
User Interface Concepts for Mechanism
Modelling in the RaMMS KBE System

Thor Christian Coward

Mechanical Engineering

Supervisor: Bjørn Haugen, MTP
Co-supervisor: Ivar Marthinusen, MTP

Ole Ivar Sivertsen, MTP

Department of Mechanical and Industrial Engineering

Submission date: June 2017

Norwegian University of Science and Technology

ABSTRACT

By combining the principles of knowledge-based engineering (KBE) and concurrent engi-
neering in the design process, repetitive tasks are reduced and design tasks are conducted
simultaneously, enabling the engineer to explore a large design space early in the deign
process, when the committed production costs are low. This thesis investigates the prin-
ciples of KBE, concurrent engineering, mechanisms, the mechanism design process and
user interface development. Rapid Mechanism Modelling System (RaMMS) is described,
it is a knowledge-based engineering application, whose goal is to automate tasks in the
mechanism design process. The application is based on the object-oriented programming
language Adaptive Modeling Language (AML), and enables for automatic modelling of
mechanisms, the generated mechanism models is geometric representations with attached
mechanism specific knowledge. User interface concepts for enhancing the manual opti-
misation process of mechanisms is presented, together with implementation details. The
updated user interface allows for the application to be used in a larger part of the design
process, enabling for dynamic simulation to be used in all phases, and consequently, aiding
designers to explore a larger design space.

i

ii

SAMMENDRAG

Ved å kombinere prinsippene for kunnskapsbasert ingeniørarbeid (KBE) og samtidig pros-
jektering i designprosessen, reduseres gjentatte oppgaver og designoppgaver utføres sam-
tidig, slik at ingeniøren kan bruke mer tid på å utforske et stort designrom tidlig i design-
prosessen, når den forpliktede produksjonsutviklingsprisen er lav. Denne avhandlingen
beskriver KBEs prinsipper, samtidig prosjektering, mekanismer, mekanismedesignpros-
essen og brukergrensesnittutvikling. Rapid Mechanism Modeling System (RaMMS), er
beskrevet, det er en kunnskapsbasert ingeniørapplikasjon, hvis mål er å automatisere opp-
gaver i designprosessen av mekanismer. Programmet er basert på det objektorienterte pro-
grammeringsspråket Adaptive Modeling Language, og det muliggjør automatisk model-
lering av mekanismer, de genererte mekanismemodellene er geometriske representasjoner
med tilhørende mekanismespesifikk kunnskap. Brukergrensesnittkonsepter for å forbedre
manuell optimalisering av mekanismer presenteres, og implementeringsdetaljer presen-
teres. Det oppdaterte brukergrensesnittet gjør at applikasjonen kan brukes i en større del
av designprosessen, slik at dynamisk simulering kan brukes i alle faser, og dermed hjelpe
designere til å utforske et større designrom.

iii

iv

PREFACE

The work of this master’s thesis was carried out during the spring of 2017 for the Depart-
ment of Mechanical and Industrial Engineering, at the Norwegian University of Science
and Technology (NTNU), in Trondheim.

I would like to thank my supervisor Bjørn Haugen, and also, my co-supervisors Ole Ivar
Sivertsen and Ivar Marthinusen for our frequent meetings and being part of the RaMMS
UI focus group. Further, I would like to my co-student Arnt Lima for helping me out in
times of difficulty.

Trondheim, June 2017 Thor Christian Coward

v

vi

TABLE OF CONTENTS

Abstract i

Preface v

Table of Contents viii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Master assignment . 2
1.2 Structure . 3

2 Theoretical framework 5
2.1 Mechanisms . 5

2.1.1 Links . 9
2.1.2 Joints . 9
2.1.3 Topology . 11
2.1.4 Analysis of Mechanisms . 11

2.2 Design Process . 12
2.3 Knowledge Based Engineering . 14
2.4 Adaptive Modeling Language . 16
2.5 Graphical UI development . 17

2.5.1 UI Design Process . 17
2.5.2 Model-View-Controller . 18

3 RaMMS 19
3.1 System Architecture . 21

3.1.1 Collections . 21
3.1.2 Joints . 23

vii

3.1.3 Links . 23
3.1.4 Loads, Springs and Dampers . 23
3.1.5 Mesh generation . 23
3.1.6 Simulation- and Geometry Export 24

3.2 Current UI . 24

4 Method 25
4.1 User Interface Development . 25

4.1.1 Theoretical Study . 25
4.1.2 Rapid prototyping . 25
4.1.3 Implementation . 26

5 UI Concepts 29
5.1 UI Solutions . 29

5.1.1 Global Coordinate Input and Editing 30
5.1.2 Joint Modelling . 32
5.1.3 Mechanism Link Modelling . 35
5.1.4 Load-, Spring- and Damper- Definitions 38
5.1.5 FE Mesh Generation . 38

5.2 UI Discussion . 40

6 UI Implementation 41
6.1 Model-view-controller in RaMMS . 41
6.2 Implementing the Shapes Editor . 42

6.2.1 NURBS module . 42
6.2.2 The Shapes Editor . 43

6.3 Implementing the Table Widgets . 45
6.4 Mechanism Library Control . 47

7 Examples of Mechanism Design 49
7.1 Case 1: Hoeken’ linkage . 49
7.2 Case 2: Double Wishbone Suspension 55

8 Discussion 63
8.1 RaMMS in the Design Process . 63
8.2 CAD v. RaMMS . 64
8.3 Usability . 65

9 Conclusion 67

Bibliography 69

A Appendix 73
A.1 AML UI Classes . 74
A.2 NURBS Module Source Code . 76
A.3 Shapes Editor Source code . 80
A.4 Risk analysis . 88

viii

LIST OF FIGURES

2.1 Watt’s straight line mechanism . 6
2.2 Watt’s rotating steam engine . 6
2.3 Schematic of Hoeken’s linkage . 7
2.4 Schematic of knee joint using Hoeken’s linkage 8
2.5 Robot knee joint using Hoeken’s Linkage on robot 8
2.6 Link types . 9
2.7 The six lower pairs. 10
2.8 Hoeken’s linkage with link and constraint names 11
2.9 Technological islands . 13
2.10 Life-cycle cost, design knowledge and freedom versus the product devel-

opment timescale . 13
2.11 Bridging technological islands. 14
2.12 KBE’s influence on the life-cycle cost, product knowledge and freedom in

the design process. 14
2.13 Generative KBE application . 15
2.14 Box model widget . 17
2.15 The organisation of Model-View-Controller 18

3.1 Input and output of the RaMMS KBE application 19
3.2 Class-object diagram of the main-mechanism-class and collections 22

4.1 Iterative user interface design process 26

5.1 Keypoint widget mock-up. 30
5.2 Keypoint widget mock-up with symbols 31
5.3 FEDEM menu for editing a joint . 32
5.4 Joint symbols in FEDEM . 32
5.5 Early mock-up of a joint widget. 33
5.6 Final constraint widget mock-up. 34
5.7 Constraint widget mock-up with symbols 34
5.8 Creating and manipulating a spline in Siemens NX. 35

ix

5.9 Early shapes editor mock-up. 36
5.10 Final shape editor mock-up . 37
5.11 Load editor widget mock-up . 38
5.12 Advanced load editor widget mock-ups 39
5.13 Final spring and damper table widget mock-up 39

6.1 Model-view-cotroller in RaMMS . 42
6.2 The NURBS module . 43
6.3 Annotated figure of the Shapes Editor 44
6.4 The keypoint table widget . 45
6.5 [Annotated code for the table-widget-class. 46
6.6 Code for the function instantiating the Keypoint Widget 46

7.1 Defining keypoints for the Hoeken’s linkage using the keypoint table widget. 50
7.2 Defining constraints and links for the Hoeken’s linkage using the con-

straints table widget. 50
7.3 Defining a load for the Hoeken’s linkage with the load table widget. . . . 51
7.4 Defining one spring and one damper for the Hoeken’s linkage, using the

spring- and damper table widget. 51
7.5 Mesh of the Hoeken’s linkage. 52
7.6 The Hoeken’s linkage exported to FEDEM 52
7.7 Analysis of the Hoeken’s linkage in FEDEM 53
7.8 Modifying keypoints using the keypoint widget 53
7.9 Analysis of the modified Hoeken’s linkage in FEDEM 54
7.10 Defining keypoint coordinates for the double wishbone suspension, using

the keypoints table widget. 55
7.11 Defining constraints for the double wishbone suspension, using the con-

straints table widget . 56
7.12 RaMMS sweep failure . 56
7.13 AML sweep error message . 57
7.14 The upper link of the double wishbone suspension in the shape editor, prior

to editing. 57
7.15 Modified NURBS curve of the upper link of the double wishbone suspension 58
7.16 Sweep of a modified upper link of a double wishbone suspension. 58
7.17 Modified NURBS curve of the middle link of the double wishbone sus-

pension . 59
7.18 Wheel mount imitation of a double wishbone suspension 59
7.19 The geometric model of the double wishbone suspension after modifica-

tions in the shapes editor. 60
7.20 The double wishbone suspension is meshed in AML. 60
7.21 The double wishbone suspension in FEDEM. 61

x

ABBREVIATIONS

AML = Adaptive Modeling Language
CAD = Computer aided design
CAE = Computer aided engineering
FEDEM = Finite Element Dynamics in Elastic Mechanisms
KBE = Knowledge based engineering
MVC = Model view controller
NURBS = Non-uniform rational basis spline
RaMMS = Rapid Mechanism Modelling System
UI = User interface

xi

xii

CHAPTER

ONE

INTRODUCTION

Imagine you are a mechanical engineer eager to design the best double wishbone suspen-
sion ever built. First, you have to gather the best suspension engineers. Have a bunch of
meetings, make numerous design concepts. Commit to some design concept. Call in a
CAD expert, have him draw 3D models of chosen design. Bring the 3D models to a CAE
person for analysis. Evaluate results. Do modifications, and start the whole process again.
That is, of course, if you have a generous boss with an open minded economist.

Or, you can use a Knowledge Based Engineering application, exploring more double wish-
bone suspension designs, in a fraction of the conventional design time. And, if that appli-
cation is linked to a multidisciplinary simulation tool, you can conduct simulations, simul-
taneously while exploring designs. All before committing to design concepts.

KBE introduces automation in engineering design, by storing and reusing domain specific
knowledge in computer applications, and is reported to give massive time savings when
applied in design processes [1, 2].

RaMMS is an acronym for Rapid Mechanism Modelling System, and it is a KBE applica-
tion with built in mechanism knowledge, able to generate mechanism models with attached
mechanism specific knowledge. These models, together with their knowledge, is exported
for analysis in the dynamic simulation tool FEDEM.

The RaMMS application, was first created by Ole Ivar Sivertsen, further developed by
Rasmus Skaare [3] and Anders Kristiansen together with Eivind Kristoffersen [4]. Earlier
work [5] has demonstrated that RaMMS is a working KBE application for mechanism
modelling, however, the lack of a good user interface (UI) is restricting users of utilising
the full potential of RaMMS being in used in rapid manual optimisation of mechanism
design.

1

Chapter 1. Introduction

This thesis presents concepts for an UI, whose objective is to improve the efficiency in
manual optimisation of mechanism design in RaMMS. These concepts are discussed, and
implementation details presented for those concepts found most interesting.

RaMMS with a fully working and effiecient user interface will aid the mechanism designer
in rapidly creating and testing new designs, freeing up time and allowing the designer to
spend time on creating instead of repeating.

1.1 Master assignment

The Rapid Mechanism Modeling System (RaMMS) is the latest version of the mechanism
modeling tool that the candidate studied and improved during his project assignment.
The focus of this master assignment is to develop a user interface for the RaMMS pro-
gram using graphical input when found practical. Techniques used in the FEDEM user
interface should be considered before making the final selection of option for implementa-
tion.

The assignment includes:

1. Specify functionality for

(a) Global coordinate input and editing
(b) Joint modeling including joint springs and dampers
(c) Mechanism link modeling including

i. Sweep curves for members
ii. Member cross section variation

iii. Surface connecting members
iv. Rounding of sharp edges (Blending)

(d) Axial spring and dampers between links and forces on triads
(e) Control system modeling
(f) Controlling FE mesh generation for links including RBE2 connections
(g) Controlling manual and automatic optimization
(h) Controlling mechanism library functions

2. As far as time allows, implement the functionality specified in point 1 and improve
and correct the RaMMS functionality where required.

Assignment discussion

After reflecting on the assignment points, and discussing them with the supervisors, some
points were found more interesting than others. The simulation tool FEDEM provides a
good UI for control system modelling, and there is another master thesis parallel to this
investigating automatic optimisation using RaMMS, thus at this stage, it would have been
redundant to work on adding such functionality to RaMMS, therefore point (d) Control
system modeling and second half of point (g) (...) automatic optimisation, have not been
given much focus when working with this thesis.

2

1.2 Structure

Rather has the focus been, in particular, on the first half of point (g) manual optimisation.
Thus, the objective has been to achieve better manual optimisation, and an effort has been
made to answer the rest of the points by creating UI concepts favouring this.

1.2 Structure

The remaining part of this thesis is structured as follows:

Chapter 2 gives a theoretical framework of mechanisms, the mechanism design process,
KBE, Adaptive Modeling Language (AML) and UI development.

Chapter 3 presents the RaMMS KBE system, its input, system architecture and current
user interface.

Chapter 4 elaborates the methods used when working with this thesis, focusing on how
work has been conducted when developing and implementing UI concepts.

Chapter 5 presents UI concepts in the form of mock-up sketches, explains the reasoning
behind the chosen solutions, and finally, discusses the various concepts.

Chapter 6 describes implementation details of the most interesting concepts of chapter
5.

Chapter 7 presents two cases of demonstrating mechanism design and iteration using the
new UI.

Chapter 8 discusses how RaMMS with the updated UI can be used in the design pro-
cess, compares RaMMS to conventional CAD tools, how it combines KBE and CAD, and
finally, the workflow and overall usability of the updated application.

Chapter 9 draws conclusions from the discussion in chapter 8.

Chapter 10 presents proposed further work.

3

Chapter 1. Introduction

4

CHAPTER

TWO

THEORETICAL FRAMEWORK

RaMMS is a mechanism modelling system, generating models both based on, and, with
attached mechanism specific knowledge, thus, to create a good UI for such a system, this
knowledge has to been well known. This chapter presents an introduction to mechanisms,
both, from a historical perspective, and, how we think about, and design, mechanisms in
the present-day. Further, is the design principles that RaMMS is founded upon described,
namely concurrent and knowledge based engineering. Finally, the programming language
of RaMMS, AML, and UI development principles are explained.

2.1 Mechanisms

The field of mechanics consist of two disciplines, statics and dynamics. Statics concern-
ing the analysis of stationary structures, and dynamics concerning systems changing in
time. With the dynamics split into two under disciplines, Kinetics and Kinematics. Ki-
netics dealing with forces and torques producing motion, and kinematics dealing with the
geometrical study of motion.

The German mechanical engineer Franz Reuleaux, often described as the father of kine-
matics, defines in his book from 1876, Kinematics of Machinery [6], a mechanism as:

an assemblage of resistant bodies, connected by movable joints, to form a
closed kinematic chain with one link fixed and having the purpose of trans-
forming motion.

Thus, a mechanism can be described as an arrangement of interconnected resistant (rigid)
bodies transferring motion. The bodies, or links, of a mechanism is connected by joints

5

Chapter 2. Theoretical framework

constraining relative motion between the links, in such a way that the mechanism is able
to transmit motion from an input link to a output link.

Mechanisms together with energy-transmission functions make machines, for example
Watt’s rotating steam engine (fig. 2.2), joining a steam piston together with Watt’s straight
line mechanism (fig. 2.1) to drive a rotating shaft.

Figure 2.1: Watt’s straight line mechanism [7].

Figure 2.2: Watt’s rotating steam engine [7].

6

2.1 Mechanisms

Hoeken’s linkage

Throughout this report, the Hoeken’s linkage will be used as an example, it is a four bar
mechanism, transferring motion from a rotating motion into two characteristic motions,
first a straight line, then a quick draw-back. Figure 2.3 presents a schematic view of the
mechanism with input motion at O2 and output motion at P , ∆x represents the straight
line motion and the dotted line the draw-back.

Figure 2.3: Schematic of Hoeken’s linkage [8].

Although the Hoeken’s linkage bear the name of the German engineer Karl Hoeken, it
was first presented by the famous Russian mathematician Pafnuty L. Chebyshev [9] in
1869, and applied in his Plantigrade machine1, a walking machine displayed at the 1878
World Exhibition in Paris. Most probably the name Hoeken’s linkage, origins from an
1926 article [10] where Karl Hoeken presents the same mechanism for use in a gearbox,
and his name has been stuck with the mechanism in literature [8, 11] ever since2.

In the modern age the Hoeken’s linkage has been applied to various complex systems[12,
13, 14, 15]. Knabe, Lee & Hong[15], has applied the mechanism to create robotic joints,
transferring motion from an straight line actuator to a rotating motion lifting a robot’s leg,
a schematic representation of the Hoeken’s linkage on top of their knee joint is presented
in figure 2.4, as well as the knee joint at various output rotation angles in figure 2.5.

1Plantigrade Machine: http://en.tcheb.ru/1
2It should be noted that there exists numerous online articles crediting Chebyshev by referring to the mecha-

nism as the Chebyshev’s Lamda Mechanism, however in contemporary literature it is referred to as the Hoeken’s
linkage.

7

http://en.tcheb.ru/1

Chapter 2. Theoretical framework

Figure 2.4: Schematic of knee joint using Hoeken’s linkage, from Knabe, Lee & Hong[15].

Figure 2.5: Robot knee joint using Hoeken’s Linkage, at 135°,90°,45° and 0° from Knabe, Lee &
Hong[15].

8

2.1 Mechanisms

2.1.1 Links

Dealing with the kinematics of mechanisms, links are assumed to be rigid, and thus a link
is defined as the rigid connection between two or more elements of different kinematic
pairs [16]. Links can be in a wide range of shapes and forms, but, the connection points
are always relatively fixed to each other, this rigid geometry between connection points,
is called the link’s substructure, and substructures consist of one or more rigidly fastened
smaller parts, called members.

The links are connected to each other by kinematic pairs, also called joints, constraining
relative motion. And, links are classified by their number of connections, referred to as the
link’s degree. If a link has only two connections it is said to be a binary link (fig. 2.6a),
three connection points is a ternary link (fig. 2.6b), four is a quaternary (fig. 2.6c) and so
on.

(a) Binary (b) Ternary (c) Quaternary

Figure 2.6: Link types

2.1.2 Joints

A joint share two mating surfaces, one for each link, therefore they are said to form kine-
matic pairs. Reuleaux[6] divided the pairs into lower and higher pairs. Lower pairs shar-
ing surface contact, while higher pairs only sharing a line or point contact. There are only
six pairs classified as lower pairs, revolute, prismatic, helical, cylindric, sphere and flat,
the lower pairs are illustrated in figure 2.7 and further presented in table 2.1 with their pair
symbols (as proposed by Hartenberg and Denavit [7, p. 64]), pair variable and degrees of
freedom. While there are only six lower pairs, there could be an infinite number of higher
pairs, e.g. a ball rolling on flat surface, mating gear teeth or a belt and pulley.

Table 2.1: The Lower Pairs, presented with name, symbolic notation, mathematical variable, degrees
of freedom and relative motion.

Pair Symbol Pair Variable DOF Relative Motion
Revolute R ∆θ 1 Circular
Prismatic P ∆s 1 Rectilinear
Screw S ∆θ or ∆s 1 Helical
Cylinder C ∆θ and ∆s 2 Cylindric
Sphere G ∆u, ∆v, ∆w 3 Spheric
Flat F ∆θ, ∆x, ∆y 3 Planar

9

Chapter 2. Theoretical framework

(a) Revolute (b) Prismatic (c) Helical

(d) Cylindric (e) Ball (f) Flat

Figure 2.7: The six lower pairs.

10

2.1 Mechanisms

2.1.3 Topology

The topology of a mechanism can be presented by an incidence matrix, an incidence matrix
of the Hoeken’s mechanism is presented in table 2.2, together with the link names in
figure 2.8, it gives a useful presentation of male and female joints and incident links of the
mechanism.

Table 2.2: Incidence matrix of a Hoekens Linkage.

Constraint From link (male) To link (female)
A 0 1
B 2 1
C 0 3
D 2 3

Figure 2.8: Hoeken’s linkage with link and constraint names (link 0 is ground).

2.1.4 Analysis of Mechanisms

Traditionally, when designing mechanisms only the mechanism’s kinematics was consid-
ered, and a kinematic analysis is done by considering the rigid body dynamics, taking no
consideration of masses, forces or link shapes, solely the orientation and position of joints.
Which was a fair enough approach for making the machines of Watt’s era, but, the ma-
chines of the modern age require higher precision and smarter use of materials, thus, in
the modern design of mechanisms a flexible body analysis is also done. A flexible body
analysis considers the kinetics of the mechanism, where links are not assumed rigid, hence
geometry and material properties are of importance.

Links in flexible body analyses are represented by finite element models. The nodes of
these models are split into external and internal nodes. External nodes, also called super
nodes, are point of interest, such as joint, spring and damper connections, or points of
external force or mass. In the solver of the dynamic simulation tool FEDEM, the degrees
of freedom for the external nodes are retained throughout the simulation, while the degrees
of freedom from the internal nodes are replaced by a limited amount of vibration modes,
called modal degrees of freedom. This reduction is called Component Mode Synthesis [17],
and reduces the degrees of freedom of the model to only those of the external nodes and
the modal degrees of freedom.

11

Chapter 2. Theoretical framework

Joints are represented by constraining super nodes of different links together, with one
super node being the master and the rest being slave nodes, following the masters motion
in the constrained directions, e.g. in a revolute joint (fig. 2.7a) connecting two links,
the master node has six degrees of freedom, while the slave node only has one rotational
degree of freedom, giving the two links only one relative rotational motion. Note that
connections between super nodes can also be modelled as springs or dampers, where the
constraints is not rigidly locked, but has a given stiffness.

2.2 Design Process

The product development process of mechanisms is complex and involves multidisci-
plinary tasks, combining various engineering fields, such as CAD, kinematic analysis, and
FE modelling. The process is often divided into three main activities [18, p. 6]:

1. Conceptual design. Based on a design specification, design parameters is estab-
lished, and mechanism synthesis along with kinematic analysis is conducted, to
obtain a working concept and topology, i.e. deciding number of joints, joint types,
link types, lengths and orientations.

2. Preliminary design. The selected concept is transformed into a product, by choos-
ing components and materials, identifying boundary conditions and creating 3D
models.

3. Detailed design. The product’s overall behaviour when introduced to forces and
torques is evaluated by the use of dynamic simulation, and the product design is
updated iteratively to obtain an optimum design.

This process requires a team of engineers from different fields cooperating in a sequential
manner, figure 2.9 presents a scenario where different technological islands is cooperating
in a mechanism design process. Communication between these islands is often manually
controlled data conversions between independent software tools. Consequently, simula-
tion and design optimisation is conducted late in the design process, when, because of
commitment to technology, the cost of changing design is higher [19, 20]. Figure 2.10
presents a plot of the designers ease of change, commitment and incurred costs versus the
product development process timescale. Early in the design process, the designers has a
lot of design freedom, and they can influence the total product outcome the most, and as
the modern age requires high precision machines and smart use of materials, the earlier
dynamic simulation is done in the process, the better.

12

2.2 Design Process

Figure 2.9: Technological islands of mechanism design [18, p. 8].

Figure 2.10: Life-cycle cost, product knowledge and freedom versus the product development
timescale [20, p. 63].

Concurrent Engineering

Concurrent engineering [21], is a work methodology for product development, it involves
carrying out all product development stages simultaneously, from design specification to
production management. The principles of concurrent engineering can be introduced to
the design of mechanisms, by replacing traditional simulation tools with multidisciplinary
simulation applications [18], such as FEDEM, able to conduct simulations considering
both kinematics and kinetics. Comparing figures 2.9 and 2.11 displays how a multidis-
ciplinary simulation application can create a bridge between technological islands in the

13

Chapter 2. Theoretical framework

design process, allowing a more concurrent design process. Enabling the designers to
actively use simulations and optimisation earlier in the design process.

Figure 2.11: Bridging technological islands [18, p. 9].

2.3 Knowledge Based Engineering

Knowledge Based Engineering (KBE) is a way to systematically reuse product and pro-
cess engineering knowledge, in order to reduce time and cost of production development,
by automating repetitive and non creative design tasks [22]. This is done by creating
dedicated software applications, where domain specific knowledge is programmed into
the applications. KBE is used in big money industries such as: aerospace; shipbuilding;
automotive; oil- and gas, and the success stories is many [19, 23, 24]. using KBE in de-
sign processes is in some cases reported to give time savings on over 90% compared to
conventional design tools as CAD [1, 2, 25].

By the end of the preliminary design phase a high share of the product’s life-cycle cost
is committed, employing KBE in the conceptual phase enables the designers to explore a
larger design space before committing to any decisions, figure 2.12 presents KBE’s influ-
ence on the life-cycle cost, design knowledge and freedom in the production development
timescale. Design freedom is increased bringing the available product knowledge up, and
consequently lowering the committed cost [26].

Figure 2.12: KBE’s influence on the life-cycle cost, design knowledge and freedom versus the
product development timescale [26].

14

2.3 Knowledge Based Engineering

KBE Applications

The tools for creating KBE applications are object oriented programming languages with
embedded geometry kernels and other design paradigms to aid the developer to create
applications helping the design engineer in all the phases of the design model.

Product specific knowledge is stored in KBE applications, often including materials, ge-
ometric shape, stress analysis etc. and process knowledge such as manufacturing tech-
niques, instructions etc. One major part of developing a KBE application is gathering
such knowledge, it is typically done by interviewing domain experts, looking at previous
designs and reading scientific articles.

KBE applications could also be distinguished by what their objective are, a typical classi-
fication of applications are generative, advisory, innovative or selective.

• Generative KBE applications create geometry, from specifications, rules and user
input, an example of a generative application is presented in figure 2.13.

• Advisory KBE applications evaluate design based on product model knowledge.

• Innovative KBE applications uses model based reasoning and best practice to ex-
plore a large design space and presents possible designs to the user.

• Selective KBE applications uses user input together with domain knowledge to as-
sist the user in selecting among various options.

Figure 2.13: Example of a generative KBE application, taking functional requirements as input,
applying relevant rules and automatically producing an engineering design [22].

15

Chapter 2. Theoretical framework

2.4 Adaptive Modeling Language

Adaptive Modeling Language (AML) is a framework for creating KBE applications, devel-
oped and supported by TechnoSoft. More precisely, AML is an object oriented program-
ming language3 with its own compiler, providing a common interface between a geometry
modeller, mesh generator and a finite element analysis (FEA) solver. It uses Parasolid as
a geometry kernel, same as state-of-the-art CAD systems as Siemens NX and SolidWorks;
MSC Patran is used as a mesher, also used by higly regarded FEA solvers as Abaqus and
Ansys; and MSC Nastran as FEA solver.

Classes and objects

Making a KBE application in AML is done by defining classes, and creating class and
object hierarchies. AML comes with numerous built in classes for geometric modelling,
meshing and finite element analysis. These classes are used as a base by the KBE devel-
oper to develop more specified classes, containing domain specific knowledge, to suit the
purpose of the application.

The steps to define a class in AML is to give a class name, specify inheritance, set prop-
erties and set subobjects. Properties can be values specified by the user, given a default
value or computed by the application. The subobjects needs to be given inheritance and
can be given properties.

UI Classes

AML provides many pre-built UI classes, including classes to make action buttons, pull-
down menus, widgets, tables, etc., the base classes are presented in figure A.1 in the
appendix. The way to make a separate UI in AML is by combining these classes, and
connecting them to a model through methods and functions.

A widget is made by using the ui-form-class as base, and placing widget tools on
top of it, i.e. action buttons, pulldown menus etc. Figure 2.14 presents a simple widget to
manipulate a box-object, the underlying code of the widget is presented in listing A.1
in the appendix.

3AML is a dialect of the object oriented programming language LISP.

16

2.5 Graphical UI development

Figure 2.14: Box model widget to manipulate a box-object.

2.5 Graphical UI development

Generally, the objective of a UI is to help the human (user) to interact with the computer,
or the underlying code of the application. A good UI is easy and intuitive for the user, but,
the application’s code is not always easy and intuitive to work with, hence UIs add layers
of abstraction on top of the code, making it easier for the user to interact with the code.
[27, p. 124-128]

2.5.1 UI Design Process

According to Gould [28], developing a good UI is a difficult process, he claims that nobody
get it right the first time (...) even if you have made the best system humanly possible,
people will still make mistakes using it.

To create a good UI, and avoiding the biggest pitfalls and obstacles Galitz [29] presents
seven commandments for designing for people providing guidelines for the UI design pro-
cess, the seven commandments are:

1. Provide a multidisciplinary design team.

2. Solicit early and ongoing user involvement.

3. Gain a complete understanding of users and their tasks.

4. Create the appropriate design.

17

Chapter 2. Theoretical framework

5. Perform rapid prototyping and testing.

6. Modify and iterate the design as much as necessary.

7. Integrate the design of all the system components.

2.5.2 Model-View-Controller

Writing good code could be hard, however, by the use of design patterns to reuse code
from previous working design, it could be a lot easier, as explained by Gamma et. al.
[30, p. 2-4] One such design pattern is the Model-View-Controller, proposed by Trygve
Reenskaug in 1979 [31], used to build UIs in the programming language Smalltalk-80.
This way of structuring code has since been used by many when creating UIs for object
oriented software [30, p. 4-6].

The principles of MVC is to decouple the software architecture into three objects: the
model, being the application object; the view, being the screen representation; and the
controller, defining how the UI reacts to user input. The organisation of MVC is presented
in figure 2.15. The user interacts with the view, sending a notification to the controller,
applying changes to model, the model notifies the controller of the consequences of the
user action, and finally, the controller updates the view. This allows the data to change
separately from its representations, and vice versa, representing the data in different ways
without changing it.

ControllerController

ViewViewModelModel

Update

User action

Update

Notify

Figure 2.15: The organisation of Model-view-controller.

18

CHAPTER

THREE

RAMMS

RaMMS is a KBE application combining the principles of concurrent engineering and
KBE, in order to aid designers in exploring a large research space as early as possible in
the design process, by creating an integrated link between geometry generation, meshing
and mechanism definitions in AML and the multidisciplinary simulation tool FEDEM,
enabling the designer to actively use simulations when iterating over design.

When developing a UI it is important to understand how the application works and be-
haves, and, to elaborate this, the following chapter describes the system architecture of
RaMMS.

Figure 3.1 presents the inputs and outputs of RaMMS. It is a generative KBE application,
reading a parametric mechanism definition as input, i.e. mechanism topology, incidence,
external forces, springs and dampers, and generating: geometry, mesh and simulation
definitions, before running dynamic simulation in FEDEM, with the final output of the
RaMMS iteration process being simulation results.

Figure 3.1: The generative KBE application RaMMS, reading mechanism defintion, and outputs
results.

A parametric mechanism definition of Hoeken’s linkage, for use as input in RaMMS, is

19

Chapter 3. RaMMS

presented in table 3.1. The mechanism definition is represented in RaMMS by five .txt-
files, the files and contents are:

• coordinates: containing the coordinates (in global coordinates) of all keypoints with
keypoint numbers;

• constraints: containing joint information, i.e. type of joint, joint direction, deegrees
of freedom, keypoint number and link incidence;

• shapes: containing link’s shape information, with one line for each member, it is
specified what link the members belong to, its cross section and member curve rep-
resented by NURBS1, with keypoints and weights;

• loads: containing external forces and moment definitions;
• spring-damper: containing spring- and damper definitions.

Table 3.1: RaMMS input for the Hoeken’s linkage

Coordinates.txt:
Index Name X-pos Y-pos Z-pos
0 "crank-bearing" 0.0 0.0 0.0
1 "crank-top" 0.0 0.75 0.0
2 "rocker-bearing" 1.5 0.0 0.0
3 "rocker-top" 1.5 1.875 0.0
4 "coupler-end" 3.0 3.0 0.0
5 "spring-ground" 3.0 0.0 0.0

Constraints.txt:
Point Type Link-incidence Joint-direction DOF Joint-variable
0 "revolute" (nil 0) (0.0 0.0 1.0) nil nil
1 "revolute" (1 0) (0.0 0.0 1.0) nil nil
2 "revolute" (nil 2) (0.0 0.0 1.0) nil nil
3 "revolute" (1 2) (0.0 0.0 1.0) nil nil
4 "free" (nil 1) (0.0 0.0 1.0) nil nil

Shapes.txt:
Name Link Member Cross-section Dimensions Points-list Weights-list
"crank" 0 0 "circular" (0.1 0.1) nil nil
"coupler" 1 0 "circular" (0.1 0.1) nil nil
"coupler" 1 2 "circular" (0.1 0.1) nil nil
"rocker" 2 0 "circular" (0.1 0.1) nil nil
"coupler" 1 1 "nil" nil nil nil

load.txt:
Type point direction Magnitude Loaded-link
"torque" 0 (0.0 0.0 -1.0) 100 0

spring-damper.txt:
Type from to incident-links stiffness/damping
"spring" 4 5 (1 nil) 750000.0
"damper" 1 2 (0 2) 3000.0

1Non-uniform rational basis spline.

20

3.1 System Architecture

3.1 System Architecture

3.1.1 Collections

When RaMMS generates a mechanism model, one object is instantiated for each line in
the input files, e.g. one line in the coordinates.txt-file is instantiated as a point-object, one
line in the constraints.txt-file becomes a constraint-object, etc. For each input file there
is a corresponding collection-class handling the input, i.e. reading files, storing input in
collection-lists and instantiating mechanism parts as series-objects. The collection-classes
are added as subobjects to the root class of RaMMS, main-mechanism-class, which is
instantiated when RaMMS is started. The object tree for a Hoeken’s linkage is presented
in table 3.2. A UML diagram, created by Kristoffersen and Kristiansen [4], displaying the
main-mechanism-class and the collection-classes is presented in figure 3.2.

Table 3.2: Object hierarchy of a Hoeken’s linkage.

main-mechanism-class [Level 1]
constraints [Level 2]

revolute (nil 0) [Level 3]
revolute (1 0) [Level 3]
revolute (nil 2) [Level 3]
revolute (1 2) [Level 3]
free (nil 1) [Level 3]

points [Level 2]
crank-bearing [Level 3]
crank-top [Level 3]
rocker-bearing [Level 3]
rocker-top [Level 3]
coupler-end [Level 3]
spring-top [Level 3]
spring-ground [Level 3]

links [Level 2]
0 crank [Level 3]
1 coupler [Level 3]
2 rocker [Level 3]

spring-dampers [Level 2]
spring [Level 3]
damper [Level 3]

loads [Level 2]
load [Level 3]

21

Chapter 3. RaMMS

Figure
3.2:

C
lass-objectdiagram

ofthe
m

ain-m
echanism

-class
and

collections

22

3.1 System Architecture

3.1.2 Joints

RaMMS is able to generate revolute-, ball- and knuckle joints2, as well as, rigid connec-
tions3 and free connections4 Joints are instantiated by the constraint-collection class, it
reads joint type, DOF, position, direction and link connections from input, and instanti-
ates the correct joint type geometry, with a male and a female object, sharing a common
connection, placed at the joint’s specified keypoint. The different joint types have their
own specialised geometry, e.g the revolute joint consist of a male and a female part, where
the female part is having a diameter of 1.2 times the biggest cross section diameter of its
connecting members.

3.1.3 Links

Links are created as a result of the constraint definitions, when defining constraints in
the constraint.txt, each constraint’s link incidence is specified, and from these, links are
generated between constraints.

If no shapes are specified, the application will generate links as straight lines between
constraints, with a default circular cross section. Link shapes have to be defined in the
shapes.txt-file. The shape-collection class reads input from that file, and instantiates the
total link geometries of the mechanism as subobjects. The class of these subobjects are
link-geometry-class, joining members, surfaces and joints to form link substructure be-
tween joints.

3.1.4 Loads, Springs and Dampers

Loads are defined in RaMMS as external forces or torques. The loads can be constant or
given a simple scaling, and its directions is specified in the input.

Spring and damper start points, end points, stiffness, damping and incident links are
read from spring-damper.txt by the spring-damper-collection class. It creates springs and
dampers as subobjects accordingly to the inputs given.

3.1.5 Mesh generation

The link’s total geometry is meshed by the link-mesh-class, with individual mesh sizes for
members, surfaces and joints. Members have a mesh size of 25% of their smallest member
cross section, while the various joints types have different meshing rules suited for their
geometry.

2Double revolute joints
3rigid joints
4User specified fixed translational- and rotational- directions

23

Chapter 3. RaMMS

In the mesh, joint connections are represented by connecting rigid body elements (RBE2),
a slave triad (node) on the female connection is constrained to a master triad on the male
connection.

3.1.6 Simulation- and Geometry Export

In order to export the mechanism geometry to simulation in FEDEM, .bdf and .fmm files
are written by RaMMS. One .bdf file is created for each link, containing mesh information
including RBE2 definitions. And a single .fmm file, containing joint, spring, damper and
load definitions, all referring to node placements in the FE mesh of the corresponding .bdf
files.

3.2 Current UI

RaMMS comes with a simple user interface, containing functionality to do only the most
important tasks, i.e. instantiating the mechanism, creating mesh and exporting to FEDEM.
However, the current UI offers few options for editing mechanisms, where the main prob-
lem being the complicated way to edit and create input files [5], thus, the lack of a good
user interface is slowing down the potentially very rapid iteration process.

The current way to iterate over a mechanism design in RaMMS is by following these
steps:

1. Inspect the results from the previous iteration.

2. Use a separate text editor to edit input files, i.e.:

(a) Update keypoints in coordinates.txt

(b) Update joints and links in constraints.txt

(c) Update link shapes in shapes.txt

(d) Update loads in loads.txt

(e) Update springs and dampers in spring-damper.txt

3. Restart the RaMMS AML application.

4. From the UI do the following: draw (instantiate) the mechanism; create mesh and
.bdf files; export to FEDEM (FEDEM opens automatically when exporting).

5. Run simulation.

6. Evaluate results, and start another iteration from point 1.

24

CHAPTER

FOUR

METHOD

4.1 User Interface Development

To design a user interface for RaMMS, and specifying functionality for the points of the
master assignment (presented in chap. 1.1), Galitz’ [29] seven commandments for design-
ing for people were used as a guideline in the design process. Starting with an explore
phase, meaning a study of mechanisms and user analysis; then doing rapid prototyping, in
the form of iterating over, and discussing, mock-ups; and finally, implementing a design.
The process is presented in figure 4.1, and elaborated further in the following subsec-
tions.

4.1.1 Theoretical Study

To gain a complete understanding of users and their tasks, a theoretical study was con-
ducted on mechanisms and the mechanism design process. The basics of KBE and KBE
applications were studied, together with GUI development processes and GUI develop-
ment using AML.

4.1.2 Rapid prototyping

Designing user interfaces for applications is a complicated process, many factors must
be considered, and trade-offs have to be made, e.g. restricting user freedom yields fewer
errors [27], thus, a relevant question is: how much freedom should the user be given
when interacting with the system? Answering such questions is hard for the developer,
especially for specific problems — in this case, predicting errors when designing specific

25

Chapter 4. Method

Explore

Mock-ups

Focus
group

Iterate

Implement

Figure 4.1: Iterative user interface design process.

parts of mechanisms — little, if any, data is to be found, leaving the UI developer simply
relying on educated guesses.

For rapid prototyping of UI designs, mock-ups is a useful tool. A mock-up could be a hand
drawn sketch or a dummy interface not connected to an application. They give an quick
insight into how applications will look and work, making it easier to visualise and discuss
UI solutions, and they can be created quickly, making them a powerful tool when iterating
over UI designs.

Working with the RaMMS UI, mock-ups were created, to present interface solutions to a
focus group of people with IT and mechanical engineering backgrounds. The mock-ups
were dummy widget menus created by the tool QT Designer, and, based on feedback from
the discussions mock-ups were iterated upon, and further discussed. The final result of
this rapid prototyping process is presented in chapter 5.

4.1.3 Implementation

After doing rapid prototyping, the final mock-up menus were reviewed, and, the ones that
seemingly best would enhance the usability of RaMMS, were chosen to be implemented.
The implementation were done by writing AML code, first code creating standalone wid-
gets mimicking the mock-up widgets, then writing methods interacting with the RaMMS
application. Implementation details are explained in chapter 6.

26

4.1 User Interface Development

AML UI development method

The AML reference manual [32] provides documentation for the UI classes, together with
example codes for some classes. Prior to implementing the new UI of RaMMS, in order to
gain an understanding on how UIs is created in AML, the examples of the reference manual
were studied, and based on these examples, small simple widgets were created, e.g. the
box model widget in figure 2.14. The knowledge learnt from creating and experimenting
with these simple widgets were used when creating code for the RaMMS UI.

27

Chapter 4. Method

28

CHAPTER

FIVE

UI CONCEPTS

The objective of the updated RaMMS UI is to enhance the manual optimisation process. In
order to achieve this, two key-attributes was given extra focus while creating UI solutions
and discussing mock-ups, the values were:

• Efficiency. For rapidly iterating over designs, the ability to quickly create and mod-
ify mechanisms is essential, and thus, was given a high priority in creating GUI
solutions.

• Familiarity. For the user’s ease of use, terminology and symbols should be familiar,
and users of RaMMS is most likely familiar with mechanisms and the FEDEM user
interface, thus an effort has been made to make symbols and terminology as close
to mechanism literature and FEDEM as possible.

5.1 UI Solutions

RaMMS relies on five separate input files, and the previous UI did not have any function-
ality for editing this input, imposing the user to use a separate text editor to create and edit
input. To avoid this bottleneck, the UI should offer functionality to create and edit input
from within RaMMS.

Further, defining mechanisms from within RaMMS could be done by a top-down ap-
proach. Thus, will the steps to define a mechanism, and conduct a simulation in RaMMS
be the following:

1. Define keypoints.

2. Define joints, and links connected to joints.

29

Chapter 5. UI Concepts

3. Modify link substructures.

4. Add loads, springs or dampers to keypoints.

5. Mesh geometry and export to FEDEM.

The following sub-sections presents user interface solutions for defining and optimising
mechanism design for each of these steps.

5.1.1 Global Coordinate Input and Editing

Keypoints are an essential part of the mechanism definition in RaMMS, it is they who
define the mechanism topology, beacuse all mechanism parts are connected to a keypoint.
Keypoints are defined by coordinates in the global coordinate system, and defining key-
points is a straight-forward task, thus it should be simple for the user.

A table gives a quick overview of the keypoints, and allows for easy coordinate mod-
ification. Further, for easy visualisation, symbols and keypoint numbers should appear
at keypoint positions in the modelling window, and if the user highlights a keypoint in
the table, the symbol of that keypoint should change colour, demonstrated in figure 5.2.
There should also be an option for the user to interactively place and drag keypoints in the
modelling view, alongside manipulating coordinates from the table.

The final result of the mock-up process for defining keypoints, was the pop-up widget,
displayed in figure 5.1. Overall, this widget gives a quick and easy way to manipulate
global keypoint coordinates.

Figure 5.1: Keypoint widget mock-up.

30

5.1 UI Solutions

Figure 5.2: Mock-up displaying the keypoint widget in use, with keypoint labels and symbols.

31

Chapter 5. UI Concepts

5.1.2 Joint Modelling

Defining joints is done by specifying: joints’ placement; type; connected links; directions;
and in the case of a free-connection, specifying fixed degrees of freedom. Link topology
are defined based on the joint definitions, joints with same incident link creates a link
between them.

Joints in FEDEM

The menu to edit joints in FEDEM is presented in figure 5.3, FEDEM displays one joint at
the time, and the menu consists of a window to the left with joint information, i.e. incident
links and loads, and a summary table to the right containing info about the joint’s degrees
of freedom, as well as attached loads and springs. There is also a button for swapping
master and slave connections. FEDEM’s modelling view symbols representing the joints
is presented in figure 5.4, for familiarity reasons the same symbols should in the RaMMS
modelling viewer.

Figure 5.3: FEDEM menu for editing a joint

Figure 5.4: Joint symbols in FEDEM, (a) Revolute, (b) Ball, (c) Rigid, (d) Free

32

5.1 UI Solutions

Joint Modelling Mock-ups

With inspiration from FEDEM mock-ups for defining joints was worked out. The early
mock-ups were pop-up widgets (fig. 5.5) for defining one single joint at a time. Af-
ter group discussions, this was found to be a bad design solution, unnecessary slow-
ing the joint defining process, by imposing the user to open and close pop-ups for each
joint.

Figure 5.5: Early mock-up of a joint widget.

Instead a table widget, similar to the keypoint widget, was chosen, as it provides a faster
way to edit multiple joints, and gives a good overview of a mechanism’s joint configura-
tion, and consequently via the link-incidence, the mechanism’s link configuration.

To further improve the ease of defining joints, it was found beneficial to add the following
functionality to a joint widget: allow the user to either type-in keypoint number, or choose
keypoint interactively from the modelling window; having a drop-down menu displaying
the joint types to choose from (as seen in the mock-up in figure 5.6); greying out the
degrees of freedom not available to choose, because of the chosen joint type; and having a
button to easily switch master and slave connections. Further, when the widget is opened,
the keypoint symbols and numbers should appear together with joint symbols, also lines
should appear when links are defined between joints.

The mock-up of the final design solution including all this functionality is presented in
figure 5.6, and a mock-up of the widget in use, together with joint symbols, and lines
representing links, is displayed in figure 5.7.

33

Chapter 5. UI Concepts

Figure 5.6: Final constraint widget mock-up.

Figure 5.7: Mock-up displaying the constraints widget in use.

34

5.1 UI Solutions

5.1.3 Mechanism Link Modelling

Mechanism link modelling is done by editing the substructure shape of links. The sub-
structure does not affect the kinematics of a mechanism, as the link’s connections always
have the same rigid relative distance. By default RaMMS generates links’ substructures
as straight lines, with a default cross-section, however, the user can specify weight points
in the input files to make NURBS curves for the substructures to follow, as well as cross
sections and cross section variations along curves.

FEDEM does not have any functionality for editing link substructures, and building such
functionality into RaMMS would mean that it can be used for detailed design, conse-
quently dynamic simulations can be used in all the stages of the design process. Therefore
was the mechanism link modelling an area of particular interest when working on the
RaMMS user interface.

Link Modelling Inspiration

Implementing a link substructure editor into RaMMS would be somewhat similar to build-
ing a small CAD system with NURBS curve functionality into AML. Thus, user interface
solutions for creating splines in state-of-the-art CAD systems were investigated. Systems
like Autodesk Inventor, Solidworks and Siemens NX (fig. 5.8) all uses a highly interactive
way to manipulate splines, by using drag-and-drop functions to move weight points, and
instantly updating the curve when a point is moved.

Figure 5.8: Creating and manipulating a spline in Siemens NX.

35

Chapter 5. UI Concepts

Link Modelling Mock-ups

Various solutions were discussed, and simple mock-ups were made of a Shapes Editor
widget. Which is a widget opening a single link in its own separate modelling window,
and the ability to modify that link’s substructure by manipulating a NURBS curve repre-
sentation of the link’s members. One of the early shapes editor mock-ups is presented in
figure 5.9. It has quick access to manipulate weight points, and functionality to sweep the
selected link from within the widget, in order to quickly see how the sweep of the new
shape looks.

Furthermore, there is a lot of functionality that can be good to implement into a link sub-
structure editor, essentially, all detailed design features that are normally added to a mech-
anism late in the design process, could be beneficial to access from the same widget. This
includes features such as edge blending, cross-section details, surfaces between link mem-
bers, and the ability to edit joint directions and override joint sizes.

RaMMS has built in knowledge about meshing routines, but, after editing substructure
shapes, resulting geometries could be abnormal, and the built-in meshing would struggle
to create a good mesh, thus, it would create a good work-flow to be able to edit and generate
mesh from within the same menu as editing substructures, to quickly check meshes, and
create specialised meshes in the case of abnormal geometries.

If a link has more than one member, the modelling window should display the curves of
the whole link, while the selected member should have a different colour, and the weight
points of the selected member should be displayed together with weight point numbers,
and there should be functionality to interactively manipulate the points, ideally, by drag-
and-drop.

The final solution after the mock-up iterating process, was an widget including all this
functionality, and this mock-up is presented in figure 5.10.

Figure 5.9: Early shapes editor mock-up.

36

5.1 UI Solutions

Fi
gu

re
5.

10
:F

in
al

sh
ap

e
ed

ito
rm

oc
k-

up
.

37

Chapter 5. UI Concepts

5.1.4 Load-, Spring- and Damper- Definitions

Adding and editing mechanism loads, springs and dampers can be done by table widgets,
similar to the joint table widget mock-up.

The final mock-up for loads is presented in figure 5.11. In this mock-up the user can
choose load type from a drop-down menu, specify directions, loaded links, and pressing a
button opening an advanced load option widget, presented by the two mock-ups in figure
5.12, where the user can specify simulation options for dynamic loads, by simple built-in
mathematical functions. However, FEDEM has a good interface for defining advanced
mathematical functions, and it would be redundant to add more than only the simplest
mathematical functions into the RaMMS UI.

Figure 5.11: Mock-up of the load editor widget.

The final mock-up of the spring and damper table widget is presented in figure 5.13. From
drop-down menus, the user can choose type, and place springs or dampers from keypoint
to keypoint or in in joints. Springs and dampers could also have an advanced simulation
options widget, similar to the advanced load options, where stiffness, damping and stress
free lengths could be defined by mathematical functions.

5.1.5 FE Mesh Generation

When creating mesh of simple geometry, a goal is to keep the mesh generation as au-
tonomous as possible, however, the user should be able to easily modify mesh for special
cases. Because of this, the mesh could be controlled from within the shapes editor widget,
where special geometry is added to the mechanisms. In the bottom part of the mock-up
in figure 5.10, a solution to how mesh can be controlled from within such a widget is
displayed.

38

5.1 UI Solutions

(a) Constant load. (b) Linear load.

Figure 5.12: Mock-ups the of advanced load editor widget.

Figure 5.13: Final spring and damper table widget mock-up.

39

Chapter 5. UI Concepts

5.2 UI Discussion

The solutions presented in this chapter, have been discussed and iterated upon, while fo-
cusing on the key-attributes, presented in section 5.

Using tables for manipulating mechanism definitions, would give users a quick overview
of definitions, and with familiar symbols together with interactive manipulating functions,
should increase the ease of using RaMMS. Furthermore, the Shapes Editor is of special
interest, because it would enable for RaMMS to be applied even further into the deisgn
process.

40

CHAPTER

SIX

UI IMPLEMENTATION

Implementing the proposed user interface solutions into RaMMS was done by writing
AML code creating widgets, then connecting the widgets to the application by writing
methods, all whilst following the principles of model-view-controller. After group discus-
sions, the UI solutions, were prioritised, and a great portion of the implementation time
was given to implement the Shapes Editor, while the table-widgets were implemented with
less diligence. This chapter gives an details on how the UI implementation was conducted,
and presents screenshots of the final widgets.

6.1 Model-view-controller in RaMMS

Essentially, when RaMMS generates a mechanism, the collection classes read input from
input files, and stores it in various list, e.g. input from coordinates.txt is stored in points-
list and input from constraints.txt is stored in constraints-list, based on these lists the parts
of the mechanism is instantiated.

In the sense of model-view-controller, these collection-classes is the controller of the sys-
tem, reading input and creating objects based on that input, when the input is modified
the collection classes reads the new input, keeping track of which objects that have been
modified, and recreates the modified objects.

A user interface should only interact with the controller, thus, the user interface should
read the lists of the collection classes, present them in such a way that the user can interact
with them. Further, after user manipulation it should update the lists of the collection
classes with new data, and finally, the collection classes should update the model with the
new data, separate from the user interface. A visual representation of this process is given
in figure 6.1.

41

Chapter 6. UI Implementation

User InterfaceUser Interface

CollectionsCollectionsInput filesInput files

ModelModel

User actionRead

Read

Save

Update

Figure 6.1: Model-view-controller in RaMMS, user interface and input files interacting with the
collections classes.

6.2 Implementing the Shapes Editor

The Shapes Editor, presented in chapter 5.1.3, is a pop-up widget consisting of many
different UI constructs, it contains: a modelling view, actions buttons, drop-down menus,
form fill-ins, radio-buttons, tick-boxes and a table for editing weight points.

In order to create this widget, the documentation for the AML UI classes were studied, and
based on the examples in the documentation, small separated widgets containing the UI
constructs were created. Then, the constructs of these separated widgets were combined
into larger widgets, such as the NURBS module. And finally, the Shapes Editor were
created, based on the NURBS module.

6.2.1 NURBS module

The NURBS module is a standalone widget for manipulating NURBS curves in AML. It
was created to learn how a separate modelling view can be implemented into a pop-up
widget, and how a spreadsheet table can be used to manipulate data.

The module is presented in figure 6.2, and its code can be found in listings A.2 in ap-
pendix A.2. As input, it reads coordinates for start and end points, as well as coordinates
and weights for weight points, based on this input a NURBS curve is generated in the
modelling view, and the curve can be manipulated by editing table values, or dragging
points in the modelling view.

42

6.2 Implementing the Shapes Editor

Figure 6.2: The NURBS module.

6.2.2 The Shapes Editor

To write the Shapes Editor code, the NURBS module was used as base, and to add the
UI constructs, code from the earlier created simple widgets was simply copied and pasted
into this base. This final code of the Shapes Editor can be found in listing A.3 in appendix
A.3

The Shapes Editor reads RaMMS’ collection classes, and presents link and member shape
information. From drop-down menus can the user choose which link to display, and which
member on the selected link to manipulate. The modelling view presents the link shapes
by NURBS curves. A red line for the selected member, and white lines for the other
of the link’s members. An annotated figure of the Shapes editor going in depth on its
functionality, is presented in figure 6.3.

For the Shapes Editor to communicate back to RaMMS, methods was written to update
RaMMS’ collection classes when the user interacts with the Shapes Editor, e.g. when-
ever the user edits the weight points table, a method loops over the table contents, and
updates the weight-collections class with the updated weights list, the collections noti-
fies the Shapes Editor back, and the modelling view is updated with the updated weight
points.

When the Shapes Editor widget is closed, the total mechanism geometry is updated and
displayed in the regular modelling view of RaMMS.

43

Chapter 6. UI Implementation

Figure
6.3:

A
nnotated

figure
of

the
Shapes

E
ditor.

(1)
A

link
is

selected
from

the
top

dropdow
n

m
enu,

then
a

m
em

ber
is

selected
from

a
dynam

ic
dropdow

n
m

enu
show

ing
the

selected
link’s

m
em

bers.
(2)

O
ptions

to
sw

eep
the

totallink
geom

etry,including
joints;draw

N
U

R
B

S
curves

w
ith

w
eight

points,as
seen

in
the

m
odeller;undraw

everything;and
to

sw
eep

individualm
em

ber
geom

etry.
(3)

T
he

m
em

ber’s
startand

end
pointcoordinates,these

are
fixed

coordinates
not

editable
by

the
user.

(4)
W

eight
points

table,
editable

by
the

user,
w

ith
options

to
m

ove
w

eight
points

interactively
in

the
m

odeller,add
and

rem
ove

points.
(5)

E
ditable

m
em

ber
cross

section
profile

and
dim

ension.
C

an
vary

from
m

em
ber-startto

m
em

ber-end.
T

he
available

cross
sections

can
be

selected
from

a
drop-dow

n
m

enu.(6)Individualm
em

berm
esh

size
can

be
set,and

the
link’s

geom
etry

can
be

m
eshed

from
w

ithin
the

Shapes
E

ditor
to

verify
and

controlthe
m

esh.(7)Surface
betw

een
link

m
em

bers
and

edge
blend

can
be

turned
on

oroff.

44

6.3 Implementing the Table Widgets

6.3 Implementing the Table Widgets

The final mock-ups for defining keypoints, joints, loads, springs and dampers are all table-
based widgets, for manipulating RaMMS input. This input is stored in lists in the collec-
tion classes, therefore, the table widgets should read these lists, and present the contents
to the user. After user manipulation, the modified collection-class list should be updated,
and followed by an update of the model.

While working on the Shapes Editor, a simple table widget was created, and this widget
was used as a base to create the table widgets. To keep it simple, a reusable table-widget-
class was created, able to instantiate all the table widgets. The table widgets consists of
a table and three buttons, a keypoint table is presented in figure 6.4. When the table is
opened the appropriate symbols appear in the modelling view, e.g. upon opening the joint
widget, joint symbols and link member lines are drawn.

Its code is presented, with annotations, in figure 6.5, the main table-widget-class inherits
from ui-form-class defining the widget form, and the UI constructs is added as subobjects
to the table-class. The sheet, i.e. table, inherits from ui-spreadsheet-class to create the
table, its cell values is specified upon instantiation. The instantiation of a keypoint widget
is presented in figure 6.6, the cell values is defined by the input-list property, reading values
from the points object, an instantiation of the points-collection class.

Figure 6.4: The keypoint table widget. Pressing the plus button adds a new line to the table, and
pressing the red cross removes the last line.

45

Chapter 6. UI Implementation

Figure 6.5: Annotated code for the table-widget-class. (1) Widget form definition. (2) Table defini-
tion. (3) Button definition. (4) Methods to be called when buttons is pressed.

Figure 6.6: Code for the function instantiating the Keypoint Widget, within the red rectangle, key-
point widget properties are defined.

46

6.4 Mechanism Library Control

6.4 Mechanism Library Control

To ensure the ease of using RaMMS an option to save the current mechanism design
was added, and as a consequence, some alterations were made to the structure of input
files.

A save-button has been added to main GUI menu of RaMMS, by pressing the button,
a save function is called. The save function writes all the lists of the collection-classes
to input-files, saving the current mechanism design to input files in the mechanism li-
brary.

When testing the new save function, multiple bugs occurred. The application struggled to
keep track on the number of white spaces in the input files, consequently, to reduce errors,
a change was made to the input file style: instead of delimiting on tab, they now delimiter
on comma. Further, did weight points got their own input file, for easier differentiation be-
tween weight points, and keypoints. However, these modifications to input files is of little
significance to the user, as the new UI removes the need to edit input files manually.

47

Chapter 6. UI Implementation

48

CHAPTER

SEVEN

EXAMPLES OF MECHANISM DESIGN

To demonstrate the functionality of the new user interface, two mechanism designs were
created using the updated user interface of RaMMS. First, the Hoeken’s linkage, which
has a simple planar geometry, was defined and iterated upon, to demonstrate the usage of
table widgets for design iterations.

And, a double wishbone suspension, with a more complex spatial geometry, to demon-
strate the use of the Shapes Editor.

7.1 Case 1: Hoeken’ linkage

The planar Hoeken’s linkage (fig. 2.3) was created in RaMMS and analysed in FEDEM.
The mechanism input were created from the table widgets, keypoints in figure 7.1; con-
straints in figure 7.2; loads in figure 7.3; springs and dampers in figure 7.4.

After the geometry generation, the mechanism was meshed with a solid mesh (fig. 7.5),
and exported to FEDEM (fig. 7.6). A small analysis of the mechanism’s straight line
motion was conducted by plotting the X versus Y coordiantes of the coupler’s end (fig.
7.7).

Further was the model modified, using the keypoints widget (fig. 7.8), and analysed again
in FEDEM. With a different motion compared to the straight line motion of the original
mechanism, the plot of the motion is presented in figure 7.9.

49

Chapter 7. Examples of Mechanism Design

Figure 7.1: Defining keypoints for the Hoeken’s linkage using the keypoint table widget.

Figure 7.2: Defining constraints and links for the Hoeken’s linkage using the constraints table wid-
get.

50

7.1 Case 1: Hoeken’ linkage

Figure 7.3: Defining a load for the Hoeken’s linkage with the load table widget.

Figure 7.4: Defining one spring and one damper for the Hoeken’s linkage, using the spring- and
damper table widget.

51

Chapter 7. Examples of Mechanism Design

Figure 7.5: Mesh of the Hoeken’s linkage.

Figure 7.6: The Hoeken’s linkage exported to FEDEM, with no errors.

52

7.1 Case 1: Hoeken’ linkage

Figure 7.7: Analysis of the Hoeken’s linkage in FEDEM. Showing a plot of the straight line motion,
by plotting the x and y coordinates of the coupler end.

Figure 7.8: Modifying the Hoeken’s linkage with the keypoint widget.

53

Chapter 7. Examples of Mechanism Design

Figure 7.9: Analysis of the modified Hoeken’s linkage in FEDEM. Displaying the new motion of
the coupler’s end.

54

7.2 Case 2: Double Wishbone Suspension

7.2 Case 2: Double Wishbone Suspension

The spatial mechanism of a double wishbone suspension was created in RaMMS. Keypoint
definitions are presented in figure 7.10, constraints in figure 7.11. Due to the abnormal
form of the middle link’s default link substructures, RaMMS failed to sweep its member
geometries, errors are presented in figures 7.12 and 7.13. However, the link’s can still
be opened and its curves drawn in the Shapes Editor. They were, and the design was
edited, so that it could be swept. The upper link’s shapes were edited in the shapes editor,
starting with straight lines (fig. 7.14), and finishing with a specialised design, presented
in figures 7.15 and 7.16. The shapes of the middle link were modified to fit its correct
design (fig. 7.17), and the cross section of the upper suspension arm and lower lower
suspension arm member were altered to imitate the wheel mount (fig. 7.18), the middle
revolute joint’s dimensions is calculated from the end cross section of its biggest member.
The final double wishbone design’s geometry, ready for meshing and analysis, is presented
in figure 7.19, and the mesh is in figure 7.20, finally, the model was exported to FEDEM,
figure 7.21, with joint definitions.

Figure 7.10: Defining keypoint coordinates for the double wishbone suspension, using the keypoints
table widget.

55

Chapter 7. Examples of Mechanism Design

Figure 7.11: Defining constraints for the double wishbone suspension, using the constraints table
widget.

Figure 7.12: RaMMS failed to sweep the middle part of the double wishbone suspension.

56

7.2 Case 2: Double Wishbone Suspension

Figure 7.13: AML error when trying to sweep the geometry for the middle link of the double
wishbone suspension: NULL GEOM.

Figure 7.14: The upper link of the double wishbone suspension in the shape editor, prior to editing.

57

Chapter 7. Examples of Mechanism Design

F

Figure 7.15: Modified NURBS curve of the upper link of the double wishbone suspension, display-
ing the weight points for forming of the left member of the link.

Figure 7.16: Sweep of a modified upper link of a double wishbone suspension.

58

7.2 Case 2: Double Wishbone Suspension

Figure 7.17: Modified NURBS curve of the middle link of the double wishbone suspension, dis-
playing the single weight point to create the form of the lower member of the link.

Figure 7.18: The wheel mount is imitated by varying the start and end cross section dimension for
the members on the middle link of the double wishbone suspension.

59

Chapter 7. Examples of Mechanism Design

Figure 7.19: The geometric model of the double wishbone suspension after modifications in the
shapes editor.

Figure 7.20: The double wishbone suspension is meshed in AML.

60

7.2 Case 2: Double Wishbone Suspension

Figure 7.21: The double wishbone suspension in FEDEM.

61

Chapter 7. Examples of Mechanism Design

62

CHAPTER

EIGHT

DISCUSSION

The RaMMS UI has been updated, and it is interesting to discuss the application with
the updated UI from a wide perspective, by reflecting on the following three topics: How
RaMMS with the updated UI can be used in the design process; the new Shapes Editor
adds CAD functionality to RaMMS, thus, comparing RaMMS to conventional CAD tools,
and how it combines KBE and CAD; and finally, how the work-flow and overall usability
of the updated application is.

8.1 RaMMS in the Design Process

Early in the design process few commitments have been made, and the design freedom is
high (fig. 2.10), thus, an objective in product development, is to explore a large design
space early in the design process. And, both KBE [26] and concurrent engineering [18] is
reported to do this.

RaMMS is combining these two methodologies, by creating a bridge between geome-
try generation, meshing, mechanism knowledge and the multidisciplinary simulation tool
FEDEM. Enabling for rapid generation and simulation of mechanism models, based on
parametric mechanism topology as input. Consequently, by modifying the RaMMS input,
various mechanism designs can be quickly generated and simulated, aiding the designer
in quickly exploring a large design space.

However, the old version of RaMMS did not have any efficient way to modify input, thus,
restricting the user in utilising the full potential of RaMMS, resulting in exploration of
a smaller design space. The UI concepts presented in this thesis are solutions developed
with the aim to solve this bottleneck.

63

Chapter 8. Discussion

And, the table widgets, presented in chapter 5, is made with the intention of enabling rapid
modification of input, by quickly giving the user an overview of mechanism topology, and
presenting an easy way to edit it.

While, the aim of the, Shapes Editor module, presented in chapter 5.1.3 and implemented
in chapter 6.2, is not to speed up the iterations, but, rather to expand the usage of RaMMS,
further into the design process. The module is a mini CAD module, built on top of
RaMMS, containing many detailed features, allowing for detailed design to be applied to
mechanisms. Thus, opening for an even more concurrent design process, where detailed
design also can be explored at an early stage.

8.2 CAD v. RaMMS

An obvious benefit of using KBE instead of CAD is the time massive saving [25, 26, 22].
While, another benefit is that the KBE generated models are knowledge based, meaning
that KBE generated models are rooted in product knowledge. While, CAD models may
also be based on intricate product knowledge, the models are merely visualisations of
a product, where the designer’s product knowledge and reasoning is not attached to the
model.

The mechanism models generated by RaMMS is a good example of knowledge based
models. A RaMMS model is more than its geometric visualisation, mechanism specific
knowledge is attached to the geometric model, and each mechanism part is given real
life properties, e.g. a joint in RaMMS is represented as a joint would have been in the
real world, with constraints telling it how to move and which links to attach. Together
with application specific knowledge, this way of modelling allows KBE applications to
create a bridge between various engineering tools, transferring models, without the need
of manually defining the same properties several times.

The Shapes Editor introduces CAD functionality into RaMMS, to aid designers in adding
detailed design to mechanisms. Which is a very good thing in the perspective of the design
process, and concurrent engineering. But, not necessarily in the perspective of KBE, where
everything strives to be knowledge based.

RaMMS is a KBE application, and should continue to be a KBE application. Mechanism
models should still be generated based on knowledge, and real life properties should still
be attached to the models. The Shapes Editor brings in design elements not following
these principles.

However, the introduced CAD functionality are used for detailed design of members,
where links still have fixed start and end points, thus, changes made with the Shapes Edi-
tor will not affect the overall mechanism behaviour, only substructure shapes are altered.
Mechanism knowledge is still attached to models.

Consequently, the Shapes Editor can be viewed as a supplement to the KBE application,
for adding detailed design, which would normally be added by a conventional CAD tool,
later in the design process.

64

8.3 Usability

8.3 Usability

The objective of the updated UI was to enhance the manual optimisation process. To do
this, UI concepts focusing on the key-attributes, efficiency and familiarity, were developed
and implemented.

To verify the workflow and usability of a UI, requires exensive testing, involving numerous
users [27], in the case of this work, such testing was not a valid option. However, through-
out the development process user interface solutions and mock-ups have been discussed
with a small group of people with experience in mechanism design, as well as computer
tools for engineering design, and frequently asking the questions: are we doing the right
thing? And are we doing it correctly? Thus, the presented concepts should be seen as
qualitative suggestions for how a UI trying to fulfill its objectives should be.

Moreover, after simple testing of the UI’s functionality, the implemented table widgets,
proved as great tools for iterating on mechanism designs from within the RaMMS appli-
cation, as demonstrated by the analysis and quick modification of the Hoeken’s linkage
in chapter 7.1, and, the Shapes Editor enables more advanced mechanisms to be created,
e.g. the double wishbone suspension in chapter 7.2. Whereas, using RaMMS to iterate
on designs of such advanced spatial mechanisms is more difficult. It is hard to use the
table widgets and interactive dragging of points to do small alterations of keypoints in a
three-dimensional environment, and the UI does not offer any functionality to aid the user
in doing this.

Overall, the updated UI presents an better way to create both simple planar and more
advanced spatial mechanisms, and offers a way to quickly iterate over simple mechanisms,
however, when the mechanisms become too advanced, the UI struggles to aid the user in
quickly modifying designs.

65

Chapter 8. Discussion

66

CHAPTER

NINE

CONCLUSION

This thesis investigates the mechanism design process, KBE, as well as UI design and
implementation.

User interface concepts for the RaMMS KBE application was developed and discussed
using mock-ups. Solutions were implemented to the application, using the principles of
the model-view-controller design pattern, and combining AML’s predefined user interface
classes.

A special focus was given to implement a Shapes Editor, i.e. a mini CAD module built
on top of the RaMMS application, for conducting detailed link design. This module adds
CAD functionality to the RaMMS, enabling it to be used in a larger part of the design
process.

The user interface has improved the RaMMS, and with the updated UI it provides a good
tool for iterating over mechanism design.

67

Chapter 9. Conclusion

68

BIBLIOGRAPHY

[1] A. Corallo, R. Laubacher, A. Margherita, and G. Turrisi. Enhancing prod-
uct development through knowledge-based engineering (KBE): A case study
in the aerospace industry. Journal of Manufacturing Technology Management,
20(5):1070–1083, 2009. URL: http : / / dx . doi . org / 10 . 1108 /
17410380910997218.

[2] S. Danjou, N. Lupa, and P. Koehler. Approach for Automated Product Modeling Us-
ing Knowledge-Based Design Features. Computer-Aided Design and Applications,
5(5):622–629, 2008-01. ISSN: 1686-4360. DOI: 10.3722/cadaps.2008.
622-629. URL: http://www.tandfonline.com/doi/abs/10.3722/
cadaps.2008.622-629.

[3] R. K. Skaare. Mechanism parametrization, modeling and FE-meshing. Master’s
thesis, Norwegian University of Science and Technology, Trondheim, 2015-06.

[4] A. K. Kristiansen and E. Kristoffersen. Automating tasks in the design loop for
mechanism design. Master’s thesis, Norwegian University of Science and Technol-
ogy, Trondheim, 2016-06.

[5] T. C. Coward. Automation (KBE) in model generation for dynamic simulation.
Project Work, Norwegian University of Science and Technology. Unpublished
Work, 2016.

[6] F. Reuleaux. The Kinematics of Machinery: Outlines of a Theory of Machines.
Macmillan, London, 1876. ISBN: 1143576519. URL: http://historical.
library.cornell.edu/kmoddl/index.html#kennedy3.

[7] R.S. Hartenberg and J. Denavit. Kinematic Synthesis of Linkages. McGraw-Hill,
1964, page 133. ISBN: 0070269106. DOI: 10.1115/1.3609993.

[8] R. Norton. Design of Machinery (McGraw-Hill Series in Mechanical Engineering).
McGraw-Hill Education, 2011. ISBN: 007742171X.

[9] P. L. Chebyshev. On transformation of rotary movement into movement along some
lines using joined systems / After: The complete works of P. L. Tchebyshev. Vol. IV.
Theory of mechanisms. USSR Academy of Sciences, 1948, pages 161–166. URL:
http://www.tcheb.ru/docs/pdf/TchebRu_cw4_161-166.pdf.

[10] K. Hoeken. Steigerung der Wirtschaftlichkeit durch zweckmässige Anwen-
dung der Getriebelehre, Werkstattstechnik. IG-Farbenindustrie AG, 1926. URL:

69

http://dx.doi.org/10.1108/17410380910997218
http://dx.doi.org/10.1108/17410380910997218
https://doi.org/10.3722/cadaps.2008.622-629
https://doi.org/10.3722/cadaps.2008.622-629
http://www.tandfonline.com/doi/abs/10.3722/cadaps.2008.622-629
http://www.tandfonline.com/doi/abs/10.3722/cadaps.2008.622-629
http://historical.library.cornell.edu/kmoddl/index.html#kennedy3
http://historical.library.cornell.edu/kmoddl/index.html#kennedy3
https://doi.org/10.1115/1.3609993
http://www.tcheb.ru/docs/pdf/TchebRu_cw4_161-166.pdf

https : / / www . deutsche - digitale - bibliothek . de / item /
J3N6CM46D2QTZNV336J3UL5OUQKK4SOY.

[11] S. Molian. Mechanism Design. Pergamon, 1997. ISBN: 0080422640.
[12] A. Rodriguez and M. T. Mason. Effector form design for 1DOF planar actuation.

In 2013 IEEE International Conference on Robotics and Automation, pages 349–
356. IEEE, 2013-05. ISBN: 978-1-4673-5643-5. DOI: 10.1109/ICRA.2013.
6630599.

[13] S. Lu, D. Zlatanov, X. Ding, and R. Molfino. A new family of deployable mech-
anisms based on the Hoekens linkage. Mechanism and Machine Theory, 73:130–
153, 2014. DOI: 10.1016/j.mechmachtheory.2013.10.007. URL:
http : / / www . sciencedirect . com / science / article / pii /
S0094114X13002139.

[14] J.J. Breen and M.A. Hayner. Actuator including mechanism for converting ro-
tary motion to linear motion, 2013-01. URL: https://www.google.com/
patents/US8360387. US Patent 8,360,387.

[15] C. Knabe, B. Lee, and D. Hong. An Inverted Straight Line Mechanism for Aug-
menting Joint Range of Motion in a Humanoid Robot. In Volume 5B: 38th
Mechanisms and Robotics Conference, V05BT08A015. ASME, 2014-08. ISBN:
978-0-7918-4637-7. DOI: 10 . 1115 / DETC2014 - 35123. URL: http : / /
proceedings.asmedigitalcollection.asme.org/proceeding.
aspx?doi=10.1115/DETC2014-35123.

[16] J. J. Uicker, G. R. Pennock, J. E. Shigley, and J. M. McCarthy. Theory of Machines
and Mechanisms, 2003. DOI: 10.1115/1.1605769.

[17] W. C. Hurty. Dynamic analysis of structural systems using component modes. AIAA
Journal, 3:678–685, 1965-04. DOI: 10.2514/3.2947.

[18] O. I. Sivertsen. Virtual testing of Mechanical Systems. Swets & Zeitlinger, Trond-
heim, Norway, 2001.

[19] C. B. Chapman and M. Pinfold. Design engineering - a need to rethink the solu-
tion using knowledge based engineering. Knowledge-Based Systems, 12(5-6):257–
267, 1999. ISSN: 09507051. DOI: 10.1016/S0950-7051(99)00013-1.
URL: http://www.sciencedirect.com/science/article/pii/
S0950705199000131.

[20] B. S. Blanchard and W. J. Fabrycky. Systems Engineering and Analysis (3rd Edi-
tion). Prentice Hall, 1998. ISBN: 0131350471.

[21] B. Prasad. Sequential versus Concurrent Engineering–An Analogy. Concurrent
Engineering, 3(4):250–255, 1995-12. ISSN: 1063-293X. DOI: 10 . 1177 /
1063293X9500300401. URL: http://cer.sagepub.com/cgi/doi/
10.1177/1063293X9500300401.

[22] G. La Rocca. Knowledge based engineering: Between AI and CAD. Review of a
language based technology to support engineering design. Advanced Engineering
Informatics, 26(2):159–179, 2012. ISSN: 14740346. DOI: 10.1016/j.aei.
2012.02.002.

[23] M. Pinfold and C. Chapman. Application of KBE techniques to the FE model cre-
ation of an automotive body structure. Computers in Industry, 44(1):1–10, 2001.
ISSN: 01663615. DOI: 10.1016/S0166-3615(00)00079-8.

70

https://www.deutsche-digitale-bibliothek.de/item/J3N6CM46D2QTZNV336J3UL5OUQKK4SOY
https://www.deutsche-digitale-bibliothek.de/item/J3N6CM46D2QTZNV336J3UL5OUQKK4SOY
https://doi.org/10.1109/ICRA.2013.6630599
https://doi.org/10.1109/ICRA.2013.6630599
https://doi.org/10.1016/j.mechmachtheory.2013.10.007
http://www.sciencedirect.com/science/article/pii/S0094114X13002139
http://www.sciencedirect.com/science/article/pii/S0094114X13002139
https://www.google.com/patents/US8360387
https://www.google.com/patents/US8360387
https://doi.org/10.1115/DETC2014-35123
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/DETC2014-35123
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/DETC2014-35123
http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?doi=10.1115/DETC2014-35123
https://doi.org/10.1115/1.1605769
https://doi.org/10.2514/3.2947
https://doi.org/10.1016/S0950-7051(99)00013-1
http://www.sciencedirect.com/science/article/pii/S0950705199000131
http://www.sciencedirect.com/science/article/pii/S0950705199000131
https://doi.org/10.1177/1063293X9500300401
https://doi.org/10.1177/1063293X9500300401
http://cer.sagepub.com/cgi/doi/10.1177/1063293X9500300401
http://cer.sagepub.com/cgi/doi/10.1177/1063293X9500300401
https://doi.org/10.1016/j.aei.2012.02.002
https://doi.org/10.1016/j.aei.2012.02.002
https://doi.org/10.1016/S0166-3615(00)00079-8

[24] H. Z. Yang, J. F. Chen, N. Ma, and D. Y. Wang. Implementation of knowledge-
based engineering methodology in ship structural design. CAD Computer Aided De-
sign, 44(3):196–202, 2012-05. ISSN: 00104485. DOI: 10.1016/j.cad.2011.
06.012. URL: http://ade.sagepub.com/lookup/doi/10.1177/
1687814015584239.

[25] W. Skarka. Application of MOKA methodology in generative model creation using
CATIA. Engineering Applications of Artificial Intelligence, 20:677–690, 2007. DOI:
10.1016/j.engappai.2006.11.019.

[26] W. J. C. Verhagen, P. Bermell-Garcia, R. E. C. Van Dijk, and R. Curran. A critical
review of Knowledge-Based Engineering: An identification of research challenges.
Advanced Engineering Informatics, 26(1):5–15, 2012. ISSN: 14740346. DOI: 10.
1016/j.aei.2011.06.004.

[27] B. Shneiderman and C. Plaisant. Designing the user interface : strategies for
effective human-computer interaction. Addison-Wesley, 2010, page 606. ISBN:
9780321537355.

[28] J. D. Gould. How to Design Usable Systems. In Handbook of Human-Computer
Interaction, pages 757–789. Elsevier, 1988. DOI: 10.1016/B978-0-444-
70536- 5.50040- 3. URL: http://linkinghub.elsevier.com/
retrieve/pii/B9780444705365500403.

[29] W. O. Galitz. The essential guide to user interface design : an introduction to GUI
design principles and techniques. Wiley Pub, 2007, page 857. ISBN: 0470053429.

[30] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Pearson Education, 1994. ISBN:
9780321700698.

[31] T. M. Reenskaug. Thing-model-view-editor an example from a planningsystem,
1979.

[32] TechnoSoft Inc. AML Basic Training Manual. TechnoSoft Inc., v.3.06 edition, 2007.

71

https://doi.org/10.1016/j.cad.2011.06.012
https://doi.org/10.1016/j.cad.2011.06.012
http://ade.sagepub.com/lookup/doi/10.1177/1687814015584239
http://ade.sagepub.com/lookup/doi/10.1177/1687814015584239
https://doi.org/10.1016/j.engappai.2006.11.019
https://doi.org/10.1016/j.aei.2011.06.004
https://doi.org/10.1016/j.aei.2011.06.004
https://doi.org/10.1016/B978-0-444-70536-5.50040-3
https://doi.org/10.1016/B978-0-444-70536-5.50040-3
http://linkinghub.elsevier.com/retrieve/pii/B9780444705365500403
http://linkinghub.elsevier.com/retrieve/pii/B9780444705365500403

72

APPENDIX

A

APPENDIX

73

A.1 AML UI Classes

Figure A.1: Hierarchy of AML GUI base classes. The filled boxes represent classes that can be
directly instantiated by the user.

74

Listing A.1: The AML code to create a box model widget

1 (define-class box-model-form
2 :inherit-from(ui-form-class)
3 :properties(
4 x-offset 50 y-offset 50 height 280 width 250 label "Box Model"
5 measurement ’percentage
6)
7 :subobjects(
8 (bdepth :class ’ui-labeled-field-class
9 x-offset 0 y-offset 0 width 100 height 10

10 label "Depth"
11 content (if ˆˆcurrent-model (the depth (:from ˆˆcurrent-model)) "N/A")
12 apply-action (when ˆˆcurrent-model ’(change-value
13 (the depth (:from ˆˆcurrent-model))
14 (get-value (the superior))))
15 cancel-action ’(smash-value ˆcontent))
16 (bheight :class ’ui-labeled-field-class
17 x-offset 0 y-offset 10 width 100 height 10
18 label "Height"
19 content (if ˆˆcurrent-model (the height (:from ˆˆcurrent-model)) "N/A")
20 apply-action (when ˆˆcurrent-model
21 ’(change-value
22 (the height (:from ˆˆcurrent-model))
23 (get-value (the superior))))
24 cancel-action ’(smash-value ˆcontent)
25)
26 (bwidth :class ’ui-labeled-field-class
27 x-offset 0 y-offset 20 width 100 height 10
28 label "Width"
29 content (if ˆˆcurrent-model (the width (:from ˆˆcurrent-model)) "N/A")
30 apply-action (when ˆˆcurrent-model
31 ’(change-value
32 (the width (:from ˆˆcurrent-model))
33 (get-value (the superior))))
34 cancel-action ’(smash-value ˆcontent)
35)
36 (solid? :class ’ui-toggle-button-class
37 x-offset 0 y-offset 30 width 100 height 10
38 label "Solid"
39 status (when ˆˆcurrent-model (the solid? (:from ˆˆcurrent-model)))
40 apply-action (when ˆˆcurrent-model
41 ’(change-value
42 (the solid? (:from ˆˆcurrent-model)) ˆstatus))
43 cancel-action ’(smash-value ˆstatus)
44)
45 (render :class ’ui-radio-buttons-class
46 x-offset 0 y-offset 40 width 100 height 10
47 labels-list ’("Wire" "Shaded" "Isoline")
48 status (when ˆˆcurrent-model
49 (case (the render (:from ˆˆcurrent-model))
50 (’boundary 0)
51 (’shaded 1)
52 (’isoline 2)))
53 apply-action (when (and ˆˆcurrent-model ˆstatus)
54 ’(change-value
55 (the render (:from ˆˆcurrent-model))
56 (nth ˆstatus (list ’boundary ’shaded ’isoline))))
57 cancel-action ’(smash-value ˆstatus))
58 (apply :class ’ui-apply-button-class
59 x-offset 0 y-offset 90 width 25 height 10)
60 (cancel :class ’ui-cancel-button-class
61 x-offset 25 y-offset 90 width 25 height 10
62 update-form? t)
63 (draw :class ’ui-action-button-class
64 x-offset 50 y-offset 90 width 25 height 10
65 label "Draw"
66 button1-action (when ˆˆcurrent-model
67 ’(draw ˆˆcurrent-model))
68 button3-action (when ˆˆcurrent-model
69 ’(undraw ˆˆcurrent-model)))
70 (close :class ’ui-action-button-class
71 x-offset 75 y-offset 90 width 25 height 10
72 label "Close"
73 button1-action ’(hide (the superior superior)))
74)
75)

75

A.2 NURBS Module Source Code

Listing A.2: NURBS module AML code

1 ;To display the nurbs module run the following function:
2 ;(display-nurbs-module)
3 (in-package :aml)
4 ;;;; Model ;;;;
5 (define-class point-collection
6 :inherit-from (object)
7 :properties (
8 (ref-coord-sys :class coordinate-system-class
9 origin (list 0.0 0.0 0.0)

10)
11 points-list ’((0.0 0.0 0.0) (7.0 0.0 0.0))
12 weight-points ’((1.0 -1.0 0.0 1.0) (2.0 1.0 0.0 1.0) (3.0 2.0 0.0 1.0) (4.0 1.0 0.0 1.0) (5.0 0.0

0.0 1.0) (6.0 -2.0 0.0 1.0))
13)
14 :subobjects (
15 (nurb-curve :class nurb-curve-object
16 reference-coordinate-system ˆˆref-coord-sys
17 start-point (first ˆˆpoints-list)
18 end-point (nth 1 ˆˆpoints-list)
19 start-weight (list (append ˆstart-point (list 1)))
20 end-weight (list (append ˆend-point (list 1)))
21 points (append ˆstart-weight ˆˆweight-points ˆend-weight)
22 rational? t
23 homogeneous? t
24)
25)
26)
27 (define-method get-points-list point-collection ()
28 !points-list
29)
30 (define-method get-weight-points point-collection ()
31 !weight-points
32)
33 (define-method get-ref-coord-sys point-collection ()
34 !ref-coord-sys
35)
36 (define-method smash-points-method point-collection ()
37 (smash-value !points-list)
38)
39 (define-method change-points-list point-collection (new-points-list)
40 (change-value !points-list new-points-list)
41)
42 (define-method change-weight-points point-collection (new-weight-points)
43 (progn
44 (smash-value !weight-points)
45 (change-value !weight-points new-weight-points)
46)
47)
48 ;;;; Controller ;;;;
49 (define-class nurbs-controller
50 :inherit-from(object)
51 :properties(
52 model-points (get-points-list (the point-collection))
53 model-weight (get-weight-points (the point-collection))
54 model-coord-sys (get-ref-coord-sys (the point-collection))
55)
56)
57 (define-method get-controller-points nurbs-controller ()
58 !model-points
59)
60 (define-method get-controller-weight nurbs-controller ()
61 !model-weight
62)
63 (define-method get-controller-coord-sys nurbs-controller ()
64 !model-coord-sys
65)
66 (define-method change-controller-weight nurbs-controller (new-weight-points)
67 (change-value !model-weight new-weight-points)
68 (change-weight-points (the point-collection) !model-weight)
69)
70 (define-method change-controller-points nurbs-controller (new-points)
71 (change-value !model-points new-points)
72 (change-points-list (the point-collection) !model-points)
73)
74 (define-method change-controller-weight-coords nurbs-controller (point-number position)
75 (progn (change-value !model-weight (let
76 ((weight-points !model-weight)
77 (new-point (let ((l1 (nth point-number weight-points)) (l2 position)) (replace l1 l2

) l1))
78)
79 (replace (nth point-number weight-points) new-point)
80 (smash-value !model-weight)
81 weight-points

76

82)
83)
84 (change-weight-points (the point-collection) !model-weight)
85)
86)
87 ;;;; View ;;;;
88 (define-class helping-points
89 :inherit-from (object)
90 :properties(
91 points-list (get-controller-points (the nurbs-controller))
92 weight-points (loop for w in (get-controller-weight (the nurbs-controller))
93 collect (butlast w)
94)
95 ref-coord-sys (get-controller-coord-sys (the nurbs-controller))
96)
97 :subobjects(
98 (ui-end-points :class series-object
99 quantity (length ˆˆpoints-list)

100 class-expression ’box-object
101 series-prefix ’p
102 init-form ’(
103 id ˆindex
104 reference-coordinate-system ˆˆref-coord-sys
105 line-width 4
106 color ’green
107 height 0.03
108 width 0.03
109 depth 0.001
110 ;orientation (list (translate ’(ˆindex 0.0 0.0)))
111 orientation (list (translate (nth ˆindex ˆpoints-list)))
112 ;coordinates (list (nth 0 (nth ˆindex ˆpoints-list))
113 ; (nth 1 (nth ˆindex ˆpoints-list)) (nth 2 (nth ˆindex ˆpoints-list)))
114)
115)
116 (ui-weight-points :class series-object
117 quantity (length ˆˆweight-points)
118 class-expression ’box-object
119 series-prefix ’w
120 init-form ’(
121 id ˆindex
122 reference-coordinate-system ˆˆref-coord-sys
123 line-width 4
124 color ’red
125 height 0.03
126 width 0.03
127 depth 0.001
128 ;orientation (list (translate ’(ˆindex 0.0 0.0)))
129 orientation (list (translate (nth ˆindex ˆˆweight-points)))
130 ;coordinates (list (nth 0 (nth ˆindex ˆpoints-list))
131 ; (nth 1 (nth ˆindex ˆpoints-list)) (nth 2 (nth ˆindex ˆpoints-list)))
132)
133)
134)
135)
136 (define-method get-ui-weight-point-instances helping-points ()
137 (series-members (the ui-weight-points))
138)
139 (define-method get-ui-weight-point-coords helping-points ()
140 !weight-points
141)
142 (define-method translate-helping-points helping-points ()
143 (let (
144 (point-number (mouse-select-point-from-display !weight-points))
145 (point-instance (nth point-number (series-members (the ui-weight-points))))
146)
147 (progn
148 (interactive-translate point-instance)
149 (change-controller-weight-coords (the nurbs-controller) point-number (nth 0 (the position (:from

point-instance))))
150)
151)
152)
153 (define-class link-editor-form-class
154 :inherit-from(ui-form-class)
155 :properties(
156 ;background-color ’snow2
157 label "NURBS Module"
158 height (* 0.6 (nth 1 (get-screen-size)))
159 width (* 0.6 (nth 0 (get-screen-size)))
160 y-offset (- ˆheight (* 0.5 ˆheight))
161 x-offset (- ˆwidth (* 0.5 ˆwidth))
162 button-y-offset 95
163 weight-points (get-controller-weight (the nurbs-controller))
164 weight-points-quantity (length ˆweight-points)
165 points-list (get-controller-points (the nurbs-controller))
166)
167 :subobjects(
168 (canvas :class ’ui-canvas-class
169 measurement ’percentage
170 x-offset 30 y-offset 5 width 70 height 90

77

171)
172 (graphic-toolbar :class ’ui-graphic-control-toolbar-class
173 canvas-object ˆcanvas
174 measurement ’percentage
175 height 5
176 width 70
177 x-offset 30
178 y-offset 95
179)
180 (draw-curve-action-button :class ’ui-action-button-class
181 measurement ’percentage
182 height 5
183 width 10
184 y-offset 7
185 x-offset 2
186 label "Draw Curve"
187 Button1-action ’(progn (draw (the helping-points))
188 (draw (the point-collection))
189 (update (the superior link-editor-form-class))
190 (update (the superior canvas))
191 (regen)
192 (zoom :all)
193)
194)
195 (move-point-action-button :class ’ui-action-button-class
196 measurement ’percentage
197 height 5
198 width 10
199 y-offset 7
200 x-offset 12
201 label "Drag point"
202 Button1-action ’(progn (translate-helping-points (the helping-points))
203 (update (the superior weight-sheet))
204 (regen)
205 (draw (the helping-points)))
206)
207 (point-sheet :class ’ui-spreadsheet-class
208 measurement ’percentage
209 x-offset 2
210 y-offset 40
211 width 21
212 height 12
213 column-labels (list "x-coord" "y-coord" "z-coord")
214 row-labels (list "Start point" "End point")
215 cell-values ˆˆpoints-list
216 number-of-columns (length ˆcolumn-labels)
217 number-of-rows 2
218 row-height 25
219 column-width 53
220 attachment-info-list ’(top bottom left right)
221 editable? t
222)
223 (weight-sheet :class ’ui-spreadsheet-class
224 measurement ’percentage
225 x-offset 2
226 y-offset 60
227 width 22
228 height 30
229 column-labels (list "x-coord" "y-coord" "z-coord" "weight")
230 row-labels (loop for row from 0 to ˆˆweight-points-quantity
231 collect (format nil "Point ˜a" row)
232)
233 cell-values ˆˆweight-points
234 number-of-columns (length ˆcolumn-labels)
235 number-of-rows ˆˆweight-points-quantity
236 row-height 25
237 column-width 50
238 attachment-info-list ’(top bottom left right)
239 editable? t
240)
241 (toolbar :class ’ui-toolbar-class
242 measurement ’percentage
243 height 5
244 width 20
245 y-offset 95
246 x-offset 7
247 Availability-list nil
248 Button1-action-list ’((weight-sheet-apply (the superior link-editor-form-class))
249 (weight-sheet-add-row (the superior link-editor-form-class))
250 (weight-sheet-remove-row (the superior link-editor-form-class))
251)
252 Button3-action-list nil
253 Images-list (list (concatenate (logical-path :ui-bitmaps) "apply.bmp") (concatenate (logical-path :

ui-bitmaps) "add-object.bmp") (concatenate (logical-path :ui-bitmaps) "delete-object.bmp"))
254 Labels-list (list "Apply" "Add node" "Remove node")
255 Number-of-buttons (length ˆButton1-action-list)
256 Orient (nth 0 ’(:horizontal :vertical))
257 Tooltips-list nil
258)
259)

78

260)
261 (define-method weight-sheet-apply link-editor-form-class ()
262 (progn
263 (change-controller-weight (the nurbs-controller) (loop for row from 0 to (- (the weight-sheet number-of-rows) 1)
264 collect (loop for cell from 0 to 3
265 collect (read-from-string (get-cell-value (the

weight-sheet) row cell))
266)
267)
268)
269 (change-controller-points (the nurbs-controller) (loop for row from 0 to (- (the point-sheet number-of-rows) 1)
270 collect (loop for cell from 0 to 2
271 collect (read-from-string (get-cell-value (the

point-sheet) row cell))
272)
273)
274)
275 (update (the weight-sheet))
276 (regen)
277 (draw (the helping-points))
278)
279)
280 (define-method weight-sheet-add-row link-editor-form-class ()
281 (progn
282 (change-controller-weight (the nurbs-controller) (append
283 (loop for row from 0 to (- (the weight-sheet

number-of-rows) 1)
284 collect (loop for cell from 0 to 3
285 collect (read-from-string (get-cell-value

(the weight-sheet) row cell))
286)
287)
288 (list ’(0.0 0.0 0.0 1.0))
289)
290)
291 (update (the weight-sheet))
292 (regen)
293 (draw (the helping-points))
294)
295)
296 (define-method weight-sheet-remove-row link-editor-form-class ()
297 (progn
298 (change-controller-weight (the nurbs-controller) (butlast (loop for row from 0 to (- (the weight-sheet

number-of-rows) 1)
299 collect (loop for cell from 0 to 3
300 collect (read-from-string (get-cell-value (the

weight-sheet) row cell))
301)
302))
303)
304 (update (the weight-sheet))
305 (regen)
306 (draw (the helping-points))
307)
308)
309 (defun display-nurbs-module ()
310 (progn
311 (create-model ’point-collection)
312 (create-model ’nurbs-controller)
313 (create-model ’helping-points)
314 (add-object (the interface forms) ’link-editor ’link-editor-form-class)
315 (display (the interface forms link-editor))
316 (activate-display (the interface forms link-editor canvas))
317 ;(set-current-display-background-color ’grey49)
318)
319)

79

A.3 Shapes Editor Source code

Listing A.3: Shapes Editor AML code

1 (in-package :aml)
2 (define-class helping-points-class
3 :inherit-from (object)
4 :properties(
5 points-list (get-view-points-list (the interface forms link-editor))
6 weight-points (get-view-weight (the interface forms link-editor))
7 weight-points-coord (loop for w in ˆweight-points
8 collect (butlast w)
9)

10 height (* (points-distance (nth 0 ˆpoints-list) (nth 1 ˆpoints-list)) 0.03)
11 width ˆheight
12 depth (* ˆheight 0.1)
13)
14 :subobjects(
15 (ui-end-points :class series-object
16 quantity (length ˆˆpoints-list)
17 class-expression ’box-object
18 series-prefix ’p
19 init-form ’(
20 id ˆindex
21 line-width 4
22 color ’green
23 height ˆˆheight
24 width ˆˆwidth
25 depth ˆˆdepth
26 orientation (list (translate (nth ˆindex ˆˆpoints-list)))
27)
28)
29 (ui-weight-points :class series-object
30 quantity (length ˆˆweight-points)
31 class-expression ’box-object
32 series-prefix ’w
33 init-form ’(
34 id ˆindex
35 line-width 4
36 color ’red
37 height (* ˆˆheight 0.1)
38 width (* ˆˆwidth 0.1)
39 depth (* ˆˆdepth 0.1)
40 orientation (list (translate (nth ˆindex ˆˆweight-points-coord)))
41)
42)
43 (ui-end-points-label :class series-object
44 quantity (length ˆˆpoints-list)
45 class-expression ’text-object
46 series-prefix ’plabel
47 init-form ’(
48 coordinates (list (nth 0 (nth ˆindex ˆˆpoints-list))
49 (+ (nth 1 (nth ˆindex ˆˆpoints-list)) ˆˆheight)
50 (nth 2 (nth ˆindex ˆˆpoints-list))
51)
52 text-string (if (oddp ˆindex) "End Point" "Start Point")
53)
54)
55 (ui-weight-points-label :class series-object
56 quantity (length ˆˆweight-points-coord)
57 class-expression ’text-object
58 series-prefix ’wlabel
59 init-form ’(
60 coordinates (list (nth 0 (nth ˆindex ˆˆweight-points-coord))
61 (+ (nth 1 (nth ˆindex ˆˆweight-points-coord)) ˆˆheight)
62 (nth 2 (nth ˆindex ˆˆweight-points-coord))
63)
64 text-string (write-to-string ˆindex)
65)
66)
67)
68)
69 (define-method translate-weight-points helping-points-class ()
70 (let (
71 (point-number (mouse-select-point-from-display !weight-points-coord))
72 (point-instance (nth point-number (series-members (the ui-weight-points))))
73)
74 (interactive-translate point-instance)
75 (change-model-weight-coords
76 (the connection (:from (the interface forms link-editor member-selector

selected-option)))
77 point-number
78 (nth 0 (the position (:from point-instance)))
79)
80)
81)
82 (define-class link-editor-form-class

80

83 :inherit-from(ui-form-class)
84 :properties(
85 ;background-color ’snow2
86 label "NURBS Module"
87 height 840 ;pixels (* 0.7 (nth 1 (get-screen-size)))
88 width 1344 ;pixels (* 0.7 (nth 0 (get-screen-size)))
89 y-offset (* 0.2 (nth 1 (get-screen-size)))
90 x-offset (* 0.2 (nth 0 (get-screen-size)))
91 button-height 3
92 button-width 8
93 button-first-row-x-offset 3
94 button-second-row-x-offset 11
95 cross-section-offset 67
96 mesh-offset 80
97 surface-offset 93
98 weight-points (get-weight-points (the connection (:from (the member-selector selected-option))))
99 weight-points-quantity (length ˆweight-points)

100 weight-points-coord (loop for w in ˆweight-points
101 collect (butlast w)
102)
103 points-list (get-points-list (the connection (:from (the member-selector selected-option))))
104 close-action (close-nurbs-module)
105)
106 :subobjects(
107 (canvas :class ’ui-canvas-class
108 measurement ’percentage
109 x-offset 32 y-offset 5 width 68 height 90
110)
111 (graphic-toolbar :class ’ui-graphic-control-toolbar-class
112 canvas-object ˆcanvas
113 measurement ’percentage
114 height 5
115 width 70
116 x-offset 30
117 y-offset 95
118)
119 (link-selector-label :class ’ui-label-class
120 label "Selected Link"
121 label-align :left
122 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset 10
123)
124 (link-selector :class ’ui-option-menu-class
125 Button1-action ’(progn
126 (update (the superior link-editor-form-class))
127 (draw-member-curves)
128 (zoom :all)
129)
130 options-list (series-members (the main-mechanism-class links))
131 labels-list (loop for member in (series-members (the main-mechanism-class links))
132 collect (the label (:from member))
133)
134 selected-option (nth 0 ˆoptions-list)
135 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset 10
136)
137 (member-selector-label :class ’ui-label-class
138 label "Selected Member"
139 label-align :left
140 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset 13
141)
142 (member-selector :class ui-option-menu-class
143 Button1-action ’(progn
144 (update (the superior link-editor-form-class))
145 (draw-member-curves)
146 ;(blink (the connection (:from ˆselected-option)) 2 100)
147)
148 options-list (series-members (the link-geometry sweeps (:from (the superior link-selector

selected-option))))
149 labels-list (loop for i from 0 to (- (length ˆoptions-list) 1)
150 collect (format nil "Member ˜a" i))
151 selected-option (nth 0 ˆoptions-list)
152 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset 13
153)
154 (Sweep-action-button :class ’ui-action-button-class
155 measurement ’percentage
156 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset 17
157 label "Sweep Link"
158 Button1-action ’(progn
159 (draw-link-wo-mesh (the link-geometry (:from (the interface forms link-editor

link-selector selected-option))))
160 (draw (the superior main-mechanism-class helping-points))
161)
162)
163 (undraw-all-button :class ’ui-action-button-class
164 measurement ’percentage
165 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset 17
166 label "Undraw"
167 Button1-action (undraw (the main-mechanism-class))
168)
169 (draw-member-nurb-button :class ’ui-action-button-class
170 measurement ’percentage

81

171 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset 20
172 label "Draw Curves"
173 Button1-action ’(draw-member-curves)
174)
175 (sweep-member-nurb-button :class ’ui-action-button-class
176 measurement ’percentage
177 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset 20
178 label "Sweep Member"
179 Button1-action ’(draw (the member-selector selected-option) :draw-subobjects? nil)
180)
181 (point-sheet-label :class ’ui-label-class
182 label "Start/End point"
183 label-align :left
184 y-offset 27
185 x-offset ˆbutton-first-row-x-offset
186 height 3
187)
188 (point-sheet :class ’ui-spreadsheet-class
189 measurement ’percentage
190 x-offset ˆbutton-first-row-x-offset
191 y-offset 30
192 width 19
193 height 10
194 column-labels (list "x-coord" "y-coord" "z-coord")
195 row-labels (list "Start point" "End point")
196 cell-values ˆˆpoints-list
197 number-of-columns (length ˆcolumn-labels)
198 number-of-rows 2
199 row-height 28
200 column-width 61
201 attachment-info-list ’(top bottom left right)
202 editable? nil
203)
204 (weight-sheet-label :class ’ui-label-class
205 label "Weight points"
206 label-align :left
207 y-offset 40
208 x-offset ˆbutton-first-row-x-offset
209 height 3
210)
211 (weight-sheet :class ’ui-spreadsheet-class
212 measurement ’percentage
213 x-offset ˆbutton-first-row-x-offset
214 y-offset 43
215 width 19
216 height 16
217 column-labels (list "x-coord" "y-coord" "z-coord" "weight")
218 row-labels (loop for row from 0 to ˆˆweight-points-quantity
219 collect (format nil "Point ˜a" row)
220)
221 cell-values ˆˆweight-points
222 number-of-columns (length ˆcolumn-labels)
223 number-of-rows ˆˆweight-points-quantity
224 row-height 27
225 column-width 50
226 attachment-info-list ’(top bottom left right)
227 editable? t
228)
229 (add-row-action-button :class ’ui-action-button-class
230 measurement ’percentage
231 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset 60
232 label "Add Weight Point"
233 Button1-action ’(weight-sheet-add-row (the superior link-editor-form-class))
234)
235 (remove-row-action-button :class ’ui-action-button-class
236 measurement ’percentage
237 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset 60
238 label "Remove Weight Point"
239 Button1-action ’(weight-sheet-remove-row (the superior link-editor-form-class))
240)
241 (move-point-action-button :class ’ui-action-button-class
242 measurement ’percentage
243 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset 63
244 label "Move Weight Point"
245 Button1-action ’(progn (translate-weight-points (the superior main-mechanism-class

helping-points))
246 (update (the superior weight-sheet))
247 (regen)
248 (draw (the superior main-mechanism-class helping-points)))
249)
250 (weight-apply-action-button :class ’ui-action-button-class
251 measurement ’percentage
252 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset 63
253 label "Apply Weight"
254 Button1-action ’(weight-sheet-apply (the superior link-editor-form-class))
255)
256 ;;;;;Cross-section;;;
257 (cross-section-selector-label :class ’ui-label-class
258 label "Member Cross-section"
259 label-align :left

82

260 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset ˆ
cross-section-offset

261)
262 (cross-section-start-label :class ’ui-label-class
263 label "Start"
264 label-align :left
265 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset

(+ ˆcross-section-offset 3)
266)
267 (cross-section-end-label :class ’ui-label-class
268 label "End"
269 label-align :left
270 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset

(+ ˆcross-section-offset 6)
271)
272 (start-cross-section-selector :class ui-option-menu-class
273 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset (+ ˆ

cross-section-offset 3)
274 Button1-action ’(progn
275 (update (the superior link-editor-form-class))
276 (draw-member-curves)
277)
278 options-list (reverse (class-direct-defined-subclasses ’cross-section-model))
279 labels-list (loop for option in !options-list
280 collect (remove "-section" (write-to-string option))
281)
282 selected-option (nth
283 (position
284 (write-to-string (the type (:from (get-cross-section_D (the superior link-editor

member-selector selected-option)))))
285 !labels-list
286)
287 !options-list)
288)
289 (end-cross-section-selector :class ui-option-menu-class
290 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset (+ ˆ

cross-section-offset 6)
291 Button1-action ’(progn
292 (update (the superior link-editor-form-class))
293 (draw-member-curves)
294)
295 options-list (reverse (class-direct-defined-subclasses ’cross-section-model))
296 labels-list (loop for option in !options-list
297 collect (remove "-section" (write-to-string option))
298)
299 selected-option(nth
300 (position
301 (write-to-string (the type (:from (get-cross-section_A (the superior

link-editor member-selector selected-option)))))
302 !labels-list
303)
304 !options-list)
305)
306 (cs-width-label :class ’ui-label-class
307 label "w"
308 height ˆbutton-height width 2 x-offset (+ ˆbutton-second-row-x-offset ˆbutton-width) y-offset ˆ

cross-section-offset
309)
310 (cs-height-label :class ’ui-label-class
311 label "h"
312 height ˆbutton-height width 2 x-offset (+ ˆbutton-second-row-x-offset ˆbutton-width ˆwidth)

y-offset ˆcross-section-offset
313)
314 (start-width :Class ’ui-typein-field-class
315 height ˆbutton-height width 2 x-offset (+ ˆbutton-second-row-x-offset ˆbutton-width) y-offset (+

ˆcross-section-offset 3)
316 editable? t
317 model-property-object (the width (:from (the superior link-editor member-selector selected-option))

)
318 content ˆmodel-property-object
319 Focusout-validation? t
320)
321 (start-height :Class ’ui-typein-field-class
322 height ˆbutton-height width 2 x-offset (+ ˆbutton-second-row-x-offset ˆbutton-width ˆwidth)

y-offset (+ ˆcross-section-offset 3)
323 model-property-object (the height (:from (the superior link-editor member-selector selected-option)

))
324 content ˆmodel-property-object
325 Focusout-validation? t
326)
327 (end-width :Class ’ui-typein-field-class
328 height ˆbutton-height width 2 x-offset (+ ˆbutton-second-row-x-offset ˆbutton-width) y-offset (+ ˆ

cross-section-offset 6)
329 model-property-object (the width-end (:from (the superior link-editor member-selector

selected-option)))
330 content ˆmodel-property-object
331 Focusout-validation? t
332)
333 (end-height :Class ’ui-typein-field-class

83

334 height ˆbutton-height width 2 x-offset (+ ˆbutton-second-row-x-offset ˆbutton-width ˆwidth)
y-offset (+ ˆcross-section-offset 6)

335 model-property-object (the height-end (:from (the superior link-editor member-selector
selected-option)))

336 content ˆmodel-property-object
337 Focusout-validation? t
338)
339 (apply-cross-section-button :Class ’ui-action-button-class
340 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset (+ ˆ

cross-section-offset 10)
341 label "Apply Cross-section"
342 Button1-action ’(change-cross-section (the superior link-editor))
343)
344 ;;;;;;;;Cross-section end;;;;;;;;;;;;;;
345 ;;;;;;;;Mesh-size;;;;;;;;;;;;;;;;;;;;;;;
346 (mesh-label :class ’ui-label-class
347 label "Member Mesh size"
348 label-align :left
349 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset ˆmesh-offset
350)
351 (mesh-max-size-label :class ’ui-label-class
352 label "Max"
353 label-align :left
354 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset (+ ˆmesh-offset

3)
355)
356 (mesh-max-field :Class ’ui-typein-field-class
357 height ˆbutton-height width 5 x-offset ˆbutton-second-row-x-offset y-offset (+ ˆmesh-offset 3)
358 editable? t
359 model-property-object (the link-geometry max-element-size (:from (the superior link-editor link-selector

selected-option)))
360 content ˆmodel-property-object
361 Focusout-validation? t
362)
363 (mesh-min-size-label :class ’ui-label-class
364 label "Min"
365 label-align :left
366 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset (+ ˆmesh-offset

6)
367)
368 (mesh-min-field :Class ’ui-typein-field-class
369 height ˆbutton-height width 5 x-offset ˆbutton-second-row-x-offset y-offset (+ ˆmesh-offset 6)
370 editable? t
371 model-property-object (the link-geometry min-element-size (:from (the superior link-editor link-selector

selected-option)))
372 content ˆmodel-property-object
373 Focusout-validation? t
374)
375 (apply-mesh-button :Class ’ui-action-button-class
376 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-second-row-x-offset y-offset (+ ˆmesh-offset 10)
377 label "Mesh"
378 Button1-action ’(progn
379 (draw (first (get-link-surface-mesh-elements-query-objects-list
380 (get-mesh-model-object (the superior link-editor link-selector selected-option)))))
381 (change-max-mesh-size
382 (the link-geometry (:from (the superior link-editor link-selector selected-option)))
383 (get-value (the superior link-editor mesh-max-field)))
384 (change-min-mesh-size
385 (the link-geometry (:from (the superior link-editor link-selector selected-option)))
386 (get-value (the superior link-editor mesh-min-field)))
387)
388)
389 ;;;;;;;;Mesh-size end;;;;;;;;;;;;;;
390 (misc-label :class ’ui-label-class
391 label "Misc."
392 label-align :left
393 height ˆbutton-height width ˆbutton-width x-offset ˆbutton-first-row-x-offset y-offset ˆsurface-offset
394)
395 (surface-label :class ’ui-label-class
396 label "Link surface"
397 label-align :left
398 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-first-row-x-offset 1) y-offset (+ ˆ

surface-offset 3)
399)
400 (surface-field :class ui-radio-buttons-class
401 height ˆbutton-height width 7 x-offset (+ ˆbutton-first-row-x-offset 6) y-offset (+ ˆsurface-offset 3)
402 Labels-list ’("Yes" "No")
403 Status (let(
404 (surface (series-members (the link-geometry surfaces (:from (the superior link-editor

link-selector selected-option)))))
405)
406 (if surface
407 (if (the display? (:from (nth 0 surface))) 0 1)
408 1)
409)
410 Button1-action ’(progn
411 (let(
412 (surface (series-members (the link-geometry surfaces (:from (the superior

link-editor link-selector selected-option)))))
413)

84

414 (if surface
415 (loop for member in surface
416 do (change-value (the display? (:from member)) (if (= ˆstatus 0) t nil)))
417 (change-value ˆstatus 1))
418)
419 (update (the link-editor))
420 (regen)
421)
422)
423 (blend-label :class ’ui-label-class
424 label "Blend edges"
425 label-align :left
426 height ˆbutton-height width ˆbutton-width x-offset (+ ˆbutton-second-row-x-offset 5) y-offset (+ ˆ

surface-offset 3)
427)
428 (blend-field :class ui-radio-buttons-class
429 height ˆbutton-height width 7 x-offset (+ ˆbutton-second-row-x-offset 10) y-offset (+ ˆsurface-offset 3)
430 Labels-list ’("Yes" "No")
431 Status (if (the link-geometry blend? (:from (the superior link-editor link-selector selected-option))) 0 1)
432 Button1-action ’(progn
433 (change-value (the link-geometry blend? (:from (the superior link-editor link-selector

selected-option))) (if (= ˆstatus 0) t nil))
434 (update (the link-editor))
435 (regen)
436)
437)
438)
439)
440 (define-method weight-sheet-apply link-editor-form-class ()
441 (update-weight-points
442 (the index (:from (the interface forms link-editor link-selector selected-option)))
443 (the index (:from (the interface forms link-editor member-selector selected-option)))
444 (loop for row from 0 to (- (the interface forms link-editor weight-sheet number-of-rows) 1)
445 collect (loop for cell from 0 to 3
446 collect (read-from-string (get-cell-value (the interface forms link-editor

weight-sheet) row cell))
447)
448)
449)
450 (update (the weight-sheet))
451 (regen)
452 (draw-member-curves)
453)
454 (define-method weight-sheet-add-row link-editor-form-class ()
455 (update-weight-points
456 (the index (:from (the interface forms link-editor link-selector selected-option)))
457 (the index (:from (the interface forms link-editor member-selector selected-option)))
458 (append
459 (loop for row from 0 to (- (the interface forms link-editor weight-sheet number-of-rows) 1)
460 collect (loop for cell from 0 to 3
461 collect (read-from-string (get-cell-value (the interface forms link-editor weight-sheet)

row cell))
462)
463)
464 (list (append (get-new-wpoint-coords (the interface forms link-editor)) (list 1)))
465)
466)
467 (update (the weight-sheet))
468 (regen)
469 (draw-member-curves)
470)
471 (define-method weight-sheet-remove-row link-editor-form-class ()
472 (update-weight-points
473 (the index (:from (the interface forms link-editor link-selector selected-option)))
474 (the index (:from (the interface forms link-editor member-selector selected-option)))
475 (butlast (loop for row from 0 to (- (the interface forms link-editor weight-sheet number-of-rows) 1)
476 collect (loop for cell from 0 to 3
477 collect (read-from-string (get-cell-value (the interface forms link-editor

weight-sheet) row cell))
478)
479))
480)
481 (update (the weight-sheet))
482 (regen)
483 (draw-member-curves)
484)
485 (define-method get-view-weight link-editor-form-class ()
486 !weight-points
487)
488 (define-method get-view-weight-coords link-editor-form-class ()
489 !weight-points-coord
490)
491 (define-method get-view-points-list link-editor-form-class ()
492 !points-list
493)
494 (define-method get-new-wpoint-coords link-editor-form-class ()
495 (if (get-view-weight-coords (the))
496 (mid-point (nth 1 (get-view-points-list (the))) (nth (- (LENGTH (get-view-weight-coords (the))) 1) (

get-view-weight-coords (the))))
497 (mid-point (nth 0 (get-view-points-list (the))) (nth 1 (get-view-points-list (the))))

85

498)
499)
500 (define-method get-selected-link link-editor-form-class ()
501 (the link-selector selected-option)
502)
503 (define-method get-selected-member link-editor-form-class ()
504 (the member-selector selected-option)
505)
506 (define-method change-cross-section link-editor-form-class ()
507 (change-cross-section-start-width
508 (the superior link-editor member-selector selected-option)
509 (get-value (the superior link-editor start-width)))
510 (change-cross-section-start-height
511 (the superior link-editor member-selector selected-option)
512 (get-value (the superior link-editor start-height)))
513 (change-cross-section_D
514 (the superior link-editor member-selector selected-option)
515 (the superior link-editor start-cross-section-selector selected-option))
516 (change-cross-section-end-width
517 (the superior link-editor member-selector selected-option)
518 (get-value (the superior link-editor end-width)))
519 (change-cross-section-end-height
520 (the superior link-editor member-selector selected-option)
521 (get-value (the superior link-editor end-height)))
522 (change-cross-section_D
523 (the superior link-editor member-selector selected-option)
524 (the superior link-editor start-cross-section-selector selected-option))
525 (regen)
526)
527 (defun update-weight-points (link member weight-sheet)
528 (let
529 (
530 (member-shape (get-member-shape (the main-mechanism-class shapes) link member))
531 (point-number (nth 5 member-shape))
532 (new-point-numbers (if (> (length weight-sheet) (length point-number))
533 (if (get-weight-list (the main-mechanism-class weights))
534 (append point-number
535 (list (+ 1 (nth 0 (sort (loop for point in (get-weight-list (the

main-mechanism-class weights)) append (list (nth 0 point))) ’>))))
536)
537 (list 0))
538 point-number))
539 (new-w-list
540 (loop for w-s-line in weight-sheet
541 for w-point in new-point-numbers
542 collect (append (list w-point (read-from-string (format nil "l-˜d,m-˜d" link member)))

w-s-line)
543)
544)
545 (new-w-ids
546 (loop for new-point-numbers in new-w-list
547 append (list (nth 0 new-point-numbers)))
548)
549)
550 (change-weight-points-list (the main-mechanism-class weights) new-w-list)
551 (change-shape-weight (the main-mechanism-class shapes) link member new-w-ids)
552 (smash-value (the connection (:from (the interface forms link-editor member-selector selected-option))))
553 (regen)
554)
555)
556 (defun draw-member-curves ()
557 (undraw (the main-mechanism-class))
558 (draw (the superior main-mechanism-class helping-points))
559 (loop for member in (series-members (the link-geometry sweeps (:from (the interface forms link-editor

link-selector selected-option))))
560 do (progn (draw (the connection (:from member)) :draw-subobjects? nil)
561 (change-color (the connection (:from member)) ’white)
562)
563)
564 (change-color (the connection (:from (the interface forms link-editor member-selector selected-option))) ’

red)
565)
566 (defun display-nurbs-module ()
567 (add-object (the) ’helping-points ’helping-points-class)
568 (add-object (the interface forms) ’link-editor ’link-editor-form-class)
569 (display (the interface forms link-editor))
570 (activate-display (the interface forms link-editor canvas))
571 (add-light :name ’light1 :color ’white :x 0.7 :y 0.5 :z -0.3)
572 (draw-member-curves)
573 (change-color (the connection (:from (the interface forms link-editor member-selector selected-option))) ’red)
574 (zoom :all)
575 ;(set-current-display-background-color ’grey49)
576)
577 (defun close-nurbs-module ()
578 (hide (the interface forms link-editor))
579 (delete-object (the main-mechanism-class helping-points))
580 (delete-object (the interface forms link-editor))
581 (delete-current-display-lights)
582 (activate-display (the model-manager interface sketcher-layout-form-class sketcher-main-form sketcher-main-form

work-area-canvas-form canvas canvas canvas canvas))

86

583 (regen)
584)

87

A.4 Risk analysis

88

	Abstract
	Preface
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Master assignment
	Structure

	Theoretical framework
	Mechanisms
	Links
	Joints
	Topology
	Analysis of Mechanisms

	Design Process
	Knowledge Based Engineering
	Adaptive Modeling Language
	Graphical UI development
	UI Design Process
	Model-View-Controller

	RaMMS
	System Architecture
	Collections
	Joints
	Links
	Loads, Springs and Dampers
	Mesh generation
	Simulation- and Geometry Export

	Current UI

	Method
	User Interface Development
	Theoretical Study
	Rapid prototyping
	Implementation

	UI Concepts
	UI Solutions
	Global Coordinate Input and Editing
	Joint Modelling
	Mechanism Link Modelling
	Load-, Spring- and Damper- Definitions
	FE Mesh Generation

	UI Discussion

	UI Implementation
	Model-view-controller in RaMMS
	Implementing the Shapes Editor
	NURBS module
	The Shapes Editor

	Implementing the Table Widgets
	Mechanism Library Control

	Examples of Mechanism Design
	Case 1: Hoeken' linkage
	Case 2: Double Wishbone Suspension

	Discussion
	RaMMS in the Design Process
	CAD v. RaMMS
	Usability

	Conclusion
	Bibliography
	Appendix
	AML UI Classes
	NURBS Module Source Code
	Shapes Editor Source code
	Risk analysis

