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Problem Description

Chip Multiprocessors (CMPs) or multi-core architectures are becoming increasingly
popular, both in industry and academia. CMPs often share on-chip cache space be-
tween cores. When the CMP is used to run multiprogrammed workloads, different
processes compete for cache space. Severe competition can lead to considerable perfor-
mance degradation, and researchers have proposed many techniques that aim to alle-
viate this problem. The performance of a management technique depends heavily on
other architectural components and the benchmarks used in the evaluation. Thus, it is
difficult to meaningfully compare techniques without implementing them in the same
simulation framework.

The first task is to implement Vantage in the simulation framework currently in use
at NTNU. This framework already supports TADIP, DRRIP, UCP, PIPP and PriSM
in addition to conventional LRU-based replacement. Second, the student should carry
out extensive simulations to establish the performance of the different techniques across
a range of architectural configurations. If time permits, the student should identify the
root cause of the observed performance differences.
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Abstract

Over the past few decades, the development of Dynamic Random-Access Memory
(DRAM) has mainly focused on increasing capacity and lowering costs. However, mi-
croprocessor development has experienced enormous improvements in latency. This
has led to an increasing memory latency-gap, that unaddressed can lead to significant
underutilization of available microprocessor resources. To bridge this gap, memory hi-
erarchies including several levels of cache memories have been introduced. Chip Mul-
tiprocessors (CMPs) or multi-core architectures commonly share the Last Level Cache
(LLC). Sharing allows for destructive interference, as several cores can start to compete
for cache space. With CMPs becoming commonplace and as their core count increases,
scalable algorithms that partition the LLC among the cores of a CMP are becoming
increasingly important.

This thesis describes the implementation of the zcache and the cache partitioning
algorithm Vantage in a simulation framework based on Sniper, a parallel multi-core
simulator. We utilize this simulation framework to establish the performance improve-
ments of Vantage and the cache partitioning algorithms Thread-Aware Dynamic Inser-
tion Policy (TADIP), Dynamic Re-Reference Interval Prediction (DRRIP), Promo-
tion/Insertion Pseudo Partitioning (PIPP), Utility-Based Cache Partitioning (UCP)
and Probabilistic Shared Cache Management (PriSM) over a range of architectural con-
figurations, with the conventional Least Recently Used (LRU) algorithm as baseline.
Moreover, we identify several root causes that lead to the observed performance differ-
ences. We find that Vantage, by using the highly associative zcache, attains the highest
performance improvements and is the most scalable cache partitioning algorithm in our
evaluation. The scalability and performance of cache partitioning algorithms utilizing
the conventional set-associative cache are mainly limited by the restricted associativity
that the set-associative cache provides. We further find that although individual im-
provements in the System Throughput (STP) can reach up to approximately 20% in our
evaluation, the overall impact of cache partitioning is minor, improving the STP and
the Harmonic Mean of Speedups (HMS) by a maximum of 3% with respect to LRU.
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1 | Introduction

This chapter starts by providing the necessary context for this thesis. This then leads
to a motivation for the performed research. We proceed with a list of requirements

that need to be fulfilled. This is followed by the contributions of this thesis. An outline
of this thesis concludes this chapter.

1.1 Context
To overcome the challenges that the computer industry has faced and is facing in its
continuous search for improved performance, several important developments in both
microprocessor and memory design have taken place. In this section we will give an
overview of these developments, including how they have affected each other.

1.1.1 Microprocessor Development
Since the early 1970’s and three decades onward, microprocessors have experienced a
three orders of magnitude increase in performance [5]. This rapid growth in perfor-
mance has been enabled by technology scaling of the transistors used in microproces-
sors. In 1965, Gordon Moore made the observation that the transistor density of chips
doubles approximately every two years. Shortly after, in the early 1970’s, Robert N.
Dennard laid out several rules for scaling down transistors, known as Dennard Scal-
ing [5]. Dennard Scaling implies that as transistor dimensions are scaled by a factor
1/κ < 1, the power density stays constant [4, 12] and the frequency of operation of
the transistors increases by a factor of κ. In accordance with Moore’s law, transistors
were scaled down with a scaling factor κ ≈ 1/

√
2, doubling the transistor density.

Consequently, this meant that around every two years, the speed of microprocessors
could be increased by a factor of approximately

√
2 ≈ 1.4 without an increase in power

consumption [5].
Furthermore, with increasing transistor densities, more and more transistors could

be fit onto a single chip. This left space for several core microarchitecture techniques
exploiting the parallelism present in the software running on the processors (Instruction
Level Parallelism (ILP)) to increase performance even more [25].

However, since the early 2000’s, single-core processor performance has hit the power
wall : performance has stagnated due to limited power budgets. One of the main rea-

1
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Offline-storage (tape)

Secondary Memory (disk)

Main Memory

Caches

Registers

Figure 1.1: Example of a Memory Hierarchy

sons is that Dennard Scaling has failed. This has led to an increasing power usage of
microprocessors as their clock-frequency was increased to improve performance. Fur-
thermore, advanced core microarchitecture techniques used to improve single-core per-
formance are power-inefficient [23]: they lead to minor performance improvements at
the cost of significant increases in power usage.

To keep benefiting from increasing transistor densities, a shift from single- to multi-
core processors or Chip Multiprocessors (CMPs) has taken place. Where single-core
processors take advantage of parallelism by exploiting ILP using advanced core microar-
chitecture techniques, CMPs exploit Thread-Level Parallelism (TLP) to take advantage
of parallelism. This allows the cores to be simpler, as no additional hardware for ex-
tracting ILP is required [23]. Furthermore, by using multiple cores the clock frequency
of each core can be decreased with respect to a single-core processor, while still obtain-
ing better performance [30]. Reduction of the clock frequency leads to, an often linear,
decrease in supply voltage [25]. Since the power usage is proportional to the square of
the supply voltage, this can result in a significant power reduction. CMPs can therefore
achieve better performance than single-core processors while consuming less power.

1.1.2 Bridging theDRAMandMicroprocessorPerformanceGap: Cache
Memories

The development of memory, especially that of Dynamic Random-Access Memory
(DRAM) that usually serves as main memory, has taken a different approach compared
to that of microprocessors. DRAM development has continually focused on increasing
capacity and lowering costs, but improvements in latency have not been as big as those
for microprocessors. This has caused DRAM to form a bottleneck, as it is no longer
able to supply data to the processor at the rate it is being requested. To address this bot-
tleneck, cache memories have been incorporated in memory hierarchies. An example of
such a memory hierarchy is depicted in Figure 1.1. Memory hierarchies aim to emulate
the view of a big fast memory. The closer to the processor, the smaller the memory is.



CHAPTER 1. INTRODUCTION 3

word 0 word 1 . . . word b − 1

Block

Figure 1.2: A Cache Block Containing b Words

Smaller memories have a higher cost-per-bit, but are able to operate at higher speeds
than their larger counterparts. The latency of the larger memories below can be (par-
tially) hidden by exploiting the principle of locality of memory references. This locality
can be temporal, meaning that the accessed data is likely to be accessed in the near fu-
ture. An example of temporal locality are loops over the same data. By buffering this
data from main memory into the small cache memory, the next time this data is refer-
enced by the processor, it can be accessed quickly. Moreover, memory references can
exhibit spatial locality: when the processor accesses a word of memory, it is likely that
other words in the vicinity of the requested word will be referenced. Practical examples
in software include arrays and structures. By caching not only the requested word, but
a block of memory, consisting out of several words (see also Figure 1.2), serialization of
the latency of memory references is prevented.

Effective caching is characterized by a high hit-ratio, the ratio of finding the re-
quested blocks in the cache (cache hits), divided by the total amount of requests. An
important factor affecting the hit-ratio of a cache is the cache-size [1]. With an in-
creasing cache-size, the hit-ratio increases, as more data can fit in the cache. How-
ever, enlarging a cache results in larger access times, limiting its usefulness. With the
introduction of multi-core architectures, needs on bandwidth have increased, thereby
making the use of large caches appealing as they reduce the need on bandwidth to main
memory [1]. To emulate a large and fast cache, it is useful to make use of a two level
cache hierarchy [39, 1]. The higher level cache is relatively small, but provides low ac-
cess times. The lower level cache is larger and provides good hit ratios. This idea is not
limited to a two level hierarchy and contemporary consumer CMPs typically employ
a three-level cache hierarchy. In the following, we will refer to (the smallest) cache at
the top of the cache hierarchy as the highest-level or L1-cache. (Larger) caches further
down the hierarchy will be referred to as lower level caches (L2, L3 and so on). The
cache at the bottom of the hierarchy is the largest and is commonly referred to as the
Last Level Cache (LLC).

Another factor affecting the hit-ratio is the associativity of the cache. Hill and Smith
[16] define associativity as the number of places where a block can be resident in the
cache. When associativity is limited, blocks can start to compete for the same place in
the cache. This can lead to an increase in cache misses, requests to blocks that are not
present in the cache. Cache misses caused by limited associativity are commonly re-
ferred to as conflict misses. Fully associative caches, where a block can be placed anywhere
in the cache, completely eliminate conflict misses. However, they are impractical due
to their large associated hardware overhead. On the other hand, direct mapped caches,
where a block can be placed at only one location, have a relatively low hardware-cost, but
increase conflict misses considerably. The set-associative cache forms a middle-ground
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Figure 1.3: n-core CMP with a Shared LLC

between these two cache designs, allowing a block to be mapped to several, but not all,
places in the cache. Set-associative caches have become the mainstream cache-design
in contemporary CMPs.

1.1.3 Last Level Cache Partitioning
To increase the utilization of resources, the LLC is commonly shared on a CMP. An
example of such a n-core CMP with 3-levels of caching and a shared LLC is shown in
Figure 1.3. Sharing of the LLC allows for interference when different applications are
running concurrently on the cores of the CMP. This interference can be destructive,
leading to a decrease in performance.

Commonplace in CMPs are set-associative LLC’s managed by the Least Recently
Used (LRU) algorithm. However, the LRU algorithm implicitly allocates cache space
to the cores based on their access frequencies, which can degrade overall performance
severely. It is therefore desirable that certain quota’s are set and enforced such as to
optimize performance. To this end, several cache partitioning algorithms based on the
use of a set-associative cache have been introduced.

Recently, the cache partitioning algorithms Vantage and Futility Scaling (FS) have
been introduced [33, 41] to address the issues of cache partitioning algorithms that
stem from the use of set-associative caches. Both Vantage and FS are cache parti-
tioning techniques based on statistical properties provided by highly-associative, but
unconventional, caches such as the zcache.

1.2 Motivation
A sheer volume of cache partitioning algorithms is available, yet individual algorithms
are commonly only compared to a few competing algorithms. Moreover, these com-
parisons often use different simulators and different setups, making it difficult or even
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impossible to (fairly) compare the performance of available cache partitioning algo-
rithms. To provide a more thorough comparison, a simulation framework has been
developed at NTNU [24] including the cache partitioning algorithms Utility-Based
Cache Partitioning (UCP), Thread-Aware Dynamic Insertion Policy (TADIP), Dy-
namic Re-Reference Interval Prediction (DRRIP), Promotion/Insertion Pseudo Par-
titioning (PIPP) and Probabilistic Shared Cache Management (PriSM). However, all
these algorithms are based on the conventional set-associative cache. With the intro-
duction of the cache partitioning algorithms Vantage and FS it is desirable to implement
one of these algorithms, such as to evaluate the possible advantage that comes with the
use of the highly-associative caches that Vantage and FS are based on.

1.3 Requirements
Based on the problem statement and problem description for this thesis, we extract the
following mandatory requirements:

(R1) Give an overview of the cache partitioning algorithms already present in the sim-
ulation framework at NTNU (UCP, TADIP, DRRIP, PIPP and PriSM), as well
as Vantage.

(R2) Implement Vantage in the simulation framework.

(R3) Compare the performance of the cache partitioning algorithms from Require-
ment (R1) by evaluating them over a range of architectural configurations.

Furthermore, we extract one optional requirement:

(O1) Analyze the performance of the evaluated algorithms and identify the root causes
of the observed performance differences.

1.4 Contributions
The main contributions of this thesis are:

• An overview of conventional caches and the zcache, supplemented by an overview
of the cache partitioning algorithms present in the simulation framework at NTNU
and of Vantage (Requirement (R1)).

• A parallel software implementation of both the zcache and Vantage in the simu-
lation framework at NTNU (Requirement (R2)).

• An extensive performance evaluation of the cache partitioning algorithms con-
sidered (Requirement (R3)).

• An implementation of PriSM-UCP in the simulation framework and the identi-
fication of the root causes of the observed performance differences through several
case studies(Requirement (O1)).
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Figure 1.4: Thesis Outline

The necessary background of this study is too extensive and varied to fit in one chap-
ter. It has therefore been divided into several chapters. To give the reader an overview,
of the interdependencies and the general flow between the chapters that follow, we have
depicted those in Figure 1.4.

Chapters 2 to 4 together form the required background for this work. Chapter 2
will start with an overview of the operation of conventional caches. This serves as the
required background for Chapter 3, that continues to explore caches, but focuses on
the unconventional zcache. Together these chapters form the basis to discuss all cache
partitioning algorithms present in our simulation framework and Vantage in Chapter 4.
Furthermore, Chapter 3 lays out the foundation for Chapter 5, in which a parallel soft-
ware implementation of the zcache is described. Chapter 4 together with Chapter 5
support Chapter 6, in which the performance evaluation of the researched cache par-
titioning algorithms is described. This chapter is followed by Chapter 7, that outlines
the results of the main experiment that has been performed to evaluate the researched
cache partitioning algorithms. Chapter 8 furthers with several case-studies explaining
the root causes of observed performance differences. Chapter 9 follows with experi-
ments regarding the sensitivity-analysis of our framework. At last, this document is
concluded in Chapter 10.



2 | Conventional Caches

Caches are relatively small and fast memories used to exploit temporal and spatial
locality to hide the latency of bigger, but slower memories. This chapter will in-

troduce the background of how conventional caches are operated.

2.1 Data Mapping
The natural unit of memory from the point of view of a processor core is a word. Usually,
a word corresponds to the size of an integer or the size of a general purpose register of
the corresponding processor [40]. As already indicated in Section 1.1.2, caches operate
on blocks of words to exploit spatial locality. When the processor requests a word at the
word address Aw, the cache needs to be searched for the block with block address Ab

containing this word. For a block-size of b words, the corresponding block address Ab

is given by:

Ab =
⌊

Aw

b

⌋
(2.1)

and the block-offset ob, at which the word resides in a block, is given by:

ob = mod (Aw, b). (2.2)

Where the block with block address Ab resides in the cache, is determined by the map-
ping from main to cache memory. Since caches can only contain a subset of the blocks
in main memory, this mapping is an one-to-many mapping. This means that several
blocks from main memory may map to the same location, also called a cache line, in the
cache. Therefore, a mapping does not suffice to determine whether a certain block of
data is present in the cache. A part of the block address, the tag, is required to dis-
tinguish between the blocks mapping to the same cache line. A cache can therefore
be regarded as a collection of blocks storing the actual data complemented by a direc-
tory of tags to associate an address with each block. In what follows, we will refer to
the directory of tags as the Main Tag Directory (MTD). Furthermore, in literature
on cache memories, it is common to find the terms cache line and cache block used
interchangeably and in the following we continue to do so.

An example illustrating the introduced terminology can be found in Figure 2.1,
which depicts a cache containing n blocks that in turn each contain b words.

7
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MTD

Cache Block 0

Cache-Blocks

Word b Word b + 1 . . . Word 2b − 1
...

Cache Block n-1Tag n-1

...

Tag 1
Tag 0

Figure 2.1: A General Cache Architecture

2.1.1 Direct-Mapped Cache
In a direct-mapped cache, a block maps to only one location in the cache. To explain
the mapping in a direct-mapped cache, we start with the word address Aw, as issued by
a processor core to the cache. In Section 2.1 we already subdivided the word address
into two sub-addresses: the block-offset ob and the block address Ab. To explain the
operation of a direct-mapped cache, we now subdivide Ab into two sub-addresses: the
cache line index i and the tag t. The cache line index i is obtained through a mapping
function based on the modulo operator [40] and is given by:

i = mod (Ab, n), (2.3)

with n the number of cache lines in the cache. To distinguish between several blocks
mapping to the same cache line, we define the tag t as:

t =
⌊

Ab

n

⌋
. (2.4)

When the index i of a cache line is known, the tag t as given by Equation (2.4)
completely specifies the block address:

Ab = i + n · t.

The tag t is therefore sufficient to distinguish between several blocks that map to the
same cache line. Furthermore, since ob gives the offset of the requested word in the
corresponding block (see Equation (2.1)), the tuple (t, i, ob) completely specifies the
corresponding word address:

Aw = (i + n · t) · b + ob.

So far, we have been as general as possible and n and b need not be a power of two.
However, when n and b are indeed powers of two, the complexity of the hardware that
calculates the mapping decreases considerably, as the modulo operators involved can be
re-written in terms of the binary and operator:

mod (a, 2n) = and(a, 2n − 1). (2.5)
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Word Address Aw:

Tag
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Index
i

Offset

ob

MTD Blocks

Figure 2.2: A Direct-Mapped Cache

Instead of using a full divisor, it therefore suffices to use a basic and-gate. Furthermore
the tag-calculation (Eq. (2.4)) can be performed using a bit-shift instead a full integer
division. Cases where n or b are not powers of two, are rare in commercial caches. In the
following we will assume the number of cache lines and the number of words in a block
to be a power of two, unless stated otherwise. An example illustrating the introduced
terminology is shown in Figure 2.2.

2.1.2 Set-Associative & Fully-Associative Caches
Set-associative and fully associative caches differ from the direct-mapped cache in that
they allow a block to be inserted at multiple cache lines in the cache instead of one. In
a set-associative cache, a block can map to a limited amount of cache lines in the cache.
Those cache lines together form a set. The memory of a set-associative cache is divided
into several of those sets. When a set contains n cache lines, we refer to such a cache
as a n-way set-associative cache. Since in a fully associative cache a block can map to
any cache line in the cache, it can be seen as a set-associative cache with one set and
the amount of ways equal to the total amount of cache lines in the cache. Therefore, it
suffices to explain the operation of a set-associative cache.

When a set-associative cache is used, the word address Aw as issued to the cache by
a processor core, can be divided into three sub-addresses: Aw = (t, s, ob). As in the case
with the direct-mapped cache (see Section 2.1.1), t represents the tag and ob represents
the offset of the word in the corresponding block. However, unlike the direct-mapped
cache, s does not give the cache line, but the set of the block that the requested word is
contained in:

s = mod (Ab, n), (2.6)

with n the number of sets.
An example of a 4-way set-associative cache is shown in Figure 2.3. In this example,

a set consists of 4 cache blocks spread out over 4 ways. Sets can therefore be regarded as
“rows” in the set-associative cache, whereas the ways represent the “columns”. In this
example, each way contains 4 blocks.

Although fully-associative caches can completely eliminate conflict misses, set-associative
caches are preferred in hardware implementations. In a fully associative cache the tags
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Figure 2.3: A 4-way Set-Associative Cache

of all cache lines need to be compared upon a search for a block in the cache, whereas
this is limited to n tags in a n-way set associative cache. The hardware overhead asso-
ciated with the tag comparators have made the set-associative cache a popular compro-
mise between the direct mapped cache and the fully associative cache and is the most
common cache found in CMP’s.

2.2 Conventional Replacement Algorithms
When a cache miss occurs, the requested block is not present in the cache. To load it
into the cache, it is necessary that there there is place available to do so. In a direct-
mapped cache this means that if the cache line the block maps to, is already occupied by
another block, then this block needs be evicted, removing it from the cache. However,
in a set-associative cache and fully associative cache the missing block can be inserted at
several different cache lines. Therefore, a replacement algorithm is required to determine
which block will be evicted.

Belady’s MIN algorithm is an optimal replacement algorithm to do so [3], yet im-
practical to implement. Belady’s MIN selects the block that will be used the furthest
in future for eviction. Knowledge of future cache accesses is therefore required when a
cache miss occurs. Usually, it is not known what applications will utilize the cache and
such knowledge is not available.

The LRU replacement algorithm, or variants thereof, forms a commonly used al-
ternative [18] and is the conventional replacement algorithm. In this section we will
describe the LRU replacement algorithm in more detail. This is continued by a classi-
fication of memory access patterns and their influence on LRU.

2.2.1 LRU
Least Recently Used (LRU) selects the least recently used block for eviction. To do so,
it ranks cache lines based on their recency, which is represented by the LRU-chain. The
block at the head of this chain has been accessed most recently, whereas the block at
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LRU-chain:MRU LRU

D B C A

Blocks + Recency counters:

A B C D
3 1 2 0

way 0 way 1 way 2 way 3

Set

Figure 2.4: A LRU Chain & LRU Bits

Initial contents + recency counters:
D B C A
3 0 1 2
After insertion of E:

E B C A
0 1 2 3

After re-reference to A:
E B C A
1 2 3 0

Figure 2.5: LRU Managed Cache Set with 4 Ways

the tail has been accessed least recently.
As a block maps to only one set in the cache, only cache lines within that set are are

considered for eviction. Therefore, LRU can rank all cache lines on a per set-basis. The
recency ranking is kept by storing a recency counter per cache line. This terminology is
depicted in Figure 2.4 for a 4-way set associative cache with the Most Recently Used
(MRU) and LRU positions marked. The LRU position is associated with the high-
est recency counter, whereas the MRU position is associated with the lowest recency
counter.

After a cache line has been evicted, the missing block is inserted and its recency
counter is set to 0, indicating that this is the most-recently used cache line. Conse-
quently, all other recency counters are incremented to enforce a strict ordering. Upon a
cache hit, the recency counters of all cache lines that have a lower value than that of the
recency counter of the referenced cache line are incremented and the referenced cache
line is moved to the MRU position. The LRU replacement algorithm, as described, is
illustrated in Figure 2.5.

A set-associative cache managed by the LRU replacement algorithm possesses the
stack property [28]. Let A and B denote two set-associative caches with the same num-
ber of sets, n, but varying amount of ways, a and b respectively with a ≤ b. The stack
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property states that when a cache hit to a block occurs in A, a cache hit to the same
block is guaranteed in B.

In this particular case, all memory accesses that are performed on a certain set in
cache A are exactly the same as in the corresponding set in cache B (see Equation (2.6)).
If a hit occurs to a block h in cache A, but misses in cache B, this would require h in B
to have been evicted. This implies that at least b consecutive references to blocks other
than h must have occurred to this set in B. Since A and B experience the same memory
accesses per set, this means that also in cache A at least b consecutive references have
been made to a block other than h in the corresponding set. Consequently h must have
been evicted from A, as a ≤ b. This contradicts the possibility of cache hit to h in A, but
a miss in B. The stack property does not hold for set-associative caches with varying
associativity and varying ways: in this situation the memory references are spread out
differently over the sets.

2.2.2 Memory Access Patterns and Their Effects on LRU
Having described the LRU replacement algorithm, we now turn our attention to a clas-
sification of memory access patterns. For non-optimal replacement algorithms, certain
memory access patterns can result in sub-optimal performance. In this section we will
describe the effect of four types of memory access patterns on LRU. We follow the
four-case distinction as in [18] and classify an memory access pattern as:

1. Recency-Friendly when the access pattern exhibits significant amounts of tem-
poral locality. An example of such an access pattern is [18]:

(a1, a2, . . . , ak−1, ak, ak, ak−1, . . . , a2, a1)N
. (2.7)

Since Belady’s MIN prescribes that one should evict the entry that is to be used
furthest-in-future, LRU is optimal on this access pattern for any k.

2. Cache-Trashing when the access pattern accesses an amount of memory, called
the working set, that is bigger than the cache in such a fashion that no re-use of
data in the cache is possible. An example of such an access pattern is

(a1, a2, . . . , ak)N (2.8)
with k bigger than the amount of lines the cache. In this case LRU will have
evicted ai, i ∈ {1, 2, . . . , k} before the following re-reference1. This effect is
called trashing.

3. Streaming when the access patterns exhibits no or marginal reuse of data. An
example of such an access pattern is:

(a1, a2, . . . , ak) k = ∞. (2.9)
When no re-use of data is present, caching does not help to improve performance,
regardless of the replacement algorithm.

1For simplicity reasons we assume LRU to rank the cache lines globally, as is the case in a fully-associative
cache. In a set-associative cache ai is likely, but does not necessarily need to have been evicted. This depends
on the specific addresses in the access pattern.
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4. Mixed when the access patterns has characteristics of two or more of the afore-
mentioned access patterns. An example of such a pattern is a recency-friendly
pattern containing scans: bursts of data that is referenced only once or in the
distant future [2, 18]. An example of a pattern with scans is given by:

(a1, a2, . . . , ak) (b1, b2, . . . , bm) (a1, a2, . . . , ak)N (b1, b2, . . . , bm) , (2.10)

with N ≫ 1. When m + k is bigger than the amount of cache lines in the cache,
the scan (b1, b2, . . . , bm) starts to remove the recency-friendly data (a1, a2, . . . , ak)
from the cache. Furthermore, LRU places all data from the scan at the MRU po-
sition: b1 would evict a1 from the cache, b2 would evict a2 from the cache and
so on. Belady’s MIN would evict ak to make place for b1, but would evict b1
to make place for b2 and so on. Therefore, Belady’s MIN preserves more of the
recency-friendly data in the cache than LRU.



3 | The Zcache

Recently the zcache has been introduced by Sanchez and Kozyrakis [32]. Zcaches
are based on the skew-associative cache. Both the skew-associative cache and

the zcache are highly associative, but unconventional cache designs [33]. They take
a different approach to increasing associativity than the conventional set-associative
cache.

This chapter starts with a description of the skew-associative cache, which forms a
stepping stone to describing the operation of the more complex zcache. We conclude
this chapter with a description of a LRU-approximation for skew-associative caches
and zcaches.

3.1 The Skew-Associative Cache
The skew-associative cache has been introduced by Seznec and Bodin [36]. The differ-
ence between a n-way skew-associative cache and a n-way set-associative cache is found
in the mapping of cache lines: in a skew-associative cache, a different mapping function
can be used per way, whereas the set-associative cache uses one mapping function for
all ways.

To explain the mapping in a skew-associative cache, we start with the with word
address Aw corresponding to the word requested by a core. Aw can be subdivided into
two sub-addresses:

Aw = (Ab, A0).

Ab denotes the block address of the block that contains the requested word. A0 gives the
word offset in the corresponding the cache block. A skew-associative cache applies a
hash function Hi to Ab to obtain the cache line A maps to for every way i ∈ {0, . . . , n−
1}. Since the whole block address is used by the hashing functions, in general Ab also
functions as the tag. The mapping in a 3-way skew-associative cache is illustrated in
Figure 3.1.

Seznec and Bodin [36][35] have shown that 2-way and 4-way skew-associative
caches can outperform 4 and 16-way set associative caches, respectively. Skew-associative
caches therefore behave as set-associative cache designs with higher way-counts.

Since a skew-associative cache uses a mapping function per way, it can be seen as
a generalization of the set-associative cache: if the hash-functions are chosen to be
the same for all ways, set-like behavior is obtained. However, in general, when two

14
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Tag

Word Address A:

Block offset

way 0 way 1 way 2

H1
H0

H2

Figure 3.1: Example of a 3-way Skew-Associative Cache

addresses A and B map to the same cache line in way i, they do not necessarily map
to the same cache line in way j ̸= i. This makes it impossible to group cache blocks in
sets: the concept of a set is unknown to skew-associative caches [32].

3.2 Multi-Level Skewing: The Zcache
The mapping in a zcache functions similarly to a skew-associative cache: the zcache
applies a hash function Hi to the block address Ab to find the cache line in way i that
the block maps to [32]. When a n-way skew-associative cache needs to evict a block,
only n blocks, as given by the mapping, are considered for eviction. In a n-way zcache
the amount of replacement candidates can exceed n.

When a zcache offers m > n replacement candidates, not all replacement candi-
dates can reside at the cache lines as given by the mapping. Therefore, inserting the
missing block at a cache line that has been made available by eviction does not ensure
it will be found when the cache is searched. To resolve this issue, the zcache performs
a relocation process after a cache line has been evicted. This eventually results in an
available cache line at one of the locations given by the mapping functions.

3.2.1 The Replacement Process
We will now consider the replacement process of the zcache in more detail. This process
can be divided in the process of finding the replacement candidates and the process of
performing relocation.

Finding Replacement Candidates
As in a skew-associative cache, the block address Ab of a requested block functions
as the tag. When a cache miss occurs and a block with tag A is to be inserted, a n-
way zcache hashes A with the hash function of every way, obtaining n replacement
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(b) Second-Level Replacement Candidates Found by a Zcache

Figure 3.2: Finding the Replacement Candidates in a Zcache - An example depicting
a 3-way zcache.

candidates. These cache lines form the first-level replacement candidates. This stage is
depicted in Figure 3.2a, where B, C, D form the first-level replacement candidates.

Whereas a skew-associative cache only performs one level of hashing, the zcache
performs L ≥ 1 levels of hashing. In level n > 1, instead of A, the tags of the replace-
ment candidates found in level n − 1 are hashed. Each replacement candidate from
level n − 1 is hashed with the hash functions j ̸= i, with i the way the replacement
candidate resides in. This results in n − 1 replacement candidates per hashed replace-
ment candidate. A second level of hashing is illustrated in Figure 3.2b. We observe
that the tag B and C hash to the same cache line in the third way, leading to a repeat.
Therefore, only 5 out of the 6 replacement candidates found in the second level are new.
The occurrence of such repeats is very rare in caches with hundreds of blocks per way,
and can therefore be ignored for LLCs [32].

The hashing process as described, hashes the replacement candidates in a Breadth-
First Search (BFS)-like fashion, but this is not necessarily a restriction [32]. However,
the BFS can be cheaply implemented in hardware and is therefore the used by Sanchez
and Kozyrakis [32]. In the following we will restrict ourselves to the BFS and refer to
the entire process of finding replacement candidates as the BFS-walk.

In the case of a BFS-walk, the amount of replacement candidates R, ignoring pos-
sible repeats, equals:

R = n ×
L−1∑
i=0

(n − 1)i (3.1)

with L the amount of levels of the BFS and n the amount of ways of the cache. For
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Figure 3.4: Contents of a Zcache after Relocation & Insertion

L = 3 and n = 4, this results in 52 replacement candidates. This is a substantial
increase over the 4 replacement candidates a normal set-associative or skew-associative
cache with 4 ways would provide.

In the following the notation Zx/y will refer to a zcache having x ways and offering
y replacement candidates. Note that this notation implicitly defines L. Z4/52 for
example implies that L = 3.

Relocating Replacement Candidates
Upon a cache miss, the zcache selects a replacement candidate r for eviction. If r is
a first-level replacement candidate, no additional work is required. As the first-level
replacement candidates correspond to the cache lines that the missing block maps to,
the missing block can be directly inserted. However, if r is not a first-level replacement
candidate, it is necessary that a cache line corresponding to one of the first-level can-
didates becomes available. To make such a cache line available, the zcache backtracks
the path P that was taken from the root of the BFS-walk to the selected replacement
candidate.

We continue our example from Figure 3.2 and depict P in Figure 3.3 where the
replacement candidate G is considered for eviction and P = B → G (highlighted in
the figure). The relocation process starts by evicting the selected replacement candidate.
Subsequently, the ancestor of the evicted candidate in P is moved to the location of the
evicted candidate, as indicated by the arrow from B to G in Figure 3.3. Since the evicted
block was found by hashing the tag of the ancestor (see Figure 3.2b), the ancestor itself
maps to the same cache line as the evicted block. This ensures that the ancestor will still
be found after being relocated, when being searched for in the cache. This relocation of
the ancestors is repeated up to the root of P , eventually resulting in an available cache
line that corresponds to one of the cache lines as given by the mapping of the missing
block. In Fig. 3.3 the cache line made available is the cache line that B resided at before
it was relocated. The final result after relocation and insertion of the missing block A
is depicted in Figure 3.4.

During the relocation process, it is important that all other outstanding operations,
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involving cache blocks that are relocated, are blocked to ensure correct operation of the
cache. To avoid increasing cache latency, one can allow the BFS-walk to run concur-
rently with other cache operations. By doing this, benign race conditions can occur:
a block that has been identified as the best replacement candidate by the BFS-walk
might have been accessed directly afterwards, making another replacement candidate
preferred [32]. In small caches such as first level caches, these benign race conditions
might be common, but in larger caches these race conditions are rare and one solution
is to ignore them [32]. In our evaluation, only the LLC can be a zcache. Since LLCs
are relatively large, we choose to ignore those race conditions.

This elaborate replacement process is performed only upon a miss and happens con-
currently with the read of the missing block from DRAM. Therefore, it does not have
to increase the latency of the cache: Sanchez and Kozyrakis [32] show that the time
taken by the this replacement process is significantly less than the latency of DRAM in
the case of 21 replacement candidates.

3.2.2 Associativity of the Zcache
In Section 1.1.2 we have defined associativity as the amount of positions a block can
reside at in a cache. However, given a n-way set-associative and a n-way zcache, this
definition results in the same associativity for both caches. Still, Sanchez and Kozyrakis
[32] have shown that zcaches can obtain higher hit-ratios than set-associative caches
of the same size, but with more ways, implying higher associativity. To quantify the
associativity more generally, Sanchez and Kozyrakis [32] propose the use of an associa-
tivity distribution. To calculate the associativity distribution, the cache its replacement
algorithm is assumed to globally rank the cache lines. Cache lines that are preferred for
eviction get a higher rank r. If the cache contains N cache lines, then 0 ≤ r ≤ N − 1.
The eviction-priority of a cache line e is given by:

e = r

N − 1
. (3.2)

The associativity distribution Fa(e) of a cache is defined as the Cumulative Distribution
Function (CDF) of the eviction priorities of the evicted blocks. In the optimal case,
a fully associative cache, the cache line with e = 1 is always evicted, resulting in the
following associativity distribution:

Fa(e) =

{
1 for e = 1
0 elsewhere (3.3)

However, most caches have a limited amount of replacement candidates. The associa-
tivity distribution will therefore be a smeared out towards lower eviction priorities, as
it is not always possible to select the cache line with e = 1. Therefore, the more the
associativity distribution is skewed towards Equation (3.3), the higher the associativity.

The associativity distribution depends on the used replacement algorithm and the
workload utilizing the cache. Therefore, determining the associativity distribution in
general can be a tedious task. However, under certain circumstances, it can be char-
acterized solely by the number of replacement candidates that a cache provides. Those



CHAPTER 3. THE ZCACHE 19

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Eviction priority

A
sso

cia
tiv

ity
D

ist
rib

ut
io

n

R=4
R=16
R=52

Figure 3.5: Associativity Distribution of a Cache under the Uniformity Assumption

circumstances are referred to as the uniformity assumption [32]. Under the uniformity
assumption, the cache always returns R replacement candidates and their eviction prop-
erties E1, E2, . . . ER can be modeled as i.i.d. random variables. Furthermore, the dis-
tribution of the eviction priorities is uniform, that is Ei ∼ U(0, 1).

Consequently, the CDF of the eviction priority Ei under the uniformity assumption
is given by:

FEi
(x) = x.

Since the replacement policy evicts the candidate with the highest eviction priority, we
can define another random variable A = max (Ei) , i ∈ 1, 2, . . . R that takes on the
maximum priority of all candidates considered. The CDF of A, which is the associa-
tivity distribution, is then given by [32]:

FA = Pr(A ≤ x) = Pr(E1 ≤ x ∧ . . . ∧ En ≤ x)
= Pr(Ei ≤ x)n = xR

(3.4)

The higher R becomes, the more Equation (3.4) resembles Equation (3.3) and the
higher the associativity. This is effect is visible in Fig. 3.5, which shows the associativity
distribution as given by Equation (3.4) for a cache providing 4,16 and 52 replacement
candidates.

Although a zcache and skew-associative cache do not truly randomly select their re-
placement candidates1, Sanchez and Kozyrakis [32] show that both zcaches and skew-

1Also a zcache will not always provide R replacement candidates as repeats might occur (see also Sec-
tion 3.2.1).
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associative caches practically meet the uniformity assumption. Therefore, the associa-
tivity of a zcache and skew-associative cache is characterized directly by the amount of
replacement candidates [32].

3.2.3 Hashing in the Zcache
The family of hashing functions used for the zcache by Sanchez and Kozyrakis [32] is
the H3-family. We define the H3-family of hashing functions following Carter and
Wegman [8].

Let x be an i-bits number that is to be hashed to a j-bits number. Furthermore
let A denote the set of all i-bits numbers and B the set of all j-bit numbers. Let M
be the set of all arrays of length i whose elements are from B. Each element m ∈ M
can therefore be thought of as an i × j Boolean matrix [8]. For each Boolean matrix
M′ ∈ M , a hash-function fM′ : A → Bj , is defined as:

fM′(x) = x1 · M′T
1,∗ ⊕ x2 · M′T

2,∗ ⊕ . . . ⊕ xiM′T
i,∗, (3.5)

with xk the kth bit of x and ⊕ the exclusive-or (XOR) of two Boolean vectors. The
set of all hash-functions defined by Equation (3.5) denotes the H3-family of hashing
functions.

For a zcache, each way is associated with a hash function from this family and is
selected at random [32].

Let H denote the set of all H3-hashing functions from A to B. The H3-family
is universal [31], which means that for any pair of distinct input values (a, b) in A,
no more than a fraction 1

|B| of all hashing functions in H result in the same hash value
(collide)[8]. This, in turn, leads to an approximately uniform distribution of hash values.
This is a desirable property as it ensures that the amount of blocks that map to any
certain cache line is approximately equal [31].

Furthermore, the hash values of two H3-hash functions h1 : A → B and h2 : A →
B, h1 ̸= h2 are pairwise independent [31]. That is, for any distinct pair of input values
(a, b), a ∈ A, b ∈ A the following holds

P
(
h1 (a) = x ∧ h2 (b) = y

)
= 1

|B|2
(3.6)

meaning that the output values of both h1 and h2 behave as if they were randomly
chosen. This ensures that the quality (the randomness as assumed by the uniformity
assumption) of the replacement candidates does not degrade with the number of levels
[31].

3.3 LRU at Cache Line Granularity: Bucketed-LRU
Since the cache blocks in a zcache and skew-associative can not be grouped into sets,
implementing LRU would require that the cache blocks are globally ranked. This im-
plicates large hardware-overheads, as the recency counters need to be able to store M
values, with M the size of the cache in cache lines.
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To reduce the hardware overhead, Sanchez and Kozyrakis [32] propose an algo-
rithm that approximates LRU, which is referred to as bucketed-LRU. In this algorithm
a 8-bit timestamp is added to each cache line. Based on a global timestamp counter
(also 8-bits), the replacement candidate that has the oldest timestamp is chosen for
eviction. Since the timestamps are 8-bits long, it is proposed that the global counter is
incremented only every k accesses with k set to 5% of the cache-size. This makes it is
rare for a block to stay in the cache after a wraparound of the global counter, without
being evicted or referenced [32].
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The LLC is one of the most important shared resources on a CMP [19]. Therefore, it
is important that it is utilized in an efficient manner. Although LRU-managed set-

associative caches are widespread in CMPs, LRU implicitly manages the cache space
among the cores based on their access frequency. This can result in serious performance
degradation. To this end, several cache partitioning algorithms have been proposed
that address the shortcomings of LRU.

Cache partitioning algorithms can be defined as algorithms that manage the usage
of the cache among several independent concurrent processes. Before continuing to
describe any cache partitioning algorithm, we divide a cache partitioning algorithm in
an allocation policy that prescribes how big the sizes of all partitions should be and an
partitioning scheme that enforces the partition sizes as given by the allocation policy [33].
Allocation policies can target Quality of Service (QoS), fairness and hit-maximization
[22]. In the following we will restrict ourselves to the discussion of hit-maximizing
cache partitioning algorithms, as not every cache partitioning algorithm in our frame-
work is designed to support QoS or fairness.

The first part of this chapter will be devoted to algorithms that do not have an
explicit allocation policy. We will refer to these algorithms as implicit cache partitioning
algorithms. These algorithm focus on regulating memory access patterns and thereby
implicitly partition the cache. (Bucketed-)LRU as previously described fall under this
category. The second part of this chapter will give an overview of several algorithms
that explicitly partition the cache among the processes running on the CMP. We will
refer to those algorithms as explicit cache partitioning algorithms.

As in previous works [22, 28, 42, 33], we assume that each core of the CMP is set up
to run one application. Therefore, while discussing any cache partitioning algorithm,
we will use the terms application and core interchangeably.

4.1 Implicit Cache Partitioning Algorithms
In this section we will start with an overview of the implicit cache partitioning algorithm
Dynamic Insertion Policy (DIP), as the implicit cache partitioning algorithms TADIP
and DRRIP in our simulation framework are based on several concepts of DIP. After
DIP we give an overview of the operation of TADIP and we conclude this section with
a description of DRRIP.

22
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4.1.1 DIP
Dynamic Insertion Policy (DIP) is an implicit cache partitioning algorithm that tar-
gets trashing access patterns (see also Section 2.2.2 for a description on memory access
patterns). It modifies the LRU replacement algorithm by changing the policy that de-
termines how a block is inserted. This policy is also referred to as the insertion policy.
Instead of only using the LRU Insertion Policy (LIP), DIP supplements LIP with the
Bimodal Insertion Policy (BIP). BIP inserts an incoming cache line predominantly at
the LRU position and at the MRU position with a low probability. This is regulated by
the bi-modal throttle parameter ϵ that determines the percentage of cache lines placed
at the MRU position. LRU can therefore also be viewed as BIP with ϵ = 1.

When the working set of an application is bigger than the cache, always inserting at
the MRU position can lead to a trashing (see Section 2.2.2). By using BIP instead, only
few blocks are inserted at the MRU position and can stay in the cache as most blocks are
inserted at the LRU position and therefore do not replace the blocks at higher recency
positions. In this way, a part of the working set can be kept in the cache, improv-
ing performance. DIP dynamically chooses which policy is best to incur the fewest
misses. Two methods, DIP-Global and DIP-SD (Set-Dueling) have been developed
by Qureshi et al. [29].

DIP-Global
In DIP-Global, besides the MTD of the DIP managed cache, two Auxiliary Tag Di-
rectorys (ATDs) are present. These ATDs can can be seen as copies of the MTD. The
two ATDs have the same amount of ways as the MTD and all access made to the MTD
are made visible to the ATDs. One ATD is set up to use LIP whereas the other is setup
to use BIP. Every time a miss occurs in the LIP-ATD, a saturating counter called the
Policy Selector (PSEL) is incremented. A miss in the BIP-ATD decrements the PSEL.
Therefore the higher the value of the PSEL, the more misses have been incurred by LIP
and vice versa: the lower the value of the PSEL, the more misses have been incurred by

MTD

Tags of set 7
Tags of set 6
Tags of set 5
Tags of set 4
Tags of set 3
Tags of set 2
Tags of set 1
Tags of set 0

ATD employing DSS

Tags of set 2
Tags of set 6

Figure 4.1: ATD Employing DSS



CHAPTER 4. CACHE PARTITIONING ALGORITHMS 24

BIP. Whenever the Most-significant Bit (MSB) of the PSEL is set, the counter has a
value in the upper halve of its range, indicating that BIP is incurring fewer misses than
LIP. Therefore, when the MSB is set, BIP is selected as insertion policy for the MTD.
LIP is selected as insertion policy for the MTD when the MSB is cleared.

DIP-SD
The use of two ATDs is not practical in a hardware implementation, as the overhead
caused by duplicating the MTD is considerable. To reduce the overhead, Dynamic Set-
Sampling (DSS) [28] may be used. Instead of duplicating the complete MTD, the idea
is that by sampling the tags of only a few sets of the MTD, the global behavior of the
cache can still be accurately approximated [29]. An ATD utilizing DSS is illustrated
in Figure 4.1.

MTD

Set 0
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7

Set 8
Set 9
Set 10
Set 11
Set 12
Set 13
Set 14
Set 15

LIP-dedicated
BIP-dedicated

Follower

PSEL
+

Miss in LIP-set

-

Miss in BIP-set

Figure 4.2: DIP-SD, after [29]

Qureshi et al. [29] use the concept of DSS for the definition of DIP-SD, that com-
pletely eliminates the need for additional ATDs. This method, Set-Dueling, dedicates
few of the cache sets to use either LIP or BIP, the so-called dedicated sets. The policy
that incurs the fewest misses on the dedicated sets is used as the policy for all other sets,
the follower sets. DIP-SD is illustrated in Figure 4.2.

4.1.2 TADIP
Thread-Aware Dynamic Insertion Policy (TADIP), introduced by Jaleel et al. [17], is
a thread-aware version of DIP. DIP does not differentiate between the behavior of the
applications running on a CMP and makes a global decision as to which insertion policy
is used for the whole cache.

TADIP makes this decision for each application running on the CMP. When N
applications are running on a CMP, there are 2N possible decisions as to which com-
bination of policies to use. The selection of policies, P , can be represented as a tuple
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P = (p0, p1, . . . , pN−1), where pi indicates the selected policy, BIP or LIP, for appli-
cation i. The policy-decisions can be made statically (through the use of profiling) or
dynamically [17]. Using profiling to decide the best policies is impractical in general
situations: the best policy depends on the workload, but also on the cache-size [17].
As Jaleel et al. [17] we will not pursue static decision making any further.

Since there are 2N possible decisions, dynamically determining the optimal combi-
nation of policies can be costly. For example, when ATDs are used to determine the op-
timal combination, 2N ATDs would be required to get statistics for each combination.
Jaleel et al. [17] propose the use of set-dueling to reduce the overhead. Two versions
based on set-dueling are proposed: TADIP-I(solated) and TADIP-F(eedback).

Follower sets
(p0, p1, p2, p3)

(p0, p1, p2, 1)

(p0, p1, p2, 0)

(p0, p1, 1, p3)

(p0, p1, 0, p3)

(p0, 1, p2, p3)

(p0, 0, p2, p3)

(1, p1, p2, p3)

(0, p1, p2, p3)
PSEL0

PSEL1

PSEL2

PSEL3

-

+
-

+
-

+
-

+

p0

p1
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p3

Figure 4.3: Dueling and Follower Sets for TADIP-F - BIP=0, LIP=1, after [17]

TADIP-I uses N + 1 dedicated sets. The first dedicated set uses LIP for all appli-
cations. The remaining N dedicated sets use LIP for all applications except one. That
is, the first of these N dedicated set uses BIP only for application 1, the second only for
application 2 and so on. Furthermore TADIP-I uses one saturating counter PSELi for
every application i. A miss in the first dedicated set increments the saturating counter
of all applications. Misses in the dedicated sets that use BIP for application i only
decrement PSELi. In this way, TADIP-I can learn what the best insertion policy is
for each application in isolation: if the whole cache would use LIP, would the use of
BIP for this application improve performance?

TADIP-F uses at least one pair of dedicated sets per application: one set is dedicated
to LIP and the other to BIP for the application. To take the optimal decision of all other
cores into account, the dedicated pairs of application i apply the optimal policy pj as
given by the dedicated sets of application j ̸= i when a cache line by a core j is inserted
in the dedicated set of core i. This scheme is illustrated in Figure 4.3.
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Of those two versions, TADIP-F has been shown to perform better than TADIP-I
[17]: determining the best-policy for an application by taking the currently selected
policy of all other applications into account is beneficial.

4.1.3 DRRIP
In Section 2.2.2 we have shown that mixed-memory access patterns containing scans
can degrade the performance of LRU. Jaleel et al. [18] introduce Re-Reference Interval
Prediction (RRIP) to address this issue.

The idea is to store a M-bits value for each cache line in a set. This value, the Re-
Reference Prediction Value (RRPV), gives the re-reference prediction for an individual
cache line. The RRPV is an indication of the predicted time before a next reference
to a cache line. Unlike the recency-counters as used by LRU, the RRPV’s in a set do
not strictly order all cache lines in that set. Therefore, it is possible that several cache
lines within a set have the same RRPV. A RRPV of 0 indicates that a cache block is
predicted to be re-referenced in the near-immediate future. A RRPV of 2M−1 on the
other hand, is a prediction for a re-reference in the distant future. Therefore, the lower
the RRPV, the sooner block is predicted to be re-referenced. Blocks with a higher
RRPV, and therefore more distant predicted re-reference interval, are prioritized for
eviction. Upon a cache miss, the corresponding set is searched for blocks with a distant
re-reference interval (2M−1). However, a set might contain several of those blocks. In
such cases, a tie-breaker is used to select a block for eviction. If no such block is present,
all RRPV’s in the set are incremented and the search for a block for eviction is repeated.
Updating the RRPV’s by incrementing them allows RRIP to remove stale blocks from
the cache [18].

RRIP mainly aims at preventing blocks with a distant re-reference interval from
polluting the cache [18]. However, in general, there is no external information about
the re-reference intervals available. This gives rise to Static Re-Reference Interval Pre-
diction (SRRIP) algorithm, which statically predicts the re-reference intervals of blocks
upon cache hits and misses.

Upon a cache miss, always predicting a near-immediate re-reference interval for the
missing block is not robust: blocks from a scan will unnecessarily occupy space in the
cache. Always predicting a distant re-reference interval is not robust either, as blocks
with near-immediate intervals are more likely to be evicted. This would reduce the
performance for memory access patterns that predominantly access blocks with near-
immediate re-reference intervals [18]. SRRIP uses a middle way: it inserts a missing
block with a re-reference interval that is long. A long re-reference interval is represented
by a RRPV of 2M − 2. Long distance intervals prevent blocks with distant reference
intervals from polluting the cache. At the same time they leave some time for hits to
occur to blocks that do have near-immediate re-reference intervals.

When a cache hit occurs, SRRIP needs to update the RRPV of the corresponding
block. The policy that determines how the RRPV is updated is called the promotion pol-
icy. Jaleel et al. [18] propose two promotion policies: Hit-Priority(HP) and Frequency
Priority(FP). The HP-policy predicts that the block corresponding to the hit will be
re-referenced in the near-immediate feature, therefore setting its RRPV to 0. In case
that a block is only used once after its insertion, the HP-policy can degrade the per-
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Figure 4.4: SRRIP Managed Cache Set with 4 Ways, 2bits RRPV’s, and the FP-Policy

formance as the block stays longer in the set than necessary. The FP-policy addresses
this issue by decrementing the RRPV value on a hit (unless it is already 0). Therefore,
several hits might be required before the RRPV of the corresponding block equals 0.
SRRIP-FP is illustrated with 2-bits RRPV’s in Figure 4.4.

When the re-reference interval of all the blocks is larger than the available cache,
SRRIP is trashing the cache [18]. Similarly to DIP, which uses BIP to counter trashing
access patterns, SRRIP can be combined with Bimodal Re-Reference Interval Predic-
tion (BRRIP), which inserts the majority of the cache blocks with a distant re-reference
interval. BRRIP, infrequently (with probability ϵ), inserts a block as having a long re-
reference interval (RRPV of 2M − 2). In this manner, parts of the working set of the
trashing application can be kept in the cache, improving performance.

Similar to TADIP-F, set-dueling is used to dynamically select whether to use SR-
RIP or BRRIP. This algorithm, combining SRRIP and BRRIP, is referred to as Dy-
namic Re-Reference Interval Prediction (DRRIP).
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4.2 Explicit Cache Partitioning Algorithms
Several explicit cache partitioning algorithms have been proposed, but they do not al-
ways introduce both a partitioning scheme and allocation policy [33, 42, 41]. The ex-
plicit cache partitioning algorithms considered in this thesis are UCP, PIPP, PriSM
and Vantage. Their details regarding the inclusion of an allocation policy and enforce-
ment scheme are given in Table 4.1.

Reference Algorithm PS AP
Qureshi and Patt [28] Utility-Based Cache Partitioning

(UCP)
✓ ✓

Xie and Loh [42] Promotion/Insertion Pseudo Par-
titioning (PIPP)

✓ UCP

Manikantan et al. [22] Probabilistic Shared Cache Man-
agement (PriSM)

✓ ✓

Sanchez and Kozyrakis [33] Vantage ✓ interpolated UCP

Table 4.1: Overview of Evaluated Explicit Cache Partitioning Algorithms -
PS=Partitioning Scheme, AP=Allocation Policy

4.2.1 UCP
Utility-Based Cache Partitioning (UCP), proposed by Qureshi and Patt [28], is an
explicit partitioning algorithm using set-associative caches, including both an allocation
policy and partitioning scheme. The allocation policy of UCP is based on utility, an
indication of the usefulness of cache resources to a certain application. Qureshi and
Patt [28] use UCP to perform partitioning by way (way partitioning). In the following
we will implicitly assume that UCP is used to partition the cache at way-granularity.

Allocation policy

The utility U b
i,a, corresponding to an increase in the allocation of application i from a

to b > a ways, is given by:

U b
i,a = missa − missb, (4.1)

where missa and missb give the amount of misses for application i when it receives a
respectively b ways [28]. That is, the utility U b

i,a equals the amount of misses saved by
allocating b−a more ways to application i. Let a⃗ = (a1, a2, . . . aM )T denote the vector
containing the allocations of M applications sharing the cache. Let N be the amount
of ways of the set-associative cache used. As no more than a total of N ways can be
allocated, the sum of all allocations equals N :

M∑
k=1

ak = N.
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UCP’s allocation policy tries to maximize the combined utility of all applications run-
ning on the CMP. We write this as the following optimization problem:

maximize
a⃗

M∑
i=1

Uai
i,0

subject to
M∑

i=1
ai = N.

(4.2)

Maximizing the combined utility corresponds to minimizing the total amount of
misses of all applications combined, as an increase in utility is directly proportional to
a decrease in misses (see Equation (4.1)) [28].

To obtain the data needed to calculate the utility for every application, Qureshi and
Patt [28] propose the use of an Utility Monitor (UMON). An UMON is based on the
stack property of LRU (see also Section 2.2.1): if an application hits in a cache with
a ≤ b ways, then the application will also hit in a cache with b ways.

The term missa −missb in Equation (4.1) is equal to the amount of additional hits
a b-way set-associative cache receives over an a-way set-associative cache. By tracking
the amount of hits hi for every recency position i ∈ {0, 1, . . . , N −1} in the LRU-chain,
missa − missb can be calculated as

missa − missb =
b−1∑
k=a

hk. (4.3)

For an UMON it is therefore sufficient to track the hits of one N-way set associative
cache instead of N caches with i ∈ 1, 2, . . . , N ways.

To keep track of the hits, an ATD is used per application. By adding a hit-counter
for every recency position in the ATD, the required information is gathered. This can
be done a per set basis, in which every set has N hit counters for every recency position
in the set(UMON-local). UMON-local allows for partitioning per set, but incurs too
much hardware overhead to be practical. To save hardware, one hit counter can be
used for the same recency position among all sets (UMON-global). UMON-global
allows for way-partitioning. To save even more hardware on UMON-global, DSS (see
Section 4.1.1) can be applied to the ATD.

Finding an optimal solution to the optimization problem in Equation (4.2) has been
shown to be NP-hard [28]. To keep the complexity of finding an allocation bounded,
Qureshi and Patt [28] propose the use of a greedy algorithm at the cost of a possi-
bly non-optimal solution. This algorithm, the look-ahead algorithm, makes use of the
marginal utility MU b

i,a to calculate an allocation. When the allocation of an application
i is increased from a to b ways, the marginal utility is given by:

MU b
i,a =

U b
i,a

b − a
. (4.4)

The look-ahead algorithm starts by allocating zero ways to every application, that is
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Figure 4.5: Example of the Look-Ahead Algorithm

a⃗ = 0⃗. It then starts searching for the highest marginal utility

MU b
i,ai

, b = ai + 1, . . . , ai + N −
M∑

k=1

ak

among all applications. If the highest marginal utility has been found for increasing
the allocation of application x to b ways, then ax is set to b and the search repeats until∑M

k=1 ak = N , indicating that all ways have been allocated.
We will now illustrate the look-ahead algorithm with an example for two applica-

tions sharing the LLC, as depicted in Figure 4.5. In this example N = 8, M = 2 and
the look-ahead algorithm takes the following steps:

1. Calculate the maximum possible marginal utility for application 1 and 2, starting
with a⃗ = (0, 0)T . N −

∑M
k=1 ak = 8 ways can be allocated. The highest marginal
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utility for application 1 is 10 and corresponds to an increase of its allocation by 1
way. The highest marginal utility for application 2 is 40/7 and corresponds to an
increase of its allocation by 7 ways. Application 1 has the highest marginal utility
and wins the search. Its allocation is therefore set to 1 way: a1 = 1.

2. Calculate the maximum possible marginal utility for application 1 and 2, starting
with a⃗ = (1, 0)T . N −

∑M
k=1 ak = 7 ways can be allocated. The highest marginal

utility for application 1 is 20/3 and corresponds to an increase of its allocation by
3 ways. The highest marginal utility for application 2 is 40/7 and corresponds to
an increase of its allocation by 7 ways. Application 1 has the highest marginal
utility and wins the search. Its allocation is therefore increased by 3 ways: a1 = 4.

3. Calculate the maximum possible marginal utility for application 1 and 2, starting
with a⃗ = (4, 0)T . N −

∑M
k=1 ak = 4 ways can be allocated. The highest marginal

utility for application 1 is 2.5 and corresponds to an increase of its allocation by
4 ways. The highest marginal utility for application 2 is 0. Application 1 has the
highest marginal utility and wins the search. Its allocation is therefore increased
by 4 ways: a1 = 8.

This results in the allocation a⃗ = (8, 0)T and 40 misses are saved. The allocation
a⃗ = (1, 7)T would save 50 misses. This illustrates the non-optimality of the look-ahead
algorithm.

In this example, the look-ahead algorithm allows that an application is allocated
zero ways in the cache. When the cache-hierarchy is inclusive, all data present in a
higher level cache must be present in the lower level caches. When a shared LLC
is partitioned, allocating no cache space to a core makes it impossible to include the
data of this core its higher-level caches. Qureshi and Patt [28] modify the look-ahead
algorithm to allocate at least one way to application, to ensure that inclusiveness can be
enforced.

To keep the overhead of re-partitioning low, Qureshi and Patt [28] suggest that
the look-ahead algorithm is run with re-partitioning periods of 5 million cycles. After
every period, the hit counters in the ATD are halved: in this way, the history of an
application is taken into account.

Partitioning scheme
UCP’s partitioning scheme, as defined by Qureshi and Patt [28], is based on LRU with
the following addition and modification:

1. Each cache line’s tag is extended to include the core that installed the block cur-
rently residing in this cache line.

2. Upon a cache miss, the amount of blocks in the corresponding set belonging to
the core causing the miss are counted: when this amount equals or exceeds the
allocation, the LRU-block among all blocks of this core in this set is evicted.
Otherwise, the LRU entry of all blocks belonging to the other cores is evicted.
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Figure 4.6: A PIPP Managed Cache Set

This partitioning scheme will therefore never allow a partition to grow when it has
reached its target size. However, due to a change in allocation by the look-ahead al-
gorithm, it might be that a partition temporarily exceeds its target size (in case it was
downsized). This is transient behavior and is the consequence of regulating partition
sizes through eviction. Neglecting this transient behavior, UCP’s partitioning scheme
is strict.

4.2.2 PIPP
Promotion/Insertion Pseudo Partitioning (PIPP), introduced by Xie and Loh [42],
is a partitioning scheme that does not enforce strict partition sizes. It is based on a
set-associative cache using the conventional LRU-replacement algorithm, but modi-
fies how blocks are inserted and updated upon a cache hit. Xie and Loh [42] suggest
the use of UCP as allocation policy.

Let N denote the amount of cores of the CMP and w the amount of ways of the
set-associative cache used. Furthermore let Π = {π1, π2, . . . , πn} be a partitioning
of the cache such that ∑N

i=1 πi = w. PIPP modifies the insertion policy of LRU to
insert a block belonging to core i at position πi. Position 1 corresponds to the LRU
position and w to the MRU position. This is illustrated in Figure 4.6 for two cores with
Π = {1, 3}.

Upon a cache hit, the referenced block (if possible) is moved one position closer to
MRU in the LRU-chain with a probability of pprom. On a miss, PIPP behaves the
same as conventional LRU, evicting the LRU cache line, regardless of to which core
it belongs to. This is illustrated in Figure 4.6. The lower the insertion position is, the
more likely it is that the data item gets evicted in the near future and vice versa: the
higher the position, the more likely it is to stay in the cache in the near future. In this
way PIPP approximately tracks the target partition sizes.
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Applications that are characterized by streaming access patterns are unlikely to re-
use a lot of cache blocks that they insert. The misses incurred by such applications can
remove blocks from the cache-sets that are useful to other applications. Therefore, Xie
and Loh [42] suggest the use of a streaming detector that detects whether an application
is streaming. This detector compares the amount of misses of a certain application
incurred in a certain partitioning-period with a threshold θm. When θm is exceeded,
an application is considered streaming. Furthermore, the miss rate of an application is
compared to a threshold θmr. When exceeded, the application is considered streaming
as well. When an application is considered streaming, the insertion policy used for this
application is adjusted: regardless of the allocation, the insertion position of a streaming
application equals the total amount of streaming cores. In this way, each streaming
application is effectively allocated on way [42].

When a hit occurs to a block belonging to a core that is considered streaming, the
block is moved (if possible) to one position closer to MRU with a probability pstream ≪
pprom. The reasoning behind using a smaller probability, is that only the blocks of a
streaming application that do exhibit a lot of re-use get promoted to positions closer to
MRU1. This prevents the other blocks from the streaming access pattern from polluting
the cache. If all cores are streaming, the insertion policy is set to LIP, as there is no
non-streaming application running that could be negatively affected by the insertion of
blocks from streaming cores.

Chaudhuri [9] shows that PIPP suffers from a decrease in performance when the
congestion at the tail of the LRU chain is high. This corresponds to situations in which
many cores insert their entries close to the LRU position. This is for example the case
when the amount of cores equals the amount of ways and each core is allocated one way
in the cache. In such situations competition for the same cache blocks increases, thereby
increasing the amount of conflict misses, which hurts the performance. Manikantan
et al. [21] suggest the use of a minimum insertion position of 8 ways above LRU in a
16-way set-associative cache, to avoid that inserted blocks are evicted before they are
able to be promoted. Both Manikantan et al. [21] and Olsen [24] confirm that PIPP
performs considerably worse without the use of a minimum position. In the following
we will refer to PIPP with a minimum insertion position simply as PIPP.

4.2.3 PriSM
Probabilistic Shared Cache Management (PriSM) is an explicit probabilistic cache par-
titioning algorithm, including both an allocation policy and a partitioning scheme.
PriSM partitions a set-associative cache at a block-granularity. The partitioning scheme
is based on an eviction probability distribution E , that prescribes what the probabilities
are that a block belonging to core i is evicted. Adjusting the eviction-rate of core i
allows for adjusting its partition size.

1Strictly speaking such a pattern would be a mixed memory access pattern, as both streaming and
recency-friendly characteristics are present.
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Partitioning Scheme
Upon a cache miss, PriSM selects a victim-core of which a cache line is to be evicted,
based on the discrete probability distribution E . E gives the probability Ei of eviction of
a block from core i. E is determined based on the concept of occupancy. The occupancy
of a core i is defined as the fraction of the cache it owns. E should be chosen such that
the eviction rate of core i regulates its current occupancy Ci to a value close or equal to
its target occupancy Ti, as set by the allocation policy.

Let Mi denote the fraction of the total amount of misses caused by core i in an
interval of W misses. Together with the target occupancy Ti and current occupancy Ci,
the eviction probability Ei can be determined to regulate Ci to Ti. The reasoning is that
during an interval of W misses, the amount of cache lines owned by core i grows by an
amount of Mi × W due to the misses incurred by core i. This means that at the end of
the interval, core i would have an occupancy of Ci + Mi × W

N , with N the amount of
cache lines of the cache. However, given that Ei > 0, on average Ei × W cache blocks
of core i get evicted. Therefore, at the end of the interval, the expected occupancy τi of
core i equals:

τi = Ci + (Mi − Ei) × W

N
(4.5)

By setting τi in Equation (4.5) equal to Ti, one can solve for corresponding eviction
probability Ei. However, in certain cases Ei might be larger than 1 or lower than 0.
Since Ei represents a probability, it is clamped to the interval [0, 1]:

Ei =


0, if ((Ci − Ti)) × N

W + Mi) < 0,

1, if ((Ci − Ti)) × N
W + Mi) > 1,

(Ci − Ti) × N
W + Mi, otherwise

(4.6)

Once a victim core has been selected based on E , the cache set corresponding to the
missing block is inspected for cache lines belonging to the victim core. If those are
present, the LRU cache line belonging to the victim core is evicted. In the cases that
no such cache line is present, the LRU cache line among the cache lines of all cores i
with Ei > 0 is evicted. If no such lines are present, the LRU cache line in the set is
evicted.

To calculate the eviction probabilities, it is necessary that a value for Ci is available.
Ci can be obtained by adding counters for each core to the MTD to track its cache-
usage. Furthermore, it is required that Mi is known. However, at the start of an interval
Mi is not known yet, because knowledge of Mi would imply knowledge about the fu-
ture. Instead of the expected fraction of misses for the current interval, the fraction of
the previous interval is used to approximate Mi. Mi can therefore be approximated by
adding a miss-counter for every core to the MTD.

Allocation Policy
Manikantan et al. [22] propose a hit-maximizing allocation policy for PriSM. This vari-
ant of PriSM is referred to as PriSM-H. PriSM-H uses an ATD per application to track
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Figure 4.7: PriSM-H’s Allocation Policy

the amount of hits, StandAloneHits[i], that a core i would receive if it were allo-
cated the whole cache. By using hit counters in the MTD, the actual amount of hits per
core, SharedHits[i] is tracked. The potential gain for core i, PotentialGain[i], is
calculated as the difference between StandAloneHits[i] and SharedHits[i]. The
overall gain, TotalGain, is calculated by summing all PotentialGain’s. Furthermore,
the MTD is setup to track the current occupancy Ci for each core i. This is depicted in
Figure 4.7.

When the TotalGain is less than zero, the current allocation is maintained. Oth-
erwise the target allocations are re-calculated in two steps (see also Figure 4.7):

1. For each application, set the target occupancy to the current occupancy increased
by factor that is proportional to the fraction of the total gain, as contributed to by
the application.

2. For each application, normalize the target occupancies Ti.

4.2.4 Vantage
Vantage is an explicit cache partitioning algorithm including only a partitioning scheme,
that enforces partition sizes at a cache-line granularity. Vantage has been introduced
based on prior-work on the zcache and assumes that the cache used by Vantage meets
the uniformity assumption.

Vantage divides the cache into two regions:

1. A managed region;
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2. An unmanaged region.

Of these two regions, only the managed region can be partitioned. Vantage is there-
fore not able to partition the whole cache. The unmanaged region removes interference
between cache partitions as a partition will lend (evict) data from, when sized appropri-
ately, the unmanaged region instead from partitions belonging to other applications.

Cache lines are assigned to a region by tagging them accordingly. A cache line
is inserted in the managed region, from which it can be demoted to the unmanaged
region. Once in the unmanaged region, a cache line either gets evicted or promoted to
the managed region in case of a cache hit. By adjusting the demotion rate of every
partition, the target sizes are enforced. Therefore, in general, all evictions take place in
the unmanaged region, except in the rare cases that none of the replacement candidates
offered by the cache come from the unmanaged region [33].

Maintaining the Size of the (Un)Managed Region
To maintain the sizes of the managed and unmanaged region, there should be a bal-
ance between replacements and promotions on one side an demotions on the other:
one demotion is necessary per every promotion or replacement. Let u denote the frac-
tion of the cache allocated to the unmanaged region. The fraction m of the cache
allocated to the managed region therefore equals m = (1 − u). With R replace-
ment candidates, there are

(
R
i

)
possible ways of having i candidates coming from the

managed region, each having a probability2 of (1 − u)iuR−i. That is, the amount of
replacement candidates i from the managed region follows a binomial distribution:
B(i, R) =

(
R
i

)
(1 − u)iuR−i. If we ignore promotions (which in general are rare com-

pared to demotions [33]) and exactly one demotion occurs upon each replacement, the
associativity distribution of the managed region can be approximated as [33]:

FM (x) ≈
R−1∑
i=1

B(i, R)FAi(x) (4.7)

≈ E[FAi
(x)], (4.8)

with FAi(x) = xi denoting the associativity distribution for a cache with i replacement
candidates conforming to the uniformity assumption. The cases i = 0 and i = R are
not included in the sum in Eq. (4.8). In those cases, no candidates are demoted as there
are either no candidates from the managed region to be demoted, or all candidates come
from the managed region. In the latter case, one of the replacement candidates needs to
be evicted from the managed region, rather than demoted. However, both cases have
a negligible probability if the unmanaged region is sized appropriately [33].

To find the minimum size of the unmanaged region such that the worst case prob-
ability of having to perform an eviction of a block from the managed region equals Pev,
we repeat the associativity distribution of the whole cache (Eq. (3.4)):

FA(x) = xR.

2Since Vantage is derived based on the uniformity assumption.
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Figure 4.8: Associativity Distribution of the Managed Region of Vantage, u = 0.3

In the best case, the unmanaged region is filled with blocks that all have higher eviction
priorities than those in the managed region. Evaluating FA(x) at x = (1 − u) then
gives the probability that a block is evicted from the managed region. Solving for u
gives the minimum size of the unmanaged region for a given Pev:

u ≥ 1 − R
√

Pev (4.9)

Aperture Based Demotion
Sanchez and Kozyrakis [33] show that associativity in the managed region can be signif-
icantly improved if on average one demotion takes place for every promotion or eviction.
This is implemented by means of an aperture A. All replacement candidates with an
eviction priority e above 1 − A are evicted by the cache controller. Assuming that the
cache provides R replacement candidates on a miss, then on average R ·m = (1−u) ·R
replacement candidates come from the managed region. To maintain the size of the
managed region the aperture should be:

A = 1
R · m

. (4.10)

When using an aperture for demoting, the associativity distribution of the managed
region is given by:

FM =


0 if x < 1 − A
x−(1−A)

A if 1 − A ≤ x ≤ 1
1 if x > 1

(4.11)

Fig. 4.8 plots the associativity distributions for both exactly one demotion per re-
placement/promotion and one demotion on average for a cache with 4,16 and 52 re-
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placement candidates. In all cases demoting on average results in an increase of asso-
ciativity.

Enforcing the Partition Sizes
The managed region itself is partitioned into P partitions. The sizes of these partitions
T1, T2, . . . TP are given by a certain allocation policy. Let the rate of insertion of blocks
into every partition be given by C1, C2, . . . CP . To maintain the actual partition sizes
close to their target sizes, it is necessary that an aperture Ai is set per partition, such that
the rate of demotions matches its churn. Partitions with a larger churn than average
and partitions with a smaller size than average require larger apertures. On the other
hand, partitions with a lower churn than average or a bigger size than average require a
lower aperture.

For a partition i with current size Si, on average, a fraction Si/
∑P

k=1 Sk of the
R · m replacement candidates from the managed region come from partition i. That
is, on average, the amount of replacement candidates of partition i from the managed
region equals

(∑P
k=1 Sk/Si

)
· R · (1 − u). To demote at the rate at which partition i is

causing misses, its aperture needs to be multiplied by the fraction of the total churn cor-
responding to Ci. To maintain the partition size Si of partition i constant, its aperture
Ai should therefore be:

Ai = Ci∑P
k=1 Ck

∑P
k=1 Sk

Si

1
R · (1 − u)

. (4.12)

It might be the case that a certain partition requires an aperture Ai > 1. This indicates
that more blocks from this partition need to be demoted than there are replacement
candidates available. However, even setting A = 1 can be problematic, as it completely
sacrifices associativity [33]: from Eq. (4.11) we find that setting the aperture equal to
1, results in all candidates encountered being demoted.

Sanchez and Kozyrakis [33] therefore propose the use of a maximum aperture Amax

to maintain a certain amount of associativity. For applications requiring Ai > Amax

to enforce their target partition size, some leeway is incorporated when sizing the un-
managed region. If sized appropriately, this allows those partitions to outgrow their
target sizes to a stable partition size at which Ai = Amax, by taking space from the
unmanaged region. Sanchez and Kozyrakis [33] show that the additional fraction that
should be allocated to the unmanaged region equals 1

RAmax
, and is independent of the

amount of partitions used.

Feed-back based controller
Determining the aperture Ai as given by Eq. (4.12), requires that the churn Ci of parti-
tion i is known. Sanchez and Kozyrakis [33] propose the use of a feedback-based con-
troller to avoid having to know these churns. Furthermore, by using negative-feedback
Vantage is more robust: the theoretical analysis that led to Eq. (4.12) assumes that the
uniformity assumption holds. Although zcaches practically meet this assumption, they
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Ai(Si, Ti):
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Si(1 + s) · Ti
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Figure 4.9: Negative Feedback to Calculate the Aperture Ai

do not do so exactly, which might lead to partition sizes drifting away from their tar-
gets. By allowing the partitions to outgrow their targets by some slack s, the aperture
can be adjusted using negative feedback as given by Eq. (4.13). This is illustrated in
Figure 4.9.

Ai(Si) =


0 if Si ≤ Ti

Amax

s
Si−Ti

Ti
if Ti < Si ≤ (1 + s)Ti

Amax if Si > (1 + s)Ti

(4.13)

Setpoint-Based Demotion Scheme
Tracking all eviction priorities to perform the demotions, incurs too much hardware
overhead to make Vantage usable. Therefore, Sanchez and Kozyrakis [33] propose a
setpoint-based scheme, based on bucketed-LRU to perform demotions.

In this scheme, every partition i has a current timestamp value, CurrentTs, which is
incremented every kith access. ki is set to 1/16th of the target partition size, TargetSize,
to make wrap-arounds of CurrentTs rare. Furthermore, every cache block is tagged
with a timestamp value, (Timestamp), to keep track of the recency ranking for the
bucketed LRU-scheme. To perform demotions, a setpoint timestamp, SetpointTs, is
determined per partition. All replacement candidates below this setpoint timestamp (in
modulo 256 arithmetic) are demoted in case the partition is exceeding its size. There
is no strict ordering in modulo arithmetic, but when wrap-arounds are rare one can es-
timate the order of the timestamps by estimating their distance from currentTs. We
follow Wang and Chen [41] and estimate the distance d between two timestamps a
and b as

d = mod (a + 256 − b, 256) (4.14)

The larger the distance between TimeStamp and CurrentTs, the older the block. The
setpoint scheme based on this definition is illustrated in Fig. 4.10. Every time c can-
didates from a certain partition i are seen, the amount of candidates that have been
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Figure 4.10: Setpoint-Based Demotion Scheme

Range (in cache-lines) di

1024-1060 16
1061 - 1097 32
1098 - 1133 48
1134 - 1170 64
1171 - 1206 80
1207 - 1243 96
1244 - 1280 112

1280+ 128

Table 4.2: Demotion Threshold LUT

demoted in the meanwhile, di, determine whether the setpoint is decremented or in-
cremented: when di > c · Ai, more candidates have been demoted than the aper-
ture requires, and the setpoint is decremented. If di < c · Ai, not enough candidates
have been demoted and the setpoint is incremented. Whenever the setpoint is incre-
mented/decremented, di is reset and this procedure is repeated. In their evaluation,
Sanchez and Kozyrakis [33] use c = 256 and re-partitioning takes place every 5 mil-
lion cycles. As the target partition sizes fluctuate relatively sparingly with a 5 million
cycle re-partitioning period, Sanchez and Kozyrakis [33] propose that the apertures as
given by Eq. (4.13) are not continuously recalculated, but instead an 8-entry Lookup
Table (LUT) is used. This LUT contains how many candidates need to be demoted
for 8-ranges of partition sizes. An example of such a table is shown in Table 4.2.

Overall operation
Now that we have seen all the components necessary for a practical implementation
of Vantage, we describe the overall operation of a Vantage cache controller utilizing
negative feedback, bucketed-LRU and the setpoint-based demotion-scheme.
To operate, Vantage requires that every cache-line has additional state variables. These
are given in Table 4.3. Furthermore, Vantage keeps several variables per partition. These
variables are given in Table 4.4.

Cache hit The procedure executed by the Vantage controller upon a hit to a block
owned by partition i is as follows:

• Set the block’s Timestamp value to the partitions CurrentTs.
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Variable Description
Timestamp Timestamp for use by bucketed lru and the

setpoint demotion scheme.
Partition Partition identifier, used to distinguish be-

tween several partitions and the unmanaged
region.

Table 4.3: Vantage Cache Line State

Variable Description
CurrentTs The current timestamp of the partition,

used to implement bucketed LRU.
AccessCounter Counter to count the amount of accesses

made to this partition. Used by the setpoint
mechanism.

ActualSize The current actual size of the partition.
TargetSize The target size of the partition.
SetPointTs The setpoint timestamp for the partition.
Candsseen The amount of candidates seen from this

partition. Used by the setpoint demotion
mechanism.

CandsDemoted The amount of candidates demoted from
this partition. Used by the setpoint demo-
tion mechanism.

ThrSz[8] 8 partition ranges of the demotion thresh-
old LUT.

ThrDems[8] 8 demotion values of the demotion thresh-
old LUT.

Table 4.4: Vantage Partition State

• Increase the partitions AccessCounter

• If the AccessCounter equals Actualsize/16, increment CurrentTs and SetPointTs.
SetPointTs is incremented as well to prevent changing the distance from CurrentTs.
Furthermore, AccessCounter is reset.

Cache Miss Upon a cache miss the following procedure is followed:

• For all R replacement candidates offered by the cache, demote a replacement can-
didate from partition i when ActualSize of partition i exceeds its TargetSize
and the Timestamp of the replacement candidate is below the SetPointTs (see
Figure 4.10). If demoted, tag the partition of the block as unmanaged and set
its Timestamp value to the unmanaged region’s CurrentTs. Furthermore decre-
ment partition i’s ActualSize and increment its CandsDemoted value. Regard-
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less of whether a replacement candidate has been demoted, Candsseen is incre-
mented.

• The oldest replacement candidate from the unmanaged region is evicted. If no
such candidate is present, and all candidates come from the managed region, evict
one of the demoted candidates arbitrarily. If this is not the case, one replacement
candidate among all candidates is arbitrarily evicted.

• Insert the missing block, tag its partition accordingly and increase the ActualSize
of the partition that caused the miss. Set the Timestamp to CurrentTs of the
corresponding partition.

• Increase the AccessCounter of the partition that caused the miss.

• If the AccessCounter equals Actualsize/16, increment CurrentTs and SetPointTs.
Furthermore, AccessCounter is reset.

Set-point adjustment Whenever Candsseen from a partition reaches c, the setpoint
of the partition is adjusted:

• The ThrSize and the ThrDems corresponding to the actual size of the partition
is fetched from the demotion threshold LUT.

• If candsDemoted exceeds ThrDems, SetPointTs is decremented.

• If candsDemoted is lower than ThrDems, SetPointTs is incremented

• Candsseen is reset.

Allocation policy
Vantage does not include an allocation policy. Instead Sanchez and Kozyrakis [33]
make use of UMON’s’ containing 16-ways and the look-ahead algorithm (see also
Section 4.2.1). As Vantage supports partitioning at cache-line granularity instead of
at way-granularity, Sanchez and Kozyrakis [33] interpolate the miss-curves from the
applications to 256 points to serve as the input for the look-ahead algorithm. In this
way the cache can be partitioned at a higher granularity (1/256th of the cache-size
instead of 1/16th).



5 | Parallel Zcache Simulation

In this chapter we will give an overview of the most important addition and changes
that have been made to the simulation framework to support the zcache, as it is one

of the main contributions of this work. Although the zcache is only used to implement
Vantage, describing the implementation of Vantage is less interesting as its operation
as outlined in Section 4.2.4 can be easily mapped to software. The zcache is introduced
from a hardware point of perspective by Sanchez and Kozyrakis [32]. The mapping of
parallel hardware to parallel software is not trivial and gives additional insight in how
zcaches and set-associative caches interact with each other in the cache-hierarchy.

The cache partitioning simulation framework in use at NTNU is based on Sniper
[7], a parallel multi-core simulator. This chapter begins with an overview of Sniper’s
memory architecture and a global overview of the modifications made to support the
zcache architecture. This is followed by a more in-depth discussion of the default lock-
ing system present in Sniper that ensures functional correctness of parallel simulation
of the caches. We then focus on the new locking system that has been added in order to
support the zcache architecture. This chapter ends with a discussion of several design
choices that have been made in our implementation with regards to the timing of the
zcache.

5.1 Sniper’s Memory Architecture
Figure 5.1 is an UML diagram of the (partial) memory architecture present in Sniper.
The part of the memory architecture relevant to this thesis is highlighted. We distin-
guish the following classes:

1. A Cache controller (CacheCntlr). The cache controller in Sniper models the
timing of cache accesses, handles the cache hierarchy and maintains cache co-
herency. The caches modeled in Sniper are set-associative caches and the cache
hierarchy is inclusive. This means that all data in a higher-level cache must be con-
tained in the lower level caches. Since every core in Sniper has its own thread for
accessing memory, Sniper makes use of a master cache controller (CacheMstrCntlr),
which is owned by a single core and serves as a proxy for all other cores that are
being redirected through a CacheCntlr object.

2. A Cache(Cache). A Cache object class handles accesses to the cache sets in the

43
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Figure 5.1: Overview of Snipers Memory Architecture

corresponding cache. Given a memory access for address A, the cache object will
ensure the request is forwarded to the corresponding cache set.

3. A Cache-Set (CacheSet). A Cache-set object contains the actual data of a cache
set. It handles insertion, eviction and updating of a cache line within a cache-set.

4. A Cache-set-info (CacheSetInfo). A cache-set info object contains data com-
mon to all cache sets (such as for example the amount of ways per set).

When implementing cache partitioning algorithms based on a set-associative cache,
such as the ones that were already present in the framework, modifications are kept
contained to the CacheSet and CacheSetInfo classes. Sniper’s memory architecture
as-is can not be used for zcaches, as modifications due insertion, replacement, demotion
and promotion of cache lines are not kept contained to one set as modeled by Sniper.
In our implementation we have modified all highlighted classes:

1. The Cache controller includes a new locking system to handle concurrent accesses
to the LLC. This is to ensure functional correctness.

2. The Cache objects has been modified to support indexing on a cache line granu-
larity, rather than on a set-granularity.

3. A CacheSet has been derived specifically for the zcache, containing code that
handles the BFS-walk and the relocation process.

4. A CacheSetInfo object has been derived specifically for the zcache, containing
the necessary status variables to allow the CacheSet object access to any set in the
cache, as is required by the BFS-walk and relocation process.
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Of all modifications, the new locking system will be looked at in more detail: this system
is the crucial component in the mapping of the zcache from hardware to software and
is required to achieve functional correctness.

5.2 Functional Correctness: Locking in the LLC
Since the LLC is shared by several software-threads, Sniper makes use of a locking
system to ensure functional correctness. As operations on the LLC by one core can
affect the contents of private caches of other cores, it is not enough to just protect the
LLC. If for example, core a evicts a block x from the LLC, then due to inclusiveness
of the LLC, x is invalidated in the private caches of all cores containing x. If x was
concurrently operated on in a private cache by another core b, undefined behavior might
occur as result of a race condition.

To ensure correctness of operation it is therefore necessary that:

1. Concurrent accesses to the same set in the LLC are prevented, such that race
conditions due to sharing of data in the LLC cannot occur.

2. Memory accesses to sets in private caches that are affected by an operation on the
LLC, are prevented from executing concurrently with the operation in the LLC.

Since the cache architecture in Sniper is inclusive, in the worst case, changes to the
LLC can propagate up to the L1-level. One solution would therefore be to have one
lock for all cores sharing the LLC. Upon starting a memory operation, which starts
at the L1-level, a core acquires this lock in the shared mode. When an operation is
about to operate on the LLC, the lock is upgraded to an exclusive lock, preventing
all other cores from continuing their memory operations. However, this system is too
conservative, as it does not allow other cores to access data in their private caches that
is not affected by the current operation on the LLC.

To determine which sets in the caches in the levels above the LLC are possibly
affected by a memory operation in the LLC, Sniper assumes that 1:

1. All caches employs modulo-based indexing;

2. All caches at a certain level have the same amount of sets;

3. The amount of sets in a cache is a power of 2;

4. The amount of cache-sets increases monotonically as one moves down the cache-
hierarchy.

Let a = 2x, x ∈ N+ denote the amount of sets in the L1-caches. The set i that is
possibly affected in the L1-cache of any core sharing the LLC by an operation in the
LLC is given by:

i = mod (Ab, a) ,

1These assumptions have been extracted from the source-code.
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with Ab the address the block being operated on in the LLC. Let b = 2y, y ∈ N+

denote the amount of sets in the L2-caches. If two blocks with addresses Ab,1 and Ab,2
map to the same set c ∈ N in the L2 cache, then their block addresses can be written as

Ab,1 = α · b + c α ∈ N
Ab,2 = β · b + c β ∈ N,

with c the set they map to in the L2-cache. As b ≥ a and both a and b are powers of 2,
b is divisible by a. This means that we can write:

Ab,1 = δ · a + c δ ∈ N
Ab,2 = κ · a + c κ ∈ N
=⇒

mod (Ab,1, a) = mod (Ab,2, a) .

Therefore, all addresses that map to the same set in the L2, map to the same set in
the L1 cache2. By applying this argument recursively, one can reason that this holds
true for the LLC3 as well: competing memory operations in the LLC map to the same
set in the L1-cache.

Snipers locking system keeps an array of locks with the amount of locks equaling
the amount of sets in the L1-cache in the master cache controller. Whenever a memory

L1-cache

Locked Unlocked

L1-cache

L2-cache L2-cache

Private to core 0 Private to core 1

L3-cache

Figure 5.2: Default Locking System

2This is not necessarily the case when the amount of sets does not monotonically increase or is not a
power of 2.

3in case the LLC does not reside at the L2-level.
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operation is starting, the corresponding simulator thread acquires the lock (through the
master controller) corresponding to the affected L1-set in the shared state. As soon
as an operation moves down from the L1-level, the lock is acquired in the exclusive
state. Since competing operations in the LLC affect the same set in the L1-caches,
concurrent accesses to a set in the LLC cannot happen.

An example showing the sets locked due to an operation by core 0 in the LLC is
illustrated in Figure 5.2 for a 2-core CMP. It might seem that this system locks more
sets in the L2 and L3 cache then required: after all, there is only one set in the L2 and
L3 cache that corresponds to the address of the memory operation issued. However,
the system needs to restrict access at the L1 level. The sets in the L2 and L3 cache, that
need not necessarily be locked, cannot be accessed by any other core anyway: as those
sets maps to the same L1-set, this would violate the mutual exclusivity of the lock.

5.3 Hash-Locking System

L1-cache

Locked Unlocked

L1-cache

L2-cache L2-cache

Private to core 0 Private to core 1

L3-cache

Figure 5.3: Default + Hash Locking System

When the LLC is indexed on a cache line basis rather than on a set-basis, as is the
case for zcaches, the default locking system in Sniper cannot handle concurrent memory
accesses in the LLC correctly. To allow for non-conflicting concurrent operations in the
L1-caches, it is necessary that a locking system that can lock on cache line granularity
in the LLC is present. In this work, only the LLC employs indexing at cache line
granularity. This means that the default locking system will be used to protect the
caches at all higher levels.

A first and intuitive step towards the new locking system would be to acquire the
locks in the LLC corresponding to the hash of the block-address Ab in each way i. A
cache hierarchy using this new system in combination with the default locking system
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is illustrated in Figure 5.3. We will refer to this new locking system as the hash-locking
system. While it correctly prevents concurrent operations to the same cache lines in the
LLC, the system does leave opportunity for race conditions to occur.

5.3.1 Race Conditions

Locked by core 0 Locked by core 1

L1-cache L1-cache
Z

L2-cache L2-cache

Z

Private to core 0 Private to core 1

L3-cache

Y
Z

core 1 evicting

core 0 evicting

Y

X

X

X

evicted due core 0

Figure 5.4: Example of a Race Condition in LLC

One problematic example of a race condition that can occur in a 3-level cache hier-
archy with a zcache as LLC is depicted in Figure 5.4. In this example, a cache miss to
a block y results in eviction of the cache line z from the L2-cache of core 1. Concur-
rently, core 0 has initiated a replacement process in the LLC to insert a missing block x
and is about to evict z from the LLC. In this example the hash-locks and default locks
corresponding to x and y have been acquired. However, as y and x do not map to the
same sets in the L1, nor do they have any hash-locks in common4, the two operations
are allowed to run concurrently by the default- and the hash locking system. Now, ei-
ther core 1 evicts z from its L2-cache or core 0 does so to maintain inclusiveness of the
caches. However, in both cases both cores are expecting z to be present in the L2 cache
of core 1.

With a set-associative cache, all (side-)effects of a memory request are confined to
one set at every cache-level. When the LLC is a zcache, this no longer holds true:
the hash- instead of modulo-indexing breaks this property and multiple sets in the set-

4This is possible due to the random nature of H3-hashing.
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Locked by core 0 Locked by core 1
Way-order

(a) Core 0 proceeds, Core 1 blocked.

Way-order

(b) Deadlock

Figure 5.5: Deadlock upon Replacement in the LLC

associative caches in the levels above the LLC might be affected, as we have seen in the
example in Figure 5.4. This is the origin of the race conditions that can still occur.

To prevent those types of race conditions, it is necessary that upon an eviction in
the LLC, the path P to the replacement candidate is inspected. Any hash-locks asso-
ciated with the cache lines on P that have not been acquired yet need to be acquired.
Furthermore,5 the tag of all blocks on P need to be inspected to find out to which set
in the L1-cache they map to, such that their corresponding lock in the default locking
system can be acquired. In our work we employ zcaches with 3-levels of hashing. This
means that the length of P is at most 3 (but can be shorter), restricting the additional
overhead of acquiring the additional locks.

5.3.2 Deadlocks
So far, we have only focused on how to prevent race conditions to ensure correctness of
operation when using hash-locking. However, the order of locking is essential to pre-
vent deadlocks. As depicted in Figure 5.3, upon issuing a memory operation, the hash-
locks corresponding to the issued address are taken. To prevent the most basic form of
a deadlock, a certain order needs to be present in how the hash-locks are acquired. In
our implementation we use the intuitive ordering by way: that is, the hash-locks are
taken in increasing order of the way of the cache they are located in.

However, the hash-locking system that locks in way-order is not completely elimi-
nating the possibility of a deadlock situation. The reason is that upon a miss, the zcache
performs a relocation process. To ensure correctness of operation, it is necessary that
all replacement candidates that lie on the path P of the eviction candidate are locked
as well (see Section 3.2.1). This means that possibly more locks (both in the hash- and
default locking system) need to be acquired upon eviction of a cache line. However,
before starting the corresponding memory operation at the L1-level, it is not known yet
whether the access will actually result in a miss in the LLC and whether (and which)
additional cache lines need to be locked. Only when the operation is started and the

5This is what is essential to prevent the race conditions.
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LLC-controller notices the item is missing, the BFS-walk to discover replacement can-
didates in the zcache is performed.

Figure 5.5a depicts two cores that are about to start their memory operation at the
L1-level. The way-order in this picture is from left to right. In this particular situation,
core 0 and core 1 are competing for access to the same cache line in the third way, and
core 0 has acquired the hash-lock corresponding to this cache line first. This means that
the thread corresponding to core 0 can continue execution, leaving core 1’s thread to
wait. Core 0 proceeds its memory operation and finds that the requested item is missing
in the LLC. However, it might be the case that one of the replacement candidates found
on P , is in fact a candidate already locked by core 1. This is depicted in Figure 5.5b,
indicating a circular dependency between core 0 and core 1: core 1 is waiting for core
0 to release its lock in the third way, whereas core 0 is waiting for core 1 to release its
lock in the second way, resulting in a deadlock.

When a replacement process is performed, the block to be inserted is missing in all
caches6. Therefore, no core can modify the block or is expecting the block to be present
in any cache. This makes it possible for a core to temporarily release all its acquired locks
upon entering the replacement process and start executing the BFS-walk. This allows
other cores to access the blocks visited by the BFS-walk in LLC concurrently. This
corresponds to the benign race conditions as described in Section 3.2 and is therefore
functionally correct. Once all locations in the LLC that need to be locked are discovered
by the BFS-walk, first all hash-locks required are acquired (in way-order). Once this
is done, the tags of the cache lines on P to the selected replacement candidate can be
safely inspected. Subsequently, the additional locks of the default system can be locked
as well. If the tags in the LLC are inspected before acquiring the hash-locks, it might
be the case that the incorrect locks in the default locking system are acquired.

However, upon releasing all locks, it becomes possible for another core to proceed
and execute its memory operation. If that operation is a miss to the same block, then
once control returns to the core that initially released all its locks , this core assumes the
block to be missing while it might already be present. Preventing this from happening
would complicate the locking system more than necessary: our simulation framework
has been developed to make use of multiprogrammed workloads where sharing of data
does not occur and therefore this type of situation cannot occur. To even observe this is-
sue, we would need to significantly change our evaluation methodology. These changes
would not benefit our cache partitioning investigation in any way and has therefore not
been prioritized.

5.4 Timing Aspects
During the implementation of the zcache, we have neglected the delay possibly incurred
by the blocking of other memory operations during relocation. First of all, in our eval-
uation we employ a zcache with 3 levels: this results in only 3 additional blocks in the
LLC to be locked for relocation. With a cache-size of at least 8MiB in our evaluation,
this means that at most ≈ 2.29 · 10−3% of LLC is subject to this blocking; the chance

6assuming an inclusive-cache as modeled by Sniper.
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of outstanding memory operations on those locations is negligible. We have therefore
chosen to ignore the timing aspect of this blocking.

Furthermore, Sniper allows the threads that simulate the cores to run unsynchro-
nized during a certain period of time. This means that every core has its own local time,
and the ordering in which memory accesses are simulated does not necessarily corre-
spond to an ordering based on the times that these accesses took place. Moreover, every
cache access is modeled functionally: that is, their effect takes place immediately and
the local core-time is increased by the delay of the operation. It is therefore impossible
to block or revert such an operation once it has started.



6 | Methodology

In this chapter we will outline our methodology as used to evaluate the performance
of the researched cache partitioning algorithms.
Performance evaluation can be divided into four sub-components, of which the

first component to be discussed in this chapter is the target architecture. Second are
the performance metrics that allow for meaningful comparison and interpretation of
the raw performance data. The third component described is the evaluation method of
the target architecture. This is followed by the fourth component, the method used to
create the multi-core workloads used in our experiments.

The chapter is concluded with the setup of our main experiment including several
details regarding the used cache partitioning algorithms.

6.1 Target Architecture
In our evaluation we target an architecture based on the Intel Nehalem Architecture.
In total we target three CMPs having 4, 8, respectively 16 cores. All CMPs utilize
a 3-level inclusive cache hierarchy. Table 6.1 lists the overall configuration details of
these CMPs. Since we target CMPs with different core counts, we double the LLC
size as the core-count doubles, similar to other cache partitioning studies [22, 18, 17].
The amount of ways in the set-associative LLC is set to 16. This is the default in Sniper
to model the LLC of the Nehalem Architecture. Furthermore, 16-ways are common
in modern consumer CMPs [11] and other similar studies on cache partitioning [41,
18, 17]. When a zcache is used as LLC (as required by Vantage), we use a zcache
with 52 replacement candidates as [33]. Furthermore, the latencies associated with the
zcache are the same as those used for the 16-way set-associative cache, again following
Sanchez and Kozyrakis [33]. This is conservative with respect to the zcache, as it is
able to provide lower latencies than a 16-way set-associative cache [32].

We do not change the cache-latencies of the LLC as its size increases, because we
are interested in the effects of cache partitioning. Changing the latencies as well would
obscure those effects. Moreover, all introduced cache partitioning algorithms add cer-
tain delays to the cache, but those are not specified and assumed to be negligible in
the corresponding literature. Accurately determining the latencies of the LLC would
therefore still lead to an approximate overall latency when the cache partitioning algo-
rithms are used. To have feasible LLC latencies, we use the default cache latencies of

52
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Processor cores 2.66GHz, OOO, dispatch width=6,
commit width=4, x86-64 ISA

L1 I-cache 32 KiB, 4-way set-associative, 64-byte
cache lines, private, LRU-managed, 1 cy-
cle tag access time, 4 cycles data access
time

L1 D-cache 32 KiB, 8 way set-associative, 64 byte
cache lines, private, LRU-managed, 1 cy-
cle tag access time, 4 cycles data access
time

L2 cache 256 KiB, 8-way set-associative, 64 byte
cache lines, private, LRU-managed, 3 cy-
cle tag access time, 8 cycles data access
time

L3 cache 8/16/32MiB (for 4/8/16 cores), 16-way
set associative or Z4/52, 64 byte cache
lines, shared, varying cache partitioning
algorithm, 10 cycle tag access time, 30 cy-
cles data access time

Branch-predictor Pentium-M based
Coherence protocol Modified-Exclusive-Shared-Invalid

(MESI)
DRAM 45ns latency, 51.2 GB/s bandwidth,

Miss Status Holding Register (MSHR) 8 entries at each cache level1
1 This is a limitation of Sniper [15]

Table 6.1: CMP Configuration Details

Sniper corresponding to an 8MiB 16-way set associative cache.
To ensure that the performance of our CMP configurations is not unrealistically

restricted by their bandwidth to DRAM, we choose to model the bandwidth of a mod-
ern DDR3 controller supporting 4 channels and DDR3-1600MHz, as used by 4,8 and
10-core Xeon processors [10]. This results in a DRAM-bandwidth of 51.2GB/s for all
CMPs.

6.2 Performance Metrics
Evaluating the performance of single threaded benchmarks is well understood and the
appropriate performance metric is time [13]. Under the ‘Iron Law of Performance’,
the time T taken by a single-threaded program executing N instructions is given by
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[13, 37]:

T = N × CPI × 1
f

, (6.1)

where Cyles per Instruction (CPI) stands for the amount of useful instructions executed
per cycle and f is the frequency of the microprocessor used to execute the program. CPI
is a function of the microarchitecture of the processor and can therefore be used to asses
the performance of different microarchitectures [13]. Instructions Per Cycle (IPC), the
reciprocal of CPI, indicates how many useful instructions are executed on average per
cycle. IPC and CPI are popular metrics in single-core performance evaluation, as they
can be easily quantified using architectural simulation [13].

However, once the performance of applications running on a CMP needs to be
assessed, IPC and CPI are not adequate anymore: Eyerman and Eeckhout [14] reason
that their use skew the results in case of prolonged running time due to synchronization
mechanisms. Furthermore, when multiple programs run together, they interfere with
each other and overall performance is the result of a balance between single-program
and overall system performance [14].

Eyerman and Eeckhout [14] reason from a system-perspective and suggest the use
of System Throughput (STP) for multi-core performance evaluation. When n appli-
cations are running on a multi-core, the STP is defined as [14]:

STP =
n∑

i=1

IPCMP
i

IPCSP
i

, (6.2)

where IPCMP
i and IPCSP

i are the IPC of application i running in the presence of all
other n − 1 applications and the IPC of application i running in isolation respectively.
Therefore, the STP is equal the sum of all individual speedups.

Another prevalent metric in assessing multi-core performance is the Harmonic
Mean of Speedups (HMS) [13]:

HMS = n∑n
i=1

IP CSP
i

IP CMP
i

. (6.3)

HMS generally results in lower values than using the arithmetic mean of speedups
(which equals STP/n), when one or more applications have a lower IPC speedup [14].
This is reasoned to capture the fairness of the several speedups more fairly. If for exam-
ple, one application experiences a major speedup, whereas all other applications expe-
rience a small slowdown, the speedups are unbalanced. While the arithmetic mean of
the speedups might indicate good performance (as one application is sped up signifi-
cantly), the harmonic mean tends to result in a lower value indicating that the speedups
are relatively unfair. To evaluate the performance of the workloads both from a system-
and user-perspective, we use both the STP and the HMS in our evaluation.

6.3 Evaluation of the Target Architecture
Quantitatively evaluating the performance of the target architecture can be done by
using a simulation model, by imitating the target architecture (emulation) or by con-
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structing the prototype of the architecture in real hardware. Prototyping and emulation
require that all details about the target architecture are known. Simulation on the other
hand, abstracts most of the details away, and only certain parameters need to be set.
Furthermore, simulation allows for quick adjustments of the architecture and makes it
relatively easy to add new components to the modeled system. Moreover, quantitative
evaluation using simulation is an accepted method and in fact has become a mainstay
in computer architecture research [38].

For these reasons, we use a simulator in our evaluation framework. The simulator
of choice is Sniper, a parallel multi-core simulator [7]. Due to Snipers parallel na-
ture, it suffers from a causality problem [6]: Sniper divides its simulation into several
time-quanta of duration Q. During each quantum, all simulation-threads run without
synchronization, to synchronize at the end of the quantum. This means that memory
accesses in one thread can functionally be simulated at the same (wall-)time as at an-
other core, but still carry a different time-stamp, potentially causing them to be out
of order. As Sanchez and Kozyrakis [34] state, at a small timescale, say ≈ 1000 cy-
cles, most concurrent access to the cache happen to unrelated lines. Breaking the order
of those accesses, but simulating their timing in a detailed fashion, is approximately
equivalent to simulating them in order. To limit the inaccuracy of simulation we pro-
ceed using a quantum of 100ns (approximately 266 cycles, which is well below 1000),
which has been shown to provide an effective trade-off between Sniper’s simulation
speed and accuracy [24].

To significantly reduce the simulation time while retaining representative perfor-
mance estimates, we adopt the SimPoint methodology [27]. The idea is that every
program, although having varying behavior over time, can be divided into several rep-
resentative intervals. This representative behavior is represented by Basic Bit Vector
(BBV)’s, which capture the relative frequency of the execution of code blocks during a
given portion of execution. Once a program is profiled to obtain the BBV’s, the BBV’s
are compared to each other for similarity. Intervals executing the same code blocks
with the same frequency are clustered using machine-learning algorithms, resulting in
a k-clustering of BBV’s. One point, a SimPoint, is selected per cluster and weighted to
serve as a representative for the program. To obtain an estimate of the performance of a
program, it is now only necessary to simulate k intervals instead of the whole program.

Due to Snipers dependency on and integration with the Pin-instrumentation tool
[20], Pinpoints, a SimPoint implementation of SimPoints for Pin has been used. We
follow Patil et al. [26] and make use of SimPoint-intervals that are 250 million in-
struction in size to ease warm-up effects of the caches, as result of starting with empty
caches. For each benchmark we generate one SimPoint, thereby simulating only one
interval. The reason for doing so, is that different intervals of a benchmark can have
different demands on the LLC. This means that when one simulates multiple intervals,
discontinuity between demands on the LLC needs to be taken into account, which
is non-trivial. Furthermore, we are primarily interested in the difference in perfor-
mance between cache partitioning algorithms. To observe those differences, intervals
exhibiting different characteristics with regards to cache usage are required, but accurate
estimation of the complete individual benchmark performance is not necessary.
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insensitive medium-sensitive higly-sensitive
GemsFDTD hmmer sphinx3
leslie3d bzip2 gamess
gromacs sjeng xalancbmk

libquantum tonto povray
zeusmp wrf gcc

calculix perlbench soplex
bwaves cactusADM lbm
namd h264ref omnetpp
gobmk astar
dealII
milc

Table 6.2: Benchmark classification

6.4 Workload Generation
The benchmarks used in our simulations are those from the SPEC CPU®2006 bench-
mark suite, used by other similar recent cache-management studies [32, 41, 22]. Our
workloads have been generated based on a cache sensitivity classification. This section
will start with the method of classification, followed by how the classified benchmarks
have been combined into workloads.

6.4.1 Benchmark Classification
In order to profile the benchmarks for their sensitivity to changes in allocated cache-
space and associativity, we proceed as follows:

1. For each benchmark, we profile it using Sniper, while increasing the way count
(1,2,4,8,16,32) of a set-associative LLC. The configuration of the architecture
used is the same as that of the 4-core CMP in Table 6.1, except for the changing
LLC and the use of one core. The LLC has a fixed amount of sets per way (8192)
and a block-size of 64 bytes. Changing the way-count implies an increase in cache
size and increase in associativity (reduction in conflict misses). While increasing
the way count, the tag and data delays of the LLC are kept constant: in this way a
cache of 16MiB is simulated that is being partitioned (with a way as partitioning
unit).

2. For every benchmark the speedup based on the IPC is calculated.

3. All benchmarks with a speedup up to 1.3 are classified as insensitive (class i).
Benchmarks having a speedup above 1.3 up until 1.5 are classified as medium
sensitive (class m). The rest of the benchmarks is classified as highly sensitive
(class h).
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Using this method, the benchmarks have been classified as listed in Table 6.2. Although
strictly speaking it is not necessary to profile the benchmarks for all listed way-counts to
calculate their maximum speedup, doing so does give additional insight in the behavior
of the used benchmarks. We have therefore included those profiles in Figure 6.1. The
cache sensitivity profiles in Figure 6.1 also include the Misses-Per-Kilo-Instructions
(MPKI) (in red), as this metric gives additional insight in the memory-access patterns of
the benchmarks. MPKI is defined as the amount of misses per 1000 (kilo) instructions
and therefore gives an indication of how many misses, on average, are incurred by a
benchmark. These profiles are used later on to discuss the performance of the evaluated
cache partitioning algorithms in Chapters 7 to 9.

6.4.2 From Classification to Workloads
Based on our classification, we generate our workloads for 4,8 and 16 cores, using an
approach similar to that of Sanchez and Kozyrakis [33]. The 4-core workloads are
generated as follows:

1. All unique combinations of the workload-types (i, m, h) are generated. This re-
sults in 15 classes. Each of those classes, containing four benchmarks, is repre-
sented by a tuple of 4 characters, indicating the sensitivity classification of the
corresponding benchmark. iimh for example, refers to a class in which two
benchmarks are cache-insensitive, one medium sensitive and one highly sensi-
tive.

2. For each class, five workloads are generated by randomly selecting benchmarks
corresponding to the types as given by the classes (repetition allowed). This results
in 75 workloads in total. The workloads that have been generated can be found
in Table A.1.

Following a similar procedure for the 8 and 16-core workloads would result in sig-
nificantly more classes (45 and 153 for 8- respectively 16-core workloads). We, again,
follow an approach similar to that of Sanchez and Kozyrakis [33]. For the 8- and 16-
core workloads, our classes are the same as for the 4-core workloads. For example, a
workload from class iimh is generated by randomly selecting 2, respectively 4 bench-
marks from the i,i,m and h benchmarks. This procedure is performed 5 times per class
resulting in 75 workloads in total. To be able to evaluate more benchmarks and due to
a limited computing budget, we have excluded mcf. We found that the workloads con-
taining mcf could increase the average running time of a workload by more than 400%.
The 8- and 16-core workloads that have been generated can be found in Tables B.1
and C.1.
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Figure 6.1: Cache Sensitivity Profiles - A way corresponds to 0.5MiB
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6.5 Main Experiment
Our main experiment is set up to evaluate the performance of eight cache partitioning
algorithms. We use conventional LRU on a set-associative cache as our base-line. The
evaluated algorithms, together with their used parameters are shown in Table 6.3. To
find out what the added effect of using Vantage over using a zcache is, we use Z-LRU
(bucketed-LRU) as an additional reference of LRU for Vantage. PriSM-UCP repre-
sents the PriSM partitioning scheme combined with the allocation policy of UCP.

The parameters as shown in Table 6.3 are based on the (tuned) parameters used
in the literature that the corresponding algorithms have been introduced in. All algo-
rithms that use UMON’s, are using UMON-global without DSS. When DSS is used,
only few sets of the MTD are duplicated and sampled in the ATD’s. As our workloads
contain different benchmarks, each having different memory access patterns, the accu-
racy of DSS can differ among workloads. To eliminate this dependency, we have opted
to not use DSS.

Algorithm Parameters
Z-LRU bucketed-LRU, 8-bit timestamps, k = 5%
TADIP-F 32 dueling sets per 4MiB of LLC, ϵ = 1

32
DRRIP 3-bits RRPV’s, 32 dueling sets per core per 4MiB

cache. ϵ = 1
32 , FP-promotion policy.

PIPP pprom = 1
32 , pstream = 1

128 , θmr = 0.25, UMON-
global utilizing 16 way UMON’s, minimum inser-
tion position of 8 positions above LRU. 5M cycle
partitioning period

PriSM-H W = number of cache lines.
PriSM-UCP UMON-global utilizing 16 way UMON’s, W =

number of cache lines
UCP UMON-global utilizing 16 way UMON’s, 5M cycle

partitioning period
Vantage u = 0.05, Amax = 0.5, s = 0.1, c = 256, k = 5%,

UMON-global utilizing 16 way UMON’s, 5M cycle
partitioning period

Table 6.3: Evaluated Cache Partitioning Algorithms and Their parameters

Each algorithm is evaluated over the three CMP configurations as described in
Section 6.1 using the workloads listed in Tables A.1, B.1 and C.1. We set up our
simulations to restart a benchmark once it completes its execution, until at least ev-
ery benchmark in the workload has completed once: this is to ensure that cores keep
competing for space in the LLC. This might involve situations where several bench-
marks have been partially executed once the simulation ends. Furthermore, when a
benchmark is repeated, several blocks of its working set might already be present in the
cache, affecting its performance.

We have therefore modified Sniper to support multiple runs of a benchmark in
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private mode. Using this modification, we have traced the IPC of every benchmark
over intervals of 1 million instructions (0.4% of the 250M cycle interval used by the
SimPoints) during a run including 20 repetitions in isolation 1. This enables us to
calculate the STP and HMS more accurately: instead of calculating those metrics based
on the average IPC of a benchmark of one run in isolation, we can average the IPC over
the actual interval that has been executed for the benchmark and use this value in our
calculations.

6.6 Several Details Regarding the Framework
This section is concerned with several remarks regarding the implementation of the
cache partitioning algorithms in our framework.

PIPP PIPP has been introduced using DSS with a miss-count threshold θm = 4095
and a miss-rate threshold θmr = 1

8 . The use of miss-counts to detect streaming bench-
marks has been shown to function poorly in our framework, and is therefore not present
in the simulation framework [24]. Furthermore θmr has been set to 1

4 in the framework
[24].

PriSM As already indicated by Olsen [24], the use of Equation (4.6) to calculate the
eviction probability distribution E can result in all eviction probabilities summing to a
value higher than one. In that case, E no longer represents a probability distribution.

This can be explained as follows: in steady state, where the cache has been filled
completely with data ∑

Ci =
∑

Ti =
∑

Mi = 1 and the use of Equation (4.6),
without clamping, results in ∑

Ei = 1:∑
Ei = (

∑
Ci −

∑
Ti) × N

W
+

∑
Mi

= 0 × N

W
+ 1

= 1

(6.4)

However, when clamping is applied, Equation (6.4) no longer holds and ∑
Ei = 1

does not necessarily hold. The same is true in case the cache is not completely filled yet,
as ∑

Ci < 1. During this thesis we have therefore altered the simulation framework
to use E differently. To be able to select a victim-core, we propose that the selection
algorithm is altered to normalize all Ei’s when ∑

Ei > 1, otherwise leaving all Ei’s
intact. The reason for doing so is that if ∑

Ei ≤ 1, normalization would result in an
increase of all non-zero eviction priorities, which conflicts with Equation (4.6). When∑

Ei > 1, normalization is required, since PriSM prescribes that one victim core is
selected, before the replacement policy selects a candidate. Normalization does not alter
the proportionality between all non-zero priorities.

1During our experiments, the maximum amount of repetitions of any benchmark never exceeded 20.
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UCP & Inclusive Caches As we use an inclusive caching architecture in our evalua-
tion, the look-ahead algorithm as implemented in the framework allocates at least the
the size of the L2-cache in the LLC to each application (see also Section 4.2.1).

Since Vantage can partition at cache-line granularity rather than per way, the miss-
curves as required by the look-ahead algorithm are interpolated to contain 256 points
(see Section 4.2.4). Since UMON’s work with hit counters, miss curves cannot directly
be obtained: this would require information about the amount of misses that would
occur when no cache-space is allocated to a specific core. In the case of UCP and PIPP
this is no problem, as they can directly use the hit-counters to calculate the partition
targets (see Equation (4.3)).

To obtain the miss-curves, a counter per core that counts every access to the cache
could be added. The amount of misses can then be calculated by subtracting the values
from the hit-counters from the access counter.

We have implemented another method in the framework: as the look-ahead algo-
rithm allocates cache on basis of utility, that is, how many cache misses can be saved,
knowing the absolute amount of misses is not required. It is sufficient to have a miss-
curve that differs from the real miss curve by just an offset. One can create such a curve
using Algorithm 1.

Algorithm 1 getMisses
1: procedure getMisses(way)
2: misses=0
3: for i=N-1; i>way; i– do ▷ Assuming zero-based indexing
4: if way < i then
5: misses += hitCounters[i]
6: return misses;



7 | Results

This chapter describes the results of the main experiment as described in Section 6.5.
We note that all performance results are estimates of the SPEC benchmarks based

on simulation of representative regions of all used benchmarks (PinPoints).

7.1 Overall HMS and STP
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Figure 7.1: Overall HMS & STP for all Workloads and all Core-Counts

Figure 7.1 shows the average HMS and STP of all workloads normalized to LRU for
the 4-,8- and 16-core CMP configurations. Our first observation is that the trends
in the STP generally follow the trends in the HMS. This indicates that the speedups
of the individual benchmarks are relatively in balance with the overall speedup of the
workloads. As all algorithms target Hit-maximization, it is unlikely that one algorithm
would attain a significantly more fair distribution of speedups than another. The HMS
and STP of all algorithms both deviate at most approximately 3% from LRU.

From Figure 7.1, we further observe that Vantage is the best performing cache par-
titioning algorithm both in terms of the HMS and the STP. Vantage achieves an overall

62
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HMS and STP that are approximately 3% higher than that of LRU for all core-counts.
Moreover, as the core-count increases, the improvements in STP experience a minor
increase. Furthermore, we observe that the differences in performance compared to Z-
LRU are significant: for all core-counts, Vantage attains an overall STP and HMS that
are more than 2% higher than those of Z-LRU. Z-LRU is an implicit cache partitioning
algorithm and partitions the cache efficiently when the overall memory access pattern
of a workload is recency-friendly. However, the overall memory access pattern of a
workload is a composition of the memory access patterns of the individual benchmarks
and is therefore not recency-friendly in general. This leads to the limited performance
improvements of Z-LRU.

This observation can be made more general: Figure 7.1 shows that explicit cache
partitioning algorithms, although not always scalable to higher core-counts, are able to
attain more significant performance improvements than the implicit cache partitioning
algorithms. This can be explained as follows: the evaluated implicit cache partitioning
algorithms TADIP, Z-LRU and DRRIP address the memory access pattern of each
core separately1. Possible destructive interference due to the interleaving of memory
access patterns of several cores sharing the LLC is not addressed, thereby limiting the
performance. By explicitly managing the cache space, as the explicit partitioning algo-
rithms do, isolation can be provided to the cores. In turn, this can lead to increased
performance.

PriSM-UCP is the best performing algorithm after Vantage, improving both STP
and HMS with at least 1% with respect to LRU. Remarkable is the performance gap
observed between PriSM-H and PriSM-UCP: PriSM-H, unlike PriSM-UCP, does
not improve overall STP at any core-count, nor does it significantly improve the HMS
with respect to LRU. As both algorithms use the same partitioning scheme, differences
in observed performance need to be attributed to differences in the allocation policies.
We will provide a more extensive analysis in a case-study (see Section 8.1).

We further observe that UCP provides improvements in HMS and STP of approx-
imately 1% for the 4-core CMP configuration. As soon as the core count doubles,
performance improvements drop significantly and for the 16-core CMP configuration,
UCP is not anymore able to improve upon LRU. The reason for this observed perfor-
mance drop, is that the granularity at which UCP partitions the cache is too coarse. As
the core counts increase, the amount of ways of the set-associative cache stays constant
in our evaluation (16 ways). UCP needs to allocate one way to each core due to inclu-
siveness of the cache hierarchy (see Section 4.2.1). For the 16-core configuration, this
leaves no ways left to allocate and all partitions are of equal size. At 4 and 8 cores UCP
is still able to allocate varying amount of ways to each core, which allows for a better
distribution of the cache space among the cores, improving performance with respect
to LRU.

The performance of PIPP shows a pattern similar to that of UCP. PIPP, like UCP
allocates partitions on a per-way basis, which is too coarse for higher core-counts. Un-
like UCP, PIPP cannot provide improvements with respect to LRU from 8-cores on-

1Although TADIP-F and DRRIP use a feedback mechanism to take the optimal insertion policy of
other cores into account while determining the best policy for a certain application, they do not globally
consider all access patterns combined to optimize performance.
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ward. As already indicated in Section 4.2.2, an increasing amount of cores leads to
more conflicts at the lowest insertion position in the cache-sets. In turn, this results in
an increasing amount of newly inserted cache-lines being evicted before they are able
to be promoted sufficiently, thereby decreasing the effectiveness of PIPP’s partitioning
scheme.

DRRIP is able to consistently provide performance improvements with respect to
LRU, albeit with approximately 0.5% in both HMS and STP. This indicates that
RRIP-replacement is favorable over recency-replacement, confirming the results of
Jaleel et al. [18]. TADIP-F on the other hand, shows no significant differences com-
pared to LRU. We have found that the set-dueling mechanism as used in both TADIP-
F and DRRIP does not always detect trashing memory access patterns in our evaluation,
thereby restricting the possible performance improvements. We further investigate this
matter in a case-study (see Section 8.2).

From Figure 7.1, we observe that although the use of Z-LRU does not provide
any overall benefit for the 4-core configuration, it starts to provide small overall im-
provements in STP and HMS for the 8- and 16-core CMP configurations. As the
core-count of the CMP increases, more cores can compete for the same blocks in the
cache, which can result in an increase in conflict misses. In our evaluation, the zcache
offers 52 replacements candidates, significantly more than the 16 replacements the set-
associative cache, as used by LRU, offers. This makes it more likely that Z-LRU is able
to find better replacement candidates than LRU, resulting in a reduction of conflict
misses. This can explain the minor increase in overall performance.
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7.2 STP per Workload
In Section 7.1 we have shown that the overall improvements in HMS and STP are
relatively small (at most 3%). This is due to most workloads not benefiting significantly
from cache partitioning. However, individual improvements can be significantly larger:
for example individual improvements in STP can reach up to almost 20%. To give a
more complete overview of the results, we therefore include the individual improve-
ments in STP normalized to LRU for each evaluated algorithm for the 4,8 and 16-core
CMP configurations. For the sake of brevity and since trends in HMS closely follow
those in STP, we do not include HMS.
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Figure 7.2: STP per Workload for Vantage and PriSM-UCP

Figure 7.2 shows the STP per workload for Vantage and PriSM-UCP, which have
been shown to be the two best overall performing algorithms in Section 7.1. The im-
provements shown in Figure 7.2 are sorted by increasing STP per algorithm: the curves
are therefore an indication of how an algorithm performs overall, but cannot directly be
compared to each other, as the workload-identifier in one figure might refer to another
workload in the other. We observe that Vantage achieves the highest improvements
in STP at all core counts. Although the maximum attained STP improvement with
respect to LRU decreases with increasing core count, the decrease is relatively small
compared to PriSM-UCP: the total decrease in the maximum improvement in STP is
11% for PriSM-UCP, whereas this is only 4% for Vantage. This indicates that PriSM-
UCP does not scale as well with an increasing amount of partitions as Vantage. This
is caused by the relatively quick decreasing accuracy at which PriSM is able to enforce
its partition sizes: the fixed way-count of the set-associative cache, as used in the eval-
uation, does not provide enough replacement candidates to adequately partition the
cache when the partition count increases. We further explain this in a case study (see
Section 8.3).

Figure 7.3 shows STP per workload for UCP and PIPP, sorted by increasing STP.
In Section 7.1 we have observed that both UCP and PIPP do not scale as the amount of
partitions increase. This is indeed reflected by the STP curves in Figure 7.3. We observe
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Figure 7.3: STP per Workload for UCP and PIPP

that the maximum STPs of PIPP are lower than those of UCP and that the overall
performance of PIPP decreases quicker. Although PIPP uses the same allocation policy
as UCP, the partition sizes enforced by PIPP are only approximates of their targets. It is
therefore possible that certain partitions outgrow their targets, lowering the maximum
attainable STP and hurting overall performance. UCP’s partitioning scheme does not
allow partitions to outgrow their targets (see Section 4.2.1) 2, thereby providing more
isolation to the cores. This can lead to increased performance with respect to PIPP.
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Figure 7.4: STP per Workload for DRRIP and TADIP-F

Figure 7.4 shows STP per workload for DRRIP and TADIP-F, sorted by increas-
ing STP. For both DRRIP and TADIP-F we observe that the maximum improve-
ment in STP is relatively small for all core-counts except at a core count of 4. For
the 4-core CMP configuration, we observe that one workload experiences a signifi-
cant improvement in STP of approximately 12%, both for DRRIP and TADIP-F. The

2Only in cases where a partition is downsized, its actual size can be temporarily bigger as data from the
partition needs to be removed from the cache by evictions.
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corresponding workload is the same for both algorithms: ihhh-3. This workload con-
tains libquantum, which is properly detected as trashing the cache by the set-dueling
mechanism (see also its sensitivity profile in Figure 6.1). Both TADIP-F and DRRIP
therefore restrict its cache usage. libquantum, on average, has the highest MPKI of all
benchmarks in this workload. This means that LRU allocates significantly more cache
space to libquantum (due to allocating on an access-frequency basis), than TADIP-
F and DRRIP. TADIP-F and DRRIP therefore leave more cache space available for
the three other highly sensitive benchmarks in this workload, allowing for the observed
improvement. The majority of workloads, however, attain STPs that are within 1%
of those of LRU for both DRRIP and TADIP-F. As noted earlier this is due to set-
dueling mechanism not always detecting trashing access patterns. A case-study further
illustrating this problem is provided in Section 8.2.
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Figure 7.5: STP per Workload for Z-LRU and PriSM-H

Figure 7.5 shows STP per workload for Z-LRU and PriSM-H sorted by increasing
STP. For Z-LRU we observe that, unlike any other evaluated cache partitioning algo-
rithm, the maximum attainable STP for 8 and 16 cores is higher than the maximum
STP at 4-cores. As explained in Section 7.1 this could be attributed to the use of a
zcache that offers more replacement candidates than the set-associative cache in our
evaluation. Z-LRU experiences several performance decreases with respect to LRU for
several workloads. Z-LRU (bucketed-LRU) is only an approximation of LRU. Fur-
thermore, replacement candidates used by Z-LRU can come from every block in the
zcache, whereas this is limited to sets for LRU. These differences lead to different be-
havior and can result in LRU outperforming Z-LRU on certain workloads.

From Figure 7.5 we observe that the STP attained by PriSM-H does not differ
more than approximately 5% from that of LRU. Furthermore, the obtained speedups
are approximately balanced out by the decreases in STP. This reflects our overall results
which show that PriSM-H, overall seen, does not improve upon LRU.
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7.3 HMS and STP per Class
To give more insight in to which workloads are susceptible to increases or decreases in
the HMS respectively the STP, we group the HMS and the STP per class for all CMP
configurations.

7.3.1 4-Core Results
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Figure 7.6: HMS & STP for all 15 workload classes, 4-cores

Figure 7.6 depicts the average HMS and STP for every class for all 4-core workloads
for all evaluated algorithms normalized to LRU. We make the global observation that
the trends in the HMS closely follow those in the STP. For sake of brevity we therefore
restrict the discussion mainly to the STP as the observations made for the STP apply
to the HMS as well. We further observe that Vantage is the top-performer for the
majority of classes across all configurations.

A select group of classes, consisting of mmhh, mhhh, iihh, ihhh and hhhh, contains
the highest improvements in STP and HMS. The common factor between all those
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classes is that at least half or more of the workloads are highly-sensitive benchmarks.
Therefore, these workloads have the greatest potential for improvements over LRU.
The rest of all classes form the insensitive group and show less than 5% difference with
LRU.

We observe that the sensitive group of classes is lead by Vantage. Second is PriSM-
UCP. PIPP and UCP are competing with each other in the highly sensitive group for
the third place, with PIPP performing better than UCP in the classes mhhh, iihh and
hhhh. Unlike UCP, PIPP includes a streaming detector which could give an advantage
to PIPP for certain workloads. UCP, in general, directly enforces the maximum parti-
tion sizes (see Section 4.2.1), whereas PIPP only approximates them, which might be
a reason for UCP outperforming PIPP in the other classes.

Per class, as was also observed for the overall results, we observe that the explicit
partition algorithms provide the highest speedups.

7.3.2 8-Core Results
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Figure 7.7: HMS & STP for all 15 workload classes, 8-cores
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Figure 7.7 depicts the average HMS and STP for every class for all 8-core workloads
for all evaluated algorithms normalized to LRU. Again the trends in the HMS closely
follow those in the STP and we restrict our discussion mainly to the STP.

From Figure 7.7, we observe that the highest speedups are again predominantly
contained in the same group of classes as for the 4-core workloads. We also observe
that the highest speedups in the sensitive group are again restricted to the explicit par-
titioning algorithms, although it is predominantly Vantage that attains them.

Compared to the 4-core workloads, we observe that within the sensitive group the
speedups achieved by Vantage in the classes ihhh and hhhh are significantly higher
than those attained by the other explicit partitioning algorithms. As we have already
observed, PIPP and UCP do not scale well with core count, limiting their improve-
ments for 8-cores. Furthermore, PriSM-UCP’s ability to accurately enforce partition
sizes, decreases as core count increases (For further details see the case-study in Sec-
tion 8.3), leading to lower maximum speedups than those of Vantage.

Another observation is that for the class ihhh, both the STP and HMS of Z-LRU
are significantly higher than those of LRU. This is caused by Z-LRU speeding up the
sphinx3 benchmark by 10% for a workload in this class, which is big enough to signif-
icantly affect the average STP of this class. During the development of the zcache we
found that sphinx3, in general, is highly sensitive to changes in associativity and that
a zcache with only 16 (instead of 52 as used in our evaluation) replacement candidates
was already significantly outperforming a LRU-managed 16-way set-associative cache.

7.3.3 16-Core Results
Figure 7.8 depicts the average HMS and STP for every class for all 16-core workloads
for all evaluated algorithms normalized to LRU. Again the trends in the HMS closely
follow those in the STP. PIPP and UCP now perform worse than LRU for all classes
due to their unscalability. We further observe that the highest speedups are again pre-
dominantly contained in the same group off classes as for the 4-core workloads. But
now, of all partitioning algorithms, only the explicit partitioning algorithms Vantage
and PriSM-UCP are able to improve STP by more than 5%. These algorithms are, with
the exception of PriSM-H, the only algorithms that explicitly partition on cache-line
granularity, thereby giving them an advantage.

We further make the interesting observation that the HMS and STP of PIPP and
UCP do show significantly different trends in the sensitive group: PIPP consistently
attains the highest HMS in this group, but UCP, in general, attains better values for
the STP. This means that the individual speedups in a workload as attained by UCP
are less balanced than that of PIPP. For the hhhh class we have tracked this down to
the highly-sensitive benchmark povray in the hhhh-2 workload. povray saturates to
its maximum performance at 2MiB of cache space (see also its cache sensitivity profile
in Figure 6.1). As already noted, for the 16-core configuration, the look-ahead algo-
rithm allocates one way (2MiB) to every core. As UCP can strictly enforce partition
sizes in this case3, it can speedup povray significantly with respect to LRU. PIPP’s
partitioning scheme only approximates the partition targets and also suffers from con-

3No downsizing can occur, and therefore all partitions can never exceed their target sizes.
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Figure 7.8: HMS & STP for all 15 workload classes, 16-cores

tention at the minimum insertion position, decreasing the performance of povraywith
respect to LRU. Although, in general, the partition allocations are too coarse, UCP can
still cause speedups with respect to LRU due to its partitioning scheme. This results in
higher STP’s, but a more uneven distribution of speedups within a workload, for certain
workloads, leading to the observed behavior.



8 | Case Studies

In this chapter we will provide several case studies to further explain several of the
observed performance differences in our results.
This chapter starts with a case study on PriSM-H and PriSM-UCP, followed by

a case study on the set-dueling mechanism as used in TADIP-F and DRRIP. This
chapter is concluded with a case study on Vantage and PriSM-UCP.

8.1 PriSM-H does not Improve upon LRU
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(a) PriSM-H target partitions
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(b) PriSM-UCP target partitions

Figure 8.1: Target Partition Sizes for PriSM for the 4-core Workload immh-3

From the results we observe that PriSM-H does neither improve STP nor HMS
with respect to LRU. Although PriSM-H is in fact able to achieve speedups, those
are balanced out by significant slowdowns on certain workloads. PriSM-UCP on the
other hand, is able to consistently improve both STP and HMS at all core-counts.
Since PriSM-H and PriSM-UCP share the same partitioning scheme, differences in
performance are due to the different allocation policies.

During the experimental phase of this work, we found that the target allocations as
given by PriSM-H, deviated significantly from those as given by UCP. This motivated

72
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Figure 8.2: Miss Curves of sphinx3 and lbm for the 4-core Workload hhhh-3 - Cal-
culated using Algorithm 1 in Section 6.6

the implementation of PriSM-UCP, such as to isolate the effect of the allocation policy
and partitioning scheme.

We have selected the 4-core workload hhhh-3 to illustrate this observed behavior.
For this workload, the STP of PriSM-H is only 90% of that of PriSM-UCP.

Figure 8.1 shows the target allocations of both PriSM-H and PriSM-UCP. We
observe that whereas PriSM-H allocates most space to lbm, PriSM-UCP allocates most
space to sphinx3.

To find out why PriSM-UCP allocates most space to sphinx3, we have included
Figure 8.2, which shows the miss curves during a representative partitioning period for
this workload. We observe that sphinx3 can save significantly more misses, also using
less ways, than lbm. This explains why the look-ahead algorithm, as used by PriSM-
UCP, allocates more space to sphinx3 than to lbm.
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Figure 8.3: Normalized Potential Gain of sphinx3 and lbm for the 4-core Workload
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Figure 8.4: Current Occupancy and Target Occupancy of sphinx3 and lbm for the
4-Core Workload hhhh-3

To find out why PriSM-H allocates more space to lbm than to sphinx3, we have
included Figure 8.3, which shows the normalized potential gain:

PotentialGain[i]
TotalGain

,

for sphinx3 and lbm as used by PriSM-H’s allocation policy.
We observe that the normalized potential gain for sphinx3 is slightly lower than

that of lbm. Yet, the target allocation in Fig. 8.4a shows that lbm is allocated signifi-
cantly more cache space. To find out why, we repeat the formula used to calculate the
target occupancy:

Ti = Ci ·
(

1 + PotentialGain[i]
TotalGain

)
.

We observe that the target allocations are linearly dependent on the current occupancy.
Figure 8.4b shows why lbm’s target allocation is significantly larger: the occupancy of
lbm is significantly higher than that of sphinx3. This means that with approximately
the same normalized gain, lbm’s target partition size can still be significantly larger than
that of sphinx3. This discrepancy persists throughout the whole simulation. This is
due to lbm’s initial occupancy being relatively high. This prevents sphinx3 from taking
up more space throughout the simulation. The space taken up by benchmarks in the
first partitioning period, can therefore have a significant effect on PriSM-H’s overall
performance.

Furthermore, unlike UCP’s look-ahead algorithm, PriSM-H does not take the
miss-curves into account. Instead, it calculates the potential gain of a core as the total
amount of hits of this core in the ATD minus the hits of the core in the MTD. Not
only does this couple the allocation to the current performance, but the amount of hits
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does, in general, not linearly depend on the cache space allocated. From Figure 8.2, we
observe that lbm only experiences a significant reduction in misses when it is allocated
12 ways or more1. From Figure 8.4b we observe that its occupancy is approximately
0.6 on average. This corresponds to approximately 10 ways, which is not enough to
attain this significant reduction. The potential gain of lbm therefore stays relatively
high. sphinx3, on the other hand, directly starts to receive a significant amount of hits
when its allocation is increased from 0 to more ways. This means that the difference in
hits between sphinx3 in the MTD and the ATD directly starts to decrease, limiting
its potential gain. With an approximate occupancy of 0.2, this is enough to cause the
potential gain of sphinx3 to be approximately equal to that of lbm (see Figure 8.3).

1Since UCP halves the hit counters every period to take the history in account, hits can accumulate. This
can lead to the impression that more misses can be saved than is actually the case. This curve is therefore only
used to extract trends when discussing PriSM-H.
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8.2 Set-Dueling Does not Accurately Capture Trashing
Memory Access Patterns

Based on our main experiment, we observe that TADIP-F is not able to provide signif-
icant performance improvements over LRU: TADIP-F’s STP and HMS are effectively
the same as those of LRU.

LIP BIP

lib
qu

an
tu

m
pe

rlb
en

ch
G

em
sF

D
TD

sp
hi

nx
3

ca
lcu

lix
ca

ctu
sA

D
M

m
ilc

go
bm

k
sje

ng
na

m
d

bz
ip

2
so

pl
ex wr
f

ze
us

m
p

as
ta

r
xa

lan
cb

m
k

om
ne

tp
p

h2
64

re
f

gr
om

ac
s

po
vr

ay gc
c

de
alI

I
hm

m
er

les
lie

3d
to

nt
o

lb
m

bw
av

es
ga

m
es

s0
0.2
0.4
0.6
0.8

1

%
of

ru
nn

in
g

tim
e

Figure 8.5: TADIP-F: Distribution of BIP and LIP Usage Among all Benchmarks

SRRIP BRRIP

lib
qu

an
tu

m
sp

hi
nx

3
na

m
d

m
ilc

sje
ng

so
pl

ex
xa

lan
cb

m
k

ca
ctu

sA
D

M
G

em
sF

D
TD to
nt

o
bw

av
es

hm
m

er
om

ne
tp

p
ca

lcu
lix

h2
64

re
f

bz
ip

2
pe

rlb
en

ch
as

ta
r

ze
us

m
p

go
bm

k
gr

om
ac

s
wr

f
les

lie
3d

ga
m

es
s

gc
c

de
alI

I
lb

m
po

vr
ay

0
0.2
0.4
0.6
0.8

1

%
of

ru
nn

in
g

tim
e

Figure 8.6: DRRIP: Distribution of BRRIP and SRRIP Usage Among all Benchmarks

We have therefore devised an experiment in which, for all 4-core workloads, the
fraction of the running time spent in either BIP or LIP by TADIP-F has been tracked
for each benchmark. A similar experiment has been performed for DRRIP, in which
the fraction of the running time in SRRIP respectively BRRIP was tracked. The average
results of those experiments are shown in Figures 8.5 and 8.6.

From Figure 8.5 we observe that for TADIP-F, libquantum uses the BIP insertion
policy the most of all benchmarks. However, libquantum uses BIP, only 20% of its
total running time. From its cache sensitivity profile (see Figure 6.1), we observe that
the MPKI of libquantum stays the same up until 16MiB of cache space. This is
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Figure 8.7: Extended Cache Sensitivity Profile of libquantum - 32MiB included

an indication that libquantum might trash the cache, at least up to 16MiB. Indeed,
our extended cache sensitivity profile in Figure 8.7, which includes a 32MiB LLC,
shows that libquantum is trashing the cache up to 16MiB. At 32MiB, the working set
of libquantum fits in the cache, causing a significant performance improvement and
reduction in misses.

From Figure 8.6 we observe that libquantum uses BRRIP for a little less than 40%
of its running time.

Both when using TADIP and DRRIP, set dueling seems to be unable to consistently
capture the trashing access pattern of libquantum. Other benchmarks that might be
trashing in certain workloads, might suffer from the same problem.

One approach to increase the accuracy of the set-dueling mechanism would be to
increase the amount of dedicated sets. However, as the amount of dedicated sets is
increased, more sets are forced to use a suboptimal policy. This, in turn, can decrease
overall performance. During the experimental phase of this work, we have not been
able to improve the performance by altering the density of the dedicated sets. In our
experiments we found that for example doubling the density of dedicated sets as used by
Jaleel et al. [17], did not significantly alter the optimal detected policy and only resulted
in a decrease in overall performance.

Although Figure 8.6 shows that DRRIP uses SRRIP most of the time, we have
observed that DRRIP is able to significantly speed up certain classes of workloads.
This can be explained by the use RRIP: Jaleel et al. [17] and Sanchez and Kozyrakis
[33] show that the use of SRRIP alone can yield significant performance improvements
over LRU.
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8.3 Vantage Outperforms PriSM-UCP
Manikantan et al. [22] show that PriSM-UCP outperforms Vantage when used on a
16-way set associative cache. Our results, however, indicate that Vantage outperforms
PriSM-UCP at all core counts. Unlike Manikantan et al. [22] we make use of the
zcache architecture for the evaluation of Vantage. Based on our experiments, we ob-
serve that as core counts increase, the maximum speedups achieved by PriSM-UCP
decrease more than those of Vantage. The root cause of this decrease is PriSM’s inabil-
ity to accurately enforce partition sizes as the core-count increases. This in turn leads
to partition sizes drifting away from their targets, resulting in performance loss.

PriSM’s partitioning scheme is based on the assumption that the case, in which the
selected victim core has no block in the cache-set considered for replacement, is rare.
Figure 8.8 depicts the average percentage of all evictions that evict data not belonging
to the selected victim core, measured over all workloads. We observe that doubling
the core count brings with it an 10% increase in wrongfully evicted data. This leads to

4-cores 8-cores 16-cores
0%

20%

40%

9.95%
20.51%

31.52%
20.51%

31.52%

Figure 8.8: Percentages of Wrong Evictions Among all CMP Configurations for
PriSM-UCP
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CHAPTER 8. CASE STUDIES 79

milc libquantum xalancbmk gcc xalancbmk xalancbmk povray soplex

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Allocation periodTa
rg

et
-fr

ac
tio

n
of

th
em

an
ag

ed
re

gi
on

(a) Vantage target partitions

20 40 60 80
0

0.2

0.4

0.6

0.8

1

Allocation periodAc
tu

al-
fra

cti
on

of
th

em
an

ag
ed

re
gi

on
(b) Vantage actual partition sizes

Figure 8.10: Target and actual partition sizes for Vantage for the 8-core workload
ihhh-4

decreased accuracy in enforcing the partition sizes.
We have selected the 8-core workload ihhh-4 to illustrate this. For this particular

workload, on average, 41% of all evictions by PriSM-UCP evict data from other cores
than the victim core. The STP achieved by PriSM for this workload is only 91.9% of
that of LRU, whereas Vantage improves STP by 4.2% with respect to LRU. To get a
better insight in the situation, we have depicted the target and actual partition sizes of
PriSM-UCP in Figure 8.9. From Figure 8.9 we observe that the actual space that milc
and libquantum use, is significantly larger than allocated to them by PriSM-UCP.

Figure 8.10 depicts the target and actual partition sizes for Vantage for the 8-core
workload ihhh-4. We observe that Vantage enforces the partition sizes close to, or
below their targets in the managed region. This means that Vantage’s demotion system is
working correctly and that the zcache is offering enough associativity for the demotion
process.

Whereas Vantage is able to control milc and libquantum’s partition size, PriSM-
UCP is not. In the case of PriSM-UCP, more space is taken by milc and libquantum
from the highly sensitive benchmarks. This leads to the observed performance differ-
ence.

So far, we have ignored the unmanaged region that Vantage uses. In our evalu-
ation, the unmanaged region is 5% of the LLC-size. From Figure 8.10, we observe
that the managed region can temporarily decrease to a size below its target size. This
corresponds to an increase in size of the unmanaged region. We will now restrict our-
selves to the benchmarks milc, libquantum and soplex in this workload to explain
this behavior.

Figure 8.11 depicts the actual and target sizes of milc, libquantum and soplex
for both PriSM-UCP and Vantage. Moreover, for Vantage we have included the space
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Figure 8.11: Partitions sizes of milc, libquantum, soplex for PriSM-UCP and Van-
tage for the 8-core workload ihhh-4

usage including the blocks of each benchmark that have been demoted and reside in
the unmanaged region.

We observe that overall, the space used by milc and libquantum is significantly
higher for PriSM-UCP than for Vantage. This confirms that even with the data in the
unmanaged region included, Vantage is better at restricting the amount of blocks that
milc and libquantum store in the LLC.

Moreover, we observe that the space usage of milc and libquantum can exceed
the 5% that has been allotted to the unmanaged region. Several of this points have
been marked in Figure 8.11b. This is caused by transient-behavior as described by
Sanchez and Kozyrakis [33]: when a partition is suddenly upsized and this partition
is gaining space faster than the other partitions loose, the unmanaged region can grow
temporarily. Or in other words: the overall demotion rate is higher than the eviction
rate, resulting in growth of the unmanaged region. Indeed the points marked for milc
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and libquantum correspond the sudden, relatively large, increases in the target size of
soplex as marked in Figure 8.11b.

Although the observed behavior makes it likely that this is indeed transient behavior,
it might have been the case that the increase in space of the unmanaged region was
caused by Vantage evicting too much data data from the managed region. By tracking
the amount of evictions from the managed region, we found that the average probability
of eviction of a block from the managed region is approximately 6.67 · 10−3, indicating
that the increase of the unmanaged region is indeed due to transient behavior. As it
are the three partitions corresponding to xalancbmk that loose most of their size when
soplex’s target is increased (see Figure 8.10), the cache space in the unmanaged region
that libquantum and milc take up, is able to increase due to their high churns (see
also their sensitivity profiles in Figure 6.1).

We therefore conclude that the observed discrepancies in the target and actual par-
tition sizes for Vantage stem from transient behavior and are not caused by lack of as-
sociativity of the zcache. The discrepancies in PriSM-UCP’s target and actual partition
sizes, however, are the result of restricted associativity.



9 | Sensitivity Analysis

In this chapter we will present several experiments that explore the response of the
evaluated cache-partitioning algorithms to changes in the target architecture. Sec-

tion 9.1 describes an experiment exploring how Vantage and Z-LRU respond to changes
in the amount of replacement candidates R of the zcache. Section 9.2 follows with an
experiment exploring the response of LRU, PriSM-H, PriSM-UCP, TADIP, DRRIP
and UCP to changes in the amount of ways of a set-associative cache. Section 9.3
and Section 9.4 are concerned with experiments that vary the LLC-size and DRAM-
bandwidth respectively.

9.1 Sensitivity to Varying Associativity of the Zcache
To test the response to the additional associativity a zcache can provide, we have devised
an experiment with all 4-core workloads for Z-LRU and Vantage. In this experiment
the number of levels of the BFS-walk was varied from one level, up to four levels at a
constant way count of 4. This means that we subsequently test with a zcache having
4,16,52 and 160 replacement candidates. The UMON’s as used for Vantage used 16
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Figure 9.1: Performance of Z-LRU and Vantage for all 4-core workloads, for varying
L of the zcache
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ways for all configurations: in this way, we can isolate the effect of changing target
allocations from the actual associativity change of the zcache.

The results of this experiment are normalized to the performance of LRU as ob-
tained in the 4-core main experiment. The results are depicted in Figure 9.1. We
observe that trends in HMS follow those in STP for both Vantage and Z-LRU. More-
over, we observe that as the amount of levels of the BFS-walk increases from one to
two, the performance of Vantage increases considerably.

In Section 4.2.4 we showed that the minimum size u of the unmanaged region is
given by

u ≥ 1 − R
√

Pev,

with Pev the worst-case probability of evicting a block from the managed region. Con-
sequently, the minimum Pev is given by Pev ≥ (1 − u)R. As Pev increases, Vantages
accuracy of enforcing the partition sizes decreases as it starts evicting more data from
the managed region.
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Figure 9.2: Performance of Z-LRU and Vantage for all 8-core workloads, for varying
L of the zcache

Since u < 1, the minimum worst-case probability of evicting a cache-line from the
managed region decreases exponentially with the amount of replacement candidates.
At L = 1, Vantages demotion scheme has to work with 4 replacement candidates.
With u = 0.05 in our evaluation, this results in Pev ≥ 81%. For L = 2, 16 replacement
candidates are available and Pev ≥ 44%, almost halve. At L = 3 and L = 4, the mini-
mum Pev equals 6.7% respectively 2.7·10−2%. This explains the relatively large increase
in performance from changing the amount of levels from one to two and the saturating
performance as L further increases: from a certain point onward, performance is not
limited by the accuracy of the partitioning scheme.

Z-LRU, however, is not able to profit from additional associativity. This is not
completely unexpected: Sanchez and Kozyrakis [32] show that the difference between
LRU-z4/16 and LRU-z4/52 is negligible. In our case, the difference between with
LRU-z4/16 and LRU-z4/4 is also negligible. However, the results of Sanchez and
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Kozyrakis [32] are for 32-core workloads, instead of 4-core workloads. The use of 32-
cores can increases the amount of conflict misses with respect to 4-cores. When we look
at the results of our main experiments, we notice that Z-LRU only provides benefits
for 8- and 16-core workloads.

This is an indicator that at a core-count of 4, the amount of conflict misses is too
low for Z-LRU to significantly profit from the additional associativity. The same ex-
periment, but performed for all 8-core workloads is shown in Figure 9.2. Here we do
observe a significant difference between LRU-z4/4 and LRU z4/16.

9.2 Sensitivity toVaryingAssociativity of theSet-Associative
Cache
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Figure 9.3: HMS & STP for all 4-core workloads, for varying way-counts of the set-
associative cache

To test the response to varying associativity of a set-associative cache, we have de-
vised an experiment for all 4-core workloads, in which the number of ways of the set-
associative cache was varied from 4 up to 32 ways. Figure 9.3 depicts the results of
this experiment and shows the overall STP and HMS normalized to the LRU on the
default 4-core CMP configuration. We observe that the trends in HMS closely follow
those in STP. For LRU, TADIP-F, DRRIP and PriSM-H we observe that the overall
performance varies with less than 0.5% from the LRU-baseline. The performance of
PriSM-H has been shown to mainly limited by its allocation policy. LRU, TADIP-F
and DRRIP do not manage interference between cores, and thereby do not necessarily
profit significantly from additional associativity to reduce conflict misses.

The HMS and STP of UCP, PIPP and PriSM-UCP have a maximum difference
from the LRU-baseline of more than 1%. UCP and PriSM-UCP continue to benefit
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from an increase in associativity. PIPP in general as well, with the exception of the
8-core workloads, where it experiences a minor decrease in HMS and STP of approx-
imately 0.1% with respect to the LRU-baseline.

These performance increases can be partially explained due to the increase of ways of
the ATD’s used by UCP, PIPP and PriSM-UCP. The increase in ways, allows the look-
ahead algorithm to estimate the optimal target partition sizes with finer granularity. At
the same time, the increase in ways also increases the granularity at which PIPP and
UCP can partition the cache. We observe that at 32-ways PriSM-UCP is no longer
the top-performer, but UCP. At 32-ways, the granularity at which UCP partitions the
cache seems adequate and the probabilistic partitioning scheme of PriSM might not
work as well as that of UCP.

9.3 Sensitivity to Varying LLC-Size
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Figure 9.4: HMS & STP for all 4-core workloads, for varying LLC-sizes

To test the response of the cache partitioning algorithms to changes in the LLC-
size, we have devised an experiment for all 4-core workloads, in which the size of the
LLC was varied from 2MiB up to 16MiB. We expect that with increasing LLC-size,
the performance difference between all algorithms becomes less, as the need for parti-
tion decreases: from a certain point the cache has enough space to accommodate the
working sets of all benchmarks in a workload. This is indeed confirmed by the results
of our experiment in Figure 9.4, which shows the overall STP and HMS normalized to
the performance of LRU on the default 4-core configuration. We observe that the dif-
ference between LRU and the other algorithms becomes smaller with increasing cache
size. Again, the trends in HMS follow the trends in STP closely. Furthermore, we
observe that the ordering of the algorithms stays approximately the same for the cache
sizes up to 8MiB. This indicates that only at 16MiB, the working sets of all benchmarks
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in a workload start to fit in the cache. We observe that both DRRIP and TADIP-F sig-
nificantly decrease performance with respect to LRU at 2MiB: in this case cache space
is too restricted and the use of dedicated sets affect performance negatively.

We furthermore observe that over all cache-sizes, Vantage is the top-performer,
although the difference with LRU is the least significant at the largest cache-size tested,
16MiB. Furthermore, at a LLC-size of 16MiB we observe that PriSM-H, PriSM-
UCP, PIPP decrease the HMS and STP with respect to LRU. This indicates that
LRU is able to efficiently manage the cache and that the partitioning scheme of those
algorithms hurt the performance.

9.4 Sensitivity to Varying DRAM Bandwidth
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Figure 9.5: HMS & STP for all 4-core workloads, for varying DRAM-bandwidths

To test the impact of changing DRAM-bandwidth we have devised an experiment
for all 4-core workloads in which we altered the configuration of the 4-core CMP by
varying the DRAM-bandwidth. In this experiment we have made use of bandwidths
of 16GB/s,32GB/s and 51.2GB/s respectively. Figure 9.5 depicts the overall STP and
HMS as result of this experiment, normalized to the performance of LRU on the default
4-core configuration.

A global observation is that with increasing bandwidth, the STP and HMS of all
algorithms increases. Furthermore, the trends in HMS are similar to those in STP.
With increasing bandwidth to DRAM, the penalty of a miss in the LLC can decrease,
as more accesses can concurrently request data from or write data to DRAM. As a
result average performance increases. We furthermore observe that the ranking between
performance of all algorithms is the same for all bandwidths. This indicates that all
algorithms profit approximately equally from increasing bandwidth.

We furthermore observe that the differences in STP and HMS between 16GB/s and
32GB/s are bigger than the differences between 32GB/s and 51.2GB/s (approximately
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0.4% respectively 0.1% for all algorithms). In order for the benchmarks to significantly
profit from more bandwidth, it is necessary that the bandwidth of the DRAM controller
is fully utilized. However, in Section 6.1 we have configured the bandwidth of our
CMP’s to 51.2 GB/s such as to avoid saturation of the available bandwidth. In our
sensitivity experiment, as the amount of available bandwidth increased, the average
bandwidth utilization decreased. This means that at 51.2 GB/s, not enough memory
accesses are made to completely saturate the available bandwidth and that performance
is mainly limited by latency instead of bandwidth. Continuous increase of bandwidth
therefore does not result in a continuous increase in performance.
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10.1 Conclusion

In this thesis we have given a theoretical overview of the implicit cache partitioning al-
gorithms TADIP-F, DRRIP, Z-LRU and the explicit cache partitioning algorithms

PriSM, UCP,PIPP and Vantage. To evaluate the performance of Vantage, a parallel
software implementation of the zcache architecture and Vantage has been added to the
simulation framework currently in use at NTNU.

We have used this simulation framework to evaluate the performance of caches
managed by the aforementioned cache partitioning algorithms, with a conventional
LRU managed cache as base-line. We find that in our evaluation:

F1: Overall impact on HMS and STP by partitioning the cache is minor. Overall, the
highest improvements with respect to LRU are approximately 3%, both in the HMS
and the STP. We have shown that this is due to improvements mainly being confined to
classes of workloads that predominantly contain applications which are highly-sensitive
to cache resources. In this group, performance improvements up to approximately 20%
have been observed. However, as this group forms only 1/3th of all the workloads, their
impact on the overall HMS and STP is not high enough to obtain significant overall
improvements.

F2: The performance and scalability of explicit cache partitioning algorithms is lim-
ited by the associativity that a set-associative cache provides. We have shown that
the explicit partitioning algorithms UCP and PIPP do not scale well with increasing
core-count, as they partition the cache at a too coarse granularity. The granularity at
which they partition the cache is directly proportional to the amount of ways of the
set-associative cache (which is fixed in our evaluation), and thereby limits performance
improvements for higher core-counts. PriSM-UCP on the other hand, does not show
significant overall degradation in HMS and STP, but the maximum attained HMS
and STP do decrease significantly as core-count increases. We have shown that this
is, again, a consequence of the limited associativity of the set-associative cache: PriSM
looses it ability to accurately enforce partition sizes when associativity is limited. Van-
tage uses the highly-associative, but unconventional, zcache architecture. By providing
significantly more replacement candidates than the set-associative cache, Vantage is
able to adequately enforce its partition allocations. This provides the necessary isola-
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tion to the cores of the CMP to attain the highest observed performance improvements.

F3: Explicit cache partitioning algorithms provide more significant performance im-
provements than implicit partitioning algorithms. We have shown that of all evalu-
ated algorithms, the explicit cache partitioning algorithm Vantage provides the highest
improvements for all CMP configurations that we have evaluated. All other explicit
partitioning algorithms, although they do not scale with increasing core-count due to
fixed-associativity of the cache, outperform all implicit cache-partitioning algorithms
on a 4-core CMP configuration. The evaluated implicit cache-partitioning algorithms
(Z-)LRU, TADIP-F and DRRIP target memory access patterns, but do not provide
isolation to the cores of the CMP. This allows possible destructive interference to occur,
which can limit their performance improvements. Furthermore, we have found that in
our evaluation the set-dueling mechanism, as used by TADIP-F and DRRIP, does not
accurately detect trashing memory access patterns. This further limits the performance
improvements of TADIP-F and DRRIP.

10.2 Future Work
Although we have fulfilled all the listed requirements in Chapter 1, this does not mean
that the research on cache partitioning ends here. On the contrary, there are several
possibilities for further research.

As we have found that overall performance improvement is minor, further research
is required to determine whether this is caused by the workloads that have been used. It
might be the case that our workloads are not representative for a commercial consumer
CMP.

Furthermore, during our work, TADIP-F has shown unable to yield significant
benefits with respect to LRU. We have tracked this down to the set-dueling mechanism
rarely detecting memory access patterns as trashing. During researching this problem,
we found that certain benchmarks access only a select group of sets in the set-associative
cache. This can result in most accesses missing the dedicated sets. At the same time,
increasing the amount of dedicated sets to more accurately capture such memory access
patterns, decreased the overall performance. Set-dueling has only been introduced with
set-associative caches, but it would be interesting to see how the use of zcaches or
skew-associative caches affect the accuracy: by using hash functions, accesses to the
cache are spread out more uniformly over the cache (such a variant would be “block-
dueling” rather than set-dueling). This could proof a possible solution to memory-
access patterns that only access a limited amount of sets in a set-associative cache, but
could also improve accuracy in general.

At last, based on our analysis in Chapter 8, we point to experimenting with PriSM
on zcaches. Our results show that PriSM mainly suffers from decreased enforcement
accuracy, as the set-associative cache does not offer enough replacement candidates.
Zcaches can offer substantially more replacement candidates and could therefore in-
crease the overall performance of PriSM.
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A | 4-core Workloads

Table A.1: 4-core Workloads

Workload Benchmarks
iiii-0 calculix milc libquantum dealII

iiii-1 namd milc libquantum milc

iiii-2 dealII bwaves milc calculix

iiii-3 GemsFDTD dealII leslie3d GemsFDTD

iiii-4 GemsFDTD bwaves zeusmp leslie3d

iiim-0 gromacs namd leslie3d sjeng

iiim-1 calculix zeusmp gromacs sjeng

iiim-2 calculix milc zeusmp astar

iiim-3 zeusmp milc zeusmp bzip2

iiim-4 GemsFDTD calculix namd astar

iiih-0 GemsFDTD calculix milc povray

iiih-1 GemsFDTD gobmk libquantum gcc

iiih-2 gobmk milc gobmk sphinx3

iiih-3 zeusmp libquantum milc soplex

iiih-4 dealII libquantum GemsFDTD soplex

iimm-0 zeusmp zeusmp h264ref perlbench

iimm-1 gobmk bwaves perlbench perlbench

iimm-2 dealII bwaves astar tonto

iimm-3 milc calculix cactusADM bzip2

iimm-4 GemsFDTD zeusmp astar cactusADM

iimh-0 bwaves leslie3d perlbench soplex

iimh-1 gromacs namd sjeng povray

iimh-2 dealII calculix h264ref omnetpp
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iimh-3 bwaves leslie3d perlbench gamess

iimh-4 bwaves leslie3d wrf xalancbmk

iihh-0 leslie3d GemsFDTD povray lbm

iihh-1 calculix zeusmp sphinx3 gcc

iihh-2 gromacs zeusmp sphinx3 xalancbmk

iihh-3 GemsFDTD dealII povray lbm

iihh-4 libquantum zeusmp gamess lbm

immm-0 dealII tonto cactusADM hmmer

immm-1 calculix perlbench astar perlbench

immm-2 gobmk h264ref bzip2 tonto

immm-3 calculix wrf tonto perlbench

immm-4 dealII sjeng perlbench sjeng

immh-0 calculix h264ref wrf lbm

immh-1 namd sjeng cactusADM omnetpp

immh-2 zeusmp hmmer h264ref xalancbmk

immh-3 namd bzip2 astar lbm

immh-4 zeusmp bzip2 cactusADM lbm

imhh-0 gobmk wrf xalancbmk omnetpp

imhh-1 zeusmp tonto xalancbmk povray

imhh-2 bwaves perlbench gcc povray

imhh-3 gromacs hmmer povray omnetpp

imhh-4 calculix perlbench omnetpp lbm

ihhh-0 GemsFDTD xalancbmk povray soplex

ihhh-1 calculix sphinx3 sphinx3 xalancbmk

ihhh-2 leslie3d sphinx3 soplex xalancbmk

ihhh-3 libquantum povray sphinx3 sphinx3

ihhh-4 zeusmp gamess omnetpp povray

mmmm-0 perlbench hmmer cactusADM hmmer

mmmm-1 h264ref perlbench perlbench cactusADM

mmmm-2 hmmer sjeng hmmer tonto

mmmm-3 cactusADM tonto perlbench tonto

mmmm-4 cactusADM perlbench h264ref sjeng

mmmh-0 astar tonto h264ref gamess

mmmh-1 h264ref perlbench cactusADM xalancbmk
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mmmh-2 h264ref wrf sjeng gcc

mmmh-3 tonto bzip2 astar lbm

mmmh-4 perlbench wrf perlbench xalancbmk

mmhh-0 perlbench cactusADM sphinx3 xalancbmk

mmhh-1 astar cactusADM gamess lbm

mmhh-2 cactusADM sjeng gamess sphinx3

mmhh-3 h264ref hmmer lbm sphinx3

mmhh-4 sjeng perlbench gamess povray

mhhh-0 wrf lbm povray gcc

mhhh-1 cactusADM povray lbm lbm

mhhh-2 wrf povray povray gcc

mhhh-3 h264ref omnetpp xalancbmk omnetpp

mhhh-4 perlbench soplex gcc sphinx3

hhhh-0 sphinx3 gcc povray gcc

hhhh-1 xalancbmk povray omnetpp soplex

hhhh-2 sphinx3 gcc xalancbmk omnetpp

hhhh-3 sphinx3 omnetpp lbm povray

hhhh-4 lbm lbm gamess gamess
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Table B.1: 8-core Workloads

Workload Benchmarks

iiii-0 libquantum milc GemsFDTD leslie3d
zeusmp gobmk zeusmp GemsFDTD

iiii-1 bwaves libquantum zeusmp dealII
namd libquantum libquantum libquantum

iiii-2 calculix gobmk bwaves libquantum
GemsFDTD gobmk namd gromacs

iiii-3 dealII dealII namd leslie3d
GemsFDTD namd zeusmp gobmk

iiii-4 namd dealII milc zeusmp
milc dealII bwaves namd

iiim-0 namd leslie3d dealII libquantum
gobmk dealII sjeng astar

iiim-1 dealII zeusmp bwaves dealII
libquantum leslie3d perlbench bzip2

iiim-2 dealII namd milc leslie3d
zeusmp dealII astar bzip2

iiim-3 bwaves dealII leslie3d libquantum
zeusmp zeusmp hmmer perlbench

iiim-4 zeusmp zeusmp gromacs libquantum
bwaves gromacs cactusADM sjeng

iiih-0 gromacs gobmk calculix calculix
libquantum gobmk omnetpp lbm

iiih-1 namd calculix gromacs leslie3d
leslie3d zeusmp lbm soplex

iiih-2 GemsFDTD milc namd bwaves
dealII namd sphinx3 lbm

iiih-3 bwaves libquantum libquantum namd

97



APPENDIX B. 8-CORE WORKLOADS 98

dealII namd povray omnetpp

iiih-4 calculix gromacs namd bwaves
gobmk gromacs sphinx3 gcc

iimm-0 namd dealII gobmk GemsFDTD
cactusADM sjeng tonto bzip2

iimm-1 calculix milc zeusmp gobmk
cactusADM astar h264ref cactusADM

iimm-2 calculix bwaves milc gromacs
bzip2 hmmer cactusADM cactusADM

iimm-3 libquantum namd zeusmp leslie3d
wrf cactusADM h264ref astar

iimm-4 namd GemsFDTD dealII milc
perlbench bzip2 h264ref bzip2

iimh-0 leslie3d gromacs zeusmp leslie3d
wrf bzip2 soplex sphinx3

iimh-1 dealII namd calculix zeusmp
bzip2 astar omnetpp soplex

iimh-2 GemsFDTD gromacs milc calculix
cactusADM h264ref gamess gamess

iimh-3 calculix namd milc calculix
sjeng h264ref gamess gcc

iimh-4 GemsFDTD GemsFDTD gromacs dealII
tonto perlbench lbm omnetpp

iihh-0 gromacs libquantum calculix zeusmp
omnetpp lbm soplex gamess

iihh-1 gromacs namd GemsFDTD leslie3d
povray omnetpp xalancbmk soplex

iihh-2 calculix leslie3d namd bwaves
omnetpp sphinx3 soplex lbm

iihh-3 gobmk calculix libquantum GemsFDTD
omnetpp sphinx3 soplex sphinx3

iihh-4 milc calculix gobmk bwaves
povray lbm sphinx3 povray

immm-0 libquantum namd hmmer tonto
astar sjeng perlbench h264ref

immm-1 calculix namd h264ref sjeng
tonto tonto wrf sjeng

immm-2 milc calculix bzip2 h264ref
cactusADM astar cactusADM astar

immm-3 libquantum milc bzip2 cactusADM
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sjeng tonto tonto sjeng

immm-4 leslie3d gromacs wrf hmmer
sjeng h264ref astar tonto

immh-0 gobmk gobmk astar bzip2
tonto tonto povray lbm

immh-1 gromacs libquantum tonto wrf
h264ref perlbench xalancbmk omnetpp

immh-2 libquantum leslie3d hmmer perlbench
wrf h264ref lbm omnetpp

immh-3 GemsFDTD libquantum sjeng hmmer
h264ref hmmer omnetpp gcc

immh-4 bwaves libquantum h264ref cactusADM
perlbench cactusADM lbm gamess

imhh-0 gromacs gromacs bzip2 cactusADM
soplex xalancbmk povray xalancbmk

imhh-1 gromacs calculix hmmer astar
omnetpp gcc sphinx3 gcc

imhh-2 gromacs bwaves hmmer astar
povray sphinx3 gcc sphinx3

imhh-3 dealII GemsFDTD astar tonto
lbm xalancbmk xalancbmk gamess

imhh-4 libquantum gobmk h264ref sjeng
soplex sphinx3 omnetpp gcc

ihhh-0 dealII milc sphinx3 gcc
xalancbmk xalancbmk xalancbmk xalancbmk

ihhh-1 namd calculix gamess omnetpp
soplex gcc gamess povray

ihhh-2 calculix dealII omnetpp soplex
xalancbmk sphinx3 gcc sphinx3

ihhh-3 gromacs namd sphinx3 gcc
xalancbmk sphinx3 gcc sphinx3

ihhh-4 milc libquantum xalancbmk gcc
xalancbmk xalancbmk povray soplex

mmmm-0 hmmer perlbench bzip2 astar
tonto hmmer wrf sjeng

mmmm-1 wrf hmmer sjeng cactusADM
wrf sjeng sjeng astar

mmmm-2 astar perlbench hmmer hmmer
bzip2 h264ref hmmer astar

mmmm-3 cactusADM bzip2 bzip2 wrf
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sjeng hmmer perlbench astar

mmmm-4 sjeng hmmer hmmer hmmer
hmmer perlbench sjeng h264ref

mmmh-0 h264ref perlbench h264ref sjeng
astar cactusADM omnetpp sphinx3

mmmh-1 h264ref sjeng cactusADM tonto
wrf hmmer sphinx3 sphinx3

mmmh-2 h264ref hmmer tonto h264ref
tonto astar omnetpp sphinx3

mmmh-3 hmmer h264ref cactusADM perlbench
h264ref bzip2 sphinx3 gamess

mmmh-4 perlbench tonto cactusADM tonto
wrf astar soplex gamess

mmhh-0 bzip2 astar astar bzip2
xalancbmk omnetpp gamess omnetpp

mmhh-1 perlbench hmmer sjeng tonto
gamess lbm gcc gcc

mmhh-2 astar tonto h264ref astar
soplex xalancbmk soplex sphinx3

mmhh-3 cactusADM h264ref wrf astar
sphinx3 xalancbmk omnetpp sphinx3

mmhh-4 cactusADM cactusADM h264ref cactusADM
gcc omnetpp gcc xalancbmk

mhhh-0 sjeng h264ref povray omnetpp
xalancbmk soplex omnetpp soplex

mhhh-1 perlbench wrf gamess xalancbmk
lbm gamess sphinx3 xalancbmk

mhhh-2 bzip2 astar gcc lbm
gamess soplex soplex xalancbmk

mhhh-3 perlbench wrf gamess lbm
sphinx3 povray povray xalancbmk

mhhh-4 astar sjeng povray lbm
gcc gcc soplex povray

hhhh-0 omnetpp gcc xalancbmk gcc
xalancbmk soplex gamess omnetpp

hhhh-1 omnetpp omnetpp povray lbm
sphinx3 soplex xalancbmk povray

hhhh-2 xalancbmk soplex xalancbmk povray
povray soplex povray omnetpp

hhhh-3 sphinx3 xalancbmk xalancbmk povray
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omnetpp gamess povray gamess

hhhh-4 povray povray lbm lbm
sphinx3 gamess lbm sphinx3



C | 16-core Workloads

Table C.1: 16-core Workloads

Workload Benchmarks

iiii-0

leslie3d calculix bwaves leslie3d
milc dealII zeusmp gobmk
dealII gobmk zeusmp milc
gromacs calculix zeusmp gobmk

iiii-1

gromacs milc milc GemsFDTD
zeusmp bwaves dealII GemsFDTD
namd GemsFDTD leslie3d milc
zeusmp namd calculix milc

iiii-2

dealII zeusmp GemsFDTD zeusmp
gromacs zeusmp libquantum namd
libquantum dealII zeusmp calculix
calculix GemsFDTD calculix GemsFDTD

iiii-3

bwaves zeusmp calculix zeusmp
milc libquantum dealII milc
bwaves gromacs calculix bwaves
milc namd gromacs bwaves

iiii-4

gromacs GemsFDTD dealII leslie3d
dealII dealII GemsFDTD leslie3d
gobmk leslie3d dealII bwaves
milc namd GemsFDTD gobmk

iiim-0

zeusmp gromacs calculix gromacs
GemsFDTD bwaves gromacs calculix
calculix GemsFDTD libquantum GemsFDTD
sjeng h264ref bzip2 bzip2

iiim-1

leslie3d leslie3d GemsFDTD gromacs
calculix libquantum libquantum GemsFDTD
milc leslie3d gobmk calculix
cactusADM wrf h264ref bzip2

iiim-2

namd bwaves milc milc
GemsFDTD libquantum milc milc

102
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dealII calculix bwaves calculix
perlbench cactusADM perlbench astar

iiim-3

dealII namd calculix calculix
dealII zeusmp namd calculix
namd gromacs namd calculix
tonto h264ref bzip2 tonto

iiim-4

zeusmp namd zeusmp dealII
namd namd GemsFDTD gromacs
leslie3d calculix gobmk namd
bzip2 astar wrf astar

iiih-0

bwaves dealII dealII bwaves
GemsFDTD milc milc bwaves
calculix zeusmp libquantum GemsFDTD
omnetpp xalancbmk gamess gamess

iiih-1

gromacs leslie3d GemsFDTD bwaves
GemsFDTD milc namd milc
namd libquantum gobmk libquantum
xalancbmk sphinx3 povray xalancbmk

iiih-2

gromacs namd gobmk GemsFDTD
leslie3d gobmk zeusmp bwaves
zeusmp libquantum GemsFDTD milc
povray sphinx3 omnetpp lbm

iiih-3

gobmk bwaves zeusmp gobmk
gobmk libquantum gromacs gobmk
zeusmp GemsFDTD zeusmp libquantum
sphinx3 lbm lbm sphinx3

iiih-4

namd calculix namd dealII
calculix milc leslie3d libquantum
bwaves leslie3d gobmk calculix
xalancbmk sphinx3 sphinx3 omnetpp

iimm-0

GemsFDTD calculix milc dealII
namd GemsFDTD GemsFDTD dealII
wrf hmmer cactusADM h264ref
hmmer h264ref cactusADM tonto

iimm-1

GemsFDTD calculix namd libquantum
namd dealII zeusmp milc
sjeng perlbench h264ref hmmer
perlbench sjeng astar wrf

iimm-2

leslie3d milc libquantum gobmk
dealII zeusmp GemsFDTD leslie3d
bzip2 hmmer tonto bzip2
perlbench tonto wrf sjeng

iimm-3

GemsFDTD leslie3d GemsFDTD dealII
gromacs milc calculix milc
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tonto cactusADM tonto wrf
h264ref hmmer cactusADM perlbench

iimm-4

zeusmp gobmk leslie3d bwaves
namd gromacs leslie3d bwaves
perlbench perlbench tonto sjeng
hmmer tonto cactusADM sjeng

iimh-0

gobmk namd dealII gromacs
namd GemsFDTD gobmk leslie3d
hmmer astar perlbench h264ref
lbm povray gcc xalancbmk

iimh-1

gromacs zeusmp milc libquantum
gromacs libquantum bwaves zeusmp
tonto astar cactusADM bzip2
lbm gcc omnetpp lbm

iimh-2

leslie3d leslie3d bwaves calculix
libquantum libquantum leslie3d libquantum
sjeng cactusADM cactusADM sjeng
povray xalancbmk povray sphinx3

iimh-3

namd milc milc zeusmp
namd bwaves dealII libquantum
hmmer astar perlbench wrf
omnetpp omnetpp omnetpp soplex

iimh-4

gobmk leslie3d zeusmp leslie3d
GemsFDTD calculix gromacs zeusmp
wrf hmmer sjeng astar
omnetpp gamess omnetpp gcc

iihh-0

GemsFDTD calculix calculix gobmk
GemsFDTD dealII GemsFDTD gobmk
lbm xalancbmk xalancbmk sphinx3
gamess omnetpp omnetpp soplex

iihh-1

bwaves gobmk zeusmp calculix
dealII gobmk milc bwaves
omnetpp lbm omnetpp gcc
povray lbm sphinx3 lbm

iihh-2

GemsFDTD dealII gromacs gobmk
gromacs zeusmp zeusmp namd
soplex sphinx3 sphinx3 lbm
povray omnetpp gcc xalancbmk

iihh-3

gobmk milc bwaves GemsFDTD
bwaves gromacs zeusmp gromacs
soplex sphinx3 gcc lbm
gamess soplex lbm omnetpp

iihh-4

gromacs bwaves namd libquantum
bwaves dealII zeusmp bwaves
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povray sphinx3 lbm gamess
sphinx3 xalancbmk gcc omnetpp

immm-0

dealII libquantum bwaves namd
tonto bzip2 perlbench perlbench
astar bzip2 astar wrf
sjeng hmmer h264ref h264ref

immm-1

gobmk dealII milc milc
cactusADM h264ref tonto h264ref
perlbench tonto sjeng h264ref
h264ref astar sjeng perlbench

immm-2

bwaves milc calculix gobmk
sjeng astar perlbench cactusADM
h264ref sjeng sjeng sjeng
sjeng h264ref bzip2 perlbench

immm-3

milc zeusmp zeusmp calculix
h264ref astar wrf wrf
h264ref h264ref bzip2 astar
bzip2 sjeng h264ref hmmer

immm-4

gromacs bwaves dealII namd
sjeng cactusADM wrf wrf
sjeng wrf wrf hmmer
hmmer perlbench h264ref bzip2

immh-0

namd calculix namd GemsFDTD
cactusADM tonto sjeng bzip2
tonto perlbench sjeng h264ref
gamess soplex gcc lbm

immh-1

dealII zeusmp milc GemsFDTD
wrf wrf perlbench bzip2
sjeng sjeng perlbench astar
soplex xalancbmk omnetpp omnetpp

immh-2

gobmk GemsFDTD bwaves milc
perlbench tonto sjeng hmmer
h264ref perlbench h264ref hmmer
gcc gcc omnetpp xalancbmk

immh-3

calculix GemsFDTD libquantum gromacs
cactusADM cactusADM sjeng cactusADM
sjeng perlbench tonto sjeng
xalancbmk omnetpp lbm gamess

immh-4

leslie3d bwaves calculix namd
astar wrf bzip2 astar
astar sjeng sjeng h264ref
omnetpp gamess soplex omnetpp

imhh-0

dealII gromacs leslie3d calculix
tonto h264ref astar tonto



APPENDIX C. 16-CORE WORKLOADS 106

gamess gcc xalancbmk lbm
soplex gcc lbm soplex

imhh-1

namd gromacs bwaves milc
perlbench bzip2 sjeng hmmer
gcc gamess lbm sphinx3
sphinx3 xalancbmk gamess povray

imhh-2

GemsFDTD namd leslie3d GemsFDTD
hmmer perlbench h264ref hmmer
lbm soplex soplex omnetpp
lbm gcc gcc lbm

imhh-3

gromacs leslie3d gromacs leslie3d
hmmer astar h264ref bzip2
povray sphinx3 sphinx3 povray
xalancbmk gcc gcc lbm

imhh-4

bwaves namd libquantum gobmk
hmmer sjeng astar astar
povray omnetpp povray sphinx3
sphinx3 gamess gcc gcc

ihhh-0

dealII libquantum libquantum gromacs
gcc lbm povray omnetpp
gamess povray gamess omnetpp
gamess gamess sphinx3 lbm

ihhh-1

GemsFDTD dealII namd libquantum
sphinx3 xalancbmk omnetpp gcc
gcc soplex lbm povray
soplex povray povray xalancbmk

ihhh-2

namd milc zeusmp GemsFDTD
omnetpp xalancbmk gcc sphinx3
gamess gcc gcc povray
soplex lbm soplex lbm

ihhh-3

dealII leslie3d namd dealII
omnetpp gamess sphinx3 soplex
gamess soplex povray sphinx3
lbm xalancbmk lbm povray

ihhh-4

bwaves libquantum leslie3d libquantum
lbm gamess xalancbmk soplex
gamess omnetpp lbm lbm
sphinx3 gamess gamess povray

mmmm-0

tonto cactusADM sjeng bzip2
tonto bzip2 sjeng cactusADM
cactusADM bzip2 tonto h264ref
h264ref cactusADM perlbench sjeng

mmmm-1

tonto wrf perlbench wrf
bzip2 sjeng h264ref wrf
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wrf h264ref astar wrf
astar hmmer h264ref hmmer

mmmm-2

h264ref tonto bzip2 perlbench
cactusADM bzip2 wrf bzip2
wrf perlbench astar tonto
hmmer h264ref wrf cactusADM

mmmm-3

perlbench sjeng sjeng hmmer
sjeng h264ref bzip2 hmmer
sjeng astar hmmer tonto
perlbench bzip2 bzip2 sjeng

mmmm-4

perlbench wrf astar h264ref
hmmer h264ref hmmer hmmer
hmmer bzip2 tonto hmmer
sjeng wrf wrf astar

mmmh-0

bzip2 cactusADM hmmer sjeng
perlbench perlbench bzip2 wrf
wrf hmmer cactusADM wrf
lbm xalancbmk lbm omnetpp

mmmh-1

perlbench hmmer perlbench wrf
bzip2 astar perlbench hmmer
h264ref tonto astar wrf
lbm povray omnetpp sphinx3

mmmh-2

astar sjeng tonto tonto
astar h264ref bzip2 bzip2
perlbench wrf cactusADM wrf
gcc gamess povray povray

mmmh-3

h264ref h264ref perlbench cactusADM
hmmer sjeng h264ref tonto
hmmer tonto bzip2 tonto
gcc lbm povray omnetpp

mmmh-4

tonto perlbench sjeng sjeng
wrf bzip2 tonto tonto
hmmer hmmer tonto perlbench
gamess xalancbmk sphinx3 gamess

mmhh-0

bzip2 sjeng cactusADM wrf
bzip2 wrf bzip2 sjeng
gcc gcc sphinx3 gamess
povray xalancbmk xalancbmk omnetpp

mmhh-1

tonto tonto h264ref sjeng
astar wrf tonto perlbench
gcc xalancbmk lbm gamess
lbm omnetpp soplex gcc

mmhh-2

bzip2 wrf hmmer tonto
tonto perlbench cactusADM astar
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sphinx3 xalancbmk povray sphinx3
gcc lbm xalancbmk omnetpp

mmhh-3

wrf sjeng bzip2 tonto
astar hmmer perlbench wrf
gcc povray soplex sphinx3
lbm lbm gamess soplex

mmhh-4

hmmer h264ref tonto astar
astar sjeng astar bzip2
lbm soplex povray povray
gcc soplex gamess xalancbmk

mhhh-0

cactusADM cactusADM bzip2 cactusADM
povray soplex soplex lbm
lbm xalancbmk gamess gcc
gamess gcc xalancbmk omnetpp

mhhh-1

astar hmmer hmmer sjeng
gamess sphinx3 lbm povray
xalancbmk gcc gcc lbm
lbm soplex gamess xalancbmk

mhhh-2

astar perlbench bzip2 perlbench
omnetpp omnetpp omnetpp lbm
sphinx3 sphinx3 lbm omnetpp
sphinx3 omnetpp omnetpp sphinx3

mhhh-3

bzip2 astar tonto perlbench
sphinx3 gamess lbm soplex
omnetpp omnetpp omnetpp omnetpp
sphinx3 povray omnetpp gamess

mhhh-4

sjeng hmmer perlbench sjeng
gcc lbm povray gamess
sphinx3 lbm sphinx3 gcc
sphinx3 povray gcc gamess

hhhh-0

lbm soplex lbm soplex
sphinx3 sphinx3 gcc lbm
lbm soplex gcc lbm
omnetpp xalancbmk xalancbmk soplex

hhhh-1

sphinx3 omnetpp povray sphinx3
omnetpp povray povray lbm
gamess gamess sphinx3 xalancbmk
omnetpp soplex sphinx3 gamess

hhhh-2

gcc sphinx3 gamess povray
sphinx3 povray povray lbm
omnetpp povray povray soplex
povray xalancbmk omnetpp soplex

hhhh-3

soplex xalancbmk xalancbmk gcc
lbm sphinx3 xalancbmk omnetpp
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sphinx3 sphinx3 lbm sphinx3
povray povray xalancbmk gamess

hhhh-4

omnetpp lbm sphinx3 soplex
xalancbmk gamess omnetpp omnetpp
xalancbmk povray gcc lbm
gcc xalancbmk xalancbmk povray
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