
Exploring Programming Paradigms with
IoT and Tiles for End-Users

Daniel Alexander Satcher

Master in Information Systems

Supervisor: Monica Divitini, IDI
Co-supervisor: Simone Mora, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

Exploring Programming
Paradigms with IoT and Tiles for

End-Users

Daniel Alexander Satcher

Supervisor: Monica Divitini
Co-Supervisor: Simone Mora

Norwegian University of Science and Technology

Trondheim, Norway

Spring Semester 2017

Abstract

The Tiles project is an Internet of Things (IoT) toolkit designed to help devel-
opers create applications by providing a common set of hardware, a common
application server hosted in the cloud, and a common gateway to connect
devices to the cloud. With Tiles, one can turn everyday objects into smart
objects that can be interacted with in meaningful ways. Sunglasses can be
tilted to save a marker of your location in Google Maps or a vase could be
tapped to the control the lights in a room, for instance. However, with IoT
being a new field in general along with Tiles, there is a need to bring Tiles de-
velopment to many users, some of which have little or no experience in either
programming or programming for IoT. To address this problem, this paper
examines the contemporary work done in end-user development as it relates to
IoT. Specifically, a focus has been concentrated around different programming
paradigms for developing applications such as textual, visual, and physical/-
tangible programming paradigms. This research into programming paradigms
is then applied to Tiles to find a new, innovative approach to end-user develop-
ment. Finally, this research presents a prototype of Tiles Recorder!, a tangible
and visual programming application that follows the mantra "Record, Inter-
act, Execute!" in order to simplify development for Tiles using a rule-based
engine.

i

Acknowledgments

I’d like to first thank my supervisors for both their feedback and support dur-
ing this research. Without them providing guidance and pushing for more
innovative solutions, this work would not have been possible. I’d also like to
recognize the efforts of researchers working in the field of end-user development
whose knowledge and expertise were leveraged in creating Tiles Recorder. Fi-
nally, I’d like to thank the users who volunteered to test the system on their
own time. Their contribution will make future versions of Tiles Recorder more
user-friendly and feature-rich.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Problem Definition . 1
1.2 Research questions . 3
1.3 Methodology . 4
1.4 Results . 6

2 Tiles 8
2.1 What is Tiles? . 8

2.1.1 Tiles squares . 9
2.1.2 Tiles cloud . 9
2.1.3 Tiles gateway . 10

2.2 Tiles Card Game . 10

3 Literature 12
3.1 End-User IoT Development . 12
3.2 Defining the End-User for End-User Development 13
3.3 Defining End-User Development 14

3.3.1 EUD general concepts 14

iii

Contents

3.4 End-User development paradigms 18
3.4.1 Textual programming paradigm 18
3.4.2 Visual paradigm . 19

3.4.2.1 Visual programming vs program visualisation . 21
3.4.3 Physical paradigm . 23
3.4.4 Programming by example 24

3.5 Why EUD for IoT? . 25
3.6 EUD paradigms for IoT . 27

3.6.1 Data-mashups and rule-based systems 27
3.6.2 Visual and rule-based challenges 28
3.6.3 IoT & Physical programming 30
3.6.4 Physical programming challenges 30

4 EUD and Tiles 32
4.1 Unique Aspects of Tiles . 32

4.1.1 EUD Criterion for Tiles 34
4.2 Recommended paradigms for Tiles EUD 35

4.2.1 How current technologies fit Tiles 37

5 Prototype Design 40
5.1 Main Idea . 40

5.1.1 Why build a prototype? 41
5.1.2 Target Audience . 42
5.1.3 Explanation of System 43
5.1.4 Software Components . 45
5.1.5 Scenarios of use . 46

5.1.5.1 Learning a process 46
5.1.5.2 Making a game 48

5.2 Niche in EUD for IoT . 48

6 Prototype Implementation 50
6.1 Looking at the UI . 50
6.2 Implementation Details . 55

6.2.1 Project structure . 56
6.2.2 Server implementation 56
6.2.3 Client implementation 58

iv

Contents

6.2.3.1 Recorder . 58
6.2.3.2 Event . 59
6.2.3.3 Option Window 60
6.2.3.4 Executor . 60
6.2.3.5 Response Classes 62

7 User Testing & Future Steps 63
7.1 Why Perform Testing? . 63
7.2 Test Setup & Proceedings . 64
7.3 Feedback and Observations . 65
7.4 Reflection . 67

8 Conclusion and Future Steps 70

Bibliography 72

Appendices 76

A Code Repository 77

B Glossary 78

v

List of Figures

1.1 Design science cycles . 5

2.1 Examples of cards from each category 11

3.1 Three levels of EU-X . 17
3.2 COL and scope trade-offs [8] . 17
3.3 Wolfram alpha interpreting a sentence to find an operation and

data as input . 19
3.4 The jigsaw metaphor used to combine programming concepts . . 21
3.5 EMF visualisation of classes . 22
3.6 Percent interested in GUI exhibit vs TUI exhibit [14] 24
3.7 Mocap programming by example for how to open a cap on a coke

bottle source(https://www.youtube.com/watch?v=jWYkzLSNmuc) 25
3.8 The user is at the center of the IoT ecosystem [3] 26
3.9 Example IFTTT services for a smart humidifier 28
3.10 Node-Red in use (credit: https://www.ibm.com) 29

4.1 Octaves for the time, space, and social dimensions 33

5.1 Sequence list mockup . 44
5.2 Output . 44

6.1 Tiles Recorder UI . 52
6.2 Success/fail option window . 54
6.3 Time limit option window . 55

7.1 Mock-up of branching functionality 67
7.2 Looping . 68

vi

List of Tables

2.1 Interaction/outputs for tile squares [21] 9

4.1 Cognitive dimensions framework 35

4.2 Pros/Cons with leading technologies 38

5.1 Pros/Cons with recording app 49

vii

1
Introduction

The following chapter will briefly introduce the concepts regarding this project
to the reader. This includes the problem definition, motivation, research
method and the research questions that this project serves to answer. Fur-
thermore, an overview of the paper’s remaining structure will be provided.

1.1 Problem Definition

The Internet of Things (IoT) can be defined as a network of sensors and ac-
tuators that are used to measure responses from the environment and react
to these stimuli. These reactions can range from sending messages about en-
vironmental data (temperature, wind, audio levels, and user interaction for
instance) to sending messages about the state of the sensor itself or the ecol-
ogy of connected sensors. This interplay between sensing the environment and
actuating upon stimuli creates a ubiquitous "computing everywhere" [10] en-

1

Chapter 1. Introduction

vironment where technology disappears into the background. With ubiquity,
users no longer have to consciously interact with abstract interfaces to control
their surroundings, but can use smart objects instead.

Smart objects are everyday objects embedded with network sensors (both phys-
ically embedded or logically embedded by a network) that are able to respond
to changes in their environments [18]. A common example of a smart object
would be smart lights, such as Philips Hue, which can turn off/on, change color
or blink based on movement, temperature changes and various other stimuli.
Ecosystems of smart objects act as the foundation for IoT and using them in
novel ways can provide solutions for many challenges both small and large in
scale. As an example, one could use a smart faucet to detect household water
consumption, while a network of the same technology could provide municipal
water companies an idea of average water use per home for different parts of
the city.

However, for those uninitiated in the world of IoT, creating such applications
is a complex, difficult task without the aid of toolkits. The Tiles toolkit is one
such suite of tools that aims to holistically assist users with rapidly designing
prototypes and developing applications for interactive objects. This is accom-
plished by providing common hardware shared by all interactive objects in the
system through the use of a tile that houses input sensors and output actua-
tors. The tile itself understands a set of interaction primitives, which mainly
deal with physical interaction (shaking, rotating, and tapping for instance).
These tiles are then attached to common objects, which are used as tangible
user interfaces (TUIs) [16]. Next, the design process is simplified through the
use of Tiles Cards, a card game created to facilitate creative thinking for IoT
applications with an emphasis on interactions between smart objects and data
streams [22]. Last, the toolkit provides a library in several programming lan-
guages to help guide developers who are unfamiliar with IoT programming.
Included in the toolkit is a common cloud for running developed applications
as well. More information on Tiles can be found in chapter 2.

While the hardware, software libraries, cloud hosting, and card game have
been favorably evaluated by their respective target groups, there is a gap in
knowledge regarding how end-users can transition from end-user design to end-

2

Chapter 1. Introduction

user development of Tiles applications. Tiles Cards itself is useful as a tool for
end-users to creatively design an application that uses objects, data streams,
and interaction primitives, but during workshops with non-developers there has
been noted difficulty when moving from the card game to coding. This has
currently been attributed to the technical barriers that textual programming
raises and conceptual differences between programming for sensors versus the
cards. For instance, when programming using the provided libraries, a large
focus is on how the sensor/actuator Tile responds to user input, while the
actual card game uses smart objects as the interface instead of the tile directly.

This research effort will focus on how end-user development paradigms differ
between Tiles and other IoT toolkits and how this paradigm changes what
tools, languages, and programming metaphors are needed to make the tran-
sition from end-user design to end-user development easier for Tiles. Tiles
itself is unique in that the focus is on how users generate interactions between
multiple smart objects and how these interactions coalesce into an application
that solves a specific problem. Other toolkits, such as Arduino, don’t focus on
how the user can combine different interactions with objects, thus creating a
need for an expanded paradigm for IoT end-user design.

1.2 Research questions

From the above problem definition, a main research question (MRQ) along
with supporting sub-questions (SRQs) can be formulated as such:

MRQ - What development paradigm(s) can greatest assist end-user develop-
ment for Tiles in an innovative way?

SRQ1 - What aspects of Tiles are unique for its domain in IoT and for ap-
plication development?

SRQ2 - How do current tools and programming paradigms fulfill the require-
ments for development with Tiles?

SRQ3 - How can the paradigms best be used to create a tool or language
prototype for Tiles?

3

Chapter 1. Introduction

1.3 Methodology

The research methodology for this effort has been primarily focused on:

• Literature review

• Prototyping

• Observation/group interview

According to Rowley [29], literature review “identifies and organizes the con-
cepts in relevant literature.” Literature reviews are therefore helpful in under-
standing the history of knowledge regarding a field of study and exploring the
state-of-the-art in the field. Building a knowledgebase of previous work is im-
portant in order to identify gaps in knowledge present in the current literature
and to avoid reproducing studies that have been proven sound. Chapter 3
delves through the literature for this paper and serves as the knowledgebase
to develop a prototype involving different programming paradigms.

Prototyping is an essential part of design research, which is “a pragmatic re-
search paradigm that calls for the creation of innovative artifacts to solve real-
world problems.”[12] In this case, the artifact created is a software prototype
that can be tested by users in order to enhance our knowledgebase regarding
the problem and to test the effectiveness of the prototype in the field. Hevner,
in an attempt to expand upon his design research theory, created a three-cycle
view of this research paradigm represented in figure 1.1 [13] below.

The first of the cycles, known as the relevance cycle, concerns itself with how
the artifacts created meet the requirements of the users in the field. Real-world
problems are used to create requirements that are used for either the initial
design artifact or to add to the functionality of an existing artifact. Typically,
human actors are involved in this cycle, although occasionally software or
hardware is an actor that is being tested. An artifact used for testing the
latency between between two communication protocols over a wide network
would be an example of an artifact that is tested using a technical actor.

4

Chapter 1. Introduction

Figure 1.1: Design science cycles

The design cycle is the main activity is design science research. Both the rele-
vance cycle and the rigor cycle contribute to the overall design of the artifact
and the evaluation of the artifact. The artifact itself can also affect the rigor
cycle by furthering the knowledgebase surrounding the artifact. Showing that
one communication protocol is faster than another adds to our knowledgebase
about communication protocol speeds, for instance.

The last cycle is the rigor cycle. This cycle concerns itself with how the existing
knowledge about a subject can used to ground the design of an artifact and how
the artifact itself increases our overall understanding of a subject. Therefore,
the meta-artifacts mentioned in the diagram are an essential component of
this cycle. These artifacts can influence the overall design of the implemented
artifact.

To tie everything together, imagine that a researcher wanted to prove that vi-
sual programming was quicker than textual programming for low-complexity
projects. The researcher may start by interviewing developers in the industry
(relevance cycle) and/or reading the current literature regarding the subject
(rigor cycle). From this research, he or she can create a list of requirements
for the main artifact and ground the design of the artifact based on the accu-
mulated knowledge provided by the rigor cycle. After designing and building

5

Chapter 1. Introduction

the prototype, the researcher would first evaluate the artifact (a software pro-
totype) internally with user testing before setting out into the field to observe
how quickly developers can code with a visual language compared to a textual
one. Finally, the researcher would take his findings and modify the artifact as
well as document his results into the collective knowledge about visual pro-
gramming.

This research effort lies primarily in the design science research and knowledge
base sections of the diagram. The literature review serves as the rigor ground-
ing the design of the prototype, while the user testing is part of evaluating the
design artifact in the design science research section.

Observation and group interviews were used during user testing in order to
measure the intuitiveness of the prototype and to gather opinions on the overall
concept. Due to the subjective nature of user-experience, these approaches
were taken over other more quantitative approaches such as surveys. With
observation one can see the struggles users have while using the prototype
in real-time and do not have to rely solely on the user’s ability to articulate
themselves [28]. More information on user testing of the prototype can be
found in chapter 7.

1.4 Results

As a result of this research, a literature review of end-user development for
IoT has been undertaken and a prototype has been designed, implemented,
and user tested. Chapter 3 presents the literature studied for this paper while
chapter 4 relates the literature to the Tiles platform. The prototype created is
a new foray into tangible programming for Tiles and allows future researchers
a unique opportunity to continue researching tangible programming and IoT.
The design of the prototype is presented in chapter 5, implementation in chap-
ter 6, and testing results in chapter 7. Based on the feedback from the user
testing, it can be deduced that the tangible aspect of Tiles Recorder has gen-
erated some excitement. Users felt that programming the rules using actual
sensors was quicker and more intuitive than creating a listener in code. The

6

Chapter 1. Introduction

next steps based on these findings is presented in chapter 8.

7

2
Tiles

This chapter will give a brief introduction to the Tiles system as well as the
Tiles card game, which was used when designing the look and feel of the
prototype for Tiles Recorder.

2.1 What is Tiles?

Tiles is an IoT toolkit that serves to simplify building IoT applications by
providing:

• Tiles squares – Standard hardware

• Tiles Gateway – Communication Protocol

• Tiles Cloud – Application server

8

Chapter 2. Tiles

2.1.1 Tiles squares

Tiles squares provide a standard set of hardware that is consistent for all Tiles
applications. This simplifies the development process by freeing the developer
from having to worry about the compatibility or capabilities of different IoT
devices in a network. The primary use for tile squares is to be attached to
everyday objects that be interacted with using interaction primitives. Interac-
tion primitives are simple physical interactions that can be woven into a more
complex sequence of interactions. In addition to interactions, tile squares have
a standard set of output devices for responding to the user. Table 2.1 sum-
marises the types of available interaction primitives and outputs for each tile
square.

Input/Output Description
Tilt Fires when the gyro-meter

passes a threshold
Tap When a tile is tapped - can

be differentiated by single
and double taps

LED Output. Turns off, on,
blinks or fades. Can be
green, red, blue, or white in
color

Haptic Feedback Vibration of the tile in short
burst or one long vibration

Table 2.1: Interaction/outputs for tile squares [21]

2.1.2 Tiles cloud

Built upon NodeJS, Tiles Cloud is an application server that executes appli-
cations written for Tiles [20]. The cloud is also responsible for handling user
profiles as well as the status of tile squares in the field. This centrally managed
approach is becoming common in IoT as opposed to having application logic
on the hardware devices themselves [11].

9

Chapter 2. Tiles

2.1.3 Tiles gateway

In order to transmit messages between tiles squares and the application server,
a gateway must act as relay between the short-range Bluetooth communication
on the tiles squares and Tiles Cloud on the internet. The gateway itself is
a mobile application that receives messages from the tiles squares and sends
them to the cloud server via an MQTT queue. MQTT is a resource-inexpensive
messaging protocol that has been prevalent in IoT due to the power-efficiency
demands of IoT devices.

2.2 Tiles Card Game

The tiles card game is a design activity meant to engender creativity when
designing IoT applications [22]. The game takes essential IoT concepts and
concepts unique to Tiles and divides them into sets of cards than can be
arranged during the course of the game in unique ways. The categories for the
cards are:

• Things

• Data Channels

• Feedback

• Human actions

Things represent the objects that tile squares are attached to while human in-
teractions include the previously mentioned interaction primitives. The feed-
back cards deal with the output devices on the tiles and the data channels
represent abstract data sources such as Twitter, Google Maps, banking web
services, etc. The interaction and feedback cards also correlate with the in-
teraction primitives and outputs of tile squares. There are cards for tapping,
tilting, lights blinking, and vibration, for instance.

10

Chapter 2. Tiles

A typical game will involve players selecting a problem domain and group of
target users. Smart city travel, managing home environments, recreational
activities are common examples of problem domains that could be chosen.
Players then choose a set of things cards that they wish to implement in their
application. In the smart city domain, an example set of things used could be
a bicycle and a car. Next, players choose data sources and human interactions
to act as triggers for response events. In our example, players could choose
tapping for the bicycle and car to signal the begin/end of a trip the bicycle/car.
Data channels and feedback can be used for event responses. Choosing an
online web service that estimates the fuel saved by choosing the bike would
be an example of an event fired after tapping the bike twice. Players then
evaluate their solution and can continue playing rounds to find a varied set of
solutions.

Figure 2.1: Examples of cards from each category

For this paper, the tiles card game is relevant for the design of the system’s
UI. Synergising the two will allow for users to easily transition from design
activities to development activities with Tiles Recorder.

11

3
Literature

3.1 End-User IoT Development

In section 3.2, a definition for an end-user has been provided along with argu-
mentation for why end-user development is rapidly becoming more pressing for
new IoT applications. This chapter will present findings from previous work
in end-user development with a focus specifically for IoT. The intent of this
literature review is to understand where the body of academic research in this
field has led to and how this research may further understanding of end-user
development for IoT.

12

Chapter 3. Literature

3.2 Defining the End-User for End-User Devel-

opment

End-user development, a term with a seemingly self-evident definition, is some-
what difficult to define and its meaning has been refined over the years. In
order to get a better understanding, one must first accept a common definition
for what an end-user is and, since some level of skill is involved in development
no matter the tool used, what their capabilities are. An earlier way of looking
at an end-user would be to see them as a "user of an application program" that
"uses a computer as part of daily life or work, but is not interested in comput-
ers per se." [6] However, as computing has become more pervasive, looking at
the end-user as an isolated entity using a pre-defined program for one specific
task has become outdated [31].

End-users are no longer those who just consume data, they are also entities
that create, tailor, and share data to other entities in a complex system. In
this way, some applications, especially those for IoT, can begin to see the
end-user as both a source and endpoint for data. Furthermore, end-users
are becoming increasingly aware of their ability to tailor applications to their
domain knowledge. As a basic example using a house heating app, end-user
John has domain knowledge over what temperatures he prefers and what times
throughout the day he will occupy his home. Thus, John can tailor the house
heating application to only turn on during the hours John will likely be at
home and to which specific temperature he prefers. A designer or isolated
developer would not know these domain details and could not possibly design
or program an application that inherently accounted for John without John’s
interest and input into the system.

Concerning skill and interest, these two factors have also changed the definition
of an end-user through time. Interest in end-users to become agents who can
modify a system has increased as technology has become more social and
tailored towards solving problems in both professional and personal domains
(more about 3rd wave HCI in the next section). However, end-users can
be thought of as having more interest in what devices and applications can

13

Chapter 3. Literature

do for them rather how they accomplish this in technical terms. While end-
users could be programmers, the general consensus is that, for the purposes of
defining and end-user, they possess a lack of interest in imperative coding, or
mandating how exactly an application should perform its duties in a technical
sense. Nardi gives an apt definition of an end-user as someone who "does not
want to turn a task into a programming problem..." [1].

By looking at the willingness of users to participate in a system versus their
skill level in programming, we can therefore collate these disparate definitions
come to a useful definition of our own for an end-user. An end-user, for the
purposes of end-user development, can be defined as

" A person with personal domain knowledge and an interest in
modifying existing or creating new software for purposes of tailor-
ing that software for their needs without running into the technical
barriers of programming "

3.3 Defining End-User Development

3.3.1 EUD general concepts

Provided below is a list of terms relating to EUD to facilitate the understanding
of concepts presented later in the research:

adaptability, extensibility
How easily a system can be modified or how easily new functionality can
be created and used by a system. Examples of a highly adaptable system
would be Google Chrome’s extension widgets.

meta-design
Software design techniques to allow for greater extensibility of a system
by an end-user. Examples meta-design would include creating platforms
that execute highly de-coupled software modules or providing simple
interfaces to mix system functionality to create emergent functionality.

14

Chapter 3. Literature

low-threshold, high-ceiling [23]
The ease of use for a design tool and the amount of expressive complexity
afforded by that tool. This can be similarly referred to as cost-of-learning
and scope mentioned previously.

cognitive dimension framework
A set of design principles created by Green and Petre [9] to evaluate
the usability of a system or programming language. Contains factors
such as viscosity, abstraction gradient, visibility and others to assess
programming design decisions. More detailed information provided in
Chapter 4.

domain-oriented design environments
Programming environments fixed to a specific domain that typically fol-
low a visual programming paradigm [7].

End-user development can take many forms depending on the level of modifi-
cation that an end-user wishes to impart on a system. A system with a high
level of modifiability by the end-user is referred to as adaptable by Trigg et al
[34]. Trigg mentions that systems can be adaptable in four different ways:

• System provides generic, abstract objects that can be utilised differently
by different users

• System provides parameters standard behaviors that can be customised
by users supplying preferred parameters

• System can be interfaced with easily by other facilities in the environment

• System can be tailored by adding functionality or specialising behavior

Mørch [2] takes the tailoring aspect and furthers it by creating three different
classes of tailoring: customisation, integration, and extension. Customisation
is the first class of tailoring put forth by Mørch. This tailoring activity typ-
ically involves the look and feel of interfaces that fills the gap between the
presentation layer and the underlying implementation code. Users may also

15

Chapter 3. Literature

edit the attributes associated with those interaction elements (such as provid-
ing a max range for a slider, for example). Integration regards how end-users
add previously existing functionality to the system while extension is adding
completely new functionality to a system.

However, Costabile et al [5] provides a simpler classification system that di-
vides end-user activities into two classes. The first class deals primarily with
parametrisation. Users supply parameters to affect system behavior that will
ideally match their needs. The second class is a much more involved set of
activities that allows the user to modify actual software functionality or create
new pieces of software. This can be accomplished with tools provided by the
software itself or by a programming interface specifically tailored for it.

More recently, Ko et al has divided EUD based on whether or not users are
creating new pieces of software or modifying existing software. End-user devel-
opment is generally referred to as encompassing both activities, with Ko et al
defining end-user programming (EUP) as end-users specifically creating their
very own programs. End-user software engineering (EUSE) is another term
that appears often in the literature as more contemporary reaction to poorly
performing end-user applications. EUSE is primarily concerned with how to
teach end-users good programming practices while balancing the amount of
effort needed by the end-user to create efficient programs. Figure 3.1 has been
provided as a reference for the different levels of EUD.

There are many paradigms to enable end-users to develop new software arti-
facts without needing a deep understanding of the system’s implementation
code or knowing how program in a general purpose language. Ultimately, as
explored by Fischer [8], the EUD sweet spot is to have technology that has
a low cost of learning with a high scope of application. Figure 3.2 provides
a trade-off diagram for the cost of learning versus the scope of work that the
technology can cover. Different programming paradigms can assist in lowering
the cost of learning and are further explained in the section 3.4.

16

Chapter 3. Literature

Figure 3.1: Three levels of EU-X

Figure 3.2: COL and scope trade-offs [8]

17

Chapter 3. Literature

3.4 End-User development paradigms

The ultimate goal of any generic end-user development paradigm is to simplify
the development process so that end-users, having little interest in the act of
programming for the sake of programming itself, can modify an existing system
or create new software artifacts. This is typically accomplished by relying on
the end-user’s domain knowledge or through creating high-level programming
metaphors that end-users can utilise to create an application. There are many
approaches on how to best create these metaphors and how end-users can
interact with the development language to ease the development process.

3.4.1 Textual programming paradigm

Earlier in EUD theory, textual programming languages could be simplified by
creating domain-specific languages or mini-languages. The hope was that a
mini-language written for the end-user’s context would be far simpler than
having the end-user partake in general-purpose programming. While domain-
specific languages are useful, they may still incorporate progammatic-esque
thinking. These languages have involved into a newer concept called natural
language programming, which can be used to create natural language programs.
Typically, an NLP will take a source language such as English and interpret
English sentences with the help of a pre-defined ontology. For instance, the
sentence "The quick brown Fox jumps over the lazy Dog" could be interpreted
as having (2) actors with properties (such as lazy or brown) where one actor
performs a procedure (the fox). In this case, a taxonomy for an animal/actor
would have already been created previously before compilation. In addition,
some known procedures could also be stored (such as jump) and could be
referred to in the language with assistance from autocomplete. Some exam-
ples of natural programming languages include Shakespeare 1, Inform7 2, and
Wolfram Alpha 3. Shakespeare is a particularly interesting language in that it
also incorporates punctuation as a metaphor for programming concepts as well,

1http://shakespearelang.sourceforge.net/
2http://inform7.com/
3https://www.wolframalpha.com/

18

Chapter 3. Literature

Figure 3.3: Wolfram alpha interpreting a sentence to find an operation and
data as input

such as using question marks at the end of sentences to signify an if-statement.

3.4.2 Visual paradigm

Visual programming has also been of high interest to end-user design due to
its ability to abstract programming concepts into a recognisable set of icons.
Icons, in this case, refer to an image with its associated semantic reasoning.
This is also referred to as dual-coding theory [25], where the mental image is re-
ferred to as an analog code while symbolic coding refers to the words and ideas
that we associate to the analog code. The use of icons is necessary for lowering
the barriers of entry as complex programming concepts that non-programmers
find difficult to understand (such as iterations and flow control [27]) can be
associated with an image that can be used as a heuristic. An arrow curving
around itself in a circle may indicate a loop or boxes with arrows can indicate
flow control, for instance. Puzzle pieces, such as those used in Google’s Blockly

19

Chapter 3. Literature

or Scratch, are another common iconic metaphor used in visual programming
languages to help users understand which chunks of functionality can interface
with others. The way in which icons are used creates many paradigms within
visual programming:

Diagrammatic
The earliest of visual programming styles, diagrammatic or flowchart vi-
sualisation uses abstract icons (typically some form boxes and arrows) to
represent programming states and data flows. Diagrammatic program-
ming languages typically deal with data inputs, processing, and outputs,
which makes them ideal for parallel computing [33] because operations
typically run independently and are executed as soon as data becomes
available. Thus, information about program state between these flows
becomes irrelevant. Due to the similarity of this style of visualisation
and the pipe-and-filter software development pattern, diagrammatic is
also referred to as ’pipe-based’ as well [15]. This type of visual represen-
tation is of interest to Tiles and other message-intensive systems due to
the focus on data messages and reactions to them.

Model-Driven
A hybrid textual-visual paradigm that focuses on data models that are
translated into executable code. Executable UML being the most promi-
nent of this group.

Block
Mixes a visual representation using building-blocks with textual execu-
tion of code. Typically blocks represent loops, if-statements for compar-
isons, and can block lines of code into a discrete method.

Example-based
A wide scope of technologies that allow a program to execute "remem-
bered" commands given by a user. For instance, moving a graphical
representation of robot by the programmer can be translated into code
that the physical robot can execute.

Through the use of visual aids and domain-specific knowledge, we create

20

Chapter 3. Literature

Figure 3.4: The jigsaw metaphor used to combine programming concepts

domain-oriented design environments. The main issue faced by visual DO-
DEs as explored by Fischer is their lack of use for general purpose program-
ming. In order to simplify the programming process, most paradigms rely on
metaphors that relate directly to a specific domain. However, more general
rule-based paradigms in conjunction with example-based programming have
been successfully utilised by works such as HANDS [26]. HANDS is a mixed
visual-textual programming language that uses cards as a metaphor for many
programming tasks. Users take the role of a player that has access to data,
event, and rule cards, and game cards. Rule cards give the programmer simple
if-then rules that execute other cards when the condition is met. Data cards
store variables while events are occurrences that affect the whole system. Users
can then create many programs using the rules that could fit several domains.

3.4.2.1 Visual programming vs program visualisation

Within the field of visual programming, there can be some confusion between
visual programming and program visualisation. The two concepts often overlap
and the definitions blur, but as a rule visual programming creates code as an
artifact. The technologies and paradigms introduced in the previous section are

21

Chapter 3. Literature

examples of this. Program visualisation, on the other hand, primarily focuses
on using graphics to visualise code without creating an executable artifact [24].

Program visualisation can also be further defined by what kind of code is being
visualised. If the tool or program displays the program or code structure, then
the visualisation is referred to as static structure visualisation. For showing the
dynamic state of a program, such as the value of variables during execution, a
run-time visualisation is used.

Where the line blurs is when some change to the system is possible directly
from the visualisation. A classic example of this is in model-driven design
frameworks such as Eclipse’s Modeling Framework (EMF) 4. EMF can visualise
text-based classes into a UML-like diagram. While this diagram can be viewed
statically, developers may also edit the classes within the diagrams, which
changes the underlying classes in the .java files. Figure 3.5 5 shows how EMF
visualises a set of classes in a program.

Figure 3.5: EMF visualisation of classes

4https://eclipse.org/modeling/emf/
5https://www.eclipse.org/emf-refactor/refactoringsjava.php

22

Chapter 3. Literature

3.4.3 Physical paradigm

Physical programming is another paradigm that can be used for EUD. Physical
programming entails using physical objects or gestures as metaphors for pro-
gramming. By using physical objects, programmers can develop using tangible
user interfaces (TUIs) as opposed to graphical user interfaces (GUIs), which are
frequently used to supplement textual programming and always used in visual
programming. Hornecker and Shaer have studied the use of TUIs extensively,
and according to their research:

"Tangible Interfaces have an instant appeal to a broad range of
users. They draw upon the human urge to be active and creative
with one’s hands, and can provide a means to interact with com-
putational applications in ways that leverage users’ knowledge and
skills of interaction with the everyday, non-digital, world."[30]

By leveraging the mechanics of the physical world, TUIs can be more efficient
and easier to learn than a virtual analog. Furthermore, TUIs mesh easily with
the idea of pervasive technology, which proposes that technology should blend
into the background of society. However, this area is still quite novel and
most physical programming systems so far have been geared towards teaching
non-programmers programming concepts [14].

Google’s Project Bloks 6 is a major forerunner for developing small applica-
tions using tangible media. Bloks works by connecting different pucks that
represent either programming logic or entities to one another on an electronic
board. These pucks are them compiled to underlying hardware code after
development. The unique aspect of these pucks is that they themselves can
contain a physical interface. A "volume" puck, for instance, includes a radial
dial that one can use set the volume level.

Other physical programming attempts, such as Michael Horn’s Robot Park
[14], use computer vision to recognise objects, establish a control flow, and
translate those objects into executable code. In Robot Park, a series of blocks

6https://projectbloks.withgoogle.com/

23

Chapter 3. Literature

are read from left-right and top-down to create simple programs. Horn also
created a GUI version of the exhibit and compared how appealing the TUI
exhibit was to the GUI exhibit. Horn’s findings (shown in figure 3.6) show
that users were more interested in the TUI exhibit. These end-users were not
technical, so this study provides evidence that tangible user interfaces can be
a valuable tool to allow for non-technical users to develop applications.

Figure 3.6: Percent interested in GUI exhibit vs TUI exhibit [14]

3.4.4 Programming by example

Another paradigm for creating dynamic applications is programming by exam-
ple. Programming by example, PbE, can be used to impart instructions to a
system by having a user generate a series of events that the system saves and
executes. One example of this includes DEXMART7, which combines both
PbE and physical programming paradigms. In DEXMART, an actor is placed
into a motion capturing (mocap) suit and then performs actions on objects
in the environment. The actor’s recorded movements are then serialised into
a format that a robotic hand can execute. One can see that this approach
greatly abstracts the code needed to manipulate the robotic hand by mapping
natural movements from ones own body instead of requiring a developer to
program how each motor in every joint behaves.

7http://www.dexmart.eu

24

Chapter 3. Literature

Figure 3.7: Mocap programming by example for how to open a cap on a coke
bottle source(https://www.youtube.com/watch?v=jWYkzLSNmuc)

3.5 Why EUD for IoT?

In order to understand why end-user development is important for IoT, it is
helpful first to look at some of the prevailing factors of third-wave human-
computer-interaction (HCI). Third wave HCI moved away from the strictly
work-focused participatory design of second-wave HCI to artifacts that were
used in both work and private use. No longer were artifacts designed for a
simple context - they had moved into everyday lives and now had a highly
social aspect. This shift necessitated that the end-user was no longer just
an actor in a context that an artifact was pre-designed for, but a central
component of design that had to bring their life experiences to the design of
the artifact [4]. As the context of the user changes, so must the artifact and,
thus, there is a higher need for the artifact to change during use-time [19].
End-users are now human crafters rather just actors, and now provide data
and customisations necessary to evolve software during use [19].

IoT can also be seen as product of third-wave HCI in that the pervasive,
ubiquitous nature of many IoT applications relies on data from human end-
users through many contexts. Barbara Rita Barricelli and Stefano Valtolina

25

Chapter 3. Literature

[3] have taken an end-user centric approach to defining ecosystems where they
have highlighted important elements that many IoT ecosystems are inevitably
comprised of. In their model, the user can affect each element and can know-
ingly affect the system or unknowingly affect or develop the system. The user
can knowingly create behavioral rules for sensors or applications if given the
right tools, and they can unknowingly affect the system by their sensor data
that affects the recommendation system of the ecosystem, for instance. As a
result of being the center of the user-centric IoT ecosystem, it is inevitable
that end-users would need tools to tailor their experience of applications and
devices in the ecosystem as their context changes. Imagine a household sys-
tem where an alert threshold for a noise pollution sensor is non-configurable
or where the output source of that alert cannot be modified by the user.

Figure 3.8: The user is at the center of the IoT ecosystem [3]

Finally, it must be realised that end-users are likely the holders of domain-
specific knowledge rather than programmers who pre-design and then imple-

26

Chapter 3. Literature

ment an application. Going back to the noise pollution example, there is no
way that a designer would know what levels of noise in a household equates
to unwanted pollution by the residents. The designer can, however, use meta-
design methodologies to ensure that the end-user can act as both designer or
consumer of an artifact in the IoT ecosystem.

3.6 EUD paradigms for IoT

The basic tenets of smart EUD design, namely accessibility and scope of pos-
sible modifications, remain critical for IoT EUD. However, a major difference
is that those designing applications for EUD in the IoT space need to un-
derstand that the applications created or modified by end-users will involve
multiple devices with different protocols. Therefore, it is important to develop
programming paradigms and tools that take into account hardware, software,
and data together [3].

3.6.1 Data-mashups and rule-based systems

One such paradigm is data mashups. Mashups involve taking data from dis-
parate sources with differing protocols, serialising the data into an acceptable
output format, and then sending the resulting data forward. If-This-Then-
That (IFTTT), for example, can take a tweet using HTTP web services and
then, based on a condition, send a signal to hardware on a device using MQTT.
Rule-based data mashup services like IFTTT 8 and WebHookit 9 are becoming
popular due to them requiring no programming experience and using simple
language to express the data rules. These services typically provide a web
page where users may connect their devices to different data sources or other
devices. Additionally, social features are typically provided by data mashup
services. IFTTT is particularly apt at allowing users to create applets, or a
bundle of two data services with an "if this, then that" rule binding them, that
can be shared with other users who have the same devices. Figure 3.9 below

8https://ifttt.com
9https://github.com/neyric/webhookit

27

Chapter 3. Literature

illustrates recipes that any user may activate after providing routing details.

Figure 3.9: Example IFTTT services for a smart humidifier

A rule-based approach is so successful for handling hardware and data con-
cerns that it has been highlighted by Barricelli et al [3] as a state-of-the-art
when combined with visual programming, where dataflow languages are king.
Dataflow languages, sometimes called pipe-based languages, generally involve
piping data from one input source to an output source with some data trans-
formation in-between. Visually speaking, this is represented with the "boxes
and arrows" approach that allows users to easily track data flow direction at a
glance. An example dataflow language written explicitly for managing IoT de-
vices is Node-Red 10. Node-Red is a web-based visual programming language
with several pre-defined nodes that act as data sources or data endpoints.
Data can be transferred between nodes based on events with transformations
(user-defined functions) available between sources. Social aspects, a common
trend in EUD, are also available in Node-Red where users can create custom
nodes for others to use in their applications.

3.6.2 Visual and rule-based challenges

However, Barricelli et al points out some flaws with rule-based systems, like
IFTTT, and visualisation programs. If-Then rules have limitations regarding
expressive power and the ability to have an event kick off based on multiple

10https://nodered.org/

28

Chapter 3. Literature

Figure 3.10: Node-Red in use (credit: https://www.ibm.com)

conditions and temporal conditions. For instance, one may require "if this
AND this then that" or "IF this AT time THEN that" logic for their applet in
IFTTT, which is currently not possible. As for visual programming tools, while
Node-Red may be intuitive for someone familiar with programming, Barricelli
et al concluded that these visual programming languages were still too complex
for EUD. Node-Red in particular assumes that users understand the underlying
APIs of devices and data sources, which " puts at risk the success of the EUD
approach." [3]

However, it has been noted by the author that the ability to create custom
nodes, if created around a known domain, could be useful in creating a mini-
language within Node-Red (or any similar dataflow tool). Other visual pro-
gramming paradigms, such as block-based or model-driven, are geared more for
teaching users how to program or minimizing the time spent between designed
code and implemented code. Google’s Blockly, for example, teaches how to
fit variables to control a loop by using puzzle pieces, but end-users in various
studies [27][2] have been shown to be disinterested in the act of programming
itself, which makes an educational approach less enticing.

29

Chapter 3. Literature

3.6.3 IoT & Physical programming

Physical programming paradigms for IoT have not yet been firmly established,
although their use for smart objects is applicable. Combining tangible inter-
faces with physical programming could prove beneficial for creating a sequence
or for tuning rules that require an object to be manipulated. A hypothetical
application could have to listen for a "shake" event on an object where the
threshold for registering a shake is "taught" to the application by the user who
shakes the object while the application is in a learning state. Similar to DEX-
MART, this example would be combination of both programming by example
and physical programming, but for the IoT space.

Outside the hypothetical, Smith et al [32] in 2016 performed a study where
objects could be used to control lights or a fan based on the proximity of the
two objects. In this case, computer vision was used (as in Robot Park) to
calculate the proximity of the two objects (a staff and a calabash, a frog and
a fan) to determine if the lights should be on and if the fan should be on.
However, while the application used connected objects, there was no shown
method for the users, who had no technical experience, to configure the dis-
tance between the two objects needed before the lights/fan turned on. Still, it
is an interesting case in how physical objects can be connected to one another
based on proximity and, for Tiles, having connected smart objects is key.

3.6.4 Physical programming challenges

Looking at physical programming, there are some challenges for IoT. Chief
among them being how to scale for large applications and how to handle large
requirements in both space and time dimensions. Physical objects take up
physical space and will naturally limit the size of the program. One solution
to this would be to take a functional programming approach where users build
functions that are saved digitally and then combined to form a larger pro-
gram. This method would require some computational thinking on behalf of
the end-user and would require that the physical components used to make
the application are not core to the application itself (as in Google’s Bloks).

30

Chapter 3. Literature

In addition to program complexity, the pure scale of possible devices in an IoT
ecosystem presents challenges. One would need to 1.) Find reasonable repre-
sentations of each device and 2.) develop a strategy for iterating over devices
or device groups while maintaining the benefits of physical programming for
the developer. Again, a hybrid approach between physical programming and
program visualisation is recommended in order to keep up with the magnitude
objects and object interactions. This is especially pertinent in Tiles, where an
application consists of several custom smart objects with different methods of
interacting with other objects and services.

Space and time are also major components of most IoT ecosystems. In the
example provided in the last section, two objects where configured to activate
lights/a fan when they were in close proximity to one another. This works
for small scale domains (such as smart homes), but having a physical repre-
sentation of this for programming would be difficult for wide-area domains
(such as smart cities). The same applies to time when the event flow is not
simultaneous or events should not follow in rapid succession. One method in
which these issues can be addressed is using tangible interfaces. For instance,
one could envision a range tangible interface that could be utilised to abstract
space and time components. The only configuration for the range slider would
be the min-max values and the step values. This would allow for an end-user
to intuitively fine-tune an application when the limits of physical programming
as a metaphor present themselves.

Taking these challenges into account, it is easy to see why most physical pro-
gramming research has centered around education domains and haven’t been
used for large-scale projects. However, for small-scale projects, physical pro-
gramming could be beneficial for end-users because of its ability to lower bar-
riers of entry. It is also likely that end-users would be disinterested in creating
large applications due to complexity being a dissuading factor for end-users to
begin with.

31

4
EUD and Tiles

This chapter will discuss how Tiles behaves as an IoT platform and what
challenges present themselves for introducing end-user development to Tiles.

4.1 Unique Aspects of Tiles

Tiles primarily differs from most other IoT platforms in that it is used for
creating both:

• user-defined smart objects via attaching tiles hardware

• user-defined interaction for custom smart objects and interactions be-
tween other smart objects

Many IoT platforms are concerned with pre-defined devices that can interact
with one another in a simple, consistent manner. In Tiles, the object can be

32

Chapter 4. EUD and Tiles

ambiguous and, while interaction primitives are already defined for a tile, the
interaction can be ambiguous as well in the case of interaction sequencing.
This makes defining a framework difficult because one is not only concerned
with wiring disparate devices and services but having users create objects as
well.

To put this into perspective, Barricelli et al. created a useful diagram [3]
to evaluate devices based on time, space, and social aspects. Time repre-
sents whether or not a device collects data synchronously (such as continuous
environmental readings) or asynchronously (such as user input). The space di-
mension evaluates whether or not the object is meant to be mobile or situated
in one environment. Finally, the social dimension determines how many users
are using the device. Combinations of these three aspects are used to create
octaves that a device will typically fall into. For Tiles, any device/smart object
can really be in any octave. Even with interaction primitives, which one would
assume would lend to asynchronous interaction, a tile can also actuate from
web services, which may not be asynchronous.

Figure 4.1: Octaves for the time, space, and social dimensions

33

Chapter 4. EUD and Tiles

However, there are some aspects of Tiles that make creating a framework eas-
ier. Tiles is unique in that it provides consistent hardware, a common data
transfer protocol, and a set of libraries for controlling said hardware and data
exchanges. Tiles also has the advantage in that, since it used for rapid pro-
totyping, concerns such as security, authorisation, data privacy, and network
efficiency aren’t at the forefront. This allows for EUD and Tiles to avoid
concerns with end-user software engineering, an aspect that can complicate
development by pushing users to employ common software quality techniques.

4.1.1 EUD Criterion for Tiles

In order to draft a set of criterion for Tiles EUD, one must first look at a general
set of principles that make EUD possible and then the set of factors unique
to Tiles that need to be accounted for. In the previous chapter, an outline of
what EUD is and who the end-users are was presented. In this outline, ease
of use was a key feature for any EUD activity - whether class 1 application
behavior modifications or class 2 application development. Thomas Greene
and Martin Petre created a cognitive dimensions framework [9] to determine
what level of usability a programming notion has. For studying EUD and
Tiles, these dimensions can be used as a general metric to create a scorecard
for different pre-existing technologies or a new artifact created for Tiles EUD.
The dimensions are given in table 4.1.

Beyond these general dimensions, it is important in IoT to evaluate how a
notation handles multiple devices and how these devices interact with one
another and various disparate data sources.

34

Chapter 4. EUD and Tiles

Dimension Description
Abstraction gradient Bare minimum level of abstraction. What is en-

capsulated?
Closeness of mapping Coupling to domain-problem

Consistency Determines how much a notation follows a recog-
nisable pattern

Diffuseness Number of symbols needed to represent meaning
Error-Proneness How likely it is to create errors in logic or syntax

Hard mental operations What’s the cognitive load of using the notation?
How much the notation does the user have to look
up?

Juxtaposability Can notions be compared side by side?
Premature commitment Is there an order of tasks for the user to perform

in order to use the system?
Progressive evaluation How easy it is to receive feedback with an incom-

plete program
Role-expressiveness Is the role for each notation obvious?
Secondary notation Measures if notation has secondary characteristics

that carry meaning (shape, color, positioning for
example)

Viscosity How easy does the notation make the program to
change?

Table 4.1: Cognitive dimensions framework

4.2 Recommended paradigms for Tiles EUD

When thinking about the possible paradigms to use for Tiles EUD, one must
take the needs of the end-user (rapid, easy-to-use development) and the unique
aspects of Tiles. Interacting with multiple tangible objects is the key to Tiles,
which makes a physical programming approach seem the most intuitive. Ad-
ditionally, there is scarce data regarding physical programming in the existing
literature, which makes this paradigm attractive for the innovative aspects.

As for ease in development for end-users, having the users interact with tile
squares attached to familiar objects would be more intuitive than writing ab-
stract code. As an example, a user would have to write several statements
in order to determine if a tile event matches a certain tile and what type of
interaction was performed. The following code would have to be written in

35

Chapter 4. EUD and Tiles

order to listen to a tile square, evaluate the message, and print a response:

1 var client = new TilesClient(’TestUser ’,’138.68.144.206 ’ ,1883).
connect ();

2 var tileA = {
3 name:"tileA",
4 id:"12C97U"
5 }
6
7 client.on(’receive ’, function(tileId , event){
8 if(tileId === tileA.id && event.properties [0] === "tap"){
9 console.log(’Single tap received from ’ + tileA.name);
10 }
11 });

With physical programming, the user could instead just tap on Tile A to save
the tile ID and interaction type (single tap). This would prevent the need for
writing most of the above code with exception to the response (console.log in
this case).

Most applications written for Tiles follow this pattern of listening for an event,
figuring out the tile id and interaction type of the source, and then providing
a response. This pattern is also highly prevalent in data mashup and rule-
based engines such as IFTTT. In this light, it is not difficult to converge the
ideas of object interaction with a rule-based system. The interactions and
the data surrounding it (tile ID, interaction type, time received, etc) then
acts as the rules for the engine. Therefore, creating a rule-based system is in
line with most of the current literature and state-of-the-art. Using physical
programming with tangible tile squares provides a simple way to create rules
without the need for coding.

However, there are issues concerning physical programming and Tiles. As
mentioned in the previous chapter, physical programming for IoT runs into
issues of scalability and in the complexity of what they can express. The
scalability issues involves both the number of devices and the space in which
one can program using tangible interfaces. Using a board to program for Tiles
could restrict the types of interactions the user wants to have with tile squares
as well as constrains their programming environment to one location. In the
future when geo-locational capabilities are added to tiles, this may become an

36

Chapter 4. EUD and Tiles

issue if users want to record when and where they interacted with the tile. As
for the number of devices, there would need to be some mechanism to display
device rules and physical space once again becomes an issue as the number of
device interactions increases.

Merging several paradigms is one method for providing mechanisms to handle
physical programming’s weaknesses. Program visualisation and visual pro-
gramming could come in use to represent the software that users create by
interacting with tiles. Program visualisation solves the issue of needing a
board to implement logic or to keep up with all the device interactions. Phys-
ical programming could be used to program the responses to the rules when
conditions are met. A user could use a GUI to program that a Tweet should
be sent in the case that tile A is tapped, for instance.

4.2.1 How current technologies fit Tiles

While a tangible, rule-based system with visual components seems viable, it
is important to find gaps in the current state-of-arts in order to discover their
weaknesses and strengths for Tiles. There is no reason to reinvent the wheel
when Tiles can be adapted to existing technologies, of course. Table 4.2 lists
the positive and negative factors of the two-state-of-the-art technologies pre-
sented in the last chapter. Node-Red was chosen to represent a strong visual
programming state-of-the-art that serves both general-purpose and IoT appli-
caton development needs. IFTTT was chosen as it is a strong representative
for data-mashup, rule-based programming that molds perfectly with IoT.

These factors have been grouped in accordance to some of the relevant cognitive
framework dimensions and the tile-specific dimensions highlighted in the last
section.

37

Chapter 4. EUD and Tiles

Dimension Node-Red IFTTT
Abstraction
gradient

+flow of data abstracted into
boxes and arrows
-all symbols look similar
-details of each node

+ all underlying technology hid-
den outside of configuration for
devices

Closeness
of mapping

+applicable to complex domains -one purpose per application

Diffuseness -one symbol used for all nodes,
even for functions
+arrows useful metaphor for data
flow

+- one symbol for each device

Error-
Proneness

-no error checking in function
nodes
-no messaging for incorrect con-
figuration of nodes
+input nodes can only match to
output nodes

+ checking of configuration
+ notifications about missing
statements

Hard men-
tal opera-
tions

+ A to B data flow is easy
- Function nodes complicate ap-
plications

+ Only configuration data needed
to look up

Secondary
notation

+ input/output nodes have differ-
ent markings
+ node types have different colors
+ nodes can be position to further
show flow of events

+ different color for condition vs
effect
- little secondary notation outisde
of this

number of
devices

+many devices possible
+ each device can have multiple
inputs/outputs
- distinguishing devices is difficult
due to notation

- one device per condition/effect

device in-
teractions

- each interaction requires new
node

- each interaction requires whole
new rule

Table 4.2: Pros/Cons with leading technologies

38

Chapter 4. EUD and Tiles

From the table, it can be inferred that while Node-Red has more expressive
power applicable to many domains, IFTTT is a much simpler tool that ab-
stracts the data flow details from devices and data sources. When it comes to
handling multiple devices with several interactions, both technologies struggle.
While Node-Red and IFTTT cover many types of devices, this is irrelevant to
Tiles as each tile square contains the same hardware. In Node-Red, a Tile
square would be represented as an MQTT message, which is not immediately
intuitive if you are unfamiliar with IoT technologies. This makes users think
in terms of "when MQTT message received, then send this MQTT message in
response", which is not how non-technical users would think about an applica-
tion. For IFTTT, having one device would be fine, but each interaction requires
a whole new service from IFTTT. Naturally, making complex interactions this
way is cumbersome, but it works fine for simple applications requiring minimal
interactions with tile squares.

Thus, it appears that sequencing of interactions would be a main issue for
using IFTTT while the more technical and general-purpose nature of Node-
Red would be difficult for most end-users. Opportunity then exists in creating
a prototype that focuses on sequences of device interactions in an easy to
understand manner. This can be accomplished by using both physical and
visual paradigms and by taking some of the positive aspects of both Node-Red
and IFTTT. The inter-connected node approach shown in Node-Red makes
following a sequence very intuitive, for instance. The simple interface of IFTTT
where you are clearly shown inputs -> outputs could also be leveraged to
help users easily understand the cause and effect of tile interactions in their
application.

39

5
Prototype Design

This chapter will give a brief overview of the audience, functionality, and sce-
narios of use for software merging the paradigms needed to help develop for
Tiles.

5.1 Main Idea

Based on the information gained in the previous chapter, there is a need to cre-
ate software using multiple paradigms that can allow for end-users to more eas-
ily develop applications with Tiles. As discussed in the literature, a rule-based
system implementing some visual representation of objects is the state-of-the-
art. However, due to the unique, tangible interaction focus of tile squares, it
is beneficial to research ways of incorporating tangible programming to align
with the purpose of Tiles. Programming-by-example is one such beneficial
method that can be used to program a rule engine while the end-user is nat-

40

Chapter 5. Prototype Design

urally using the smart objects with attached tile squares. For instance, it is
easier to perform the intended action (such as tapping smart speakers in a
room) in person than thinking about what sequence of interactions should be
performed using mental abstractions.

Therefore, the author has proposed Tile Recorder, a rule-based system that
records interactions with tile squares to generate rules and a visual interface
to program what responses accompany those rules. In this way, users can map
the rules (tile inputs) created in real-time from tangible interactions with the
outputs that are created in the user interface. The visual aspect includes this
interface along with a visual representation of the executing program’s state
(i.e. where in the recording sequence the program is evaluating next).

5.1.1 Why build a prototype?

As mentioned in the methodology section of the introduction, a prototype is a
design artifact that is essential for testing theories in the field. A well-designed
prototype can focus the attention of the audience towards the general concept
behind the prototype by providing a concrete artifact that they can use. A
proper prototype achieves this by providing the core functionality needed to
convey the concept and can be developed rapidly to meet the demands of users
after a pilot. Furthermore, the initial prototype should be basic so that users
do not debate extraneous functionality or details regarding the prototype so
that the researchers may study the central idea. These guidelines have been
created by Warfel [35] to help developers in creating new prototypes:

Undestand the audience - Know which stakeholders the prototype is tar-
geted toward and what their concerns are. The audience has been de-
tailed in this chapter.

Plan a little, prototype the rest - Plan roughly 70 per cent of the func-
tionality and expect the rest to change. For Tiles Recorder, only the
main functionality was planned before implementation.

Set expectations - Define the key behavior of the prototype to your audi-
ence. Scenarios presented in this chapter can set the expectations for

41

Chapter 5. Prototype Design

what can be achieved with Tiles Recorder.

You can sketch - Use mockup tools to keep the design generic enough so
that look and feel discussions around the prototype do not become too
detail oriented. Photo editing tools and online mock ups were used to
design a UI before implementation.

It’s not the Mona Lisa -The prototype does not have to be aesthetically
perfect nor technically perfect, but good coding practices still lend to
reusability. The implemented prototype uses basic CSS and exists on
the client side only (see chapter 6.

If you can’t make it, fake it - Use designer tools such as Adobe Fireworks
to mimic system execution with little to no coding required. The pro-
totype uses real code, but future functionality could be mimicked with
static data (ie a common Twitter account to send tweets).

Prototype only what you need - Implement only the most essential func-
tionality. Recording and executing implemented with limited output
options (see chapter 6) as example of only programming what is needed.

Reduce risk—prototype early and often - Similar to Agile methodolo-
gies, present the prototype early and often to assess how well it fits
requirements. Presented prototype design often to supervisors and un-
dertook user-testing as part of the prototype’s pilot.

Additionally, a prototype must be designed correctly in order to reap the full
benefit in the field. The design presented in this chapter will follow the 8
principles of good prototype design as presented by Warfel.

5.1.2 Target Audience

Through looking through the literature focusing on end-users, an end-user is
defined as someone who is

42

Chapter 5. Prototype Design

“ A person with personal domain knowledge and an interest in
modifying existing or creating new software for purposes of tailor-
ing that software for their needs without running into the technical
barriers of programming “

Therefore, it is beneficial to create a system that is not overly technical for
end-users that also fits into the strengths of Tiles (such as physical interaction
primitives).

5.1.3 Explanation of System

According to Barricelli et al in Designing for End-User Development Design
for IoT [3], the state of the art for many end-user development tools is a
rule-based system that allows a condition (typically, an event) followed by a
reaction. Therefore, the proposed system is ultimately a rule-based system
tailored for the unique challenges presented in Tiles (namely, handling se-
quencing of interactions). The system merges two paradigms: physical and
visual programming. Physical programming is used to capture the interac-
tions with Tiles for the condition of the rule, while a visual form can be used
to edit the reaction.

On startup, the tiles for a set of users are loaded. To capture the interaction
primitives, a user can click a record button to let the application “listen” for
events with a set of filters. The user(s) then perform interactions with their
tiles to mimic the desired behavior. Captured interactions are listed in the
system so that users may delete unintended interactions to reduce noise. A
differentiator will be used in the list (a different color for instance) to show
when Tiles belonging to different users are interacted with. Recordings can
have 1 to many interactions.

Additionally, users may set options and filters for each recording. These op-
tions include whether or not Tile IDs are important, whether or not the order
of the sequence is important, a time-frame for which the application listens for
events and filters for the different interaction primitives. After recording, each
sequence is placed into a list with an output. The output is a drop-down with

43

Chapter 5. Prototype Design

Figure 5.1: Sequence list mockup

several pre-configured responses. For example, Twitter could be selected by
the user, the user enters in their Twitter data for login and the text they want
to tweet when the recorded sequence is completed. Outputs for Tiles would
exist among the selections too, of course. Finally, as with any rule-based sys-
tem, the rules that were created must been listened to and evaluated. Users
can ’activate’ their recording to have an executor listen to incoming events and
compare them with the interactions saved by the recorder.

Figure 5.2: Output

44

Chapter 5. Prototype Design

5.1.4 Software Components

The following components (or modules) need to be developed in order to have
a fully functioning system.

Recorder
The recorder is the essential component that will listen for tile events
over MQTT and save them into a data structure that can be parsed
by the executor. Functionality of the recorder includes recording and
pausing as well as filtering out undesired interactions. These filters have
been foreseen as a necessity given the sensitive nature of tile square
interactions. Sometimes a double tap is recorded as two single taps or
vice-versa, for example. The main output for the recorder is a sequence
of device interactions that the executor component can listen to while
executing the user’s program.

Outputs
With each interaction the user can set outputs that execute depending
on whether or not the user matched the recorded output. If a user has
recorded that Tile A must be single tapped, they can could tell Tile B
to light green when Tile A is single tapped or set Tile B’s light to red if
a Tile besides A is tapped.

Executor
The executor, when activated, listens for device interactions and com-
pares them with the sequence recorded by the recorder component. The
executor evaluates if the interaction meets the Tile Id, interaction type,
and timing restraints as set by the recorder. Upon the successful com-
pletion of an interaction in the sequence, the executor either:

• Continues to listen for the next interaction if the current interaction
meets the requirements

• Executes the success output if present and then continues

• Fails and continuing waiting for the correct response if the interac-
tion does not meet the requirements

45

Chapter 5. Prototype Design

• Fails and executes the fail output if present

The executor should also have the capacity to visualise how far in the
execution chain the program currently is. For instance, if the list of
recorded events is represented as a chain of nodes, the executor should
highlight the current interaction (node) that is going to be evaluated.

Events
The events are primarily a data structure that contains data about
recorded device interactions (when they occurred, what tile was inter-
acted with and how) as well as output commands. Each event can have
one output for success and one for failure.

5.1.5 Scenarios of use

In this section, two different scenarios will be presented that use the Tiles
Recorder. These scenarios were created in order to both:

• brainstorm what functionality was required to fulfill each scenario

• show the breadth of what could be accomplished by the system

5.1.5.1 Learning a process

Mr. Henderson runs a fast food burger chain that often hires seasonal help.
These temporary employees don’t know much about assembling burgers or
cooking and its time-sensitive nature, so Mr. Henderson needs to develop a
system for training these employees. In the past, Henderson used diagrams
and videos, but employees seemed to forget most details when the time came
to actually use the kitchen equipment. Therefore, Henderson looks to Tiles as
a way to integrate feedback while employees learn using real equipment and
not a virtual simulation. Henderson has Tiles attached to the frying/oven top
to represent the cook.

A separate set of Tiles are attached to containers with the toppings/ingredients
to represent the burger assembler. Finally, a tile is attached to a serving tray

46

Chapter 5. Prototype Design

to represent the runner who brings the food to patrons. Through the software,
Henderson first creates a recording for cooking the fries and meat for the
burger. For the fries, he sets a two minute window for when they should
be cooking. Henderson tells his employees to shake the fry basket at least
three times while they cook. To mimic this in the system, he shakes the fry
basked three times, which makes the system record a shaking event for the
tile attached to the basket’s handle. For the burgers, Henderson wants his
employees to tap the tile attached to the cooker when the meat is brown.
Therefore, the recording for this piece is three shakes and a tap coming from
the cooker. Henderson also notes in the system that the order of the sequence
is not important, just the three minute time frame.

Next, the assembler needs to build the burger in the right order. Henderson
creates a 1.5 minute window for this. For every ingredient that is placed onto
the burger, he instructs his employees to tap the container of the ingredient to
show that it has been placed on the burger. First comes cheese, then lettuce,
then tomato, and finally ketchup and mustard. For this recording, the order is
important. For the final recording, the runner must bring fries, the burger, and
a soft drink to a serving tray and bring the tray to a table. The first sequence
needs to be done within 1 minute and involves tapping the Tile on the tray for
each necessary item placed onto it. The order doesn’t matter here. Once the
food is at the table, the employee needs to double tap the tray once he/she is
back to the work station. This signals the end of the training exercise.

For the outputs, Henderson wants a tweet to show when each recording is
completed. In the software, he can see the three recordings and selects the
twitter option for each recording. Additionally, he wants the Tile on the tray
to vibrate in bursts after the second recording is completed so that the runner
knows that the food is cooked. He accomplishes this by selecting Tile output
on the selection box and “vibrate-burst” for the output type.

After a few test runs, Henderson is happy with the results from his new em-
ployees but wants them to be faster. As they get better in the exercises, he
narrows the timing windows for each sequence.

47

Chapter 5. Prototype Design

5.1.5.2 Making a game

David’s family has expanded with its newest member, Brock. Brock is an 8-
month year old that loves to play with his toys and listen to music. David is
interested in teaching Brock about patterns using a playful program that he
developed using Tiles. Brock has 8 toys with a tile attached to each. David
wants to teach Brock to mimic which toys David chooses out of the 8 and
what he does with them. Before laying out the toys in front of Brock, David
opens a GUI for the recorder. He tells the recorder that both order and the
ID of the tile matters and then proceeds to interact with 3 of Brock’s toys. He
shakes the first, taps the second, and then shakes the third. Once the recording
is done, David chooses a generic response from the GUI – playing a song on
his smart speakers in this case. Next, David acts out these motions in front
of Brock. Brock then imitates these actions with the correct toys and in the
correct order to hear his favorite song.

5.2 Niche in EUD for IoT

From the review Node-Red and IFTTT in the previous chapter, the recording
application was creating to fill the gap where Node-Red was too complex with
device interaction for end-users and IFTTT was too simplistic. Table 5.1 shows
pros/cons of the application

Based on these positive and negative factors, the recording application, like
the similarly rule-based IFTTT, is a tool that abstracts the logic behind tak-
ing device inputs and executing outputs. The main difference being that the
recording application can handle multiple device interaction more cleanly and
can thus create more complex conditionals for rules. Additionally, the record-
ing application has the tangibility element to expedite the process of setting up
device interaction sequences. The intent is for users to develop their sequences
while on site and is inspired by IoT’s goal of merging digital applications with
our physical environment.

48

Chapter 5. Prototype Design

Dimension Recording App
Abstraction
gradient

+ device behavior abstracted - configuration on
output sources still necessary

Closeness
of mapping

- limited to subsets of many domains (primarily
situated learning)

Diffuseness + well known symbols for recording/pause
+ can integrate with Tiles cards as known symbols

Error-
Proneness

+ error proneness lies in user logic and not syntax
or computer logic

Hard men-
tal opera-
tions

- having many recordings/outputs can get confus-
ing when combined to make one application

Secondary
notation

+ device notation is the object itself in physical
space
+ node types have different colors
+ nodes can be position to further show flow of
events

number of
devices

+ many objects possible
- scaling limited by physical space

device in-
teractions

+ device interactions listed plainly
+ device interaction is tangible
- one output for recording

Table 5.1: Pros/Cons with recording app

49

6
Prototype Implementation

This chapter serves primarily as both a guide to using Tiles Recorder and to
detail how the application was built in order to expedite future development of
the prototype. A look at the user-interface (UI) will begin the chapter and the
following sections will explain implementation details of those components. It
should be noted that the implemented code makes use of the standard Apache
2.0 license 1.

6.1 Looking at the UI

The prototype for Tiles Recorder was written as a web application utilising
the React 2 framework and Node JS. Node JS was chosen as Node is currently
used to run the Tiles application server and the current Tiles MQTT client

1https://www.apache.org/licenses/LICENSE-2.0
2https://facebook.github.io/react/

50

Chapter 6. Prototype Implementation

is written in JavaScript. Therefore, using Node and JavaScript would reduce
integration concerns during later development and allow the software to use
the official client for Tiles.

React was chosen due to the highly dynamic nature of the system’s views,
which must update frequently when new inputs are recorded or to visualise
the progress of the recorded sequence during execution. Thus, it is logical to
start with outlining the UI and then detail each UI component. Fig 6.1 below
shows a screen shot of Tiles Recorder during use with the UI components
numbered. These numbers correlate with the descriptions of the components
on the following pages.

51

C
hapter

6.
P

rototype
Im

plem
entation

Figure 6.1: Tiles Recorder UI

52

Chapter 6. Prototype Implementation

1. Filter area: Users can click these checkboxes on/off in order to disregard
or listen to certain tile interaction events. Sometimes interactions can
fire unintentionally from a square, so these checkboxes serve as protection
against false-positives.

2. Record button: When clicked, allows for tile interactions to be saved and
displayed in the node chain below. Icon changes to a pause button to
pause recording. When executing the sequence, the button cannot be
clicked and the color changes to a dulled red to signal its inactive status.

3. Execute button: As with every rule-based engine, it must listen to events
and evaluate those events based on rules. In Tiles Recorder, the execu-
tion button starts the listening side of the application. Once listening,
the button can be clicked again to allow the user to record again.

4. Tile Interaction Node: When an interaction is recorded, a new node will
be created in the node chain. The type of interaction is displayed with
an icon and a text description is overlaid on top. The name of the tile is
displayed to the left.

5. Success highlight: During execution, when a user completes a rule (such
as single tapping Tile_7e in this case), the color of the chain changes to
blue.

6. Fail highlight: During execution, when a user fails a rule (such as not
single tapping Tile_7e in this case), the color of the chain changes to
red.

7. Delete icon: Removes the current node in the interaction chain

8. Option area: Add/remove success and fail responses for whenever an
interaction is passed/failed. Can also add a time limit condition. Only
appears while hovering over a node in order to prevent information over-
load for the user.

Figure 6.2 and figure 6.3 shows the option dialog boxes that appear after
clicking on a button in the option area. Note: Success and Fail dialogue boxes
only differ in color, not content.

53

Chapter 6. Prototype Implementation

Figure 6.2: Success/fail option window

1. Options area: includes output type (currently only tile outputs are avail-
able) and based on the type selected builds the rest of the form. For a
tile output, one can specify the tile for output and the output to execute.
The list of tile names is gathered via a REST call to the Tiles application
server.

2. Copy from previous: This button copies the success or fail condition from

54

Chapter 6. Prototype Implementation

the previous node onto the current node. Useful for scenarios where steps
have similar needs for fail/success.

3. Tile command area: Each tile output can have up to two command
properties. In this case, the led can be turned on, off, blink, or fade out.
The haptic feedback component of a tile is also implemented. The icons
for the commands have been taken from the tiles card game to help users
with the system after they design with the card game.

4. Command property area: For commands that have a secondary property
(led in this case), the secondary property options will be shown here. In
the case that the user chooses ‘off’ as the led command, this area will
not appear.

5. Save/Delete buttons: User can save the success/fail response (closes di-
alogue box) or delete, which removes the success/fail response for the
node and closes the dialogue box. Clicking outside the dialogue box area
also closes the box, but does not save or delete changes.

j

Figure 6.3: Time limit option window

Finally, the last option box is the time limit box shown above. The time limit
can be set via the input box and a unit selector.

6.2 Implementation Details

As stated previously, Tiles Recorder has been built primarily as a client-side
application using React and socket.io. This decision was made in order to fit

55

Chapter 6. Prototype Implementation

in with the principles of effective prototype design as mentioned in chapter
5. That is, the core functionality (recording, executing) has been developed
in order to quickly perform a pilot with test users. Extra flavoring of the
application, such as persistence in a database for recordings and extra output
options, has not been in scope for this iteration of the prototype. Additionally,
React allows for the rapid development of a stateful web application and can
be changed easily as new improvements for the prototype are found. This
section will detail the project structure, client details and the limited server
details.

6.2.1 Project structure

The project uses a standard web template for npm projects. Client-side code
(including all of our React components) goes into the client folder. Currently,
all components are contained within the app.jsx file. The routes folder contains
our server-side code for socket.io. This includes getting tile names via an
HTTP request, setting up the tiles client to listen to tiles events, and receiving
messages from the client. In the root directory, app.js starts the express server
and loads in the routes.

For building the project, Browserify 3 is used to compile the js files into the
public folder, which also contains the index file for the html page. Babelify 4

is also used to in order to convert the syntactic sugar of React’s JSX to plain
JavaScript.

6.2.2 Server implementation

The application currently runs on a standard NodeJS express server. The
tiles MQTT client is used server-side to collect messages and to push messages
to the connected clients. While it is possible to place the tiles client into
the client’s browser via browserify, it is recommended to keep the client in the
server for future development. For instance, in the future where a user or users

3http://browserify.org/
4https://github.com/babel/babelify

56

Chapter 6. Prototype Implementation

has many different devices with different active recordings, a server-side client
can make message routing less hectic. Additionally, the states of programs
created by Tiles Recorder could potentially be managed server-side instead of
the current client-side implementation, which would create one less ‘hop’ of
data transfer whenever the tiles client receives a message.

The socket.js file contains all of the socket.io setup between the server and
client. Below is the code snippet for the routes when a message is received.

1 tilesClient.on(’receive ’, function(tileId , event){
2
3 console.log(’Message received from ’ + tileId + ’: ’ + JSON.

stringify(event));
4
5 socket.emit(’tileEvent ’, {
6 tileId: tileId ,
7 event: event
8 });
9 });
10
11 socket.emit(’init’, userTiles);
12
13 socket.on(’tileCmd ’, function (msg) {
14
15 tilesClient.send(msg.tileId , msg.cmdString ,msg.param1 ,msg.

param2);
16 });

As one can see, when the tiles client receives a message (interaction event), it
is logged on the server and then the tile event properties are sent to all clients.
When a browser client connects, they receive an “init” message containing all
of the user’s tile names. This is used for building out the list of tile names in
the options windows but will also be useful if user profiles are implemented.
The last interaction is when the server receives a tile command message from
the client. This happens when an interaction is correct/incorrect and the user
has set up a success/fail tile response.

57

Chapter 6. Prototype Implementation

6.2.3 Client implementation

On the client side, there are four main components:

• Recorder

• Event

• Options Window

• Executor

These components correspond with their descriptions in the design section.
The following subsections will detail their function and any notes for future
developers.

6.2.3.1 Recorder

The top level component. Contains the executor and event components as
child components. Outside of rendering its child components, the recorder
component is also responsible for rendering the filter buttons, record button,
and activate button.

1 <div className="exec -buttons">
2 {!this.state.executing &&
3 <div className="activate -btn" onClick ={this.finishRecording

} value="Finish" >Activate </div >
4 }
5 <div className ={this.props.executing ? "hidden" : ""}>
6
7 {this.renderExecs ()}
8 </div >

Listing 6.1: Activate button display logic

The activate button determines if the execution button should be shown. The
important aspect here is that the recording component contains a state that
determines if the application is executing or recording. If executing, the ex-
ecution component is shown (but is always rendered even if hidden). React

58

Chapter 6. Prototype Implementation

can render components conditionally, but the reason the executor is always
rendered is to synchronise its state. If left conditionally rendered, the state
between the executor component and the recorder component would become
out of sync. The rest of the recorder component is fairly straight-forward and
boilerplate. However, for developers who may be unfamiliar with React, there
are some functions declared in the recorder component that are passed down
to child components in order to manage their state. This is in accordance to
React’s best practices 5 where manipulation of top-level components should be
passed down to children via properties. Figure 6.2 shows how the event child
component is rendered. Notice that the typical CRUD operations are passed
from the recorder component (this) to the event component.

1 renderEvents (){
2 return this.state.events.map((event , index) => (
3 <Event key={ index} propKey ={index} tileId ={event.tileId}

tileName ={ event.name} eventType ={ event.type}
4 updateEvent ={this.updateEvent}
5 deleteEvent ={this.deleteEvent}
6 status ={event.status}
7 getPreviousEvent ={this.getPreviousEvent} />
8
9));
10 },

Listing 6.2: passing properties down to children

Another note to make is the normalizeEventType function. This function was
created in order to normalise how tile event properties are managed by the
application. At this time, different tiles submit their properties in different
serialisations and must be normalised to simplify development.

6.2.3.2 Event

The event component is responsible for rendering the interaction chain nodes.
This is primarily achieved by using a flexbox layout 6 for the tile name and
deletion area, node area, and option buttons area. The conditional rendering

5https://facebook.github.io/react/docs/thinking-in-react.html
6https://css-tricks.com/snippets/css/a-guide-to-flexbox/

59

Chapter 6. Prototype Implementation

here involves setting the interaction type in order to choose the correct inter-
action icon and reading the state of the event during execution to change the
color of the chain to represent success or failure. Another odd addition to some
who are new to React is the inclusion of the property named propKey as well
as the regular Key property. In newer versions of React, the Key property is
reserved for use within the framework itself and, thus, the developer must set
a different property if he/she wishes to pass or keep track of the index of the
component.

6.2.3.3 Option Window

This component is used to generate the tile response form. The methods and
data used here are fairly straightforward outside of how the buttons and modal
are displayed. The component has a state that determines if the user needs
to view the edit button or the option dialogue window. Changing this state
is done via the setEditing function (shown below). Since there are only two
states, taking the opposite of the current state without evaluating the current
state is possible .

1 setEditing (){
2 this.setState ({ editing :!this.state.editing });
3 },

6.2.3.4 Executor

The executor component is simple in its rendering logic, but complex in its
evaluation logic. As a general note, while this component is currently a React
component to help expedite development, the evaluation functionality could
be moved to the server in the future. For instance, the server could evaluate
messages once the browser client activates its sequence and then send status
messages to the client (for success and failure of steps).

To begin with, one should note that this component’s internal state is limited
to only lastSucessTime. The component itself does not have an internal list
of interactions when it evaluates. While this may seem unintuitive, this is in

60

Chapter 6. Prototype Implementation

accordance to the best practices of React and general JavaScript programming.
Earlier in development, the executor component set its initial state based on
properties passed by its parent component. For example, the getInitialState
function would have lines such as:

1 Return {eventList: this.props.eventList}

However, this is problematic because changes made to the executor compo-
nent’s state would persist up to its parent component as JavaScript objects
are passed by value. Therefore, the state in the recorder component is used
as the “golden source” and is passed down to all child components. The list of
interaction events is never edited directly by the executor and a success/fail
signal is sent to the recorder component in order to set the status of the current
event being evaluated.

The evaluate function fires whenever an interaction is recorded and has this
sequence of checks:

1. Check if the executor is active

2. Check if the tileId matches

3. Check if the tile interaction type matches

4. Check if time condition exists

(a) Check if time condition is passed

If the above are true, then the evaluation checks if a success response is set on
the event (more on this in the next section) and fires that success response.
Additionally, a “success”/”fail” is sent to the recorder component in order to set
the status of the event that was just evaluated and to increase the current index
on the event list if successful (event here means the current tile interaction).
On fail, a similar check is used to determine if there is a fail output and sends
a status. Currently, the index will not change on a fail so the user can try
multiple times if they fail a step.

61

Chapter 6. Prototype Implementation

6.2.3.5 Response Classes

Response classes are models used for executing an action when a user completes
a step in the sequence or fails one. Currently, only the tile response class
exists, but future classes (such as Twitter) should follow the inversion of control
principle [17] by having a generic execute() method. The response class will
only concern itself with controlling how execute() operates, but should not
determine when the overall application calls this function. For the application,
it doesn’t care what type of response is attached to an event and only needs
to call the assigned execute() method. It should be noted that these classes
can also exist on the server should the evaluation function be migrated.

1 tileResponse = function(tileId , cmdString ,param1 ,param2){
2 this.tileId = tileId;
3 this.cmdString = cmdString;
4 this.param1 = param1 ? param1: null;
5 this.param2 = param2 ? param2:null;
6
7 this.execute = function (){
8 socket.emit("tileCmd",this);
9 }
10 }

Listing 6.3: example response constructor

62

7
User Testing & Future Steps

This chapter will detail the user testing that was performed in order to evaluate
the initial implementation of the prototype. The chapter will describe the
testing procedure and the results and feedback gathered from testing.

7.1 Why Perform Testing?

As mentioned in section 1.3 in chapter 1, an essential component of design
science research is the development of design artifacts/prototypes. As part of
this cycle, prototypes must be tested in order assess their usefulness in the field.
During this research, user testing was performed in order to gather suggestions
on how to best enhance the current prototype. With this feedback, a more
robust prototype can be further developed before conducting experiments with
more users.

63

Chapter 7. User Testing & Future Steps

7.2 Test Setup & Proceedings

A group of students was selected to fulfill tasks that mimicked the fast food
scenario given in chapter 5. Some of the students had developed with Tiles
before, although only in a textual and programmatic manner, while others
had no experience in programming for tile squares. Students with a technical
background were chosen as they were more likely to articulate their concerns
with the prototype itself in terms that could be easily reduced to software
requirements.

The tasks given to the students ranged from simple to complex. Students had
to:

1. Create a sequence of two interactions (turning on the grill)

2. Add a time limit to the second interaction (simulate when the food is
cooked)

3. Create four new interactions to represent adding ingredients with each
interaction having a success output (they could choose the output freely)

4. Add a fail event for the previous four interactions. Use the copy from
previous buttons to quicken your work.

The students were rotated for each of these tasks while the author observed.
Points of interest included how long each student needed to complete a task,
how often they asked the author for an explanation of functionality, and what
actions they performed when given degrees of freedom. In addition to passive
observation, students were encouraged to narrate their feelings on the system
during use. Finally, after all tasks had been completed, a brainstorming session
was held where students could give their thoughts on future functionality of
Tiles Recorder. If the conversation came to a still, the author prepared a set
of questions to generate discussion such as:

• Did the tangible aspect feel useful and realistic?

64

Chapter 7. User Testing & Future Steps

– Would you prefer this aspect over coding by hand or by filling out
forms instead?

• Did you feel that you had enough (or too much) information presented
in the UI?

• Would a graphical interface for selecting outputs (such as a virtual tile)
be useful instead of web forms?

7.3 Feedback and Observations

Overall, the students found the tangible aspect to be innovative and unique.
They expressed that they had never worked with tangible programming before
and agreed that setting up a sequence by interacting with the tiles squares
was much easier than coding by hand. They also found the GUI pleasing, with
the students mentioning that they liked the minimalistic style of the interface.
One student, upon noticing the tile output icons from the Tiles Card Game in
the options menu, expressed that using icons he was familiar with was a good
addition. However, they also noted some potential improvements:

• The activate button needs to be more clear in meaning.

– One student mentioned renaming it to “Go” or “Run”

• Add a tooltip to the copy icon as the icon is not clear without a previous
explanation

• The failure color (“red”) on the interaction chain links was noticeable,
but the blue color for success was hard to see from a distance

• Hiding the success/fail buttons until hovering over them is helpful to pre-
vent information overload, but a summary of added success/fail outputs
would be beneficial once they are created

• The time limit form could be expanded to add a “before” and “after”
limit (after 1 minute but before 10 minutes has elapsed, for example)

65

Chapter 7. User Testing & Future Steps

After discussing the UI, we began brainstorming new functionality that would
allow for the solution to be more expressive. While the author has noted all
suggestions for the sake of completeness, these new, non-core functionalities
would need to be assessed to determine their usefulness for end-users.

Sub-sequencing
The ability to create sub-sequences would reduce the overhead for cre-
ating outputs or timings on each step. For instance, if a user needed
to complete all the steps in a recording within a minute, they’d have
to set individual time limits for each interaction node that added up to
a minute. Having sub-sequences would remove that need and it would
allow for a logical grouping of interactions that isn’t represented by the
current prototype. Sub-sequencing could also be configured so that the
order of the sub-steps don’t matter while the order of the overall sequence
does. This would create a logical AND without needing order.

Branching
If a process deviates in some manner based on user interaction, branching
sequences could be beneficial. Going back to the fast-food example, it
is possible that an order could be wrong and a new set of steps has to
occur. Thus, there needs to be a branching path where (1) the user
interacts with a tile to say that the order is complete and (2) the order
is incomplete and needs more attention. Students noted that it should
also be possible to merge branches to reduce overall visual complexity.
Figure 7.1 provides a mock-up of how a branch in the recording might
look like.

Looping
Another suggestion is that the executor should be able to fall back to a
previous state on fail. Going back to our previous example, one can see
the use of a loop in the case of a wrong order. The sequence would need to
loop back to the beginning of the assembly process in most cases. Figure
7.2 shows how a loop could be represented on the interaction chain.

Aliases
Users also thought it helpful to alias tile names in the app itself. While

66

Chapter 7. User Testing & Future Steps

Figure 7.1: Mock-up of branching functionality

it is currently possible to give tiles aliases (such as “Lettuce”) in the Tiles
Mobile Gateway application, the students still thought it was easier to
have the aliases attached to Tiles Recorder rather than the mobile app.

7.4 Reflection

Overall, it is pleasing that the physical programming/tangible aspect was well-
received and testers thought that using TUIs was more intuitive than using tex-
tual code. There was no critique of the tangible aspect from the students, but
the author did note that the tile squares had some issues with false-positives.
As mentioned in the design chapter (chapter 5), this was a known problem and
was handled by using filters. However, during the execution phase, tiles would
sometimes misfire interactions, causing failures or successes unintentionally.

67

Chapter 7. User Testing & Future Steps

Figure 7.2: Looping

Thresholds for interaction is a problem in general with tangible programming,
and hopefully future versions of the tile squares’ firmware will allow for more
consistent recognition of user interactions.

As for the visual aspects, it appears that, if the suggested functionality from the
students is implemented, Tiles Recorder will become more involved in visual
programming. As Tiles Recorder stands today, there is more program visual-
isation than visual programming occurring. That is, showing the state of the
program as it executes rather than programming logic or functionality visually.
One can see that with branching, grouping/sub-sequencing, and looping, there
is a need for more diagrammatic controls in order to handle sequence flow. It
is in the author’s opinion that, while diagrammatic programming can be ben-

68

Chapter 7. User Testing & Future Steps

eficial, future research should also explore how these functionalities could be
implemented in a tangible way.

69

8
Conclusion and Future Steps

At the beginning of this research, the author was presented with the problem
of finding a new way to easily create applications for Tiles. In order to solve
this problem, a methodology was created following the principles of design
science research. This methodology included studying the existing literature,
assessing the state-of-the-art, developing a prototype based on the literature
and own research, and testing that prototype.

In chapter 3, a foundation of knowledge was created by researching previ-
ous projects regarding end-user development. This knowledge included defin-
ing who an end-user is and what programming paradigms exists to help ease
development. These paradigms included textual DSLs, visual programming
(including diagrammatic and block-based), physical programming and finally
programming by example. This understanding of end-users and paradigms was
then translated into end-user development and IoT domains. A look at the
state-of-the-art for end-user development in IoT was presented and examples

70

Chapter 8. Conclusion and Future Steps

such as Node-Red and IFTTT were highlighted.

Chapter 4 took the knowledge from the literature review and examined how
Tiles differed from traditional IoT applications. The needs of Tiles were com-
pared to the state-of-the-arts in order to find a gap between what is available
today and what is missing due to the unique aspects of Tiles. The interactivity
of tiles squares was particularly noted and was the major factor in determining
to go with a mixed-paradigm approach between program visualisation, physi-
cal programming, and programming by example. The literature review along
with the discussion of their relevance to Tiles sufficiently covers SRQ1 (What
aspects of Tiles are unique for its domain in IoT and for application devel-
opment?)and SRQ2 (How do current tools and programming paradigms fulfill
the requirements for development with Tiles?).

With a set of paradigms selected, chapter 5 introduces the reader to Tiles
Recorder, a prototype for developing Tiles applications. Included in the de-
sign was a discussion regarding what niche Tiles Recorder fits and how the
cognitive dimensions framework could be applied to the designed application.
Chapter 6 goes over how the prototype was actually implemented as well as giv-
ing an overview of the code. Being that a large portion of the software’s value
is graphical, an overview of the UI is included. Finally, chapter 7 summarises
user testing that was performed with the implemented prototype. Users gave
feedback on both the UI and how they felt about the overall concept of pro-
gramming by interacting with physical tiles in their environment. With the
prototype and testing, SRQ3 (How can the paradigms best be used to create
a tool or language for Tiles?) is answered.

User testing also serves as a launching point for future research. The imme-
diate next steps would involve implementing the desired UI changes as rec-
ommended by the testing group. Next, an evaluation of the usefulness of the
suggested functionalities could be performed. Once the prototype has been
enhanced, further field testing within various domains with more users would
be advisable.

71

Bibliography

[1] B.A. . Nardi and J.R Miller. An ethnographic study of distributed prob-
lem solving in spreadsheet development. In An ethnographic study of
distributed problem solving in spreadsheet development. ACM Press, 1990.

[2] H. Asand and AMørch. Super users and local developers: the organization
of end user development in accounting company. JOEUC, 18, 2006.

[3] Barbara Rita Barricelli and Stefano Valtolina. Designing for End-User
Development in the Internet of Things, pages 9–24. Springer International
Publishing, Cham, 2015.

[4] Susanne Bødker. When second wave hci meets third wave challenges. In
Proceedings of the 4th Nordic Conference on Human-computer Interac-
tion: Changing Roles, NordiCHI ’06, pages 1–8, New York, NY, USA,
2006. ACM.

[5] M. F. Costabile, D. Fogli, P. Mussio, and A Piccinno. End-user develop-
ment: the software shaping workshop approach. End-User Development,
pages 183–205, 2006.

[6] A. Cypher. Watch what i do: Programming by demonstration. The MIT
Press, 1993.

[7] G. Fischer. Domain-oriented design environments. Automated Software
Engineering, 1(2):177–203, 1994.

[8] Gerhard Fischer, Elisa Giaccardi, Yunwen Ye, Alistair G Sutcliffe, and
Nikolay Mehandjiev. Meta-design: a manifesto for end-user development.
Communications of the ACM, 47(9):33–37, 2004.

72

Bibliography

[9] T.R.G. Green and M. Petre. Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework. Journal of Visual
Languages & Computing, 7(2):131 – 174, 1996.

[10] Adam Greenfield. Everyware: The dawning age of ubiquitous computing.
New Riders, 2010.

[11] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswam. Internet of things (iot): A vision, architectural elements,
and future directions. Future Generation Computer Systems, 29(1645-
1660):11, jan 2013.

[12] Alan R. Hevner. Design science in information systems research1. MIS
Quarterly, 28:75–105, mar 2004.

[13] Alan R. Hevner. A three cycle view of design science research. MIS
Quarterly, 19, jan 2007.

[14] Michael S. Horn, Erin Treacy Solovey, R. Jordan Crouser, and Robert J.K.
Jacob. Comparing the use of tangible and graphical programming lan-
guages for informal science education. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’09, pages
975–984, New York, NY, USA, 2009. ACM.

[15] Steven Houben, Connie Golsteijn, Sarah Gallacher, Rose Johnson, Saskia
Bakker, Nicolai Marquardt, Licia Capra, and Yvonne Rogers. Physikit:
Data engagement through physical ambient visualizations in the home. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems, CHI ’16, pages 1608–1619, New York, NY, USA, 2016. ACM.

[16] Hiroshi Ishii. Tangible bits: Beyond pixels. In Proceedings of the 2Nd
International Conference on Tangible and Embedded Interaction, TEI ’08,
pages xv–xxv, New York, NY, USA, 2008. ACM.

[17] Johnson and Foote. Designing reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, jul 1988.

[18] Mike Kuniavsky. Smart things: ubiquitous computing user experience de-
sign. Elsevier, 2010.

73

Bibliography

[19] Monica Maceli and Michael E. Atwood. From human crafters to human
factors to human actors and back again: Bridging the design time - use
time divide. In Proceedings of the Third International Conference on
End-user Development, IS-EUD’11, pages 76–91, Berlin, Heidelberg, 2011.
Springer-Verlag.

[20] S. Mora, F. Gianni, and M. Divitini. Rapiot toolkit: Rapid prototyping
of collaborative internet of things applications. In 2016 International
Conference on Collaboration Technologies and Systems (CTS), pages 438–
445, Oct 2016.

[21] Simone Mora, Monica Divitini, and Francesco Gianni. Tiles: An inventor
toolkit for interactive objects. The International Working Conference on
Advanced Visual Interfaces AVI, 29, jun 2016.

[22] Simone Mora, Francesco Gianni, and Monica Divitini. Tiles: A card-
based ideation toolkit for the internet of things. In Proceedings of the
2017 Conference on Designing Interactive Systems, DIS ’17, pages 587–
598, New York, NY, USA, 2017. ACM.

[23] B. A. Myers, S. E. Hudson, and R. Pausch. Past, present and future of
user interface software tools. ACM Transactions on Computer Human
Interaction, 7:3–28, 2000.

[24] Brad A. Myers. Taxonomies of visual programming and program visual-
ization. sep 1989.

[25] Allan Paivio. Mental Representations: A Dual Coding Approach, vol-
ume 9. Oxford Psychology Series, 1986.

[26] JF Pane. A Programming System for Children that is Designed for Us-
ability. PhD thesis, Carnegie Mellon Univeristy, 2002.

[27] JOHN F. PANE, CHOTIRAT ”ANN” RATANAMAHATANA, and
BRAD A. MYERS. Studying the language and structure in non-
programmers’ solutions to programming problems. Technical report,
Computer Science Department and Human Computer Interaction Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA, Computer

74

Bibliography

Science Division, EECS University of California, Berkeley Berkeley, CA
94720-1776 USA, dec 2002.

[28] K. Popper. The Logic of Scientific Discovery. Routledge, Taylor & Francis,
1959.

[29] Jennifer Rowley and Frances Slack. Conducting a literature review. Man-
agement Research, 27(6), 2004.

[30] Orit Shaer and Eva Hornecker. Tangible user interfaces: Past,
present, and future directions. Found. Trends Hum.-Comput. Interact.,
3(1–2):1–137, January 2010.

[31] B. Shneiderman. Leonardo’s Laptop: Human Needs and the New Com-
puting Technologies. MIT Press, 2002.

[32] Andrew Cyrus Smith, Nomusa Dlodlo, and Nobert Jere. Towards an in-
ternet of things tangible program environment supported by indigenous
african artefacts. In Proceedings of the First African Conference on Hu-
man Computer Interaction, AfriCHI’16, pages 176–181, New York, NY,
USA, 2016. ACM.

[33] Tiago Boldt Sousa. Dataflow programming concept, languages and appli-
cations.

[34] RH Trigg, TP Moran, and FG Halasz. Adaptibility and tailorability in
notecards. In INTERACT. Elsevier Science Publishers, 1987.

[35] Todd Zaki Warfel. Prototyping: A Practitioner’s Guide. Rosenfield Media,
nov 2009.

75

Appendices

76

A | Code Repository

The code used to develop the prototype may be found on GitHub at the
following link: https://github.com/dasatcher/tilesRecorder

How to Install and Run

You’ll need first install both NodeJS and NPM. After installing these two sys-
tem dependencies and cloning the repository, you’ll need to run two commands
to install the project dependencies.

From the base directory of the project, run:

npm -install

This will install all dependencies for the application. Next, run:

npm run build

This will build the application into the public folder. Finally, run:

npm start

This will run the application on localhost:3000

Note: Using the application requires Tiles squares as well as the Tiles gateway
application.

77

https://github.com/dasatcher/tilesRecorder

B | Glossary

Design Science A set of cycles making the design science research method-
ology. Includes a relevance cycle from field testing, a design science cycle
for building and testing design artifacts, and a rigor cycle for grounding
the design of artifacts.

Domain-specific-language A language that is limited in expressive power
to a certain domain. HTML is a DSL of XML because HTML is simply
XML regeared for the web domain.

DODEs Domain-oriented design environments. Visual representation of do-
main knowledge used in visual programming.

EUD, EUP, EUSE End-user development, end-user programming, and end-
user software design. EUD is for describing the actions end-users take
to modify software or creating new software artifacts. EUP is just the
actions taken to create new software artifacts while EUSE concerns itself
with the quailyt of software that end-users create.

IoT Internet of things. Networked devices that sense from their environment
and each other.

MQTT Lightweight messaging protocol often used for transmitting messages
between IoT devices.

Node Interaction Chain In Tiles Recorder, the node interaction chain is
the list of nodes (interactions) that is displayed under the recording but-
ton.

78

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Definition
	Research questions
	Methodology
	Results

	Tiles
	What is Tiles?
	Tiles squares
	Tiles cloud
	Tiles gateway

	Tiles Card Game

	Literature
	End-User IoT Development
	Defining the End-User for End-User Development
	Defining End-User Development
	EUD general concepts

	End-User development paradigms
	Textual programming paradigm
	Visual paradigm
	Visual programming vs program visualisation

	Physical paradigm
	Programming by example

	Why EUD for IoT?
	EUD paradigms for IoT
	Data-mashups and rule-based systems
	Visual and rule-based challenges
	IoT & Physical programming
	Physical programming challenges

	EUD and Tiles
	Unique Aspects of Tiles
	EUD Criterion for Tiles

	Recommended paradigms for Tiles EUD
	How current technologies fit Tiles

	Prototype Design
	Main Idea
	Why build a prototype?
	Target Audience
	Explanation of System
	Software Components
	Scenarios of use
	Learning a process
	Making a game

	Niche in EUD for IoT

	Prototype Implementation
	Looking at the UI
	Implementation Details
	Project structure
	Server implementation
	Client implementation
	Recorder
	Event
	Option Window
	Executor
	Response Classes

	User Testing & Future Steps
	Why Perform Testing?
	Test Setup & Proceedings
	Feedback and Observations
	Reflection

	Conclusion and Future Steps
	Bibliography
	Appendices
	Code Repository
	Glossary

