
Numerical modelling of moisture ingress
in cracked concrete

Håkon Halvorsen

Master of Science in Civil and Environmental Engineering

Supervisor: Mette Rica Geiker, KT
Co-supervisor: Alexander Michel, KT

Department of Structural Engineering

Submission date: June 2017

Norwegian University of Science and Technology

Department of Structural Engineering
Faculty of Engineering
NTNU - Norwegian University of Science and Technology

MASTER THESIS 2017

SUBJECT AREA:

CONCRETE TECHNOLOGY

DATE:

11.06.17

NO. OF PAGES:

10 + 55 + 40

TITLE:

Numerical modelling of moisture ingress in cracked concrete

BY:

Håkon Halvorsen

RESPONSIBLE TEACHER: Professor Mette Rica Geiker

SUPERVISOR: Assistant Professor Alexander Michel (DTU)

CARRIED OUT AT: Department of Structural Engineering, Gløshaugen

SUMMARY:

Concrete is a construction material which service life can be significantly reduced with the presence of cracks
when concrete is exposed to aggressive agents such as chlorides. The current service life models for
concrete do not account for cracks when modelling service life of concrete structures. In this thesis, moisture
transport in concrete with a crack and aggregates was modelled numerically using finite element analysis.
The numerical model was applied to a wedge spitting test geometry and tested against experimental data,
and was used to identify how the crack and aggregates influence moisture ingress. The numerical model was
able to model the ingress extend in vertical and lateral directions with a very good agreement with the
experimental data, both for the un-cracked and cracked state. The moisture distribution was more accurately
modelled with the heterogeneous models including aggregates compared to the homogenous models without
aggregates. By observing the behavior of the numerical model when varying the number of solutions that is
interpolated and averaged to give rise to the heterogeneous models including aggregates, it was found that
the heterogeneous models converge towards the homogenous models, when the number of interpolated
solutions that are included go towards infinity.

ACCESSIBILITY:

OPEN

OPEN

OPEN

Institutt for konstruksjonsteknikk
Fakultet for ingeniørvitenskap
NTNU - Norges teknisk-naturvitenskapelige universitet

MASTEROPPGAVE 2017

FAGOMRÅDE:

BETONGTEKNOLOGI

DATO:

11.06.17

ANTALL SIDER:

10 + 55 + 40

TITTEL:

Numerisk modellering av fuktinntrenging i risset betong

UTFØRT AV:

Håkon Halvorsen

FAGLÆRER: Professor Mette Rica Geiker

VEILEDER: Amanuensis Alexander Michel (DTU)

UTFØRT VED: Institutt for konstruksjonsteknikk, Gløshaugen

SAMMENDRAG:

Betong er et byggemateriale som kan få betydelig redusert levetid ved forekomster av riss når betongen er
utsatt for aggressive stoffer som klorider. Dagens levetidsmodeller for betongkonstruksjoner tar ikke høyde for
riss ved modellering av levetid. I denne oppgaven ble fukttransport i betong med riss og tilslag modellert
numerisk ved hjelp av endelige elementanalyser. Den numeriske modellen ble anvendt på en wedge spitting
test-geometri og testet mot data fra laboratorieforsøk. Den numeriske modellen ble brukt til å identifisere
hvordan riss og tilslag påvirker fuktinntrenging. Den numeriske modellen var i stand til å modellere
fuktinntrenging i vertikal og lateral retning med en meget god overenstemmelse med
laboratorieforsøksdataene, både i urisset og risset tilstand. Fuktfordelingen ble mer nøyaktig modellert med
de heterogene modellene, som inkluderte tilslag, sammenlignet med de homogene modellene uten tilslag.
Ved å observere oppførselen til den numeriske modellen når man varierer antall løsninger som blir interpolert
og funnet gjennomsnittet av, for å gi opphav til de heterogene modellene, ble det funnet at de heterogene
modellene konvergerer mot de homogene modellene, når antall interpolerte løsninger i beregningen går mot
uendelig.

TILGJENGELIGHET:

ÅPEN

OPEN

OPEN

v

Preface

This master thesis written was in the spring semester of 2017 as the final milestone upon

receiving the degree Master of Science in the Civil and Environmental Engineering study

program at the Norwegian University of Science and Technology in Trondheim, Norway. The

thesis was carried out at the Department of Structural Engineering at Gløshaugen. A

publication based on the master thesis is being prepared.

I would like to thank my supervisors Mette Rica Geiker and Alexander Michel for their

guidance, help and encouragement which has inspired me and enriched my work with this

thesis. I would also like to thank John Floan at the NTNU IT Division helping me running the

model code on the high-performance computing system Vilje.

vi

vii

Table of contents

ABBREVIATIONS .. VIII

SYMBOLS .. IX

1 INTRODUCTION .. 1

1.1 RESEARCH OBJECTIVES .. 4

1.2 RESEARCH APPROACH AND ASSUMPTIONS ... 5

2 LITERATURE REVIEW .. 7

2.1 TRANSPORT MODELS FOR MOISTURE INGRESS IN CONCRETE ... 7

2.2 FORMULATION OF THE HYDRAULIC DIFFUSIVITY ... 10

2.3 MODELLING OF CRACKS .. 18

2.4 MODELLING OF AGGREGATES .. 21

3 METHODOLOGY – NUMERICAL MODELLING APPROACH ... 23

3.1 GENERAL STRATEGY ... 23

3.2 MIXTURE DESIGN OF THE CONCRETE .. 25

3.3 TRANSPORT MODELLING APPROACH... 26

3.4 PROGRAMMING PROCEDURE AND ASSUMPTIONS ... 26

3.5 IMPLEMENTATION OF THE CRACK ... 29

3.6 IMPLEMENTATION OF AGGREGATES .. 30

4 RESULTS AND ANALYSIS ... 35

4.1 NUMERICAL MODEL VS. EXPERIMENTAL DATA .. 35

4.2 WETTING FRONT ANALYSIS .. 39

4.3 INFLUENCE OF AGGREGATES ... 42

4.4 INGRESS AS A FUNCTION OF TIME ... 44

5 SUMMARY AND DISCUSSION ... 46

6 CONCLUSIONS ... 49

7 RECOMMENDATIONS FOR FURTHER WORK ... 50

LIST OF REFERENCES ... 51

LIST OF APPENDICES .. 55

viii

Abbreviations

BSB Braunauer-Skalny-Bodor

CHM Cracked hinge model

CMOD Crack mouth opening displacement

FE Finite element

ITZ Interfacial transition zone

LT Linear triangle

PDE Partial differential equation

PSD Particle size distribution

RH Relative humidity

USD United States Dollar

WST Wedge splitting test

ix

Symbols

Symbol Name or property Unit

Latin letters

c Cement kg

C Parameter in BSB model -

D Hydraulic diffusivity mm2/s

DCl Chloride diffusivity mm2/s

K Hydraulic conductivity mm/s

k Parameter in BSB model -

l Length mm

pc Capillary pressure N/mm2

r Parameter in BSB model -

s Normalized sorptivity mm/s1/2

S Sorptivity mm/s1/2

T Temperature (Kelvin scale) K

t Time s, h

te Equivalent hydration age days

Vm Volume of moisture m3/m3

x

Vpaste Volumetric fraction of cement paste in concrete m3/m3

w Water kg

Wgel Cement gel content by mass kg/m3

Greek letters

α Degree of hydration -

𝛾Cl Crack influence factor on chloride ingress -

θ Moisture content m3/m3

θ̅ Normalized moisture content -

θi Initial moisture content m3/m3

θRH Moisture content m3/m3

θs Moisture content at saturation m3/m3

ρw Density of water kg/m3

ψ Capillary potential mm

Φtot,concrete Total porosity of the concrete m3/m3

Φtot,paste Total porosity of the cement paste m3/m3

1

1 Introduction

Concrete is a composite construction material made from water, cement, aggregates and may

further contain supplementary cementitious materials and chemical admixtures. Regarding

mechanical properties, concrete has a relatively weak ability to withstand tensile forces

compared to compression forces. To compensate for the lacking tensile strength, structural

concrete is usually cast along with reinforcement steel, which main objective is to take up

tensile forces internally in the structure. Therefore, it is necessary to keep the reinforcement

steel intact for the concrete structure to perform as intended for civil engineering purposes

throughout its service life.

Deteriorating concrete structures demand vast sums for repair worldwide. According to

[Lepech and Li, 2005], it was estimated in 2005 that it would cost USD 1.8 trillion over the

next 20 years to maintain road and bridge infrastructure and an additional USD 630 billion to

improve this infrastructure, only in the United States. These numbers are growing, and

indicate the necessity of improving the durability of concrete structures and the accuracy of

service life models to obtain more cost-effective design of concrete structures.

A number of service life models, e.g., fib [fib, 2010 & fib, 2006] and Life-365 [Ehlen et al.,

2009 & Life-365, 2010], have been developed to address durability issues of reinforced

concrete structures and provide tools to estimate the length of time during which a desired

level of functionality is maintained. The service life models can be used to assess the state and

the remaining service life time of the structure, illustrated by Tuutti’s corrosion model [Tuutti,

1982] in Figure 1-1.

2

Figure 1-1: Service life model of Tuutti. The figure is from [Tuutti, 1982].

In particular, an accurate determination of the moisture transport and the state and amount of

moisture in reinforced concrete structures is of major importance for prediction of many

deterioration mechanisms [Baroghel-Bouny, 2007] and moisture-induced volume changes.

Corrosion of reinforcement steel is one of the major deterioration mechanisms related to

concrete structures, it is harmful for both the steel itself and the concrete. The causes behind

reinforcement steel corrosion is mainly two-folded; carbonation of the cement paste due to

CO2 ingress, and chloride transport through the concrete cover to the reinforcement steel.

Figure 1-2 shows a deteriorated concrete beam due to reinforcement steel corrosion.

Figure 1-2: Deteriorated concrete beam due to reinforcement steel corrosion.

The image is from [AlwaysCivil, 2011].

3

Concrete structures may be exposed to chlorides from the initial mixing of the concrete

(which is not allowed any longer), or more commonly from environmental exposure

throughout its service life. Chlorides from environmental exposure may enter concrete from

mainly two sources: seawater and de-icing salts.

Cracks in concrete appear as discontinuities at the concrete surface, which may increase the

local permeability. According to [Bjøntegaard, 2016], cracks may develop because of mainly

three reasons:

▪ Volume changes of the concrete, e.g. autogenous shrinkage, plastic settlement, curing

conditions, etc.

▪ Degradation of the structure; deterioration caused by environmental exposure, e.g.

chlorides from seawater and de-icing salts.

▪ Loads working on the structure, e.g. bending moments acting on structural members

where the tensile strength of the concrete is exceeded, resulting in formation of cracks.

Although not treated further in this thesis, cracks may accelerate the carbonation process of

concrete due to increased permeability [Song et al., 2006]. This is due to the increased CO2

diffusion rate into the concrete, causing increased carbonation of the cement paste lowering

the pH of the pore solution and depassivating the protective passive layer on the

reinforcement steel surface [Angst et al., 2017 & Basheer et al., 2001 & Tuutti, 1982].

Similarly, cracks may increase chloride and moisture ingress in concrete [Pease, 2010]. It has

been shown by [Audenaert et al., 2009] that for a crack with a width of 0.1 mm, the

penetration depth of chlorides can be multiplied by ten in the vicinity of the crack. Increased

moisture ingress due to cracks may also amplify freeze/thaw deterioration of concrete

structures [Jacobsen and Sellevold, 1996].

The relation between fracture and ingress in concrete is gaining attention among researchers

[Carrara et al., 2016], and it is increasingly acknowledged that long-time performance of

concrete structures is significantly affected by water ingress and transport of dissolved

aggressive agents such as chlorides and sulfates [Wang and Ueda, 2011], where both the

4

water itself or the aggressive agents can induce the deterioration. Concretes with low content

of tricalcium aluminate (C3A) in the cement is considered to be sulfate resistant [Kjellsen,

2016]. Problems regarding sulfate ingress may thus be mitigated by using cements with low

C3A content where sulfate occurrences might be problematic for durability.

The durability of concrete structures can be modelled with service life models, such as fib and

Life-365. However, the impact of cracks in terms of corrosion induced deterioration is yet to

be implemented in the service life models [Pease et al., 2012]. The assumption of a crack free

structure in these models is a simplification of reality, as cracks are common in concrete

structures. There is a need for further investigation within this topic in order for the service

life models to include the effect of cracks on service life of concrete structures.

1.1 Research objectives

The research objectives to be achieved for this thesis are:

1. Preparation of an overview of current modelling techniques for moisture ingress

modelling in porous materials.

2. Current service life models and most of the moisture ingress models do not take into

account the effect of cracks, at the same time, research has shown that cracks

considerably affect the ingress of moisture [Pease, 2010], thus the objective is to

develop a model that can account for the impact of cracks on the moisture ingress.

3. Similarly, service life models and current moisture ingress models do not account for

the impact of aggregates on the moisture ingress. However, research has shown that

e.g. in connection to reinforcement corrosion local variations in moisture content can

have a considerable influence on e.g. corrosion rate [Hornbostel et al., 2015]. Thus,

the objective is to include aggregates in such a modelling approach to allow for more

accurate service life prediction.

4. Finally, predictions of the modelling approach in terms of moisture ingress shall be

compared to experimental data available in the literature.

5

1.2 Research approach and assumptions

The research is carried out in the following procedure:

1. Literature review.

2. Development of the moisture transport model for homogenous material on basis of

literature review.

3. Implementation of cracks in moisture transport model.

4. Implementation of aggregates in moisture transport model.

5. Comparison of model predictions with experimental data provided in the literature.

Predictions of the developed moisture transport model, including aggregates and cracks, are

compared to experimental results presented in [Pease, 2010 & Pease et al., 2012]. The data

derived from these experiments was obtained by wedge splitting test specimens that were

cracked to various crack mouth opening displacements, subsequently conditioned to 50%

relative humidity for at least one year, and finally exposed to liquid water where the moisture

ingress was determined by means of X-ray attenuation measurement technique [Pease,

2010 & Pease et al., 2012 & Weiss et al., 2015].

The following general assumptions apply to the numerical model:

1. Moisture transport is described by hydraulic diffusion.

2. Relative humidity and temperature are considered constant.

3. Only adsorption is studied.

4. The ultimate degree of hydration is reached for the concrete specimen, i.e. porosity is

assumed constant.

5. The crack is assumed to follow a V-shape determined the by cracked hinge model.

6. Aggregates are assumed to be of circular shape and non-porous.

The model was developed in several stages, investigating the influence of cracks and

aggregates, respectively, on the moisture ingress. See subchapter 3.3: Transport modelling

approach and Table 4-1 for an overview of the different models.

6

Relevant literature is gathered using search engines such as Oria, Scopus and Google Scholar,

or by recommendation of the supervisors.

7

2 Literature review

2.1 Transport models for moisture ingress in concrete

Porous materials such as concrete can store moisture due to a moisture potential, where the

moisture storage capacity can either be described by the relative humidity (RH) or the

capillary pressure pc, according to [Scheffler, 2008]. The phenomena of moisture storage can

be illustrated with sorption isotherms, for a constant temperature, where the moisture storage

capacity is the derivative of the sorption isotherm curve [Scheffler, 2008]. Figure 2-1

illustrates the water content or physically bound water vs. RH.

Figure 2-1: Example of a sorption isotherm for concrete, from [Xi et al., 1994].

As seen in Figure 2-1, the water content stored in the concrete varies not only with the RH,

but also with mixture properties like the w/c ratio of the concrete. The moisture content will

also depend on properties like curing period, temperature and cement type [Xi et al., 1994],

8

leaving some complexity into modelling sorption isotherms for concretes. [Ožbolt et al.,

2010] presented the Braunauer-Skalny-Bodor (BSB) model for adsorption isotherms for

cementitious materials, which improves upon models earlier proposed [Xi et al., 1994]. The

moisture content θRH [m3/m3] is given as:

θRH(RH) =

C k Vm RH Wgel

(1 − k)[1 + (C − 1) k RH] ρw
 (1)

Where RH is the relative humidity, Wgel is the cement gel content by mass [kg/m3] (cement

gel consists mainly of calcium-silicate-hydrate gel [Taylor, 1992]) and ρw is the density of

water [kg/m3]. The coefficient Vm which represents the volume of moisture is defined as:

Vm = (0.068 −

0.22

𝑡𝑒
) (0.85 + 0.45

w

c
) (2)

Where te is the equivalent hydration age (or the maturity of the concrete [Bjøntegaard, 2011])

in days, and w/c is the mass ratio between water w and cement c. The coefficients k, C and r

are defined as follows:

k =
1 −

1
r

C − 1

(3)

C = e

 855
T (4)

r = (2.5 +

15

te
) (0.33 + 2.2

w

c
) (5)

Where T is the absolute temperature in Kelvin. Finally; te > 5 days and 0.3 < w/c < 0.6 must

be obeyed when using the BSB model.

One should expect different curves for adsorption (wetting) and desorption (drying) in

sorption isotherms. This is due to the moisture hysteresis phenomenon where the concrete

9

fixates different amounts of moisture for the same relative humidity, depending on whether

the concrete experiences adsorption or desorption [Derluyn et al., 2012].

Modelling of moisture transport in porous materials may be grouped into two main branches

based on driving forces: hydraulic conductivity and hydraulic diffusion, according to

[Scheffler, 2008]. According to [Hall, 1994], the hydraulic conductivity can be difficult to

determine for unsaturated concrete, and is easier determined indirectly from hydraulic

diffusion. According to [Wang and Ueda, 2011] the hydraulic diffusion-conductivity

relationship is:

D(θ) = K(θ)

dψ

dθ
 (6)

Where D(θ) is the hydraulic diffusivity, K(θ) is the hydraulic conductivity, θ is the volumetric

moisture content in the concrete and ψ is the capillary potential. From what seems apparent in

the literature, more effort has been placed on determination of hydraulic diffusivity and

sorptivity properties rather than conductivity properties for concrete. Thus, the focus in this

work will be placed on hydraulic diffusion, in the development of a transport model.

Hydraulic diffusivity is an extension of Darcy’s law [Zhou et al., 2016].

According to [Pel et al., 1995], moisture ingress in unsaturated porous materials may be

formulated in terms of a single non-linear partial differential equation (PDE), commonly

referred to as Richards’ equation [Pachepsky et al., 2003]:

 dθ

dt
= ∇(D(θ)∇θ)

(7)

Where t is time. Richards’ equation has shown to be able to describe moisture transport for

concrete, accounting for movement of both liquid water and water vapor [Samson et al.,

2005].

It is also worth mentioning that moisture penetration by capillary adsorption is regarded as

one of the main transport processes for aggressive agents such as chlorides and sulfates into

10

unsaturated concrete [Wang and Ueda, 2011], and capillary adsorption is described by

hydraulic diffusivity [Abyaneh et al., 2014]. Thus, to account for transport of water-borne

ions into the concrete which can lead to reinforcement steel corrosion and deterioration of the

structure, moisture ingress must be realistically modelled.

2.2 Formulation of the hydraulic diffusivity

Commonly, for moisture transport modelling, the hydraulic diffusivity D(θ) can be assumed

to follow either [Leech et al., 2003] an exponential function:

 D(θ) = Do e
nθ̅(θ) (8)

Or a power function:

 D(θ) = Do θ̅(θ)
n (9)

Where θ̅(θ) is the normalized moisture content:

θ̅(θ) =

θ − θi
θs − θi

 (10)

Where θs is the saturated moisture content and θi is the initial water content in the concrete. θi

can be predicted by employing the BSB model in Eq. 1, assuming θi = θRH. Analytical

assessment, such as curve fitting, can be employed to determine empirically which of Eq. 8 or

Eq. 9 yields the best accuracy for a given concrete specimen, provided experimental data is

available. D0 and n are magnitude and shape terms, respectively.

As proposed by [Leech et al., 2003], D(θ) for a particular concrete can generally be obtained

by numerical conversion of sorptivity measurements.. If D(θ) is assumed to follow Eq. 8, D0

can be obtained by converting sorptivity measurements:

11

Do =

n2 s2

en(2n − 1) − n + 1
 (11)

Where n is set to 6:

Do =

s2

123.131
 (12)

Similarly, if D(θ) is assumed to follow Eq. 9, D0 is obtained from:

Do = s2

(1 + n)(2 + n)

3 + 2n
 (13)

Where n is set to 4:

Do = s2

30

11
 (14)

Where s is the normalized sorptivity, defined as:

s =

S

θs − θi
 (15)

S is the sorptivity determined experimentally. Further information on how to determine S

experimentally can be found in [Hall and Tse, 1986]. Note that S is regarded as a single

number in the unit format [l/t1/2] where l is length and t is time, due to strong linearity

between sorption front distance l and the square root of time t1/2, but only within a few hours

of sorption, according to [Martys and Ferraris, 1997]. Only early results of sorptivity

measurements i.e. obeying l/t1/2 linearity should be used when determining S according to

[Hall and Tse, 1986]. Figure 2-2 shows a sorption curve fitted to discrete data points where

the first few hours of sorption obey l/t1/2 linearity:

12

Figure 2-2: Example of sorption curve. The figure is from [Hall, 1989]

.

The discrete data points in Figure 2-2 are obtained experimentally where cylindrical concrete

specimens are exposed to water, as shown in Figure 2-3:

Figure 2-3: Experimental setup for sorption measurement. A concrete specimen is placed in a water vessel where

the sorption front is measured against time. The figure is from [Hall, 1989].

If the saturated moisture content θs is not known for a specific concrete, then θs can be

regarded to be equal to the capillary porosity of the concrete according to [Wang and Ueda,

2011]. However, long term moisture transport may also take place in gel pores according to

[Narayanan, 2006]. This suggests that the total porosity, equal to the sum of capillary and gel

porosity, yields an appropriate approximation for θs.

13

The sum of gel and capillary porosity of the cement paste may, based on the work of Powers,

be calculated as the total porosity of the cement paste [Sellevold, 2016b]:

Φtot,paste =

w/c − 0.172 α

0.321 + w/c
 (16)

Where the relation between the porosity in the cement paste and the concrete is as follows:

 Φtot,concrete = Φtot,paste Vpaste (17)

Where Vpaste is the volumetric fraction of the cement paste in the concrete and α is the degree

of hydration, as described in [Sellevold, 2016a]. α is usually not known or given explicitly,

and thus may need to be predicted. For simplification, one can according to [Wang and Ueda,

2011] may assume full hydration (α = 1) for w/c > 0.42, however for w/c < 0.42, αmax (i.e. α =

α(t) for t → ∞) may be predicted as a function of w/c:

 αmax = 1 − e−3.15
w
c (18)

Please note: Wang and Ueda refer to the equation (Eq. 18) originally presented by [Oh and

Jang, 2004]. Further, Wang and Ueda appear to have corrected a writing error in αmax

committed by Oh and Jang, as the equation presented by Oh and Jang yielded

unreasonable/impossible values in its original proposal.

[Mills, 1966] also proposed an equation for αmax:

αmax =

1.031 w/c

0.194 + w/c
 (19)

A comparison of the two equations for αmax (Eq. 18 and Eq. 19) is given in Figure 2-4.

14

Figure 2-4: Comparison of αmax expressions.

Substituting Eq. 18 [Wang and Ueda, 2011] or Eq. 19 [Mills, 1966] into Eq. 16 allows for an

expression of Φtot,paste as a function of the single variable w/c, as shown in Figure 2-5.

Figure 2-5: Eq. 16 is plotted with α as Eq. 18 or Eq. 19.

15

Neither Eq. 18 nor Eq. 19 are calibrated to be used along with Eq. 16, which yields potential

for errors caused by the lack of validation. Both Eq. 18 and especially Eq. 19 appear to

underestimate αmax for larger values of w/c, considering α should tend to approach 1.0 for

w/c > 0.42 according to [Wang and Ueda, 2011]. Thus, Eq. 18 [Wang and Ueda, 2011] may

be assumed to provide the more realistic expression. Eq. 19 is discarded from here on.

The piecewise expression for Φtot,concrete in Eq. 20 based on [Wang and Ueda, 2011] and

[Sellevold, 2016b], provides an estimate for θs, needed for calculating D(θ) from S:

Φtot,concrete =

{

 w/c − 0.172 (1 − e

−3.15
w
c)

0.321 + w/c
 Vpaste, w/c < 0.42

w/c − 0.172

0.321 + w/c
 Vpaste, w/c ≥ 0.42

 (20)

According to [Muller et al., 2012], the gel porosity is identified to follow a non-linear growth

when considering α as variable. Thus, the linear growth of total porosity applied in Eq. 20 can

be regarded as a simplification. Table 2-1 gives an overview of the hydraulic diffusivity for

mortar and concretes with different w/c found in the literature.

16

Table 2-1: Expressions for D(θ) for mortar and different concretes in the literature.

Reference D(θ) [mm2/s] Eq. Remarks

[Daian, 1988] 1.198∙10-4 e5.97θ̅(θ) A ⸙, mortar

[Hall, 1989]
6.63∙10-4 e6θ̅(θ)

2.23∙10-1 θ̅(θ)4

B

C
†, w/c = 0.5

[Leech et al., 2003]
2.2∙10-4 e6.4θ̅(θ)

1.1∙10-1 θ̅(θ)4.7

D

E
w/c = 0.4

[Martys and Ferraris, 1997]
2.246∙10-5e6θ̅(θ)

7.543∙10-3 θ̅(θ)4

F

G
†, w/c = 0.6

[Martys and Ferraris, 1997]
4.486∙10-6 e6θ̅(θ)

1.507∙10-3 θ̅(θ)4

H

I
†, w/c = 0.36

[Zhou et al., 2016] 2.355∙10-5 e6.2θ̅(θ) J w/c = 0.39

⸙: As presented by [Lockington et al., 1999].

†: Converted from S. Both exponential term (Eq. 8) and power term (Eq. 9) calculated. θs is assumed to be equal

φtot,concrete calculated in Eq. 20, if θs is not given.

The expressions for D(θ) listed in Table 2-1 are visualized in Figure 2-6.

17

Figure 2-6: Expressions for D(θ) listed in Table 2-1. D(θ) is plotted logarithmically vs. θ̅(θ).

One can observe in Figure 2-6 that the different expressions D(θ) varies by several orders of

magnitude when approaching full saturation, depending on e.g. the w/c ratio.

In addition to the sorption based approach to obtain D(θ) presented so far, [Pradhan et al.,

2005] showed how D(θ) can be predicted theoretically, provided the pore size distribution is

available as an input parameter. The model for D(θ) presented by [Pradhan et al., 2005] was

able to account for the hysteresis effect of wetting and drying of porous materials [Derluyn et

al., 2012].

18

2.3 Modelling of cracks

Cracks in concrete can occur in different shapes, such as for example the V- and parallel-

shape, to strongly irregular shapes. Hence, modelling a crack geometry for moisture transport

is not straightforward.

In the perspective of fracture mechanics, modelling of cracks has been investigated by many.

According to [Shi, 2009b], structural members exposed to bending moments tend to exhibit

V-shaped cracks, see Figure 2-7:

Figure 2-7: Bending of structural members causing cracks. The figure is from [Shi, 2009b].

According to Shi, the load situation can be linked to the three deformation modes in fracture

mechanics. Consider Figure 2-8 showing the deformation modes:

19

Figure 2-8: The three different modes of deformation. The arrows indicate the load situation.

The figure is from [Shi, 2009a].

Research has shown that cracks provide a rapid pathway for ingress of moisture and

aggressive agents [Audenaert et al., 2009 & Breysse and Gérard, 1997 & Lepech and Li,

2005 & Wang et al., 1997].

Ingress of moisture and aggressive agents can compromise the durability of concrete as

discussed in chapter 1 Introduction, thus it is important to evaluate the effect of cracks on

ingress. For example, [Pease, 2010] has conducted experiments on moisture ingress in his

doctoral thesis, and on the basis of his experiments, he proposed a crack model for moisture

ingress. [Pease, 2010] introduced a model describing moisture ingress by means of a

simplified crack geometry evaluating moisture ingress through cracks induced by the wedge

splitting test (WST), where the specimens were cracked to various crack mouth opening

displacements (CMODs). As proposed by Pease, the crack geometry derived from the cracked

hinge model (CHM) presented by [Olesen, 2001] based on the theory developed by [Ulfkjær

et al., 1995], can be divided into two distinct areas with respect to moisture ingress. [Pease,

2010] discovered that the innermost part of the crack with a relatively consistent length of

16.5 mm to 18.5 mm to behave like the bulk material in terms of moisture ingress. The other

part behaved like a free surface for moisture transport. The total crack length is estimated with

the CHM. An illustration of the moisture ingress behavior in relation to cracks is provided in

Figure 2-9.

20

Figure 2-9: Illustration of moisture ingress behavior. The figure is from [Michel, 2013].

The CHM can be used to determine mechanical properties on the basis of a load-CMOD

curve, where the CHM always assumes a hinged cracked geometry [Pease et al., 2012].

Based on Pease’s finding and the geometry approach in the CHM, a simple general model

describing the boundary conditions for the free surface part of the crack exposed to moisture

is proposed:

 w(x, i) =
wo
dcr,tot

 x H(x − i) (21)

Where H(x-i) is the Heaviside function, x is the distance from crack tip to concrete surface, i

is the length of the bulk-acting part of the crack, dcr,tot is the total depth of the crack, and w0 is

the crack width at x = dcr,tot. For visualization of the crack model applied to the moisture

transport model, see Figure 3-5.

[Wang et al., 1997] found experimentally that concrete specimens with CMODs below 50 μm

had a small impact on water permeability, while for CMODs from 50 to 200 μm the water

permeability increased rapidly. For CMODs over 200 μm, the increase stabilized and was less

rapid. Thus, it can be concluded that moisture ingress is dependent on the crack geometry.

21

The crack geometry can also serve as input in so-called influence factors. [De Schutter, 1999]

developed a crack influence factor 𝛾Cl in Eq. 22 and Eq. 23 based on a statistical approach,

which quantifies the influence of a crack on chloride ingress. 𝛾Cl describes the relationship

between the diffusion coefficients for un-cracked and cracked concrete. By definition:

𝛾Cl =

DCl(w, d)

DCl(w = 0, d = 0)
 (22)

Where DCl is the diffusion coefficient for concrete exposed to chlorides and w and d is the

crack width and depth, respectively. De Schutter derived the following expression after

probabilistic treatment of experimental results of small mortar prisms:

𝛾Cl = exp [0.2541 (

𝑑

𝑑𝑜
)
0.5202

(
𝑤

𝑤𝑜
)
0.2652

] (23)

Where d0 = w0 = 1 mm.

Such an influence factor, as proposed in Eq. 22 and Eq. 23, may provide a quick evaluation of

the influence of cracks on ingress when for instance one dimensional diffusion analysis is

studied. However, such an influence factor was not found for moisture ingress in the

literature.

2.4 Modelling of aggregates

Inclusion of aggregates in the transport modelling increases the complexity, as the

homogeneity of the material is weakened. To account for the impact of aggregates on the

moisture transport, simple mathematical modification of D(θ) has been proposed [Lockington

et al., 1999]. Moreover, a similar approach was proposed by [Hall et al., 1993]. Common for

both of the two proposals of [Lockington et al., 1999] and [Hall et al., 1993] is that the

diffusivity theory was modified to take into account the presence of non-sorptive aggregates,

by introducing a modified hydraulic diffusivity D’(θ) (not to be confused with the derivative)

based on the initial D(θ).

22

A different approach to include effect of aggregates in the transport modelling is to model

each aggregate particle explicitly. This means that each aggregate particle is included

geometrically in for instance a finite element (FE) mesh, which has a possibility to exhibit

more realistic modelling results than the simpler modification approaches proposed by

[Lockington et al., 1999] and [Hall et al., 1993]. On the other hand, including each aggregate

particle explicitly in a FE mesh can lead to extended computation time. This is due to the

smallest aggregate particles in the particle size distribution (PSD), which will be surrounded

by elements of approximately the same size depending on the meshing algorithm, and thereby

inducing a remarkably increased number of elements in the FE mesh compared to a

corresponding FE mesh for a homogenous structure.

23

3 Methodology – numerical modelling approach

3.1 General strategy

The numerical modelling of moisture ingress is carried out with the commercial software

platform Matlab®. The overall strategy is to solve the moisture transport PDE for porous

material (Eq. 7), over a domain discretized with finite elements in 2D. The finite element

analysis approach provides the opportunity to consider both the crack geometries and the

influence of aggregates near the crack in the moisture ingress model at reasonable

computational time.

The domain in the numerical model represents a WST geometry [Skoček and Stang, 2008]

exposed to water in the reservoir pond. Moisture is transported in both liquid and vapor

phases. By using a WST geometry as seen in Figure 3-1, the presence of cracks is accounted

for by introducing the crack model into the domain geometry.

Figure 3-1: Un-cracked WST geometry with reservoir pond used in the numerical modelling.

Ponding

reservoir

Location of

crack (when

included)

WST

specimen

geometry

24

The concrete, which is modelled, corresponds to the concrete in the experimental work carried

out in [Pease, 2010] and [Pease et al., 2012] at the Technical University of Denmark. The

experimental data, which the numerical model is tested against, are also from this

experimental work. The experimental data was obtained from WST specimens that were

cracked to various crack mouth opening displacements (CMOD’s), subsequently conditioned

to 50% relative humidity for at least one year, and finally exposed to liquid water where the

moisture ingress was determined by means of X-ray attenuation measurement technique

[Weiss et al., 2015] . The experimental data was recorded from y = -50 mm to y = 10 mm and

from x = -50 mm to x = 50 mm, where each measurement provides an averaged through the

specimen thickness [Pease, 2010 & Pease et al., 2012]. Thus, it can be assumed that the 2D

numerical model approach provide reasonable output, which is comparable to the

experimental data. The boundary conditions applied to the WST geometry in the numerical

model can be seen in Figure 3-4. Figure 3-2 illustrates how the experimental data was

obtained by using X-ray attenuation equipment.

Figure 3-2: X-ray attenuation equipment (left). Normalization of summed images assembled to a single

measurement (right) [Pease et al., 2012].

25

3.2 Mixture design of the concrete

The mixture design which is basis for the numerical modelling is presented in Table 3-1

[Pease, 2010 & Pease et al., 2012]:

Table 3-1: Mixture design of the concrete

Parameter Value

w/c ratio 0.50

Cement 330 kg/m3

Sand 764 kg/m3

Coarse aggregate 1099 kg/m3

Steel fiber 19 kg/m3

Figure 3-3 shows the corresponding particle size distribution (PSD) curve for the aggregates

(sand and coarse aggregate) in the concrete mixture:

Figure 3-3: PSD curve for the aggregates.

26

3.3 Transport modelling approach

The development of the numerical model was done in four main stages, each one successively

established in Matlab®:

▪ Model 1: No crack or aggregates are included. Model 1 is a homogenous model which

is developed to calibrate the chosen diffusion approaches.

▪ Model 2: A crack located at the notch bottom is introduced to Model 1. Model 2

allows for analyzing the effect of a single crack on moisture ingress, while the model

is still homogenous.

▪ Model 3: The realism of the moisture ingress modelling is aimed to improve as

particles (which represents aggregates) are introduced to the un-cracked geometry of

Model 1. Model 3 is a heterogeneous model without the crack.

▪ Model 4: The crack is introduced into Model 3 – fulfilling every possible combination

of the presence of the crack and aggregates.

Another overview of the four models is presented in Table 4-1. The four stages allow for

analyzing the effect of the crack and aggregates independently.

Non-linear diffusion coefficients are more favorable for long-time moisture ingress than linear

diffusion coefficients due to the moisture dependency of the diffusivity coefficients,

according to [Bažant and Najjar, 1972]. Hence, Richards’ equation (Eq. 7) may be considered

as suitable. Gravitational effects are assumed to be negligible, and hence not accounted for in

Eq. 7, as the gravitational effects are outweighed by capillary suctional forces [Hall, 1989].

3.4 Programming procedure and assumptions

The moisture transport modelling is based on solving the chosen transport PDE over a finite

element mesh computed with the commercial software platform Matlab®, and its Partial

Differential Equation Toolbox, which provides functions for solving PDE problems using

finite element analysis.

27

The chosen geometry in the numerical model corresponds to the specimen geometry of the

WST presented in [Pease et al., 2012]. Clearly, it is fruitful to assess the validity of the

numerical model by comparison with experimental results, which gives motivation for

choosing the WST geometry in the numerical model presented in Figure 3-1. Unfortunately,

long-time experimental data is not available for the numerical model to be tested against.

It is assumed that the concrete in question has reached its maximal degree of hydration prior

to wetting, as porosity properties are assumed constant for t ≥ 0, where t is time. The potential

increase in local porosity in the cement paste around aggregates due to the interfacial

transition zone [Angst et al., 2017], is not accounted for. Another assumption is that the

temperature is constant, meaning that isothermal conditions apply to the PDE model; ∇T = 0

for all values of (x,y,t) where T is temperature, and x and y are Cartesian coordinates in mm.

As for boundary conditions (BC), Dirichlet or Neumann BCs were to all edges of the field

geometry. Dirichlet (or essential) BCs assign a fixed value for θ, whereas Neumann (or

natural) BCs assign a flux, indicating a fixed moisture ingress rate at the boundary. For all

edges facing the pond filled with water, the BC assigned was of Dirichlet type, i.e. the value

of water saturation θs at the surface. For all other edges, the moisture flux is set to zero,

meaning the BCs is set to Neumann type assigned to the value of zero, as these boundaries

was sealed during wetting of the specimens. Figure 3-4 visualizes the BCs for each boundary

of the geometry.

28

Figure 3-4: Dirichlet BCs are marked in blue. Neumann BCs are marked in green.

Initial conditions for θ(x,y,t) must also be set in order to obtain a solution. During the

experimental work carried out by in [Pease, 2010 & Pease et al., 2012], the specimens were

conditioned to 50% relative humidity (RH) prior to moisture exposure. Using the concept of

sorption isotherms, the initial moisture content θ(x,y,0) can be approximated analytically.

According to the BSB model [Ožbolt et al., 2010] presented in Eq. 1-5, the initial moisture

content is θRH(50%) = θ(x,y,0) = 0.007 m3/m3 for all values of x and y within the WST

geometry presented in Figure 3-1.

The saturated porosity is observed to be θs = 0.122 m3/m3 from the experimental work of

[Pease, 2010 & Pease et al., 2012]. This value of θs correspond to the estimated value of

θtot,concrete in Eq. 20, assuming that both the capillary and gel porosity fills during saturation.

The finite element mesh was produced by Matlab® in which linear triangle (LT) elements

were assembled. The LT element is a 3-noded element with linear shape functions which

allow for linear interpolation within the element [Logan, 2011].

29

The chosen upper element size (hmax) was set to 1 mm, while the lower element size (hmin)

was set as a result of the meshing algorithm and cannot be defined specifically within the

Matlab® environment.

A summary of the main input parameters used in the numerical model is presented in Table

3-2. For further information, reference is is made to Appendix I-IV for the complete Matlab®

code.

Table 3-2: Main input parameters in the numerical model.

Parameter Value or type

PDE dθ/dt = ∇(D(θ)∇θ)

D(θ) 2.2∙10-4 e6.4θ̅(θ)

Element type Linear triangle

Maximum element size 1 mm

Saturated porosity 0.122 m3/m3

Initial moisture content 0.007 m3/m3

3.5 Implementation of the crack

The general geometrical model presented in subchapter 2.3 Modelling of cracks and Eq. 21 is

the basis for the crack geometry defined in the numerical models including the crack as a

geometrical feature. The crack geometry used in the numerical is for the 0.15 mm CMOD

case from Brad Pease’s experimental work [Pease, 2010] where the maximum crack width (at

the concrete surface) is 0.075 mm, total crack length 38.49 mm (estimated by the CHM), free

surface crack length 19.19 mm followed by 19.30 mm isolated crack length, acting like the

bulk material in terms of ingress. Further details about the crack model is found in subchapter

2.3 Modelling of cracks. Consider Figure 3-5 for visualization of the crack model

implemented into the WST geometry.

30

Figure 3-5: Crack model of Pease. The free surface crack length is green, and the isolated crack length is yellow.

Note that the scale between the x- and y-axis is manipulated to easier display the crack model.

The free surface part of the crack is explicitly implemented in the geometry of the numerical

model, while the isolated crack length is not included in the geometry of the numerical model,

as it behaves the bulk material.

Furthermore, it is assumed that the idealized V-shape of the crack provides satisfactory

modelling results for service life modelling purposes.

3.6 Implementation of aggregates

In general, there are two ways aggregates can be implemented to the numerical model:

defining aggregates as a geometrical feature which are simply subtracted from the initial

geometry, and modification of the hydraulic diffusivity without changing the geometric

properties, as discussed in subchapter 2.4 Modelling of aggregates. In other words, the

31

approaches are based on either geometry or equation manipulation. Manipulation of the

hydraulic diffusivity is discussed in subchapter 2.2 Formulation of the hydraulic diffusivity.

To include aggregates within the geometry, one can either use commands based on particle

packing where the particles are placed randomly without collision, or by defining each

aggregate particle which is to be included in the geometry. Clearly, the first of the two is the

most desired and sophisticated approach because of the possibility to obtain a correct particle

size distribution, without programming the subtraction of each particle manually. In the

particle packing method, all aggregates are assumed to occur as perfect circles. The lowest

particle diameter is limited to 0.75 mm. Particles smaller than 0.75 mm in the PSD curve is

not included in the FE mesh. This limitation is set to maintain a manageable number of

elements in the FE mesh.

In model 3 and model 4, aggregates are generated from a particle packing code, which is built

upon a code originally developed by [Skoček, 2010], and developed further to correspond to

the geometrical properties of model 3 and model 4. Aggregates, which are fully located within

the boundaries of the notch and crack, are neglected and thus removed from the model prior to

generating the FE mesh. Figure 3-6 shows an example of a FE mesh used in model 3.

32

Figure 3-6: Finite element mesh for a particular aggregate instance used in model 3 (un-cracked concrete).

Figure 3-7 shows an example of a FE mesh used in model 4.

33

Figure 3-7: Finite element mesh for a particular aggregate instance used in model 4 (cracked concrete).

Although real aggregate particles may occur as distorted circles, especially for crushed

aggregates, it is assumed that perfect circles do provide a satisfying accuracy in the moisture

transport model. Inclusion of aggregate particles gives less smooth solutions for θ(x,y,t) when

t > 0. It is obvious that when a considerable portion of the material is non-porous and the

material thereby is modelled as a heterogeneous composite, θ(x,y,t) cannot be expected to

exhibit the smoothness as if the material is perfectly homogenous.

For averaging consideration, ten different cross section with aggregate instances are utilized

where the solutions of each cross section are interpolated for a regular grid of general query

34

points. It should be mentioned, that the regular grid was chosen so that at least four query

points were located within the smallest particle considered in the model. A sketch of the

interpolation procedure is presented in Figure 3-8:

Figure 3-8: Sketch of interpolation procedure. A set of four nodal solutions (left) interpolated

into a set of four query points (right).

Interpolation of nodal solutions is necessary because the particular meshes do not coincide

with each other due to the random placement of aggregate particles for each of the 10 unique

aggregate instances. It is only possible to average the solutions when they are interpolated into

the grid of query points. Furthermore, approximately four unique instances with the maximum

particle diameter of eight mm correspond approximately to the thickness of averaged thin

sections, which the experimental data is obtained from. The interpolation procedure of the

nodal solutions in model 3 and model 4 gives therefore a comparable solution of θ(x,y,t) to

the experimental data. The interpolation code is given in Appendix VII.

35

4 Results and analysis

4.1 Numerical model vs. experimental data

To assess how the numerical model correspond to a real concrete, comparison with

experimental data was performed. Based on the chosen transport model and PDE formulation,

the initial assessment was to determine which expression for D(θ) given in Table 2-1 provides

the best fit between the numerical model and the experimental data. A qualitative evaluation

of all expressions in Table 2-1 has been performed at t = 1.5 h, 4.5 h and 7.0 h. The

assessment was undertaken with model 1 (no crack, no aggregates). It was found that the

hydraulic diffusivity presented by [Leech et al., 2003] in Table 2-1 and in Eq. 24 showed the

best agreement between the numerical model and the experimental data.

 D(θ) = 2.2 ∙ 10−4 ∙ e6.4θ̅(θ) (24)

An overview of the model names is presented in Table 4-1:

 No crack Crack included

No aggregates Model 1 Model 2

Aggregates included Model 3 Model 4

Table 4-1: Characteristics of each model.

Figure 4-1 shows comparison between the predictions of model 1 and model 2 (plotted as

contour lines) and experimental data at 1.5 h, 4.5 h and 7 h. The experimental data is not

recorded for y > 10 mm, which is the reason for the blank fields in this region. y > 10 mm is

however included in the numerical model. It should be noted, that good agreement between

numerical predictions and experimental data for model 1 are based on the fact that this set of

data was used to calibrate the hydraulic diffusion function for the moisture ingress model.

36

However, the fitted hydraulic diffusion function was thereafter not fitted again to model the

experimental data for cracked specimens.

Figure 4-1: Numerical model 1 and 2 (contour lines) vs. experimental data. Axis units are [mm].

37

One can observe in Figure 4-1 that there is a very good agreement between the numerical

predictions and the experimental data in terms of extend of ingress, both in lateral and vertical

directions. However, the moisture distribution from the experimental data is highly

heterogeneous. Model 1 and model 2 do not predict the heterogeneity of the moisture

distribution.

Similarly, the same comparison is shown with model 3 and model 4 where solutions from ten

different random generated aggregate instances are averaged and interpolated. Consider

Figure 4-2:

38

Figure 4-2: Numerical model 3 and 4 (contour lines) vs. experimental data. Axis units are [mm].

39

One can observe in Figure 4-2 that there is a very good agreement between the numerical

predictions and the experimental data in terms of extend of ingress, both in lateral and vertical

directions. Model 3 and model 4 do predict the heterogeneity of the moisture distribution

better than model 1 and model 2 when comparing to the experimental data.

4.2 Wetting front analysis

The following three figures show the wetting front (θ = θi + dθ, where θi = 0.007 m3/m3) of

the four models for chosen reference time points.

Figure 4-3 shows the wetting front of the four models at t = 1.5 h.

Figure 4-3: Wetting front of the four models at t = 1.5 h.

40

Figure 4-4 shows the wetting front of the four models at t = 4.5 h.

Figure 4-4: Wetting front of the four models at t = 4.5 h.

Figure 4-5 shows the wetting front of the four models at t = 7.0 h.

41

Figure 4-5: Wetting front of the four models at t = 7.0 h.

Considering the wetting fronts, one can observe:

▪ By introducing the crack (model 1 vs. model 2 and model 3 vs. model 4) the wetting

front increases significantly. At t = 4.5 h the wetting front has progressed in depth

with factor a of ~ 1.7 along the line x = 0.

▪ The relative ingress increase between the un-cracked and cracked models is decreasing

as time increases.

▪ The crack influences moisture ingress mainly in the direction of the crack in vertical

direction, and not in lateral direction.

▪ Introducing aggregates in the heterogeneous models (model 3 and model 4) distorts

the wetting front compared to the homogenous models (model 1 and model 2).

▪ The aggregates do not considerably affect ingress depth compared to the homogenous

models.

42

4.3 Influence of aggregates

To investigate the influence of the number of solutions, which are interpolated and averaged,

on moistureingress, a comparison is performed. Figure 4-6 and Figure 4-7 shows the influence

of the averaging on the solution of model 3 at t = 7.0, with both contour and surface plots.

Figure 4-6: Numerical model (contour lines) vs. experimental data (left).

Surface plot of numerical model (right). The surface plot colors are 40% transparent.

Axis units are [mm].

43

Figure 4-7: Numerical model (contour lines) vs. experimental data (left).

Surface plot of numerical model (right). The surface plot colors are 40% transparent.

Axis units are [mm].

Figure 4-6 and Figure 4-7 shows that when the number of averaged solution increases, the

heterogeneous behavior of the model converges towards homogenous behavior. One can

observe that for the case where four solutions are averaged, there is a similar heterogeneous

moisture distribution as from the experimental data. This corresponds to the fact that

approximately four unique aggregate instances (with maximum aggregate diameter size 8

mm) correspond to the thickness of the experimental specimen for which the experimental

data is recorded.

44

4.4 Ingress as a function of time

To investigate the influence of the crack on the homogenous numerical models 1 and 2

defined in Table 4-1, moisture ingress for a fixed coordinate is assessed. The chosen point

(x,y) = (0,-40) is located 1.51 mm below the calculated crack tip at (0, -38.49) [Pease, 2010 &

Pease et al., 2012]. The point in question is shown in Figure 4-8. Moisture ingress at (0,-40)

plotted against time is shown for model 1 and model 2 is shown in Figure 4-9.

Figure 4-8: The point (0, -40) is plotted as a red dot, along with the crack model

presented in subchapter 3.5 Implementation of the crack.

45

Figure 4-9: Moisture content at the point (0,-40) as a function time for model 1 and model 2.

Figure 4-9 shows how the point experiences a delayed, but similarly shaped, saturation

process for model 1 and model 2.

Another time-dependent analysis is performed to investigate when the entire modelled

geometry experience full saturation. According to the moisture transport model, the WST

specimen geometry experience saturation over the entire geometry after t = 50.1 h for model 1

and t = 34.7 h for model 2. Full saturation is hence predicted to be obtained 44.4 % slower for

the un-cracked geometry (model 1) compared to the cracked geometry (model 2).

Because the moisture transport model is tested only for short time periods, it is unknown

whether the numerical model also can predict long time ingress. Further testing against long

time experimental data must be performed to investigate this further.

46

5 Summary and discussion

In this thesis, moisture transport in concrete with a crack and aggregates was modelled

numerically using finite element analysis. The numerical model was applied to a WST

geometry and tested against comparable experimental data. The numerical model was used to

identify the influence of a crack and aggregates on the moisture ingress. The numerical model

was able to model the ingress extend in vertical and lateral directions with a very good

agreement with the experimental data, both for the un-cracked and cracked geometries. The

moisture distribution was more accurately modelled with the heterogeneous models including

aggregates compared to the homogenous models without aggregates. By observing the

behavior of the numerical model when varying the number of solutions that are interpolated

and averaged to give rise to the heterogeneous models including aggregates, it was found that

the heterogeneous models converge towards the homogenous models, when the number of

interpolated solutions that are included go towards infinity.

Although the interfacial transition zone (ITZ) is not modelled explicitly, the effect ITZ has on

moisture transport is included in the experimentally determined expressions for the hydraulic

diffusivity. This means that the modelled moisture distribution is more evenly distributed than

if the ITZ was included geometrically in the numerical model. A numerical model including

the ITZ is believed to exhibit moisture distributions that correspond better with the

experimental data.

Aggregate particles are defined in descending order in term of size, meaning that the last

aggregates placed in the model domain are the smallest. The smallest particle size is also

governing the computational speed and the size of the FE mesh. It was chosen to set the lower

particle diameter size to 0.75 mm to maintain a manageable number of elements, and thus a

manageable computation time. The high-performance computing system Vilje was used to

obtain solutions for the heterogeneous models with more refined and demanding FE meshes.

It was found that it is likely that including aggregates in the numerical model did not

considerably affect ingress if the number of solutions to be interpolated and averaged is high

enough. This observation means that modelling the aggregates may be unnecessary for

47

predicting moisture ingress in service life modelling for general aggregate considerations.

Inclusion of aggregates is however needed to model moisture ingress in particular where local

variations content can have a considerable influence on e.g. corrosion rate [Hornbostel et al.,

2015].

Assuming the crack influence factor 𝛾Cl introduced in Eq. 22 and 23 also holds for moisture

ingress, the hydraulic diffusion factor D(θ) should be amplified with a factor of 2.35 to

account for a crack with the crack geometry properties of the 0.15 mm CMOD case (input d =

38.49 mm and w = 0.075 mm is used in Eq. 23). Figure 5-1 shows how this assumption fits

for model 1 with updated D(θ) in accordance with Eq. 22 and Eq. 23, compared to model 2

with no changes. Under the assumption that the crack influence factor is valid for moisture

ingress, the moisture ingress for the modified model 1 and unchanged model 2 should exhibit

equal in the direction of the crack which is vertically along the line x = 0.

Figure 5-1: Modified model 1 vs. model 2 along with the crack model at t = 4.5 h.

48

One can observe in Figure 5-1 that the wetting front is similar near the crack, but do not

correlate entirely. Even so, such an influence factor with crack geometry inputs can be further

optimized to quantify the effect of a crack on moisture ingress, which can enable fast

evaluation of the crack influence on ingress in one-dimensional diffusion analysis.

The numerical model presented was able to describe the effect of a crack and aggregates on

moisture ingress, and can thereby be used for improving the accuracy of service life models in

relation to durability issues due to transport of aggressive agents such as chlorides into

concrete structures. Further work is however needed before this milestone can be reached.

49

6 Conclusions

An overview of current modelling techniques for moisture ingress modelling in porous

materials was presented. Based on findings in the literature, a hydraulic diffusivity approach

was chosen to model moisture ingress.

A numerical model describing moisture transport in a WST geometry was developed. The

numerical model was able to highlight the influence of a crack and aggregates on moisture

ingress in concrete. The ingress rate increases considerably with the presence of a crack, both

for the homogenous and heterogeneous models. The numerical model showed very good

agreement with the experimental data on ingress extend for un-cracked and cracked concrete.

Only the heterogeneous model including the aggregates was able to simulate the distorted

moisture distribution due to the presence of aggregates in the specimens observed in the

experimental data. From observing the effect of the crack, the crack proposed by [Pease,

2010] appears to be a good approximation for modelling moisture ingress in cracked concrete,

as both the un-cracked and cracked models showed to correspond very good with the

experimental data regarding ingress extend.

It was not possible to assess the long-time performance of the numerical model as there were

no experimental data to test the numerical model against, thus the applicability of the

numerical model regarding long-time prediction is unknown.

The numerical model was able to describe the effect of a crack and aggregates on moisture

ingress, and can thus be used for improving the accuracy of service life models for concrete

structures exposed to moisture and aggressive agents such as chlorides.

50

7 Recommendations for further work

Further work may comprise:

▪ Improvements of the numerical modelling framework by introducing exact aggregate

geometries into the finite element mesh. This may further increase the numerical

precision of the numerical model.

▪ Modelling of chloride ingress in combination with moisture ingress.

▪ Testing of the numerical model against long time ingress data, so that long time

assessment can be performed in addition to short time assessment.

▪ Introduction of variable boundary conditions, initial moisture content and relative

humidity. To include the effect of varying relative humidity over time, D(θ) needs to

be extended to D(θ,θi) as θi is dependent on the relative humidity.

Ultimately, one should implement such a model which is presented in this thesis, into the

service life models to identify the influence of cracks and aggregates on moisture ingress in

real-life concrete structures.

51

List of references

Abyaneh, S. D., Wong, H. & Buenfeld, N. 2014. Computational investigation of capillary

absorption in concrete using a three-dimensional mesoscale approach. Computational

Materials Science, 87, 54-64.

AlwaysCivil. 2011. Available: http://4.bp.blogspot.com/-0-

UHlqSPTUM/Tvn2XdMiw8I/AAAAAAAAAuc/qveQjUpTjgQ/s1600/17-12-1-

11+%2528JW%2529+021.jpg [Accessed 20/05 2017].

Angst, U. M., Geiker, M. R., Michel, A., Gehlen, C., Wong, H., Isgor, O. B., Elsener, B.,

Hansson, C. M., François, R. & Hornbostel, K. 2017. The steel–concrete interface.

Materials and Structures, 50, 143.

Audenaert, K., De Schutter, G. & Marsavina, L. 2009. Influence of cracks and crack width on

penetration depth of chlorides in concrete. European journal of environmental and

civil engineering, 13, 561-572.

Baroghel-Bouny, V. 2007. Water vapour sorption experiments on hardened cementitious

materials: Part I: Essential tool for analysis of hygral behaviour and its relation to pore

structure. Cement and Concrete Research, 37, 414-437.

Basheer, L., Kropp, J. & Cleland, D. J. 2001. Assessment of the durability of concrete from its

permeation properties: a review. Construction and Building Materials, 15, 93-103.

Bažant, Z. P. & Najjar, L. J. 1972. Nonlinear water diffusion in nonsaturated concrete.

Matériaux et Construction, 5, 3-20.

Bjøntegaard, Ø. 2011. Basis for and practical approaches to stress calculations and crack risk

estimation in hardening concrete structures–State of the art FA 3 Technical

performance. SP 3.1 Crack free concrete structures.

Bjøntegaard, Ø. 2016. Chapter 13 - Concrete Technology 1, Trondheim, Norwegian

University of Science and Technology.

Breysse, D. & Gérard, B. 1997. Transport of fluids in cracked media. Rilem report, 123-154.

Carrara, P., Wu, T., Kruse, R. & De Lorenzis, L. 2016. Towards multiscale modeling of the

interaction between transport and fracture in concrete. RILEM Technical Letters, 1,

94-101.

Daian, J.-F. 1988. Condensation and isothermal water transfer in cement mortar Part I—Pore

size distribution, equilibrium water condensation and imbibition. Transport in porous

media, 3, 563-589.

http://4.bp.blogspot.com/-0-UHlqSPTUM/Tvn2XdMiw8I/AAAAAAAAAuc/qveQjUpTjgQ/s1600/17-12-1-11+%2528JW%2529+021.jpg
http://4.bp.blogspot.com/-0-UHlqSPTUM/Tvn2XdMiw8I/AAAAAAAAAuc/qveQjUpTjgQ/s1600/17-12-1-11+%2528JW%2529+021.jpg
http://4.bp.blogspot.com/-0-UHlqSPTUM/Tvn2XdMiw8I/AAAAAAAAAuc/qveQjUpTjgQ/s1600/17-12-1-11+%2528JW%2529+021.jpg

52

De Schutter, G. 1999. Quantification of the influence of cracks in concrete structures on

carbonation and chloride penetration. Magazine of Concrete Research, 51, 427-435.

Derluyn, H., Derome, D., Carmeliet, J., Stora, E. & Barbarulo, R. 2012. Hysteretic moisture

behavior of concrete: Modeling and analysis. Cement and Concrete Research, 42,

1379-1388.

Ehlen, M. A., Thomas, M. D. & Bentz, E. C. 2009. Life-365 service life prediction modelTM

version 2.0. Concrete international, 31, 41-46.

fib 2006. Model code for service life design, Bulletin 34. International Federation for

Structural Concrete (fib), 110.

fib 2010. Model code 2010, Bulletin 55. International Federation for Structural Concrete

(fib).

Hall, C. 1989. Water sorptivity of mortars and concretes: a review. Magazine of concrete

research, 41, 51-61.

Hall, C. 1994. Barrier performance of concrete: a review of fluid transport theory. Materials

and Structures, 27, 291-306.

Hall, C., Hoff, W. D. & Wilson, M. A. 1993. Effect of non-sorptive inclusions on capillary

absorption by a porous material. Journal of Physics D: Applied Physics, 26, 31.

Hall, C. & Tse, T. K.-M. 1986. Water movement in porous building materials—VII. The

sorptivity of mortars. Building and Environment, 21, 113-118.

Hornbostel, K., Angst, U., Elsener, B., Larsen, C. & Geiker, M. 2015. On the limitations of

predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity

measurements. Cement and Concrete Research, 76, 147-158.

Jacobsen, S. & Sellevold, E. J. 1996. Self healing of high strength concrete after deterioration

by freeze/thaw. Cement and Concrete Research, 26, 55-62.

Kjellsen, K. O. 2016. Chapter 5 - Concrete Technology 1, Trondheim, Norwegian University

of Science and Technology.

Leech, C., Lockington, D. & Dux, P. 2003. Unsaturated diffusivity functions for concrete

derived from NMR images. Materials and Structures, 36, 413.

Lepech, M. & Li, V. C. 2005. Water permeability of cracked cementitious composites.

Proceedings of ICF11, 113-130.

Life-365 2010. Consortium II. Service life prediction model and computer program for

predicting the service life and life-cycle cost of reinforced concrete exposed to

chlorides.

53

Lockington, D., Parlange, J.-Y. & Dux, P. 1999. Sorptivity and the estimation of water

penetration into unsaturated concrete. Materials and Structures, 32, 342.

Logan, D. L. 2011. A first course in the finite element method, Cengage Learning.

Martys, N. S. & Ferraris, C. F. 1997. Capillary transport in mortars and concrete. Cement and

Concrete Research, 27, 747-760.

Michel, A. 2013. Reinforcement Corrosion: Numerical Simulation and Service Life

Prediction. Technical University of Denmark.

Mills, R. 1966. Factors influencing cessation of hydration in water cured cement pastes.

Highway Research Board Special Report.

Muller, A. C., Scrivener, K. L., Gajewicz, A. M. & McDonald, P. J. 2012. Densification of C–

S–H measured by 1H NMR relaxometry. The Journal of Physical Chemistry C, 117,

403-412.

Narayanan, N. 2006. Analysis of Moisture Transport in Mortars and Concrete Using Sorption-

Diffusion Approach. Materials Journal, 103.

Oh, B. H. & Jang, S. Y. 2004. Prediction of diffusivity of concrete based on simple analytic

equations. Cement and Concrete Research, 34, 463-480.

Olesen, J. F. 2001. Fictitious crack propagation in fiber-reinforced concrete beams. Journal of

Engineering Mechanics, 127, 272-280.

Ožbolt, J., Balabanić, G., Periškić, G. & Kušter, M. 2010. Modelling the effect of damage on

transport processes in concrete. Construction and Building Materials, 24, 1638-1648.

Pachepsky, Y., Timlin, D. & Rawls, W. 2003. Generalized Richards' equation to simulate

water transport in unsaturated soils. Journal of Hydrology, 272, 3-13.

Pease, B. J. 2010. Influence of concrete cracking on ingress and reinforcement corrosion.

Phd, Technical University of Denmark.

Pease, B. J., Michel, A., Geiker, M. R. & Stang, H. 2012. Modelling Moisture Ingress through

Simplified Concrete Geometries. Proceedings of ICDC.

Pel, L., Kopinga, K. & Brocken, H. 1995. Moisture transport in porous building materials.

Technische Universiteit Eindhoven.

Pradhan, B., Nagesh, M. & Bhattacharjee, B. 2005. Prediction of the hydraulic diffusivity

from pore size distribution of concrete. Cement and Concrete Research, 35, 1724-

1733.

Samson, E., Marchand, J., Snyder, K. A. & Beaudoin, J. J. 2005. Modeling ion and fluid

transport in unsaturated cement systems in isothermal conditions. Cement and

Concrete Research, 35, 141-153.

54

Scheffler, G. A. 2008. Validation of hygrothermal material modelling under consideration of

the hysteresis of moisture storage. Dresden University of Technology.

Sellevold, E. J. 2016a. Chapter 6 - Concrete Technology 1, Trondheim, Norwegian University

of Science and Technology.

Sellevold, E. J. 2016b. Chapter 8 - Concrete Technology 1, Trondheim, Norwegian

University of Science and Technology.

Shi, Z. 2009a. Chapter 2 - Linear Elastic and Nonlinear Fracture Mechanics. Crack Analysis

in Structural Concrete. Boston: Butterworth-Heinemann.

Shi, Z. 2009b. Chapter 5 - Crack Interaction and Localization. Crack Analysis in Structural

Concrete. Boston: Butterworth-Heinemann.

Skoček, J. 2010. Fracture propagation in cementitious materials. Technical University of

Denmark.

Skoček, J. & Stang, H. 2008. Inverse analysis of the wedge-splitting test. Engineering

Fracture Mechanics, 75, 3173-3188.

Song, H.-W., Kwon, S.-J., Byun, K.-J. & Park, C.-K. 2006. Predicting carbonation in early-

aged cracked concrete. Cement and Concrete Research, 36, 979-989.

Taylor, H. 1992. Tobermorite, jennite, and cement gel. Zeitschrift für Kristallographie-

Crystalline Materials, 202, 41-50.

Tuutti, K. 1982. Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete

Research Institute.

Ulfkjær, J. P., Krenk, S. & Brincker, R. 1995. Analytical model for fictitious crack

propagation in concrete beams. Journal of Engineering Mechanics, 121, 7-15.

Wang, K., Jansen, D. C., Shah, S. P. & Karr, A. F. 1997. Permeability study of cracked

concrete. Cement and Concrete Research, 27, 381-393.

Wang, L. & Ueda, T. 2011. Mesoscale modeling of water penetration into concrete by

capillary absorption. Ocean Engineering, 38, 519-528.

Weiss, J., Geiker, M. R. & Hansen, K. K. 2015. Using X-ray transmission/attenuation to

quantify fluid absorption in cracked concrete. International Journal of Materials and

Structural Integrity, 9, 3-20.

Xi, Y., Bažant, Z. P. & Jennings, H. M. 1994. Moisture diffusion in cementitious materials:

Adsorption isotherms. Advanced Cement Based Materials, 1, 248-257.

55

Zhou, C., Chen, W., Wang, W. & Skoczylas, F. 2016. Indirect assessment of hydraulic

diffusivity and permeability for unsaturated cement-based material from sorptivity.

Cement and Concrete Research, 82, 117-129.

List of appendices

Appendix I Script for numerical model 1 …………………………………… A1

Appendix II Script for numerical model 2 …………………………………… A5

Appendix III Script for numerical model 3 …………………………………… A9

Appendix IV Script for numerical model 4 …………………………………… A13

Appendix V Script for aggregates in numerical model 3 (particle packing) … A17

Appendix VI Script for aggregates in numerical model 4 (particle packing) … A25

Appendix VII Script for interpolation …………………………………………. A36

A1

Appendix I

Script for numerical model 1

A2

%% MODEL 1 - UNCRACKED CONCRETE - APPENDIX I

%This script is a part of Håkon Halvorsens M.Sc. thesis

%PDE to be solved: d theta/dt = div(D(theta)grad*theta)

clear variables

close all

clc

%% Create a PDE Model with a single dependent variable

numberOfPDE = 1;

pdem = createpde(numberOfPDE);

%% Geometry part constituents

% To construct the geometry one main block is defined first, then "cut

% outs" are defined subsequently. The geometry is given in unit mm.

r1 = [3 4 -50 50 50 -50 -50 -50 50 50];

r2 = [3 4 -15 15 15 -15 28 28 50 50];

r3 = [3 4 -2.25 2.25 2.25 -2.25 0 0 28 28];

gdm = [r1; r2; r3]';

%% Geometry assembly

% Subtract openings (ri, i > 1) from the main concrete geometry r1.

g = decsg(gdm,'R1-R2-R3',['R1'; 'R2'; 'R3']');

%% Convert the decsg format into a geometry object

% The geometry is appended to the PDE Model

geometryFromEdges(pdem,g);

%% Edge label plot

% Plot the geometry with edge labels displayed. The edge labels will be

% used below in the function for defining boundary conditions.

figure

pdegplot(pdem,'EdgeLabels','on');

axis([-55 55 -55 55]);

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

title 'Concrete Geometry with Edge Labels'

%% PDE Coefficients and Boundary Conditions

% Boundary conditions are defined below. Within the WST geometry, theta is

% set to the available porosity for moisture transport which is the

% capillary porosity (dirichlet), and 0 flux elsewhere (neumann).

sat = 0.122; % saturated porosity

init = 0.007; % initial moisture content

applyBoundaryCondition(pdem,'dirichlet','Edge',(4:8),'u',sat);

applyBoundaryCondition(pdem,'dirichlet','Edge',(11:12),'u',sat);

applyBoundaryCondition(pdem,'neumann','Edge',(1:3),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(9:10),'g',0);

%% Coefficient Definition

% Coefficients are defined below. Note that coefficient c = D(theta) which

% depends on the solution of the PDE Model u, where u = theta.

% Defining constant tc which is multiplied to D(theta) in order to change

the

A3

% time domain from seconds to years. D(theta) is initially given in mm^2/s.

% tc is validated to not corrupt computations

% tc = 3.15576*10^7; % mm^2/second ---> mm^2/year

% D = D0*exp(n*((state.u-init)./(sat-init))) exp template

% D = D0*((state.u-init)./(sat-init)).^n pwr template

m = 0;

d = 1;

c = @(loc,state) 0.00022*exp(6.4*((state.u-init)./(sat-init))); %c =

D(theta)

a = 0;

f = 0;

specifyCoefficients(pdem,'m',m,'d',d,'c',c,'a',a,'f',f);

%% Mesh

% Call |generateMesh| to create a mesh with elements no larger than

% about the size of hmax.

hmax = 1; % max element size

msh=generateMesh(pdem,'Hmax',hmax);

figure

pdeplot(pdem);

axis equal

axis([-55 55 -55 55]);

title 'Finite Element Mesh'

%% Finding the Transient Solution of the Hydraulic Diffusion Problem

% Transient Solution

% Perform a transient analysis from 0 to x seconds.

% The solution will be saved every () so that plots of

% the results as functions of time can be created.

% Tolerance values of the solution are defined in advance.

pdem.SolverOptions.AbsoluteTolerance = 5e-06;

pdem.SolverOptions.RelativeTolerance = 5e-03;

pdem.SolverOptions.ResidualTolerance = 5e-04;

tlist = [0:10:3600*12];

tref = 3600*4.5/10;

setInitialConditions(pdem, 0.007);

R = solvepde(pdem,tlist);

u = R.NodalSolution;

getClosestNode = @(p,x,y) min((p(1,:) - x).^2 + (p(2,:) - y).^2);

% Call this function to get a node near the notch bottom.

[~,nid] = getClosestNode(msh.Nodes, 0, -40);

figure

axis equal

pdeplot(pdem,'XYData',u(:,tref),'Contour','on','ColorMap','jet');

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

title 'Moisture content \theta(x, y, 4.5 h), [m^3/m^3]'

figure

axis equal

plot(tlist, u(nid,:));

A4

grid on

xlabel 'Time, seconds'

ylabel 'Moisture content \theta(0, -40, t), [m^3/m^3]'

%% PDE Model plot along with experimental data

[filename, pathname]= uigetfile('C:\Users\afros\Dropbox\MSc Håkon\Exp data

70 % peak load\wet_10_new.txt');

data_exp = importdata([pathname, filename]);

tri = delaunay(data_exp(:,1), data_exp(:,2));

p_con = pdem.Mesh.Nodes;

t_con = pdem.Mesh.Elements;

Z_con = R.NodalSolution;

figure

axis equal

xlim([-50 50])

ylim([-50 50])

hold all

pdegplot(pdem,'EdgeLabels','off');

hold all

trisurf(tri, data_exp(:,1).*1000-50, data_exp(:,2).*1000-50, data_exp(:,3),

'EdgeColor', 'none', 'facealpha', 0.5)

caxis([0 0.125])

hold all

tricontour(p_con', t_con', Z_con(:,tref), (0.025:0.01:0.15));

colorbar('location', 'eastoutside')

view([0 90])

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

box on

title('Numerical model vs. experimental data')

A5

Appendix II

Script for numerical model 2

A6

%% MODEL 2 - UNCRACKED CONCRETE - APPENDIX II

%This script is a part of Håkon Halvorsens M.Sc. thesis

%PDE to be solved: d theta/dt = div(D(theta)grad*theta)

clear variables

close all

clc

%% Create a PDE Model with a single dependent variable

numberOfPDE = 1;

pdem = createpde(numberOfPDE);

%% Geometry part constituents

% To construct the geometry one main block is defined first, then "cut

% outs" are defined subsequently. The geometry is given in unit mm.

r1 = [3 4 -50 50 50 -50 -50 -50 50 50];

r2 = [3 4 -15 15 15 -15 28 28 50 50];

r3 = [3 4 -2.25 2.25 2.25 -2.25 0 0 28 28];

r4 = [3 4 0.0205 -0.0205 -0.0375 0.0375 -19.19 -19.19 0 0]; %crack

gdm = [r1; r2; r3; r4]';

%% Geometry assembly

% Subtract openings (ri, i > 1) from the main concrete geometry r1.

g = decsg(gdm,'R1-R2-R3-R4',['R1'; 'R2'; 'R3'; 'R4']');

%% Convert the decsg format into a geometry object

% The geometry is appended to the PDE Model

geometryFromEdges(pdem,g);

%% Edge label plot

% Plot the geometry with edge labels displayed. The edge labels will be

% used below in the function for defining boundary conditions.

figure

pdegplot(pdem,'EdgeLabels','on');

axis([-55 55 -55 55]);

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

title 'Concrete Geometry with Edge Labels'

%% PDE Coefficients and Boundary Conditions

% Boundary conditions are defined below. Within the WST geometry, theta is

% set to the available porosity for moisture transport which is the

% saturated porosity (dirichlet), and 0 flux elsewhere (neumann).

sat = 0.122; % saturated porosity

init = 0.007; % initial moisture content

applyBoundaryCondition(pdem,'dirichlet','Edge',(4:10),'u',sat);

applyBoundaryCondition(pdem,'dirichlet','Edge',(13:16),'u',sat);

applyBoundaryCondition(pdem,'neumann','Edge',(1:3),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(11:12),'g',0);

%% Coefficient Definition

% Coefficients are defined below. Note that coefficient c = D(theta) which

% depends on the solution of the PDE Model u, where u = theta.

% Defining constant tc which is multiplied to D(theta) in order to change

the

A7

% time domain from seconds to years. D(theta) is initially given in mm^2/s.

% tc is validated to not corrupt computations

% tc = 3.15576*10^7; % mm^2/second ---> mm^2/year

% D = D0*exp(n*((state.u-init)./(sat-init))) exp template

% D = D0*((state.u-init)./(sat-init)).^n pwr template

m = 0;

d = 1;

c = @(loc,state) 0.00022*exp(6.4*((state.u-init)./(sat-init))); %c =

D(theta)

a = 0;

f = 0;

specifyCoefficients(pdem,'m',m,'d',d,'c',c,'a',a,'f',f);

%% Mesh

% Call |generateMesh| to create a mesh with elements no larger than

% about the size of hmax.

hmax = 1; % max element size

msh=generateMesh(pdem,'Hmax',hmax);

figure

pdeplot(pdem);

axis equal

axis([-55 55 -55 55]);

title 'Finite Element Mesh'

%% Finding the Transient Solution of the Hydraulic Diffusion Problem

% Transient Solution

% Perform a transient analysis from 0 to x seconds.

% The solution will be saved every () so that plots of

% the results as functions of time can be created.

% Tolerance values of the solution are defined in advance.

pdem.SolverOptions.AbsoluteTolerance = 5e-06;

pdem.SolverOptions.RelativeTolerance = 5e-03;

pdem.SolverOptions.ResidualTolerance = 5e-04;

tlist = [0:10:3600*12];

% tref = 3600*4.5/10;

tref = 3600*4.5/10;

setInitialConditions(pdem, 0.007);

R = solvepde(pdem,tlist);

u = R.NodalSolution;

getClosestNode = @(p,x,y) min((p(1,:) - x).^2 + (p(2,:) - y).^2);

% Call this function to get a node near the notch bottom.

[~,nid] = getClosestNode(msh.Nodes, 0, -40);

figure

axis equal

pdeplot(pdem,'XYData',u(:,tref),'Contour','on','ColorMap','jet');

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

title 'Moisture content \theta(x, y, 4.5 h), [m^3/m^3]'

figure

axis equal

A8

plot(tlist, u(nid,:));

grid on

xlabel 'Time, seconds'

ylabel 'Moisture content \theta(0, -40, t), [m^3/m^3]'

%% PDE Model plot along with experimental data

[filename, pathname]= uigetfile('C:\Users\afros\Dropbox\MSc Håkon\Exp data

0.15 mm CMOD\wet_10_new.txt');

data_exp = importdata([pathname, filename]);

tri = delaunay(data_exp(:,1), data_exp(:,2));

p_con = pdem.Mesh.Nodes;

t_con = pdem.Mesh.Elements;

Z_con = R.NodalSolution;

figure

axis equal

xlim([-50 50])

ylim([-50 50])

hold all

pdegplot(pdem,'EdgeLabels','off');

hold all

trisurf(tri, data_exp(:,1).*1000-50, data_exp(:,2).*1000-50, data_exp(:,3),

'EdgeColor', 'none', 'facealpha', 0.5)

caxis([0 0.125])

hold all

tricontour(p_con', t_con', Z_con(:,tref), (0.025:0.01:0.15));

colorbar('location', 'eastoutside')

view([0 90])

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

box on

title('Numerical model vs. experimental data')

%title({'Contour plot of \theta(x,y,t) along with','laboratory measurements

at t = 4.5 h'});

A9

Appendix III

Script for numerical model 3

A10

%% MODEL 3 - UNCRACKED CONCRETE - APPENDIX III

%This script is a part of Håkon Halvorsens M.Sc. thesis

%PDE to be solved: d theta/dt = div(D(theta)grad*theta)

clear variables

close all

clc

%% Create a PDE Model with a single dependent variable

numberOfPDE = 1;

pdem = createpde(numberOfPDE);

%% Aggregate generation from PSD curve

load('gen_agg_m3.mat'); % cell array Agg containing generated

aggregates

 % from a given PSD is loaded into memory. Agg

 % is generated by particle_packing.m

Agg = Agg_new;

%% Geometry part constituents

% To construct the geometry one main block (r1) is defined first, then "cut

% outs" (ri, i = 2..n), are defined subsequently. The geometry is given in

unit mm.

r1 = [3 4 -50 50 50 -50 -50 -50 50 50];

r2 = [3 4 -15 15 15 -15 28 28 50 50];

r3 = [3 4 -2.25 2.25 2.25 -2.25 0 0 28 28];

r4 = [3 4 -0.03 0.03 0.2 -0.2 -17.5 -17.5 0 0]; % crack

gd = [r1, r2, r3];

tic

for j = 1:size(Agg,1) % all row vectors describing each own aggregate

particle is assembled into a matrix ag.

 ag(1,:) = [1 (Agg{j}.coordinates(1,1)) (Agg{j}.coordinates(1,2))

(Agg{j}.radius) 0 0 0 0 0 0];

 gdnew = horzcat(gd, ag(1,:));

 gdnew1 = reshape(gdnew,10,[]);

 nsnew1 = char({'rect1','rect2','rect3','C1'});

 nsnew1 = nsnew1';

 sfnew_1 = char('rect1-rect2-rect3-C1');

 g_0 = decsg(gdnew1,sfnew_1,nsnew1);

 g_1{1,j} = g_0(:,13:end);

 g_2 = [g_0(:,1:12)];

 clear ag gdnew gdnew1 g_0

end

toc

g = cell2mat(g_1);

g = [g_2 g];

toc

%% Convert the decsg format into a geometry object

% The geometry is appended to the PDE Model

geometryFromEdges(pdem,g);

toc

%% Edge label plot

A11

% Plot the geometry with edge labels displayed. The edge labels will be

% used below in the function for defining boundary conditions.

% figure

% pdegplot(pdem,'EdgeLabels','on');

% axis([-55 55 -55 55]);

% xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

% title 'Concrete Geometry with Edge Labels'

% toc

%

% savefig('edgelabel.fig')

%% PDE Coefficients and Boundary Conditions

% Boundary conditions are defined below. Within the WST geometry, theta is

% set to the available porosity for moisture transport which is the

% saturated porosity (dirichlet), and 0 flux elsewhere (neumann).

sat = 0.122; % saturated porosity

init = 0.007; % initial moisture content

applyBoundaryCondition(pdem,'dirichlet','Edge',(2:4),'u',sat);

applyBoundaryCondition(pdem,'dirichlet','Edge',(7:8),'u',sat);

applyBoundaryCondition(pdem,'dirichlet','Edge',(11:12),'u',sat);

applyBoundaryCondition(pdem,'neumann','Edge',(1),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(5:6),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(9:10),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(13:size(g,2)),'g',0); %

aggregates

%% Coefficient Definition

% Coefficients are defined below. Note that coefficient c = D(theta) which

% depends on the solution of the PDE Model u, where u = theta.

% Defining constant tc which is multiplied to D(theta) in order to change

the

% time domain from seconds to years. D(theta) is initially given in mm^2/s.

% tc is validated to not corrupt computations

% tc = 3.15576*10^7; % mm^2/second ---> mm^2/year

% D = D0*exp(n*((state.u-init)./(sat-init))) exp template

% D = D0*((state.u-init)./(sat-init)).^n pwr template

m = 0;

d = 1;

c = @(loc,state) 0.00022*exp(6.4*((state.u-init)./(sat-init))); %c =

D(theta)

a = 0;

f = 0;

specifyCoefficients(pdem,'m',m,'d',d,'c',c,'a',a,'f',f);

%% Mesh

% Call |generateMesh| to create a mesh with elements no larger than

% about the size of hmax.

hmax = 1; % max element size

msh=generateMesh(pdem,'Hmax',hmax,'Hgrad',1.4,'MesherVersion','R2013a','Jig

gle','mean','Jiggleiter',inf);

figure

pdeplot(pdem);

A12

axis equal

axis([-55 55 -55 55]);

title 'Finite Element Mesh'

toc

savefig('FEMesh.fig')

q = pdetriq(msh.Nodes, msh.Elements);

figure

pdeplot(pdem,'XYData',q,'ColorBar','on','XYStyle','flat')

colormap jet

toc

savefig('FEMesh_quality.fig')

%% Finding the Transient Solution of the Hydraulic Diffusion Problem

% Transient Solution

% Perform a transient analysis from 0 to x seconds.

% The solution will be saved every () so that plots of

% the results as functions of time can be created.

% Tolerance values of the solution are defined in advance.

pdem.SolverOptions.AbsoluteTolerance = 5e-06;

pdem.SolverOptions.RelativeTolerance = 5e-03;

pdem.SolverOptions.ResidualTolerance = 5e-04;

tlist = [0:10:3600*12];

tref = 3600*4.5/10;

setInitialConditions(pdem, 0.007);

R = solvepde(pdem,tlist);

u = R.NodalSolution;

save('u.mat','u');

save('pdem.mat','pdem');

getClosestNode = @(p,x,y) min((p(1,:) - x).^2 + (p(2,:) - y).^2);

% Call this function to get a node near the notch bottom.

[~,nid] = getClosestNode(msh.Nodes, 0, -40);

figure

axis equal

pdeplot(pdem,'XYData',u(:,tref),'Contour','on','ColorMap','jet');

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

title 'Moisture content \theta(x, y, 4.5 h), [m^3/m^3]'

savefig('Sol1.fig')

figure

axis equal

plot(tlist, u(nid,:));

grid on

xlabel 'Time, seconds'

ylabel 'Moisture content \theta(0, -40, t), [m^3/m^3]'

savefig('Sol2.fig')

A13

Appendix IV

Script for numerical model 4

A14

%% MODEL 4 - CRACKED CONCRETE - APPENDIX IV

%This script is a part of Håkon Halvorsens M.Sc. thesis

%PDE to be solved: d theta/dt = div(D(theta)grad*theta)

clear variables

close all

clc

%% Create a PDE Model with a single dependent variable

numberOfPDE = 1;

pdem = createpde(numberOfPDE);

%% Aggregate generation from PSD curve

load('gen_agg_m4.mat') % cell array Agg containing generated

aggregates

 % from a given PSD is loaded into memory. Agg

 % is generated by particle_packing.m

Agg = Agg_new;

%% Geometry part constituents

% To construct the geometry one main block (r1) is defined first, then "cut

% outs" (ri, i = 2..n), are defined subsequently. The geometry is given in

unit mm.

r1 = [3 4 -50 50 50 -50 -50 -50 50 50];

r2 = [3 4 -15 15 15 -15 28 28 50 50];

r3 = [3 4 -2.25 2.25 2.25 -2.25 0 0 28 28];

r4 = [3 4 0.0205 -0.0205 -0.0375 0.0375 -19.19 -19.19 0 0]; %crack

gd = [r1, r2, r3, r4];

tic

for j = 1:size(Agg,1) % all row vectors describing each own aggregate

particle is assembled into a matrix ag.

 ag(1,:) = [1 (Agg{j}.coordinates(1,1)) (Agg{j}.coordinates(1,2))

(Agg{j}.radius) 0 0 0 0 0 0];

 gdnew = horzcat(gd, ag(1,:));

 gdnew1 = reshape(gdnew,10,[]);

 nsnew1 = char({'rect1','rect2','rect3','crack','C1'});

 nsnew1 = nsnew1';

 sfnew_1 = char('rect1-rect2-rect3-crack-C1');

 g_0 = decsg(gdnew1,sfnew_1,nsnew1);

 g_1{1,j} = g_0(:,17:end); %13

 g_2 = [g_0(:,1:16)]; %12

 clear ag gdnew gdnew1 g_0

end

toc

g = cell2mat(g_1);

g = [g_2 g];

%% Convert the decsg format into a geometry object

% The geometry is appended to the PDE Model

geometryFromEdges(pdem,g);

%% Edge label plot

A15

% Plot the geometry with edge labels displayed. The edge labels will be

% used below in the function for defining boundary conditions.

% figure

% pdegplot(pdem,'EdgeLabels','on');

% axis([-55 55 -55 55]);

% xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

% title 'Concrete Geometry with Edge Labels'

%% PDE Coefficients and Boundary Conditions

% Boundary conditions are defined below. Within the WST geometry, theta is

% set to the available porosity for moisture transport which is the

% capillary porosity (dirichlet), and 0 flux elsewhere (neumann).

sat = 0.122; % saturated porosity

init = 0.007; % initial moisture content

applyBoundaryCondition(pdem,'dirichlet','Edge',(2:8),'u',sat);

applyBoundaryCondition(pdem,'dirichlet','Edge',(11:14),'u',sat);

applyBoundaryCondition(pdem,'neumann','Edge',(1),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(9:10),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(15:16),'g',0);

applyBoundaryCondition(pdem,'neumann','Edge',(17:size(g,2)),'g',0); %

aggregates

%% Coefficient Definition

% Coefficients are defined below. Note that coefficient c = D(theta) which

% depends on the solution of the PDE Model u, where u = theta.

% Defining constant tc which is multiplied to D(theta) in order to change

the

% time domain from seconds to years. D(theta) is initially given in mm^2/s.

% tc is validated to not corrupt computations

% tc = 3.15576*10^7; % mm^2/second ---> mm^2/year

% D = D0*exp(n*((state.u-init)./(sat-init))) exp template

% D = D0*((state.u-init)./(sat-init)).^n pwr template

m = 0;

d = 1;

c = @(loc,state) 0.00022*exp(6.4*((state.u-init)./(sat-init))); %c =

D(theta)

a = 0;

f = 0;

specifyCoefficients(pdem,'m',m,'d',d,'c',c,'a',a,'f',f);

%% Mesh

% Call |generateMesh| to create a mesh with elements no larger than

% about the size of hmax.

hmax = 1; % max element size

msh=generateMesh(pdem,'Hmax',hmax,'Hgrad',1.4,'MesherVersion','R2013a','Jig

gle','mean','Jiggleiter',inf);

figure

pdeplot(pdem);

axis equal

axis([-55 55 -55 55]);

A16

title 'Finite Element Mesh'

toc

savefig('FEMesh.fig')

q = pdetriq(msh.Nodes, msh.Elements);

figure

pdeplot(pdem,'XYData',q,'ColorBar','on','XYStyle','flat')

colormap jet

toc

savefig('FEMesh_quality.fig')

title 'Finite Element Mesh'

%% Finding the Transient Solution of the Hydraulic Diffusion Problem

% Transient Solution

% Perform a transient analysis from 0 to x seconds.

% The solution will be saved every () so that plots of

% the results as functions of time can be created.

% Tolerance values of the solution are defined in advance.

pdem.SolverOptions.AbsoluteTolerance = 5e-06;

pdem.SolverOptions.RelativeTolerance = 5e-03;

pdem.SolverOptions.ResidualTolerance = 5e-04;

tlist = [0:10:3600*12];

tref = 3600*4.5/10;

setInitialConditions(pdem, 0.007);

R = solvepde(pdem,tlist);

u = R.NodalSolution;

getClosestNode = @(p,x,y) min((p(1,:) - x).^2 + (p(2,:) - y).^2);

% Call this function to get a node near the notch bottom.

[~,nid] = getClosestNode(msh.Nodes, 0, -40);

figure

axis equal

pdeplot(pdem,'XYData',u(:,tref),'Contour','on','ColorMap','jet');

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

title 'Moisture content \theta(x, y, 4.5 h), [m^3/m^3]'

savefig('Sol1.fig')

figure

axis equal

plot(tlist, u(nid,:));

grid on

xlabel 'Time, seconds'

ylabel 'Moisture content \theta(0, -40, t), [m^3/m^3]'

savefig('Sol2.fig')

A17

Appendix V

Script for aggregates in numerical model 3

(particle packing)

Based on code initially developed by Jan Skoček.

A18

clear all

close all

clc

%**

%function produces class "aggregates"

%**

%with following data structures

% name -

% alpha - desired content of grains in area

% dmin - minimal diametr of grain

% dmax - maximal diametr of grain

% n_d - number of aggregate diametrs to use for RSA

% gap - minimal gap between grains [in % of radius of the smaller one]

% cut - size of edge, which will be cut out

% n - total number of generated aggregates

% dxy - field, which contain diametrs and coordinates of each grain

%**

expr.notch_width = 15;

expr.notch_height = 22;

expr.cut_width = 2.25;

expr.cut_height = 28;

expr.width = 50;

expr.height = 50;

expr.thickness = 50;

expr.aggregates.PSDfile = 'PSDmix2.txt';

expr.aggregates.alpha = 4*0.69776; % area expanded with a factor of 4

expr.aggregates.dmin = 0.75;

expr.aggregates.dmax = 8;

expr.aggregates.n_d = 24;

expr.aggregates.gap = .2;

expr.aggregates.cut = 0;

expr.aggregates.x0 = 0;

expr.aggregates.y0 = 0;

expr.aggregates.n_boundary_agg = 16;

expr.name = 'WST';

LW = 1;

FS = 16;

%% Reading

gap

Agg = [];

disp('| | loading PSD file');

PSD = importdata(expr.aggregates.PSDfile,'\t');

D = PSD(:,1);

F = PSD(:,2);

disp('| | generating aggregates');

F = F./100;

ii = 1;

while F(ii,1)-F(ii+1,1) == 0

 ii = ii+1;

end

ii = ii+1;

r = D(ii,1)/2;

%% Generating

if r > expr.aggregates.dmax/2

A19

 r = expr.aggregates.dmax/2;

end

placed = 0;

while placed == 0

 x = (-1+2*rand)*expr.width; %rand ---> (-1+2*rand)

 y = (-1+2*rand)*expr.height; %rand ---> (-1+2*rand)

 if (x-(1+expr.aggregates.gap)*r) < -expr.width ||

(x+(1+expr.aggregates.gap)*r) > expr.width || (y-(1+expr.aggregates.gap)*r)

< -expr.height || (y+(1+expr.aggregates.gap)*r) > expr.height

 placed = 0;

 else

 placed = 1;

 for i=1:size(Agg,1)

 if (x-Agg{i}.coordinates(1,1))^2+(y-Agg{i}.coordinates(1,2))^2

< ((1+expr.aggregates.gap)*r+Agg(i).radius)^2

 placed = 0;

 break;

 end

 end

 end

 if placed == 1

 Agg{size(Agg,1)+1,1} = aggregate(size(Agg,1)+1,[2*r x y],'M');

 end

end

alpha = pi*r^2/(expr.width*expr.height);

while 1-alpha/expr.aggregates.alpha < F(ii,1)

 ii = ii+1;

end

r = (D(ii,1)+(D(ii-1,1)-D(ii,1))/(F(ii-1,1)-F(ii,1))*(1-

alpha/expr.aggregates.alpha-F(ii,1)))/2;

if r > expr.aggregates.dmax/2

 r = expr.aggregates.dmax/2;

end

while alpha < expr.aggregates.alpha && 2*r > expr.aggregates.dmin

 while placed == 0

 x = (-1+2*rand)*expr.width; %rand----> (-1+2*rand)

 y = (-1+2*rand)*expr.height; %rand----> (-1+2*rand)

 if (x-(1+expr.aggregates.gap)*r) < -expr.width ||

(x+(1+expr.aggregates.gap)*r) > expr.width || (y-(1+expr.aggregates.gap)*r)

< -expr.height || (y+(1+expr.aggregates.gap)*r) > expr.height

 placed = 0;

 else

 placed = 1;

 for i=1:size(Agg,1)

 if (x-Agg{i}.coordinates(1,1))^2+(y-

Agg{i}.coordinates(1,2))^2 < ((1+expr.aggregates.gap)*r+Agg{i}.radius)^2

 placed = 0;

 break;

 end

 end

 end

A20

 if placed == 1

 Agg{size(Agg,1)+1,1} = aggregate(size(Agg,1)+1,[2*r x y],'M');

 end

 end

 placed = 0;

 alpha = alpha+pi*r^2/(expr.width*expr.height);

 while 1-alpha/expr.aggregates.alpha < F(ii,1)

 ii = ii+1;

 end

 r = (D(ii,1)+(D(ii-1,1)-D(ii,1))/(F(ii-1,1)-F(ii,1))*(1-

alpha/expr.aggregates.alpha-F(ii,1)))/2;

 if r > expr.aggregates.dmax/2

 r = expr.aggregates.dmax/2;

 end

end

area = 0;

index = size(Agg,1);

count = 0;

while alpha < expr.aggregates.alpha && count < 0

 count=count+1;

 count;

 while placed == 0

 r = expr.aggregates.dmin/4;

 x = (-1+2*rand)*expr.width; % rand ---> -1+2*rand

 y = (-1+2*rand)*expr.height; % rand ---> -1+2*rand

 if (x-(1+expr.aggregates.gap)*r) < -expr.width ||

(x+(1+expr.aggregates.gap)*r) > expr.width || (y-(1+expr.aggregates.gap)*r)

< -expr.height || (y+(1+expr.aggregates.gap)*r) > expr.height

 placed = 0;

 else

 placed = 1;

 for i=1:size(Agg,1)

 if (x-Agg{i}.coordinates(1,1))^2+(y-

Agg{i}.coordinates(1,2))^2 < ((1+expr.aggregates.gap)*r+Agg{i}.radius)^2

 placed = 0;

 break;

 end

 end

 end

 if placed == 1

 Agg{size(Agg,1)+1,1} = aggregate(size(Agg,1)+1,[r x y],'Mm');

 end

 end

 placed = 0;

 alpha = alpha+pi*r^2/(expr.width*expr.height);

end

for i=size(Agg,1):-1:index+1

 Agg{i}.radius = 0;

end

A21

%% Removing aggregates

Agg_ori = Agg;

n = 1;

for i = 1:size(Agg,1)

 if (Agg{i,1}.coordinates(1,1)+(1)*Agg{i,1}.radius) < -

expr.notch_width...

 || (Agg{i,1}.coordinates(1,1)-(1)*Agg{i,1}.radius) >

expr.notch_width...

 || (Agg{i,1}.coordinates(1,2)+(1)*Agg{i,1}.radius) <

(expr.height-expr.notch_height)

 else

 Agg_to_remove {n,1} = Agg{i,1};

 n = n+1;

 Agg{i,1} = [];

 end

end

Agg(all(cellfun('isempty',Agg),2),:) = [];

for i = 1:size(Agg_to_remove,1)

 if Agg_to_remove{i,1}.coordinates(1,1) < -expr.notch_width...

 || Agg_to_remove{i,1}.coordinates(1,1) > expr.notch_width...

 || Agg_to_remove{i,1}.coordinates(1,2) < (expr.height-

expr.notch_height)

 else

 Agg_to_remove {i,1} = [];

 n = n+1;

 end

end

Agg_to_remove(all(cellfun('isempty',Agg_to_remove),2),:) = [];

for i = 1:size(Agg_to_remove,1)

 if Agg_to_remove{i,1}.coordinates(1,1) < 0

 dist_x(i,1) = Agg_to_remove{i,1}.coordinates(1,1)

+expr.notch_width;

 delta_rx(i,1) = Agg_to_remove{i,1}.radius-abs(dist_x(i,1));

 else

 dist_x(i,1) = Agg_to_remove{i,1}.coordinates(1,1) -

expr.notch_width;

 delta_rx(i,1) = Agg_to_remove{i,1}.radius-abs(dist_x(i,1));

 end

 dist_y(i,1) = (expr.height-expr.notch_height)-

Agg_to_remove{i,1}.coordinates(1,2);

 delta_ry(i,1) = Agg_to_remove{i,1}.radius-abs(dist_y(i,1));

 if abs(dist_x(i,1)) < abs(dist_y(i,1))

 Agg_to_remove{i,1}.radius = Agg_to_remove{i,1}.radius-

delta_rx(i,1)*1.01;

 else

 Agg_to_remove{i,1}.radius = Agg_to_remove{i,1}.radius-

abs(delta_ry(i,1))*1.01;

 end

end

n = 1;

for i = 1:size(Agg,1)

 if (Agg{i,1}.coordinates(1,1)+(1)*Agg{i,1}.radius) < -expr.cut_width...

 || (Agg{i,1}.coordinates(1,1)-(1)*Agg{i,1}.radius) >

expr.cut_width...

A22

 || (Agg{i,1}.coordinates(1,2)+(1)*Agg{i,1}.radius) <

(expr.height-expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut {n,1} = Agg{i,1};

 n = n+1;

 Agg{i,1} = [];

 end

end

Agg(all(cellfun('isempty',Agg),2),:) = [];

for i = 1:size(Agg_to_remove_cut,1)

 if Agg_to_remove_cut{i,1}.coordinates(1,1) < -expr.cut_width...

 || Agg_to_remove_cut{i,1}.coordinates(1,1) > expr.cut_width...

 || Agg_to_remove_cut{i,1}.coordinates(1,2) < (expr.height-

expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut {i,1} = [];

 n = n+1;

 end

end

Agg_to_remove_cut(all(cellfun('isempty',Agg_to_remove_cut),2),:) = [];

for i = 1:size(Agg_to_remove_cut,1)

 if Agg_to_remove_cut{i,1}.coordinates(1,1) < 0

 dist_x_cut(i,1) = Agg_to_remove_cut{i,1}.coordinates(1,1)

+expr.cut_width;

 delta_rx_cut(i,1) = Agg_to_remove_cut{i,1}.radius-

abs(dist_x_cut(i,1));

 else

 dist_x_cut(i,1) = Agg_to_remove_cut{i,1}.coordinates(1,1) -

expr.cut_width;

 delta_rx_cut(i,1) = Agg_to_remove_cut{i,1}.radius-

abs(dist_x_cut(i,1));

 end

 dist_y_cut(i,1) = (expr.height-expr.notch_height-expr.cut_height)-

Agg_to_remove_cut{i,1}.coordinates(1,2);

 delta_ry_cut(i,1) = Agg_to_remove_cut{i,1}.radius-abs(dist_y_cut(i,1));

 if abs(dist_x_cut(i,1)) < abs(dist_y_cut(i,1))

 Agg_to_remove_cut{i,1}.radius = Agg_to_remove_cut{i,1}.radius-

delta_rx_cut(i,1)*1.01;

 else

 Agg_to_remove_cut{i,1}.radius = Agg_to_remove_cut{i,1}.radius-

abs(delta_ry_cut(i,1))*1.01;

 end

end

Agg_to_remove_cut_fin = cell(1,1);

n = 1;

for i = 1:size(Agg_to_remove,1)

 if (Agg_to_remove{i,1}.coordinates(1,1)+(1)*Agg_to_remove{i,1}.radius)

< -expr.cut_width...

 || (Agg_to_remove{i,1}.coordinates(1,1)-

(1)*Agg_to_remove{i,1}.radius) > expr.cut_width...

 ||

(Agg_to_remove{i,1}.coordinates(1,2)+(1)*Agg_to_remove{i,1}.radius) <

(expr.height-expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut_fin {n,1} = Agg_to_remove{i,1};

 n = n+1;

A23

 Agg_to_remove{i,1} = [];

 end

end

Agg_to_remove(all(cellfun('isempty',Agg_to_remove),2),:) = [];

if isempty(Agg_to_remove_cut_fin{1,1}) == 1

else

 for i = 1:size(Agg_to_remove_cut_fin,1)

 if Agg_to_remove_cut_fin{i,1}.coordinates(1,1) < -expr.cut_width...

 || Agg_to_remove_cut_fin{i,1}.coordinates(1,1) >

expr.cut_width...

 || Agg_to_remove_cut_fin{i,1}.coordinates(1,2) <

(expr.height-expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut_fin {i,1} = [];

 n = n+1;

 end

 end

Agg_to_remove_cut_fin(all(cellfun('isempty',Agg_to_remove_cut_fin),2),:) =

[];

 for i = 1:size(Agg_to_remove_cut_fin,1)

 if Agg_to_remove_cut_fin{i,1}.coordinates(1,1) < 0

 dist_x_cut_fin(i,1) =

Agg_to_remove_cut_fin{i,1}.coordinates(1,1) +expr.cut_width;

 delta_rx_cut_fin(i,1) = Agg_to_remove_cut_fin{i,1}.radius-

abs(dist_x_cut_fin(i,1));

 else

 dist_x_cut_fin(i,1) =

Agg_to_remove_cut_fin{i,1}.coordinates(1,1) -expr.cut_width;

 delta_rx_cut_fin(i,1) = Agg_to_remove_cut_fin{i,1}.radius-

abs(dist_x_cut_fin(i,1));

 end

 dist_y_cut_fin(i,1) = (expr.height-expr.notch_height-

expr.cut_height)-Agg_to_remove_cut_fin{i,1}.coordinates(1,2);

 delta_ry_cut_fin(i,1) = Agg_to_remove_cut_fin{i,1}.radius-

abs(dist_y_cut_fin(i,1));

 if abs(dist_x_cut_fin(i,1)) < abs(dist_y_cut_fin(i,1))

 Agg_to_remove_cut_fin{i,1}.radius =

Agg_to_remove_cut_fin{i,1}.radius-delta_rx_cut_fin(i,1)*1.01;

 else

 Agg_to_remove_cut_fin{i,1}.radius =

Agg_to_remove_cut_fin{i,1}.radius-abs(delta_ry_cut_fin(i,1))*1.01;

 end

 end

end

test_var = exist('Agg_to_remove_cut_fin','var');

if test_var == 1 || isempty(Agg_to_remove_cut_fin{1,1}) == 1

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut];

elseif test_var == 1 || isempty(Agg_to_remove_cut_fin{1,1}) == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut;

Agg_to_remove_cut_fin];

elseif test_var == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut];

end

A24

%% Saving random generated aggregates

save('gen_agg_m3.mat','Agg_new')

disp('| | generated aggregates now updated in gen_agg.mat');

%% Plotting

hold all

for i = size(Agg_ori,1):-1:1 %through which diameters

 x = 0:pi/100:2*pi; %parameter for plot

 if strcmp(Agg_ori{i}.label,'Mm')

fill(cos(x)*Agg_ori{i}.radius+Agg_ori{i}.coordinates(1,1),sin(x)*Agg_ori{i}

.radius+Agg_ori{i}.coordinates(1,2),'w','LineWidth',LW);

 else

fill(cos(x)*Agg_ori{i}.radius+Agg_ori{i}.coordinates(1,1),sin(x)*Agg_ori{i}

.radius+Agg_ori{i}.coordinates(1,2),'k','LineWidth',LW);

 end

 plot([-expr.notch_width,-expr.notch_width],[expr.height, expr.height-

expr.notch_height],'r-','Linewidth',2)

 plot([expr.notch_width,expr.notch_width],[expr.height, expr.height-

expr.notch_height],'r-','Linewidth',2)

 plot([-expr.notch_width,expr.notch_width],[expr.height-

expr.notch_height, expr.height-expr.notch_height],'r-','Linewidth',2)

 plot([-expr.cut_width,-expr.cut_width],[expr.height-expr.notch_height,

expr.height-expr.notch_height-expr.cut_height],'r-','Linewidth',2)

 plot([expr.cut_width,expr.cut_width],[expr.height-expr.notch_height,

expr.height-expr.notch_height-expr.cut_height],'r-','Linewidth',2)

 plot([-expr.cut_width,expr.cut_width],[expr.height-expr.notch_height-

expr.cut_height, expr.height-expr.notch_height-expr.cut_height],'r-

','Linewidth',2)

end

for i = size(Agg_new,1):-1:1 %through which diameters

 x = 0:pi/100:2*pi; %parameter for plot

 if strcmp(Agg_new{i}.label,'Mm')

fill(cos(x)*Agg_new{i}.radius+Agg_new{i}.coordinates(1,1),sin(x)*Agg_new{i}

.radius+Agg_new{i}.coordinates(1,2),'w','LineWidth',LW);

 else

fill(cos(x)*Agg_new{i}.radius+Agg_new{i}.coordinates(1,1),sin(x)*Agg_new{i}

.radius+Agg_new{i}.coordinates(1,2),'b','LineWidth',LW);

 end

end

axis equal %keep circles looks like circles

xlabel('X [m]','FontSize',FS);

ylabel('Y [m]','FontSize',FS);

axis([-50 50 -50 50])

box on

hold off

A25

Appendix VI

Script for aggregates in numerical model 4

(particle packing)

Based on code initially developed by Jan Skoček.

A26

clear all

close all

clc

%**

%function produces class "aggregates"

%**

%with following data structures

% name -

% alpha - desired content of grains in area

% dmin - minimal diametr of grain

% dmax - maximal diametr of grain

% n_d - number of aggregate diametrs to use for RSA

% gap - minimal gap between grains [in % of radius of the smaller one]

% cut - size of edge, which will be cut out

% n - total number of generated aggregates

% dxy - field, which contain diametrs and coordinates of each grain

%**

expr.notch_width = 15;

expr.notch_height = 22;

expr.cut_width = 2.25;

expr.cut_height = 28;

expr.crack_width = 0.0375; %crack also added

expr.crack_height = 19.19; % --||--

expr.width = 50;

expr.height = 50;

expr.thickness = 50;

expr.aggregates.PSDfile = 'PSDmix2.txt';

expr.aggregates.alpha = 4*0.69776; % area expanded with a factor of 4

expr.aggregates.dmin = 0.75;

expr.aggregates.dmax = 8;

expr.aggregates.n_d = 24;

expr.aggregates.gap = .2;

expr.aggregates.cut = 0;

expr.aggregates.x0 = 0;

expr.aggregates.y0 = 0;

expr.aggregates.n_boundary_agg = 16;

expr.name = 'WST';

LW = 1;

FS = 16;

%% Reading

gap

Agg = [];

disp('| | loading PSD file');

PSD = importdata(expr.aggregates.PSDfile,'\t');

D = PSD(:,1);

F = PSD(:,2);

disp('| | generating aggregates');

F = F./100;

ii = 1;

while F(ii,1)-F(ii+1,1) == 0

 ii = ii+1;

end

ii = ii+1;

r = D(ii,1)/2;

%% Generating

A27

if r > expr.aggregates.dmax/2

 r = expr.aggregates.dmax/2;

end

placed = 0;

while placed == 0

 x = (-1+2*rand)*expr.width; %rand ---> (-1+2*rand)

 y = (-1+2*rand)*expr.height; %rand ---> (-1+2*rand)

 if (x-(1+expr.aggregates.gap)*r) < -expr.width ||

(x+(1+expr.aggregates.gap)*r) > expr.width || (y-(1+expr.aggregates.gap)*r)

< -expr.height || (y+(1+expr.aggregates.gap)*r) > expr.height

 placed = 0;

 else

 placed = 1;

 for i=1:size(Agg,1)

 if (x-Agg{i}.coordinates(1,1))^2+(y-Agg{i}.coordinates(1,2))^2

< ((1+expr.aggregates.gap)*r+Agg(i).radius)^2

 placed = 0;

 break;

 end

 end

 end

 if placed == 1

 Agg{size(Agg,1)+1,1} = aggregate(size(Agg,1)+1,[2*r x y],'M');

 end

end

alpha = pi*r^2/(expr.width*expr.height);

while 1-alpha/expr.aggregates.alpha < F(ii,1)

 ii = ii+1;

end

r = (D(ii,1)+(D(ii-1,1)-D(ii,1))/(F(ii-1,1)-F(ii,1))*(1-

alpha/expr.aggregates.alpha-F(ii,1)))/2;

if r > expr.aggregates.dmax/2

 r = expr.aggregates.dmax/2;

end

while alpha < expr.aggregates.alpha && 2*r > expr.aggregates.dmin

 while placed == 0

 x = (-1+2*rand)*expr.width; %rand----> (-1+2*rand)

 y = (-1+2*rand)*expr.height; %rand----> (-1+2*rand)

 if (x-(1+expr.aggregates.gap)*r) < -expr.width ||

(x+(1+expr.aggregates.gap)*r) > expr.width || (y-(1+expr.aggregates.gap)*r)

< -expr.height || (y+(1+expr.aggregates.gap)*r) > expr.height

 placed = 0;

 else

 placed = 1;

 for i=1:size(Agg,1)

 if (x-Agg{i}.coordinates(1,1))^2+(y-

Agg{i}.coordinates(1,2))^2 < ((1+expr.aggregates.gap)*r+Agg{i}.radius)^2

 placed = 0;

 break;

 end

A28

 end

 end

 if placed == 1

 Agg{size(Agg,1)+1,1} = aggregate(size(Agg,1)+1,[2*r x y],'M');

 end

 end

 placed = 0;

 alpha = alpha+pi*r^2/(expr.width*expr.height);

 while 1-alpha/expr.aggregates.alpha < F(ii,1)

 ii = ii+1;

 end

 r = (D(ii,1)+(D(ii-1,1)-D(ii,1))/(F(ii-1,1)-F(ii,1))*(1-

alpha/expr.aggregates.alpha-F(ii,1)))/2;

 if r > expr.aggregates.dmax/2

 r = expr.aggregates.dmax/2;

 end

end

area = 0;

index = size(Agg,1);

count = 0;

while alpha < expr.aggregates.alpha && count < 0

 count=count+1;

 count;

 while placed == 0

 r = expr.aggregates.dmin/4;

 x = (-1+2*rand)*expr.width; % rand ---> -1+2*rand

 y = (-1+2*rand)*expr.height; % rand ---> -1+2*rand

 if (x-(1+expr.aggregates.gap)*r) < -expr.width ||

(x+(1+expr.aggregates.gap)*r) > expr.width || (y-(1+expr.aggregates.gap)*r)

< -expr.height || (y+(1+expr.aggregates.gap)*r) > expr.height

 placed = 0;

 else

 placed = 1;

 for i=1:size(Agg,1)

 if (x-Agg{i}.coordinates(1,1))^2+(y-

Agg{i}.coordinates(1,2))^2 < ((1+expr.aggregates.gap)*r+Agg{i}.radius)^2

 placed = 0;

 break;

 end

 end

 end

 if placed == 1

 Agg{size(Agg,1)+1,1} = aggregate(size(Agg,1)+1,[r x y],'Mm');

 end

 end

 placed = 0;

 alpha = alpha+pi*r^2/(expr.width*expr.height);

end

for i=size(Agg,1):-1:index+1

 Agg{i}.radius = 0;

end

A29

%% Removing aggregates

Agg_ori = Agg;

n = 1;

for i = 1:size(Agg,1)

 if (Agg{i,1}.coordinates(1,1)+(1)*Agg{i,1}.radius) < -

expr.notch_width...

 || (Agg{i,1}.coordinates(1,1)-(1)*Agg{i,1}.radius) >

expr.notch_width...

 || (Agg{i,1}.coordinates(1,2)+(1)*Agg{i,1}.radius) <

(expr.height-expr.notch_height)

 else

 Agg_to_remove {n,1} = Agg{i,1};

 n = n+1;

 Agg{i,1} = [];

 end

end

Agg(all(cellfun('isempty',Agg),2),:) = [];

for i = 1:size(Agg_to_remove,1)

 if Agg_to_remove{i,1}.coordinates(1,1) < -expr.notch_width...

 || Agg_to_remove{i,1}.coordinates(1,1) > expr.notch_width...

 || Agg_to_remove{i,1}.coordinates(1,2) < (expr.height-

expr.notch_height)

 else

 Agg_to_remove {i,1} = [];

 n = n+1;

 end

end

Agg_to_remove(all(cellfun('isempty',Agg_to_remove),2),:) = [];

for i = 1:size(Agg_to_remove,1)

 if Agg_to_remove{i,1}.coordinates(1,1) < 0

 dist_x(i,1) = Agg_to_remove{i,1}.coordinates(1,1)

+expr.notch_width;

 delta_rx(i,1) = Agg_to_remove{i,1}.radius-abs(dist_x(i,1));

 else

 dist_x(i,1) = Agg_to_remove{i,1}.coordinates(1,1) -

expr.notch_width;

 delta_rx(i,1) = Agg_to_remove{i,1}.radius-abs(dist_x(i,1));

 end

 dist_y(i,1) = (expr.height-expr.notch_height)-

Agg_to_remove{i,1}.coordinates(1,2);

 delta_ry(i,1) = Agg_to_remove{i,1}.radius-abs(dist_y(i,1));

 if abs(dist_x(i,1)) < abs(dist_y(i,1))

 Agg_to_remove{i,1}.radius = Agg_to_remove{i,1}.radius-

delta_rx(i,1)*1.01;

 else

 Agg_to_remove{i,1}.radius = Agg_to_remove{i,1}.radius-

abs(delta_ry(i,1))*1.01;

 end

end

% until this point only notch conflicting aggregates is removed. repeating

% procedure for the cut conflictiong aggregates in the following

A30

n = 1;

for i = 1:size(Agg,1)

 if (Agg{i,1}.coordinates(1,1)+(1)*Agg{i,1}.radius) < -expr.cut_width...

 || (Agg{i,1}.coordinates(1,1)-(1)*Agg{i,1}.radius) >

expr.cut_width...

 || (Agg{i,1}.coordinates(1,2)+(1)*Agg{i,1}.radius) <

(expr.height-expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut {n,1} = Agg{i,1};

 n = n+1;

 Agg{i,1} = [];

 end

end

Agg(all(cellfun('isempty',Agg),2),:) = [];

for i = 1:size(Agg_to_remove_cut,1)

 if Agg_to_remove_cut{i,1}.coordinates(1,1) < -expr.cut_width...

 || Agg_to_remove_cut{i,1}.coordinates(1,1) > expr.cut_width...

 || Agg_to_remove_cut{i,1}.coordinates(1,2) < (expr.height-

expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut {i,1} = [];

 n = n+1;

 end

end

Agg_to_remove_cut(all(cellfun('isempty',Agg_to_remove_cut),2),:) = [];

for i = 1:size(Agg_to_remove_cut,1)

 if Agg_to_remove_cut{i,1}.coordinates(1,1) < 0

 dist_x_cut(i,1) = Agg_to_remove_cut{i,1}.coordinates(1,1)

+expr.cut_width;

 delta_rx_cut(i,1) = Agg_to_remove_cut{i,1}.radius-

abs(dist_x_cut(i,1));

 else

 dist_x_cut(i,1) = Agg_to_remove_cut{i,1}.coordinates(1,1) -

expr.cut_width;

 delta_rx_cut(i,1) = Agg_to_remove_cut{i,1}.radius-

abs(dist_x_cut(i,1));

 end

 dist_y_cut(i,1) = (expr.height-expr.notch_height-expr.cut_height)-

Agg_to_remove_cut{i,1}.coordinates(1,2);

 delta_ry_cut(i,1) = Agg_to_remove_cut{i,1}.radius-abs(dist_y_cut(i,1));

 if abs(dist_x_cut(i,1)) < abs(dist_y_cut(i,1))

 Agg_to_remove_cut{i,1}.radius = Agg_to_remove_cut{i,1}.radius-

delta_rx_cut(i,1)*1.01;

 else

 Agg_to_remove_cut{i,1}.radius = Agg_to_remove_cut{i,1}.radius-

abs(delta_ry_cut(i,1))*1.01;

 end

end

Agg_to_remove_cut_fin = cell(1,1);

n = 1;

for i = 1:size(Agg_to_remove,1)

 if (Agg_to_remove{i,1}.coordinates(1,1)+(1)*Agg_to_remove{i,1}.radius)

< -expr.cut_width...

 || (Agg_to_remove{i,1}.coordinates(1,1)-

(1)*Agg_to_remove{i,1}.radius) > expr.cut_width...

A31

 ||

(Agg_to_remove{i,1}.coordinates(1,2)+(1)*Agg_to_remove{i,1}.radius) <

(expr.height-expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut_fin {n,1} = Agg_to_remove{i,1};

 n = n+1;

 Agg_to_remove{i,1} = [];

 end

end

Agg_to_remove(all(cellfun('isempty',Agg_to_remove),2),:) = [];

if isempty(Agg_to_remove_cut_fin{1,1}) == 1

else

 for i = 1:size(Agg_to_remove_cut_fin,1)

 if Agg_to_remove_cut_fin{i,1}.coordinates(1,1) < -expr.cut_width...

 || Agg_to_remove_cut_fin{i,1}.coordinates(1,1) >

expr.cut_width...

 || Agg_to_remove_cut_fin{i,1}.coordinates(1,2) <

(expr.height-expr.notch_height-expr.cut_height)

 else

 Agg_to_remove_cut_fin {i,1} = [];

 n = n+1;

 end

 end

Agg_to_remove_cut_fin(all(cellfun('isempty',Agg_to_remove_cut_fin),2),:) =

[];

 for i = 1:size(Agg_to_remove_cut_fin,1)

 if Agg_to_remove_cut_fin{i,1}.coordinates(1,1) < 0

 dist_x_cut_fin(i,1) =

Agg_to_remove_cut_fin{i,1}.coordinates(1,1) +expr.cut_width;

 delta_rx_cut_fin(i,1) = Agg_to_remove_cut_fin{i,1}.radius-

abs(dist_x_cut_fin(i,1));

 else

 dist_x_cut_fin(i,1) =

Agg_to_remove_cut_fin{i,1}.coordinates(1,1) -expr.cut_width;

 delta_rx_cut_fin(i,1) = Agg_to_remove_cut_fin{i,1}.radius-

abs(dist_x_cut_fin(i,1));

 end

 dist_y_cut_fin(i,1) = (expr.height-expr.notch_height-

expr.cut_height)-Agg_to_remove_cut_fin{i,1}.coordinates(1,2);

 delta_ry_cut_fin(i,1) = Agg_to_remove_cut_fin{i,1}.radius-

abs(dist_y_cut_fin(i,1));

 if abs(dist_x_cut_fin(i,1)) < abs(dist_y_cut_fin(i,1))

 Agg_to_remove_cut_fin{i,1}.radius =

Agg_to_remove_cut_fin{i,1}.radius-delta_rx_cut_fin(i,1)*1.01;

 else

 Agg_to_remove_cut_fin{i,1}.radius =

Agg_to_remove_cut_fin{i,1}.radius-abs(delta_ry_cut_fin(i,1))*1.01;

 end

 end

end

%%%start crack

A32

n = 1;

for i = 1:size(Agg,1)

 if (Agg{i,1}.coordinates(1,1)+(1)*Agg{i,1}.radius) < -

expr.crack_width...

 || (Agg{i,1}.coordinates(1,1)-(1)*Agg{i,1}.radius) >

expr.crack_width...

 || (Agg{i,1}.coordinates(1,2)+(1)*Agg{i,1}.radius) <

(expr.height-expr.notch_height-expr.cut_height-expr.crack_height)

 else

 Agg_to_remove_crack {n,1} = Agg{i,1};

 n = n+1;

 Agg{i,1} = [];

 end

end

Agg(all(cellfun('isempty',Agg),2),:) = [];

for i = 1:size(Agg_to_remove_crack,1)

 if Agg_to_remove_crack{i,1}.coordinates(1,1) < -expr.crack_width...

 || Agg_to_remove_crack{i,1}.coordinates(1,1) >

expr.crack_width...

 || Agg_to_remove_crack{i,1}.coordinates(1,2) < (expr.height-

expr.notch_height-expr.cut_height-expr.crack_height)

 else

 Agg_to_remove_crack {i,1} = [];

 n = n+1;

 end

end

Agg_to_remove_crack(all(cellfun('isempty',Agg_to_remove_crack),2),:) = [];

for i = 1:size(Agg_to_remove_crack,1)

 if Agg_to_remove_crack{i,1}.coordinates(1,1) < 0

 dist_x_crack(i,1) = Agg_to_remove_crack{i,1}.coordinates(1,1)

+expr.crack_width;

 delta_rx_crack(i,1) = Agg_to_remove_crack{i,1}.radius-

abs(dist_x_crack(i,1));

 else

 dist_x_crack(i,1) = Agg_to_remove_crack{i,1}.coordinates(1,1) -

expr.crack_width;

 delta_rx_crack(i,1) = Agg_to_remove_crack{i,1}.radius-

abs(dist_x_crack(i,1));

 end

 dist_y_crack(i,1) = (expr.height-expr.notch_height-expr.cut_height-

expr.crack_height)-Agg_to_remove_crack{i,1}.coordinates(1,2);

 delta_ry_crack(i,1) = Agg_to_remove_crack{i,1}.radius-

abs(dist_y_crack(i,1));

 if abs(dist_x_crack(i,1)) < abs(dist_y_crack(i,1))

 Agg_to_remove_crack{i,1}.radius = Agg_to_remove_crack{i,1}.radius-

delta_rx_crack(i,1)*1.01;

 else

 Agg_to_remove_crack{i,1}.radius = Agg_to_remove_crack{i,1}.radius-

abs(delta_ry_crack(i,1))*1.01;

 end

end

% crack fin

Agg_to_remove_crack_fin = cell(1,1);

n = 1;

for i = 1:size(Agg_to_remove,1)

A33

 if (Agg_to_remove{i,1}.coordinates(1,1)+(1)*Agg_to_remove{i,1}.radius)

< -expr.crack_width...

 || (Agg_to_remove{i,1}.coordinates(1,1)-

(1)*Agg_to_remove{i,1}.radius) > expr.cut_width...

 ||

(Agg_to_remove{i,1}.coordinates(1,2)+(1)*Agg_to_remove{i,1}.radius) <

(expr.height-expr.notch_height-expr.cut_height-expr.crack_height)

 else

 Agg_to_remove_crack_fin {n,1} = Agg_to_remove{i,1};

 n = n+1;

 Agg_to_remove{i,1} = [];

 end

end

Agg_to_remove(all(cellfun('isempty',Agg_to_remove),2),:) = [];

if isempty(Agg_to_remove_crack_fin{1,1}) == 1

else

 for i = 1:size(Agg_to_remove_crack_fin,1)

 if Agg_to_remove_crack_fin{i,1}.coordinates(1,1) < -

expr.crack_width...

 || Agg_to_remove_crack_fin{i,1}.coordinates(1,1) >

expr.crack_width...

 || Agg_to_remove_crack_fin{i,1}.coordinates(1,2) <

(expr.height-expr.notch_height-expr.cut_height-expr.crack_height)

 else

 Agg_to_remove_crack_fin {i,1} = [];

 n = n+1;

 end

 end

Agg_to_remove_crack_fin(all(cellfun('isempty',Agg_to_remove_crack_fin),2),:

) = [];

 for i = 1:size(Agg_to_remove_crack_fin,1)

 if Agg_to_remove_crack_fin{i,1}.coordinates(1,1) < 0

 dist_x_crack_fin(i,1) =

Agg_to_remove_crack_fin{i,1}.coordinates(1,1) +expr.crack_width;

 delta_rx_crack_fin(i,1) = Agg_to_remove_crack_fin{i,1}.radius-

abs(dist_x_crack_fin(i,1));

 else

 dist_x_crack_fin(i,1) =

Agg_to_remove_crack_fin{i,1}.coordinates(1,1) -expr.crack_width;

 delta_rx_crack_fin(i,1) = Agg_to_remove_crack_fin{i,1}.radius-

abs(dist_x_crack_fin(i,1));

 end

 dist_y_crack_fin(i,1) = (expr.height-expr.notch_height-

expr.cut_height-expr.crack_height)-

Agg_to_remove_crack_fin{i,1}.coordinates(1,2);

 delta_ry_crack_fin(i,1) = Agg_to_remove_crack_fin{i,1}.radius-

abs(dist_y_crack_fin(i,1));

 if abs(dist_x_crack_fin(i,1)) < abs(dist_y_crack_fin(i,1))

 Agg_to_remove_crack_fin{i,1}.radius =

Agg_to_remove_crack_fin{i,1}.radius-delta_rx_crack_fin(i,1)*1.01;

 else

 Agg_to_remove_crack_fin{i,1}.radius =

Agg_to_remove_crack_fin{i,1}.radius-abs(delta_ry_crack_fin(i,1))*1.01;

 end

 end

end

A34

test_var = exist('Agg_to_remove_cut_fin','var');

if test_var == 1 || isempty(Agg_to_remove_cut_fin{1,1}) == 1

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut];

elseif test_var == 1 || isempty(Agg_to_remove_cut_fin{1,1}) == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut;

Agg_to_remove_cut_fin];

elseif test_var == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut];

end

%%%end crack

test_var = exist('Agg_to_remove_cut_fin','var');

if test_var == 1 || isempty(Agg_to_remove_cut_fin{1,1}) == 1

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut];

elseif test_var == 1 || isempty(Agg_to_remove_cut_fin{1,1}) == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut;

Agg_to_remove_cut_fin];

elseif test_var == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_cut];

end

test_var = exist('Agg_to_remove_crack_fin','var');

if test_var == 1 || isempty(Agg_to_remove_crack_fin{1,1}) == 1

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_crack];

elseif test_var == 1 || isempty(Agg_to_remove_crack_fin{1,1}) == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_crack;

Agg_to_remove_crack_fin];

elseif test_var == 0

 Agg_new = [Agg; Agg_to_remove; Agg_to_remove_crack];

end

%% Saving random generated

save('gen_agg_m4.mat','Agg_new')

disp('| | generated aggregates now updated in gen_agg.mat');

%% Plotting

hold all

for i = size(Agg_ori,1):-1:1 %through which diameters

 x = 0:pi/100:2*pi; %parameter for plot

 if strcmp(Agg_ori{i}.label,'Mm')

fill(cos(x)*Agg_ori{i}.radius+Agg_ori{i}.coordinates(1,1),sin(x)*Agg_ori{i}

.radius+Agg_ori{i}.coordinates(1,2),'w','LineWidth',LW);

 else

fill(cos(x)*Agg_ori{i}.radius+Agg_ori{i}.coordinates(1,1),sin(x)*Agg_ori{i}

.radius+Agg_ori{i}.coordinates(1,2),'k','LineWidth',LW);

 end

 plot([-expr.notch_width,-expr.notch_width],[expr.height, expr.height-

expr.notch_height],'r-','Linewidth',2)

 plot([expr.notch_width,expr.notch_width],[expr.height, expr.height-

expr.notch_height],'r-','Linewidth',2)

A35

 plot([-expr.notch_width,expr.notch_width],[expr.height-

expr.notch_height, expr.height-expr.notch_height],'r-','Linewidth',2)

 plot([-expr.cut_width,-expr.cut_width],[expr.height-expr.notch_height,

expr.height-expr.notch_height-expr.cut_height],'r-','Linewidth',2)

 plot([expr.cut_width,expr.cut_width],[expr.height-expr.notch_height,

expr.height-expr.notch_height-expr.cut_height],'r-','Linewidth',2)

 plot([-expr.cut_width,expr.cut_width],[expr.height-expr.notch_height-

expr.cut_height, expr.height-expr.notch_height-expr.cut_height],'r-

','Linewidth',2)

 plot([-expr.crack_width,-expr.crack_width],[expr.height-

expr.notch_height-expr.cut_height, expr.height-expr.notch_height-

expr.cut_height-expr.crack_height],'r-','Linewidth',2)

 plot([expr.crack_width,expr.crack_width],[expr.height-

expr.notch_height-expr.cut_height, expr.height-expr.notch_height-

expr.cut_height-expr.crack_height],'r-','Linewidth',2)

 plot([-expr.crack_width,expr.crack_width],[expr.height-

expr.notch_height-expr.cut_height-expr.crack_height, expr.height-

expr.notch_height-expr.cut_height-expr.crack_height],'r-','Linewidth',2)

end

for i = size(Agg_new,1):-1:1 %through which diameters

 x = 0:pi/100:2*pi; %parameter for plot

 if strcmp(Agg_new{i}.label,'Mm')

fill(cos(x)*Agg_new{i}.radius+Agg_new{i}.coordinates(1,1),sin(x)*Agg_new{i}

.radius+Agg_new{i}.coordinates(1,2),'w','LineWidth',LW);

 else

fill(cos(x)*Agg_new{i}.radius+Agg_new{i}.coordinates(1,1),sin(x)*Agg_new{i}

.radius+Agg_new{i}.coordinates(1,2),'b','LineWidth',LW);

 end

end

axis equal %keep circles looks like circles

xlabel('X [m]','FontSize',FS);

ylabel('Y [m]','FontSize',FS);

axis([-50 50 -50 50])

box on

hold off

A36

Appendix VII

Script for interpolation

A37

clear variables

close all

clc

load('u01.mat');

u01 = u;

load('pdem01.mat');

pdem01 = pdem;

load('u02.mat');

u02 = u;

load('pdem02.mat');

pdem02 = pdem;

load('u03.mat');

u03 = u;

load('pdem03.mat');

pdem03 = pdem;

load('u04.mat');

u04 = u;

load('pdem04.mat');

pdem04 = pdem;

load('u05.mat');

u05 = u;

load('pdem05.mat');

pdem05 = pdem;

load('u06.mat');

u06 = u;

load('pdem06.mat');

pdem06 = pdem;

load('u07.mat');

u07 = u;

load('pdem07.mat');

pdem07 = pdem;

load('u08.mat');

u08 = u;

load('pdem08.mat');

pdem08 = pdem;

load('u09.mat');

u09 = u;

load('pdem09.mat');

pdem09 = pdem;

load('u10.mat');

u10 = u;

load('pdem10.mat');

pdem10 = pdem;

load('pdem.mat','pdem');

st = 3600*7.0/10; % Chosen timestep from PDE model (=column number

in u)

A38

% Mesh no. 1

x1 = pdem01.Mesh.Nodes(1,:)';

y1 = pdem01.Mesh.Nodes(2,:)';

v1 = u01(:,st);

% Mesh no. 2

x2 = pdem02.Mesh.Nodes(1,:)';

y2 = pdem02.Mesh.Nodes(2,:)';

v2 = u02(:,st);

% Mesh no. 3

x3 = pdem03.Mesh.Nodes(1,:)';

y3 = pdem03.Mesh.Nodes(2,:)';

v3 = u03(:,st);

% Mesh no. 4

x4 = pdem04.Mesh.Nodes(1,:)';

y4 = pdem04.Mesh.Nodes(2,:)';

v4 = u04(:,st);

% Mesh no. 5

x5 = pdem05.Mesh.Nodes(1,:)';

y5 = pdem05.Mesh.Nodes(2,:)';

v5 = u05(:,st);

% Mesh no. 6

x6 = pdem06.Mesh.Nodes(1,:)';

y6 = pdem06.Mesh.Nodes(2,:)';

v6 = u06(:,st);

% Mesh no. 7

x7 = pdem07.Mesh.Nodes(1,:)';

y7 = pdem07.Mesh.Nodes(2,:)';

v7 = u07(:,st);

% Mesh no. 8

x8 = pdem08.Mesh.Nodes(1,:)';

y8 = pdem08.Mesh.Nodes(2,:)';

v8 = u08(:,st);

% Mesh no. 9

x9 = pdem09.Mesh.Nodes(1,:)';

y9 = pdem09.Mesh.Nodes(2,:)';

v9 = u09(:,st);

% Mesh no. 10

x10 = pdem10.Mesh.Nodes(1,:)';

y10 = pdem10.Mesh.Nodes(2,:)';

v10 = u10(:,st);

% Create the interpolants and a grid of query points.

F1 = scatteredInterpolant(x1,y1,v1);

F2 = scatteredInterpolant(x2,y2,v2);

F3 = scatteredInterpolant(x3,y3,v3);

F4 = scatteredInterpolant(x4,y4,v4);

F5 = scatteredInterpolant(x5,y5,v5);

F6 = scatteredInterpolant(x6,y6,v6);

F7 = scatteredInterpolant(x7,y7,v7);

F8 = scatteredInterpolant(x8,y8,v8);

A39

F9 = scatteredInterpolant(x9,y9,v9);

F10 = scatteredInterpolant(x10,y10,v10);

% Defining the query points

[xq,yq] = meshgrid(-50:0.05:50);

% Defining the interpolated values at the query points.

vq1 = F1(xq,yq);

vq2 = F2(xq,yq);

vq3 = F3(xq,yq);

vq4 = F4(xq,yq);

vq5 = F5(xq,yq);

vq6 = F6(xq,yq);

vq7 = F7(xq,yq);

vq8 = F8(xq,yq);

vq9 = F9(xq,yq);

vq10 = F10(xq,yq);

% Defining the averaged interpolated solution at query points.

n = 10; % Number of mesh entries

u_avg = (1/n)*(vq1+vq2+vq3+vq4+vq5+vq6+vq7+vq8+vq9+vq10);

clearvars x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

clearvars y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

clearvars v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

clearvars u01 u02 u03 u04 u05 u05 u06 u07 u08 u09 u10

clearvars pdem01 pdem02 pdem03 pdem04 pdem05 pdem06 pdem07 pdem08 pdem09

pdem10

clearvars F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

clearvars vq1 vq2 vq3 vq4 vq5 vq6 vq7 vq8 vq9 vq10

xq3 = xq;

yq3 = yq;

u_avg3 = u_avg;

save('xq3.mat','xq3')

save('yq3.mat','yq3')

save('u_avg3.mat','u_avg3')

% Generate figure from the averaged solution at the query points

figure

surf(xq,yq,u_avg,'EdgeColor','none','FaceAlpha',1,'FaceColor','interp');

view(2)

colorbar('location', 'eastoutside')

colormap default

axis equal

hold on

contour(xq,yq,u_avg,'k')

title('Averaged solution of \theta(x,y,t)')

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50]);

hold off

savefig('intpol_fig.fig')

% Contour plot vs experimental data

[filename, pathname]= uigetfile('C:\Users\afros\Dropbox\MSc Håkon\Exp data

70 % peak load\wet_10_new.txt');

A40

data_exp = importdata([pathname, filename]);

tri = delaunay(data_exp(:,1), data_exp(:,2));

figure

contour(xq,yq,u_avg)

hold all

pdegplot(pdem,'EdgeLabels','off');

hold all

trisurf(tri, data_exp(:,1).*1000-50, data_exp(:,2).*1000-50, data_exp(:,3),

'EdgeColor', 'none', 'facealpha', 0.5)

caxis([0 0.125])

colorbar('location', 'eastoutside')

xlim([-50 50])

ylim([-50 50])

xticks([-50 -40 -30 -20 -10 0 10 20 30 40 50])

axis equal

savefig('contour_fig.fig')

