
Extending the TILES Toolkit - from
Ideation to Prototyping

Anders Riise Mæhlum

Master of Science in Computer Science

Supervisor: Monica Divitini, IDI
Co-supervisor: Simone Mora, IDI

Department of Computer Science

Submission date: June 2017

Norwegian University of Science and Technology

I

Abstract

Internet of Things is a term that is slowly working its way into people’s vocabulary.

The steadily decline in hardware prices is making sensors and actuators more

accessible, and embedded hardware devices can be acquired for almost nothing. The

TILES toolkit is a hardware and software platform that enables IoT application

prototyping, using the custom TILES Squares as hardware devices for interaction with

the real world. The TILES toolkit provides several layers of abstractions by hiding the

communication and hardware complexities from the application developers. The

TILES toolkit has successfully established a fundamental infrastructure with which

non-experts and experts alike can prototype their IoT applications. In addition, the

TILES Card ideation process has been developed to enable non-experts to express their

creativity by iteratively expand their own application ideas. The TILES toolkit,

however, has failed to provide tools enabling non-experts to transition from ideation

to prototyping without help and guidance from toolkit experts. At the same time, the

toolkit provides no means for the expert users to extend and customize the toolkit for

their special application scenarios.

The research questions defined for this project are twofold. First, they put focus on the

transition from the TILES Card ideation phase to application prototyping by non-

experts, and their ability to rapidly prototype their application ideas. Secondly, they

address the needs of expert users in customizing and extending the system with

additional interfaces and hardware capabilities for creating a tailored toolkit for special

usage areas. These questions are answered in this report through requirement analysis,

design and creation to extend the TILES toolkit and evaluation of the extended system

together with reviewing literature to assert the innovativeness of the work performed.

During this project, two new processes have been defined for supporting both non-

experts and expert users in their TILES project. The requirement specification for the

extended TILES toolkit resulted in an extensive modification of the implementation of

the TILES Cloud and a new and improved web portal for the toolkit. As evaluation,

two workshops with non-experts and a focus group with expert users were conducted.

These evaluations have provided important insights into the needs and usage patterns

of both types of users, and served as an evaluation and verification of the requirements

and design developed during this research project. The new tools have been added to

the TILES toolkit and will enable users to use the TILES toolkit for prototyping IoT

applications and extend the toolkit for a variety of application domains.

III

Sammendrag

Tingenes internett (IoT) er en term som sakte men sikkert er i ferd med å bli en del av

vårt vokabular. De stadig synkende prisene på maskinvare og sensorer gjør at vi i dag

kan anskaffe dedikerte datamoduler for nesten ingenting. TILES toolkit eller TILES

verktøykasse er en kombinert maskinvare- og programvareplattform som gjør det

mulig å utvikle IoT prototypapplikasjoner ved å bruke TILES Square som maskinvare

for å detektere hendelser i den virkelige verden. TILES verktøykasse består av flere lag

med abstraksjoner som skjuler kompleksiteten med kommunikasjonsprotokoller og

maskinvare for utviklere. En grunnleggende infrastruktur, som har muliggjort

utvikling av IoT-applikasjoner utført av utviklere både med og uten erfaring, har blitt

implementer i verktøykassen. I tillegg har TILES Cards, et kortspill, blitt utviklet som

et verktøy som gjør at selv brukere uten kunnskap og erfaring med IoT kan utrykke sin

kreativitet ved å systematisk bruke kortene til å definere IoT-applikasjoner. På den

annen side så finnes det svakheter med TILES toolkit. Overgangen fra idemyldring

med TILES Cards til utvikling av prototyper med verktøykassen er fremdeles

komplisert og krever veiledning fra TILES-eksperter. I tillegg finnes det ingen

mulighet for erfarne brukere å utvide og skreddersy systemet til å brukes i mer

spesifikke applikasjonsdomener.

Forskningsspørsmålene utarbeidet i dette prosjektet er todelt. For det første legger de

vekt på overgangen fra ideutviklingsfasen til prototypfasen utført av ikke-eksperter og

deres evne til å raskt lage prototyper av sine idéer. For det andre så adresserer de

erfarne brukeres behov med å legge til ny funksjonalitet i maskin-, og programvare for

å bruke TILES i spesifikke bruksområder. Disse spørsmålene vil besvares i denne

oppgaven gjennom analyse av kravspesifikasjon, design og utvikling for å utvide

verktøykassen, evaluering av det utvidede systemet og analyse av relevant litteratur.

I dette prosjektet har to nye prosesser for å støtte både erfarne og ikke-erfarne brukere

i deres bruk av systemet blitt introdusert. Kravspesifikasjonen av det nye systemet har

medført en omfattende endring av systemet og en ny og bedre nettportal har blitt

utarbeidet. Som evaluering har to brukerstudier blitt gjennomført for ikke-eksperter og

en fokusgruppe med ekspertbrukere har blitt organisert. Disse to rundene med

evaluering har gitt et viktig innblikk i behov og brukermønstre til både erfarne og ikke-

erfarne brukere, og har hjulpet til å verifisere kravspesifikasjonen av det nye og

forbedrede systemet. Den nye og forbedrede TILES verktøykassen vil gjøre det mulig

å utvikle IoT prototypapplikasjoner, samt utvide verktøykassen til spesifikke formål.

V

Contents

Abstract I

Sammendrag III

Contents V

List of Figures XI

List of Tables XIII

List of Code snippets XV

Abbreviations XVII

1 Introduction 1

1.1 Motivation .. 1

1.2 Context ... 2

1.3 Problem elaboration ... 2

1.4 Research Questions .. 3

1.5 Research Method .. 3

1.6 Results .. 5

1.7 Outline .. 6

2 TILES toolkit 7

2.1 Ideation phase .. 7

2.2 Prototyping phase ... 9

2.2.1 Toolkit architecture ... 9

3 From Ideation to Prototyping 15

3.1 TILES toolkit Processes ... 15

3.1.1 TILES toolkit Application Development Process.. 16

3.1.2 TILES toolkit Extension Process ... 19

3.2 Toolkit Documentation Section ... 20

3.2.1 Outline .. 21

4 Requirement Specification 25

4.1 Application appropriation .. 26

4.2 Rule Engine Development Environment ... 28

4.3 TILES toolkit IDE.. 29

4.4 TILES Cloud web portal .. 30

5 Design 33

5.1 Users .. 33

5.2 TILES toolkit revised ... 34

5.2.1 Requirement allocation .. 35

5.3 TILES Cloud web portal .. 36

6 Implementation 39

6.1 Application Appropriation ... 39

6.1.1 TilesAscoltatore .. 39

6.1.2 TilesApi .. 41

6.1.3 MongoDB .. 41

6.1.4 Requirement Rationale ... 42

6.2 Rule Engine Environment .. 46

6.2.1 MongoDB .. 47

6.2.2 REST API .. 48

6.2.3 Requirement Rationale ... 49

6.3 TILES toolkit IDE.. 51

6.3.1 Cloud9 ... 51

6.3.2 Background processes .. 52

6.3.3 Requirement Rationale ... 53

7 Evaluation 57

7.1 Non-expert workshops ... 57

7.1.1 Objectives ... 57

7.1.2 Research tools ... 58

7.1.3 Participants ... 60

7.1.4 Setting up and running the workshop .. 60

7.1.5 Results ... 63

7.2 Expert focus group ... 70

7.2.1 Objectives ... 70

7.2.2 Research tools ... 70

VII

7.2.3 Participants ... 71

7.2.4 Setting up and running the focus group ... 71

7.2.5 Results ... 71

7.3 Summary .. 73

8 Related Work 75

8.1 Commercial toolkits ... 75

8.1.1 End-to-end... 76

8.1.2 Partial end-to-end ... 77

8.1.3 Not end-to-end .. 77

8.2 Literature .. 78

8.2.1 BitWear ... 80

8.2.2 Bloctopus ... 80

8.2.3 BRIX ... 81

8.2.4 Functionality vs. Ease of use ... 82

9 Conclusions 83

9.1 Summary of results .. 83

9.1.1 RQ1: How to support rapid prototyping and deployment of IoT applications

using TILES? ... 83

9.1.2 RQ1.1: How to support rapid prototyping of ideas created with TILES

Cards? .. 83

9.1.3 RQ1.2: How to support TILES application development by non-experts? 84

9.1.4 RQ1.2: How to support toolkit extension for expert users with minimal efforts

without breaking development support for non-experts? 84

9.2 Discussion .. 85

9.3 Future work .. 86

9.3.1 Bring TILES to the classroom ... 86

9.3.2 Bring TILES to the market .. 87

9.3.3 Study In-the-wild ... 87

9.3.4 Toolkit improvements ... 87

References 91

Appendix A 95

A Deploying TILES Cloud with Cloud9 as TIDE 95

A.1 About DigitalOcean ... 95

A.2 Setting up droplets in DigitalOcean ... 95

A.2.1 Install Node.js and npm on Ubuntu via terminal .. 96

A.2.2 Cloning TILES Cloud git repository .. 96

A.2.3 Installing MongoDB ... 96

A.2.4 Running Node.js server as a service using PM2 .. 97

A.3 Installing Cloud9 core .. 98

Appendix B 101

B TILES toolkit Documentation Section 101

B.1 Getting Started ... 101

Introduction to the documentation .. 101

Getting Started .. 102

TILES toolkit ... 103

Development Environments .. 104

TILES Square Primitives .. 107

B.2 App. Development Process .. 108

0. Process Description ... 108

1. Ideation Phase ... 110

2. Create User .. 111

3. Create Application ... 111

4. List Physical Objects ... 112

5. Launch Dev. Env. .. 114

6. Code Application .. 114

7. Test Application ... 115

8. Iterate step 6-7 .. 118

B.3 JavaScript API ... 118

1. Introduction ... 118

2. EventReader API .. 120

3. Map HUMAN ACTIONS .. 123

4. Map FEEDBACK .. 124

5. Map SERVICES .. 126

6. Example Scenario 1 .. 128

7. Example Scenario 2 .. 130

B.4 Toolkit Extension Process.. 132

0. Process Description ... 132

1. Device Development .. 133

2. Library Development ... 136

3. API Deployment ... 138

4. TILES Card Deck Creation ... 139

B.5 Rule Engine API .. 139

1. Introduction ... 139

2. Map HUMAN ACTIONS .. 141

3. Map FEEDBACK .. 141

IX

4. MAP SERVICES .. 142

5. Example scenario ... 144

XI

List of Figures

Figure 1-1, Design Science Research, Knowledge Base (adopted from [9]) 4

Figure 1-2, Design Science Research, Environment (adopted from [9]) 4

Figure 1-3, Model of The Research Process (adapted from [25]) 5

Figure 2-1, TILES Idea Generator Board Credit: Simone Mora 8

Figure 2-2, TILES Cards Credit: Simone Mora ... 9

Figure 2-3, TILES architecture overview with “user bar” [23] 10

Figure 2-4, (a) RFDuino shields, (b) Connected RFDuino shields forming first TILES

Square prototype .. 11

Figure 2-5, TILES Square, RFDuino, embedded hardware [20] 11

Figure 3-1, TILES toolkit Application Development Process 16

Figure 3-2, TADP object representation flow .. 18

Figure 3-3, TILES toolkit Extension Process ... 20

Figure 4-1, Old TILES Cloud web portal UI (a) All users, (b) Specific user with TILES

Squares, (c) Specific TILES Square ... 30

Figure 5-1, TILES toolkit Use Case Diagram .. 34

Figure 5-2, Extended TILES toolkit system architecture ... 35

Figure 5-3, Toolkit architectural element requirement allocation 36

Figure 5-4, TILES Cloud web portal page graph ... 37

Figure 5-5, TILES Cloud web portal main navigation panel 37

Figure 7-1, Workshop application storyboard .. 61

Figure 7-2, Workshop questionnaire answers, regarding the documentation 66

Figure 7-3, Workshop questionnaire answers, regarding the prototyping phase 67

Figure 7-4, Workshop questionnaire answers, regarding the scenarios 68

Figure 7-5, Questionnaire answers, workshop 1, regarding the tools 68

Figure 7-6, Questionnaire answers, workshop 1, general .. 69

Figure A-1, DigitalOcean droplet configuration .. 96

Figure B-1, What you need for IoT prototyping with the TILES toolkit 102

Figure B-2, Layered architecture of the TILES toolkit .. 103

Figure B-3, Start hosting of the cloud9 web IDE for the application 104

Figure B-4, Cloud9 web IDE configured with TILES JavaScript API 105

Figure B-5, Rule Engine Development Environment .. 107

Figure B-6, RapIoT toolkit example primitives ... 108

Figure B-7, TILES toolkit Application Development Process (TADP) 110

Figure B-8, TILES Cards ... 110

Figure B-9, Creating a new user account ... 111

Figure B-10, List of Applications in TILES Cloud web portal................................ 112

Figure B-11, Add application form in TILES Cloud web portal 112

Figure B-12, THINGS Cards from TILES Cards .. 113

Figure B-13, Application details, with two items .. 113

Figure B-14, Cloud Development Environment .. 114

Figure B-15, Cloud Development Environment .. 116

Figure B-16, Log into app with server address, username and port number 116

Figure B-17, List of available applications in gateway.. 117

Figure B-18, List of items in application ... 117

Figure B-19, Tap Watch ... 123

Figure B-20, Tilt Headgear .. 124

Figure B-21, Change color on Plant ... 125

Figure B-22, Vibrate Refrigerator .. 125

Figure B-23, Tilt Watch to send Email (using IFTTT) .. 128

Figure B-24, TILES toolkit Extension Process .. 133

Figure B-25, Garage Control System application using Rule Engine Dev. Env. 140

Figure B-26, Add new TILE rule ... 141

Figure B-27, TILE rule form .. 141

Figure B-28, TILE rule form divided into HUMAN ACTIONS and FEEDBACK 141

Figure B-29, TILE rule form divided into HUMAN ACTIONS and FEEDBACK 142

Figure B-30, Defined TILE rules with HUMAN ACTIONS and FEEDBACK 142

Figure B-31, Add IFTTT personal key to Rule Engine application 142

Figure B-32, IFTTT rule form1 ... 143

Figure B-33, Defined IFTTT rules with HUMAN ACTIONS and SERVICE 143

Figure B-34, IFTTT rule form2 ... 143

Figure B-35, Defined IFTTT rules with SERVICE and FEEDBACK 143

Figure B-36, Rule Engine example program definition ... 145

XIII

List of Tables

Table 2-1, TILES Square interaction primitives [23] .. 12

Table 3-1, TILES toolkit Documentation Section outline ... 23

Table 4-1, System requirements [23] ... 26

Table 4-2, Application appropriation requirements. .. 27

Table 4-3, Rule Engine Requirements. .. 28

Table 4-4, TILES toolkit IDE requirements. .. 29

Table 4-5, URS of TILES Cloud web portal .. 31

Table 6-1, AR1 implementation files ... 42

Table 6-2, AR2 implementation files ... 43

Table 6-3, AR3 implementation files ... 43

Table 6-4, AR4 implementation files ... 44

Table 6-5, AR5 implementation files ... 44

Table 6-6, AR6 implementation files ... 44

Table 6-7, AR8 implementation files ... 45

Table 6-8, AR9 implementation files ... 45

Table 6-9, AR10 implementation files ... 45

Table 6-10, AR11 implementation files ... 46

Table 6-11, RR1 implementation files ... 49

Table 6-12, RR2 implementation files ... 50

Table 6-13, RR3 implementation files ... 50

Table 6-14, RR5 implementation files ... 51

Table 6-15, IR3 implementation files .. 54

Table 6-16, IR3 implementation files .. 54

Table 6-17, IR4 implementation files .. 55

Table 6-18, IR5 implementation files .. 55

Table 6-19, IR7 implementation files .. 56

Table 7-1, Non-expert survey questions .. 59

Table 7-2, Non-expert workshop protocol ... 62

Table 8-1, Commercial toolkits for IoT prototyping [23]. Credit: Simone Mora 76

Table 8-2, Related literature for IoT and prototyping toolkits Credit: Simone Mora 79

Table B-1, TILES Square interaction primitives ... 108

Table B-2, Steps of TADP ... 109

Table B-3, Steps of TEP... 133

XV

List of Code snippets

Code snippet 6-1, TilesAscoltatore application topic subscription 40

Code snippet 6-2, TilesAscoltatore prototype unsubscribe .. 41

Code snippet 6-3, VirtualTiles MongoDB databasemodel .. 42

Code snippet 6-4, Applications MongoDB databasemodel 42

Code snippet 6-5, Tilehooks, MongoDB database model .. 47

Code snippet 6-6, Ifttthooks, MongoDB database model .. 48

Code snippet 6-7, Primitives, MongoDB database model ... 48

Code snippet 6-8, REST API, POST service, Create new Tilehook 49

Code snippet 6-9, Create Workspace helper function .. 53

Code snippet 7-1, First workshop, application code group A 64

Code snippet 7-2, First workshop, application code group B 65

Code snippet 7-3, EventReader extension for LED strip, group A 72

Code snippet 7-4, EventReader extension for LED strip, group B 73

Code snippet A-1, Installing Node.js and npm in Ubuntu VM 96

Code snippet A-2, Cloning git TILES repository in Ubuntu VM 96

Code snippet A-3, Installing MongoDB in Ubuntu VM .. 97

Code snippet A-4, Edit mongodb.service in Ubuntu VM .. 97

Code snippet A-5, mongodb.service configuration file in Ubuntu VM 97

Code snippet A-6, Starting MongoDB as a service ... 97

Code snippet A-7, Starting server with PM2 ... 97

Code snippet A-8, Installing prerequisites for Cloud9 core 98

Code snippet A-9, Cloning Cloud9 core and install... 98

Code snippet A-10, apache2 configuration for Cloud9 .. 98

Code snippet A-11, Starting an instance of Cloud9 server (TIDE) 98

Code snippet B-1, tiles.js template file explained .. 119

Code snippet B-2, Initializing EventReader API ... 120

Code snippet B-3, EventReader API example ... 121

Code snippet B-4, Tile methods example .. 122

Code snippet B-5, TileClient example ... 123

Code snippet B-6, Tap Watch example.. 123

Code snippet B-7, Tilt Headgear example ... 124

Code snippet B-8, Change color on Plant example.. 125

Code snippet B-9, Vibrate Refrigerator example ... 125

Code snippet B-10, Initialize PostmanClient API.. 126

Code snippet B-11, PostmanClient example .. 126

Code snippet B-12, Initialize IFTTTClient API .. 127

Code snippet B-13, IFTTTClient example... 127

Code snippet B-14, Tilt Watch to send Email example ... 128

Code snippet B-15, JavaScript example scenario 1 ... 130

Code snippet B-16, JavaScript example scenario 2 ... 132

Code snippet B-17, Firmware code, set output primitive LED to specific color 135

Code snippet B-18, read double tap in EventReader API .. 137

Code snippet B-19, getTile in EventReader API ... 137

Code snippet B-20, Placeholders of template files .. 138

XVII

Abbreviations

API Application Programming Interface

BLE Bluetooth Low Energy

CRUD Create, Read, Update, Delete

CSS Cascading Styling Sheet

DIY Do It Yourself

DSL Domain Specific Language

GUI Graphical User Interface

HTML Hypertext Modeling Language

HTTP Hypertext Transfer Protocol

ID Identifier

IDE Integrated Development Environment

IP Internet Protocol

IoT Internet of Things

JS JavaScript

JSON JavaScript Object Notation

LED Light Emitting Diode

MQTT Message Queuing Telemetry Transport

NTNU Norwegian University of Science and Technology

OS Operating system

REST Representational State Transfer

RGB Red Green Blue

RQ Research Question

SDK Software Development Kit

TADP TILES toolkit Application Development Process

TCP Transmission Control Protocol

TDS TILES toolkit Documentation Section

TEP TILES toolkit Extension Process

TIDE TILES toolkit Integrated Development Environment

UI User Interface

URL Uniform Resource Locator

UX User Experience

1

1 Introduction

The TILES toolkit1 is a software and hardware framework for designing and

implementing Internet of Things applications. The toolkit is composed of design tools

supporting brainstorming on how to use IoT technology in everyday activities,

hardware components for detecting physical events in the real world, gateway and

middleware to translate the physical triggers into a digital representation of detected

physical events, development tools for developing IoT applications and development

support tools to enable people with little programming experience to develop fully

functional IoT applications. All throughout the TILES Project, the needs and abilities

of non-experts in prototyping IoT applications for real object augmentation has had an

essential role. The previously concluded specialization project [23] laid the foundation

of this thesis project with an introduction to, and thorough evaluation of, the TILES

toolkit through conducting several user studies organized for non-experts. This thesis

project will be devoted to extend the TILES toolkit and implement new components

based on the results and discoveries of the specialization project in order to build a

more robust toolkit with a higher degree of customization, in addition to enable the

toolkit to be self-supporting by providing the necessary tools to be used without expert

users.

1.1 Motivation

Prototyping Internet of Things systems is a complex process composed of many

complicated procedures. It requires knowledge of embedded hardware in addition to

programming skills and experience with higher level languages for application

development. The knowledge and experience required deprive non-experts of the

ability to prototype IoT applications without guidance from programming experts. The

TILES Project aims at developing tools to facilitate the design, prototyping,

implementation and deployment of IoT systems for non-experts without reducing

application potential or diminish the application capabilities.

In early phases of the TILES Project a prototype toolkit infrastructure was

implemented [28], and later extended and evaluated [11] [23]. Building on the

1 http://tilestoolkit.io/

http://tilestoolkit.io/

2 1.2. Context

groundwork for this project, it is time to fulfill the initial goal of the TILES Project; to

allow non-experts to create complex and distributed physical interfaces based on

everyday object augmentation. In achieving this the TILES toolkit requires a

substantial lift from an early toolkit prototype into a mature set of tools that works

seamlessly together to accomplish the common goal of supporting non-experts in IoT

application prototyping.

1.2 Context

This thesis is part of the TILES Project at the Norwegian University of Science and

Technology. The TILES toolkit, developed for the TILES Project, aims at facilitating

development of IoT applications for people with little or no programming experience.

Previous work with the toolkit has successfully established a working infrastructure

for device management and communication through abstraction of responsibilities into

three layers: TILES Square, TILES Gateway and TILES Cloud [28]. Several studies

have previously been conducted in parallel within the TILES Project [23] [30] to

determine the capabilities of the TILES toolkit, and to identify future research

opportunities.

The specialization project [23] has evaluated the TILES toolkit and defined strength

and weaknesses with the current implementation of the toolkit. It has laid the

groundwork for future research and set the course for the research conducted in this

thesis project. Parallel with this research in the TILES Project, the implementation of

an improved TILES Gateway smartphone app was organized [1] with the goal to add

additional features to the gateway. One of the main requirements for the development

of the new TILES Gateway was to extend the gateway implementation in parallel with

the research explained in this paper to take advantage of the new tools introduced as a

part of this research.

1.3 Problem elaboration

The problem addressed in this thesis originates from the need to bridge the gap

between the TILES toolkit ideation phase and the prototyping phase. The TILES

toolkit card game has been developed to enable non-experts to develop functional IoT

application ideas by expressing their creativity with the tools of the TILES toolkit [19]

[22]. The TILES Cards have been tested and tailored to fit the non-experts need, but

the transition from the ideation phase to the prototyping phase has to be improved. At

the same time, until now non-experts have required a lot of assistance from toolkit

experts in prototyping, testing and deploying their IoT applications. In this report,

these issues are addressed in order to transform the TILES toolkit into a self-supported

system, enabling non-experts to employ the toolkit on their own, with minimal support

from toolkit experts.

1. Introduction 3

Additionally, when extending the TILES toolkit with new capabilities the carefully

constructed facilitation mechanisms of prototyping IoT applications might not be

properly considered and the support for non-experts will be diminished. Therefore,

this thesis will also address the problem of customizing the TILES toolkit in such a

way that the non-expert facilitation mechanisms are kept in the new extended toolkit.

1.4 Research Questions

RQ1. How to support rapid prototyping and deployment of IoT applications using

TILES?

RQ1.1. How to support rapid prototyping of ideas created with TILES Cards?

RQ1.2. How to support TILES application development by non-experts?

RQ1.3. How to support toolkit extension for expert users with minimal efforts

without breaking development support for non-experts?

1.5 Research Method

At the beginning of this research project, the research questions were coined together

with project supervisors based on the current state of the TILES toolkit, the vision for

the TILES Project and the results from the specialization project [23]. The research

questions will be answered in this report by investigating the TILES toolkit through

Design Science Research [9] and review of literature and related work. The related

work chapter will be used in this thesis to assess the innovativeness of the work

conducted in this research. The results and suggested future work from the

specialization project [23] and results of the conducted workshops have also been

considered.

The research conducted in this project had several phases. Starting from the

Knowledge Base constructed during the specialization project, two support processes

were introduced into the TILES toolkit by tapping into the Knowledge Base as

illustrated on Figure 1-1. This cycle used support literature and findings from earlier

research within the TILES Project to construct a structural set of process instructions

to support the usage of the TILES toolkit.

4 1.5. Research Method

Figure 1-1, Design Science Research, Knowledge Base (adopted from [9])

The second, and most extensive phase, was the iterations of Design Science Research

illustrated in Figure 1-2. Here, the extended TILES toolkit was implemented through

several iterations of the Design Cycle. The results and conclusion of the specialization

project was very important in this work as it enabled this project to tap into the

Relevance Cycle very early in the project. Analyzing the results of the workshops from

the specialization project enabled early definition of functional requirements for an

extended TILES toolkit. These requirements were implemented through Build Design

Artifacts & Processes and was iteratively tested and Evaluated by the TILES Gateway

developers [1], which provided constant feedback on the extended TILES toolkit. In

addition, two workshops and a focus group conducted at the end of this project resulted

in two separate iterations tapping into the Environment in order to Evaluate the two

new processes and the extended TILES toolkit.

Figure 1-2, Design Science Research, Environment (adopted from [9])

The Research Process adapted from Oates [25] with my personal process indicated in

red, can be seen in Figure 1-3. This figure highlights the main strategies, the data

generation methods and data analysis methodology applied during this research

project.

1. Introduction 5

Figure 1-3, Model of The Research Process (adapted from [25])

1.6 Results

The main result of this thesis project is the TILES toolkit Application Development

Process and the TILES toolkit Extension Process, which are processes developed to

support both non-experts and expert users in their projects with the TILES toolkit. The

processes and all their steps are detailed in the TILES toolkit Documentation Section,

defined in this research project, which enables users to employ the processes by

following the step-by-step guide hosted on the TILES Cloud web portal. The processes

and the support documentation have been designed to be self-supporting to allow users

to employ them without the need of toolkit experts. The documentation contains

general information, process description and code samples to answer all the questions

a user might have during their projects.

Introducing the processes into the TILES toolkit also required an extensive

improvement of the architecture and implementation of the system. Therefore, this

research project has resulted in several new components and many modifications to

the existing components of the architecture. In addition, a user study conducted as

several workshops and a focus group was organized to test the processes and new

implementation of the TILES toolkit. Finally, this thesis serves as a contribution to the

available literature on the topic of developing prototyping platforms for non-experts.

6 1.7. Outline

1.7 Outline

Chapter 1 has introduced the research of this thesis project. The motivation behind

the research, the context of the project, the overall research questions and the method

of which the research has been conducted is described in this chapter, before an

overview of the results are presented.

Chapter 2 presents an overview of the development phases of the TILES toolkit in

addition to introduce the tools available during the two phases. This chapter represents

the current state of the TILES toolkit as it was prior to this thesis project.

Chapter 3 builds on the concepts introduced in chapter 2 by introducing two new

processes: the TILES toolkit Application Development Process and the TILES toolkit

Extension Process. These processes are user oriented processes, describing how to best

employ the toolkit in a project. The TILES toolkit Documentation Section is also

introduced in this chapter, which is a detailed documentation of the two new processes.

Chapter 4 introduces the requirements for the new extended TILES toolkit supporting

the new processes. The functional requirements are detailed together with some User

Requirement Specifications for guiding the graphical implementation of the extended

toolkit.

Chapter 5 encapsulates the design of the extended TILES toolkit by presenting design

elements for the architectural components of the extended system, together with

requirement allocations in order to map the functional requirements to the components

of the system.

Chapter 6 is dedicated to detail the technical implementation of the extended TILES

toolkit. This chapter contains code snippets, explanation and requirement justification

for every functional requirement of the extended TILES toolkit introduced in the

previous chapter.

Chapter 7 explains the evaluation that was conducted in this research project. Two

independent workshops and a focus groups with their results are presented.

Chapter 8 will present and describe state-of-the-art technology within the field of IoT

development toolkits relevant for this research project. This is the related work section

that will put the research of this project in context with other related research projects.

Chapter 9 concludes this research project by summarizing the report and presenting

the results. The connection between the results and the initial research questions is an

essential part of this chapter. This chapter will also debate the research conducted in

this project, highlighting strength and weaknesses, and suggest topics for further

research within the TILES Project.

7

2 TILES toolkit

The TILES toolkit is defined as “a toolbox to support the iterative process of building

prototypes of interactive objects providing design and prototyping tools” [20].

Employing the TILES toolkit in a project is a two-phase process. The two phases are

the ideation phase and the prototyping phase. This chapter is divided into two sections

devoted to introduce the two phases and the tools available to the users during both

phases of development. The first section, chapter 2.1, will introduce the ideation phase

and the tools available in the TILES toolkit to support it. The second section, chapter

2.2, will similarly introduce the prototyping phase and the tools available to users

during this phase of their projects. The tools introduced in this chapter represents the

current state of the TILES toolkit. In chapter 3, the TILES toolkit is extended with

some important new components that will bind the two phases together to ensure a

smooth transition between the two phases of development.

2.1 Ideation phase

The first phase of developing an application using the TILES toolkit is the ideation

phase. The tool available to users during this phase is the TILES Card game [19]. The

TILES Card game consist of the TILES Idea Generator Board, seen in Figure 2-1, a

variety of TILES Cards, seen in Figure 2-2, and a description of the ideation process

that can be seen at the bottom of the TILES Idea Generator Board. When employed,

the ideation process will systematically guide the non-expert users through several

steps of conceiving an IoT application idea, by enabling the non-experts to express

their creativity by combining multiple TILES Cards and place them on the TILES Idea

Generator Board. The ideation phase has successfully enabled non-experts with no

knowledge of IoT to learn and understand the concept in addition to develop their own

fully functional IoT application idea. The TILES ideation phase has already been the

subject of several research papers and user studies [19] [22] [23] [30]. Therefore, this

thesis will not investigate any further into the ideation phase itself, but focus on the

prototyping phase and the transition between the phases.

8 2.1. Ideation phase

Figure 2-1, TILES Idea Generator Board

Credit: Simone Mora

2. TILES toolkit 9

Figure 2-2, TILES Cards

Credit: Simone Mora

2.2 Prototyping phase

The second phase of developing an IoT application with the TILES toolkit is the

prototyping phase. This phase is intended to provide non-experts with the tools

required to prototype their ideas generated in the ideation phase. The tools available

in the prototyping phase are the TILES Squares, TILES Gateway, TILES Cloud and

TILES Client (client libraries). The specialization project [23] showed how non-expert

users were able to use these tools to prototype their own simple, yet fully functional,

IoT applications in IoT workshops organized by TILES toolkit experts. The following

subsection will provide a technical overview of the components of the TILES toolkit.

In chapter 3 some additional tools will be introduced into the toolkit to support this

phase of the development and the transition between the two phases.

2.2.1 Toolkit architecture

The architecture of the TILES toolkit is divided into three layers with clearly defined

interfaces between the layers. This multilayered software architecture enables using

the different layers for allocating responsibilities of the toolkit. By maintaining clearly

defined interfaces between the layers, the layers can be modified, extended and even

completely exchanged with little or no impact to the other layers of the architecture.

In Figure 2-3, we can see the layers of the TILES toolkit and how they are connected.

We can see that the TILES Squares will communicate with the TILES Cloud through

the TILES Gateway. Client libraries can also be connected with the cloud in order to

run custom code that can interact with squares by sending and receiving events through

10 2.2. Prototyping phase

the layers of the infrastructure. At the bottom of the figure, we can see a user bar,

indicating what type of users will be interacting with the various layers of the

architecture. We can see that application developers will be interacting with the client

libraries and TILES Cloud seen to the left of the figure, while the end user will be

interacting with the TILES Squares and TILES Gateway depicted to the right of the

figure.

Figure 2-3, TILES architecture overview with “user bar” [23]

2.2.1.1 TILES Squares

In the heart of the TILES toolkit, we find the TILES Squares. These squares are small,

embedded hardware devices that can be attached to everyday objects in order to make

them smart. TILES Squares operate as the bridge between the real world and the digital

domain of the TILES application. During the lifetime of the TILES Project, several

prototypes of the TILES Squares have been developed. The first prototype was build

using RFDuino2 shields and can be seen in Figure 2-4. This prototype consist of

nothing more than premanufactured RFDuino shields with a variety of hardware

components that can be plugged together. These shields are excellent tools for

firmware development and research of the capabilities of the TILES Squares and are

still being used during research and extension of the TILES toolkit, but the shields are

bulky and not very user friendly thus not suitable for TILES application prototyping.

2 http://www.rfduino.com/

http://www.rfduino.com/

2. TILES toolkit 11

Figure 2-4, (a) RFDuino shields, (b) Connected RFDuino shields forming first TILES Square

prototype

The latest prototype of the TILES Squares can be seen in Figure 2-5. This new

prototype has the same hardware capabilities as the RFDuino shields above, but the

hardware in the newest prototype is integrated on a single chip. This makes the square

smaller and easier to attach to everyday objects, and together with a 3d-printed case

the circuit hardware becomes less intrusive to the user. The hardware of the TILES

Square consist of an accelerometer and a touch controller for input primitives, and an

LED and haptic transducers for output primitives. The square is powered by a

rechargeable battery, which can be charged with a regular micro USB cable, and it will

communicate with the TILES Gateway over Bluetooth with the BLE transceiver seen

on the circuit board. The latest prototype of the square also features custom extension

ports and an I2C3 port for custom primitives. The I2C port enables a wide variety of

third party low-speed peripherals to be plugged into the TILES Square, and together

with the extension ports they support a high degree of customization for many different

application scenarios, as the Squares can be customized to fit nearly any purpose.

Figure 2-5, TILES Square, RFDuino, embedded hardware [20]

3 https://www.i2c-bus.org/i2c-bus/

https://www.i2c-bus.org/i2c-bus/

12 2.2. Prototyping phase

The TILES Squares are designed such that no application logic is running on the

Squares themselves, but will simply forward all detected events to the connected

TILES Gateway. This abstraction feature enables non-experts to prototype

applications without having to deal with firmware development of the TILES Squares

using the Arduino4 IDE. Table 2-1 shows the interaction primitives implemented in

the latest firmware of the TILES Squares. These primitives are available to non-expert

developers in the client libraries without the need to program the expected behavior

in the firmware, which is an important facilitation measure of the TILES toolkit.

Input primitives

Primitive Degrees of freedom Example mapping

Touch/Tap Single, double Send a command, log a

quantity

Tilt Tilted, not tilted Select a function, binary

switch

Output primitives

Primitive Degrees of freedom Example mapping

LED Light feedback on, blink, fade, off

Supported colors:

>16 000 000

Continuous notification about

the status of process

Haptic feedback Vibration pattern

Supported patterns:

long/burst

Discrete notification about the

status of process

Table 2-1, TILES Square interaction primitives [23]

2.2.1.2 TILES Gateway

Since the TILES Squares are not able to connect directly to the Internet, the gateway

layer is needed between the squares and the cloud infrastructure. The TILES Gateway

layer is developed using Ionic5, Cordova6, a cross-platform development tool for

smartphones. Cordova enables smartphone application development using JavaScript,

CSS and HTML, without the need to be familiar with native programming languages

for iOS7 or Android8. The TILES Gateway features a user interface for connecting to

the TILES Cloud infrastructure, and for discovering and connecting to the TILES

Squares. After connecting to a square, the gateway will be responsible for registering

the square to the cloud server, in addition to subscribe to commands targeting this

specific square.

4 https://www.arduino.cc/
5 https://ionicframework.com/
6 https://cordova.apache.org/
7 https://www.apple.com/ios
8 https://www.android.com/

https://www.arduino.cc/
https://ionicframework.com/
https://cordova.apache.org/
https://www.apple.com/ios
https://www.android.com/

2. TILES toolkit 13

In the gateway layer, communication with the TILES Squares happens over Bluetooth

using the BLE protocol, while communication with the Cloud infrastructure happens

over a standards IP-based internet connection using the MQTT protocol. The gateway

will translate each event between the two protocols, BLE and MQTT, in both

directions. The TILES infrastructure is very flexible with respect to internet

connection, allowing the gateway to communicate through Wi-Fi, mobile

telecommunication, or possibly any other type of internet connection. The only

requirement is that the gateway is able to maintain a steady internet connection in order

to communicate over the MQTT protocol without dropping the connection. An

important limitation of this configuration is the limit on the size of messages supported

by the BLE protocol. This protocol is limited to send only 20 bytes of data [6] per

message, which means that the event and command messages between the Gateway

and Squares must be short and concise.

2.2.1.3 TILES Cloud

The TILES Cloud is a publicly accessible internet server, currently available at IP

178.62.99.218. The server is hosted using DigitalOcean, see Appendix A. The server

software is written in JavaScript using Node.js9, with an HTTP interface at port 300010.

The TILES Cloud has an MQTT broker, allowing clients to connect for transmitting

real-time events. MQTT is a publish-subscribe based, lightweight messaging protocol

that runs on top of TCP/IP. The MQTT implementation of the server enables clients

to subscribe and publish to topics, and the server will be responsible for delivering the

messages to the subscribing clients. The topics are composed from the unique id of the

user and the unique id of the TILES Squares. This enables clients to publish and

subscribe to events to and from specific TILES Squares without knowing where they

are or how the event will be delivered over the Internet. A gateway receiving an input

primitive event form a TILES Square will publish a message to the MQTT broker

together with the respective topic, and the broker will be responsible to distribute the

message to all subscribing clients.

The HTTP interface of the TILES Cloud server is used for administration purposes.

By navigating to the server URL, the user will be able to browse through the registered

users and the TILES Squares registered to them. Users are also able to register

webhooks to their squares, which will initiate HTTP POST request on incoming events

from the configured TILES Squares.

2.2.1.4 TILES Client

Even though all events are processed by the MQTT broker of the cloud infrastructure,

the cloud offers no means of application development other than support for registering

9 https://nodejs.org/en/
10 http://178.62.99.218:3000/

https://nodejs.org/en/
http://178.62.99.218:3000/

14 2.2. Prototyping phase

webhooks to be triggered at incoming events. This means that the TILES toolkit needs

a fourth layer for implementing application logic, hence the TILES Client.

The TILES Client is a JavaScript SDK for TILES application development. The SDK

enables developers to write application logic in pure JavaScript, and both run and

debug the code using Node.js. The SDK contains a number of JavaScript APIs for

facilitating the development process of TILES applications. Code templates explaining

the APIs are also provided in the SDK, allowing non-experts to quickly get started

with prototyping their TILES applications. The JS APIs are subject of the user study

explained in the specialization project [23].

Like the TILES Gateway, the TILES Clients will connect to the MQTT broker of the

TILES Cloud. The JS APIs provided in the TILES Client JavaScript SDK provide code

templates for connecting to the broker with only a few lines of code. The TILES Client

will be subscribing to events of the TILES Squares, and will be able to process and

react to the events.

15

3 From Ideation to Prototyping

In the previous chapter, the two phases of development with the TILES toolkit were

introduced and the tools available during the phases were explained. A problem with

the current structure of the TILES toolkit is that there is a gap in the available tools in

the transition from the ideas generated in the ideation phase and the applications

developed during the prototyping phase. The ideation phase, as explained in chapter

2.1, has defined a systematic process for guiding the users through the steps of

generating an idea. Besides the actual tools for application prototyping, the TILES

toolkit must offer a prototyping process, analogous to that of the idea generation, in

order to drive the development forward and allow non-experts to effortlessly take part

in the prototyping phase. Currently, employing the TILES toolkit in application

prototyping requires toolkit experts to provide documentation and guidance to non-

experts during the whole phase.

In this chapter, some additional tools will be introduced into the TILES toolkit, which

will enable non-experts to effortlessly take part in the whole development, both in

ideation and prototyping, of IoT applications. Construction of the new tools elaborated

in this chapter, was performed iteratively through an initial set of iterations of the

Design Cycle seen in Figure 1-1, Design Science Research, Knowledge Base (adopted

from [9]), where results of the specialization project [23] enabled early iterations of

tapping into the Knowledge Base through the Rigor Cycle.

3.1 TILES toolkit Processes

In order to support the transition from ideation to prototyping in the TILES toolkit, the

TILES toolkit Application Development Process (TADP) was introduced into the

toolkit. A major concern of the TILES Project has always been on supporting the non-

expert developer in transforming ideas into IoT application prototypes, and the TADP

is constructed with this exact purpose. However, it is important to point out that

support for the expert user is of equal importance in order to let the expert user create

customized toolkits for specific usage areas, without breaking the carefully constructed

support and facilitation mechanisms for non-expert prototyping. For this reason the

TILES toolkit Extension Process (TEP) was introduced into the TILES toolkit,

intended to enable expert users to tailor the toolkit to their specific needs, yet keep the

16 3.1. TILES toolkit Processes

support for the non-experts in prototyping performed with the extended toolkit. The

following two subchapters are devoted to introducing the TADP (chapter 3.1.1) and

TEP (chapter 3.1.2). In addition, in order to support and promote their usage and

provide a stepwise description of the processes, the TILES toolkit Documentation

Section (TDS) was constructed, which is elaborated in chapter 3.2.

3.1.1 TILES toolkit Application Development Process

In their paper, Mora et al. have defined a five-step application development process

using RapIoT [21]. This process has been refined in this thesis into the TILES toolkit

Application Development Process (TADP), which is designed to fit together with the

TILES Card ideation process to allow non-experts to transform their ideas into

working TILES application prototypes using the TILES toolkit. By adapting the

RapIoT development process and refine it to fit the TILES toolkit, the TILES toolkit

will inherit the qualities, such as application appropriation, from the RapIoT toolkit.

The refined TADP and its eight steps can be seen on the next page, while Figure 3-1

shows an illustration of the whole process.

Figure 3-1, TILES toolkit Application Development Process

3. From Ideation to Prototyping 17

1. Ideation Phase – involves employing the TILES toolkit ideation process with

the TILES Card game to develop an IoT application idea.

2. Create User – entails creating a user in the TILES Cloud web portal.

3. Create Application – involves defining an application name and create the

application context and selecting development environment in the TILES

Cloud web portal.

4. List Physical Objects – entails using the TILES Cards to identify the physical

objects needed in the application, and listing them by configuring the

application from step 3 with abstract placeholders for your physical things.

5. Launch Development Environment – entails starting up the selected

development environment and navigating to the starting point of the

environment.

6. Code Application – involves coding the program behavior by mapping the

TILES cards into executable program code with the steps listed below.

a. Map HUMAN ACTIONS cards with TILES API events

b. Map FEEDBACK cards with TILES API commands

c. Map SERVICES cards with TILES API sources

d. Use TILES API for additional application behavior

7. Test Application – involves starting application and using gateway to discover

and use TILES Squares in your application by following the steps below.

a. Run application in test mode

b. Procure and ready TILES Squares

c. Procure and ready Physical Objects

d. Open TILES Gateway app and log in

e. Select the application in TILES Gateway

f. Pair TILES Squares with abstract placeholders

g. Use the application

8. Iterate step 6-7 – entails looping through step 6 and step 7 until desired

application behavior is accomplished.

3.1.1.1 Supporting TILES Cards

As seen above, step 4 and 6 of the TADP are constructed based on the usage of the

TILES Cards, and will be responsible to bridge the gap between the ideation phase and

the prototyping phase. These steps entails using the THINGS cards for identifying

physical objects, and HUMAN ACTIONS, FEEDBACK and SERVICES cards to

identify the capabilities of the objects in the application. The TDS contains detailed

explanation and examples on how to transition from the cards to executable program

code. It is important to note that the TADP does not impose using the TILES Cards

for idea generation, but special emphasis is put on support for the cards, thus using the

cards is a highly recommended tool in the ideation phase.

In step 4 of the TADP, the users will be guided through the steps of mapping physical

objects to abstract objects, or digital placeholders for physical objects, by configuring

them in their applications. This is the first step towards transitioning from ideation and

18 3.1. TILES toolkit Processes

into the tangible user interface that is a TILES application. The transition from ideation

to tangibility undertakes three steps that can be seen in Figure 3-2. This figure

illustrates how the representation of objects changes from the ideas on the TILES idea

generator board, through a digital representation of the objects, before emerging as

tangible physical objects in the IoT application prototype.

Figure 3-2, TADP object representation flow

A similar transformation occurs with the application capabilities as HUMAN

ACTIONS, FEEDBACK and SERVICES cards are transformed from the ideation

phase, through a digital representation in the program code, before the user can interact

with the things in a tangible user interface.

3.1.1.2 Users

The TADP is intended to be used by non-experts, to enable people with little or no

programming experience to successfully and quickly prototype their IoT applications

based on everyday object augmentation. The process can either be employed in a fixed

workshop environment, like the once described in the specialization project [23], or be

utilized by non-experts themselves in their DIY projects with no supervision from

toolkit experts. This gives the process a dual purpose objective, which can either be a

learning objective in a fixed workshop environment, or to quickly prototype IoT

application ideas for production and self-entertainment. The process together with the

supporting documentation in TDS is intended to be self-explanatory, and should guide

the users through the whole development process after an idea has been generated until

an application prototype exist.

When the TADP has fulfilled its purpose and the application prototype exist, the

application is ready to be used by end users. The steps of using an application prototype

that has been successfully implemented are very similar to step 7 of the TADP, but

with some small modifications. The steps of using an application prototype are listed

on the next page.

3. From Ideation to Prototyping 19

1. Open TILES Gateway app and log in with the owner of the application

2. Select the application you want to run and see the list of physical objects

needed

3. Procure the TILES Squares needed as seen in the list from step 2

4. Procure the physical objects needed as seen in the list from step 2

5. Pair the TILES Squares with the placeholders in the list from step 2, and attach

the Squares to the physical objects to be used

6. Start the application from the Gateway app

7. Use the application

3.1.2 TILES toolkit Extension Process

Since the TILES Squares and the TILES development APIs only support a limited

number of input and output primitives, and the TILES Project aims at being applicable

to a broad specter of IoT scenarios, extension of the toolkit must be supported. The

layered structure of the TILES toolkit already supports any type of event to propagate

the TILES infrastructure without the need to make changes to the core layers.

However, in order to add additional hardware capabilities to the TILES Squares and

support new interaction primitives in the JS SDK, the implementation of the toolkit

must be altered. Extending the toolkit is a complex task as it requires knowledge of

firmware programming using the Arduino IDE to develop and flash program code to

the TILES Squares. We cannot expect non-experts to be familiar with such

complicated development procedures, thus yet another process is needed, intended to

guide the experts in the extension of their own custom TILES toolkit. The TILES

toolkit Extension Process (TEP), which support extension of the TILES toolkit, is

listed below with all its steps and is illustrated in Figure 3-3.

1. Device Development – involves extending the hardware prototype, possibly with

additional hardware, and implement input/output primitives in firmware.

2. Library Development – involves implementing new features to the toolkit APIs in

order for application developers to be able to utilize the capabilities created in step

1.

3. API Deployment – entails deploying the extended libraries to the TILES Cloud

server.

4. TILES Card deck creation (optional) – involves creating a deck of TILES Cards

by removing all cards that are not supported by the extended hardware

configuration of the TILES Squares and possibly creating additional cards for the

new interaction primitives.

20 3.2. Toolkit Documentation Section

Figure 3-3, TILES toolkit Extension Process

3.1.2.1 Users

The intended users of the TEP are computer science students with some programming

knowledge and experience with development, and are referred to as the expert users

or simply experts. The experts should have experience with hardware development or

C-programming in addition to experience with higher level scripting languages such

as JavaScript. Whenever the need for additional hardware capabilities of the TILES

Squares or new functionality in the APIs arise, the expert user should employ the TEP

to extend the TILES toolkit. The last step of the TEP is an optional step employed to

construct a subset of the TILES Cards to be used for ideation with the new extended

toolkit. This step ensures that only the supported interaction primitives and services

are available in the TILES Card deck, and it will encourage the use of the TILES Cards

in ideation for non-experts. By removing the cards that are not supported by the

extended toolkit, the experts will ensure that TILES Cards and TADP can be employed

by non-experts in ideation and prototyping with minimal risk of inconsistency due to

unsupported hardware capabilities. The detailed instruction on how to employ the TEP

is explained in the TDS that will be introduced in the following subchapter.

3.2 Toolkit Documentation Section

The two TILES toolkit processes, introduced in this chapter, identifies the users of the

toolkit, the steps of developing an application in TADP, and the steps of extending the

toolkit in TEP. In order to promote the usage of the processes and provide a step-by-

step guide for employing them, the TILES toolkit Documentation Section (TDS) has

been constructed. The TDS will be hosted in the TILES Cloud web portal, which

ensures that the TDS has the same availability as the TILES Cloud server, and makes

the TDS available during all phases of interacting with the TILES toolkit. The hosted

3. From Ideation to Prototyping 21

TDS can be seen on the Docs section on the web portal11, and is also available in

Appendix . The TDS is intended to be used for understanding how to apply the TADP

and TEP, and the following subchapter will introduce the outline of the TDS.

3.2.1 Outline

The TDS has been divided into five chapters as seen in Table 3-1 of the outline of the

TDS. The TDS consist of a step-by-step guide explaining the usage of the TILES

toolkit. Each chapter of the TDS is briefly introduced in the flowing subchapters.

3.2.1.1 Getting Started

The Getting Started chapter of the TDS will introduce the documentation, explain the

outline, and elaborate what section is relevant for the user depending on their objective

with the TILES toolkit. This chapter will also introduce the main components of the

TILES toolkit and provide some important information about the available tools.

Getting Started is intended for non-experts and experts alike, and will most

importantly give instructions on how to proceed depending on the user’s intention with

the toolkit. Non-experts are encouraged to study all sections of this chapter, while

expert users should only need to get familiar with its content and revisit the chapter

later if needed.

3.2.1.2 Application Development Process

This chapter of the TDS is devoted to guide the user through the TADP with a separate

section dedicated to each step of the process. By passing through this section

sequentially, the user should be able to follow a carefully constructed step-by-step

explanation for transitioning from the ideation phase to prototyping the application.

This chapter is not only concerned with the actual program implementation, but all

required steps of the process of rapidly prototyping an IoT application.

3.2.1.3 JavaScript API

This chapter of the TDS is a detailed explanation of the TILES toolkit JavaScript APIs,

with samples on how to transform the TILES Cards into executable program code for

a TILES application. This chapter is built with the non-expert in mind, but expert users

should also be able to find this chapter useful when prototyping their TILES

applications.

11 http://178.62.99.218:3000/docs

http://178.62.99.218:3000/docs

22 3.2. Toolkit Documentation Section

3.2.1.4 TILES toolkit Extension Process

This chapter of the TDS is dedicated to the more advanced process of the TILES

toolkit. The intended audience of this chapter is the expert users that wants to employ

the TEP in extending the TILES toolkit. This chapter will contain a more advanced

language as the target users are expected to be more experienced.

3.2.1.5 Rule Engine API

Similar to the JavaScript API chapter, this chapter of the TDS will explain the Rule

Engine API. It will put special emphasis on the usage of the TILES Cards for

transitioning from ideation to prototype, but both non-experts and expert users should

find this chapter helpful while prototyping applications using the Rule Engine API.

3. From Ideation to Prototyping 23

 Getting Started

1. Introduction

2. Getting started

3. TILES toolkit

4. Development environments

5. TILES Square primitives

 Application Development Process

0. Process description

1. Ideation Process

2. Create User

3. Create Application

4. List Physical Objects

5. Launch Development Environment

6. Code Application

7. Test Application

8. Iterate step 5-6

 JavaScript API

1. Introduction

2. Event Reader API

3. Map HUMAN ACTIONS

4. Map FEEDBACK

5. Map SERVICES

6. Example scenario 1

7. Example scenario 2

 TILES toolkit Extension Process

0. Process Description

1. Device Development

2. Library Development

3. API Deployment

4. TILES Card Selection

 Rule Engine API

1. Introduction

2. Map HUMAN ACTIONS

3. Map FEEDBACK

4. Map Services

5. Example scenario

Table 3-1, TILES toolkit Documentation Section outline

25

4 Requirement Specification

In the previous chapter, some new tools were defined intended to support the usage of

the TILES toolkit in different contexts. In order to integrate these tools into the TILES

toolkit, the implementation of the toolkit has to be modified. This chapter will specify

and elaborate the requirements for the extended TILES toolkit. The corresponding

design and implementation of the requirements are detailed in the following two

chapters. The requirement specification explained in this chapter is part of the Rigor

Cycle tapping into the Knowledge Base as illustrated in Figure 1-1, Design Science

Research, Knowledge Base (adopted from [9]). The requirements are derived from the

research questions and the vision for the TILES Project, together with the well tested

and robust system requirements, seen in Table 4-1, established in the specialization

project [23]. Adding support for the system requirements is important to ensure the

continuous support of the workshop template designed in the specialization project.

Reusing the results from the specialization project enabled very early iterations of the

Rigor Cycle during this project, which was imperative for the success of the extensive

development performed in this project.

26 4.1. Application appropriation

ID Description Priority

SR1 The toolkit should support interaction with TILES Squares

through either TILES Gateway, or a platform specific gateway

provided by the toolkit.

H

SR2 The toolkit should support running custom application code in

JavaScript using Node.js in such a way that existing TILES

Client code can be run with minimal effort.

H

SR3 The toolkit should provide an administration web interface for

maintaining users and connected devices, and for relaying

events between the other components of the infrastructure.

H

SR3.1 The toolkit web interface should provide the ability to create

simple IoT applications in the cloud, without running client

code.

M

SR3.2 The toolkit web interface should provide extension points to

other web based services, such as IFTTT.

M

SR4 The toolkit should feature multiple gateways, running on

multiple platforms (smartphone, RPI, etc.).

M

SR5 The toolkit should support integration with custom embedded

non-ip hardware devices (non-ip devices similar to the TILES

Squares).

L

SR6 The toolkit should support integration with custom embedded ip

devices.

L

SR7 The toolkit should implement modern security mechanisms for

providing security to users running IoT applications.

L

Table 4-1, System requirements [23]

4.1 Application appropriation

From the very beginning, the advancement of the TILES Project has been motivated

by the goal to reduce the complexity of developing IoT applications, especially for

non-experts. Mora et al. explain in their paper that “Prototyping IoT systems is

challenging because it requires dealing with a heterogeneous mix of hardware and

software components arranged in a multi-layer architecture” [21]. The layered

architecture of the TILES toolkit, introduced in chapter 2, has successfully abstracted

hardware and software complexity, and user studies have proven that the current level

of abstraction successfully enables non-experts, with some help from toolkit experts,

to develop IoT applications using the TILES toolkit [23]. The TADP, explained in

chapter 3.1.1, is intended to bridge the remaining gap between ideation and

prototyping by guiding the non-experts through the steps of prototyping their own IoT

applications with the TILES toolkit. In order to support this process, however,

application appropriation is essential, and some fundamental changes to the

architectural layers are needed.

The requirements for application appropriation are derived from the TADP, the

RapIoT process [21], and the current state of the TILES toolkit. The high priority

4. Requirement Specification 27

requirements represents the minimum set of requirements for supporting application

appropriation. The requirements can be seen in Table 4-2. Priorities of the

requirements are listed as High (H), Medium (M) or Low (L) in the column labeled

‘Pri.’. Interdependencies of the requirements are listed in the ‘Idep.’ column, while the

‘SR’ column lists the related System Requirements seen in Table 4-1.

ID Description Pri. Idep. SR

AR1 The TILES Cloud platform should support

creating, listing, configuring and deleting

applications (CRUD operations on applications).

H - SR3

SR3.1

AR2 The CRUD operations should be available through

REST services and the TILES Cloud web portal.

H AR1 SR3

AR3 The TILES Cloud platform should support

abstract devices or placeholders to be created and

removed from TILES applications.

H AR1 SR3

SR3.1

AR4 Configuring abstract devices should be available

through the TILES Cloud web portal.

H AR3 SR3.1

AR5 The TILES Cloud platform should support

pairing abstract devices with physical TILES

Squares.

H AR3 -

AR6 Pairing abstract and physical TILES Squares

should be available through REST services at

application runtime.

M AR5 -

AR7 The TILES Gateway should be responsible for

pairing the discovered physical TILES Squares

with the abstract devices.

M AR6 -

AR8 The last events and availability state of physical

devices paired with an abstract device should be

accessible in the TILES Cloud web portal.

M AR5

AR6

-

AR9 The TILES Cloud platform should support

publishing and subscribing to TILES Squares

using the paired abstract squares of an

application.

H AR1

AR5

SR1

SR3

AR10 The TILES Cloud platform should support using

the abstract devices in application development

without concern for the physical hardware

devices.

H AR5

AR9

SR3.1

AR11 The TILES Gateway should support user actions

such as selecting and running applications.

M AR5

AR6

SR1

AR12 The TILES Cloud platform should support

pairing abstract devices with third party

embedded hardware devices.

L AR3 SR5

SR6

AR13 The TILES Cloud platform should implement

modern security mechanisms to protect the users’

applications from unauthorized access

L - SR7

Table 4-2, Application appropriation requirements.

28 4.2. Rule Engine Development Environment

4.2 Rule Engine Development Environment

The requirements for the Rule Engine development environment, seen in Table 4-3,

are constructed based on the TADP, the research questions, the results from the

evaluation of the TILES toolkit in the specialization project [23], and previous work

with the TILES Project [11]. Until now, the TILES Project has focused on application

development using a textual programming approach with JavaScript, but as discovered

in the specialization project [23], many of the non-experts participating in the study

were having problems with the fundamental concepts of textual programming

languages. In order to offer broader support for development by non-experts and

support rapid prototyping of ideas, the Rule Engine development environment is

introduced as a tool to prototype applications without having to write textual program

code.

Priorities of the requirement for the Rule Engine development environment are listed

as High (H), Medium (M) or Low (L) in the ‘Pri.’ column. The ‘Idep.’ column show

the interdependencies while the ‘SR’ column lists the related System Requirements

seen in Table 4-1.

ID Description Pri. Idep. SR

RR1 The TILES Cloud platform should support

application development by defining rules without

having to write code textually.

H - SR3,

SR3.1

RR2 The TILES Cloud platform should provide a Rule

Engine API that enables expert-users to maintain a

list of available TILES rules to be used by non-

experts.

H - SR3.1

RR3 The TILES Cloud platform should support

creating, configuring and deleting rules through

REST services and the TILES Cloud web portal.

H RR1 SR3

RR4 The TILES Cloud platform must keep the support

for existing development environments upon

introduction of the new rule based environment.

H RR1 SR2

RR5 The TILES Cloud platform should offer a rule

based approach for integrating the application with

IFTTT without having to write code textually.

M RR3 SR3.2

RR6 The Rule Engine should support the ability to

automatically generate JavaScript code using the

JS APIs for every Rule Engine application.

L - SR2

Table 4-3, Rule Engine Requirements.

4. Requirement Specification 29

4.3 TILES toolkit IDE

The requirements for creating the TILES toolkit IDE (TIDE) are constructed from the

research questions, the vision for the TILES Project and the TADP, and they can be

seen in Table 4-4. The TILES toolkit should support rapid prototyping by non-experts,

which means downloading and setting up the local development environment with all

APIs manually for each project is not a satisfactory approach. Setting up the local

development environment is not a part of the workshop structure [23], as it was

considered out of the scope of the non-experts expertise. By introducing the TIDE to

the TILES toolkit, non-experts will be able to get started with development without

requiring assistance from toolkit experts to set up the development environment.

Introducing the TIDE would also move the TILES Client layer, elaborated in chapter

2.2.1.4, into the TILES Cloud, and the client layer would become obsolete from a non-

expert’s perspective.

Priorities of the requirement for TIDE are listed as High (H), Medium (M) or Low (L)

in the ‘Pri.’ column. The high-priority requirements forms the minimum set of

requirements needed to support TIDE in developing TILES application for non-

experts. The ‘Idep.’ column show the interdependencies while the ‘SR’ column lists

the related System Requirements seen in Table 4-1.

ID Description Pri. Idep. SR

IR1 The TIDE should run in a web browser, and be

hosted by the TILES Cloud.

H - SR2

IR2 The TIDE should provide a textual editor for

writing JavaScript code.

H IR1 SR2

IR3 The TILES Cloud platform should support creating

TIDE workspaces.

H - -

IR4 The TILES Cloud platform should automatically

configure the workspace with the JavaScript API

for all TIDE applications.

H IR3 SR2

IR5 The TILES Cloud platform should support

deployment of TIDE applications by running the

JavaScript client code directly from the workspace

location in the Cloud.

H - -

IR6 The TIDE should support debugging applications

and logging output to a console window in the

browser.

M IR1 -

IR7 The TILES Cloud platform should support

automatic JS code template generation for the

abstract devices configured in the application

context.

M IR2 SR2

IR8 The TILES Cloud platform should support security

measures to protect the private TIDE application

workspaces from unauthorized access.

L - SR7

Table 4-4, TILES toolkit IDE requirements.

30 4.4. TILES Cloud web portal

4.4 TILES Cloud web portal

Many of the functional requirements introduced in this chapter explicitly mention the

TILES Cloud web portal. This entails that the UI of the TILES Cloud will need to

change to accommodate the new requirements. Additionally, the TDS, introduced in

chapter 3.2, will be hosted on the TILES Cloud web server, in order to be available

for users of the TILES toolkit during their projects. The current version of the TILES

Cloud web portal is a very simple website, as seen in Figure 4-1, that has been

designed with no regards for user experience (UX). Designing a comprehensive UI

considering both non-experts and expert users is out of the scope of this thesis project.

However, in order to properly accommodate the TADP, TEP and TDS, and support

rapid prototyping of IoT applications, some essential modifications to the UI of the

web portal is necessary.

Figure 4-1, Old TILES Cloud web portal UI (a) All users, (b) Specific user with TILES Squares,

(c) Specific TILES Square

The User Requirement Specification (URS) for the extended TILES Cloud web portal

can be seen in Table 4-5. These requirements are intended only as guidelines for the

implementation of the design of the web portal in order to accommodate the functional

requirements listed in the previous subchapters.

4. Requirement Specification 31

ID URS

UR1 Users should be able to navigate the website by using a navigation panel

always visible at the top of the site

UR2 Users should be able to easily identify what section of the website they are

seeing

UR3 The TILES Cloud web portal should host the TDS

UR4 The TDS available on the TILES Cloud web portal should maintain a

separate navigation panel, enabling users to navigate the TDS separately

from the rest of the website

UR5 Users should be able to go through the TDS step by step in the TILES Cloud

web portal

UR6 The TILES Cloud web portal should be styled using bootstrap to ensure a

familiar user experience

UR7 TIDE should be hosted by the TILES Cloud, but should be separated from

the administration panel of the web portal

Table 4-5, URS of TILES Cloud web portal

33

5 Design

The functional requirements for the extended TILES toolkit were introduced in

chapter 4. This chapter will be dedicated to construct the design elements of the

extended TILES toolkit. First, the actors of the system will be introduced before the

architecture of the TILES toolkit is extended with new components to feature the

requirements from chapter 4, and the TADP, TEP and TDS tools from chapter 3. At

last, the functional requirements from the previous chapter will be mapped to the

architectural components of the system in order to determine the impact of the required

implementation for the functional requirements, and to see what source files must be

modified.

5.1 Users

The extended TILES toolkit, developed during this project, identifies two main human

actors. These actors are non-experts and expert users. A use case diagram of the system

with these two actors, in addition to include the End User actor, can be seen in Figure

5-1.

Non-experts, as elaborated in chapter 3.1.1, are users with little or no programming

experience that wants to prototype IoT applications. These non-experts are analogous

to the target users of the TILES toolkit ideation process using the TILES Cards [22].

Non-experts will be interacting with the TILES toolkit by following the TADP. The

TDS with its explanation of the toolkit and the steps of the TADP will guide the non-

experts as they progress in the application prototyping phase. For programming their

applications, the non-experts will be using the TIDE or the Rule Engine Development

Environment.

Expert users, as introduced in chapter 3.1.2, refers to people with some programming

knowledge and experience with development. Expert users, or simply experts, should

have some experience with hardware development or C-programming, in addition to

experience with higher level scripting languages such as JavaScript. Experts will be

interacting with the TILES toolkit by following the TEP, and using the supported

documentation in TDS. The experts are also encouraged to use TIDE in their

application prototyping, while they will most likely find the Rule Engine Development

34 5.2. TILES toolkit revised

Environment insufficient as it limits the capabilities of the TILES application. Experts

are also the alleged user of the local development environment. Using the local

development environment will present the full JavaScript API to be downloaded.

Using the JavaScript API locally enables TILES Square devices to be integrated in any

application using Node.js.

A third human actor, End User, is also identified, which can be seen in Figure 5-1.

This actor is included in the Use Case Diagram to illustrate that the TEP and TADP

supports prototyping of applications that are ready to be deployed and used by non-

experts. The steps of using a TILES application was introduced in chapter 3.1.1.2. No

predefined requirements exist for the End User as the TILES Squares forms non-

intrusive tangible interfaces that can be used by anyone regardless of level of

experience with other technical systems.

Figure 5-1, TILES toolkit Use Case Diagram

5.2 TILES toolkit revised

In Figure 2-3, we saw a simplified illustration of the existing architectural layers of

the TILES toolkit while chapter 2 briefly introduced the different layers, and explained

the communication protocols between them. In this subchapter we revisit the

architecture and extend it with additional components in order to accommodate the

requirements specified in chapter 4. For some of the requirements it is enough to adjust

5. Design 35

the implementation of the existing components, while some requirements demand

completely new components to be added to the system. In Figure 5-2 we can see the

architecture of the extended TILES toolkit. In this figure, the TDS component is not

shown as it will be integrated into the Web portal component. The TADP and TEP are

also not visible on this figure as they are not architectural components, but rather

conceptual processes employed during development with the TILES toolkit. The

following subchapter will map the requirements to the architectural components, while

the implementation of the requirements is explained in chapter 6.

Figure 5-2, Extended TILES toolkit system architecture

5.2.1 Requirement allocation

Before starting the implementation of the extended TILES toolkit, the requirements,

specified in chapter 4, should be allocated to the architectural elements of the system.

Figure 5-3 illustrates how the requirements are mapped to the various components of

the system. In the figure we can see that some of the requirements are allocated to one

specific component, while other requirements affect multiple components across

several layers of the architecture. As an example, we can see that AR13, regarding

36 5.3. TILES Cloud web portal

security in the TILES Cloud platform, is allocated to multiple components. This entails

that implementing this specific requirement require a considerable amount of effort,

and will affect the implementation of many components. The IR requirements, on the

other hand, are almost exclusively allocated to a single component. This entails that

implementing these requirements has less impact on the system as a whole.

Figure 5-3, Toolkit architectural element requirement allocation

5.3 TILES Cloud web portal

Confirming the UI of the TILES Cloud web portal to the TADP and TEP is important

in order to support rapid prototyping of IoT applications. The TILES Cloud web portal

is the main entry point of every project as it is used to create and configure applications

and select and launch development environments, in addition to accommodate the

TDS. The URS, introduced in chapter 4.4, provide guidelines for the development of

the design of the new TILES Cloud web portal. UR6 is one that is very specific as it

specify that twitter’s12 Bootstrap13 framework should be employed for styling the web

portal. According to their website, Bootstrap is the most popular HTML, CSS and JS

framework for developing responsive projects on the web. It is a free and open-source

front-end web framework for designing websites, it features standard design elements

and is easily customizable to fit most projects, which makes Bootstrap a perfect

candidate to ensure a familiar user experience on the TILES Cloud web portal.

12 https://twitter.com/
13 http://getbootstrap.com/

https://twitter.com/
http://getbootstrap.com/

5. Design 37

Figure 5-4, TILES Cloud web portal page graph

In Figure 5-4, we see an illustration of the graph of the navigation pattern of the new

TILES Cloud web portal. The main entry point of the website is the home page and

from here we will be able to navigate directly to each main section of the website. The

docs section has, as specified by the URS, a separate navigation section enabling the

user to freely navigate within this section. By looking at the available tools in

Bootstrap and analyzing several online documentation sections, the new design of the

TILES Cloud web portal was developed. It uses the logo and colors from the homepage

of the TILES toolkit14 to create a familiar appearance across the websites of the TILES

Project. The design of the main navigation panel can be seen in Figure 5-5. The

navigation panel of the document section will be seen as a vertical navigation panel,

placed on the left side of the website when the Docs tab is active.

Figure 5-5, TILES Cloud web portal main navigation panel

14 http://tilestoolkit.io

http://tilestoolkit.io/

39

6 Implementation

A model of the extended TILES toolkit with all its components was illustrated in

Figure 5-2 and the mapping between the requirements for the new system and the

architectural components can be seen in Figure 5-3. This chapter will explain the

technical implementation of each component, and describe how these components fit

together to form the new extended TILES toolkit. The implementation explained in

this section was the main part of the Design Cycle of the Design Science Research,

seen in Figure 1-2, and was carried out as an iterative process with short Design

Cycles. The evaluation carried out in this project and detailed in chapter 7 helped test

the implementation. All implementation described in this chapter was carried out on

the TILES Cloud.

6.1 Application Appropriation

In order to conform the TILES toolkit to the functional requirements for the application

appropriation listed in Table 4-2, the implementation of the MQTT broker and the

backend functionality of the TILES toolkit had to be modified. The following

subchapters will detail some of the most important changes to the implementation,

with a requirement justification summary in chapter 6.1.4.

6.1.1 TilesAscoltatore

As described in chapter 2.2.1.3, the application topics for publish and subscribe are

constructed from the unique identifier of the TILES Squares and the username of the

owner of the Square. This means that there is no way to differentiate between different

applications in the topics of the broker. To enable clients and gateways to publish and

subscribe to specific application topics, the core implementation of the broker, or

TilesAscoltatore, residing in the tiles_ascoltatore.js file, had to be modified.

Introducing the application as a parameter in the topics is necessary to support the

Application Appropriation Requirements and to allow the applications to run in

sandbox mode without interfering with each other.

In Code snippet 6-1 we can see part of the modified TilesAscoltatore, illustrating how

a topic is added to the matcher of the broker. The matcher will look for topics that

40 6.1. Application Appropriation

matches the string ‘tiles/evt/+/+/+/’, where ‘+’ is a wildcard matching any string.

When a matching topic is detected, the broker will split the topic to find the username,

appid and deviceId as seen on lines 7-10 in the code snippet. This illustrates how the

application name is added to the topic as appid and how the broker will parse the topic

at runtime. On line 13 of the code snippet, we see that the TilesApi is called with the

deviceId of the TILES Square, the username of the user, and the appid of the

application. This will pass the message received together with the broken down topic

to the TilesApi for further processing the message. With this implementation, the

broker will be able to detect the target application of the topic, which enables

application specific logic to run, together with publishing and subscribing to events of

specific applications.

 function TilesAscoltatore(settings) {

 ...

 // Application context

 this._matcher.add('tiles/evt/+/+/+', function (topic,

message, options) {

 var splitTopic = topic.split('/');

 var username = splitTopic[2];

 var appid = splitTopic[3];

 var deviceId = splitTopic[4];

 if (deviceId != 'name' && deviceId != 'active') {

 var state = arrayBufferToString(message);

 TilesApi.setDeviceState(deviceId, username, appid, state,

null);

 }

 });

 ...

 this.emit("ready");

 }

Code snippet 6-1, TilesAscoltatore application topic subscription

Another important change in the broker implementation is in the unsubscribe method

seen in Code snippet 6-2. In requirement AR8, it is specified that the availability state

of the physical TILES Squares should be available for the users of the toolkit. This

entails that when an unsubscribe event is detected, the Square state should be updated

in the platform. The deregister call to the TilesApi seen in the code snippet on line 7

represents this specific requirement. Here the topic is passed to the TilesApi for further

processing when an unsubscribe message is received, which will make sure that the

state of the Squares are updated to match the actual availability. The availability of the

Squares will then be presented to the users through the TILES Cloud web portal.

6. Implementation 41

 TilesAscoltatore.prototype.unsubscribe = function

unsubscribe(topic, callback, done) {

 this._raiseIfClosed();

 debug("deregistered subscriber for topic " + topic);

 console.log(tag + "Deregistered subscriber for topic '" + topic

+ "'");

 TilesApi.deregister(topic);

 this._matcher.remove(topic, callback);

 defer(done);

 };

Code snippet 6-2, TilesAscoltatore prototype unsubscribe

6.1.2 TilesApi

The TilesApi, implemented in the file tiles_api.js, exist to support device specific

management upon incoming events and commands. When an incoming event with the

proper topic structure is detected by the broker, as seen in Code snippet 6-1, the

setDeviceState of the TilesApi will be called as seen in line 13 in the same code snippet.

This method will be responsible for updating the state of the TILES Squares in the

database by calling the appropriate service from the REST API. The TilesApi had to

be modified to support the application identifier of a topic, as well as to accommodate

the availability state and last received message state with a timestamp in the model. It

is the TilesApi that holds the responsibility to act upon the incoming events and

commands that the broker detects.

6.1.3 MongoDB

In order to support the application appropriation and all its requirements, the

MongoDB database had to be updated with new models for the application context

and abstract placeholders in the database. For this purpose, two new models were

added to the database, VirtualTiles to represent the abstract placeholders, seen in Code

snippet 6-3, and Applications to represent the application context, seen in Code snippet

6-4. These two models were added without changing any of the existing models in

order to minimize the impact on the whole system. This entails that there is no

reference from the users in the database to the applications. Having a reference from

the user to their configured applications would be useful, but this would require

changes to the existing database models, which would require additional effort on

updating the infrastructure of the system. Instead the applications will hold a reference

to the application owner, which will enable getting a list of a user’s application by

checking the Applications model in the database. For the VirtualTiles however, there

is a two way reference. The VirtualTiles will keep a reference to the application to

which they belong, and the applications will keep a reference to all the VirtualTiles

defined in their scope as seen in the code snippets below.

42 6.1. Application Appropriation

 var mongoose = require('mongoose');

 var VirtualTileSchema = new mongoose.Schema({

 virtualName: String,

 tile: { type: String, ref: 'Tile' },

 application: { type: String, ref: 'Application' }

 });

 mongoose.model('VirtualTile', VirtualTileSchema);

Code snippet 6-3, VirtualTiles MongoDB databasemodel

 var mongoose = require('mongoose');

 var ApplicationSchema = new mongoose.Schema({

 _id: String,

 devEnvironment: String,

 environmentOnline: Boolean,

 appOnline: Boolean,

 port: Number,

 iftttkey: String,

 user: { type: String, ref: 'User' },

 virtualTiles: [{ type: mongoose.Schema.Types.ObjectId, ref:

'VirtualTile' }]

 });

 ApplicationSchema.methods.addVirtualTile = function(vt, cb) {

 this.virtualTiles.addToSet(vt);

 this.save(cb);

 }

 mongoose.model('Application', ApplicationSchema);

Code snippet 6-4, Applications MongoDB databasemodel

6.1.4 Requirement Rationale

In this subchapter, all the Application Appropriation Requirements, introduced in

chapter 4.1, will be mapped to the files implementing the functionality. The tables in

the following subchapters list what files were added and what files were modified to

accommodate the individual requirements.

6.1.4.1 AR1

The TILES Cloud platform should support creating, listing, configuring and deleting

applications (CRUD operations on applications).

To accommodate AR1, a new database object model had to be added to the database.

This model can be seen in Code snippet 6-4.

Modified files - app.js

New files - models/Applications.js

Table 6-1, AR1 implementation files

6. Implementation 43

6.1.4.2 AR2

The CRUD operations should be available through REST services and the TILES

Cloud web portal.

This requirement specifies availability through REST services, thus the REST API had

to be modified by introducing a new file for application REST services. In addition,

two new pages were added to the web portal, thus two new template files were added

to the views directory, together with modifying the JavaScript files for making the

CRUD operations available in the TILES Cloud web portal.

Modified files - app.js

- public/javascripts/app.js

- public/javascripts/controllers.js

- public/javascripts/services.js

New files - routes/applications.js

- views/templates/applications.ejs

- views/templates/application.ejs

Table 6-2, AR2 implementation files

6.1.4.3 AR3

The TILES Cloud platform should support abstract devices or placeholders to be

created and removed from TILES applications.

To accommodate AR3, the Application model in the database and the REST services

for configuring applications were modified. In addition, the VirtualTiles model, seen

in Code snippet 6-3, was introduced. This model represents the abstract placeholders

of physical objects in an application.

Modified files - models/Applications.js

- routes/applications.js

New files - models/VirtualTiles.js

Table 6-3, AR3 implementation files

6.1.4.4 AR4

Configuring abstract devices should be available through the TILES Cloud web portal.

Enabling configuration of abstract devices through the TILES Cloud web portal for

AR4 required changes to several source files, including JavaScript files and view

template files.

44 6.1. Application Appropriation

Modified files - app.js

- public/javascripts/app.js

- public/javascripts/controllers.js

- public/javascripts/services.js

- routes/applications.js

- views/templates/application

- views/templates/applications

Table 6-4, AR4 implementation files

6.1.4.5 AR5

The TILES Cloud platform should support pairing abstract devices with physical

TILES Squares.

Only one file had to be modified to accommodate AR5. The VirtualTiles database

model was updated to hold a reference to the physical TILES Square as can be seen in

Code snippet 6-3. For this requirement, the reference to the physical TILES Square

was added, which would enable the TilesApi to map between the abstract and physical

TILES Square at runtime by looking up the abstract Square in the database.

Modified files - models/VirtualTiles.js

Table 6-5, AR5 implementation files

6.1.4.6 AR6

Pairing abstract and physical TILES Squares should be available through REST

services at application runtime.

To enable pairing of abstract and physical TILES Squares through REST services, only

the applications REST API file had to be modified.

Modified files - routes/applications.js

Table 6-6, AR6 implementation files

6.1.4.7 AR7

The TILES Gateway should be responsible for pairing the discovered physical TILES

Squares with the abstract devices.

To accommodate AR7, the modifications already implemented for AR5 and AR6 are

sufficient from server side. In addition, the implementation of the TILES Gateway had

to be modified. Due to the complexity of the modifications for the TILES Cloud server,

the required modifications of the TILES Gateway app was outsourced [1].

6. Implementation 45

6.1.4.8 AR8

The last events and availability state of physical devices paired with an abstract

devices should be accessible in the TILES Cloud web portal.

To accommodate AR8, the first thing that had to be modified was the Tiles database

model so that it would store the latest received event. In addition, the REST API was

updated with an additional method for storing the events of the physical device. Last,

the broker and TILES API implementation was modified to pass the last event to the

database upon incoming events. Due to the implementation of AR5, the TilesApi is

already able to look up the physical TILES Square referenced by the abstract Square

in the VirtualTiles database model.

Modified files - models/Tiles.js

- tiles_api.js

- tiles_ascoltatore.js

- routes/index.js

Table 6-7, AR8 implementation files

6.1.4.9 AR9

The TILES Cloud platform should support publishing and subscribing to TILES

Squares using the paired abstract squares of an application.

To accommodate AR9 only the implementation of the broker had to be modified.

Publish and subscribe methods were modified to support publish and subscribe to the

abstract squares.

Modified files - tiles_ascoltatore.js

Table 6-8, AR9 implementation files

6.1.4.10 AR10

The TILES Cloud platform should support using the abstract devices in application

development without concern for the physical hardware devices.

Similarly to AR9, only the broker had to be modified to accommodate AR10. Even

though only one file was modified, this is a very important piece of implementation as

it enables the name of the abstract placeholder to be used in TILES application

program code instead of the hardcoded unique identifier of the physical TILES

Squares.

Modified files - tiles_ascoltatore.js

Table 6-9, AR10 implementation files

46 6.2. Rule Engine Environment

6.1.4.11 AR11

The TILES Gateway should support user actions such as selecting and running

applications.

To accommodate AR11, the REST services had to be modified. The gateway will call

the REST API in order to communicate with the background services of the TILES

Cloud server. In addition, the TILES Gateway implementation had to be modified [1].

Modified files - routes/applications.js

Table 6-10, AR11 implementation files

6.1.4.12 AR12

The TILES Cloud platform should support pairing abstract devices with third party

embedded hardware devices.

Due to time constraints of the project, this requirement was discarded and is suggested

for future research, seen in chapter 9.3. Support for third party embedded hardware

devices is a nice-to-have feature in the TILES toolkit, but with the custom ports of the

TILES Squares most scenarios are already supported by the TILES Squares hardware

devices.

6.1.4.13 AR13

The TILES Cloud platform should implement modern security mechanisms to protect

the users’ applications from unauthorized access.

Accommodating AR13 has a significant impact on the whole system as seen in Figure

5-3. In addition it requires a significant amount of effort and time, thus this requirement

was discarded. The protocols used in the TILES toolkit (MQTT, HTTPS) does support

security mechanisms to be implemented, thus this requirement is suggested as a future

research opportunity, as seen in chapter 9.3.

6.2 Rule Engine Environment

Conforming the TILES toolkit to the functional requirements for the Rule Engine

Development Environment, listed in Table 4-3, the web portal, the REST API and the

client APIs had to be modified as seen in Figure 5-3. The following subchapters will

detail some of the most important implementation for these requirements, followed by

a requirement justification summary in chapter 6.2.3.

6. Implementation 47

6.2.1 MongoDB

Several of the requirements for the Rule Engine requires new database models to be

introduced to the toolkit. To accommodate these requirements, three new database

models were added. The Tilehooks model, seen in Code snippet 6-5, was added to store

the rules defined in a Rule Engine application. In the code snippet we can see that the

Tilehooks model stores a reference to the Application, the input VirtualTile and the

output VirtualTile. Upon incoming events the broker will call the TilesApi which in

term will look up the rules belonging to the specific application and input TILES

Square. If a rule has been defined, the TilesApi will trigger the command defined in

the Tilehook and send it to the registered output TILES Square.

 var mongoose = require('mongoose');

 var TilehooksSchema = new mongoose.Schema({

 application: { type: String, ref: 'Application' },

 //Input Tile and properties

 virtualTile: { type: mongoose.Schema.Types.ObjectId, ref:

'VirtualTile' },

 tigger: String,

 properties: [String],

 //Output Tile and properties

 outputVirtualTile: { type: mongoose.Schema.Types.ObjectId,

ref: 'VirtualTile' },

 outputTrigger: String,

 outputProperties: [String]

 });

 mongoose.model('Tilehook', TilehooksSchema);

Code snippet 6-5, Tilehooks, MongoDB database model

The Ifttthooks model, seen in Code snippet 6-6, was added to store the IFTTT rules

defined in a Rule Engine application. The Ifttthooks model stores a reference to a

VirtualTile, which is the abstract TILES that the rule belongs to. An IFTTT rule can

either be outgoing or incoming. If the rule is outgoing, it means that upon matching

the incoming event from the TILES Square, a POST request will be triggered to the

registered IFTTT applet. This database model will store all rules involving IFTTT

applets in a Rule Engine application. If the rule is incoming, it means that the system

will be listening to incoming POST request, and the stored IFTTT rule will be triggered

to send a command to appropriate TILES Square.

48 6.2. Rule Engine Environment

 var mongoose = require('mongoose');

 var IfttthooksSchema = new mongoose.Schema({

 triggerName: String,

 outgoing: Boolean,

 trigger: String,

 properties: [String],

 virtualTile: { type: mongoose.Schema.Types.ObjectId, ref:

'VirtualTile' },

 application: { type: String, ref: 'Application' },

 });

 IfttthooksSchema.methods.getPostUrl = function () {

 if (!this.application.iftttkey) return '';

 return "https://maker.ifttt.com/trigger/" + this.triggerName

+ "/with/key/" + this.application.iftttkey;

 }

 mongoose.model('Ifttthook', IfttthooksSchema);

Code snippet 6-6, Ifttthooks, MongoDB database model

The Primiives model, seen in Code snippet 6-7, was added to store all the input and

output primitives available in a Rule Engine application. If the firmware of the TILES

Squares is updated with new data primitives, these primitives will not be available in

a Rule Engine application automatically. By registering the primitives to the database,

the Rule Engine will be able to dynamically update the list of available operations in

the Rule Engine environment, which will simplify the implementation of new

primitives considerably. The model stores the name and properties fields, as these are

needed to match against the messages exchanged with the TILES Squares. A Boolean

flag is stored to detect if the primitive is an output or input primitive.

 var mongoose = require('mongoose');

 var PrimitiveSchema = new mongoose.Schema({

 isInputPrimitive: Boolean,

 name: String,

 properties: [String],

 hasCustomProp: Boolean

 });

 mongoose.model('Primitive', PrimitiveSchema);

Code snippet 6-7, Primitives, MongoDB database model

6.2.2 REST API

To enable the Tilehooks and Ifttthooks to be configured through REST services and

the TILES Cloud web portal, new services were added for creating, reading and

deleting the hooks in the REST API. In Code snippet 6-8 we can see the

implementation of the POST service that will create a new Tilehook in the database.

The Tilehook model will be passed in the body of the request as seen in line 1. The

Tilehook will be created and saved to the database with a reference to the VirtualTile

6. Implementation 49

model. The service will return the newly created hook as a JSON object. Similar

methods exist for creating, reading and deleting Tilehooks, Ifttthooks and Primitives.

 router.post('/:app', function (req, res, next) {

 var data = req.body;

 data.application = req.params.app;

 var tilehook = new Tilehook(data);

 tilehook.save(function (err, tile) {

 if (err) return next(err);

 Tilehook.populate(tile, [{ path: "virtualTile" },

 { path: "outputVirtualTile" },

 { path: "application" }], function (err, tilenew) {

 if (err) return next(err);

 res.json(tilenew);

 });

 });

 });

Code snippet 6-8, REST API, POST service, Create new Tilehook

6.2.3 Requirement Rationale

Revisiting the Rule Engine Requirements introduced in chapter 4.2, this subchapter

will map the requirements to the files implementing the functionality. The tables in the

following subchapters list what files were added, and what files were modified to

accommodate the individual requirements.

6.2.3.1 RR1

The TILES Cloud platform should support application development by defining rules

without having to write code textually.

To store the rules, a new database model had to be created. This is the Tilehooks

database model seen in Code snippet 6-5. In addition the TilesApi and broker

(TilesAscoltatore), had to be modified to check all incoming events to see if a rule has

been defined on the TILES Square. This way there is no textual program code running

for the application, only rules stored in the database that will be looked up on incoming

events.

Modified files - app.js

- tiles_api.js

- tiles_ascoltatore.js

New files - models/Tilehooks.js

Table 6-11, RR1 implementation files

50 6.2. Rule Engine Environment

6.2.3.2 RR2

The TILES Cloud platform should provide a Rule Engine API that enables expert-users

to maintain a list of available TILES rules to be used by non-experts.

To maintain a list of available primitives, the Primitives database model, seen in Code

snippet 6-7, was introduced together with new REST services for creating, reading and

deleting primitives in the database. Additionally, a new view was added in the TILES

Cloud web portal to enable experts to maintain the list of primitives.

Modified files - app.js

New files - models/Primitives.js

- routes/primitives.js

- views/templates/primitives.ejs

Table 6-12, RR2 implementation files

6.2.3.3 RR3

The TILES Cloud platform should support creating, configuring and deleting rules

through REST services and the TILES Cloud web portal.

Since the rules of the Rule Engine applications should be available through both REST

services and the web portal, the application view and the REST API had to be

modified. There was previously no services for managing Tilehooks in the REST API,

thus this file had to be created.

Modified files - app.js

- views/templates/application.ejs

New files - routes/tilehooks.js

Table 6-13, RR3 implementation files

6.2.3.4 RR4

The TILES Cloud platform must keep the support for existing development

environments upon introduction of the new rule based environment.

In order to keep support for the existing development environments, the

implementation of the Rule Engine had to be carefully constructed not to modify any

existing database model or REST API services that would break the support for the

textual JavaScript client development.

6. Implementation 51

6.2.3.5 RR5

The TILES Cloud platform should offer a rule based approach for integrating the

application with IFTTT without having to write code textually.

To accommodate this requirement, the Ifttthooks database model, seen in Code snippet

6-6, was introduced, together with the implementation of the REST services for

creating, reading and deleting the rules. In addition, the TilesApi was modified to check

the database for IFTTT rules together with the Tilehooks rules, whenever the broker

detected an incoming event.

Modified files - app.js

- tiles_api.js

New files - models/Ifttthooks.js

- routes/ifttthooks.js

Table 6-14, RR5 implementation files

6.2.3.6 RR6

The Rule Engine should support the ability to automatically generate JavaScript code

using the JS APIs for every Rule Engine application.

Being able to automatically generate JavaScript code based on a Rule Engine

application is considered to be a great tool for non-experts that will help them get

started with the TILES toolkit, and teach them the syntax of JavaScript and how the

TILES JavaScript APIs are working. However, due to time constraints and the low

priority of the requirement, RR6 has been temporarily discarded and is suggested as a

future research opportunity, as seen in chapter 9.3.

6.3 TILES toolkit IDE

Most of the implementation for conforming the TILES toolkit to the functional

requirements of the TILES toolkit IDE, listed in Table 4-4, resides in a single

architectural component, seen in Figure 5-3. This entails that introducing the

functional requirements of TIDE should have little impact on other system

functionalities. The following subchapters will detail the most important

implementation for these requirements, followed by a requirement justification

summary in chapter 6.3.3.

6.3.1 Cloud9

As seen in Figure 5-3, almost all the requirements for the TIDE resides in a single

architectural components. To realize these functional requirements, this new

component had to be introduced into the TILES toolkit. Instead of implementing an

IDE from scratch, it was decided that integrating a third party IDE should suffice.

52 6.3. TILES toolkit IDE

Derived from the IR requirements, the following requirements was constructed for the

third party IDE:

- IDE should run the development environment in a browser

- IDE should provide a textual editor for writing JavaScript code with Node.js

- IDE should support running multiple instance of the environment

- IDE should support custom configurable workspaces on the host server

- IDE should support debugging applications in the web browser

Cloud915 is an open source web IDE that supports hundreds of programming

languages, including JavaScript with Node.js. It runs a development environment in

the browser, it can be configured with custom workspaces, it has debugging

capabilities, and with only some effort it can run multiple instances of the environment,

thus it fulfills all the requirements listed above. This makes Cloud9 a suitable candidate

for TIDE in the TILES toolkit.

Appendix A shows instructions on how to set up Cloud9 as TIDE on the TILES Cloud

server. In addition to download and configure Cloud9 to run on the TILES Cloud

server, configuring workspaces and starting and stopping the independent instances of

the environment had to be integrated into the TLES toolkit in order to make TIDE an

effortlessly extension of the TILES toolkit to be used by developers. For this purpose,

several helper functions were implemented, which will be detailed in the following

subchapter.

6.3.2 Background processes

As described in the previous subchapter, the Cloud9 IDE supports several of the

functional requirements for TIDE. However, in order to transform the Cloud9 IDE

from a third party standalone service into TIDE, and make it an integrated part of the

TILES toolkit, some background operations on the TILES Cloud server had to be

modified. Most notably, when a TIDE application is created in the web portal, the

TILES Cloud server should set up the workspace with the TILES JavaScript API

automatically. In addition, launching an instance of TIDE for a specific application

workspace should be possible without knowledge of the Cloud9 framework.

Supporting these operations in the backend is necessary in order make usage of the

TIDE an effortless activity for non-experts employing the TADP. To achieve this,

some helper functions had to be added to the TILES toolkit that will be triggered when

an application is created.

In Code snippet 6-9 we can see the createWorkspace helper function implemented for

configuring the workspace for an application in TILES Cloud. This method is called

when a TIDE application is created, and will be responsible for setting up the

workspace and configuring the template files in the workspace. On line 5 we can see

that a native Linux command is executed on the server, which will create a new

workspace in the workspace root directory. If this is created successfully, the code on

15 https://c9.io/

https://c9.io/

6. Implementation 53

line 7 will be executed, which will copy the JavaScript API template files from the

template root directory defined in the config file, into the workspace directory before

renameApp will be called to rename the application name of the template to the current

application name.

 var createWorkspace = function (workspace, username) {

 var tag = "[ERROR Creating workspace] ";

 if (process.platform === "linux") {

 exec("sudo -H -u c9sdk bash -c 'mkdir " +

config.cloud9.workspace.root + workspace + "'", function

(error) {

 if (error) return;

 exec("sudo -H -u c9sdk bash -c 'cp " + config.lib.root +

"/templates/* " + config.cloud9.workspace.root + workspace

+ "'", renameApp);

 });

 }

 else {

 console.log(tag + "Cloud workspace only available on linux");

 }

 }

Code snippet 6-9, Create Workspace helper function

A short description of all the helper functions for TIDE can be seen in the following

subchapter under the relevant requirement section.

6.3.3 Requirement Rationale

Revisiting the TILES toolkit IDE Requirements introduced in chapter 4.3, this

subchapter will describe and justify the implementation of the individual requirements

and list what files were added or modified during the implementation.

6.3.3.1 IR1

The TIDE should run in a web browser, and be hosted by the TILES Cloud.

This requirement is supported by integrating the third party Cloud9 framework into

the TILES Cloud server. No source code files were added or modified. See Appendix

A for instructions on how the Cloud9 environment was configured.

6.3.3.2 IR2

The TIDE should provide a textual editor for writing JavaScript code.

To accommodate this requirement, two helper functions were implemented in the

applications REST API and a button for triggering the functions were added to the

application view in the web portal. Triggering these functions requires explicit user

action in the web portal.

54 6.3. TILES toolkit IDE

startHostingWorkspace Will start a new instance of the TIDE for the specific

application and give the application a URL to the hosted

TIDE. Called when start hosting is selected in the TILES

Cloud web portal.

stopHostingWorkspace Will stop the TIDE instance running for the specific

application. Called when stop hosting is selected in the

TILES Cloud web portal.

Modified files - routes/applications.js

- views/templates/application.ejs

Table 6-15, IR3 implementation files

6.3.3.3 IR3

The TILES Cloud platform should support creating TIDE workspaces.

To accommodate this requirement, the createWorkspace and removeWorkspace helper

functions were implemented. The implementation of these resides in the applications

REST API and will be called when applications are created or deleted in the TILES

Cloud web portal. Both functions are called in the background without being explicitly

initiated by the users.

createWorkspace Will create workspace directory, copy JavaScript API

template files and replace setup in template files with

application specific details, seen in Code snippet 6-9. Called

when a new application is created in TILES Cloud web portal.

removeWorkspace Will take down the application workspace by removing the

directory and template files (not reversible). Called when an

application is deleted in the TILES Cloud web portal.

Modified files - routes/applications.js

Table 6-16, IR3 implementation files

6.3.3.4 IR4

The TILES Cloud platform should automatically configure the workspace with the

JavaScript API for all TIDE applications.

The createWorkspace and removeWorkspace helper functions described for IR3 were

slightly modified to accommodate this requirement. The new implementation will

make sure that the workspace is properly configured with the JavaScript API, in

addition to configure the template files for the target application. The helper functions

are still initiated by creating and removing an application, and will not need to be

explicitly initiated by the user.

Modified files - routes/applications.js

6. Implementation 55

Table 6-17, IR4 implementation files

6.3.3.5 IR5

The TILES Cloud platform should support deployment of TIDE applications by

running the JavaScript client code directly from the workspace location in the Cloud.

For this requirement, two additional helper functions were implemented in the

applications REST API, and a button for initiating the functionality was added to the

web portal application view. These helper functions are explicitly initiated by user

actions and will be called by the REST API.

startApplication Will start the application program code, implemented in tiles.js

template file in workspace, as a service on TILES Cloud,

enabling it to run in production mode. Called when start

application is selected in the TILES Cloud web portal.

stopApplication Will stop the service running the application code in production

mode. Called when stop application is selected in the TILES

Cloud web portal.

Modified files - routes/applications.js

- views/templates/application.ejs

Table 6-18, IR5 implementation files

6.3.3.6 IR6

The TIDE should support debugging applications and logging output to a console

window in the browser.

Support for this requirement is inherited by using Cloud9 as TIDE. Cloud9 has a

debugging feature allowing users to run Node.js applications directly in the

environment.

6.3.3.7 IR7

The TILES Cloud platform should support automatic JS code template generation for

the abstract devices configured in the application context.

Adding automatic code generation upon adding and removing abstract devices in an

application was solved by implementing two additional helper functions. These helper

functions are not explicitly initiated by the user, but will be called in the background

when abstract TILES Square placeholders are added or removed from an application.

The helper functions will open the JavaScript templates and add the code for

initializing the abstract TILES Square in the code.

56 6.3. TILES toolkit IDE

addVtToTemplate Will add JavaScript template for an abstract TILES

Square in the workspace template files. Called when an

abstract TILE is added to an application.

removeVtFromTemplate Will remove the JavaScript template code for an

abstract TILES Square in the workspace template files.

Called when an abstract TILE is removed from an

application.

Modified files - routes/applications.js

Table 6-19, IR7 implementation files

6.3.3.8 IR8

The TILES Cloud platform should support security measures to protect the private

TIDE application workspaces from unauthorized access.

To support protecting the private instance of TIDE for an application workspace, the

web view of TIDE must be protected by the service hosting the IDE. Cloud9

automatically adds support for security, but this feature has been disabled temporarily

in the code as the rest of the TILES Cloud platform currently has no implemented

security mechanisms. Support for this requirement, however, is supported and can

easily be switched on as soon as the rest of the Cloud infrastructure is properly secured.

57

7 Evaluation

This chapter is dedicated to the research illustrated on Figure 1-2, Design Science

Research, Environment (adopted from [9]). In this part of the research, I was tapping

into the Environment through the Relevance Cycle of the Design Science Research by

conducting several iteration of evaluation.

For evaluation, two workshops were conducted with non-experts to evaluate the

TADP, and a focus group with expert users was organized to evaluate the TEP. In

addition, the students implementing the new TILES Gateway smartphone app [1]

provided constant feedback on the usability and functionality of the background

services during their work with the new gateway implementation, which acted as an

evaluation on the implementation of the background services. The workshops

conducted for non-experts in this project builds on the workshop structure constructed

in the specialization project [23].

7.1 Non-expert workshops

This subchapter will explain the workshops conducted for evaluating the tools of the

extended TILES toolkit targeting non-expert users.

7.1.1 Objectives

The objective of the non-expert workshops was to test the new tools of the extended

TILES toolkit focusing on the transition from the ideation phase to prototyping. More

precisely the TADP, TIDE, TILES Cloud web portal and all the support documentation

available to the non-experts during the workshop in TDS were evaluated. The GUI and

UX of the web portal was not the main focus of evaluation, however some fundamental

improvements of the GUI were necessary in order to support rapid application

prototyping as per the research questions of this thesis.

The TADP introduced in chapter 3 and the functional requirements introduced chapter

4 will act as the base evaluation criteria for the non-expert evaluation. The hypothesis

to be tested during the non-expert evaluation can be seen below. The main difference

between these workshops and the workshops of the specialization project is the new

58 7.1. Non-expert workshops

processes and the support documentation section enabling the non-experts to perform

the workshop with no prior setup of the workshop, and minimal supervision from

toolkit experts in transitioning from ideation to prototyping.

Hypothesis:

People with little programming experience should be able to prototype their ideas

generated with the TILES Cards (or simple ideas generated for them) using the TILES

toolkit with minimal supervision from toolkit experts, and only a brief introduction to

the concept of IoT from IoT experts.

7.1.2 Research tools

The research tools employed during the workshops were observation, survey and

discussion. The participating non-experts were given questionnaires to provide

feedback on specific topics of interest after the workshop, in addition to being observed

by the workshop supervisors during the workshop. The observation provided objective

feedback during the workshop, while the survey and discussion enabled the non-

experts to subjectively share their personal thoughts and experience.

The survey was constructed as a questionnaire, using a five-point Likert scale with 1

being the negative end of the scale (strongly disagree) and 5 being the positive end

(strongly agree). The questionnaire also contained text questions where the non-

experts could write a few lines of text for elaborating their answers. The questions of

the questionnaire can be seen in Table 7-1. The letter in the rightmost column indicates

whether the question was answered by the Likert scale (L) or Text input (T). A

summary of the feedback is available in chapter 7.1.5.

7. Evaluation 59

 Type

Regarding the documentation

1. The provided developer’s documentation was useful during the

prototyping phase

L

2. The provided developer’s documentation was clear and easy to

understand

L

3. The provided developer’s documentation made it easy to follow the

process of transitioning from ideation to application prototype

L

4. The provided developer’s documentation and examples made it easy to

translate the TILES Cards into JavaScript code

L

Regarding the prototyping process

5. The steps of the prototyping process were easy to follow L

6. I faced few challenges with the process description L

7. If you faced any challenges, what were they? T

8. During the prototyping process it was always clear to me what I was

supposed to do

L

9. Following the steps of the prototyping process was fun L

Regarding the scenarios

10. The scenario(s) given for prototyping were clear and easy to

understand

L

11. The scenario(s) given for prototyping were easy to implement L

12. I recognize the need for the scenario(s) given for prototyping (I would

use these applications at home)

L

Regarding the tools

13. Navigating the TILES Cloud website was easy L

14. Using the TILES Cloud web IDE was easy L

15. I faced few challenges using the TILES Cloud web IDE L

16. If you faced any challenges, what were they? T

General

17. Using JavaScript for prototyping TILES applications was easy L

18. I wish I had TILES Squares at home so I could use the TILES toolkit

for personal TILES applications at home

L

Please answer with a few sentences

19. What was most difficult in the workshop? T

20. What was easiest in the workshop? T

21. Do you have any suggestions for improving the workshop? T

22. Do you have any suggestions for improving the provided developer’s

documentation?

T

23. If you could change the TILES Cloud web IDE, what would you

change?

T

Table 7-1, Non-expert survey questions

60 7.1. Non-expert workshops

7.1.3 Participants

The participants of the first pilot workshop were five computer science students with

some programming experience that were divided into two groups. These students are

more experienced than the target non-expert users of the TADP, but as the structure of

the workshop and syntax of APIs was tested in the specialization project [23], it was

decided that running an initial pilot workshop with more experienced user was

sufficient for testing the process and process description available in the TDS. In

addition, being more experienced, the users were able to provide a more reflected

feedback on the workshop and support documentation, and compare it to other

documentation they have encountered in their previous projects. The participants

already had a general understanding of the concept of IoT and they had all prior

experience with JavaScript, although none of them proclaimed to be experts in any of

the concepts. This made them good candidates for the initial workshop.

The participants of the second workshop were 14 students of age 15/16, which were

divided into four groups. These participants were closer to the target non-experts in

level of experience as they had very little knowledge of development and IoT. Most of

the participants had some experience with python, but none of them had any

experience with JavaScript development. Due to their age and the fact that the

workshop was conducted during regular school hours, the participants were easily

distracted, and their focus easily drifted, but the participants’ level of experience made

them good candidates for the workshop.

7.1.4 Setting up and running the workshop

The participants of the workshops should be divided into groups of two to four people,

and each group should have a computer, several TILES Squares and a mobile phone

running the TILES Gateway at their disposure. The computer needs a steady internet

connection in order to navigate to the online documentation and the admin section on

the TILES Cloud web portal. The workshop of the extended TILES toolkit is intended

to be self-supporting, meaning that no prior configuration should be necessary to run

the workshop. The development environment, TIDE, and support documentation,

TDS, will be available through the browser running on the computer. In addition, the

participants are given a predefined storyboard application, which can be seen in Figure

7-1. This predefined storyboard explains the application idea that the participants will

prototype during the workshop.

Table 7-2 shows the workshop protocol of the non-expert evaluation. The first phase

of the protocol is an introduction to IoT and the TILES Cards ideation process. This

phase is not subject for evaluation in this thesis as the ideation process has already

been evaluated [19] [22] [23] [30]. This phase is still necessary as the rest of the phases

requires the non-experts to be familiar with the ideation process of the TILES toolkit

in order to perform the transition from ideation to prototyping. The second phase is an

introduction to the prototyping process where workshop supervisors will explain how

to get started with the toolkit, introduce the document section on the TILES Cloud web

7. Evaluation 61

portal, demonstrate a few TILES application scenarios and introduce the storyboards

that the non-experts will prototype in the next phase of the workshop.

The third phase of the workshop is where the non-experts will be using the introduced

documentation and the provided TILES Cards storyboard to prototype the application

by going through the steps of the TADP. In this phase the non-experts are encouraged

to acquire the necessary information on their own from the documentation section with

minimal help from workshop supervisors. The predefined storyboard application can

be seen in Figure 7-1. In the fourth and final phase, the non-experts will be asked to

fill the questionnaire, introduced in chapter 7.1.2, which concludes the workshop.

"Have you ever been at a party where your shoes have been separated and you can

only find one of them when you are leaving? To solve this problem you should

implement an application for finding the other shoe when you have located one of

them."

 Double Tap on one shoe will set LEDs on both shoes and vibrate the

OTHER shoe. (Should work in both ways, see example below)

o Tap left shoe > vibrate right shoe and set LED on both shoes

o Tap right shoe > vibrate left shoe and set LED on both shoes

 Tilt any shoe and LEDs go off on both shoes

Figure 7-1, Workshop application storyboard

The predefined storyboard application seen in Figure 7-1, was designed prior to the

workshop with support for available hardware in order to ensure that the generated

idea is supported by the TILES toolkit. The storyboard was constructed to resemble

applications previously designed by non-experts, but simplified and tailor to fit the

62 7.1. Non-expert workshops

current scope of the workshop. The workshop structure even supports letting the

participants prototype their own application ideas, but special emphasis must be made

during the ideation phase to enable that only ideas using the supported hardware and

software capabilities are used in the ideation phase.

Time What Why

First part: INTRO to IoT and IDEATION

60-120

min

- Intro to IoT

- Intro to TILES Cards

- Playing TILES Cards

Make sure the participants understand the

concept of IoT, the TILES Cards and

how to use them in ideation.

Second part: INTRO TO PROTOTYPING

10 min Getting started

- Components of TILES

- Layers of architecture

- TILES Squares

primitives

Provide basic knowledge of the TILES

toolkit that the participants will use in

their prototype later (Squares, Gateway,

Cloud, Clients)

(this is the Getting Started section of the

TDS on TILES Cloud web portal)

10 min - Show example scenarios

with TILES Squares

attached to objects

Show one/two sample scenarios so that

the participants can understand how to

interact with the TILES Squares in their

own applications

5 min - Introduce Docs section

on web portal

- Explain the Application

Development Process
chapter on Docs

Explain where to find information about

the steps of prototyping, show the

participants how to use the Docs section.

5 min - Introduce predefined

storyboard

Show the participants the predefined

TILES Cards storyboard that they will be

prototyping

Third part: DEVELOPING PROTOTYPES

30-60

min

- Let participants

prototype the

predefined IoT

application

- Tell the participants to

navigate to the Docs

section of the web portal

and let them start

prototyping by going

through the App. Dev.

Process.

Encourage the participants to follow the

steps of the process and let them try to

get started without further instructions

from workshop supervisors.

Fourth part: EVALUATION

10-20

min

- Fill out questionnaire Give feedback on the workshop and the

tools of the TILES toolkit (Docs section,

App. Dev. Process, etc.)

Table 7-2, Non-expert workshop protocol

7. Evaluation 63

7.1.5 Results

7.1.5.1 Observation

Observations made during the first workshop suggested that when the participants

clicked on links in the documentation section they sometimes struggled somewhat to

get back to the same place in the process description. This was seen in places where

the documentation refers to operations that should be carried out on the TILES Cloud

web portal, and when the participants followed these links they lost the flow of the

process description. In the discussion after the workshop it was suggested to open all

links in the documentation section in new tabs to overcome this issue. In addition, it

was observed, as well as reported in the discussion, that the transition from the TADP

to the JavaScript API section and back again in step five of the process was a bit

difficult to follow. Here it was suggested to put more emphasis on the navigation in

the documentation, both in step six of the TADP and at the end of the JavaScript API

section so that the users would be able to better follow the documentation

chronologically.

Apart from these minor issues with the navigation in the documentation section, the

participants of the first workshop were able to rapidly get started with the application

prototyping with no help from workshop supervisors. It is important to emphasize that

the participants of the first workshop were more experienced than the target non-expert

user, but the fact that they could follow the flow of the process without help suggests

that the process is self-supporting and enables users to go through the steps without

supervision. The observations from the second workshop, were the participants were

less experienced, support this conclusion, as they too were able to prototype the IoT

scenario with little help from workshop supervisors.

The participants of the first workshop also declared that the TILES toolkit

Documentation Section had a similar look and feel as many similar docs sections that

the participants have previously used. During the first workshop, there were some

connection issues with the new TILES Gateway application, but these issues were

quickly overcome and did not affect the flow of the prototyping process. These issues

were later resolved and did not occur in the second workshop. The code produced by

the two groups of the first workshop can be seen in Code snippet 7-1 and Code snippet

7-2. What we can conclude from the code snippets is that both groups were able to

successfully create an application, configure their abstract TILES Squares in the web

portal, and code the application in TIDE.

During the second workshop, the participants were observed to struggle some with the

JavaScript syntax. This aligns with the conclusion of the specialization project [23]

that the syntax of JavaScript seems to be the main issue with which non-experts are

struggling with in their interaction with the TILES toolkit.

64 7.1. Non-expert workshops

 var tilesLib = require('/tiles-lib/api');

 var client = new tilesLib.TilesClient('Petter', 'Petter_test',

'178.62.99.218', 1883).connect();

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 /* AUTO GENERATED CODE START (do not remove) */

 var shoe_right = reader.getTile('shoe_right', client);

 var shoe_left = reader.getTile('shoe_left', client);

 /* AUTO GENERATED CODE END (do not remove) */

 var tileEvent = reader.readEvent(event, client);

 if (tileEvent.isDoubleTap) {

 shoe_right.ledOn("green");

 shoe_left.ledOn("green");

 if(tileEvent.name == shoe_left.name) {

 shoe_right.hapticBurst();

 } else {

 shoe_left.hapticBurst();

 }

 }

 if(tileEvent.isTilt) {

 shoe_right.ledOff();

 shoe_left.ledOff();

 }

 });

Code snippet 7-1, First workshop, application code group A

7. Evaluation 65

 var tilesLib = require('/tiles-lib/api');

 var client = new tilesLib.TilesClient('Ernst', 'Ernsts-Sko',

'178.62.99.218', 1883).connect();

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 /* AUTO GENERATED CODE START (do not remove) */

 var RigthShoe = reader.getTile('RigthShoe', client);

 var LeftShoe = reader.getTile('LeftShoe', client);

 /* AUTO GENERATED CODE END (do not remove) */

 var tileEvent = reader.readEvent(event, client);

 if (tileEvent.name === RigthShoe.name &&

 tileEvent.isDoubleTap) {

 RigthShoe.ledOn('green');

 LeftShoe.ledOn('green');

 LeftShoe.hapticLong();

 }

 if (tileEvent.name === LeftShoe.name &&

 tileEvent.isDoubleTap) {

 RigthShoe.ledOn('green');

 LeftShoe.ledOn('green');

 RigthShoe.hapticLong()

 }

 if ((tileEvent.name === LeftShoe.name || tileEvent.name ===

 LeftShoe.name) && tileEvent.isTilt) {

 RigthShoe.ledOff('green');

 LeftShoe.ledOff('green');

 }

 });

Code snippet 7-2, First workshop, application code group B

66 7.1. Non-expert workshops

7.1.5.2 Survey

The answers of the survey filled out by the non-experts can be seen in this chapter.

The questionnaire is divided into sections in order to systematically go through the

topics of interest in the survey.

Regarding the documentation

The first section of the questionnaire was regarding the support documentation

available on the docs section of the TILES Cloud web portal. As seen in the summary

of the answers in Figure 7-2 the participants were very positive to the structure and

content of the documentation. We can see that almost all answers regarding the

usefulness of the documentation (Q1), documentation ease of use (Q2), ease of

transitioning from ideation to prototype (Q3) and usefulness of provided JavaScript

examples (Q4) were in the positive end of the Likert scale. This entails that the

participants found the documentation satisfactory in explaining the process and with

only some difficulties. As some of the participants were very inexperienced with

programming, they were struggling some with the concept of an online developers

documentation section.

Q1

Q2

Q3

 Q4

Figure 7-2, Workshop questionnaire answers, regarding the documentation

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

0

1

2

3

4

5

6

7

1 2 3 4 5

7. Evaluation 67

Regarding the prototyping process

The second part of the questionnaire was regarding the prototyping process

specifically. Also in this section, the participants found the provided tools satisfactory

as most answers was in the positive end of the Likert scale. This shows that the

prototyping process (TADP) was easy to follow (Q5), there were few challenges with

the process description (Q6), it was always clear what the next step was (Q8) and it

was fun to apply the process (Q9). In question seven the participants were allowed to

elaborate what challenges they had with the process. In the first workshop it was noted

that the participants found the gateway application difficult to use, but this problem

was solved for the second workshop. In the second workshop, the participants found

the prototyping process slightly more difficult to follow, but based on the feedback in

question seven, this problem seems to be to the fact that the participants were familiar

with python and found JavaScript difficult to use.

Q5

Q6

Q8

 Q9

Figure 7-3, Workshop questionnaire answers, regarding the prototyping phase

0

1

2

3

4

5

1 2 3 4 5

0

1

2

3

4

5

6

1 2 3 4 5

0

1

2

3

4

5

6

7

1 2 3 4 5

0
1
2
3
4
5
6
7
8

1 2 3 4 5

68 7.1. Non-expert workshops

Regarding the scenario

The third part of the questionnaire was regarding the provided scenario, seen in Figure

7-1. In the first two questions of this part, the scenario was easy to understand (Q10)

and the scenario was easy to implement (Q11), there was agreement amongst the

participants as almost all answers were in the positive end of the Likert scale. For the

question regarding whether the participants would use this application at home if it

existed (Q12), the answers were more evenly distributed as some participants did not

see the need for this application.

Q10

Q11

Q12

Figure 7-4, Workshop questionnaire answers, regarding the scenarios

Regarding the tools

The fourth part of the questionnaire was regarding the tools used in the workshop.

Again we find most of the answers in the positive end of the Likert scale, indicating

that navigating the TILES Cloud web portal was easy (Q13), using TIDE was easy

(Q14) and that there were few challenges with using the TIDE (Q15). We do see,

however, that some participants found the TIDE slightly difficult to use. This could be

due to the fact that the participants of the second workshop were unfamiliar with

JavaScript and found it difficult to manage the syntax of the programming language.

Q13

Q14

Q15

Figure 7-5, Questionnaire answers, workshop 1, regarding the tools

0
1
2
3
4
5
6
7
8
9

10
11

1 2 3 4 5

0
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5

0

1

2

3

4

5

6

7

1 2 3 4 5

0
1
2
3
4
5
6
7
8

1 2 3 4 5

0

1

2

3

4

5

6

7

1 2 3 4 5

0

1

2

3

4

5

6

7

1 2 3 4 5

7. Evaluation 69

General

The final two questions employing the Likert scale were general questions. Q17,

regarding the ease of using JavaScript in application development received very evenly

distributed score on the Likert scale as seen in the figure below. Similarly, in the text

questions (19-23) there were some feedback on the structure of the JavaScript API

from the participants of the first workshop. Several participants noted that the naming

of the template files were a bit confusing as they did not understand at first where they

should write their application code. As a result, the structure of the JavaScript API

template files were immediately modified based on the provided feedback such that

the files would be less confusing to future workshop participants. The participants of

the second workshop also struggled some with using JavaScript for development, but

their problems were more related to the fact that the syntax of programming was in

general unfamiliar to them.

At the end, the participants disagreed somewhat in whether they would like to have

some TILES Squares at home to play with (Q18). This answer can be seen in relation

with Q12, where some participants also disagreed with whether they would use the

provided scenario application if it existed or not. In the future it would be interesting

to see if these answers would change if more scenarios with different areas of

application were available to the participants during the workshop.

Q17

Q18

Figure 7-6, Questionnaire answers, workshop 1, general

0

1

2

3

4

5

6

7

1 2 3 4 5

0

1

2

3

4

5

1 2 3 4 5

70 7.2. Expert focus group

7.2 Expert focus group

This subchapter will explain the focus group organized for evaluating the tools of the

extended TILES toolkit targeting the expert users.

7.2.1 Objectives

The objective of the focus group organized with expert users was to test the TEP,

TILES Cloud web portal and all the supporting documentation available to expert users

in the TILES toolkit. The objective of the evaluation was not to test the experts’ ability

to develop firmware code for Arduino, thus sample firmware code was provided for

them. The main subject for evaluation was to see whether the experts were able to

extend the development APIs of the TILES toolkit in such a way that the facilitation

mechanisms provided for non-experts are not broken, but made available with the new

improved API capabilities implemented by the experts. Due to time constrains, the

implementation provided by the expert users was not tested on non-experts, but it was

evaluated to ensure that it fulfilled the required structure of the JavaScript API

established in the specialization project [23].

The TEP introduced in chapter 3 together with the functional requirements from

chapter 4 established the base evaluation criteria for the expert user evaluation. The

hypothesis to be tested during the evaluation can be seen below. By using the

documentation section available on the TILES Cloud web portal the expert users

should be able to extend the TILES toolkit with minimal support from toolkit experts.

Hypothesis:

Experienced users should be able to employ TEP with its documentation in TDS to

extend the TILES toolkit firmware and APIs with new improved primitives and services

without breaking support for rapid application prototyping by non-experts.

7.2.2 Research tools

The research tools employed during the focus group was mainly observation and

discussion. Since the focus group was conducted with a small group of expert users, it

was considered that a discussion was more valuable than a questionnaire, as the expert

users would be able to reflect on their experience with the TILES toolkit and compare

it with similar tools they have used. The discussion was very helpful as it provided a

qualitative evaluation of the TEP and TDS of the extended TILES toolkit. The expert

users were also observed during the practical phase of the focus group, which provided

supervisors with objective feedback on their usage of the available tools.

7. Evaluation 71

7.2.3 Participants

The participants of the focus group for expert evaluation were five computer science

students with some programming experience, but little experience with JavaScript

programming. Before the participating in the evaluation of the TILES toolkit

Extension Process, they participated in a pilot workshop for non-experts, explained in

chapter 7.1. Participating in the non-expert workshop served as an introduction into

the TILES toolkit, and proved to be an excellent way for the expert users to understand

how the system components were coupled together before they embarked on the tasks

of extending the toolkit further by employing TEP.

7.2.4 Setting up and running the focus group

As the objective of the focus group is to evaluate the TEP, and not the participants’

ability to develop and deploy firmware on the TILES Square hardware, the extended

TILES Squares and corresponding hardware was implemented prior to the focus group

and step one of the TEP was skipped during the focus group. The available extended

hardware was the TILES Square printer that will print messages to a piece of paper,

and an LED strip with more advanced display features than the LED available on the

standard TILES Squares. Other than implementing the firmware on these two extended

TILES Squares, no setup is required for running the focus group. The participants will

be able to download all the required files from the TDS, available on the TILES Cloud

server, to get started with the TEP. Since the participants had already participated in

the non-expert workshop, they were able to get started with the toolkit extension

without further introduction.

7.2.5 Results

7.2.5.1 Observation and discussion

In the discussion during the focus group it was reported that the participants were

having some difficulties with differentiating the API clients of the JavaScript SDK.

When they were asked to extend the JavaScript APIs with the new hardware features

of the extended TILES Squares provided by the focus group supervisors, they did not

at first realize where to write the code. This problem might simply be caused by the

fact that the participants themselves had not developed the firmware of the extended

TILES Squares, thus did not immediately realize that the provided services was in fact

extended TILES Squares hardware and not third party services requiring additional

API clients to be implemented.

Observations made during the focus group also showed that the experts were having

some difficulties with the precise commands to be sent to the hardware for controlling

the output primitives. Similarly to the previous problem, this problem was caused by

the fact that the participants had not implemented the firmware of the extended

hardware themselves, thus did not fully understand what commands were handled by

72 7.2. Expert focus group

the firmware. After spending less than 10 minutes showing and explaining the

firmware implementation, however, it became abundantly clear to the participants how

to implement the extension methods in the JavaScript APIs and they were able to

implement extension methods quickly thereafter.

7.2.5.2 Extension code

Both groups participating in the focus group decided to extend the TILES toolkit with

the available LED strip. The extension code for the EventReader written by the two

groups can be seen in Code snippet 7-3 and Code snippet 7-4.

In Code snippet 7-3, we can see that group A has successfully implemented a method

on the EventReader for abstracting the technical details of the hardware. The

implemented methods enables non-experts to trigger the rainbow command on the

LED strip, which will set the individual LEDs of the strip to different colors, as seen

in line 11 of the code snippet. The snippet also contains a method for turning the LEDs

off as seen in line 14, which shows that the participants in group A understood the task,

and were able to abstract both turning on and off commands to the available hardware.

 EventReader.prototype.getTube = function (name, client) {

 var id = 0;

 if (client.tiles[name]) {

 id = client.tiles[name];

 }

 var tile = {

 name: name,

 id: id

 };

 tile.raindbow = function() {

 client.send(id, 'led', 'on', 'rainbow');

 }

 tile.ledOff = function() {

 client.send(id, 'led', 'off');

 }

 return tile;

 }

Code snippet 7-3, EventReader extension for LED strip, group A

In the second code snippet, seen in Code snippet 7-4, we can see that group B has

similarly been able to abstract the details of the hardware by implementing methods in

the JavaScript API for setting a random color, as seen in line 14 in the code snippet

below. In line 11 of the code snippet we see that group B is trying to send a blink

command to the LED strip. This however, is not a valid command for the LED strip.

The fact that group B did not code the firmware themselves could be the reason for

implementing such an erroneous method. Even with this erroneous method we can see

that the structure of the extended API is implemented according to the API structure

of the EventReader, and the code implemented by both groups was tested successfully

in a simple test application.

7. Evaluation 73

 EventReader.prototype.getLedStrip = function (name, client) {

 var id = 0;

 if (client.tiles[name]) {

 id = client.tiles[name];

 }

 var strip = {

 name: name,

 id: id

 };

 strip.raindbow = function() {

 client.send(id, 'led', 'blink', 'rainbow');

 }

 strip.randomColor = function() {

 var x = Math.floor((Math.random()*3));

 if(x ==1){

 client.send(id, 'led', 'on', 'red');

 }

 if(x==2) {

 client.send(id, 'led', 'on', 'white');

 }

 if(x==3) {

 client.send(id, 'led', 'on', 'blue');

 }

 if(x==0) {

 client.send(id, 'led', 'on', 'rainbow');

 }

 }

 strip.ledOff = function() {

 client.send(id, 'led', 'off');

 }

 return strip;

 }

Code snippet 7-4, EventReader extension for LED strip, group B

7.3 Summary

In this chapter, we have seen how the workshops with non-experts and focus group

with expert users have served as a baseline for evaluating the work presented in this

thesis report. Based on observation and feedback from participants, the functional

requirements introduced in chapter 4 were tested, and the design and implementation

elaborated in chapter 5 and chapter 6 was iteratively improved based on the feedback

and results of the evaluation cycles. After each conducted iteration of evaluation, the

results and feedback were analyzed, and modifications to the platform to improve the

user experience were implemented.

For both the non-expert and expert evaluation, the hypotheses of the evaluation were

put to the test and accepted as both hypotheses passed the test. Seeing these results

together with the successful results of the workshops conducted for the specialization

74 7.3. Summary

project [23] it entails that non-experts are able to transition from the ideation phase

and rapidly prototype their own IoT applications by employing the TILES toolkit

systematically as described by the TADP and supported by TDS, and that expert users

are able to extend the toolkit with new and improved hardware and software

capabilities without breaking the support for non-expert development facilitation

mechanisms provided by the TILES toolkit.

75

8 Related Work

In this chapter the state-of-the-art toolkits and literature related to the TILES toolkit is

introduced and detailed. This chapter will first introduce available commercial toolkits

evaluated during this project, before some relevant literature is introduced and

elaborated. This chapter is intended to highlight the uniqueness and innovativeness of

the work conducted in this research paper. The work explained in the preceding

chapters of this report describes the TILES toolkit, while this chapter will look into

other research and toolkits to assert where this research report and the TILES toolkit

fits on the map over available IoT toolkits and research literature.

8.1 Commercial toolkits

A list of state-of-the-art IoT prototyping toolkits were presented in the specialization

project [23], and can be seen in Table 8-1. Some of the toolkits listed in this table are,

like the TILES toolkit, aiming at delivering end-to-end IoT prototyping tools with

everything from cloud services, a gateway, dedicated embedded hardware devices and

interfaces for programming and configuration in order to put it all together. In the table

we can see that some of the toolkits are mainly intended as educational tools, while

others aim at being used for prototyping and production.

76 8.1. Commercial toolkits

Toolkit (Prot)otype,

(Prod)uct or

(Edu)cational

Modularity Programming

language

End-to-

end IoT

Arduino PROT, EDU With groove or

tinker shields

Arduino IDE yes

ARTIK PROD no ARTIK IDE yes

Bare conductive

Board

PROT no Arduino IDE no

Electric IMP PROD no Squirrell yes

ESP8266 PROT no Arduino IDE, JS no

Gadgeteer PROT, EDU cable modules .NET no

Intel Edison PROT shields Arduino IDE, C,

Java, NodeJS

no

Kano EDU cable modules ? partial

Lightblue Bean PROT, PROD no Arduino IDE no

Little Bits EDU By default NONE partial

Mesh PROT, EDU By default Proprietary

(Visual)

partial

Metawear PROD no MBED yes

Microduino PROT By default Arduino IDE no

Nordic nRF51 DK PROD no C no

Particle PROD extension

shields

Proprietary yes

Plezmo EDU By default Scratch (Visual) partial

Printoo PROT no ? no

PuckJS PROT no JS no

Raspberry Pi PROT, EDU with groove or

tinker shields

Phyton, JS, ... no

ReSpeaker PROT shields Arduino IDE no

RFDuino/Simblee PROT extension

shields

Arduino IDE no

Sam PROT, EDU By default Proprietary

(Visual)

no

Tessel PROT with groove

shield

JS no

The air board PROT Shields Arduino IDE no

Table 8-1, Commercial toolkits for IoT prototyping [23].

Credit: Simone Mora

8.1.1 End-to-end

Arduino, ARTIK, Electric IMP, Metawear and Particle provide end-to-end IoT

services in their toolkits as seen in Table 8-1. This means that they, similarly to the

TILES toolkit, offers hardware, software, development tools and documentation for

developing full-scale IoT applications without using third party services. Their level

of complexity, however, is very different. As an example, Arduino is an open source

8. Related Work 77

electronics platform that exist in a variety of hardware configurations. Arduino exist

in the heart of countless project all over the world in addition to being the fundamental

building block in the TILES Squares. Although Arduino is the only open-source end-

to-end IoT toolkit platform on the list, it is too expert oriented and not suitable for non-

experts. The configuration and development is cluttered with complicated procedures

that cannot be expected of non-experts

The other end-to-end IoT toolkits target the production market. These toolkits are not

open-source and can be costly depending on the scale of the target project. On the other

side they come with customer support and facilitation mechanisms making them a lot

easier for non-experts to comprehend and use. In addition, as opposed to Arduino,

these four toolkits comes with support for third party web services, which makes it

possible to extend and integrate the toolkits with other services. That said, however,

little information exist on the toolkits ability to extend the toolkits with custom

hardware, which suggest that they are poor substitutes for the TILES toolkit that is

targeting toolkit extension and high degree of hardware and software customization in

the toolkit.

8.1.2 Partial end-to-end

Kano, Little bits, Mesh and Plezmo are listed as partial end-to-end toolkits in Table

8-1. This means that the toolkits does offer their hardware components to be connected

in the toolkit to work together and exchange information. However, they do not

support internet connectivity for IoT and third party service integration. This means

that the capabilities of the toolkits are very limited, and it is not possible to customize

them to fit the general IoT scenario. In addition, they are also more oriented towards

educational purposes as seen in the table, and are not suited for general application

prototyping. On the other hand, if you are looking for a toolkit to use in a very specific

application scenario and do not need to extend it any further, one of these toolkits

might just fit your need.

8.1.3 Not end-to-end

The remaining toolkits in Table 8-1 does not offer end-to-end nor partial end-to-end

support in their services. Common for all these toolkits is that they offer their own

hardware configurations and SDKs for implementing the hardware functionality. Even

though these toolkits does not offer end-to-end services, they are perfect candidates to

be used as building blocks or third party embedded hardware in the end-to-end toolkits.

In fact, we can see that RFDuino is listed in Table 8-1, which is built on the Arduino

structure and is the fundamental building blocks used in the TILES Squares of the

TILES toolkit.

78 8.2. Literature

8.2 Literature

Several papers have been published on the topic of facilitating the development of IoT

systems. The various research often focuses on supporting specific architectural layers,

and/or specific programming approaches. This section will summarize some papers

published on related topics, and a list of relevant support literature can be seen in Table

8-2.

In order to fit on a single page, some of the columns in Table 8-2 have been shortened.

The columns Mod refers to whether the system is Modifiable or not, while the Wear

columns specify if the hardware configuration of the system is a Wearable. As we can

see in the IoT-ready column, most of the presented tools are in fact not IoT-ready.

Even so, they still contain interesting insight into research with non-expert users and

other aspects related to this thesis paper.

8. Related Work 79

S
m

art its

B
lo

cto
p

u
s

B
itW

ear

B
R

IX

D
U

L
 R

ad
io

M
o

d
K

it

i*
C

A
T

ch

L
ittle B

its

B
lad

es an
d

 T
iles

S
iftab

les

V
o

o
d

o
o

IO

iS
tu

ff M
o

b
ile

A
rd

u
in

o

C
o

o
k

ieF
lav

o
rs

P
h

id
g

ets

C
ald

er

P
ap

ier-M
ach

e

N
a

m
e

2
0

0
4

2
0

1
5

2
0

1
3

2
0

1
2

2
0

1
2

2
0

1
1

2
0
1

0

2
0

1
0

2
0

0
9

2
0

0
7

2
0

0
7

2
0

0
7

2
0

0
7

2
0

0
7

2
0

0
5

2
0

0
4

2
0

0
4

Y
ea

r

cu
sto

m

cu
sto

m

cu
sto

m

cu
sto

m

cu
sto

m

ard
u
in

o

cu
sto

m

cu
sto

m

cu
sto

m

cu
sto

m

cu
sto

m

sm
artits

cu
sto

m

cu
sto

m

cu
sto

m

cu
sto

m

R
F

ID
+

C
V

H
a

rd
w

a
re

C
u

sto
m

 (v
isu

al)

C
u

sto
m

 (v
isu

al)

R
est A

P
I

n
o

n
e

S
erial A

P
I

S
cratch

 (v
isu

al)

C
u

sto
m

 (v
isu

al)

n
o

n
e

n
o

n
e

A
P

Is

A
P

Is

Q
u

artz (v
isu

al)

C
/C

u
sto

m

Q
u

artz (v
isu

al)

A
P

Is

A
P

Is

Jav
a A

P
Is

L
a

n
g

u
a

g
e

n
/a

n
/a

ev
en

t

n
/a

ev
en

t

n
/a

n
/a

n
/a

n
/a

n
/a

ev
en

t

ev
en

t

n
/a

n
/a

w
id

g
et

ev
en

t

ev
en

t

A
p

p
ro

a
ch

n
o

n
o

n
o

y
es (p

artly
)

n
o

n
o

y
es (w

ear)

n
o

n
o

n
o

y
es

n
o

n
o

y
es

n
o

y
es

y
es

E
v
ery

d
a
y

o
b

je
cts

y
es

n
o

y
es

y
es

y
es

n
o

y
es

y
es

n
o

y
es

n
o

y
es

n
o

y
es

n
o

p
artially

y
es

U
n

te
th

ered

n
o

n
o

y
es

n
o

n
o

n
o

n
o

y
es

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

n
o

Io
T

-

rea
d

y

n
/a

n
o

y
es

n
/a

y
es

n
o

p
artially

n
/a

n
/a

n
o

y
es

n
o

n
o

n
o

y
es

n
/a

n
o

L
a
n

g
.

a
g

n
o

stic

y
es

n
o

y
es (h

w
)

n
o

n
o

y
es (sw

)

n
o

y
es (h

w
)

n
o

n
o

n
o

y
es

y
es (h

w
)

n
o

n
o

y
es (h

w
)

n
o

M
o

d

y
es

n
o

y
es

y
es?

y
es

n
o

y
es

n
o

n
o

n
o

y
es?

n
o

y
es

y
es

n
o

y
es?

n
o

W
ea

r

[7
]

[2
6

]

[1
5

]

[3
1

]

[4
]

[1
8

]

[2
4

]

[3
]

[2
7

]

[1
7

]

[2
9

]

[2
]

[1
6

]

[1
0

]

[8
]

[1
3

]

[1
2

]

R
ef

Table 8-2, Related literature for IoT and prototyping toolkits

Credit: Simone Mora

80 8.2. Literature

8.2.1 BitWear

BitWear is a platform for prototyping small, wireless, interactive devices. In their

paper, Lyons et al. [15] are using BitWear to create, explore and experiment with

wearable and deployable devices. The BitWear hardware seek to push towards the

limits of small sized devices. The Murata module, built for the BitWear project, is

constructed on Texas Instrument’s16 CC254X chip, which measures in at an impressive

10.4x7.7x1.8mm. The Murata module is extended with a battery and an antenna for

communication over BLE just like the TILES Squares. The size of the Murata module,

however, enables the small battery to power the module for only a single day, making

it difficult to be used in remote places where frequent access in order to replace or

charge the battery can be challenging.

The Murata module features a button and an RGB LED for input and output primitives.

In addition, the hardware accommodate GPIO and I2C busses for configuration of

additional primitives. Since the embedded hardware is implemented to communicate

over BLE, a gateway layer running on a smartphone needs to be used to convey the

messages between the cloud and hardware infrastructure. Although this platform has

a lot of similarities with the TILES toolkit, the BitWear project differs from the TILES

project in that it does not aim at being used by non-experts. The modularity of the

Murata module is limited to the abilities of expert users, and no development interface

for non-experts are presented.

8.2.2 Bloctopus

Bloctopus on the other hand, is a project that enables novice users, or non-experts, to

rapidly prototype tangible interfaces. The system “enables designers to iterate design

concepts, gather feedback, and learn quickly from mistakes” [26]. In the paper, Sadler

et al. addresses the issue of technical challenges for novices to create functional

electronic prototypes. The authors identifies that supporting novices in application

development, often comes with a tradeoff between presenting a much to simplified

abstraction, such as LEGO Mindstorms [14], or require knowledge about circuit

building and textual programming, such as with Arduino. The Bloctopus system is

trying to position itself in between those two extremes by stating that “the goal of our

research is to better understand how we can enable novices to create electronic

prototypes with improved design toolkits” [26].

In achieving their goal, the authors interviewed experts in the area of design,

prototyping, education and embedded systems, which enabled them to come up with

three interesting guiding insights for developing a system targeting novices.

1. Most Ideas are Simple Interaction

2. Feedback First

3. Making Interfacing a One-Step Process

16 https://www.ti.com/

https://www.ti.com/

8. Related Work 81

The first principles build on the discovery that “while a design may eventually become

complex in implementation, a large number of electronic prototype ideas revolve

around simple interactions” [26]. The authors state that by exposing the

implementation details, the prototyping output can be significantly reduced.

The second principle detects that both novices and expert users usually start by asking

the question of how the sensors of the available hardware work. This triggered the

need for Sadler et al. to define a feedback loop for their system that enabled the

discovery of hardware capabilities as direct and immediate as possible.

The third principle recognize the need for a standard interface for plugging in new

hardware sensors to the system. “If one has to connect many wires and add supporting

circuitry before plugging in a sensor, this adds additional friction to the process of

trying out new components” [26].

The Bloctopus system, however, as seen in Table 8-2 is not IoT-ready. This means that

although the prototyping principles are important factors for consideration, the system

cannot be used to design IoT application prototypes. What we can get from this paper

related to the TILES toolkit is the authors’ keen insight into novice programming tools

and their identification of the need to reduce the difficulty threshold for novices, and

at the same time increasing the functionality ceiling in order not to get limited by the

facilitation mechanisms provided for the novice users. In this regards the authors claim

that there have been many attempts to solve this issue and they state that “two types of

novice programming interfaces exist: those that focus on augmenting text-based

programming, and those that incorporate visual programming” [26].

8.2.3 BRIX

BRIX [31] is a modular hardware prototyping platform for applications in mobile,

wearable and stationary sensing, data streaming and feedback. Using BRIX does not

require any knowledge of electronics or hardware design, and it comes with three types

of stackable modules that can be connected to be used in a variety of scenarios. Zehe

et al. [31] argue that novel applications often use hard-to-acquire hardware, and a

timely and costly prototyping stage including several revisions. BRIX is trying to

overcome these issues by allowing researchers to build and modify the hardware

regardless of experience in electronics and hardware design. “With the BRIX system

we introduce a user-friendly, runtime-configurable, modular hardware prototyping

platform for applications in ambient intelligence and ubiquitous computing” [31].

During their investigations of existing solutions, the authors define six system

requirements for a modular prototyping platform. The ideal system:

1. should to be easy to use

2. has to be modular and easily extensible

3. has to be small and compact

4. should offer a wireless interface

5. requires a platform independent host software

6. should be low-cost and well reproducible

82 8.2. Literature

Their rationale for developing the BRIX system is supported by introducing a number

of state-of-the-art systems, and elaborating that although some of them support a

subset of their system requirements, none of the introduced systems support all of

them.

Similarly to the TILES toolkit, the BRIX system relies on Bluetooth as communication

protocol between the hardware and gateway implementation. The BRIX system,

however, does not support extension of the hardware capabilities, and although it

allows client code to be written in any programming language supporting serial ports,

no support documentation or process description exist for allowing non-experts to

easily participate in the design and prototyping phase. As stated by Sadler et al. [26]

there are two types of novice programming interfaces, those that augment text-based

languages and those that incorporate visual programming, and BRIX seems to be doing

neither. Thus the BRIX system lacks certain qualities in order to be adopted by non-

experts. On the other hand, the BRIX system has successfully abstracted the hardware

complexities of a modular system, thus some facilitation mechanisms do exist.

8.2.4 Functionality vs. Ease of use

A well cultivated dogma in the scientific community regarding systems targeting non-

experts, and is being repeatedly mentioned in the literature listed in Table 8-2, is the

tradeoff between functionality and power versus expressivity and flexibility [4] [18]

[26]. This ideology seems to be the leading argument for research with platforms for

facilitating circuit design amongst non-experts. In DUL Radio [4], i*CATch [18],

LittleBits [3] and Modkit [18] we get insight into several approaches to find the perfect

balance of the two conflicting features. With DUL Radio, Brynskov et al. [4] are

providing tools for creating optimized performance with regard to sketching sensor-

based interaction. The platform itself consist of custom-made hardware design, as well

as software, but according to the authors, their processes are applicable to other

common components that can be bought in well-equipped electronic retailers.

In LittleBits [3] the author defines a vision in which designing electronic circuits is as

simple as going to the store and buying a set of pre-configured components and putting

them together. The aim with the platform is to move interaction with electronics from

late stages of the design process to its earliest ones, in addition to enable non-experts

to participate in the process.

83

9 Conclusions

9.1 Summary of results

This project has resulted in a comprehensive extension and improvement of the TILES

toolkit. New processes for using the toolkit have been constructed together with

support documentation explaining how to use them. In addition, new components have

been added to the architecture and implemented programmatically, and evaluation in

the form of workshops and a focus group have been conducted to evaluate and test the

extended TILES toolkit and its support tools. This research has been devoted to extend

the research of the specialization project [23] and aligning the research with the vision

of the TILES toolkit has resulted in tools addressing the needs of the non-experts in

prototyping IoT applications, in addition to creating tools aimed at facilitating expert

users in their need to extend and customize the toolkit for specific IoT scenarios. The

following subsections will discuss the research questions of this research paper and

summarize the results and contributions of this research project.

9.1.1 RQ1: How to support rapid prototyping and deployment of IoT

applications using TILES?

This research question is derived directly from the vision of the TILES project

regarding rapid prototyping of IoT applications based on everyday object

augmentation. It is the main research question on which this research project is built.

To answer this broad question, it was divided into three sub-questions that were

answered through formalizing process description, requirement analysis, design

science and user studies. New processes were formalized for the two main users of the

TILES toolkit for supporting the usage of the tools and enabling rapid prototyping and

toolkit extension.

9.1.2 RQ1.1: How to support rapid prototyping of ideas created with

TILES Cards?

In order to support rapid transition from ideation to prototyping, support tools had to

be formalized and added to the TILES toolkit. Before this project, there was an

84 9.1. Summary of results

inconsistency in the process of prototyping an application based on ideas generated

during the ideation process. Transitioning from the idea to the program code of the

application required supervision from toolkit experts, and non-experts were not able

to transform the ideas into program code on their own. By introducing the self-

supporting TADP in the toolkit with detailed instructions on how to employ the

process in the TDS, non-experts were able to rapidly transition from ideation to

prototype without toolkit experts as proven in the workshop explained in the evaluation

chapter. Throughout the step-by-step guide of the TADP in the TDS, strong emphasis

has been put on the transition from the TILES Cards to the application program code.

9.1.3 RQ1.2: How to support TILES application development by non-

experts?

Together with RQ1.1, the TADP and TDS were introduced to address this research

question. Following the TADP, with the step-by-step process description available in

the TDS, the non-experts are able to develop IoT applications using the TILES toolkit

without help from toolkit experts. Introducing the TIDE into the application

development phase of the TADP was also an important aspect in answering this

research question. TIDE enabled non-experts to rapidly get started with application

code implementation, without having to rely on third party software, or downloading

the whole JavaScript API to their development machines. TIDE was able to

successfully abstract the complex behavior of setting up the development environment

with references to the proper modules in the JavaScript API. In addition, by setting up

TIDE to run on the TILES Cloud server, the application code is already stored on the

server, enabling the application to be tested and deployed by the non-experts, without

involving toolkit experts in the process. These facilitation mechanisms enables non-

experts to use the TILES toolkit in everything from the ideation phase, prototyping

phase and even to test, debug and deploy the applications.

9.1.4 RQ1.2: How to support toolkit extension for expert users with

minimal efforts without breaking development support for non-

experts?

In order to align this research with the vision of the TILES toolkit, to enable the tools

to be used in a wide variety of IoT application scenarios and provide a system with a

high degree of customization, the expert users must also be considered. In order to

answer this research question, the second process (TEP) detailed in this research paper

was introduced into the TILES toolkit. The process description, available in the TDS,

enables expert users to follow a carefully constructed process in order to extend and

customize the TILES toolkit with additional hardware capabilities in the TILES

Squares, and software capabilities in the available development APIs. The structure of

the extended TILES toolkit has been designed with both the non-experts and expert

users in mind in order to create a viable future for the toolkit, and making it able to

adapt to the ever changing demands of the rapidly changing domain of IoT.

9. Conclusions 85

9.2 Discussion

The processes (TADP and TEP) defined early in this paper was constructed through

literature review, requirement analysis and analysis of findings of the specialization

project [23]. These processes serves as an excellent baseline for the extended TILES

toolkit. By deriving the TADP and TEP from the RapIoT process [21], the well-

defined properties of the RapIoT process is inherited by the TILES toolkit. The work

and research explained in this paper has transformed the TILES toolkit from a research

oriented tool, into a semi self-supporting platform, enabling both non-experts and

expert users to exploit its services to develop fully functional application prototypes

and construct extended IoT prototyping toolkits for specific application scenarios with

minimal support from toolkit experts.

The user studies organized as a part of this thesis has provided some interesting

insights into how the TILES toolkit can facilitate IoT application prototyping for non-

experts, as well as into what tools expert users need for creating customized IoT

toolkits for specific application domains. On one hand, from an academic perspective,

the user study contributes to the literature on what considerations are necessary when

implementing a toolkit for non-expert IoT prototyping. The findings demonstrate the

delicate balance between facilitation tools for non-experts and advanced tools for

expert users. The needs for non-experts and expert users often do not coincide as

facilitation mechanisms usually comes at a certain cost in terms of the functionality

expected by the advanced user. In addition, the TILES toolkit Application

Development Process developed in this project, provides an interface for further

research of IoT application prototyping by non-experts. The findings of the study

verified that participants were able to rapidly prototype IoT applications by following

the carefully constructed development process, without supervision from toolkit

experts.

On the other hand, considering the fact that the participants of the user study were able

to transition from an IoT application idea, generated with the TILES Cards, into a fully

functional application prototype, suggests that the TILES toolkit is ready to leave the

comfortable realm of pure academic research and be applied in more practical usage

areas. With a functioning toolkit prototype, seen in relation with the fact that user

studies have verified the toolkit’s ability to be extended and customized by experts and

being used by non-experts in prototyping, it is conceivable to imagine the TILES

toolkit being employed in a wide variety of both educational and production scenarios

in the future.

At the same time, there are also some limitations with the findings of this project.

Firstly, due to time constrains, the extended TILES toolkit with processes and support

documentation was never tested as a whole on non-expert users. This implies that the

findings does not adequately represent the whole target usage area of the toolkit, even

though all components of the toolkit have been tested separately during this thesis

project and the specialization project together. A number of authors have argued for

the need for studies in-the-wild, especially in the field of ubiquitous computing [5],

86 9.3. Future work

which could provide the necessary evaluation plot for the whole extended TILES

toolkit. In this setting, the expert user evaluation could even be evaluated by non-

experts, obliging expert users and non-experts to evaluate each other’s work, thus

putting the whole system to the test. Such a case study would be extensive and time

consuming, but would provide detailed reflection on the usage opportunities and

capabilities of the TILES toolkit.

At last, it is important to acknowledge that numerous answers to the research questions

of this project exist. An initial attempt to extend the TILES toolkit with additional tools

for supporting TILES application prototyping by non-experts were made by creating

the Rule Engine Development Environment. This tool was intended to be evaluated

with the research question about supporting TILES application development by non-

experts, but due to time constraints, this evaluation was not finalized. Extending this

non-textual development environment further could be an alternative facilitation

mechanism to the JavaScript development API currently supported by the TILES

toolkit. The Rule Engine does already enable non-experts to define rules for their

program rather than write the program instructions in JavaScript. However, as the Rule

Engine has not been properly evaluated, it is difficult to see how the non-experts will

accept this tool and how it can be used for their application prototyping. This could

definitely be an aspect to consider in future research and usage with the TILES toolkit.

Although the Rule Engine Development Environment has not been properly evaluated

by non-experts, it does provide important insights into how the TILES toolkit can be

extended with new development environments without conflicts for the already

existing tools. This entails that the toolkit might support numerous development

environments in the future, such as text based with JavaScript, rule based, visual

programming, etc.

9.3 Future work

In this paper, an extensive extension of the TILES toolkit has been finalized, and the

toolkit has transitioned from a research oriented tool into a self-supporting platform

for IoT application prototyping. At this point in time there are several interesting

pathways to take for the future work with the TILES toolkit. Most interestingly, future

work could focus on continue on the line of academic research by organizing user

studies in-the-wild to evaluate the toolkit in full-scale scenario use cases. Another

approach is to leave the realm of pure academic research and take the step towards

introducing the TILES toolkit into real practical usage areas and evaluate its usefulness

in real IoT scenarios. This section will highlight what future work opportunities are

most relevant to pursue based on the findings of this paper.

9.3.1 Bring TILES to the classroom

Until now, several workshops involving high-school students as non-experts have been

conducted. These workshops have yielded promising results in the field, enabling

9. Conclusions 87

young students with little programming experience to successfully prototype their own

IoT applications. Taking these results further, an interesting opportunity for future

research is to bring the TILES toolkit into the classrooms and do a more systematic

evaluation of the learning outcome of using the TILES toolkit.

9.3.2 Bring TILES to the market

Similar to the previous subsection, this future work opportunity is in realizing the

market value in the TILES toolkit by bringing the toolkit out of the educational and

academic sphere, and evaluate the needs of the market in order to provide a toolkit

ready to be used in real life scenarios all over the world. This would entail spending a

significant amount of efforts on organizing an initial transition into the production

market by cooperating with commercial businesses and evaluate their needs and usage

of the IoT prototyping toolkit.

9.3.3 Study In-the-wild

A very interesting opportunity for future work is to take the current version of the

TILES toolkit, and organize studies in-the-wild, as discussed in the Discussion

subchapter. This would provide important feedback on how the components of the

TILES toolkit fit together in a real or semi-real IoT scenario, where expert users will

tailor the toolkit to a certain application domain, before non-experts will prototype

applications for the specific application usage areas.

9.3.4 Toolkit improvements

The three preceding future work opportunities focus on evaluation of the TILES toolkit

in three various evaluation settings. The findings of this paper has also provided a list

of possible toolkit improvements that will add new improved tools to the TILES

toolkit.

9.3.4.1 Improving TILES Gateway

Even though the new TILES Gateway has an improved user interface and comes with

some new features, support for application appropriation amongst others, the

application does not seem to work properly on all version of Android. In addition,

sometimes when pairing physical and virtual TILES in an application, it takes some

time before the app manages to start sending and receiving events. Fixing these issues

in addition to implementing the Gateway to run on additional platforms like the

Raspberry Pi would be an important improvement for the TILES toolkit.

88 9.3. Future work

9.3.4.2 Using gateway as input/output primitive

Since all communication between the TILES Squares and the TILES Cloud interface

is already pass through the Gateway layer, a possibility is to implement output and

input primitives directly on the Gateway layer. This would enable the TILES toolkit

to use all hardware capabilities of the smartphone, such as GPS, gyroscope, speakers

and the screen. By introducing these capabilities as data primitives in the toolkit, new

and exciting research possibilities with the TILES toolkit would be possible.

9.3.4.3 Shared TILES Squares

In the current implementation, a TILES Square can only be used in one application at

a time. This means that if a TILES Square with an air quality sensor is deployed

somewhere, this could only be used to send data to one specific application. One

promising future extension of the TILES toolkit is to enable shared TILES Squares.

The structure envisioned contains four types of Squares, elaborated below.

1. Private Square in One Application (PSOA)

2. Private Square in Multiple Applications (PSMA)

3. Public Square with Private Output (PSAO)

4. Public Square with Shared Output (PSSO)

The PSOA variant listed above, is what the TILES toolkit supports today. This enables

a user to pair a TILES Square with an abstract Square in an application, which will

lock that physical TILES Square to the specific application until the application

releases the TILES Square.

The PSMA solution would enable a user to configure a TILES Square that would be

shared amongst his private application. This is very similar to the PSOA, as it does not

enable other users to share the data it produces, but the capabilities of the TILES

Squares can be shared amongst multiple private applications. This Square type could

for example be used if a user only has access to one Square with printing capabilities,

but needs multiple applications to be able to print.

In PSAO it will be possible to configure a TILES Square to be publicly accessible, but

with private output capabilities. This means that anyone can read the input primitives

such as tap and tilt, but only the Square owner would be able to control the output

primitives.

Lastly, in PSSO, all input and output capabilities are publicly available such that

anyone can read the input primitives as well as write to the output primitives of the

TILES Square.

9.3.4.4 Implement security

In the current version of the TILES toolkit, there is no implemented security. This

means that everything from the TILES Cloud web portal, to the events and commands

9. Conclusions 89

of running TILES applications are publicly available to everyone. This also entails that

if someone knows your username, application id and device id, they will be able to

both read and write to the data primitives of your TILES Square. Securing the various

components of the TILES toolkit was part of the requirement specification, but due to

time constraint and the time consuming nature of implementing and testing security

features, these requirements were discarded. Even so, however, all the components of

the toolkit are designed to support future security implementation. This entails that no

functionality or background services needs to be modified in order to introduce modern

security mechanisms into the TILES toolkit. The MQTT and HTTPS protocol used for

conveying messages between the TILES Cloud and the other layers of the toolkit, even

the TILES Cloud web portal, are able to be properly secured.

9.3.4.5 Third party hardware

Adding support for third party hardware is another feature that would spawn future

research opportunities with the TILES toolkit. As detailed in chapter 8, many toolkits

providing custom hardware exist, and adding the ability to exploit these hardware

capabilities in the TILES toolkit would open up to many exiting new data primitives

without having to extend the hardware and firmware of the TILES Squares. The

important initial step towards supporting third party hardware has already been taken

by adding abstract placeholders for the TILES Squares. These abstract TILES Squares

could be modified to be placeholders to any kind of third party embedded hardware.

9.3.4.6 Testing and extend Rule Engine

The extensiveness of this project and time constraints has resulted in not being able to

arrange a separate user study for the Rule Engine development environment. A future

research opportunity is thus to test the environment to determine how non-experts

would accept it as an alternative to the JavaScript development that has already been

evaluated by non-experts. In this direction of research, it would also be possible to

implement an automatic transition from the Rule Engine to the JavaScript development

environment, which would enable non-expert users to define all their rules in the Rule

Engine, before exporting it as a JavaScript template, and continue the development

with TIDE. This would provide interesting possibilities in academic research, by

evaluating how the non-experts can learn to program with JavaScript by transitioning

from the Rule Engine to the TIDE development environment.

91

References

[1] Aursand, A., Gran, M., Johansen, A., Midboe, K., Nornes, A. & Sandell, E.

(2017). IT2901 – Informatics Project II, TILES IDI – Mobile Gateway.

Internal Report at NTNU. Trondheim, Norway.

[2] Ballagas, R., Memon, F., Reiners, R. & Borchers, J. (2007). iStuff Mobile:

Rapidly Prototyping New Mobile Phone Interfaces for Ubiquitous

Computing. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (CHI’07). San Jose, California, USA. Pp. 1107-1116.

[3] Bdeir, A. (2009). Electronics as material: littleBits. In Proceedings of the 3rd

International Conference on Tangible and Embedded Interaction (TEI’09).

Cambridge, United Kingdom. Pp. 397-400.

[4] Brynskov, M., Lunding, R. & Vestergaard, L. S. (2012). The Design of Tools

for Sketching Sensor-Based Interaction. In Proceedings of the Sixth

International Conference on Tangible, Embedded and Embodied Interaction

(TEI’12). Kingston, Ontario, Canada. Pp 213-216.

[5] Bødker, S. (2015). Third-wave HCI, 10 years later—participation and

sharing. Interactions, 22(5). Pp. 24-31.

[6] Davidson, R., Akiba, C., & Townsend, K. (2014). Getting started with

Bluetooth low energy: Tools and techniques for low-power networking.

Bloomington, IN, United States: O’Reilly Media.

[7] Gellersen, H., Koruem, G. & Schmidt, A. (2004). Physical Prototyping with

Smart-Its. IEEE Pervasive Computing, 3(3). Pp. 74-82.

[8] Greenberg, S. (2004). Collaborative Physical User Interfaces. Report from

University of Calgary. Calgary, Alberta, Canada.

92 References

[9] Hevner, A., & Chatterjee, S. (2010). Design Science Research in Information

Systems. In Design Research in Information Systems, vol. 22. Boston, MA:

Springer US. Pp. 9-22.

[10] Kimura, H., Okuda, Y. & Nakajima, T. (2007). CookieFlavors: Rapid

Composition Framework for Tangible Media. In Proceedings of Next

Generation Mobile Applications, Services and Technologies (NGMAST’07).

Cardiff, UK.

[11] Kirkemyr, J. (2016). End User Programming for TILES: Methods and Tools.

Master thesis at NTNU. Trondheim, Norway.

[12] Klemmer, S., Li, J., Lin, J. & Landay, J. (2004). Papier-Mâché: Toolkit

Support for Tangible Input. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI’04). Vienna, Austria. Pp. 399-

406.

[13] Lee. J., Avrahami, D., Hudson, S., Forlizzi, J., Dietz, P. & Leigh, D. (2004).

The calendar toolkit: wired and wireless components for rapidly prototyping

interactive devices. In Proceedings of the 5th conference on Designing

interactive systems: processes, practices, methods, and techniques (DIS’04).

Cambridge, MA, USA. Pp. 167-175.

[14] Lego Mindstorms, LEGO ® (2014). (www.lego.com).

[15] Lyons, K., Nguyen, D., Seki, S., White, S., Ashbrook, D. & Profita, H. (2013).

BitWear: A Platform for Small, Connected, Interactive Devices. In

Proceedings of the adjunct publication of the 26th annual ACM symposium

on User interfaces software and technology (UIST’13). St. Andrews,

Scotland, United Kingdom. Pp 73-74.

[16] Mellis, D. A., Banzi, M., Cuartielles, D., & Igoe, T. (2007). Arduino: An

Open Electronics Prototyping Platform. In Proceedings of the Conference on

Human Factors in Computing (CHI’07). San Jose, California, USA.

[17] Merrill, D., Kalanithi, J. & Maes Pattie. (2007). Siftables: Towards Sensor

Network User Interfaces. In Proceedings of the 1st international conference

on Tangible and embedded interaction (TEI’07). Baton Rouge, Louisiana. Pp.

75-78.

[18] Millner, A. & Baafi, E. (2011). Modkit: blending and extending approachable

platforms for creating computer programs and interactive objects. In

References 93

proceedings of the 10th International Conference on Interaction Design and

Children (IDC’10). Ann Arbor, Michigan, USA. Pp. 250-253.

[19] Mora, S., Asheim, J., Kjøllesdal, A., & Divitini, M. (2016). Tiles Cards: a

Card-based Design Game for Smart Objects Ecosystems. Workshop on Smart

Ecosystems cReation by Visual dEsign. CEUR Proceedings.

[20] Mora, S., Divitini, M., & Gianni, F. (2016). TILES: an Inventor Toolkit for

Interactive Objects. In Proceeding of the International Conference on

Advanced Visual Interfaces (AVI). ACM.

[21] Mora, S., Gianni, F., & Divitini, M. (2016). RapIoT Toolkit: Rapid

Prototyping of Collaborative Internet of Things Applications. In proceedings

of the International Conference on Collaboration Technologies and Systems

(CTS).

[22] Mora, S., Gianni, F., & Divitini, M. (2017). Tiles: A Card-based Ideation

Toolkit for the Internet of Things. Proceedings of DIS conference.

[23] Mæhlum, A. R. (2016). TILES Toolkit: usage and ideation workshops and

integration in IoT ecologies. Specialization project report at NTNU.

Trondheim, Norway.

[24] Ngai, G., Chan, S., Ng, V., Cheung, F., Choy, S., Lau, W. & Tse, J. (2010).

i*CATch: a scalable plug-n-play wearable computing framework for novices

and children. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (CHI’10). Atlanta, Georgia, USA. Pp. 443-452.

[25] Oates, B. J. (2005). Researching information systems and computing.

London: Sage publications.

[26] Sadler, J., Durfee, K., Shluzas, L. & Bilkstein, P. (2015). Bloctopus: A

Novice Modular Sensor System for Playful Prototyping. In Proceedings of

the 9th International Conference on Tangible, Embedded, and Embodied

Interaction (TEI’15). ACM, New York, NY, USA. Pp. 347-354.

[27] Sankman, R., Ullmer, B., Ramanujam, J., Kallakuri, K., Jandhyala, S., Toole,

C. & Laan, C. (2009). Decoupling Interaction Hardware Design Using

Libraries of Reusable Electronics. In Proceedings of the 3rd International

Conference on Tangible and Embedded Interaction (TEI’09). Cambridge,

UK. Pp. 331-337.

94 References

[28] Sivapalan, V., & Kirkemyr, J. (2015). Event-driven infrastructure for the

Internet of Things supporting rapid development. Specialization project

report at NTNU. Trondheim, Norway.

[29] Villar, N. & Gellersen, H. (2007). A Malleable Control Structure for

Softwired User Interfaces. In Proceedings of the 1st International Conference

on Tangible and Embedded Interaction (TEI’07). Baton Rouge, Louisiana.

Pp. 49-56.

[30] Wessel, M. (2016). The Tiles Workshop: Internet of Things Workshop for

Teenagers. Specialization project report at NTNU. Trondheim, Norway.

[31] Zehe, S., Grosshauser, T. & Hermann, T. (2012). BRIX - An Easy-to-Use

Modular Sensor and Actuator Prototyping Toolkit. 4th International

Workshop on Sensor Networks and Ambient Intelligence. Lugano,

Switzerland. Pp. 817-822

95

Appendix A

A Deploying TILES Cloud with

Cloud9 as TIDE

The first part of this appendix, regarding setting up DigitalOcean to host the TILES

Cloud, is copied from the specialization project for completion. The second part,

regarding the Cloud9 IDE as TIDE, is new in this paper.

A.1 About DigitalOcean

DigitalOcean is a cloud infrastructure provider, providing Infrastructure as a Service

(IaaS), that focuses on simplifying web infrastructure for software developers. In this

project, DigitalOcean was used for hosting the TILES Cloud infrastructure on a virtual

machine running Ubuntu 16.

A.2 Setting up droplets in DigitalOcean

Sign in to the DigitalOcean web portal and navigate to the Create Droplet interface.

The TILES Cloud droplet was set up with the configuration seen in Figure A-1. No

additional options were chosen, but adding an SSH key is advised for additional

security. The chosen hostname was set to andersriTiles, and the Create button was

pressed.

96 Appendix A.

Figure A-1, DigitalOcean droplet configuration

Next step was to log into the web console, or using an SSH client to connect to the

Ubuntu VM running in DigitalOcean and go through the steps in the following

subsections.

A.2.1 Install Node.js and npm on Ubuntu via terminal

To install Node.js and npm on Ubuntu using the terminal, the following commands

were fired in the terminal sequentially.

 sudo apt-get update

 sudo apt-get install nodejs

 sudo apt-get install npm

Code snippet A-1, Installing Node.js and npm in Ubuntu VM

A.2.2 Cloning TILES Cloud git repository

The next step was to clone the git repository of the TILES Cloud. This was achieved

by running the commands seen in Code snippet A-2, in the terminal. The first line will

install git if it is not already installed. The second line will clone the git repository.

The third line is used to navigate into the cloned repository, while the fourth line will

install all required npm modules for the TILES Cloud.

 sudo apt-get install git

 git clone https://github.com/simonem/tiles-dev-sw

 cd tiles-dev-sw/Tiles\ CLOUD/api-client

 npm install

Code snippet A-2, Cloning git TILES repository in Ubuntu VM

A.2.3 Installing MongoDB

MongoDB is an open source, document-oriented, database. MongoDB is great when

working with JavaScript, as it can store JSON objects in a document-oriented manner,

thus MongoDB is the preferred backend database for the TILES Cloud infrastructure.

The steps for installing MongoDB in the Ubuntu VM, is seen below.

https://github.com/simonem/tiles-dev-sw

Appendix A. 97

 sudo apt-key adv –keyserver hkp://keyserver.ubuntu.com:80 –recv

EA312927

 echo “deb http://repo.mongodb.org/apt/ubuntu xenial/mongodb-

org/3.2 multiverse” | sudo tee /etc/apt/sources.list.d/mongodb-

org-3.2.list

 sudo apt-get update

 sudo apt-get install –y mongodb-org

Code snippet A-3, Installing MongoDB in Ubuntu VM

In addition, the configuration file mongodb.service must be edited. Type the command

seen below.

 sudo nano /etc/systemd/system/mongodb.service

Code snippet A-4, Edit mongodb.service in Ubuntu VM

In the opened file editor, paste in the text in the following snippet.

[Unit]

Description=High-performance, schema-free document-oriented database

After=network.target

[Service]

User=mongodb

ExecStart=/usr/bin/mongod –quiet –config /etc/mongod.conf

[Install]

WantedBy=multi-user.target

Code snippet A-5, mongodb.service configuration file in Ubuntu VM

Now we need to start the service with systemctl then make sure that MongoDB will

be restarted when the system starts by enabling the service. This is achieved with the

following commands.

 sudo systemctl start mongodb

 sudo systemctl enable mongodb

Code snippet A-6, Starting MongoDB as a service

A.2.4 Running Node.js server as a service using PM2

To run the Node.js server code as a service we will use the production process manager

PM2 for Node.js. First, we need to install PM2 globally, and then start the node server

with PM2. In the code snippet below, we first install PM2 globally in the first line,

before we navigate into the bin folder of the TILES Cloud repository that we cloned

from git earlier. By typing the command seen in the third line, we start the www

Node.js server with PM2. The last command sent is to make sure that the pm2 service

is stared with the system. This is all we need to do to let the system handle the Node.js

server.

 sudo npm install –g pm2

 cd bin

 pm2 start www

 pm2 startup systemd

Code snippet A-7, Starting server with PM2

http://repo/

98 Appendix A.

A.3 Installing Cloud9 core

To install the cloud9 core, some other modules must be installed by firing the

following commands sequentially in the CLI of the server. The following lines will

amongst other install python. In addition, forever will be used to host the individual

TIDE clients as services, thus this is installed as seen in line 3.

 sudo apt-get install build-essential

 sudo apt-get install apache2

 npm install forever –g

 wget https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz

 tar -xvf Python-2.7.12.tgz

 cd Python-2.7.12

 ./configure

 make

 make install

Code snippet A-8, Installing prerequisites for Cloud9 core

The next step of the installation process of Cloud9 core is to clone the git repository

and run the install scripts.

 git clone git://github.com/c9/core.git c9sdk

 cd c9sdk

 scripts/install-sdk.sh

Code snippet A-9, Cloning Cloud9 core and install

Finally, we have to edit the apache2 configuration file so that the TIDE clients can be

hosted.

sudo nano /etc/apache2/sites-available/dev.conf

<VirtualHost *:80>

ServerName dev.yourdomain.org

ProxyPass / http://0.0.0.0:8181/

ProxyPassReverse / http://0.0.0.0:8181/

ProxyPreserveHost On

</VirtualHost>

sudo a2ensite dev

Code snippet A-10, apache2 configuration for Cloud9

Now we are ready to start an instance of the Cloud9 environment. Navigate into the

c9sdk folder containing the Cloud9 core repository and type the following command

in the CLI.

forever start server.js -p 8181 -w ~/workspace/ -l 0.0.0.0 --auth

username:passswd

 Code snippet A-11, Starting an instance of Cloud9 server (TIDE)

This command will start a new instance of the Cloud9 server at port 8181 with the

workspace directory as local repository. The --auth keyword can be used to specify a

username and password for the environment. In the TILES Cloud server, an instance

https://www.python.org/ftp/python/2.7.12/Python-2.7.12.tgz

Appendix A. 99

of the TIDE should not be started with root user as that will enable the developers to

have access to root privileges. A new user c9sdk was created on the TILES Cloud

server to start all instances of the TIDE.

101

Appendix B

B TILES toolkit Documentation

Section

B.1 Getting Started

Introduction to the documentation

This documentation section will show you how to use the TILES toolkit to make

interactive objects for learning and play. It will guide you through everything from the

moment you acquire your first TILES hardware device, to the moment you are ready

to launch your IoT application and ship it as a product. For more information, please

visit the TILES toolkit homepage

This Guide is broken down into five parts:

 Getting Started goes over the basics of what you need for development and

how the TILES toolkit works. If you are not an expert, and you have never

played with embedded hardware devices or programmed your own application,

this is the section for you. If you are an expert user and eager to get started with

development, you can skip this section to get your hands dirty right away. You

will always be able to revisit this section later.

 Application Development Process explains the development process that will

guide you as a developer in turning your application ideas into working

prototypes ready to be used by end users. Whether you are new to programming

and want to create your first IoT application, or you are an experienced

programmer that want to use the TILES toolkit in your latest project, this is the

section for you.

 JavaScript API supplements the 5. Code Application phase of the

Application Development Process. This is intended for you if you choose to

use JavaScript for developing your TILES application. This section also

contains code samples for JavaScript.

102 Appendix B.

 TILES toolkit Extension Process details the process of extending the TILES

toolkit with new features to be used in your own projects. This section is

intended for the experienced user that wants to extend the TILES toolkit with

new features such as new hardware capabilities for the TILES Squares, or new

API features for the development environments.

 Rule Engine API supplements the 5. Code Application phase of the

Application Development Process. This is intended for you if you choose to

use Rule Engine for developing your TILES application. This section also

contains samples for Rule Engine applications.

The best way to use this guide depends on your goal. If you are a non-expert intending

to develop your first IoT application, you should:

1. Go through Getting Started

2. Go through the Application Development Process

3. Use JavaScript API for development

If you are an expert user intending to extend the toolkit you should:

1. Get familiar with Getting Started

2. Go through the TILES toolkit Extension Process

Getting Started

What do you need?

Figure B-1, What you need for IoT prototyping with the TILES toolkit

 TILES Square(s)

 TILES Gateway

 Development PC

To start developing with the TILES toolkit you will first need to procure TILES

Squares and install the Gateway app on a smartphone device. Please visit the TILES

toolkit homepage for instructions on how to procure TILES Squares and the TILES

Gateway app. In addition you will need a development PC with an internet connection

for configuring the application in the TILES Cloud web portal, and coding the

Appendix B. 103

application logic. The TILES toolkit is platform independent, which means that it is

compatible with any operating system you would want to use.

If you want to extend the TILES Square firmware, you will also need to download the

Arduino IDE.

TILES toolkit

Architecture

Figure B-2, Layered architecture of the TILES toolkit

The architecture of the TILES toolkit is divided into three layers as seen on the figure

above. Below is a short description of the responsibilities of each layer of the TILES

toolkit.

TILES Squares

The TILES Squares are the embedded hardware devices of the TILES toolkit,

implemented as the immediate layer for end user interaction. Users of any TILES

application will tap, tilt and otherwise interact with the TILES Squares to produce

events that will be sent to the TILES Gateway, which will forward the events to the

TILES Cloud server for processing. TILES Squares features several data primitives

for input and output interaction with the TILES toolkit.

TILES Gateway

The TILES Gateway is responsible for forwarding the events between the TILES

Squares and the TILES Cloud. The Gateway will communicate with the squares

through Bluetooth, while the communication with the server is performed over the

Internet. The TILES Gateway runs on any regular internet enabled smartphone with

Bluetooth support. This makes it easy to carry around as you interact with your TILES

Squares.

TILES Cloud

The TILES Cloud is the brains behind the TILES toolkit. This is where the application

logic will run, and where the program code is executed. The TILES Cloud will receive

TILES Square input events from the connected Gateways, and will process the events

and reply to the Gateway with output commands that will set the output primitives of

104 Appendix B.

the TILES Squares. The TILES Cloud also features interfaces for connecting your

TILES application to available web services, which enables your TILES application

to be integrated into your everyday life.

Development Environments

This section of the documentation is intended to help you decide which development

environment you should use to develop your application. It will briefly explain the

differences between the available environments and what prerequisites are needed for

using them. This section will not go into details about how to develop TILES

applications using the APIs of the development environments. For that purpose, see

the documentation on the respective API of the development environment in question.

If this is your first time developing a TILES application, we suggest the Cloud

Development Environment.

Cloud development environment

The Cloud development environment is running a cloud9 web portal as your IDE.

When the Cloud development environment is selected for developing a TILES

application, the TILES API library files are created and the IDE is configured

automatically. The cloud9 IDE will be running in the browser, which means that no

local setup is required, and you can run the development environment using your

favorite operating system and web browser. Once the environment is created, you will

be developing your application using JavaScript, and the TILES toolkit JavaScript

APIs.

To start the development environment, navigate to the list of applications and select

your application. In the application details page you will need to click the Host

application button, which will start a new instance of the cloud9 web IDE and display

the Launch Environment button as seen in the image below.

Figure B-3, Start hosting of the cloud9 web IDE for the application

Once the workspace environment has been hosted, you can access the IDE by clicking

on the Launch Environment button.

Appendix B. 105

Figure B-4, Cloud9 web IDE configured with TILES JavaScript API

In the cloud workspace you will find two files:

1. example-API.js - Shows code examples and API instructions

2. tiles.js - Empty file where you will write your own application code

In addition to programming the application, you will be able to select your code file,

and hit 'Run' in the IDE. This will start the program code in debug mode, and you will

be able to see the output of your program in the bash window. This way you are able

to properly debug your application code directly in the Cloud IDE during development.

For more detailed instructions, please read through the section for Application

Development Process.

Local development environment

When you select the Local development environment, you will have to download the

JavaScript APIs with all its files and store them locally on your development machine.

The local environment is intended for experienced users only and might be difficult

for non-experts to properly set up. Make sure that you have installed npm and Node.js

on your system before staring. Node.js and npm can be downloaded here. To download

the APIs and start developing, follow these steps:

106 Appendix B.

 Open your application from the list of applications and click Download API

 Unzip the file on your computer and notice the file structure of the API:

 Open the api directory with your Command-line interface, and type npm install

to install all required node packages

 Open the tiles.js file in the templates directory and change the following:

o {{tilesLibHolder}} - replace with '../api'

o {{userNameHolder}} - replace with application owner of the target

application

o {{appNameHolder}} - replace with name of the target application

o {{ipAddressHolder}} - replace with IP address of TILES Cloud server

If everything went well, you will now be ready to start developing your application.

With the Local development environment, you will be writing your application code

in JavaScript (similar to Cloud development environment). Once you have

downloaded the API, you are free to select any IDE you want for writing the code.

Using this development environment requires more set up as detailed above, but once

it is properly configured you will have access to the source code of the entire TILES

JS API, and you will be able to integrate your TILES application into any application

running Node.js.

Rule Engine development environment

Similarly to the Cloud development environment, the Rule Engine is hosted in the

TILES Cloud web portal with no need for any local setup. When selecting your app

from the list of applications you will notice some differences in the application page

from the Cloud and Local Development Environments. With this environment you do

not need to open an external IDE or download the APIs and run them locally, but you

will be able to develop your application directly in the application page. Please see

Rule Engine API for instructions on how to develop applications with the Rule Engine

Development Environment.

Appendix B. 107

Figure B-5, Rule Engine Development Environment

TILES Square Primitives

The TILES toolkit enables the definition, implementation and manipulation of data

type primitives. The TILES Square primitives allow to abstract low-level

implementation details into simple primitives for bridging the digital and the physical

world. The primitives are implemented in the firmware of the TILES Squares, and

events containing the identifier of the primitives will traverse the layers of the toolkit

infrastructure upon interacting with the Squares of an application. The TILES toolkit

differentiate between two types of primitives:

1. input primitives - originating from the TILES Squares

2. output primitives - targeting the TILES Squares

108 Appendix B.

Figure B-6, RapIoT toolkit example primitives

Example of primitives supported by the TILES Squares are listed in the table below.

In addition, the Squares features custom ports to be used for extending the hardware

with primitives of your own design. To extend the TILES Square primitives, see the

TILES toolkit Extension Process. For a complete overview of all the currently

supported interaction primitives, see the list of primitives registered in the TILES

Cloud web portal.

INPUT PRIMITIVES:

Primitive Degrees of freedom Example mapping

Touch/tap Single, double Send a command, log a quantity

Tilt Boolean (tilted/not

tilted)

Select a function, binary switch

OUTPUT PRIMITIVES:

Primitive Degrees of freedom Example mapping

LED

feedback

Color, blink, fade

(hexadecimal color)

Continuous notification about the status of

process

Haptic

feedback

Vibration pattern

(burst, long)

Discrete notification about the status of

process

Table B-1, TILES Square interaction primitives

B.2 App. Development Process

0. Process Description

If you are looking for a way to rapidly develop and prototype your IoT application

ideas based on everyday object augmentation, you should keep on reading this section

about the TILES toolkit Application Development Process (TADP). The TADP is a

process intended to guide IoT application developers through the required steps of

Appendix B. 109

prototyping a fully functional IoT application using the TILES toolkit. Whether you

are a non-expert or an expert user, this section will enable you to rapidly transform

your IoT application ideas into working prototypes with hardware components,

message events and running program code in no time.

An illustration of the TADP and a short description of the defined steps can be seen

below. Go through each subsection of the documentation sequentially and you will

have a working prototype of your IoT application operable in just a few moments.

Developing IoT applications have never been easier!

Name Description

1 Ideation Phase entails using the TILES Cards and ideation process to develop

an IoT application idea.

2 Create User entails creating a user in the TILES Cloud web portal.

3 Create

Application

involves defining an application name and create the

application context and selecting development environment in

the TILES Cloud web portal.

4 List Physical

Objects

entails using the TILES Cards to identify the physical objects

needed in the application, and listing them by configuring the

application from step 3 with items for your physical things.

5 Launch

Development

Environment

entails starting up the selected development environment and

navigating to the starting point of the environment.

6 Code

Application

involves coding the program behavior by mapping the TILES

cards into executable program code with the steps listed

below.

a. Map HUMAN ACTIONS cards with TILES API events

b. Map FEEDBACK cards with TILES API commands

c. Map SERVICES cards with TILES API sources

d. Use TILES API for additional application behavior

7 Test

Application

involves starting application and using gateway to discover

and use the TILES Squares in your application by following

the steps below.

a. Run application in test mode

b. Procure and ready TILES Squares

c. Procure and ready Physical Objects

d. Open TILES Gateway app and log in

e. Select the application in TILES Gateway

f. Pair TILES Squares with items

g. Use the application

8 Iterate step6-7 entails looping through step 6 and step 7 until the desired

application behavior is accomplished.

Table B-2, Steps of TADP

110 Appendix B.

Figure B-7, TILES toolkit Application Development Process (TADP)

1. Ideation Phase

In this initial step of the process, you will be using the TILES Card game to develop

your own application idea. If you have already done this, you can continue with the

next step of the process.

For detailed instructions on how to use the TILES Card game, please visit the

homepage of the TILES toolkit

Figure B-8, TILES Cards

Appendix B. 111

2. Create User

In this step of the TILES toolkit Application Development Process you will be creating

a user account in the TILES Cloud web portal. If you have already created an account,

you can skip to the next step.

Creating a user account

To create a user account, navigate to the Users page, and enter a username in the form

and click Post as seen in the image below.

Figure B-9, Creating a new user account

Once you have created a new user it will appear in the list. If you click on your

username, you will be able to see a list of all your connected TILES Squares. If you

just created a new account, this list will be empty, so don't worry if you can't see your

TILES there yet.

3. Create Application

This step of the process involves defining an application name and create the

application context by selecting a development environment in the TILES Cloud web

portal. Which development environment you select depends on how you want to

develop your application. See the development environment section to read more about

the available environments. If this is the first time you use the TILES toolkit for your

IoT application prototyping, we suggest you select the Cloud development

environment as this is what we will be using throughout this tutorial.

Creating a new application in TILES Cloud

To create a new application, navigate to the applications page of the TILES Cloud web

portal. Here you will be able to see all registered applications together with some

information about them, as seen in the image below.

112 Appendix B.

Figure B-10, List of Applications in TILES Cloud web portal

By clicking the Create new application you will be prompted with the create

application form, as seen below. Here you will enter a name for your application, select

the development environment, and select the owner of the application. If you are

unsure of which development environment to use, we suggest the Cloud development

environment. As application owner, please select your username, as you defined in the

previous step. After filling the form, hit the Create button, and your application will

appear in the list of applications.

Figure B-11, Add application form in TILES Cloud web portal

4. List Physical Objects

In this step of the process you will be identifying the physical objects of your

application and registering them in the application created in the previous step of the

Appendix B. 113

process. This page will guide you through the step of using the TILES Cards to identify

the physical objects.

a. Identifying physical objects

Using the TILES Cards makes it very easy to identify the physical objects of your

application. In fact, every THINGS card used in the ideation process represents one

physical object in your application. To transition from the TILES Cards you will need

to write down all the THINGS Cards you have used on a piece of paper.

Figure B-12, THINGS Cards from TILES Cards

b. Configure items in your application

Now that you have identified all physical objects to be used in your application it is

time to configure items in your application. To do this you need to navigate to the

applications page and select your application from the list. If you cannot find your

application in the list, you will need to go through the Create Application step of the

process. After you have selected your application from the list, you will see a similar

page as in the image below.

Figure B-13, Application details, with two items

114 Appendix B.

The garage_control_system application seen above already has two items registered;

front_door and garage_door. By clicking the + new item button, you will be able to

add a new item. Make sure to do this for all the physical objects you identified

previously. You should give the items short names as you will be using these names

later in your program code.

5. Launch Dev. Env.

In the previous step you configured your application with the digital placeholders for

the physical objects you will use in your application. Now you are ready to start code

your application, but before you can do that, you need to start the development

environment in which you will be writing the application code. In this section we will

show how to start the Cloud Development Environment. Please visit the development

environment section for more information on other available development

environments.

Starting Cloud Development Environment

To start the Cloud Development Environment, there is only one thing you need to do.

Go to the application details by selecting your application from the list of applications.

Here you should see a button with the text Start hosting. Please click this button, and

your Cloud Development Environment will be started. After clicking the button, a

second button will appear with the text Launch Environment. Click this button, and

the Cloud Development Environment will be opened in a new tab in your browser.

The environment should resemble the image seen below.

Figure B-14, Cloud Development Environment

6. Code Application

In this step of the process you will be writing the actual program code of your

application. This is the most complex step of the process and has been divided into

four substeps for you to follow. Do not worry if this is your first time writing program

Appendix B. 115

code as this documentation will guide you through every step of the development

process. The four steps are:

a. Map HUMAN ACTIONS cards with TILES API events

b. Map FEEDBACK cards with TILES API commands

c. Map SERVICES cards with TILES API sources

d. Use TILES API for additional application behavior

For this step you will be using a separate part of the documentation. When you have

finished the program code you should return to this section and continue with the

Application Development Process.

Cloud Development Environment

For this part, you will be writing your program code in JavaScript. At this point you

should have the Cloud Development Environment running as described in the previous

step of the process.

The JavaScript API will guide you through the steps of prototyping your IoT

application.

7. Test Application

If you have reached this step of the process you are ready to test your application. You

should now have followed all six previous steps of the application development

process, including going through the JavaScript API section for instructions on how to

code your application. Please go through the following steps to test your application.

a. Run application in test mode

This step is intended for Cloud Development Environment only!

To run your application in test mode using the Cloud Development Environment

follow these steps:

1. Open the Cloud Development Environment as seen on the image below

2. Select the tiles.js template file by double clicking on it in the list to the left

3. Locate and click the button

4. Notice the output text in the bash section in the bottom of the window.

116 Appendix B.

Figure B-15, Cloud Development Environment

b. Procure and ready TILES Squares

For each of the items you configured in your application in step 4 of the process, you

should procure one physical TILES Square. Every item will soon be paired with the

physical squares in your application.

c. Procure and ready physical objects

Similarly, for each physical TILES Square you need the physical object on which you

will attach the TILES Square devices. You should now procure all the physical objects

that will be used in your application. The TILES Squares will detect the HUMAN

ACTIONS you perform on the objects, and pass the information as events into the

application code you have just written.

d. Open TILES Gateway app and log in

1. Open up the TILES Gateway

2. Enter your username

3. Enter the host address to the TILES Cloud server

4. Enter the port number (should be 8080)

5. Click Log in!

Figure B-16, Log into app with server address, username and port number

Appendix B. 117

e. Select the application

Select your application from the list of applications by clicking VIEW APP

Figure B-17, List of available applications in gateway

f. Pair TILES Squares with items

After you have selected your application, you should see a list of all the items you have

defined for your application. In the image below we can see that we have selected the

garage_control_system that has three items defined: garage_door, front_door and car.

Figure B-18, List of items in application

For each of the items, click the PAIR button, and select an available physical TILES

Square. The item should now move from the list UNPAIRED TILES to the list

PAIRED TILES, and you have successfully paired the item and physical TILES

Square. Last, but not least, you should attach the physical TILES Square to the physical

objects.

g. Test/use the application

Now you should be able to use the application by interacting with the physical objects

that you have attached the TILES Squares to. In addition, you will be able to get more

debug information by looking at the bash section, described in step "a" above.

118 Appendix B.

8. Iterate step 6-7

In order to reach the desired behavior of your application, you will probably need to

iterate over step 6 and step 7 many times. After going through step 7 for the first time

you most likely notice some inconsistency with your application. Write these down,

and go back to step 6 to fix the errors. Once you are confident that the errors have been

fixed, you can revisit step 7 and test your application again. This time it should be

easier to follow the steps of testing. If you are using the same gateway app it will

remember your previous configuration, and you can skip directly to the last step g.

Test/use the application. Again you might notice inconsistency with the behavior of

your application and you will make another iteration to fix it.

If you are satisfied with how your application behaves;

Congratulations! You have just created an IoT application prototype supporting

augmentation of physical objects!

The only thing that remains is to navigate to the application page by selecting your

application from the list of applications and click the Start application button, next to

the name of the application. This will start the application for production.

B.3 JavaScript API

1. Introduction

If you are using either the Cloud or Local Development Environment, you will be

writing your application code in JavaScript by using the TILES JavaScript API. This

chapter of the documentation will guide you through the steps of transitioning from

your TILES Cards ideation into a working prototype of your application. The steps of

this process are listed below.

a. Map HUMAN ACTIONS cards with TILES API events

b. Map FEEDBACK cards with TILES API commands

c. Map SERVICES cards with TILES API sources

d. Use TILES API for additional application behavior

If you are already familiar with the template files of the JavaScript API you can skip

to the next section of the documentation to get started with developing your

application, otherwise we suggest that you finish this introduction of the JavaScript

API.

After you have finished the JavaScript API chapter, you should continue with the Test

Application step of the Application Development Process to test your application.

Appendix B. 119

The template files

Before we start writing the application program code, let’s look at the template files

available with the JavaScript API. You should notice that there are two template files

available in your development environment:

 tiles.js

 example-API.js

The example-API.js file is a file containing some code samples and sample usage of

the JavaScript API. You can use this file to study the syntax and structure of the

JavaScript API method calls.

The tiles.js, seen in the code snippet below, is an empty template file where you will

be writing your own application logic. Below the code snippet we will break down the

code line by line, to explain what the code does.

 var tilesLib = require('{ {tilesLibHolder} }');

 var client = new tilesLib.TilesClient('{ {userNameHolder} }', '{

{appNameHolder} }', '{ {ipAddressHolder} }', 1883).connect();

 var reader = new tilesLib.EventReader();

 var PostmanClient = new tilesLib.PostmanClient('{enter-ip-here}',

'{enter-port-here}');

 var IFTTTClient = new tilesLib.IFTTTClient('{enter-ifttt-

personal-key-here}');

 client.on('receive', function (tileId, event) {

 /* WORK HERE! */

 });

Code snippet B-1, tiles.js template file explained

tiles.js template explained

The remaining part of this section will explain each line of the initial tiles.js template

file. You can skip to the next section if you are not interested to know what the code

does, or if you are eager to get started developing your own application.

 var tilesLib = require('{ {tilesLibHolder} }');

The first line of the tiles.js code template file is a reference to the TILES JavaScript

API. When you select the Cloud development environment, the reference

'{{tilesLibHolder}}' will be replaced automatically with the proper reference the API

files on the Cloud development server. Using the Local development environment, you

will have to manually set the reference to the downloaded API files, which will usually

be located at '../api'.

 var client = new tilesLib.TilesClient('{ {userNameHolder} }', '{

{appNameHolder} }', '{ {ipAddressHolder} }', 1883).connect();

The next line of the tiles.js template will initialize the TilesClient API. Again the 'place

holder' references will be automatically configured for Cloud development

environment, while needs to be manually set for Local environment. See development

environment section for more details.

120 Appendix B.

 var reader = new tilesLib.EventReader();

 var PostmanClient = new tilesLib.PostmanClient('{enter-ip-here}',

'{enter-port-here}');

 var IFTTTClient = new tilesLib.IFTTTClient('{enter-ifttt-

personal-key-here}');

The next three lines will reference three additional JavaScript APIs. How to use these

APIs are covered in the following three sections of this documentation: Event Reader

API, Postman Client API and IFTTT Client API.

 client.on('receive', function (tileId, event) {

 /* WORK HERE! */

 });

The final lines of the tiles.js template file is where you will write your application

logic. The TILES infrastructure is event driven, which means that code is executed

only when events are received and processed. Inside the client.on('receive,...); code

block, we will be able to determine what type of event has occurred in order to

implement the reaction to the event. This is covered in more details in the Event Reader

API section.

2. EventReader API

The EventReader API can be used to map HUMAN ACTIONS cards and FEEDBACK

cards into TILES events and TILES commands by processing the input/output

primitives for you. This section will explain how the EventReader API can be used,

while the following sections will detail, with examples, how to map the HUMAN

ACTIONS cards and FEEDBACK cards into JavaScript code using the EventReader

API.

Initializing EventReader API

Initializing the EventReader API in your application code is done with the following

lines of code.

 var tilesLib = require('/tiles-lib/api');

 var reader = new tilesLib.EventReader();

Code snippet B-2, Initializing EventReader API

Event Reader API usage

The technical details of using the EventReader API is explained below.

Appendix B. 121

EventReader

Methods:

Name Return

value

Description

readEvent(event, client) Tile Passing in the 'event' and 'client' will give a

Tile object (described below) which

simplifies reading events.

getTile(String, client) Tile Passing in the 'name' of the Tile and 'client'

will give a Tile object (described below)

which simplifies interacting with Tiles.

Example:

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var tileA = reader.getTile('Tile_c5', client);

 });

Code snippet B-3, EventReader API example

Tile

Properties:

Name Type Description

name String Holds the name of the Tile.

id String Holds the unique ID of the Tile.

isDoubleTap Boolean Holds the ‘double tap’ state of the Tile

when reading an event. This will be true if

the received event is a ‘double tap’.

isSingleTap Boolean Holds the ‘single tap’ state of the Tile when

reading an event.

isTilt Boolean Holds the ‘tilt’ state of the Tile when

reading an event.

122 Appendix B.

Methods:

Name Description

hapticBurst() This will send a burst command to the Tile, which will

make the Tile vibrate with a burst pattern.

hapticLong() This will send a vibrate command to the Tile, which

will make the Tile vibrate for a moment.

ledBlink(String) This will send a blink command to the Tile, with a

color string. This will make the Tile blink with the

respective color.

ledOn(String) This will send an LED-on command to the Tile, which

will turn the LED on with the respective color.

ledOff() This will send an LED-off command, turning the LED

of the Tile off.

Example:

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var tileA = reader.getTile('Tile_c5', client);

 if (tileEvent.name == tileA.name) { /* Check if the event

originates from 'tileA' */

 tileA.ledOn('FF00FF'); /* Turn on LED on tileA to color

#FF00FF */

 }

 if (tileEvent.isSingleTap) { /* Check if the event is a

'single tap' event */

 tileEvent.hapticBurst(); /* Vibrate the tile that was

tapped */

 }

 });

Code snippet B-4, Tile methods example

TILES Client API usage

If you are an expert user, and you need to send custom messages to the TILES Squares,

you can use the TILES Client to achieve this.

TilesClient

Methods:

Name Description

send(String, String, String, String) Using the send method, you can send a

command to a TILES Square.

Appendix B. 123

Example:

 var client = new tilesLib.TilesClient('Anders',

'garage_control_system', '178.62.99.218', 1883).connect();

 client.on('receive', function (tileId, event) {

 /* To turn on the led to color red on TILES Square with name

'tile_c5' */

 client.send('tile_c5', 'led', 'on', 'red')

 });

Code snippet B-5, TileClient example

3. Map HUMAN ACTIONS

The previous section introduced the EventReader API for processing events and

commands in the JavaScript API. This section will go more into details on how to use

the EventReader API to map the HUMAN ACTIONS cards to the TILE events in your

application code.

Example 1: Tap Watch

This example shows how THINGS Watch and HUMAN ACTIONS Tap is mapped to

JavaScript code.

Figure B-19, Tap Watch

Looking at the code snippet below, we see that the watch is defined in the JavaScript

code in line 4. In line 6 we see how we detect the origin of the event (from 'Watch'),

and in line 7 we see how the nature of the event (double tap) is detected.

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var watch = reader.getTile('watch', client);

 if (tileEvent.name == watch.name) {

 /* Check if the event originates from 'watch' */

 if (tileEvent.isDoubleTap) {

 /* Check if the event is a double tap event */

 /* Write your FEEDBACK here */

 }

 }

 });

Code snippet B-6, Tap Watch example

124 Appendix B.

Example 2: Tilt Headgear

This example shows how THINGS Headgear and HUMAN ACTIONS Tilt is mapped

to JavaScript code.

Figure B-20, Tilt Headgear

Looking at the code snippet below, we see that the headgear is defined in the JavaScript

code in line 4. In line 6 we see how we detect the origin of the event (from 'Headgear'),

and in line 7 we see how the nature of the event (tilt) is detected.

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var headgear = reader.getTile('headgear', client);

 if (tileEvent.name == headgear.name) {

 /* Check if the event originates from 'headgear' */

 if (tileEvent.isTilt) {

 /* Check if the event is a tilt event */

 /* Write your FEEDBACK here */

 }

 }

 });

Code snippet B-7, Tilt Headgear example

4. Map FEEDBACK

Section 2. EventReader API covered how to use the EventReader API for processing

events and commands in the JavaScript API. The previous section covered how to map

the HUMAN ACTIONS cards into TILES events. In this section we will be looking

into how to map the FEEDBACK cards into TILES commands. You have probably

realized by now that the TILES events are input primitive messages from the TILES

Squares to your code, while the TILES commands are output primitive messages from

your code to the TILES Squares.

Example 1: Change color on Plant

This example shows how FEEDBACK Color change and THINGS Plant is mapped to

JavaScript code. This is useful if you want the color on your plant to change.

Appendix B. 125

Figure B-21, Change color on Plant

Looking at the code snippet below, we see that the plant is defined in the JavaScript

code in line 3. The code for sending the change color command can be seen in line 5.

Here we are changing the color to 'FF00FF' or pink.

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 var plant = reader.getTile('plant', client);

 plant.ledOn('FF00FF');

 });

Code snippet B-8, Change color on Plant example

Example 2: Vibrate Refrigerator

This example shows how FEEDBACK Vibrate and THINGS Refrigerator is mapped

to JavaScript code. This is useful if you want your refrigerator to vibrate.

Figure B-22, Vibrate Refrigerator

Looking at the code snippet below, we see that the refrigerator is defined in the

JavaScript code in line 3. The code for sending the vibrate command can be seen in

line 5. Here we are vibrating the refrigerator with short bursts.

 var reader = new tilesLib.EventReader();

 client.on('receive', function (tileId, event) {

 var refrigerator = reader.getTile('refrigerator', client);

 refrigerator.hapticBurst();

 });

Code snippet B-9, Vibrate Refrigerator example

126 Appendix B.

5. Map SERVICES

Mapping SERVICES cards into TILES sources is a tricky concept and it requires

knowledge of external web services. If don't know any web services it is recommended

that you drop the SERVICES cards from your application. If you want to learn more

about web services it is recommended that you check out IFTTT.

Most of the SERVICES cards can be realized by creating applets in IFTTT and connect

them with your TILES application.

The following sections will introduce two TILES JavaScript APIs that can be used to

map SERVICES cards into TILES sources.

Postman Client API

The Postman Client API is an API that will make it possible to send GET and POST

request to specific IP-addresses. This API is intended to bridge your application with

other web services you need to integrate into your IoT application. The PostmanClient

takes two inputs upon initialization, IP-address of the web server and the port number

of the web services.

 var tilesLib = require('/tiles-lib/api');

 var PostmanClient = new tilesLib.PostmanClient('{enter-ip-here}',

'{enter-port-here}');

Code snippet B-10, Initialize PostmanClient API

Postman Client API usage

PostmanClient

Methods:

Name Description

get(String) Will send a HTTP GET request to the input String

URL.

post(String, function) Will send a HTTP POST request to the input String

URL, and will return the response to the callback

function.

Example:

 var reader = new tilesLib.EventReader();

 var PostmanClient = new tilesLib.PostmanClient('192.168.1.111',

8080);

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 if (tileEvent.isSingleTap) {

 PostmanClient.get('url-name');

 PostmanClient.post('url-name', function (response) {

 console.log(response);

 });

 }

 });

Code snippet B-11, PostmanClient example

Appendix B. 127

IFTTT Client API

The IFTTT Client API is a specialized version of the PostmanClient API, and will

enable you to use IFTTT to trigger a wide variety of popular web services with only a

few lines of code. For this API you must create an account at IFTTT, and configure

the maker channel to get your own personal key. This key must be used as input to the

IFTTT Client API constructor as seen below.

 var tilesLib = require('/tiles-lib/api');

 var IFTTTClient = new tilesLib.IFTTTClient('{enter-ifttt-

personal-key-here}');

Code snippet B-12, Initialize IFTTTClient API

IFTTTClient API usage

IFTTTClient

Methods:

Name Description

send(String, String, String, String) Will send a POST request to the target

‘trigger name’. The first input parameter is

the ‘trigger name’ configured in the IFTTT

applet, while the three next are optional

parameters to be used in the IFTTT applet.

Example:

 var reader = new tilesLib.EventReader();

 var IFTTTClient = new tilesLib.IFTTTClient('-MXtrSsdb-WQxdmbW-

CuA');

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 if (tileEvent.isTilt) {

 IFTTTClient.send('send_email');

 IFTTTClient.send('lights_on', 'FF00FF', 21, '08:00');

 }

 });

Code snippet B-13, IFTTTClient example

Example: Tilt Watch to send Email

This example shows how SERVICES Mail is mapped to TILES source using IFTTT.

The THINGS Watch and HUMAN ACTIONS Tilt is used to show a complete scenario

example.

128 Appendix B.

Figure B-23, Tilt Watch to send Email (using IFTTT)

This sample is a bit complicated and is intended for you if you are familiar with IFTTT

or web services. To make this work you will need to set up your applet using the IFTTT

maker channel manually.

In this example we have preconfigured an IFTTT maker channel with the private key

-MXtrSsdb-WQxdmbW-CuA, and created an applet with trigger name send_email

that accepts two custom arguments email address and email message.

 var reader = new tilesLib.EventReader();

 var IFTTTClient = new tilesLib.IFTTTClient('-MXtrSsdb-WQxdmbW-

CuA');

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var watch = reader.getTile('watch', client);

 if (tileEvent.name == watch.name) {

 if (tileEvent.isTilt) {

 IFTTTClient.send('send_email',

 'tiles@tilestoolkit.io', 'This is an email');

 }

 }

 });

Code snippet B-14, Tilt Watch to send Email example

6. Example Scenario 1

Description:

1. Single tap on 'Eyewear' will set color on 'Eyewear' from looping array [red,

green, blue, white, pink].

2. Double tap on 'Eyewear' will vibrate 'Headgear' AND set color on 'Headgear'

to the same as 'Eyewear'.

3. Tilting 'Eyewear' will turn off LED on 'Headgear'.

Appendix B. 129

Example TILES Cards configuration:

This is just one specific TILES Cards configuration. There are countless ways to

explain this scenario with the TILES Cards. You should use the TILES Cards just the

way that feels natural to you.

1.

2.

3.

130 Appendix B.

JavaScript code:

 var tilesLib = require('/tiles-lib/api');

 var client = new tilesLib.TilesClient('Anders', 'Scenario1',

'138.68.144.206', 1883).connect();

 var reader = new tilesLib.EventReader();

 var colors = ['red', 'green', 'blue', 'white', 'FF00FF'];

 var ct = 0;

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var eyewear = reader.getTile('eyewear_tile', client);

 var headgear = reader.getTile('headgear_tile', client);

 /* First instruction (first set of cards) */

 if (tileEvent.name === eyewear.name && tileEvent.isSingleTap)

 {

 ct++;

 if (ct >= colors.length) ct = 0;

 eyewear.ledOn(colors[ct]);

 /* Second instruction (second set of cards) */

 } else if (tileEvent.name === eyewear.name &&

 tileEvent.isDoubleTap) {

 headgear.ledOn(colors[ct]);

 headgear.hapticBurst();

 /* Third instruction (third set of cards) */

 } else if (tileEvent.name === eyewear.name &&

 tileEvent.isTilt) {

 headgear.ledOff();

 }

 });

Code snippet B-15, JavaScript example scenario 1

7. Example Scenario 2

Context:

You are working in an office and you have decided to make your work station smart.

You want to be able to turn on and off the lights from your desk, without getting up

and hit the light switch on the other side of the room. In addition, you would like to

start and stop the music on the stereo on the other side of the room without leaving

your comfortable office chair.

Description:

1. Single tap on 'Office desk' will set color of lights (trigger IFTTT applet

'set_lights' with color 'FF00FF').

2. Double tap on 'Office desk' will turn off lights (trigger IFTTT applet

'lights_off').

3. Single tap on 'Watch' will start music (trigger Postman to server '192.168.1.111'

port '3000' with trigger 'start_music').

4. Double tap on 'Watch' will stop music (trigger Postman to server

'192.168.1.111' port '3000' with trigger 'stop_music').

Appendix B. 131

Example TILES Cards configuration:

This is just one specific TILES Cards configuration. There are countless ways to

explain this scenario with the TILES Cards. You should use the TILES Cards just the

way that feels natural to you.

1.

2.

3.

4.

132 Appendix B.

JavaScript code:

 var tilesLib = require('/tiles-lib/api');

 var client = new tilesLib.TilesClient('Anders', 'Scenario2',

'138.68.144.206', 1883).connect();

 var reader = new tilesLib.EventReader();

 var IFTTTClient = new tilesLib.IFTTTClient('-MXtrSsdb-WQxdmbW-

CuA');

 var PostmanClient = new tilesLib.PostmanClient('192.168.1.111',

3000);

 client.on('receive', function (tileId, event) {

 var tileEvent = reader.readEvent(event, client);

 var officeDesk = reader.getTile('office_desk_tile', client);

 var watch = reader.getTile('watch_tile', client);

 /* First instruction (first set of cards) */

 if (tileEvent.name === officeDesk.name &&

 tileEvent.isSingleTap) {

 IFTTTClient.send('set_lights', 'FF00FF');

 /* Second instruction (second set of cards) */

 } else if (tileEvent.name === officeDesk.name &&

 tileEvent.isDoubleTap) {

 IFTTTClient.send('lights_off');

 /* Third instruction (third set of cards) */

 } else if (tileEvent.name === watch.name &&

 tileEvent.isSingleTap) {

 PostmanClient.get('start_music');

 /* Fourth instruction (fourth set of cards) */

 } else if (tileEvent.name === watch.name &&

 tileEvent.isDoubleTap) {

 PostmanClient.get('stop_music');

 }

 });

Code snippet B-16, JavaScript example scenario 2

B.4 Toolkit Extension Process

0. Process Description

If you are looking for a way to customize the TILES toolkit by adding additional

hardware features in the TILES Squares or if you want to extend the development APIs

of the toolkit, then the TILES toolkit Excension Process (TEP) is indeded for you. The

TEP is a process inteded to guide expert users through the steps of extending the TILES

toolkit with new and improved hardware and software capabilities. Following the steps

of the TEP should enable you to take the existing TILES toolkit, and customize it to

fit your needs. Employing the TEP systematically imply that the new features of the

toolkit will be available to non-expert users in IoT application development.

An illustration of the TEP and a short description of the defined steps can be seen

below. Go through each subsection of the documentation sequentially and you will

end up with an extended TILES toolkit in just a few moments.

Appendix B. 133

Name Description

1 Device

Development

involves extending the hardware prototype, possibly with

additional hardware, and implement input/output primitives in

firmware.

2 Library

Development

involves implementing new features to the toolkit APIs in

order for application developers to be able to utilize the

capabilities created in step 1.

3 API

Deployment

entails deploying the extended libraries to the TILES Cloud

server.

4 TILES Card

Deck Creation

(optional)

involves creating a deck of TILES Cards by removing all

cards that are not supported by the extended hardware

configuration of the TILES Squares and possibly creating

additional cards for the new interaction primitives.

Table B-3, Steps of TEP

Figure B-24, TILES toolkit Extension Process

1. Device Development

This step of the TEP consist of several substeps that can be seen below. All the substeps

listed below are concerned with hardware and firmware of the physical TILES

Squares. The order of the steps are not important, but some of the steps depend on each

other. For example, you should obviously acquire a TILES Square before you extend

its hardware.

a. Acquire TILES Squares

b. Download and install the Arduino IDE

c. Acquire TILES Square firmware

d. Extend hardware of TILES Squares

e. Extend firmware of TILES Squares

f. Flash the firmware to your TILES Squares

134 Appendix B.

At the end of this page you will find an explanation of the structure of the TILES

Square firmware together with some firmware example code.

a. Acquire TILES Squares

The first thing you will need to do is to acquire the TILES Squares to be used in your

customized project. Please visit the homepage of the TILES toolkit for instructions on

how to acquire TILES Squares.

b. Download and install the Arduino IDE

To develop the firmware of the TILES Squares you need to download and install the

Arduino IDE. Please follow the instructions on the Arduino homepage

c. Acquire TILES Square firmware

Now that you have installed the Arduino IDE and have acquired your TILES Squares,

you need to get access to and download the source code of the TILES Square firmware.

Please see the homepage of the TILES toolkit for instructions on how to get the

firmware source code.

d. Extend hardware of TILES Squares

The next thing you will need to do is to extend the hardware of the TILES Squares.

This entails plugin in the new hardware components to the I2C ports or soldering the

hardware to the custom ports on the TILES Squares. Please see the hardware

schematics available together with the source code of the firmware or at the homepage

of the TILES toolkit.

e. Extend firmware of TILES Squares

Now that you have extended the physical hardware capabilities of the TILES Squares

to fit your need, you will need to implement the capabilities in the firmware. This is

not intended to teach you firmware development as you are expected to be familiar

with the concept. Please visit the Arduino docs section and the RFDuino docs section

for more information about firmware development.

f. Flashing the firmware to your TILES Squares

The last substep of this step of the process is to flash the new firmware to all the squares

featuring the extended hardware capabilities in your customized toolkit. This flashing

procedure can be done by attaching the TILES Squares to a computer running the

Arduino IDE and hit the Upload button. For more information, please visit the

uploading section on the Arduino IDE documentation.

TILES Square firmware structure

When you open the source code of the firmware you will notice the traditional setup-

loop structure of Arduino. The setup function is called when the TILES Square is

powered on and will initialize and set up all the hardware components of the Square.

The loop function is called recurrently while the Square is powered on and will detect

the input primitives such as tap, single tap and double tap. This is where you will be

Appendix B. 135

implementing your input primitives. In addition the RFduinoBLE library is used to

handle the BLE connection. When a message is sent to the TILES Square the

RFduinoBLE_onReceive function will be triggered. This is where you will be

implementing your output primitives.

Example output primitive

Below you can see an example of a new output primitive. This primitive will react to

the led, on, {color} command and will turn the LED of the Square to the input hex

color.

Code snippet B-17, Firmware code, set output primitive LED to specific color

136 Appendix B.

2. Library Development

Similarly to the previous step of the TEP, this step also contains several substeps that

can be seen in the list below. All the steps in the list below are concerned with the APIs

of the TILES toolkit.

a. Download JavaScript API

b. Add detection of primitives to the EventReader client

c. Add new clients to the JavaScript API

d. Add new primitives to Rule Engine API

At the end of this page you will find code samples on how to add primitives to the

EventReader client of the JavaScript API.

a. Download JavaScript API

The first thing you will need to do is to download the latest version of the JavaScript

API. You should familiarize yourself with the structure of the API.

The clients directory contains the JavaScript client APIs. Please see the list below for

a short description of their responsibilities.

 event-reader.js - EventReader client for reading events and sending commands

to the TILES Squares

 ifttt-client.js - IFTTTClient for triggering applets configured in IFTTT

 postman-client.js - PostmanClient for sending web requests as GET or POST

requests to any available web service.

 tiles-client.js - TilesClient is used to handle background communication with

the TILES Cloud server and will be responsible for connecting to the server

and forwarding the events and commands to and from the EventReader client

in the background.

b. Add detection of primitives to the EventReader client

In order to make non-expert able to use the new primitives in their program code, the

primitives should be registered to the EventReader client API. The input primitives

should be added to the readEvent prototype function, while output primitives should

Appendix B. 137

be added to the getTile prototype function. Below is an example of how to read the

single tap event and how to send led on command.

 EventReader.prototype.readEvent = function (event, client) {

 var tile = this.getTile(event.name, client);

 tile.isSingleTap = (event.properties[0] === 'tap' &&

 event.properties[1].startsWith('double'));

 return tile;

 }

Code snippet B-18, read double tap in EventReader API

In line 3 of the code snippet seen above, a new property named isSingleTap will be

added to the returned tile object. This will enable non-experts to simply check this

property flag instead of using the TilesClient API to parse the received event.

 EventReader.prototype.getTile = function (name, client) {

 var id = 0;

 if (client.tiles[name]) {

 id = client.tiles[name];

 }

 var tile = {

 name: name,

 id: id

 };

 tile.ledOn = function (color) {

 client.send(id, 'led', 'on', color);

 }

 return tile;

 }

Code snippet B-19, getTile in EventReader API

In line 10 of the code snippet above, we can see that a new function ledOn is added to

the returned tile object. Calling this function with a string representation of a color will

call the appropriate send instruction to trigger a command to the respective TILES

Square.

c. Add new clients to the JavaScript API

Optionally, if a new service is to be added to the JavaScript API, you could create a

new client. Adding a new client could be useful if a new specific web service should

be introduced into the JavaScript API. The PostmanClient is an example of a client

API that is implemented to enable TILES application developers to use RESTful

services in their application. To add a new client, simply create a new file in the clients

directory and write the code to your client here. Finally, in order to make the client

available in the JavaScript API, open the file api-client.js and add your newly created

client to expose it through the JavaScript API.

d. Add new primitives to the Rule Engine API

Adding a new primitive to the RuleEngine API is very simple. All you have to do is to

navigate to the primitives page in the TILES Cloud web portal and add your

input/output primitive to the tables of primitives. For the input primitives, the name

columns is the name visible in the Rule Engine development environment so you can

138 Appendix B.

pick any name you like. The property[0] and property[1] columns, however, must

match the event property of the primitive. For the output primitive the name and

property[0] are used to trigger the proper command, while selecting the custom

property enables users to input a custom string to be sent with the command. Enabling

the custom command will for instance enable users to enter a hexadecimal

representation of the color they want to set to the LED of a TILES Square.

3. API Deployment

Deploying the extended API to the TILES Cloud server is achieved by following the

steps listed below.

a. Add placeholders

b. Replace API in root lib

c. Add zipped API to lib

a. Add placeholders

The first thing you must do before you deploy the new extended TILES API is to make

sure that the placeholders are properly added to the template files of the API. Please

see the code snippet below for correct placeholders. The placeholders (tilesLibHolder,

userNameHolder, appNameHolder and ipAddressHolder) will be automatically

replaced by the TILES Cloud server for all TILES applications on creation. This way

the non-experts will not need to configure the client templates themselves before they

can get started with the application coding. Additionally, the AUTO GENERATED

CODE lines should be present immediately after the client.on(...){ method as seen on

the code snippet. This will enable the Cloud server to automatically add template code

for items of an application.

 var tilesLib = require('{{tilesLibHolder}}');

 var client = new tilesLib.TilesClient('{{userNameHolder}}',

'{{appNameHolder}}', '{{ipAddressHolder}}', 1883).connect();

 client.on('receive', function (tileId, event) {

 /* AUTO GENERATED CODE START (do not remove) */

 /* AUTO GENERATED CODE END (do not remove) */

 ...

 }

Code snippet B-20, Placeholders of template files

b. Replace API in root lib

For this step you will need access to the TILES Cloud server. On the TILES Cloud

server the TILES library files are located in /tiles-lib. You will need to replace the files

in this directory with the extended API you have just developed. Before you copy the

files, make sure that you remove the node_modules directory. After you have replaced

the API, you need to type npm install into the api directory to install all the required

modules. Your extended JavaScript API is now available for the Cloud Development

Environment.

c. Add zipped API to lib

Appendix B. 139

In order to make the API available for developers using the Local Development

Environment, you will need to zip the whole API (except the node_modules directory),

and copy it into the /tiles-lib directory on the TILES Cloud server. In the zipped API

you do not need the placeholders or AUTO GENERATE CODE comments from step

a. as the server will not replace the code in these files. Your extended JavaScript API

is now available for the Local Development Environment.

4. TILES Card Deck Creation

Even though this step is optional, it is highly recommended in order to simplify the

development process for non-experts using the extended toolkit. The TILES Cards is

an ideation process that has been tested and tailored to help non-expert users to develop

ideas for IoT applications. Following this final step of the TEP will provide non-

experts with a deck of TILES Cards that are supported by your extended TILES toolkit,

and removing those cards that are not supported.

There are only two things that needs to be done in this step:

a. Remove unsupported TILES Cards

b. Create new TILES Cards

a. Remove unsupported TILES Cards

Starting from the original TILES Card deck you will need to remove those cards that

are not supported by your extended TILES toolkit. For example, if your TILES Square

firmware does not support detecting proximity, the proximity sensor card should be

removed from the card deck.

b. Create new TILES Cards

After you have removed those cards that are not supported by your extended TILES

toolkit, you need to create additional cards for the primitives that you have

implemented that is not available in the original TILES Card deck. For example, if you

have implemented a printer in the firmware and connected it to the TILES Squares,

you should create a card for this output primitive.

By following these two steps you ensure that the non-experts only have supported

operations available during the ideation phase in the TILES Cards. This way the non-

experts are not able to use unsupported interaction primitives, and get confused when

it is not supported by the hardware or APIs during the prototyping phase.

B.5 Rule Engine API

1. Introduction

If you are developing your application using the Rule Engine Development

Environment, this chapter will explain how you can use the Rule Engine API to

140 Appendix B.

develop your application. This chapter will guide you through the steps of transitioning

from your TILES Cards ideation into a working prototype of your application. The

steps of this process are listed below.

a. Map HUMAN ACTIONS cards with TILES API events

b. Map FEEDBACK cards with TILES API commands

c. Map SERVICES cards with TILES API sources

After you have finished this Rule Engine API chapter, you should continue with the

Test Application step of the Application Development Process to test your application.

The Rule Engine Development Environment

When you have created an application to use the Rule Engine Development

Environment, you can navigate to the environment by selecting your application from

the list of applications. Your application should look similar to the

garage_control_system seen below.

At this point, you should have defined the items you want to use in your application

by going through the steps of the List Physical Objects step of the Application

Development Process.

Figure B-25, Garage Control System application using Rule Engine Dev. Env.

Appendix B. 141

2. Map HUMAN ACTIONS

To define rules for HUMAN ACTIONS cards, you need to find the TILE rule section

in your Rule Engine Development Environment, seen in the image below.

Figure B-26, Add new TILE rule

Click the + new TILE rule button to open the TILE rule form seen below.

Figure B-27, TILE rule form

In the TILE rule form, the left part is related to the HUMAN ACTIONS cards, while

the right part is related to the FEEDBACK cards, as seen in the image below.

Figure B-28, TILE rule form divided into HUMAN ACTIONS and FEEDBACK

In the HUMAN ACTIONS section of the TILE rule form, select the relevant input

TILES Square from the first dropdown box, and select the trigger action in the second.

To conclude the TILE rule, you also need to define a FEEDBACK action. To see how

to define the FEEDBACK actions, see the next section.

3. Map FEEDBACK

In the previous section you started creating a TILE rule by defining the input HUMAN

ACTION. In this section you will be mapping the FEEDBACK to the second part of

the TILE rule form, seen in the image below.

142 Appendix B.

Figure B-29, TILE rule form divided into HUMAN ACTIONS and FEEDBACK

In the FEEDBACK section of the TILE rule form, select the desired feedback in the

dropboxes before the ON keyword, and select the target TILES Square from the last

dropdown box. By clicking Create the rule will be stored in the list as seen below. This

specific rule will define that:

IF the front_door TILES Square is Single tapped THEN the garage_door TILES

Square will turn LED ON Pink.

Figure B-30, Defined TILE rules with HUMAN ACTIONS and FEEDBACK

4. MAP SERVICES

Mapping SERVICES cards into IFTTT rules in the Rule Engine Development

Environment can be a bit tricky and it requires some knowledge of external web

services. The only available SERVICE in the Rule Engine Development Environment,

is the IFTTT rule definition, which allows you to communicate with IFTTT in your

application.

Configuring IFTTT

The first thing you need to do is to create an account at IFTTT if you have not already

done so. From IFTTT you need to set up the maker channel and write down your

personal key. This key must be configured in your TILES application as seen in the

image below.

Figure B-31, Add IFTTT personal key to Rule Engine application

Output SERVICE

Now your Rule Engine application is ready to talk to you applets in IFTTT. The next

thing you need to do is to create the rule that will trigger the IFTTT applet. Select the

+ new IFTTT rule button to see the IFTTT rule form below.

Appendix B. 143

Figure B-32, IFTTT rule form1

Select the Tile option in the first dropdown box to define that this rule will be triggered

by a HUMAN ACTION. The next two boxes are used to define the input HUMAN

ACTIONS as described in 2. Map HUMAN ACTIONS.

In the last input box on the form you should enter the IFTTT trigger name of your

applet and click on Create to create the rule. This will add the rule to the list as seen

below. This specific rule will define that:

IF the car TILES Square is double tapped THEN the open_garage_door applet in

IFTTT is triggered.

Figure B-33, Defined IFTTT rules with HUMAN ACTIONS and SERVICE

Input SERVICE

To define an input SERVICE, meaning that an external SERVICE will trigger a

FEEDBACK on your TILES Squares, select the + new IFTTT rule button to see the

IFTTT rule form below.

Figure B-34, IFTTT rule form2

This time select the IFTTT option in the first dropdown box to define that this rule will

be triggered by a SERVICE. The remaining form are used to define the FEEDBACK

as defined in 3. Map FEEDBACK. When you have defined the FEEDBACK for this

rule, hit the Create button, and see your rule appear in the list as seen below. This

specific rule will define that:

IF IFTTT applet THEN garage_door TILES Square will vibrate with bursts.

Figure B-35, Defined IFTTT rules with SERVICE and FEEDBACK

The last thing you need to do for this rule to be triggered, is to define your IFTTT

applet to send a post request to the URL visible in line with the IFTTT rule as seen on

the image above. When a POST request is detected by the TILES Cloud to this specific

address, the IFTTT rule will be triggered and the FEEDBACK command will be sent

to the defined TILES Square.

144 Appendix B.

5. Example scenario

Description:

1. Single tap on 'Eyewear' will set color on 'Eyewear' to pink.

2. Double tap on 'Eyewear' will vibrate 'Headgear' AND set color on 'Headgear'

to the yellow.

3. Tilting 'Eyewear' will turn off LED on 'Headgear'.

Example TILES Cards configuration:

This is just one specific TILES Cards configuration. There are countless ways to

explain this scenario with the TILES Cards. You should use the TILES Cards just the

way that feels natural to you.

1.

2.

3.

Appendix B. 145

Rule Engine program example:

Figure B-36, Rule Engine example program definition

If you are following the Application Development Process for prototyping your

application, please return to step 7 of the process.

