (2006) broadly categorizes condition based prognostic approaches
into following categories that are briefly described below-

Model-based Approach

It involves developing mathematical models in order to describe the relation between
physics of the system and failure mode progression (Heng et al., 2009). This approach
is very customized to the specific component and operating conditions. It is quite useful
for components where the model remains constant across the system and for the critical
components that has high demand for functioning (Heng et al., 2009). On the downside,
it’s expensive as it is very much component specific. Physics-based fatigue models, crack
growth model, ARMA model, particle filtering etc. are some examples of this approach.

Data-driven Approach

This approach derives model from routinely collected condition monitoring data directly
and uses simple projection models such as exponential smoothing and auto-regressive
model (Heng et al., 2009). This approach is advantageous in terms of simplicity of calcula-
tions but projection relies a great deal on past degradation patterns and therefore may lead
to some inaccuracy if the future degradation deviates from the expected path. Artificial
Neural Network (ANN) is most commonly used data-driven prognostic technique (Heng
et al., 2009) and Bayesian-related methods, Hidden Markov Models (HMM) etc. are some
others.
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Probability-based Approach (Statistical)

If collected condition monitoring data and/or historical data from similar class of machin-
ery takes some statistical forms that can be transformed into some probabilistic distribution
then probability-based approach or statistical data driven approach can be employed for
prognostics. These methods generally provide confidence limits of the predictions that
are useful in terms of accuracy and precision of the predictions (George Vachtsevanos,
2006). It should be noted that, data driven and statistical approach is not distinguished
clearly from each other in literature which makes this classification rather confusing given
the fact that, probability-based approach can also be considered as data-driven as well.
Therefore in this document, data driven and probability-based approach are not critically
distinguished and considered both in general under the term statistical data driven ap-
proach.

3.1.2 Types of Condition Monitoring Data

Statistical data-driven approach is clearly dependent on the data availability and the nature
of the data. Based on Wang and Christer (2000), the available CM data is divided into
direct CM and indirect CM data. Direct CM data describes underlying state of the system
directly so that the prediction of CM data to reach a predefined threshold limit is same as
the prediction of RUL. While on the other hand, indirect CM data can only partially indi-
cate the underlying state of the system and additional failure event data may be required
for RUL estimation (Si et al., 2011). For instance, wear and crack size are typical direct
CM data whereas vibration monitoring data falls under the category of indirect CM data.

PD magnitude has been discussed as a prognostic condition indicator in the previous
chapter. Given the definitions above, it can be stated that, PD magnitude data is rather
fall in the category of indirect CM data as the PD is not an intrinsic property of a material
and there is no absolute PD magnitude that accurately describes the condition of a stator
winding insulation (Zhu et al., 2001). Therefore to set up a threshold limit to define a
critical state of the system may require some expert’s judgment in case of the unavailability
of failure data.

3.2 Classification of Statistical Data Driven Approaches
It’s been previously discussed that, traditional reliability approach of failure time analysis
may not be always practical. Failure event data of an unit or a system may not be available.
For example, in the case of compressors in Kollsnes gas processing plant, the machines
have some unique design features and they are not directly and simply comparable to a
similar machine in a similar operating environment. Therefore the failure event data is
basically non-existent which makes the traditional reliability approach irrelevant.

Therefore prognostics based on CM data makes more sense practically but the path
is not straightforward. RUL is basically an estimation of degradation path reaching a
predefined threshold level. Therefore if the threshold is known and CM data is available,
predictions can be made about the RUL. However using indirect CM data, determining a
threshold level is also not straightforward.
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Statistical approaches for describing CM data to model RUL is discussed based on
Si et al. (2011). They divided statistical data-driven approaches in four categories as
regression-based, Brownian motion, Gamma process and Markovian-based models. First
three approaches assume state evolution as continuous process and Markovian approach
assumes discrete state evolution process. These four approaches are briefly described be-
low mostly based on Si et al. (2011).

3.2.1 Regression-based Models

This approach is popular in industries mostly due to it’s simplicity for trending CM path.
First the health condition is mapped by some key CM variables and then RUL is estimated
by monitoring, trending or predicting the CM variables against a fixed threshold. Machine
Learning and Random Coefficient Regression are two commonly used methods. Machine
Learning technique does not have any probabilistic orientation and thus do not provide any
PDF of RUL which is very essential for risk analysis and maintenance decision making
(Wang and Christer, 2000) and therefore have little significance in this thesis. In contrast,
Random Coefficient Regression methods depict CM path from CM data to estimate life-
time distribution and able to provide PDF of RUL but except for some special cases, closed
form of such PDF is not available. The biggest limitation of these models are incapability
of modeling the temporal variability in RUL estimation (Pandey et al., 2009).

3.2.2 Brownian Motion with Drift (Wiener Process)

Wiener processes are suitable for such cases where degradation processes move bidirec-
tionally over time with Gaussian noises. It is well known from literature that, the FPT
follows inverse Gaussian distribution and can be formulated analytically. There are two
limitations of the Wiener process that make degradation modeling questionable with this
approach. Degradation of most of the engineering assets is monotonic but Wiener process
progresses bidirectionally over time. It implies an unit is self healing during the process
of degradation, which is not very practical in most occasions. Therefore monotonic degra-
dation processes are not very suitable for modeling with this approach. In addition, it’s
a time homogeneous process, which is again may not be true for cases like fatigue crack
growth or even for PD accumulation over time.

3.2.3 Gamma Process

Gamma process is a natural choice where degradation processes that are monotonic and
unidirectional with tiny positive increment over time. Mathematical calculations for RUL
estimation is comparatively straightforward and it’s capable of considering temporal vari-
ability in the degradation model. In addition, Gamma process is not limited to be time
homogeneous process. Realizing these advantages, Non-homogeneous Gamma process is
utilized in this thesis for degradation modeling. Therefore Gamma process will be dis-
cussed in detail in upcoming sections.
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3.2.4 Markovian-based Model

Based on the assumptions that future degradation state of an unit depends only on current
state (memoryless property) and the unit’s state can be known directly by condition mon-
itoring; the degradation is assumed to be evolved on a finite state space. This approach is
widely used in industries for RUL estimation and to support maintenance decisions due
to their comprehensiveness as the states can be defined as good, bad, repair required etc.
However there are also some critical limitations. The above mentioned assumptions are
quite strong and often do not represent the reality. In addition, transition rates between
states are required to be calculated from a large number of data sets, that are quite often
unavailable.

Based on the George Vachtsevanos (2006) and Si et al. (2011) a detailed and updated
taxonomy of machinery prognostics is proposed as in figure 3.1. Data driven and proba-
bility based approach are put inside stippled rectangle box to indicate the generalization
of both of these approaches under a common approach termed as statistical data driven
approach.

Figure 3.1: Taxonomy of machinery prognostics

23



Chapter 3. Overview of Prognostics and Degradation Modeling

3.3 Literature Review on Gamma Process Based Model
For the modeling of continuous degradation process such as wear, corrosion and crack
growth with positive increments, the Gamma process is widely used (Xu and Wang, 2012).
It’s been proven to be useful for supporting optimal inspection and maintenance decision
(Pandey et al., 2009). Van Noortwijk (2009) provides an excellent review paper that cov-
ers theoretical aspects and successful maintenance applications of Gamma process. To
name a few, Singpurwalla (1995) applied Gamma process model in dynamic operating
environment. Wang et al. (2000) utilized Gamma process for predicting the distribution of
RUL of individual pumps in a large soft drink manufacturing plant. van Noortwijk et al.
(2007) provide method to combine Gamma process for modeling degradation and Poisson
process for modeling load.

Although most of the works are based on homogeneous Gamma process but there are
several evidences for employing NHGP as well. For example, Cinlar et al. (1977) use
NHGP for modeling concrete deterioration process due to creep. Van Noortwijk (2009)
states that, according to empirical studies the expected deterioration at time t is often pro-
portional to power law and it’s been utilized in this thesis for modeling the NHGP degra-
dation process and therefore in upcoming chapter mathematical foundation and parameter
estimation process of Gamma process is described more in detail.

3.4 Justification of NHGP Assumption
Based on the discussion regarding the behavior of PD activity in chapter 2, it is evident
that, the degradation process of EIS does not represent a time homogeneous property. Al-
though figure 2.7 is an overly simplified representation of the behavior of PD magnitude
but it provides a broad picture of how it progresses over time. From a stable progression,
PD magnitude tends to increase rapidly and the increase is monotonic and non-decreasing.
In addition, based on the expert knowledge from Statoil and indication from the litera-
ture regarding PD activity, NHGP assumption tends to be the most practical in the given
situation.
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Chapter 4
Gamma Process Modeling

This chapter provides formal definitions of both homogeneous and non-homogeneous
Gamma process along with the parameter estimation process. NHGP parameter estima-
tion is further incorporated with power law assumption for shape function and the number
of sample size. Then the simulation process according to NHGP is described and the
behavior of the model is discussed under different parameter values.

4.1 Homogeneous Gamma Process
The probability density function of gamma distribution is defined as

fa,b(x) =
1

Γ(a)
baxa−1e−bxIx>0 (4.1)

where IA(x) is the indicator function and Γ(a) =
∫∞

0
ua−1e−u du is the corresponding

Gamma function for shape parameter a > 0 and scale parameter b > 0.
In general, a stochastic process Xt is time homogeneous if the transition probability

between two given state values at any two times depends only on the difference between
those times.1For homogeneous Gamma process, the shape parameter a is a linear function
at when a > 0 and can be formally defined as follows:

Definition: For a, b > 0, a continuous-time stochastic process Xt≥0 is a homoge-
neous Gamma process, such that:

1. X0 = 0

2. Xt≥0 has independent increments

3. Increments are Gamma distributed. Therefore, for 0 ≤ s < t, the distribution of
Xt−Xs follows Gamma distribution Γ(a(t− s), b) and thus only depends on t− s

1Glossary of Statistical Terms, OECD (https://stats.oecd.org/glossary/detail.asp?ID=
3674)
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Chapter 4. Gamma Process Modeling

Expectation and variance of a Gamma distribution Γ(a, b) for ∀t ≥ 0 can be derived
as E(Xt) = a

b t and var(Xt) = a
b2 t respectively.

4.1.1 Properties of Interest

Homogeneous Gamma process has some interesting properties as direct consequences of
the definition as follows:

1. For 0 ≤ s < t and Xt −Xs ≥ 0, Xt≥0 follows non-decreasing trajectories. This
is a suitable property to model degradation process which is normally the trend in
engineering system given that there is no maintenance action.

2. E(Xt) and var(Xt) are both linear functions which implies that Gamma process is
a suitable choice to model degradation process with linear tendency.

3. Xt≥0 is a pure jump process with Markov property such as for 0 ≤ u < s < t, the
distribution of Xt −Xs is not dependent of Xu (memory-less property).

4.1.2 Parameter Estimation

Moments estimation and the Maximum Likelihood Estimation (MLE) are often mentioned
for the parameter estimation of Gamma process. The moments approach is more straight-
forward to implement and less time consuming than MLE method but MLE is asymp-
totically unbiased meaning that it converges to true values as the number of observations
approaches to infinity (Grall-Maes et al., 2014). Therefore MLE method is adopted for
parameter estimation in this document.

Let us consider a Gamma process with n values of process increments where time
increments are disjoint. For 1 ≤ i < n, the observations can be denoted as follows:

∆ti = ti − ti−1 (4.2)

and the observed deterioration increments,

δi = xi − xi−1 (4.3)

Time increments can be either equal or different and results of the parameter esti-
mation of a Gamma process vary accordingly. Therefore, depending on the assumptions
of the nature of time increments, parameter estimation based on MLE will be discussed
separately.

Uniform Time Increments

When all time increments are equal then ∆ti = ∆t for all i ≥ 1 and observed increments
are independent and identically distributed (i.i.d.) random variables with Γ(a∆t, b)

Therefore, the likelihood function can be written as follows:
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L(a, b) =

n∏
i=1

f(a∆t,b)(δi)

=

n∏
i=1

1

Γ(a∆t)
ba∆t(δi)

a∆t−1e−bδi

(4.4)

Therefore the log-likelihood,

L(a, b) = l(a, b) =

n∑
i=1

(a∆t ln(b)− ln(Γ(a∆t)) + (a∆t− 1)ln(δi)− bδi) (4.5)

Taking derivative with respect to a and b respectively and maximizing the likelihood
function afterwards,

∂

∂a
ln(a, b) =

n∑
i=1

(∆t ln(b)−∆t ψ(a∆t) + ∆t ln(δi)) = 0

∂

∂b
ln(a, b) =

n∑
i=1

(
a∆t

b
− δi

)
= 0

(4.6)

where ψ is known as digamma function, defined as follows:

ψ(x) = lnΓ(x) =
Γ′(x)

Γ(x)
(4.7)

Further mathematical operation of equation 4.6 can be presented as:

b̂ = â
n∆t∑n
i=1 δi

(4.8)

and

ln

(
â

n∆t∑n
i=1 δi

)
+ ∆t

n∑
i=1

(ln(δi)− ψ(â∆t)) = 0 (4.9)

Likelihood estimator â and b̂ can be obtained by solving equation Equation 4.8 and
Equation 4.9.

Non-uniform Time Increments

In this case, although δi are independent random variables but they are not identically
distributed. However, MLE can be used to find the estimates a and b in similar fashion as
uniform time increment case by maximizing following likelihood function:

L(a, b) =

n∏
i=1

f(a∆ti,b)(δi)

=

n∏
i=1

1

Γ(a∆ti)
ba∆ti(δi)

a∆ti−1e−bδi

(4.10)
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Similarly for uniform time increment case, the following estimates can be obtained:

b̂ = â

∑n
i=1 ∆ti∑n
i=1 δi

(4.11)

and

(
n∑
i=1

∆ti

)
ln

(
â

∑n
i=1 ∆ti∑n
i=1 δi

)
+

n∑
i=1

∆ti(ln(δi)− ψ(â∆ti)) = 0 (4.12)

4.2 Non-homogeneous Gamma Process
Unlike homogeneous gamma process, some degradation processes do not follow the lin-
ear trajectories. In that situation, assumption of homogeneous Gamma process is limited
and non-homogeneous Gamma process is naturally more suitable for such degradation
modeling and is formally defined as:

Definition: LetA(t) a non-decreasing, real valued shape function with t ≥ 0 and scale
parameter is b; a stochastic process Xt is a NHGP, such that:

1. X0 = 0

2. Xt≥0 has independent increments

3. Increments are Gamma distributed. Therefore, for 0 ≤ s < t, the distribution of
Xt −Xs follows Gamma distribution Γ(A(t)−A(s), b)

When A(t) = at, the process turns into a homogeneous Gamma process for a > 0.
Expectation and variance of a non-homogeneous Gamma process Γ(A(t), b) for ∀t ≥ 0

can be derived as E(Xt) = A(t)
b and var(Xt) = A(t)

b2 respectively.

4.2.1 Properties of Interest
Some interesting properties as the direct consequences of the definition of NHGP are as
follows:

1. Xt≥0 follows non-decreasing trajectories which is as previously mentioned, suitable
for modeling degradation process

2. Unlike homogeneous Gamma process, E(Xt) and var(Xt) are adjustable. This
property allows modeling of degradation with non-linear trajectories by defining a
proper shape function A(t)

3. Again Xt≥0 is a pure jump process with Markov property

When a deterioration model with Gamma process takes temporal variability into ac-
count, empirical studies show that the expected deterioration increase over time t is often
proportional to a power law (Van Noortwijk, 2009) :
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E(X(t)) =
A(t)

b
=
ctu

b

V ar(X(t)) =
A(t)

b2
=
ctu

b2

(4.13)

Here, c, u > 0 and when u = 1 deterioration increase over time is linear which repre-
sents a homogeneous Gamma process. Often shape of the expected deterioration is known
in terms of the parameter u (Van Noortwijk, 2009). Mahmoodian and Alani (2013) sum-
marizes a set of typical values of u from literature which represents different types of
deterioration of concrete. Figure 4.1 illustrates time-dependent degradation model based
on different values of exponential parameter u including a graphical representation of de-
terioration of concrete according to Mahmoodian and Alani (2013).

Figure 4.1: Shape of expected deterioration path in terms of parameter u

4.2.2 Parameter Estimation
By maximizing the logarithm of the likelihood function of the observed deterioration in-
crements, MLEs of c and b can be estimated. The likelihood function is,

L(δi|c, b) =

n∏
i=1

fX(ti)−X(ti−1)(δi)

=

n∏
i=1

bc(t
u
i −t

u
i−1)

Γ[c(tui − tui−1)]
δ
c[tui −t

u
i−1]−1

i e−bδi

(4.14)

After taking logarithm of the likelihood function and setting the derivatives to zero,
the likelihood function can be maximized and estimates ĉ and b̂ can be solved as follows
(Van Noortwijk, 2009):

b̂ =
ĉtun
xn

(4.15)

and
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n∑
i=1

[tui − tui−1]{ψ(ĉ[tui − tui−1])− logδi} = tunlog

(
ĉtun
xn

)
(4.16)

All the equations 4.9, 4.12 and 4.16 can be solved with the help of numerical method
such as Newton-Raphson method (refer to appendix A.2.1). The MLE method can be ex-
tended to estimate the power-law parameter u which can be determined by numerically
maximizing the likelihood function 4.14 (Van Noortwijk, 2009).

Here, it should be noted that, expected deterioration at time t can be obtained by using
maximum likelihood estimator (b̂) (equation 4.15) in equation 4.13 as follows-

E(X(t)) = xn

[
t

tn

]u
(4.17)

It implies that, at the last inspection at time tn, the expected deterioration equals xn
meaning that last inspection contains the most information (Van Noortwijk, 2009).

Now, continuing with the estimation process, if j = 1, 2, 3......,m is a set ofm compo-
nents of interest thenXi,j denotes the degradation path of jth component at ith observation
and δi,j denotes the associated increments. Therefore recalling the pdf of Gamma process:

fc(tui −tui−1),b(δi,j) =
bc(t

u
i −t

u
i−1)

Γ(c(tui − tui−1))
δ
c(tui −t

u
i−1)−1

i,j e−bδi,j (4.18)

Likelihood function of jth component-

L(δi,j |c, b) =

n∏
i=1

fX(ti)−X(ti−1)(δi,j)

=

n∏
i=1

bc(t
u
i −t

u
i−1)

Γ[c(tui − tui−1)]
δ
c[tui −t

u
i−1]−1

i,j e−bδi,j

(4.19)

Log-likelihood function of jth components-

l(δi,j |c, b) = ln

(
n∏
i=1

bc(t
u
i −t

u
i−1)

Γ[c(tui − tui−1)]
δ
c[tui −t

u
i−1]−1

i,j e−bδi,j

)

=

n∑
i=1

ln

(
bc(t

u
i −t

u
i−1)

Γ[c(tui − tui−1)]
δ
c[tui −t

u
i−1]−1

i,j e−bδi,j

)
For all components-

=

m∑
j=1

n∑
i=1

ln

(
bc(t

u
i −t

u
i−1)

Γ[c(tui − tui−1)]
δ
c[tui −t

u
i−1]−1

i,j e−bδi,j

)

=

m∑
j=1

n∑
i=1

(c(tui − tui−1)ln(b)− ln(Γ[c(tui − tui−1)])

+ (c(tui − tui−1)− 1)ln(δi,j)− bδi,j)

(4.20)
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Taking partial derivative with respect to c and b-

∂

∂c
[l(δi,j |c, b)] =

m∑
j=1

n∑
i=1

(([tui − tui−1])ln(b)− (tui − tui−1)ψ(c(tui − tui−1))

+ (tui − tui−1)ln(δi,j)) = 0

∂

∂b
[l(δi,j |c, b)] =

m∑
j=1

n∑
i=1

(
c[tui − tui−1]

b
− δi,j

)
= 0

(4.21)

Estimated parameters are obtained by solving equation 4.21 as follows:

b̂ =
mĉtun∑m
j=1 xn,j

(4.22)

and

n∑
i=1

[tui − tui−1]ψ(ĉ[tui − tui−1])−
∑m
j=1

∑n
i=1[tui − tui−1]ln(δi,j)

m
= tunln

(
mĉtun∑m
j=1 xn,j

)
(4.23)

Here ĉmust be computed numerically (Van Noortwijk and Pandey, 2004) and Newton-
Raphson method is a powerful technique to find the root of a non-linear function and it
is well accepted due to it’s speed and efficiency compare to other methods (Akram and
ul Ann, 2015). Therefore, Newton-Raphson method have been utilized to approximate the
parameter values in this study and a short description of this method is provided in the
appendix A.2.1.

Approximation of ĉ and b̂

Primary function f(c) and it’s derivative f ′(c) for approximating ĉ are-

(4.24)

f(c) =

n∑
i=1

[tui − tui−1]ψ0(c[tui − tui−1])

−
∑m
j=1

∑n
i=1[tui − tui−1]ln(δi,j)

m
− tunln

(
mctun∑m
j=1 xn,j

)

f ′(c) =

n∑
i=1

[tui − tui−1])2{ψ1(c[tui − tui−1])} − tun
c

(4.25)

According to Newton-Raphson method, a better approximation of c after n iterations
can be obtained by cn+1 = cn − f(cn)

f ′(cn) . The process c1 is first initiated by guessing a root
of the function c0 that is close to the root value. After that the process gets repeated until a
sufficiently accurate value is obtained. In order to guess a c0 value, a plot of f(c) is drawn
(figure: 4.2) within a range c ∈ [1, 10] and it can be graphically observed that the solution
of f(c) lies within the range of c ∈ [3.9, 4.1].
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Figure 4.2: Plot of f(c) against a range of c values

Confidence Interval of Estimates

A confidence interval is a derived range of values from sample statistics that is likely to
contain the value of an unknown population parameter. It indicates that, if many repeated
samples are taken from the population, a certain percentage of the resulting confidence
interval is likely to contain the unknown population parameter2.

If for an one-dimensional parameter θ, l(θ) is the corresponding log-likelihood func-
tion then let l′(θ) and l′′(θ) be their first and second derivative respectively with respect to
θ. Therefore the observed information of θ is defined as-

l(θ̂) =def −l′′(θ̂) (4.26)

from statistical theory of maximum likelihood, variance and standard error can be
estimated as-

V̂ ar(θ̂) =
1

I(θ̂
= − 1

l′′(θ̂)

SE = ŜD(θ̂) =

√
I(θ̂)−1 =

√
−1

l′′(θ̂)

(4.27)

Similarly in case of two parameters (ĉ,b̂) the observed information matrix (also known
as Hessian matrix) can be obtained as-

I(ĉ, b̂) =def

− ∂2

∂c2 l(c, b) − ∂2

∂c∂b l(c, b)

− ∂2

∂b∂c l(c, b) − ∂2

∂b2 l(c, b)


c=ĉ,b=b̂

(4.28)

2Definition is obtained form Minitab R© 17 support
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[I(ĉ, b̂)]−1 =

 V̂ ar(ĉ) ̂Cov(ĉ, b̂)

̂Cov(ĉ, b̂) V̂ ar(b̂)

 (4.29)

95% confidence interval of the estimated parameters can be calculated as-

ĉe±1.96
ŜD(ĉ)

ĉ , b̂e±1.96
ŜD(b̂)

b̂ (4.30)

From equation 4.20 observed information matrix for parameters (c, b) can be obtained
as-

I(ĉ, b̂) =def

∑m
j=1

∑n
i=1[tui − tui−1]2ψ1(c[tui − tui−1]) − 1

b

∑m
j=1

∑n
i=1[tui − tui−1]

− 1
b

∑m
j=1

∑n
i=1[tui − tui−1] 1

b2

∑m
j=1

∑n
i=1[tui − tui−1]


(4.31)

4.3 Gamma Process Simulation Methods
It is possible to approximate Gamma process with a limit of a compound Poisson process.
However, Van Noortwijk (2009) argues that, since Gamma process has infinitely many
jumps in each finite time interval, simulating Gamma process by simulating independent
increment w.r.t. to tiny time increments is rather more efficient and mentions two simu-
lation methods for sampling independent gamma process increments. These two methods
are described briefly as follows-

4.3.1 Gamma Increment Sampling
Avramidis et al. (2003) terms this technique as Gamma Sequential Sampling (GSS) where
independent samples δi = xi − xi−1 are drawn from Gamma density-

Ga(δ|A(ti)−A(ti−1), b) =
bA(ti)−A(ti−1)

Γ(A(ti)−A(ti−1))
δ[A(ti)−A(ti−1)]−1e−bδ (4.32)

For i = 1, 2, ..n and x0 = 0.

4.3.2 Gamma Bridge Sampling
This method is well summarized from more than one literature by Van Noortwijk (2009).
A sample is drawn that represents cumulative increment X(t) in the interval (0, t]. Then
another sample of cumulative increment X(t/2) is drawn from conditional distribution of
X(t/2) given X(t) = x such as:

fX(t/2)|X(t)(y|x) =
1

x
Be(

y

x
|A(t/2), A(t)−A(t/2)) (4.33)
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For 0 ≤ y ≤ x. It represents a transformed beta density on the interval [0, x]. Simi-
larly, time interval (0, t] is then divided into two more intervals (0, t/2] and (t/2, t]. Then
two more samples X(t/4) and X(3t/4) are drawn given the value of X(t/2) and X(t)
respectively. The process continues in order to sample Gamma process path for 2m time
points such as: t, t/2, t/4, 3t/4, .., 2−mt, .., (1− 2−m) for some positive integer m.

Gamma bridge sampling only allows equal length time interval and therefore Gamma
increment sampling is utilized for the NHGP simulation in this thesis.

4.3.3 Detail Description of Simulation Process
During the meeting session with Statoil regarding the expectation from the project, it has
been mentioned that, a simulator with a capability of calculating RUL under certain in-
put values such as current condition, previous history and future usage profile could be
of useful for decision makers. Although at present, condition monitoring data of the ma-
chines are not available but an attempt has been made to start developing a foundation of
such simulator using randomly generated Gamma distributed data. The purpose of this
simulator is of three folds as follows:

• Generate Gamma distributed data-set for a given set of parameter values

• Estimate parameter values if a data-set is provided

• Calculate RUL based on estimated parameters

The simulator is valid under following assumptions:

• Initial condition, X(t = 0) = 0

• At any inspection point at time t, degradation amount X(t) is known accurately

• Amount of X(t) represents the actual degradation amount meaning that data can be
considered as direct CM data

• A failure threshold is known

• Exponential parameter u is known (this is not a critical assumption, it can also be
estimated from the data-set along with other parameters and can be incorporated
with current simulation process)

Following values are adopted for most of the simulation results in this document but
these are readily adjustable depending on the requirements:

• Number of machines, M = 100

• Number of observations, N = X(t = 0) + 100

• Total time length, T = 10

• Time increment, dt = 0.1
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4.4 Realization of Degradation Paths

In terms of limitation, parameter estimation process has been done using Newton-
Raphson method which requires to choose an initial c parameter value as an input of the
function. Sometimes an adjustment of this initial input is required when estimated c is
close to 0. The chosen initial c must be close enough to the estimated c in next iteration as
it involves calculating equation 4.7 and it’s derivative which are unable to handle negative
values.

Contextual Definition of Threshold
The concept of threshold should be further clarified with respect to insulation degradation
level and techincal failure of the machine. Above-mentioned degradation model only con-
siders ageing of the insulation material and therefore it is not possible to set-up a threshold
that indicates the technical failure of the EIS. This is because an aged insulation system
is capable of operating under severe degraded condition and actual technical failure of a
degraded insulation system requires an occurrence of transient or an operating error (Stone
et al., 2004). Therefore in this context, exceeding a failure threshold denotes that the in-
sulation system has reached that critical zone where a transient or an operating error will
lead it to failure.

4.4 Realization of Degradation Paths
In order to observe the behavior of degradation paths, a set of Gamma distributed random
paths have been generated with different combinations of parameter values. The behaviors
are observed by changing one parameter value at a time keeping the other parameters
constant. These are described below:

(a) u = 0.5 (b) u = 1 (c) u = 2

Figure 4.3: Behavior of shape function in terms of exponential parameter

4.4.1 Effect of Exponential Parameter u

Exponential parameter u regulates the concavity and convexity of trend shape (Gola and
Nystad, 2011). For u < 1 the shape of degradation path is concave and for u > 1 it
becomes convex. The path becomes linear when u = 1 and represents homogeneous
Gamma process. In civil engineering application, some engineering knowledge exists in
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terms of parameter u regarding the deterioration of concrete. For example, for three types
of degradation process such as diffusion-controlled ageing, reinforcement corrosion and
sulfate attack the values 0.5, 1 and 2 are used respectively according to Mahmoodian and
Alani (2013). Figure 4.3 illustrates the behaviors which are in agreement with figure 4.1.

4.4.2 Effect of Parameter c

Increase in c parameter value influence the spread of the generated degradation paths
which is not surprising as both parameter c and b determines the spread of Gamma prob-
ability distribution (Gola and Nystad, 2011). As the value of c increases from 1 to 3, the
degradation paths are more spread out at the time increases. It can be clearly observed
graphically by looking at the progression of variance as time increases (drawn as green) in
figure 4.4 as oppose to the expected degradation over time (drawn as red).

(a) c = 1 (b) c = 2 (c) c = 3

Figure 4.4: Behavior of shape function in terms of parameter c

4.4.3 Effect of Scalar Parameter b

(a) b = 1 (b) b = 2 (c) b = 3

Figure 4.5: Behavior of shape function in terms of scalar parameter b

On the other hand, changing in scalar parameter shows an opposite behavior compare
to shape parameter. Increasing b from 1 to 3 similarly, shows that the degradation paths
become less spread out as time increases. Figure 4.5 clearly depicts this behavior. For
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b = 1 the expected degradation and variance at time t is equal as the equations 4.13
indicates.

4.5 Parameter Estimation from Data
Parameter estimation is one of the important tasks in statistical data driven approaches for
RUL prognostics. Quality of the estimation is critical as the parameters regulate the trend
(degradation) shapes and incorrect estimation will certainly impact any results obtained
by the estimated values. Therefore the validity of parameter estimation process described
in section 4.2.2 need to be verified. To serve that purpose, a set of data generated using
following input values-

Table 4.1: Input values for data generation

Item M N T dt c b u
Values 100 100 10 0.1 2 2 2

Following the method described in section 4.2.2 for parameter estimation and confi-
dence interval calculation, obtained results are quite satisfactory and consistent for other
parameter values. An example of result is shown in table 4.2.

Table 4.2: Confidence interval calculation for c and b parameters

Parameter Estimate Confidence Level Lower Bound Upper Bound
c 2.0919 95% 2.0146 2.1722
b 2.0441 1.9584 2.1336

In real practice, the sample size and the interval of observations may depend on many
practical aspects. For example, the compressor trains in Kollsnes processing plant are
monitored in an opportunistic manner. Therefore, different combinations of number of
units and observations have been analyzed to see the behavior of NHGP model in terms of
parameter estimation quality and discussions are presented below.

4.5.1 Number of Sample Size
After selecting a training data set with known parameter values, the 95% confidence in-
terval is calculated for the estimated parameters in terms of number of sample size. The
estimated parameters are plotted with their associated confidence interval as orange and
red lines. Figure 4.6 shows the values of estimated parameters starting from 100 samples
reduced to only one sample.

For both of the estimates it can be seen that estimates are stable near the true value
until 60% of the samples were considered. After disregarding 50% of the samples, the
fluctuations in estimates are clearly evident. Level of confidence decreases along with the
declining number of samples as expected.

37



Chapter 4. Gamma Process Modeling

Figure 4.6: Accuracy of parameter estimates in terms of confidence interval w.r.t. sample size

4.5.2 Number of Observations
This section investigates the accuracy of estimated parameters of a sample size of 100
units with different combinations of observation strategies.

Ignoring Initial Observations

In case of partial discharge (PD) activity, it is known that, initial observation after installing
a new equipment may not be very useful condition indicator because newly installed wind-
ings are subjected to higher PD magnitude and therefore initial PD measurement is best
after about 6 months of operation (Stone, 2005).

Figure 4.7: Accuracy of parameter estimates in terms of overlooking starting initial observations

Therefore, it could be interesting to see how the parameter estimation is affected when
a number of initial observations are disregarded from the data-set. In this simulation,
assuming that the condition is perfect at t=0, number of initial observations have been
removed from a given data set.

Figure 4.7 shows the trend when deleting from 1 observation to 99 observations (only
keeping the observation at t=0 and the final observation). Again it can be seen that, until
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removing about 50% of initial observations, the estimation is fairly stable before it starts
to fluctuate.

Periodic Observation

Similarly a simulation has been conducted to see how periodic observations influence the
parameter estimation quality. In this simulation, after the initial observation at t=0, a set
of periodic observations are recorded with different intervals. For example, in case of a set
of 100 data points and an interval of 3, 4th, 8th, 12th,.... data points are recorded until it
reaches 100.

Following this process, table 4.3 shows the number of total observations when the
interval ranges from 1 to 10.

Figure 4.8: Accuracy of parameter estimates for periodic observations

Figure 4.8 shows the result of the simulation graphically and it is clearly evident that
more the observation interval gets smaller, the estimation gets more accurate. Interestingly
like previous simulation results, the estimation converges to a stable accuracy when the
number of observations are about 50% or more.

Table 4.3: Number of total observations corresponding to the observation interval

Interval of observations 1 2 3 4 5 6 7 8 9 10
Number of total observations 51 34 26 21 17 15 13 12 11 10

Opportunistic Observation

On-line PD monitoring is usually expensive and normally it’s been done in an oppor-
tunistic basis for the rotary machines in Kollsnes processing plant. Therefore, it’s of high
interest to see how the accuracy of estimates is influenced for a non-periodic observation
strategy.

The information about real practice of opportunistic inspections and frequency of in-
spections in Kollsnes are not available at this point. In general, the inspections are mainly
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(a) (b)

(c)

Figure 4.9: Accuracy of estimates in terms of opportunistic observations

conducted when the production demand is low and some machines are idle. Here it’s been
assumed that the inspection opportunities come in a random fashion. For a given data set
of 100 data points, a specific number of data points are randomly chosen to estimate the
parameters. For example, figure 4.9 shows how the accuracy of estimates are influenced
when randomly selecting 5, 50 and 95 observations respectively and repeating the process
for 100 times for each case.

When 95% observations are recorded then obviously the estimates are very stable and
close to the true value. In case of randomly selected 50% of the observations are quite
close to the true value ranging from 1.9 to 2.1 although the estimates are comparatively
stable. When the number of selected observations gets as low as 5% of the original data
set, the estimates become very unstable in a range between 1.7 to 2.2. Again it’s noticeable
that, even for the opportunistic observations, recording about 50% of the data randomly
keeps the estimations fairly stable.

4.5.3 Optimal Inspection Strategy
It’s been so far observed how quality of parameter estimation varies in terms of number of
sample size (number of machines) and the number of observations (condition monitoring).
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The 6 machines located at Kollsnes are assumed to be independent from each other mean-
ing that, failure of one machine does not influence the failure(s) of any other machine(s).
In such case, sample size for parameter estimation should always be limited to 1 and the
inspection for condition monitoring may be optimized in terms of number of inspections
and/or inspection strategy.

In order to understand the role of inspection strategy on how it’s influencing the param-
eter estimation accuracy, an experiment has been set up where 1000 degradation paths are
generated that represent degradation paths for 1000 identical machines. All paths are gen-
erated with same parameter value- c = b = u = 2. The total time length of the simulation
is 10 unit and the current time is assumed to be 6 unit.

After that, 3 periodic and 7 opportunistic inspection strategies are considered where
all the observations are taken in between the initial time and the current time at 6 unit.
For each strategy b and c parameters are estimated for each machines and the average and
variances are recorded. The definitions of inspection strategies are as follows-

• Periodic 1 Every one other observations until current time (0.2.4...)

• Periodic 2 Every second other observations until current time (0.3.6...)

• Periodic 3 Every third other observations until current time (0.4.8...)

• Opportunistic 1 More observations at the beginning stage than later stage approach-
ing current time

• Opportunistic 2 More observations at the later stage than the beginning

• Opportunistic 3 More observations at the beginning stage than later stage approach-
ing current time

• Opportunistic 4 More observations at the later stage than the beginning

• Opportunistic 5 All observations at the end stage than later stage approaching cur-
rent time

• Opportunistic 6 All observations at the beginning stage than the beginning

• Opportunistic 7 All observations at the middle stage than later stage approaching
current time

Table 4.4 summarizes the result of the experiment for parameter c. Result for param-
eter b shows exactly same trends as parameter c and thus not provided here. It is evident
from the result that the total number of observations are the main criteria for an accurate
estimation of the parameters. When the data is collected has little influence on the esti-
mation. For instance, periodic 1, opportunistic 5, 6 and 7 collects same amount of data
from different time points but both the estimations and the variances are very close to each
other.
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Table 4.4: Accuracy of estimated c parameter w.r.t. inspections strategies

Inspection strategy Number of observations c estimates Variance
Full range of observations 101 2.05 N/A
Periodic 1 31 2.26 0.48
Periodic 2 22 2.34 0.53
Periodic 3 17 2.62 0.76
Opportunistic 1 14 2.71 0.85
Opportunistic 2 14 2.78 0.86
Opportunistic 3 9 3.26 2.17
Opportunistic 4 9 3.17 1.27
Opportunistic 5 22 2.34 0.54
Opportunistic 6 22 2.30 0.51
Opportunistic 7 22 2.38 0.57

4.6 Discussions
In this chapter, simulation technique is successfully implemented in order to generate
Gamma distributed training data-set. Based on that, it’s been shown how the shape of
the degradation path changes with respect to changing of different parameter values. Most
important insight of this chapter is that, dependency of the stability of parameter estima-
tion on the total number of observations. According to this preliminary study, inspection
interval and periodicity of the inspections play little importance compare to the total num-
ber of observations. For the same number of total observations for one machine, it does
not matter much on the time points of the observed data.

This is an interesting insight in terms of decision maker’s point of view under the
assumption that Gamma process is suitable for the degradation modeling. If further study
can optimize the minimum number of inspection data required for a reasonably accurate
estimation, then management can flexibly plan inspection schedule.

42



Chapter 5
Prognostics of Remaining Useful
Life

This chapter first develops the mathematical foundation of RUL estimation when the cur-
rent condition is known. Then by utilizing the generated training data-set in previous
chapter, the behavior of RUL under different scenario is discussed.

5.1 Relevant Definitions of RUL
In order to estimate a component RUL in advance with an acceptable level of uncertainty,
either failure time probability based on failure time records can be obtained or the infor-
mation of component deterioration trend during operation can be exploited and the latter
approach maximizes the usage of component by allowing tailored maintenance planning
(Nystad et al., 2012; Nystad, 2008). The general definition of RUL is already provided in
chapter 2 but a closer look into age-based and state-based RUL definition is required for
the clarification of this chapter.

5.1.1 Age-based RUL
Let an item is put into operation at time t = 0 and the time to failure for the item is
denoted by T . If the item is still functioning at t then probability that the item will survive
an additional length of h is,

R(h|t) = Pr(T > h+ t|T > t) =
Pr(T > h+ t)

Pr(T > t)
=
R(h+ t)

R(t)
(5.1)

R(h|t) is called the conditional survivor function at age t and the Mean Residual Life
(MRL) of the item at age t,

RUL(t) =

∫ ∞
0

R(h|t)dh =
1

R(t)

∫ ∞
t

R(h)dh (5.2)
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This equation is only applicable when R(h) is explicitly defined and numerical inte-
gration is not necessary to evaluate it (Govil and Aggarwal (1983)).

RUL distribution in terms of conditional lifetime distribution with the information that
the component is functioning at time t is-

FT (t) = Pr(T ≤ t+ h|T > t) =
FT (t+ h)− FT (t)

1− FT (t)
,∀t+ h > t (5.3)

In the time-based approach, the only available information at time t is whether the
component is functioning or not. Thus the RUL depends on the age of the component only
and not on the actual health condition of the component.

5.1.2 State-based RUL
Time-based approach may not be applicable when the component RUL depends on the
actual health condition rather than the age of the component. In such situation, state-based
approach is more applicable where remaining time to reach a pre-defined threshold level
is defined by taking account of actual component state instead of it’s survival time.

Under the assumption that degradation path follows a Gamma process, PDF of the
degradation quantity X(t) is defined as-

fX(t)(x) =
bA(t)

Γ(A(t))
xA(t)−1e−bx (5.4)

Here X(t) is the degradation indicator that are being measured and for the partial
discharge, PD magnitude is the quantity of interest.

Now let a component’s degradation level at time t is X(t) = xt and a pre-defined
threshold is L. The state-based lifetime distribution of FPT is therefore can be defined as-

FTL
(t) = Pr(TL ≤ t) = Pr(X(t) ≥ L)

=

∫ ∞
x=L

fX(t)(x)dx =
Γ(A(t), Lb)

Γ(A(t))

(5.5)

Here, Γ(A(t), Lb) is the incomplete Gamma function1.
If the shape function A(t) is differentiable, the PDF of time to failure can be obtained

by taking the derivative of equation 5.5 which is provided in (Van Noortwijk (2009)) as
follows-

fTL
(t) =

A′(t)

Γ(A(t))

∫ ∞
Lb

{log(x)− ψ(A(t))}xA(t)−1e−xdx (5.6)

Incorporating Current Health Condition
Now let assume that, CM of a component is possible to collect and the current health
condition can be measured with reasonable precision. Knowing actual health condition at

1Γ(A(t), y) =
∫∞
z=y zA(t)−1e−zdz is the generic shape of gamma function. If y = 0 the gamma function

is called complete and otherwise incomplete
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current time can aid more accurate estimation of component’s RUL as it varies with operat-
ing conditions and environment characteristics (Ghodrati et al. (2012)). If the degradation
of a component at current time t is X(t) = xt then the conditional lifetime distribution
can be written as-

FTL
(t) = Pr(TL ≤ t|X(t) = xt)

= Pr(X(t) > L|X(t) = xt)
(5.7)

Given the current component degradation level at time t, probability that a component
survives an additional length of time h is of interest for the maintenance decision makers.
The cumulative distribution function (CDF) of RUL under such assumption can be written
as-

Pr(RUL ≤ h) = 1− Pr(RUL > h)

= 1− Pr[X(t+ h) < L|X(t) = xt]

= 1− Pr[X(t+ h)− xt < L− xt]

= 1−
∫ L−xt

0

fA(h),b(y)dy

= 1−
∫ L−xt

0

bA(h)

Γ(A(h))
yA(h)−1e−bydy

(5.8)

The PDF of RUL can be obtained by taking derivative of CDF with respect to h as
follows-

fRUL(h) =
d

dh
[FTL

] =
d

dh
[1− Pr(RUL > h)]

= − d

dh

[∫ L−xt

0

bA(t+h)

Γ(A(t+ h))
xA(t+h)−1e−bxdx

] (5.9)

Utilizing Leibniz’s rule for differentiation under integral sign, following expression is
obtained which must be calculated numerically-

fRUL(h)

=

∫ L−xt

0

e−bx
[
bc(t+h)ucuxc(t+h)u−1(h+ t)u−1 (ψ0(c(t+ h)u)− ln(x)− ln(b))

Γ(c(t+ h)u)

]
dx

(5.10)

5.1.3 An Illustration of Condition-based RUL Estimation
The benefit of incorporating current health condition of the machines in RUL estimation is
illustrated in figure 5.1. Here green lines represent Gamma distributed random degradation
paths for 100 machines without any inspection before they reach a predefined threshold
L = 180. The shape of all the degradation paths follow a power law model with parameters
c = 2, b = 2, u = 2.

The thick blue line is the degradation path of one randomly selected unit. At current
time t = 7, the degradation level of this unit is known to be 105. 100 random degradation
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Figure 5.1: RUL distribution at current time t=7 for a threshold value L=150

paths from that point are simulated again with the same parameter values and the first
hitting times of reaching L are recorded.

Advantage of calculating RUL by taking account of the current degradation level is
immediately realized by Figure 5.2. If the current degradation level is known then the FHT
is distributed more densely comparing to the situation when no information is available
about the component degradation level. The uncertainty of RUL distribution is reduced
when current degradation level is known which leads to a more precise estimation of RUL.

Figure 5.2: Comparison of RUL variances given the same threshold level

5.2 Results and Discussions

In this section, the data set generated in chapter 4 is utilized to investigate the behavior of
RUL estimation in different circumstances. For example, figure 5.3 presents the result of
CDF and PDF of a randomly selected a component’s degradation path from the training
data set. It’s been assumed that the component is continuously monitored from initial
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perfect condition until it reaches a predefined threshold. Equations 5.5 and 5.6 are used to
calculate CDF and PDF respectively.

(a) Selected degradation path (b) CDF of FHT (c) PDF of FHT

Figure 5.3: Lifetime distribution of FHT at time t

When a new machine is installed under the assumptions that, the degradation parame-
ters are estimated with reasonable precision and the operating environment is stable over
the period then lifetime modeling can answer some useful questions. It can give the prob-
ability of useful life exceeding a certain time length (from CDF) or useful life falling
between a time interval (from area under the curve of PDF).

Figure 5.4: Comparison between lifetime modeling and RUL estimation

However, in general rotary machines are subjected to different operating conditions
that has influence on component degradation as described in chapter 2. Therefore lifetime
modeling may not be sufficient for predicting RUL accurately. In such situation, incor-
porating the knowledge of current health condition can significantly make a difference.
Figure 5.4 shows a comparison between lifetime and RUL modeling for the same compo-
nent when the component’s actual condition is assumed to be known at time 2. It shows
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that the probability of that component surviving an additional 5 units of time is underesti-
mated by the lifetime modeling which may lead the decision makers planning a preventive
maintenance too late than it requires. The behavior of CDF of FHT under the assumption
of a known current condition and a failure threshold are discussed below.

5.2.1 Influence of Parameters

(a) Selected degradation path (b) CDF of FHT (c) PDF of FHT

Figure 5.5: Behavior of CDF of FHT under different parameter values

How different parameters influence on the estimated CDF of FHT is illustrated in
figure 5.5 under the assumption of a pre-defined threshold. (a) depicts the influence of the
parameter c which is basically the constant term of the power law model used as shape
function. The CDF becomes steeper and moves left along the x-axis as the value of c
parameter increases. Which means both the probability of the unit failing before a time h
and the degradation rate increases. CDF moves along the x-axis to the right as the value of
b increases but the steepness seems to remain constant (figure 5.5 (b)). It should be noted
that these results are consistent and in agreement with the behavior of NHGP degradation
models w.r.t. different values of c and b parameters in figure 4.4 and 4.5 respectively.

(a) Homogeneous process (b) Non-homogeneous process

Figure 5.6: Comparison between homogeneous and non-homogeneous process
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Finally (c) depicts the critical role of exponential parameter. When u = 1, it represents
homogeneous Gamma process (red line). In such case degradation amount accumulates
linearly over time unlike NHGP process where degradation rates become faster as the
value of u increases. This phenomena is critical in terms of inspection intervals. Figure
5.6 shows the CDFs of FHT at 3 periodic inspection points at 3, 4 and 5 time unit for
both homogeneous and NHGP cases. At each inspection point, the probability of the unit
failing before one more time unit is presented.

It is clearly evident that, in case of NHGP, the probability of the unit surviving until one
more inspection may drastically change after a certain point. This is consistent with the
PD phenomena since PD does not cause a sudden breakdown rather they enhance chemical
and physical ageing processes by breaking of polymer bonds of insulation material as PDs
are repeated many times per voltage cycle (Martı́nez-Tarifa et al. (2010)).

5.2.2 Influence of Pre-defined Threshold
In threshold based RUL prognostics, determining a threshold accurately is of great impor-
tance. Nystad et al. (2012) point out that setting a high failure threshold value increases
the risk of actual component failure while a conservative low threshold value may lead to
unnecessary and counter productive maintenance interventions. Figure 5.7 clearly depicts
the behavior of CDF with respect to setting up different threshold levels.

Figure 5.7: Behavior of CDF of FHT w.r.t. different threshold level

Decision process of setting-up a threshold level is often subjected to engineering ex-
perience, past data analysis and/or recommended standards (Si et al. (2011)). Although in
this thesis a deterministic threshold is assumed to be known but random threshold consid-
eration is possible which is briefly discussed in chapter 6.

5.2.3 Critical Role of Inspection
Referring to Zhu et al. (2001), it’s been described in chapter 2 that, increase in PD mag-
nitude is a better indicator than an absolute level of PD magnitude. Figure 5.8 illustrates
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that claim with a graphical representation.

(a) Degradation paths for 2 machines (b) CDF of FHT at 3.5 (c) CDF of FHT at 5.5

Figure 5.8: Potentiality of misguided decision making

From the degradation paths of machine 1 and 2 in figure 5.8 (a), although machine
2 degrades slowly at the beginning but after some point in time the degradation rapidly
increases and outrun the degradation of machine 1 at around t = 4. Inspection before
t = 4 indicates that machine 2 is in better condition than machine 1. However, another
inspection at t = 5.5 reveals the actual situation. Figure 5.8 (b) and (c) illustrate the drastic
differences in CDFs of FHT for both inspection times.

5.3 System Level Prognostics
The scope of this thesis was kept limited to only unit level RUL study but this section
attempts to provide an insight on how the merit of an unit level RUL estimation can be
transported into system level RUL estimation for a simplest case of 2 units. Gomes et al.
(2013) estimated system level RUL by combining component’s individual RUL informa-
tion and Fault Tree Analysis (FTA) information of the system. A similar approach has
been adopted here as well.

Let us consider a hypothetical scenario where 2 gas compressors are in operation.
These machines are required to fulfill a specific level of production demand. They are
under condition monitoring and a deterministic failure threshold is set. When a machine’s
health condition reaches the threshold point, it is assumed to be failed to fulfill the demand
and it needs to be repaired in order to put in to operation again. Finally, failure of one
machine is assumed to be independent from the failure of the other one. Two hypothetical
seasonal scenarios are described below-

(a) During the winter season when the demand is high, both of the compressors are re-
quired to function properly. If one fails then other one can fulfill half of the demand
but considering the economic aspect of highly expensive production loss the system
is assumed to be failed and management would want to avoid such situations.

(b) During the summer time, the demand can be fulfilled by any of the machines but
both of the machines are kept in operation and share the load of production demand.
If one fails then other one takes the full load and it is assumed that it does not
increase the probability of failure for the functioning machine.
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Table 5.1: Degradation data for the machines

Threshold Current time Degradation level c b
Machine 1 34.919 2.5 6.1919 2.55 2.57
Machine 2 5.5034 1.78 1.88

These two seasonal scenarios can easily be translated into fault tree diagram as in
figure 5.9. Fault tree is basically a logic diagram in order to study the probable causes for
a specific system failure, termed as top event (Rausand et al., 2004; Gomes et al., 2013).
The top event (system failure) occurs when a sequence of events (failure) take place. For
example, top event representing failing to fulfill required demand in winter occurs when
any of the machine fails while top event representing failing to fulfill required demand
in summer occurs when both of the machines fail. The method to calculate top event
probability is briefly described in appendix A.2.2.

(a) Winter demand (b) Summer demand

Figure 5.9: Seasonal demand requirement translated into FTA

From the generated data of 100 machines in previous chapter, 2 machines are randomly
selected. Both of these machines are assumed to be regularly monitored and the parameters
are estimated by collecting all the monitoring data until current time. At t = 2.5, the last
inspection has been taken place. Table 5.1 summarizes the data-

The original degradation paths of the components and the CDF of FHT at current time
are graphically presented in figure 5.10. From these two figures it is clearly visible that the
component 2 is approaching faster towards failure. Now let assume a hypothetical situation
where at the current time t = 2.5, management is interested to know the probability of the
system surviving 3 more time unit which is until t = 5.5. For the component level the
answer is quite straightforward as follows-

P (RULMachine1 > 3) = 1− P (RUL ≤ 3) = 37.5%

P (RULMachine2 > 3) = 1− P (RUL ≤ 3) = 60%
(5.11)

However if the management is interested in the same question but in terms of system
level then further adjustment is required.
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(a) Degradation paths (b) CDF of FHT

Figure 5.10: Degradation paths and CDF of FHT for 2 machines

5.3.1 System Level RUL During Winter

In this scenario, both of the machines are required to function in order to maintain pro-
duction demand (see figure 5.9 (a)). Any machine failure is considered as system failure
and let the occurrence of basic events machine 1 and machine 2 failure before 3 additional
time units are M1 and M2 respectively. Then the probability of the system failing before
an additional 3 units of time can be obtained as follows-

(RULSystem ≤ 3) = Pr(M1 ∪M2)

= 1− (1− 0.625)(1− 0.4)

= 77.5%

(RULSystem > 3) = 22.5%

(5.12)

Therefore, there is only 22.5% probability that the system will survive 3 more addi-
tional time unit. In this particular scenario, the system structure is in series combination.
A series structure can not be more reliable than it’s least reliable unit Rausand et al. (2004)
and therefore by increasing the reliability of machine 1, the system reliability can be im-
proved.

5.3.2 System Level RUL During Summer

For the summer period, only one machine is sufficient for fulfilling the production demand
(see figure 5.9 (b)). Therefore, system RUL is obtained by-

(RULSystem ≤ 3) = Pr(M1 ∩M2)

= (0.625)(0.4)

= 25%

(RULSystem > 3) = 75%

(5.13)
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Due to the simplicity of these particular system structures, the top event probabilities
have been calculated directly. However, for a much complex systems, the fault trees can
be transformed into its cut sets and upper bound approximation instead of using structure
function. Refer to appendix A.1 for brief definitions of cut sets and upper bound approxi-
mation.
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Chapter 6
Conclusion

This final chapter first discusses various important aspects and challenges in relation with
the proposed degradation model and case-specific challenges for practical implication.
Then the limitation of this study is briefly mentioned and based on that, possibilities of
future works are discussed and some general recommendations are provided.

6.1 General Discussions
This thesis progressed based on the problem of high voltage rotary machine prognostics
in system level. The primary approach to solve such complex problem was to develop a
degradation model for a single machine and then further extend the model for incorporat-
ing into system level. For a single machine, Electrical insulation system has been identified
as the main component of interest in terms of high voltage rotary machine failure based on
literature review and expert knowledge involved in Kollsnes gas processing plant.

Thus far, degradation mechanism of an electrical insulation system in high voltage
rotary machine has been discussed in order to find an appropriate condition indicator de-
scribing the actual health condition of the associated motor. Up until now, not enough
evidences have been found for an universal prognostic condition indicator for high voltage
rotary machine failures. The available physical tests are mainly used for the diagnostic
purposes and none of them are validated as a good prognostic condition indicator yet.

Partial discharge activity shows some promising characteristics in order to become a
potential candidate of a good condition indicator with lot of associated limitations needing
attention and some of which are discussed in chapter 2. Due to it’s well acceptability in
industries as well as in Kollsnes gas processing plant, it has been assumed as the condition
indicator in this thesis. Besides, although off-line partial discharge tests are more com-
monly used but unlike other diagnostic tests, on-line partial discharge monitoring is also
possible (Stone et al., 2008; Renforth et al., 2015) which is an important factor to consider
in condition based maintenance.

Realizing the rapid increase in PD activity over time, an unit level degradation model
based on non-homogeneous Gamma process is proposed and behavior under different pa-
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rameter values, inspection frequency, etc. are discussed. Associated parameters are cal-
culated with 95% confidence interval and remaining useful life is estimated for different
scenarios. Further, a transition from an unit level prognostics to system level prognostics is
demonstrated. However, practicality of non-homogeneous Gamma process model in high
voltage rotary machines is not validated yet mainly due to the lack of field data.

Data collection is one of the biggest challenge associated with validating the proposed
model for high voltage rotary machine prognostics. It’s been discussed in chapter 2 that,
trending partial discharge activities of a single machine is a better degradation indicator
than making comparison with other machines. In both situations however, some of the fac-
tors need to be in consideration while taking measurements such as, ensuring test instru-
ment bandwidth, noise separation techniques, sensor types, operating voltages etc. Partial
discharge activity data without considering these factors may not be useful or reliable for
degradation modeling. Any relevant field data for the motors in Kollsnes gas processing
plant are not available up to this point. Any systematically collected partial discharge
database is also not found that could be useful to check the fitness of the proposed model.
Nevertheless such database do exist as mentioned in chapter 2 but unfortunately the access
is limited.

Another challenge associated with the threshold based degradation model arises from
the difficulties in presetting a threshold itself. Throughout this thesis, a fixed failure thresh-
old is assumed to be known beforehand which is an impractical assumption considering the
fact that, partial discharge magnitudes are relative measures and thus an absolute measure
is difficult to obtain from similar machines. Karsten Moholt AS, responsible company for
the condition monitoring of the rotary machines in Kollsnes, provided a guideline regard-
ing insulation quality with respect to partial discharge activity (refer to Table A.1 in ap-
pendix section A.1). This guideline is identical to the on-line partial discharge guideline1

provided by High Voltage Partial Discharge Ltd (HVPD), an UK based service provider
for on-line partial discharge testing and monitoring2. The guideline is specified for ma-
chines in the range of 3.3-15 kV. However these sort of guidelines are not universal and
can be different based on many factors as discussed in chapter 2. Therefore credibility of
such guidelines is still under question that needs to be addressed.

6.2 Limitations
One of the main limitation of this research is the unavailability of actual field data which
has been discussed above in terms of associated challenges. Besides that, another limi-
tation of the proposed degradation model is regarding operating environment and future
usage profile of the machine. This is not a secret that both play an important role in ageing
of machinery. However current stage of research is in preliminary stage and requires some
validation before moving on to more complex degradation modeling and thus focus of this
research has been kept limited accordingly. In addition, proposed model requires a pre-
defined failure threshold in order to provide prognostics of remaining useful life. Finally,

1PD guideline by HVPD- http://sites.ieee.org/houston/files/2016/01/2-
HVPD-Night-2-On-line-Partial-Discharge-OLPD-Monitoring-of-Complete-HV-
Networks-OG-Industry-Oct.14.pdf

2HVPD- http://www.hvpd.co.uk/
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6.3 Future Works and Recommendations

as discussed in chapter 4, ageing process basically makes the machine vulnerable to failure
under an occurrence of a transient or an operating error. This leaves a room for discussions
regarding an appropriate approach for choosing an accurate threshold level, which has not
been considered here due to practical limitations. Having mentioned the limitations, the
model has potential for further improvement with future works.

6.3 Future Works and Recommendations

Although partial discharge activity has been assumed as a prognostic condition indicator
through out this research; the research is not exhaustive regarding finding the most ap-
propriate condition indicator. Further research is required in order to validate the claim
that partial discharge is an acceptable indicator for the discussed purpose. The proposed
non-homogeneous Gamma process model is valid for any condition indicator as long as
the degradation trend is in the agreement with the properties of Gamma process. Therefore
in this section, the discussions of potential future works focus only on the improvement of
the model.

The most obvious improvement or extension of the proposed model is related to the
determination of the failure threshold level. Unlike the assumption of a deterministic
known threshold employed in this research, an assumption of a randomly distributed
failure threshold is more practical. There are evidences of such implications as Abdel-
Hameed (1975) defines the cumulative distribution function of first hitting time in terms
of the probability density function of both deterioration trend and failure threshold under
the assumption that, the threshold distribution is not dependent from deterioration distri-
bution. Based on that, Nystad et al. (2012) conducts a case study of choke valve erosion
used in offshore oil platform, to investigate associated problems with remaining useful life
estimations when considering randomly distributed failure thresholds.

It was previously discussed in chapter 2 that, the measurement of the partial discharge
activity is sensitive to many factors such as testing methods, noise separation techniques,
operating voltage, etc. There are very minimal evidences thus far that the condition mon-
itoring of motors in Kollsnes gas processing plant follow such systematic approach in
terms of partial discharge activity measurement. Therefore further study regarding fitness
of the proposed model to the actual case is questionable utilizing the available field data.
However, there are evidences of systematic data collection as previously mentioned. For
example, Stone and Warren (2004) investigate the effect of manufacturing winding age and
insulation type on stator winding partial discharge levels based on data collected by Iris
Power Engineering3. They also state that, there are collection of over 60,000 test results
at the end of 2003 over the period of 10 years. By utilizing such databases, the proposed
model can be studied more deeply in order to both validate and update the model. In addi-
tion, such database can also be utilized to understand the possible probability distribution
of failure threshold.

Thus far, a single condition indicator has been assumed to describe the health condi-
tion of the motor condition. However the machines are operated in a complex operating
environment under dynamic loads. Relying on a single condition indicator to describe

3Iris Power Engineering (https://irispower.com/
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the actual health condition of such complex machinery is very unlikely to be enough.
In addition, different factors such as operating conditions, usage profiles, etc. may have
some associated factors. If there are such factors which have dependency with each others
then further works are required to identify the factors and understanding the relationship
between those factors. In such situations, multivariate Gamma process models can be
investigated for specific case and Zhou et al. (2010) discuss such model for bivariate case.

The proposed model is capable of updating estimated parameters as the new condi-
tion monitoring information becomes available. Further comparative studies are possible
in order to discuss appropriate approach. For example, Xu and Wang (2012) propose an
adaptive Gamma process based model by considering the parameters as hidden state vari-
ables. Specially in case of insulation health, an adaptive model might be of great interest
for more accurate prediction given the behavior described in subsection 5.2.3.

Gradual ageing process has been the main focus in the development of the degradation
model thus far. However as described in section 4.3.3, transient (shock) is an important
factor for the failure of the insulation system. Further researches are worth being con-
ducted in order to combine the current degradation model with the probability of transient
being taken place during a certain time period. Similar research works exist in literature.
For example, Castro (2013) proposes condition based maintenance model by modelling
the degradation with Gamma process and the initiation of degradation process with a non-
homogeneous Poisson process.

Based on the conducted research with simulated data, it is difficult to conclude and rec-
ommend specific guidelines regarding the remaining useful life prognostics for the motors
in Kollsnes gas processing plant. However, under the assumption that, degradation pro-
gression follows a Gamma process, some general concluding remarks can be presented.
First of all, regardless of the approach taken for degradation modeling, useful data is a pre-
requisite for condition based maintenance. Therefore, much attention should be paid both
regarding data collection and the quality of the collected data. In case of partial discharge
monitoring, systematic approach should be taken so that the collected data is useful for
comparison, trending and analysis. In addition, in case of installation of new rotary ma-
chines, an appropriate condition monitoring plan should be in consideration for quality
data availability for the future assessment.
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Grall, A., Bérenguer, C., Dieulle, L., 2002. A condition-based maintenance policy for
stochastically deteriorating systems. Reliability Engineering & System Safety 76 (2),
167–180.

Grall-Maes, E., Beauseroy, P., Grall, A., 2014. Degradation prognosis based on a model
of gamma process mixture. In: Second European Conference of the Prognostics and
Health Management Society. pp. 194–201.

Heng, A., Zhang, S., Tan, A. C., Mathew, J., 2009. Rotating machinery prognostics:
State of the art, challenges and opportunities. Mechanical systems and signal processing
23 (3), 724–739.

IEC60505, 2011. Evaluation and qualification of electrical insulation systems.

Jardine, A. K., Lin, D., Banjevic, D., 2006. A review on machinery diagnostics and
prognostics implementing condition-based maintenance. Mechanical systems and sig-
nal processing 20 (7), 1483–1510.

Kamaraju, M., 2009. High Voltage Engineering, 5e:. McGraw Hill Education (India) Pri-
vate Limited.

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D., 2014. Prognostics and health
management design for rotary machinery systems—reviews, methodology and applica-
tions. Mechanical systems and signal processing 42 (1), 314–334.

Lee, S. B., Younsi, K., Kliman, G. B., 2005. An online technique for monitoring the insula-
tion condition of ac machine stator windings. IEEE Transactions on Energy Conversion
20 (4), 737–745.

Ma, L., 2007. Condition monitoring in engineering asset management. In: Asia Pacific
Vibration Conference. Sapporo, Japan.

Mahmoodian, M., Alani, A., 2013. Modeling deterioration in concrete pipes as a stochas-
tic gamma process for time-dependent reliability analysis. Journal of pipeline systems
engineering and practice 5 (1), 04013008.

60



Martı́nez-Tarifa, J., Rivas-Conde, J., Robles, G., Sanz-Feito, J., 2010. Influence of leakage
magnetic fields on partial discharge activity in power transformers. IEEE Transactions
on Dielectrics and Electrical Insulation 17 (6).

Montanari, G., Mazzanti, G., Simoni, L., 2002. Progress in electrothermal life modeling
of electrical insulation during the last decades. IEEE Transactions on Dielectrics and
Electrical Insulation 9 (5), 730–745.

Nystad, B. H., 2008. Technical condition indexes and remaining useful life of aggregated
systems.

Nystad, B. H., Gola, G., Hulsund, J. E., 2012. Lifetime models for remaining useful life
estimation with randomly distributed failure thresholds. In: First european conference
of the prognostics and health management society. Vol. 3.

Pandey, M., Yuan, X.-X., Van Noortwijk, J., 2009. The influence of temporal uncertainty
of deterioration on life-cycle management of structures. Structure and Infrastructure
Engineering 5 (2), 145–156.

Paoletti, G., Golubev, A., 1999. Partial discharge theory and applications to electrical sys-
tems. In: Pulp and Paper, 1999. Industry Technical Conference Record of 1999 Annual.
IEEE, pp. 124–138.

Rausand, M., Arnljot, H., et al., 2004. System reliability theory: models, statistical meth-
ods, and applications. Vol. 396. John Wiley & Sons.

Renforth, L. A., Hamer, P. S., Clark, D., Goodfellow, S., Tower, R., 2015. Continuous re-
mote online partial discharge monitoring of hv ex/atex motors in the oil and gas industry.
IEEE Transactions on Industry Applications 51 (2), 1326–1332.

Scholz, F., 1985. Maximum likelihood estimation. Encyclopedia of statistical sciences.

Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H., 2011. Remaining useful life estimation
– a review on the statistical data driven approaches. European Journal of Operational
Research 213 (1), 1 – 14.

Singpurwalla, N. D., 1995. Survival in dynamic environments. Statistical Science, 86–103.

Stone, G. C., 2005. Recent important changes in ieee motor and generator winding in-
sulation diagnostic testing standards. IEEE Transactions on Industry Application 41,
91–100.

Stone, G. C., September 2012. A perspective on online partial discharge monitoring for as-
sessment of the condition of rotating machine stator winding insulation. IEEE Electrical
Insulation Magazine 28 (5).

Stone, G. C., December 2013. Condition monitoring and diagnostics of motor and stator
windings- a review. IEEE Transactions on Dielectrics and Electrical Insulation 20 (6),
2073–2080.

61



Stone, G. C., Boulter, E. A., Culbert, I., Dhirani, H., 2004. Electrical insulation for rotating
machines: design, evaluation, aging, testing, and repair. Vol. 21. John Wiley & Sons.

Stone, G. C., Culbert, I., June 2010. Prediction of stator winding remaining life from
diagnostic measurements. In: Electrical Insulation (ISEI), Conference Record of the
2010 IEEE International Symposium on. pp. 1–4.

Stone, G. C., Lloyd, B., Sasic, M., 2008. Experience with continuous on-line partial dis-
charge monitoring of generators and motors. In: Condition Monitoring and Diagnosis,
2008. CMD 2008. International Conference on. IEEE, pp. 212–216.

Stone, G. C., Warren, V., 2004. Effect of manufacturer, winding age and insulation type
on stator winding partial discharge levels. IEEE Electrical Insulation Magazine 20 (5),
13–17.

Stone, G. C., Warren, V., Jan 2006. Objective methods to interpret partial-discharge data on
rotating-machine stator windings. IEEE Transactions on Industry Applications 42 (1),
195–200.

Tetrault, S. M., Stone, G. C., Sedding, H. G., 1999. Monitoring partial discharges on 4-kv
motor windings. IEEE Transactions on Industry Applications 35 (3), 682–688.

Trnka, P., Sirucek, M., Svoboda, M., Soucek, J., January 2014. Condition-based main-
tenance of high-voltage machines-a practical application to electrical insulation. IEEE
Electrical Insulation Magazine 30 (1), 32–38.

Van Noortwijk, J., 2009. A survey of the application of gamma processes in maintenance.
Reliability Engineering & System Safety 94 (1), 2–21.

Van Noortwijk, J., Pandey, M., 2004. A stochastic deterioration process for time-dependent
reliability analysis. In: Proceedings of the Eleventh IFIP WG. Vol. 7. pp. 259–265.

van Noortwijk, J. M., van der Weide, J. A., Kallen, M.-J., Pandey, M. D., 2007. Gamma
processes and peaks-over-threshold distributions for time-dependent reliability. Relia-
bility Engineering & System Safety 92 (12), 1651–1658.

Wang, W., Christer, A., 2000. Towards a general condition based maintenance model for a
stochastic dynamic system. Journal of the operational research society 51 (2), 145–155.

Wang, W., Scarf, P., Smith, M., 2000. On the application of a model of condition-based
maintenance. Journal of the Operational Research Society 51 (11), 1218–1227.

Warren, V., Power, I., 2003. Partial discharge testing–a progress report. In: Iris Rotating
Machinery Conference, USA, Santa Monica. pp. 1–13.

Wiley, 2011. Properties and behavior of polymers. John Wiley & Sons, Inc, Hoboken, New
Jersey.

Xiongzi, C., Jinsong, Y., Diyin, T., Yingxun, W., Aug 2011. Remaining useful life prog-
nostic estimation for aircraft subsystems or components: A review. In: IEEE 2011 10th
International Conference on Electronic Measurement Instruments. Vol. 2. pp. 94–98.

62



Xu, W., Wang, W., 2012. An adaptive gamma process based model for residual useful
life prediction. In: Prognostics and System Health Management (PHM), 2012 IEEE
Conference on. IEEE, pp. 1–4.

Younsi, K., Neti, P., Shah, M., Zhou, J. Y., Krahn, J., Weeber, K., Whitefield, D., May
2010. Online capacitance and dissipation factor monitoring of ac motor stator insulation.
In: 2010 IEEE International Power Modulator and High Voltage Conference. pp. 530–
533.

Zhou, J., Pan, Z., Sun, Q., 2010. Bivariate degradation modeling based on gamma process.
In: Proceedings of the World Congress on Engineering. Vol. 3.

Zhu, H., Green, V., Sasic, M., Jakubik, A., 2001. Partial discharge database: its benefits
and limitations on assessment of stator insulation deterioration. In: Proceedings: Elec-
trical Insulation Conference and Electrical Manufacturing and Coil Winding Conference
(Cat. No.01CH37264). pp. 405–409.

63



64



Appendix A
Appendix

This appendix includes definitions and methods that are used but not explained in the
main document. It also provides Matlab codes for main functions used in the simulation
and estimation process.

A.1 Definitions

A.1.1 Compound Poisson Process
A jump stochastic process where jumps arrive according to a Poisson process. Unlike
general Poisson process, the size of jumps is also random with a specified probability
distribution.

For a Poisson process {N(t) : t ≥ 0} with a rate parameter λ, a compound Poisson
process {X(t) : t ≥ 0} is defined as-

X(t) =

N(t)∑
i=1

Di (A.1)

{Di : i ≥ 1} are i.i.d. random variables with a specified distribution function.

A.1.2 Condition Based Maintenance (CBM)
A maintenance support program that recommends maintenance actions based on condition
monitoring information in order to avoid unnecessary maintenance tasks. Proper imple-
mentation of CBM helps reducing the number of unnecessary scheduled preventive main-
tenance operations which in turn significantly reduce maintenance cost (Jardine et al.,
2006).
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A.1.3 Cut Sets
According to Rausand et al. (2004), ”A cut set in a fault tree is a set of basic events whose
occurrence (at the same time) ensures that the top event occurs. A cut set is said to be
minimal if the set cannot be reduced without loosing its status as a cut set.”

A.1.4 Dewatering
Gas well dewatering is also known as gas well delequification which is a gemeral term to
refer technologies used to remove water from the producing gas well that builds up due to
the natural gas flow inside the well1.

A.1.5 Maximum Likelihood Estimate (MLE)
Scholz (1985) defines MLE as follows-

Let X = X1, ..., Xn be a random vector of observations with a density fn(x|Θ) over
n-dimensional Euclidean space Rn. Θ is the unknown parameter vector contained in the
parameter space Ω ⊂ Rs. Then for any Θ̂ = Θ̂(x) ε Ω which maximizes L(Θ) over Ω is
called maximum likelihood estimate of the unknown true parameter Θ.

Where L(Θ) = Lx(Θ) = fn(x|Θ) considered as a function of Θ ε Ω for fixed x.

A.1.6 Upper Bound Approximation
Rausand et al. (2004) describes the top event probability in terms of upper bound approx-
imation as follows:

Let a system is represented with k minimal cut sets K1,K2, ...Kk then the system can
be represented by a series structure of k minimal cut parallel structure.

Now let Q̂j(t) is the probability of minimal cut parallel structure j fails at time t and
Q0(t) is the top event failure probability. The top event probability is-

Q0(t) ≤ 1−
k∏
j=1

(1− Q̂j(t)) (A.2)

The inequality sign represents that minimal cut sets may not be always independent
meaning that the same basic events may represent several cut sets.

A.2 Methods

A.2.1 Newton-Raphson Method
Akram and ul Ann (2015) describes the Newton-Raphson method in detail which is method
to find better approximations of the roots (zeroes) of a real valued function such as,

x : f(x) = 0 (A.3)

1Source: http://j-jtech.com/services/gas-well-dewatering/

A-2

http://j-jtech.com/services/gas-well-dewatering/


For a given real-valued function f and it’s derivative f ′, the process of finding the root
of f starts with an initial guess x0. For a single variable and assuming that the function
satisfies all the assumptions associated in the derivation of the formula, a better approxi-
mation x1 is-

x1 = x0 −
f(x0)

f ′(x0)
(A.4)

Where (x1, 0) is the intersection of x−axis and the tangent of the graph of f at
(x0, f(x0)).

The process is iterated until a sufficiently accurate value is found and therefore for a
required n number of iterations (n+ 1)th approximation is-

xn+1 = xn −
f(xn)

f ′(xn)
(A.5)

An example of illustration of the approximation process is shown in figure A.12

Figure A.1: Illustration of finding root of a given function

A.2.2 Fault Tree Analysis- Top Event Probability
Rausand et al. (2004) describes the method to calculate top event probability in terms of
structure function as follows-

Let state vector for the structure at time t is Y (t) = Y1(t), Y2(t), ..., Yn(t). Then the
structure function of the fault tree is-

ψ(Y (t)) = ψ(Y1(t), Y2(t), ..., Yn(t)) (A.6)

2Image source: https://commons.wikimedia.org/wiki/File:NewtonIteration_Ani.
gif
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For ψ(Y (t)) = 1, top event occurs at t.
If Q(t) represents the probability of top event failure at time t then,

Q(t) = Pr(ψ(Y (t)) = 1) (A.7)

Let Bi(t) denote basic event Bi for (i = 1, 2, .., n) at time t and qi(t) denote the
unreliability of component i at t. Then for a single AND gate-

Q(t) = Pr(B1(t) ∩B2(t) ∩ ... ∩Bn(t))

= Pr(B1(t)).P r(B2(t))...P r(Bn(t))

= q1(t).q2(t)...q3(t)

=

n∏
i=1

qi(t)

(A.8)

Similarly for a single OR gate-

Q(t) = Pr(B1(t) ∪B2(t) ∪ ... ∪Bn(t))

= 1−
n∏
i=1

(1− qi(t))
(A.9)

A.3 Resources

A.3.1 PD Guideline

Table A.1: PD guideline from Karsten Moholt AS

Insulation Quality PD (nC)
Excellent <2
Good >2<4
Average >4<10
Still acceptable >10<15
Inspection recommended >15<25
Unreliable >25

A.4 Matlab Codes
A samples of main codes and functions are presented. Codes for graphs and decorative
commands are not included due to space limitations.

A.4.1 NHGP Simulation, Parameter Estimation & Confidence Inter-
val Calculation
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1 % Definitions of variables and pre-allocation
2

3 c=2; u=2; b=2; bp=1/b;
4 T=10; inc=.1;
5 t1=transpose(0:inc:T);
6 t=repmat(t1,1,M);
7 M=100; N=length(t);
8 sp_inc=zeros(N,1);
9 sp=zeros(N,1);

10

11 g=zeros(N,M);
12 G=zeros(N,M);
13 xn=zeros(1,M);
14 lndeli=zeros(N,M);
15 cumsumlndeli=zeros(N,M);
16 sumlndeli=zeros(1,M);
17

18 p3=zeros(N,M);
19 cumsump3=zeros(N,M);
20 sump3=zeros(1,M);
21

22 % Calculating the shape function and function increment
23

24 for i=1:size(t,1)-1
25 sp(i+1)=c*(power(t(i+1),u));
26 sp_inc((i+1))=c*(power(t(i+1),u)-power((t(i)),u));
27 end
28

29 % Generate N number of gamma distributed observations
30 % for each of the M samples
31

32 for sample=1:1:M
33 for i=1:size(t,1)-1
34 g(i+1,sample)= (gamrnd(sp_inc(i+1),bp));
35 G(i+1,sample)= g(i+1,sample)+G(i,sample);
36 lndeli(i+1,sample)=log(g(i+1,sample));
37 cumsumlndeli(i+1,sample)=lndeli(i+1,sample)+

cumsumlndeli(i,sample);
38 p3(i+1,sample) = (power(t(i+1,sample),u)-power(t(i,

sample),u)).*lndeli(i+1,sample);
39 cumsump3(i+1,sample)=p3(i+1,sample)+cumsump3(i,

sample);
40 end
41 xn(sample) = G(N,sample);
42 sumlndeli(sample)=cumsumlndeli(N,sample);

A-5



43 sump3(sample)=cumsump3(N,sample);
44 end
45

46 totxn= sum(xn);
47 totsunlndeli = sum(sumlndeli);
48 totsump3=sum(sump3);
49

50 % Newton method to approximate the value of c
51

52 itermax =200;
53 eps = 1;
54 iter = 0;
55 CNM =0;
56 cest = 3.7;
57

58 while eps>=1e-4 && iter<=itermax
59 CNM = cest - FirstFunM( N,M,t,cest,u,totxn,totsump3

)/DiffFunC(cest,u,t,N);
60 eps = abs(cest-CNM);
61 cest = CNM;
62 iter = iter+1;
63 end
64

65 % Estimate b with approximated c value
66

67 best=M*cest*power(t(N),u)/totxn;
68

69 % Standard error, variance & confidence interval
70 % computation of estimated parameters
71

72 varcest=var_cest( cest,u,t,N,M );
73 varbest=cest*M*(power(t(N),u))/power(best,2);
74

75 varcestinv=power(varcest,-1);
76 varbestinv=power(varbest,-1);
77 SEcest=sqrt(varcestinv);
78 SEbest=sqrt(varbestinv);
79 CIcestP=cest*exp((1.96*SEcest)/cest);
80 CIcestN=cest*exp(-1.96*SEcest/cest);
81 CIbestP=best*exp(1.96*SEbest/best);
82 CIbestN=best*exp(-1.96*SEbest/best);
83

84 CIcest=[CIcestN CIcestP];
85 CIbest=[CIbestN CIbestP];
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Function: Calculation of Equation 4.24

1 function FFM = FirstFunM( N,M,t,cest,u,totxn,totsump3 )
2

3 psiti=zeros(N,1);
4 cumpsiti=zeros(N,1);
5

6 for i=1:N-1
7 psiti(i+1) = (power(t(i+1),u)-power(t(i),u)).*(psi(cest

.*(power(t(i+1),u)-power(t(i),u))));
8 cumpsiti(i+1) = cumpsiti(i)+psiti((i+1));
9 end

10

11 part1=cumpsiti(N);
12 part2 = power(t(N),u)*log((M*cest*power(t(N),u))./totxn);
13 part3=totsump3/M;
14

15 FFM = part1 - part2 - part3;
16

17 end

Function: Calculation of Equation 4.25

1 function DFC = DiffFunC( cest,u,t,N )
2

3 DFC1=zeros(N,1);
4 cumsumDFC=zeros(N,1);
5

6 for i =1:N-1
7 DFC1(i+1) = power((power(t(i+1),u)-power(t(i),u)),2)

.*((psi(1,(cest.*(power(t(i+1),u)-power(t(i),u))))))
;

8 cumsumDFC(i+1) = cumsumDFC(i)+DFC1((i+1));
9

10 end
11

12 DFC = cumsumDFC(N) - (power(t(N),u))/cest;

Function: Calculation of Variance

1 function VC = var_cest( cest,u,t,N,M )
2

3 DFC1=zeros(N,1);
4 cumsumDFC=zeros(N,1);
5

6 for i =1:N-1
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7 DFC1(i+1) = power((power(t(i+1),u)-power(t(i),u)),2)
.*((psi(1,(cest.*(power(t(i+1),u)-power(t(i),u))))))
;

8 cumsumDFC(i+1) = cumsumDFC(i)+DFC1((i+1));
9

10 end
11

12 VC = cumsumDFC(N)*M;

A.4.2 RUL Estimations From Training Data

1 load(’b2c2u2.mat’,’t’,’g’,’G’,’cest’,’best’,’u’);
2

3 choosesample=randi([1 100],1,1);
4 Threshold=70;
5 currenttime=20;
6

7 G=G(:,choosesample);
8 t=t(:,choosesample);
9

10 L=G(Threshold);
11 upperlimit=300;
12 dx=.1;
13

14 % Estimate parameters
15

16 [c,b]=calccbestfromdata(G,t,u,1);
17

18 % Calculate CDF of FHT from initial condition
19

20 numerator=zeros(length(t),1);
21 resultCDF=zeros(length(t),1);
22 denominator=1-CalcRULCDFNHGPnew(L,b,t(currenttime),

upperlimit,dx,c,u);
23

24 for i=1:length(t)
25 numerator(i)=1-CalcRULCDFNHGPnew((L-G(currenttime)),b,t

(i),upperlimit,dx,c,u);
26 resultCDF(i)=1-(numerator(i)/denominator);
27 end
28

29 % Calculate PDF of FHT from initial condition
30

31 resultpdf=zeros(length(t),1);
32

33 for i=1:length(t)
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34 resultpdf(i)=CalcRULPDFNHGP(t(i),dx,c,u,(L*b),
upperlimit);

35 end
36

37 % Calculate CDF of FHT from current observation
38

39 currenttime=20;
40 currenttime=currenttime+1;
41 remainingtime=length(t)-currenttime;
42

43 numerator=zeros(length(t),1);
44 denominator=1-CalcRULCDFNHGPnew(L,b,t(currenttime),

upperlimit,dx,c,u);
45 checkingextratime=(t(currenttime):.1:t(currenttime+

remainingtime));
46 checkingextratime=transpose(checkingextratime);
47 resultcdfrul=zeros(length(checkingextratime),1);
48

49 for i=1:numel(checkingextratime)
50 numerator(i)=1-CalcRULCDFNHGPnew((L-G(currenttime)),b,

checkingextratime(i),upperlimit,dx,c,u);
51 resultcdfrul(i)=1-(numerator(i)/denominator);
52 end

Function: Calculation of PDF from Initial Condition

1 function P = CalcRULPDFNHGP(t,dz,c,u,lowerlimit,upperlimit)
2

3 sp=c*power(t,u);
4 constantpart = c.*u.*power(t,(u-1))/gamma(sp);
5

6 spsub=sp-1;
7

8 z = lowerlimit:dz:upperlimit;
9

10 doint = (log(z)-psi(sp)).*(power(z,spsub)).*exp(-z);
11

12 fz=constantpart*doint;
13

14 P = sum(fz)*dz;
15

16 end

Function: Calculation of CDF from Initial Condition

1 function P = CalcRULCDFNHGPnew(L,b,t,upperlimit,dx,c,u)
2
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3 sp=c*tˆu;
4

5 firstpart = bˆ(sp)/gamma(sp);
6 x = L:dx:upperlimit;
7 fx = firstpart*x.ˆ(sp-1).*exp(-b*x);
8 P = sum(fx)*dx;
9

10 end
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