
A Control System for Autonomous
Vehicles
Three-Dimensional Geometric Models from

Pictures

Tony Gjendahl

Master of Science in Engineering and ICT

Supervisor: Sven Fjeldaas, MTP

Department of Mechanical and Industrial Engineering

Submission date: June 2017

Norwegian University of Science and Technology

Summary

This master’s thesis describes an experimental process of recreating geometric models
from images. This process is thoroughly described using functionality already present
in the geometric modelling tool GeoMod and functionality added in this master’s thesis.
Some functionality is not yet implemented, but this is described with suggestions on im-
plementation for further students. The framework described allows students to experiment
with different algorithms that automatically recreates geometric models from images.

The implementation of dynamic linking of views and tools have been finished, and exam-
ples are shown. Libraries containing implementations of the BinPic-algorithm, OpenCV
and OpenGL have been developed. The BinPic-algorithm creates binary geometric mod-
els of images that can be shown in the current view. OpenCV is an image-processing
library that can be used to create better binary images than the ones created automatically
using Qt-functions. OpenGL allows for the visualization of geometric models. This is
similar to the camera-view already implemented in GeoMod, but it provides features like
z-buffering, adding light sources, adding different colors inside and outside models and
adding images as texture to geometric models. These libraries are used in the development
of the framework for recreating models from images.

i

ii

Sammendrag

Denne masteroppgaven beskriver en eksperimentell prosess om hvordan man kan gjen-
skape geometriske modeller fra bilder. Denne prosessen er beskrevet med funksjonalitet
allerede eksisterende i den geometriske modellereren GeoMod og funksjonalitet utviklet i
denne masteroppgaven. Det er fortsatt manglende funksjonalitet, men disse er beskrevet i
detalj med forslag til implementering. Rammeverket lar senere studenter på samme pros-
jekt ekperimentere med forskjellige algoritmer for å gjenskape geometriske modeller fra
bilder.

Jeg har implementert dynamisk linking av views og tools, og vist eksempler. Bibliotek
med implementasjon av BinPic-algoritmen, OpenCV og OpenGL har blitt utviklet. BinPic-
algoritmen gjenskaper binære geometriske modeller fra bilder, som kan bli visualisert i
forskjellige kamera. OpenCV er et bilderedigerings-bibliotek som kan brukes til å lage
bedre binære bilder enn de opprettet automatisk ved bruk av Qt-funksjoner. OpenGL vi-
sualiserer geometriske modeller. Dette er de samme modellene som er visualisert i det
originale kameraet allerede implementert i GeoMod, men det gir oss mulighet til å innføre
egenskaper som z-buffering, lyskilder, forskjellig farge på innsiden og utsiden av modeller
og mulighet til å legge til bilder utenpå de geometriske modellene. Disse bibliotekene er
brukt i prosessen med å gjenskape geometriske modeller fra bilder.

iii

iv

Preface

Autonomous vehicles have long been looked on with keen interest. In recent years several
companies have begun development of their own vehicles for different purposes. Some of
these companies use Trondheim as their test-area during this development. Examples of
such planned vehicles are the passenger-ferry [1] developed by AMOS and the commer-
cial ferry [2] being developed by Kongsberg. This shows that the GeoMod-project started
over 10 years ago is highly relevant today.

In fall 2016 I received the current version of the GeoMod-program. It then showed a lot
of signs of being transferred from a UNIX-platform to Windows, OS X and Linux. A
lot of code was implemented, but not functional on the new platforms. Quite some time
has been spent on rewriting old code, as well as developing new, to get the program fully
operational. The program delivered at the end of this master’s thesis has sorted out a lot
of these problems. One example is the dynamic linking of geometric models, views and
tools. Other practical tools like OpenCV and OpenGL have been included in separate li-
braries. These allows the program to utilize image processing functions, as well as a new,
improved visualization on the new platforms. With an extra focus on the recreation of
models from images, this gives later students a good framework for experimentation and
further development. After compiling and running the code on both Windows, OS X and
Linux I feel confident that the program now allows students to do further development
without too much time spent on fixing old code.

I would like to thank my supervisor, Sven Fjeldaas, for guidance throughout the previous
year. A lot of the bugs encountered, with fixes, and other results would not have been
achieved without close cooperation and countless hours of discussions in his office.

v

vi

Table of Contents

Summary i

Sammendrag iii

Preface v

Table of Contents ix

List of Figures xii

1 Introduction 1

2 Program development-platform 3
2.1 The programming language C++ . 3

2.1.1 Pointers . 3
2.1.2 Function overloading . 4
2.1.3 Inheritance . 4
2.1.4 Dynamic Linking . 5

2.2 Qt Creator . 5
2.3 Installation of Qt Creator . 5

3 Dynamic linking of Views 9
3.1 Dynamic Linking of Camera . 9

3.1.1 Re-writing layout of the Views- and Tools-manager 10
3.1.2 Dynamically linking the camera 10
3.1.3 Remove statically linked Camera 12
3.1.4 Importing several instances of cameras 12

3.2 Structuring of Camera-views and Tools 12
3.2.1 Management of models in existing code 12
3.2.2 Management of views in existing code 13

3.3 Control-panel for the camera-view . 14

vii

3.3.1 Problem specification . 14
3.3.2 Review of the current code . 15
3.3.3 How the camera-view should work 16
3.3.4 Finding the models and drawing them 17
3.3.5 Linking control-panel as a separate tool 20

3.4 Linking in picture-view . 21
3.4.1 Drawing models in the picture-view 23
3.4.2 Linking in letters in the picture-view 26

4 Create models from binary images 29
4.1 Dynamically linking tools . 29

4.1.1 File-browser for finding images 30
4.1.2 Previewing .png-files . 32

4.2 Adding the BinPic-algorithm to the library 34
4.2.1 Compiling the BinPic-algorithm 34
4.2.2 Troubleshooting BinPic . 35
4.2.3 Small changes after discussions with my supervisor 38
4.2.4 Further development on the BinPic-algorithm 41
4.2.5 BinPic-algorithm with different extensions 42
4.2.6 Drawing the models in the current view 44
4.2.7 Solution to drawing the models in the current view 45

5 Image processing 47
5.1 Binary geometric models without image-processing 47
5.2 Image-processing . 48

5.2.1 Library for image-processing . 48
5.2.2 The HSV-format . 52
5.2.3 OpenCV and the BinPic-algorithm 52

6 Experimental Process 55
6.1 Experimental process of creating models from images 55

6.1.1 Creating a physical model of the Triangle Prism 56
6.1.2 Creating binary images of the model 56
6.1.3 Identifying properties and recreating the model 58

6.2 Notes and possible problems during development 61
6.3 Summary . 62

7 OpenGL 63
7.1 Re-implement OpenGL in GeoMod . 63

7.1.1 Drawing the models in the system 65
7.1.2 Drawing the Robot-arm in the OpenGL-view 71
7.1.3 Drawing complex surfaces . 74
7.1.4 Add colors to the models . 76
7.1.5 Drawing edges in the system . 78

7.2 OpenGL and further development . 83
7.2.1 Drawing edges . 83

viii

7.2.2 Drawing points . 84
7.2.3 Drawing surfaces with the same coordinates 84
7.2.4 Adding Texture to the Models 85
7.2.5 Unclosed Models . 86
7.2.6 Adding Shadows . 87
7.2.7 False Volumes . 88
7.2.8 Using Code From the Old Drawing-algorithm 88
7.2.9 OpenGL and the old drawing algorithm 89

8 Conclusion 91

Bibliography 91

A Installing and testing OpenCV 95
A.1 Installing and testing OpenCV on Ubuntu 95
A.2 Installing and testing OpenCV on Windows 97

B Short introduction to BMP and BMX 99
B.1 The BMP-extension . 99
B.2 The BMX extension . 99

C General comments 101
C.1 Dynamic libraries . 101
C.2 Generally about the code . 101

D Risk assessment 103

ix

x

List of Figures

2.1 Database-manager in GeoMod . 6

3.1 Dynamically linked camera . 11
3.2 Dynamically linked camera with models 15
3.3 Dynamically linked camera without models 16
3.4 Adding a new camera through the control panel 17
3.5 Widget for adding a new camera . 17
3.6 Opening the newly added camera . 18
3.7 Dynamically linked model not working 20
3.8 Dynamically linked picture-view not working 23
3.9 Statically linked picture-view . 23
3.10 Letter A dynamically linked in picture-view 26
3.11 Dynamically linked letters in picture-view 27

4.1 Widget shown from dynamically liked test-tool 30
4.2 First widget that opens from the 10 BinpicTool-library 31
4.3 Filebrowser with .png-images . 31
4.4 Window with png-images . 32
4.5 Widget with a png-image of Super Mario [3] 33
4.6 Widget with kitten.jpg-image . 34
4.7 Panel for choosing if the image is complete 35
4.8 Preview of the grey-scaled image A . 37
4.9 The camera view when drawing the rhombus 38
4.10 Image of the statically linked view with rhombus 39
4.11 Updated previews . 40
4.12 The BinPic-tool with new button and button-names 41
4.13 BinPic-model of A in the camera-view 42
4.14 Error-message when importing eps-files 43
4.15 Result of previewing A as a binary image 46

5.1 Preview and BinPic-model of the Linux-logo 48

xi

5.2 Binary images created by filtering on the orange colors 50
5.3 Controlpanel for creating binary images 50
5.4 Graphical representation of the HSV-format 52
5.5 Widget for saving images . 53
5.6 New binary image and model . 53

6.1 Examples of different models . 56
6.2 Images of the physical model of the prism 57
6.3 The red surface after using the OpenCV-library to create a binary image . 58
6.4 Binary prisms . 58
6.5 Creating a model of the prism in GeoMod using BinPic 59
6.6 Prism model with edges and points identified 59
6.7 Example of recreated prism in GeoMod 60

7.1 Drawing a triangle with different colors using OpenGL 64
7.2 Figure of creating a cube in OpenGL . 65
7.3 Other recreated models in OpenGL . 71
7.4 Example of an unclosed triangle . 71
7.5 Recreating the robot-arm using OpenGL 72
7.6 Robot-arm with offset . 73
7.7 Robot-arm with rotation . 74
7.8 Two different way of drawing polygons using triangles 75
7.9 Robot-arm with two different rotations 76
7.10 Models with colors . 77
7.11 Robot-arm with shading . 79
7.12 Models with edges . 82
7.13 Several models with shade and z-buffering 83
7.14 Showing hidden edges in pyramid . 84
7.15 Surfaces with the same coordinates . 85
7.16 Drawing cubes with texture . 86
7.17 The unclosed cube with four surfaces using OpenGL 87
7.18 The unclosed cube with four surfaces using the old drawing algorithm . . 87
7.19 Normal and false volume . 88

A.1 Showing the Linux logo in a OpenCV-widget 97

xii

Chapter 1
Introduction

GeoMod is a geometric modelling tool which allows the user to visualize and control geo-
metric models. The finished version of the program is intended to control an autonomous
underwater vehicle. GeoMod should navigate the vehicle without human interaction. For
this to be possible it has to be able to perceive its surroundings, interpret it and find a safe
navigation path.

The vehicle guided by the GeoMod-program is intended to perceive its surroundings
through cameras and other sensors. This master’s thesis will focus on feedback from
cameras, namely images. The feedback should be used to build up an internal representa-
tion of the surroundings, that can be used to find a safe path for the vehicle. The problem
description states that the final product of this master’s thesis should be an outline of a pro-
cess recreating 3D-models from images. Initial discussions with my supervisor revealed
that this process should help build the internal representation of the surroundings. This
process will be based on functionality already present in the system, and functionality to
be implemented in this master’s thesis. Some of the steps in this process are outside the
scope of this master’s thesis. These will be described, but left for further students to im-
plement. The process should allow further students to see how the whole process works,
and how their master’s theses fit into it.

The GeoMod-program should allow vehicles to instantly respond to changes in the sur-
roundings. The code needed to respond to these changes will be included into the main
program when the changes occurs. Dynamic linking allows us to do exactly this. When a
specific tool is needed, the program finds the code and adds it. The version of GeoMod re-
ceived at the beginning of the master’s project was designed in such a way that this could
be achieved, but certain parts were yet to be implemented. At the end of my master’s
project the program allowed me to link in geometric models. The program is intended to
link in geometric models through the Database-manager, different views for visualization
through the Views-manager and different tools through the Tools-manager. For now, only
the Database-manager works as intended, so this thesis will begin by implementing miss-

1

ing code in the Views- and Tools-manager.

The problem description states that simulated visualizations should be linked in dynami-
cally, a program for following contours in a binary image re-implemented, and program for
image-processing added to the system. This master’s thesis will then continue by imple-
menting separate libraries for a simulated camera-view and a picture-view. An algorithm
called BinPic on the old UNIX-system will be re-implemented and tested with the current
version of GeoMod. The resulting geometric models created by the BinPic-algorithm de-
pends on the input-image. I will then find and incorporate an appropriate image-processing
tool which allows the user to achieve better results. These will then be described as parts
of the process of recreating models from images.

2

Chapter 2
Program development-platform

The code in this project is written using the programming language C++ and the IDE(Integrated
Development Environment) Qt Creator. Both C++ and Qt Creator was used in my master’s
project. The code I will develop in my master’s thesis is a further development of work
done in my master’s project, so everything is up and running at the beginning of this thesis.
I will in this section briefly describe parts of C++ used here, and give an introduction to
Qt Creator.

2.1 The programming language C++

C++ is an object-oriented programming language developed by Bjarne Stroustrup [4].
Shortly, object-oriented means that the programmer can instantiate classes as many times
as needed, and use the functions defined in these classes through the instantiated object.
I will in this master’s thesis only comment on a tiny subset of C++ functionality, namely
features essential to the GeoMod-project.

2.1.1 Pointers

Pointers allows the programmer to access addresses, and manipulate the content these ad-
dresses points to. This is very powerful when utilized correctly, and can increase both the
efficiency and performance of a program. A drawback is that, if used incorrectly, it can
cause inaccessible code and memory leaks [5]. It is possible to write C++-code without
using pointers, but that is not desirable. Pointers separate themselves from ordinary vari-
ables in that they contain an address pointing to a location in the memory where the data
is stored, and not a representation of the data itself. The location in memory the address
points to is typically 8 bit, or one byte. To store an int in memory one needs 4 bytes. The
address will then point to the location of the first byte, and internally remember the other
three locations in memory where the rest of the int is stored. Creating a new pointer in

3

C++ is done in the following way:

int *p1;

p1 is here a pointer to an int. To create a variable that points to the value 2.0 we write the
following:

double *p2 = 2.0;

p2 points to a location in memory containing the number 2.0. Pointers are not limited to
numbers. They can point to strings, objects, functions and so forth. C++ also contains
a type of pointer called an opaque pointer. Pointers of this type points to data-structures
where the type hasn’t been specified. This is especially handy when dealing with Dynamic
Linking.

2.1.2 Function overloading

Function overloading allows the programmer to create several functions with the same
name, differing in the number of input-parameters and implementation.

1 void print(int i) {
2 // Implementation 1 here
3 }
4

5 void print(double d, char c) {
6 // Implementation 2 here
7 }

The two functions above have the same name, but different implementation and input-
variables. The function-call print(5) will call the first function, while print(2.0, ”Hello
World”) will call the second. Function overloading allows us to have several functions
with the same name, and the one used depends on the function-call.

2.1.3 Inheritance

Inheritance is central in object-oriented languages. It allows one class to inherit properties
from another. The programmer can then use functions from the parent-class in the sub-
class. New functions can also be defined in the sub-class. If one of the functions in the
sub-class has the same name as one in the inherited class, the one in the sub-class will be
used if this function is called. Inheritance of abstract classes is also possible. An abstract
class is called an interface in C++. An interface contains functions that are defined, but
not implemented. The class that inherits, or implements, the interface has to implement
the functions defined. This ensures the programmer that all classes implementing the in-
terface at least contains the defined functions. The programmer can also implement other

4

functions in the sub-class.

2.1.4 Dynamic Linking

C++ is an extension of the C programming-language which means that components from
C can be used in C++. For us, it means that we can use functions for dynamic linking
defined in C. C++ has no equivalent functions for dynamic linking. For the compiler
to handle function overloading, C++ adds characters to the function-name describing the
input-parameters. Standard C does not support function overloading, so the extra charac-
ters will not be added. C-code inside C++ then have to be declared with the word extern. I
will not go into the specifics of this declaration, but the result is a pointer to the C-functions
inside C++-code. Quite a few problems encountered in this master’s thesis is concerned
with these pointers. The dynamic linking allows us to add code when needed, which is
very useful for autonomous vehicles.

2.2 Qt Creator

Qt Creator [6] is a platform-independent tool for program development using C++. In this
master’s thesis Qt Creator is used as an IDE, with functionality added through external
libraries. The IDE allows me to write code that can be compiled directly in Qt Creator.
I will not venture deep into the functionality added through Qt Creator, but I will high-
light one, namely Qt Widgets [7]. Qt Widgets allows the user to easily create graphical
elements and show them on the screen. An example of such an element is shown in fig-
ure 2.1. The figure shows the Database-manager in GeoMod. Here the user can link in a
model through the buttons at the bottom of the widget. When a button is clicked the user
expects something to happen. This brings me over to another feature used alongside Qt
Widgets, namely Signals & Slots [8]. Signals & Slots allows the user to easily connect
buttons to certain code that should be invoked when the button is clicked. This is one of
the features that supports the choice of Qt Creator, because GeoMod consists of numerous
buttons with different behaviour.

2.3 Installation of Qt Creator

One of the main focuses of my master’s project was cross-platform development. There I
created manuals for installing Qt Creator on Windows, OS X and Ubuntu. This thesis also
has cross-platform development in mind, but it is not that evident since most of this work
was completed in my project. The installation-manuals are accessible through my project
report. I will go through the main points here, since some of these steps are important,
especially on Windows.

5

Figure 2.1: Database-manager in GeoMod

From version 5.4 of Qt Creator, the Qt-module QtWebEngine was discontinued and re-
placed with QtWebEngineWidgets. This replacement doesn’t affect users on OS X and
Ubuntu. The gcc-compiler that comes with these operating systems can handle this new
module, but the MinGW-compiler on Windows cannot. To compile the program on Win-
dows, the user has to install Microsoft Visual Studio and use the MSVC-compiler. Mi-
crosoft Visual Studio can be installed freely from [9]. The user then has to install a spe-
cific version of Qt Creator from [10] that sets up the computer to use the MSVC-compiler.
Installing Qt Creator on Windows then consist of the two steps: 1) Install Microsoft Visual
Studio. When doing this the user has to enter ”advanced installation” and check of ”Visual
C++” under ”Programming Languages”. 2) Install Qt Creator. Here the correct version
of Qt Creator has to be installed. When using the MSVC-compiler, the installation with
”VS” in parenthesis has to be chosen.

The installation of Microsoft Visual Studios and Qt Creator has been shown to work on
native Windows on my computer and on a virtual version of Windows on my Mac. It
also worked on my supervisors old computer, and on the computer of another student on
the same project. It did, however, not work on my supervisors new computer. All NTNU-
computers are set up in a way such that the default location when storing files is on a cloud.
This ensures that all files stored in a default location, for instance ”Documents”, can be re-
covered if the computer is lost or breaks down. This can be overridden by explicitly telling
the computer to store each item on the ”C:”-drive. This solution has been upgraded from
the time my supervisor got his previous computer. This default behaviour causes some
troubles when installing Qt Creator. The installation of Microsoft Visual Studio has been
verified by creating a simple program printing ”Hello World!” to the console. Installing
and running a simple code in Qt Creator yields the following error: ”’cl’ is not recognized
as an internal or external command”. It means that Qt Creator cannot find the command-
line tool installed with Microsoft Visual Studio. This is something that should have been
set automatically by the installation, but the path seems to have been set wrong. This issue
was fixed by adding the appropriate folder to the list of system variables. A description on
how to add a path to system variables is shown in [11]. I added the path ”C:\Program Files
(x86)\Microsoft Visual Studio 14.0\VC\bin\amd64” and restarted the computer. This is
the path to the command-line tool on my supervisors computer, a native 64-bit Windows.

6

This solved the previous error, but running the code again yielded errors of the following
kind: ”C1083: Cannot open include file: ’string’: No such file or directory”. This tells
us that Qt Creator is unable find the file called ”string”. There are also similar errors with
other files. These are C++-headerfiles that should have been found directly by Qt Creator.
I located these files and added an INCLUDEPATH-statement in the .pro-file of the current
project. This worked for the headerfiles, but similar errors regarding library-files appeared.
I tried adding these with INCLUDEPATH as well, but this did not work.

After searching online and looking through error-messages, we found out that the root of
the problem was the way the computer is set up. NTNU-computers do not allow the users,
even local administrators, to edit the system-files. This in turn might explain why the in-
stallation works on other computers, and not on my supervisors.

My supervisor then contacted ”Orakeltjenesten”. They set up the computer and should
therefore be able to grant the access-rights needed. It took numerous emails and visits
before they finally provided the correct access-rights. It turned out that the root of the
problem was that my supervisors user didn’t have the rights to read/write to the windows-
registers. With the old access-rights the registers were unavailable, which could be seen by
opening the windows-menu, typing ”regedit” and selecting ”regedit Run command”. This
opens a new window where the registers should be available. This window only displayed
a message saying that the registers were unavailable. Running the same command after
”Orakeltjenesten” had changed the access-rights shows the registers, and allows the user
to edit them.

Compiling the GeoMod program-files in Qt Creator, after getting the correct access-rights,
now worked without errors. The result that this worked right away was a bit surprising to
both me and my supervisor. We thought that the programs only read/wrote to the registers
once, namely during the installation, and that we had to re-install both Microsoft Visual
Studio and Qt Creator. The fact that this isn’t necessary shows us that Qt Creator reads
from the registers each time the program is started, and was able to find all libraries with-
out re-installation.

It turned out, as seen in the text above, that the described installation worked on this com-
puter as well. The problem here was due to the way the computer was set up from NTNU,
and out of our hands. It did, however, take a lot of time and effort to try other installations
and fixes before this was known. We tried installing several different versions of both Mi-
crosoft Visual Studios and Qt Creator, as well as the fixes outlined above.

7

8

Chapter 3
Dynamic linking of Views

Dynamic linking is a central concept in this master’s thesis. Most of the code written will
be implemented in separate libraries that can be linked in dynamically. The main idea
behind the dynamic linking is described in detail in my master’s project, so only code rel-
evant to the newly created libraries will be described here.

Dynamic linking allows the program to load code into the main program and execute it
through an interface. This interface can be accessed through the Database-, Views- and
Tools-manager. They link in models, views and tools, respectively. The models, views
and tools are created in separate libraries implementing an interface, and contains the code
for the models, views and tools themselves. When a library is added through a manager,
the main program runs the code in the library through interface-functions. Being able to
link in libraries dynamically allows us to keep a lot of the code separate from the main
program. We can then have a smaller code-base with the necessary functionality, and link
in other functionality when needed. It helps us keep a smaller code-base for the main
program, which in turn means that we have less compiled code if it isn’t needed. It also
allows us to track errors more easily. If the program crashes when a library is linked in,
the error is most likely contained within this particular library.

The dynamic linking worked on the UNIX operating system, so it is not a new feature
on this project. The functionality did unfortunately not handle the transition to the new
platforms. I have access to this implementation on the UNIX-platform. The camera-view
is now linked in statically, so I will use this code combined with the implementation from
UNIX when trying to link in views dynamically.

3.1 Dynamic Linking of Camera
The code for the camera-view is currently linked in statically. We want to move this
functionality into a library, so that the camera-view can be linked in when needed. Before

9

I start on this task I have to rewrite the Views-manager to handle dynamic linking properly.

3.1.1 Re-writing layout of the Views- and Tools-manager

In my master’s project I had to rewrite some code in the Database-manager for it to link in
models correctly. This library works and looks as it should as I now am able to link in mod-
els through this widget. I will use this as a template for the Views-manager, so that it looks
and behaves in the same manner. The same will also be done with the Tools-manager. The
basic idea is that models should be linked in through Database-manager, camera and other
views through Views-manager, and different tools through Tools-manager. I copied the
code from the Database-manager to the Views- and Tools-manager. After changing names
in the implementations, the program now has three widgets with the same appearance and
code. This is a good starting point for the dynamic linking of views and tools.

3.1.2 Dynamically linking the camera

With the Views-manager looking and behaving as the Database-manager I started on the
task of dynamically linking in the camera-view. I started by creating a new library that
implements the functions in the interface. Then I copied the code for the statically linked
camera into the library and called its constructor in the interface-function newInstance().
I will not show all of the code in the library here. It can be found in the folder ”Dynami-
cLinkingTests/07 Camera”.

The code for the three managers are now equal. This means that models can be linked in
using all of the three managers. To change this I added the following code in the function
makePluginInstance() in ”viewsman.cpp”:

1 int index = factory.getPlugins().size() - 1;
2 CameraControlWdgt* cameraCtrlP = factory.getPlugins()[index].
3 pluginP->getCamera();
4 cameraCtrlP->show();

Line 1 in the code above finds the index of the last plugin added to the system, now the
camera-view. Then it uses the function getCamera() in the library. getCamera() is a new
interface-function that returns a pointer to the camera-view created in the library. Calling
the function show() on this camera opens the camera-view. This shows the camera, but
none of the statically linked models appear. This comes from the fact that the two func-
tions called showOnTop() and showCameraOnTop() are called in the library. The library
doesn’t know about the statically linked models the main program, and will not draw them.
The same happens for dynamically linked models. These are added to the list of models
in the main program, so they are invisible to the library as well. To solve this problem I
added the two function-calls to the function makePluginInstance() in ”viewsman.cpp”:

10

1 int index = factory.getPlugins().size() - 1;
2 CameraControlWdgt* cameraCtrlP = factory.getPlugins()[index].
3 pluginP->getCamera();
4 if(cameraCtrlP != nullptr) {
5 cameraCtrlP->showOnTop();
6 cameraCtrlP->showCameraOnTop();
7 }
8 else {
9 std::cout << "The provided library is either buggy or not a camera- "

10 "view. Have you checked that all interface functions are "
11 "implemented?" << std::endl;
12 }

The code snippet above finds the camera in the list of linked plugins as earlier. It then gets
the pointer to the camera through the interface-function getCamera(). The if-statement
checks if this pointer actually points to a camera or if it is a nullpointer. The camera and
its control panel will be shown if it is a pointer to a camera, otherwise a statement will be
printed to the terminal/console telling the user that something went wrong. The function
getCamera() has to be implemented in other libraries not containing a camera-view. Here
this function should return a nullpointer which ensures that other libraries aren’t linked in
as camera-views.

We can see in Figure 3.1 that the statically linked models now appear in the dynamically
linked camera. This is because the two functions showOnTop() and showCameraOnTop()
are called in an environment where the statically linked models are known. The dynami-
cally linked camera now works as the statically linked camera. Dynamically linked models
are also drawn when linked in.

Figure 3.1: Dynamically linked camera

I added the same check as in the code above in the Database-manager to verify that only

11

models can be added using this manager. By trying to link in a camera or tool in Database-
manager an error message is displayed.

3.1.3 Remove statically linked Camera
At this point I tried removing the statically linked camera. When dynamically linking in
the view now, nothing happens. When a new CameraControlWdgt is instantiated, a private
vector called cameraManager is created. It contains information about the camera-view
and its setup. This is now created in the library, and not in the main program. Calling the
interface-function getCamera() returns a pointer to the camera-object and not the settings
associated with the camera. When the function showOnTop() is called, it checks that the
cameraManager-list is non-empty and tries to use this setup. In this case the main program
thinks the cameraManager-list is empty because it does not know about the list created in
the library. Which in turn means that the camera-view isn’t shown. I fixed this by keeping
the following line in ”entrance.cpp”:

camCtrlP = new CameraControlWdgt(nullptr);

This creates the cameraManager-list in the main program. The check in showOnTop() is
now passed, and the camera-window is drawn on the screen. This is not an optimal solu-
tion, but it works. I will later look at how the cameras and other views are stored. I will
then review and perhaps update this solution.

3.1.4 Importing several instances of cameras
On the UNIX-system several instances of the camera-view could be opened by the user.
The models in the system could then be viewed from different angles at the same time.
We want the same behaviour, but the current version only allows for one instance of the
camera-view. Creating another instance currently prints an error-message to the terminal.

3.2 Structuring of Camera-views and Tools
I will in now shortly look at how the models are stored in our program and compare this
to the way the views are stored. The models are now stored in such a way that several
instances of the same model can be created. This is exactly the same behaviour as we want
for the camera-views.

3.2.1 Management of models in existing code
The models in the main program are stored as a vector of pointers to several ModelData-
instances. These instances are tied together by a doubly linked list which can be entered

12

through a pointer. Whenever a new model is created, the ModelData-pointer will be stored
in the vector mdlDataPs. The doubly linked list, and entry point to it, is created when the
constructor, Models(), in ”modelPP.cpp” is called.

3.2.2 Management of views in existing code
I will use this main idea for managing camera-views as well. They should now be stored
in a vector containing several camera-views. A similar solution was implemented in the
UNIX-system, but it was disabled after the migration to Windows. Getting the camera-
view to work in the first place was prioritized, not the possibility of adding several in-
stances.

The models are stored in a doubly linked list. Looking at the code for the models and
views I found that storing the views as a doubly linked list isn’t necessary. The desired
functionality can be achieved in a simpler way by storing pointers to the camera-views in
a vector. In ”camctrl.cpp” I changed the single pointer to the camera-view from:

CameraControlWdget *CameraControlWdgt::objectP = 0;

to a vector of pointers:

std::vector<CameraControlWdgt*> CameraControlWdgt::objectPs(0);

A few lines in the constructor also had to be changed to account for the possibility of
adding more than one camera instance. The previous code set the CameraControlWdget-
pointer, ”objectP”, equal to ”this”. If this pointer already had been set, an error was dis-
played, and the program quit. This means that adding more than one camera-view caused
the program to close all windows. This was implemented as follows:

1 if(objectP) {
2 std::err << "For now, CameraControlWdgt only allows "
3 << "one instance of itself\n"
4 << "Change the implementation of "
5 << "CameraControlWdgt::updateAllLabels().\n";
6 exit(1);
7 } else objectP = this;

To account for several camera instances I replaced it with the following:

objectPs.push_back(this);

This line adds each new camera-pointer to a vector, which allows for more than one
camera-view. When more than one camera-view is added we want to give them differ-
ent camera-numbers. The code below sets the first camera-number to -1 and increments it
directly. This means that the first camera-view will get the number 0. This number is in-
cremented for each added camera-view, which means that every instance will get a unique

13

number. This allows us to access each individual camera-view.

1 if(objectPs.size() == 1) {
2 cameraNumber = -1;
3 }
4 cameraNumber++;

The program now allows for more than one view, and each one can be accessed through an
individual index. The code in the function makePluginInstance() in ”viewsman.cpp” that
handles several views is shown below. Here only the code inside the if-statement is shown
since the rest of the function is left unchanged.

1 cameraCtrlP->showOnTop();
2 camRecManP = cameraCtrlP->getCameraManagerP();
3 camRecManP->add("Camera " + std::to_string(index));
4 cameraCtrlP->showCameraOnTop();
5 RefreshAllViews::update();

The first line above shows the widget containing the control-panel. Line 2 gets the camera-
manager and stores it in the variable camRecManP. The camera-manager is then used to
add the current camera-view to the vector of camera-pointers in the main program. The
view is here added to the same list as statically linked views. Each added camera-view is
given a different name, ”Camera ” + the index starting at 0. The camera-view is shown in
line 4, and updated in the last. This ensures that all models in the main program are drawn
in the newly added views. Each new instance now gets a unique name, and the models are
drawn correctly. The result can be seen in figure 3.2. I mentioned earlier that the following
line in ”entrance.cpp” was added to get the dynamically linked camera to work:

camCtrlP = new CameraControlWdgt(nullptr);

This can now be removed since each camera-view is directly added to a vector in the main
program.

3.3 Control-panel for the camera-view
All camera-views open a control-panel used to rotate and translate the views to see the
models from different angles. These are currently not working. They are shown, but noth-
ing happens when they are clicked. This section will look into this problem and propose
possible solutions.

3.3.1 Problem specification
The control-panel opened alongside the camera-view only works when it’s linked in stat-
ically. A similar control-panel is opened when a model is linked in. The same happens

14

Figure 3.2: Dynamically linked camera with models

here, it only works for models linked in statically. A larger control-panel with more func-
tionality is being developed by another student on this project. This should work on both
models and views, but it’s currently only implemented for models. This control-panel
works on dynamically linked models, so I assume that it, when finished, will work on the
views as well. This control-panel allows the user to perform the basic operations, as well
as more complex operations. It is, however, desirable to get the smaller control-panels to
work as well. This saves the user from opening a control-panel manually.

The control-panel is initialized alongside the camera-view in the library. The function
showOnTop() in ”viewsman.cpp” then shows this control-panel. Before this function is
called, the pointer to the camera is found through the interface-function getCamera(). This
pointer is added to the vector of cameras in the main program. The problem here is that
the control-panel tries to do operations on the view created in the library, not the main pro-
gram. The changes done on this view will not be shown in the main program. The view
is already added to the vector in the main program, and it’s no longer concerned about
changes in the library. This means that the control-panel updates a views that isn’t visible,
and the one in the main program will not be changed.

3.3.2 Review of the current code

In the current version of the code, most of the functions related to showing the camera-
view is called in ”viewsman.cpp”. This shows the models correctly inside the view, but
the control-panel isn’t working. At this point I tried moving the function-calls to the con-
structor in the library. The implementation in ”viewsman.cpp” then becomes:

15

1 int index = factory.getPlugins().size() - 1;
2 CameraControlWdgt* cameraCtrlP = factory.getPlugins()[index].
3 pluginP->getCamera();
4 if(cameraCtrlP != nullptr) {
5 RefreshAllViews::update();
6 }
7 else {
8 std::cout << "The provided library is either buggy or not a camera- "
9 "view. Have you checked that all interface functions are "

10 "implemented?" << std::endl;
11 }

We see that this code only calls the function RefresAllViews::update() when a camera-
view is linked in. The other functions are moved to ”camera01 if.cpp” in the library.
Linking in the library now gives us a working control-panel, but none of the models are
shown in the resulting view. This can be seen in figure 3.3 where only the coordinate-
system is visible. At this stage we have two different solutions. The first solution draws
the models in the system, but the control-panel doesn’t work. The other solution doesn’t
draw the models, but the control-panel works.

Figure 3.3: Dynamically linked camera without models

3.3.3 How the camera-view should work

Before continuing I discussed the problem with my supervisor. The dynamic linking of
views worked on UNIX, so we looked through images showing the results on this platform.
The dynamically linked camera-view showed the models, and a working control-panel
could be opened. It then allowed the user to open new camera-views using this control-
panel. A new widget is then opened where the user can choose the type of view and show

16

it with the main program. This functionality turned out to work in the second solution
proposed above. The widget is opened as shown in figure 3.4. Pressing ”Add” opens the
widget shown in figure 3.5. Choosing ”Standard Camera” in this dropdown-menu adds a
new camera-view in the dropdown-menu at the bottom of the control-panel. Opening this
view can be done by selecting it as shown in figure 3.6 and pressing ”Show Camera”. A
new camera-view is then opened, and it can be controlled by the control-panel. This new
camera-view looks the same as in figure 3.3. Now two camera-views and one control-panel
is opened. The camera-view controlled is the one currently selected in the dropdown-menu
at the bottom of the control-panel. The user can add as many cameras-views as needed,
and control a given one by selecting it in the dropdown-menu and clicking ”Show Cam-
era”. This behaviour is the same as on the old UNIX-system, except for the models not
being drawn.

Figure 3.4: Adding a new camera through the control panel

Figure 3.5: Widget for adding a new camera

3.3.4 Finding the models and drawing them

The next step is to draw the models in the dynamically linked camera-view. To do this
I extended the interface in ”plugininterface.cpp” with a function called updateCamera().
This takes a vector of model-pointers as input. The implementation in ”camera01 if.cpp”
in the library is shown below.

17

Figure 3.6: Opening the newly added camera

1 void Camera01_if::updateCamera(std::vector<Models::ModelData*> models) {
2 for(unsigned int i = 0; i < models.size(); i++) {
3 RefreshAllViews::update(models[i]);
4 }
5 }

The function above loops through the vector of models and calls the function RefreshAl-
lViews::update(model). It takes a single model as an argument, which means we have to
loop through the vector. We now have a function that will draw all the models, but we still
need to send the models from the main program to this function. Our models are stored
in the vector mdlDataPs in ”modelPP.h”. This vector is private, so I implemented a get-
function called getModels() that allows us to reach these pointers. The implementation in
”modelPP.h” is as follows:

std::vector<ModelData*>* getModels() {return &mdlDataPs;}

In the function makePluginInstance() in ”viewsman.cpp” I changed the code inside the
if-statement to:

1 Models models;
2 factory.getPlugins()[index].pluginP->updateCamera(models.getModels());

”modelPP.h” was included at the beginning of the file to be able to use the newly created
getModel(). Then I replaced the previous statement, RefreshAllViews::update(), with the
code above. Line 1 creates a new models-object containing the models in the system. Line
2 calls the interface-function updateCamera() with the models as the only argument. This
sends the models-pointer from the main program through the library.

The models are now drawn in the dynamically linked view, and the result is the same as
in figure 3.2. The current solution seems to be working as on the UNIX-system. I can
open several camera-views and control them with one control-panel. But, after some test-
ing, bugs appeared. Now, the advanced control-panel described earlier doesn’t work on

18

the models shown in the camera-view. The reason is that the camera-view and the models
now are contained within the library, and not the main program. The main program doesn’t
know that this camera-view with the models exists, and moving the models in the main
program has no effect on the ones in the library. This was confirmed by the text printed to
the terminal when a model is moved with the advanced control-panel. This shows that the
control-panel is unable to find the camera-view in the library. The main program searches
for a variable called recPV, which is a pointer to the camera. This pointer is now located
in the library, and the main program is unable to find it. To solve this problem I added
a new interface-function called getRecPV(). This should transfer this pointer from the li-
brary to the main program. The implementation of this function in the library is as follows:

1 std::vector<Camera*, std::allocator<Camera*>> Camera01_if::getRecPV() {
2 return camRecManP->recPV;
3 }

This returns the recPV-pointer to the camera created in the library. In ”viewsman.cpp” I
added the two following lines of code in the if-statement to set the recPV-pointer in the
main program:

1 camRecManP = cameraCtrlP->getCameraManagerP();
2 camRecManP->recPV = factory.getPlugins()[index].pluginP->getRecPV();

The first line of code gets the camera-manager for the main program. Line 2 sets the
recPV-variable in the main program equal to the one created in the library. The camera-
view should now be visible to the main program. At this point the advanced control-panel
works, but not dynamically linking in new models. Linking in a new model causes the pre-
vious models to disappear, and a few random lines are drawn. This can be seen in figure
3.7. Changing the camera-view using the control-panel draws the models correctly again,
but the new model is not included. This new model does, however, appear in the advanced
control-panel. This shows that the model is linked in to the main program, but the change
is not reflected in the library. The current solution transfers the models to the library when
it’s linked in. This means that we only set the models in the library once, and it’s not
updated when a new model is added in the main program. This explains why the newly
added model doesn’t show up in the camera-view. A solution to this problem sounds easy
enough: update the models in the library when a new one is linked in. Implementing it is
not that simple. Models are linked in through the Database-manager, and the update then
has to come from this manager. Finding and updating the correct views from this manager
is difficult.

After some trial and error I found another solution. Instead of setting the recPV-pointer in
the main program I chose to do it the other way around. I created a new interface-function,
setRecPV(), that takes the pointer from the main program and sets it in the library. The
function showCameraOnTop() creates the recPV-pointer, so this is now called in ”views-
man.cpp” instead of in the library. This solution shows all the models in the system and
the control-panel works. Dynamically linked models also appear with the other models
in the view. As a bonus, the previously mentioned control-panel for dynamically linked

19

Figure 3.7: Dynamically linked model not working

models works as well. Creating a new camera-view is a bit different in this solution than
the one described above. Opening a new view is now done by creating a new instance of
the library instead of using the control-panel. This is the same process as creating several
models. When discussing the different solutions with my supervisor we found this solution
to be the best one so far. This has all the functionality present in the old UNIX-system.
The only difference now is the creation of several camera-views. The final code inside the
if-statement in the function makePluginInstance() in ”viewsman.cpp” is shown below.

1 camRecManP = cameraCtrlP->getCameraManagerP();
2 camRecManP->add("Camera " + std::to_string(index));
3 cameraCtrlP->showCameraOnTop();
4 factory.getPlugins()[index].pluginP->setCameraRecPV(camRecManP->recPV);
5 RefreshAllViews::update();

The first line gets the camera-manager. Line 2 uses this to add the new camera with an ap-
propriate name. Line 3 calls showCameraOnTop(), which creates the recPV-pointer. This
pointer is sent to the library and set through the interface-function setCameraRecPV().
The last line draws the models in the main program in the newly added camera-view.

3.3.5 Linking control-panel as a separate tool
One question that appeared when working on linking in the camera-view was the question
of splitting up the view and control-panel. Namely, if the view itself should be linked in
through the Views-manager and the control-panel through the Tools-manager. This might
have been a good idea when writing the program from scratch. Then we could have made
one class for the control-panel and one for the view, and put them in separate libraries. As
the code is now, both the view and the control-panel can be created through the same class,

20

namely the CameraControlWdgt-class. So, for us to link these two parts through different
managers we either have to use the same class twice or split it up. The first solution, to use
the same class twice, does not make any sense. It could be done, but why split them up
when both of them work in the same library? This only makes us do twice the work. The
second solution, splitting the CameraControlWdgt-class, could be done. It does, however
require us to rewrite both of the classes. For this to work we first have to separate the
class, and then make the new ones work together. With this in mind we chose to keep the
working implementation as it is.

3.4 Linking in picture-view
I will now try to link in another view called the picture-view. It allows the user to look
directly at models in a 2D environment. This view is important in this master’s thesis be-
cause it allows us to look directly at images. This can also be achieved by the camera-view,
but here the view has to be rotated before we can look at the image directly. The picture-
view does this automatically, so it will save the user the time of rotating the camera-view.

The picture-view worked on the old UNIX-system, and I got this implementation from
my supervisor. This has never been compiled on the new platforms, so I rewrote it us-
ing the code for the camera-view as template. I began by comparing the old code for the
camera-view with the picture-view. This allowed me to see the differences in the imple-
mentations. These were mainly in the way vectors were calculated. The picture-view is
designed to show the result in 2D, not 3D, so the transformations are naturally different.
Several functions were similar in the old code for camera-view and the picture-view. Here
I used the new code for the camera-view to update these functions in the picture-view.
The picture-view used a class called Switches. This is not used in the camera-view, and
the files defining the class have been removed from the program. Functions using the
Switches-class in the picture-view were replaced by similar functions in the camera-view,
not using this class. Code without an apparent counterpart in either the old or the new code
for the camera-view were kept for now. Which of these functions that have to be updated
will be shown when the code is compiled. I added the two resulting files, ”view xy.h” and
”view xy.cpp”, to ”MaxLib/cmra” and ”maxlib.pro”. Compiling the code showed quite a
few errors. I will not show them here, but most of them were due to the difference in Qt
Creator versions. These were solved by changing the include-statements for replaced or
moved Qt-modules. Other errors were related to files moved inside the GeoMod-program.
These were solved by changing the path of the file to be included. Qt Creator has also
changed the way widgets are created since the last time these files were compiled. This
meant rewriting the functions that actually creates the widgets. I will not the show the
code here, but it can be seen in the files mentioned above. I have commented out the old
functions and replaced them by the updated ones. After these changes the MaxLib-library
compiles without errors.

The next step is to compile the code for the control-panel. I used the same approach here as
with the view. Compare the code for the control-panel with the code for the camera-view

21

and compile it. The code for the control-panel is in the files ”victrl xy.h” and victrl cpp”.
They are also added to ”MaxLib/cmra” and to ”maxlib.pro”. Compiling the MaxLib-
library showed a few errors similar to the ones above, which were solved by changing the
corresponding include-statements. Other errors were caused by the creation of the widget
for the control-panel. This used the now deprecated QPopupMenu. I ended up rewriting
the control-panel to using QMenu instead of QPopupMenu. When using QMenu, the class
has to inherit QMainWindow instead of QWidget. This in turn meant that I had to rewrite
all components using code from QWidget. After some rewriting the MaxLib-library even-
tually compiled without errors.

Now I have to test if the code actually works. I created a library in ”DynamicLink-
ingTests/08 ViewXY”, which implements the interface-functions and calls the ViewXY-
constructor. This should open the view itself and the control-panel. I created a new
interface-function called getViewXY() which returns the pointer to the picture-view. This
is used in the function makePluginInstance() in ”viewsman.cpp” to get the pointer from
the library to the main program. This compiled, but crashed when I tried to link it in. An
error-message told me that a function in ”victrl xy.cpp” used a module called treeView-
Basis, which caused the crash. I found the same function in the code for the camera-view.
This was commented out with a text telling that it was no longer in use. I commented
out the function in the picture-view as well. The error then disappeared, but the program
still crashed. This time no error-message was displayed, so the reason was not as easily
found. Eventually it turned out that the following line in the function showViewXYWdw()
in ”victrl xy.cpp” caused it:

r_MapManager[r_PctNumber].updateLayout();

I inspected the function updateLayout() and found out that a function called update()
caused it to crash. Here I found the root of the problem, namely the following line:

if(!window_Pm->isVisible()) return;

To solve this bug I added the following line in the constructor in ”view xy.cpp”:

window_Pm = getWindowP();

Without this line the if-statement above causes the program to crash, since the variable
”window Pm” isn’t defined. After adding this line both the picture-view and control-panel
opens. It is worth noting that I have added a few lines of code in the Views-manager that
allows me to open the view and control-panel. This code will be explained in the next
subsection. The view is shown in figure 3.8a and the control-panel in figure 3.8b. The
widgets are opened as wanted, but the models are not drawn. This is the same problem as
we had for the camera-view, so I will try the same solution in the following subsection.

22

(a) Picture-view window
(b) Control-panel

Figure 3.8: Dynamically linked picture-view not working

3.4.1 Drawing models in the picture-view

To test that the problem isn’t with the picture-view itself, I linked it in statically. The mod-
els are now drawn correctly, as can be seen in figure 3.9. The control-panel works as well,
which tells me that the picture-view works as intended.

Figure 3.9: Statically linked picture-view

The next step is now to show the models in the dynamically linked picture-view. I began by
extending the interface in ”plugininterface.h” with a function called setViewXYRecPV().
This is similar to setCameraRecPV() for the camera-view. I cannot use the same function
here, because this expects a pointer of type Camera, and we now have the type ViewXY.
The implementation of setViewXYRecPV() in the library is as follows:

23

1 void ViewXY01_if::setViewXYRecPV(std::vector<ViewXY *,
2 std::allocator<ViewXY *> > recPV) {
3 viewxyRecManP->recPV = recPV;
4 }

The picture-view is opened through the ViewXY-manager, which is stored in the variable
r MapManager in ”victrl xy.cpp”. r MapManager is a private variable, so I implemented
the following function returning a pointer to the manager:

1 ViewRecManager<ViewXY>* Xy_viControlWidget::getr_MapManagerP() {
2 return &r_MapManager;
3 }

This function can be called from ”viewsman.cpp” in the same manner as getCameraMan-
ager(). The camera-manager contains a function called showCameraOnTop() that opens
the camera-view itself. The picture-view has an equivalent function called showViewXY-
Wdw(), but this is private in ”victrl xy.cpp”. I created a new, public function called
showViewXYOnTop() that calls showViewXYWdw(). This new function is then called
in makePluginInstance in ”viewsman.cpp”. The full code for dynamically adding both the
camera- and picture-view is shown below. We see that the code for adding the picture-view
is similar to adding the camera-view, but with functions called from different libraries.

1 int index = factory.getPlugins().size() - 1;
2 cameraCtrlP = factory.getPlugins()[index].pluginP->getCamera();
3 viewxyCtrlP = factory.getPlugins()[index].pluginP->getViewXY();
4 if(cameraCtrlP != nullptr) {
5 camRecManP = cameraCtrlP->getCameraManagerP();
6 camRecManP->add("Camera " + std::to_string(index));
7 cameraCtrlP->showCameraOnTop();
8 factory.getPlugins()[index].pluginP->
9 setCameraRecPV(camRecManP->recPV);

10 RefreshAllViews::update();
11 }
12 else if(viewxyCtrlP != nullptr) {
13 viewXYRecManP = viewxyCtrlP->getr_MapManagerP();
14 viewXYRecManP->add("View" + std::to_string(index));
15 viewxyCtrlP->showViewXYOnTop();
16 factory.getPlugins()[index].pluginP->
17 setViewXYRecPV(viewXYRecManP->recPV);
18 RefreshAllViews::update();
19 }
20 else {
21 std::cout << "The provided library is either buggy or not a camera- "
22 "view. Have you checked that all interface functions are "
23 "implemented?" << std::endl;
24 }

Linking in the picture-view dynamically now works the same as when linked in statically.
The models are drawn as in figure 3.9 and the control-panel works. The next step is then

24

to link in more than one picture-view. Here we have the same problem as with the camera-
view described earlier. The code only allows for one instance of the picture-view. I will
use the same approach here as well, so the code will not be shown. The idea is to store
the view-pointers in a vector instead of in a single variable. Each new view is then added
to this vector. Some of the code in ”victrl xy.cpp” was written to handle a single pointer.
This had to be updated to handle a vector of pointers. One of these functions was up-
dateAllLables(). Earlier this updated all labels in the single view. This now loops through
the vector and updates all of the views. These changes now allow users to add as many
picture-views as wanted.

Each time the control-panel used to move models is clicked, it calls the function Refre-
shAllViews::update() in ”all views.h”. This function updates the camera-view to show
the change done by the control-panel. The picture-view is currently not updated when a
model is moved. RefreshAllViews::update() calls the function AllViews::update() in ”al-
lviews.h”, which again calls the function update() in ”viewrec.h”. This function decides
which views to update. Previously this function contained the one line:

ViewRecManager< Camera >::update();

This updates the currently opened camera-views. We now want to update the picture-view
as well, so I added the following line:

ViewRecManager< ViewXY >::update();

After adding this line, the picture-view works in exactly the same manner as the camera-
view. We are now able to add several instances, move the view-point, add models and
move them using a different control-panel. I also tried opening both the camera-view and
picture-view, and moved the models around. This showed the models moving in both
views at the same time.

During the process I have added quite a few interface-functions. Some of these are no
longer in use, for instance updateCamera() and getRecPV(), and have been commented
out. I have chosen not to remove them completely in case they are needed at a later stage.
The interface grows quickly, as can be seen in the fact that I have added almost half of the
functions in my master’s project and master’s thesis. We want to keep the interface small
so that it easily can be implemented. I have during this thesis regularly looked through
all the libraries, and updated them according to the current interface. This is not a diffi-
cult task, but it takes some time for persons not familiar with it. It’s natural for me to do
this since I have worked a lot with the interface and developed my share of the libraries.
One thing to note here are the functions getModel(), getCamera() and getViewXY(). Each
library will only use one of these, since they contain one model or view. The other func-
tions are not used, but the library still has to implement them since they implement the
interface. These functions then return a nullpointer to meet this criteria. This also helps in
controlling the managers. Trying to link in a view in the Database-manager will return a
nullpointer, and an error-message will be displayed.

25

3.4.2 Linking in letters in the picture-view

Now I want to test if the transformations in the picture-view are correct by creating li-
braries containing 2D-models of the letters A and B. An old implementation of the letters,
working on UNIX, was given to me by my supervisor. I began by creating a new library
called ”11 AUpper” with code implementing the interface. I then added the old code for
the letter A and called its constructor. Here some include-statements related to moved files
and updated Qt-modules had to be changed.

The old code contained an implementation of a control-panel for the letter in the files
”move A01.h” and ”move A01.cpp”. This control-panel also uses the deprecated QPop-
upMenu, so it has to be rewritten. When discussing it with my supervisor, we concluded
that spending time on rewriting an old control-panel that might not work isn’t the best use
of time. Instead we decided to use a control-panel from one of the newer libraries that
we know works with the current version of Qt Creator. I then commented out all the code
for the old control-panel and replaced it with the control-panel from a library containing a
cube. This library was created in my master’s project, and we know that it works. After
renaming classes, functions and variables the library compiled without errors. Linking in
this library and opening the picture-view is shown in figure 3.10. The control-panel shows
up, and allow us to move the model.

Figure 3.10: Letter A dynamically linked in picture-view

Later in my thesis I want to display images in the picture-view. It is then desirable that the
images are displayed with the correct orientation. With orientation I mean that the top of
the picture is on the top of the view and the right of the picture being on the right of the
view. For this to happen the transformations have to be correct. We can see in figure 3.10
that the top of the model is depicted correctly. The letter A is symmetrical about the y-axis,
which means that we cannot determine if the right of the letter actually is shown on the
right in the view. The case might be that the letter is rotated 180 degrees about the y-axis,
and that the back of the model is shown. To test this I will create a library containing a
model of the letter B as well. This isn’t symmetrical about the y-axis, so these two models

26

(a) Letter B (b) Letters A and B

Figure 3.11: Dynamically linked letters in picture-view

combined will verify if the transformations are correct.

This library was created in the same manner as the one above. Create a new library which
implements the interface, copy the old code for the letter and add code for a functional
control-panel. This library can be found in ”DynamicLinkingTests/12 BUpper”. The re-
sult of compiling and linking it in through the Database-manager is shown in figure 3.11a.
The letter is drawn with the correct orientation and a working control-panel. The result of
linking in both the A and B can be seen in figure 3.11b. We see that both are drawn with
the correct orientation, which means that the transformations are correct.

I have in this chapter dynamically linked in two views that work in the same manner as they
did in the old UNIX-system. The old files contain other views that it is desirable to link in
as well. This task is not the main focus of this master’s thesis, so the implementation of
the other views have been left for further students. The libraries created here shows how
the old code can be rewritten and linked in. These can be used as templates when the need
arises for more views to be linked in.

27

28

Chapter 4
Create models from binary images

The previous chapter described the process of dynamically linking in the camera- and
picture-view. This section will use these views to show the results of creating binary mod-
els from images. In an earlier version of the code on UNIX, an algorithm called BinPic
was used to create binary geometric models from images. The algorithm creates wire-
frames filled with black areas where the input-image is darker than a given threshold. This
model could then be shown in both the camera- and picture-view. I will in this chapter
re-implement this algorithm in a library that can be linked in as a tool. The code has to be
adjusted to work on the new platforms, as well as with the current version of Qt Creator.
The resulting model should be added to the vector of models in the system and drawn in
the visible views. I will then discuss the different image-formats the algorithm can handle.

Before starting the work with the algorithm, the Tools-manager has to be rewritten to al-
low for tools to be linked in. Here a test-library will be created to check that the dynamic
linking works as intended.

4.1 Dynamically linking tools

The Tools-manager is now implemented exactly like the Database-manager, as explained
at the beginning of the previous chapter. This means that it now can be used to link in
models. We now want to link in tools, so the implementation in makePluginInstance() in
”toolsman.cpp” is changed to:

29

1 int index = factory.getPlugins().size() - 1;
2 QWidget* widget = factory.getPlugins()[index].pluginP->getTool();
3 if(widget != nullptr) {
4 widget->show();
5 }
6 else {
7 std::cout << "The provided library is either buggy or not a tool."
8 "Have you checked that all interface functions are "
9 "implemented?" << std::endl;

10 }

This code is similar to the Database- and Views-manager, but it allows us to import a tool
instead of models or views. A new interface-function, getTool(), is used to get the pointer
to the tool from the library to the main program. This function expects a pointer of type
QWidget. The tool itself will be called through a button on this widget. This allows us to
keep the code in the Tools-manager, and the interface, as simple as possible. Starting each
tool directly would mean creating an interface-function for each tool, and determining the
type in the Tools-manager. By wrapping it in a widget we can show this widget directly,
and open the tool from this.

I have created a test-library in ”DynamicLinkingTests/09 TestTool” to see if the code
above works as intended. This library contains an implementation of the interface-functions
as well as code for creating a QWidget with a certain geometry and a button. It should only
tell us if the Tools-manager works, so it doesn’t contain any functionality. The resulting
widget created when the library is linked in is shown in figure 4.1. The widget is shown as
expected, which tells us that the dynamic linking works.

Figure 4.1: Widget shown from dynamically liked test-tool

4.1.1 File-browser for finding images

I will in this section create a library containing the BinPic-algorithm in ”DynamicLink-
ingTests/10 BinPicTool”. But before I add the algorithm itself I want to build up a widget
that can utilize it. First, I want to add a button that opens a file-browser when clicked.

30

This browser should be used to locate the images we want to run the algorithm on. The
BinPic-tool will now look like figure 4.2. Pressing the button ”Add Image” opens a file-
browser similar to the ones in the Database-, Views- and Tools-manager. This file-browser
can be seen in figure 4.3. It allows the user to search through local files on the computer
and select png-images. In the code for the file-browser, a variable called fileFilters tells
the code which files to show in the results-column on the right. For now this variable only
includes png-images, so the browser will only show files with the png-extension. Other
extensions will here be added when needed during the testing of the algorithm. In figure
4.3 we see that only the png-images in the current folder is shown. I will not show the
code for the widget and file-browser here. It is similar to other code in the system, and can
be found in ”binpictool.cpp” and ”binpicbrowser.cpp”.

Figure 4.2: First widget that opens from the 10 BinpicTool-library

Figure 4.3: Filebrowser with .png-images

When an image is double-clicked in the file-browser it should be added to the BinpicTool-
widget shown in figure 4.2. This functionality is implemented in the function addLibrary()
in ”binpictool.cpp”:

31

1 void BinPicTool::addLibrary(QString pathToPlugin) {
2 QStringList path = pathToPlugin.split("/");
3 QString fileName = path.at(path.size()-1);
4 QTreeWidgetItem *widgetItem = new QTreeWidgetItem();
5 widgetItem->setText(0, fileName);
6 widgetItem->setText(1, pathToPlugin);
7 treeWidget->addTopLevelItem(widgetItem);
8 }

The first line in the function splits the input-string into a QStringList [12] and stores it in
the variable path. A QStringList is a list of strings containing all parts of the path sepa-
rated by ”/”. The file-name itself is found in line 3 by getting the last entry in the list of
strings. Line 4 creates a new QTreeWidgetItem, and lines 5 and 6 adds the file-name to
the first column and the full path to the second column in Figure 4.2. The third column is
left empty for now, and should be set equal to ”yes” when a preview of the file has been
opened. Line 7 adds the QTreeWidgetItem to the widget. The png-files are now added
to the BinPicTool-widget. An example where three images have been added to the file-
browser is shown in figure 4.4. I have also added a button called ”Show Preview” that will
be used to show a preview of the selected image.

Figure 4.4: Window with png-images

4.1.2 Previewing .png-files

The next step is to connect the button ”Show Preview” to a function that opens a preview
of the selected image. This allows the user to preview the images to verify that the correct
image has been added. The function opening a preview, openShowPreview(), in ”binpic-
tool.cpp” is implemented as follows:

32

1 void BinPicTool::openShowPreview() {
2 int columnCheck = treeWidget->currentColumn();
3

4 if(columnCheck != -1) {
5 QString pluginPath = treeWidget->currentItem()->text(1);
6 QWidget *frame = new QWidget();
7 frame->setGeometry(740, 450, 500, 320);
8 frame->setWindowTitle("Image preview");
9 frame->setStyleSheet("image: url(" + pluginPath + ")");

10 frame->show();
11 treeWidget->currentItem()->setText(2, "Yes");
12 }
13 }

Line 2 in the function above returns 1 if a column is selected in the BinPicTool-widget.
The if-statement in line 4 will be entered if an image has been selected. If no images are
selected, line 2 returns -1, and nothing happens when the button is pressed. Inside the
if-statement the path to the image is stored in the variable pluginPath in line 5. Line 6
creates a new QWidget which will contain a preview of the selected image. The geometry
and title of this widget is set in lines 7 and 8. Line 9 adds the image with the function set-
StyleSheet(). This finds and sets the image using the path stored in pluginPath. The widget
is shown on screen in line 10. The last line in the if-statement sets the column ”Preview
Opened” in figure 4.4 equal to ”Yes”, indicating that a preview has been opened. The re-
sult of adding a png-image of Super Mario [3] and pressing ”Show Preview” is shown in
figure 4.5.

Figure 4.5: Widget with a png-image of Super Mario [3]

The code works as expected, and the selected image is shown in a new widget. Next I
want to test if jpg-files can be previewed as well. Before they can be shown I have to make
sure that the file-browser can find them. The fileFilters-variable described earlier contains
all formats the browser can find. Adding the following line in ”binpicbrowser.cpp” allows
the browser to find jpg-files as well:

33

fileFilters << "*.jpg";

Both jpg- and png-files are now displayed in the file-browser. Figure 4.6 shows a preview
of a jpg-image of a little kitten using the code above. This shows that it is able to preview
jpg-images as well as png-images. I will go back and test other formats when I know
which formats the BinPic-algorithm supports.

Figure 4.6: Widget with kitten.jpg-image

4.2 Adding the BinPic-algorithm to the library
I mentioned earlier that the code for the BinPic-algorithm worked on the UNIX-platform. I
will now test to see if it still works after the migration to the new platforms. Before adding
the code I talked with my supervisor. He told me that the user should be able to apply the
algorithm on selected images. The library created in the previous section contains a files-
browser, so I will continue with this library, and apply the algorithm on the selected image.
I added the code for the algorithm to the library and included them in ”binpictool.pro”.

4.2.1 Compiling the BinPic-algorithm
Compiling the code resulted in a few errors regarding include-statements. These were
mostly due to new Qt-modules and files being moved since the implementation on UNIX.
After fixing these statements the code compiled without errors. The code is now com-
piled with the library, but never used. The next step is to actually use the code to create
binary geometric models. I created a new button called ”Create Binary Picture” in the
BinPicTool-widget shown in figure 4.4. When pressed, the function connected to this but-
ton calls the BinPic-constructor with the image selected. Compiling the code still worked,
but running the algorithm caused the program to crash. It turned out that the algorithm

34

cannot be run with a color-image as input. This means that the input-image has to be
converted before the algorithm is called. Looking through the old UNIX-code I found the
function calling the BinPic-constructor in a file called ”picctrl.cpp”. This opens a wid-
get which allows the user to choose if the input-image is part of a larger image, or if it’s
the whole image to be processed. Then it converts the image before calling the BinPic-
constructor with it. I added this code to ”binpictool.cpp” before the call to the constructor.
This code works on an outdated version of Qt Creator, so some changes had to be made
for the code to compile. One of these changes were the conversion of the input-image.
Earlier the code was as follows:

1 QImage image = QImage((const char *)f).convertDepth(1).
2 convertBitOrder(QImage::LittleEndian);

This was changed to:

1 QImage image = QImage(f.toStdString().c_str()).
2 convertToFormat(QImage::Format_RGBA8888);

First, I had to change the conversion of the path to the input-image. The casting (const
char*)f was allowed in an earlier version of C++, but it has now been replaced by function-
calls. I first have to convert the std::string to a QString using the function toStdString().
Using the function c str() on this result gives me the path on the same format as the casting
above. Next, I had to change the code for the conversion of the input-image. In the old
code the functions convertDepth() and convertBitOrder() converted the input-image to a
format the BinPic-algorithm could handle. Both of these functions have been discontin-
ued by Qt Creator and replaced by the function convertToFormat(). The function for the
format, QImage::LittleEndian, has also been replaced by QImage::RBGA8888 [13]. After
applying these changes the code compiled without errors. Linking in the library, selecting
an input-image, and pressing the button ”Convert Binary Picture”, opens the widget shown
in figure 4.7. Pressing ”Complete” makes this widget disappear, but nothing happens. At
this point the newly created picture-model should have appeared in the camera-view.

Figure 4.7: Panel for choosing if the image is complete

4.2.2 Troubleshooting BinPic
The code in the library now compiles and runs, but without the desired results. Without
any error-messages, finding the reason might take some time. At this point I was lucky

35

and got old exercises and notes from my supervisor regarding the last implementation of
the algorithm. The exercises and notes are from an old PhD-subject discontinued several
years ago. They allowed me to get a better understanding of the algorithm, its implemen-
tation and the expected input and output. Comparing this with the current solution showed
some differences regarding the input-image. In the old code the function convertDepth()
converted the input to a binary image. convertDepth(1) sets the bit-order to 1, meaning the
image is represented using two colors, namely black and white. In the current solution the
bit order is never set explicitly, so I want to see if the input-image actually is binary. To
test this, I added the following lines of code in ”binpictool.cpp” directly after the image
has been converted.

1 QWidget *testImg = new QWidget();
2 testImg->setGeometry(740, 450, 500, 320);
3 QLabel *myLabel = new QLabel(testImg);
4 myLabel->setPixmap(QPixmap::fromImage(image));
5 img->show();

The first two lines creates a new widget and sets its geometry. Line 3 creates a label con-
tained within the widget. This is done by adding the widget to the QLabel-constructor. The
image is shown inside the label by adding it through the function setPixMap(). The last
line shows the widget containing the image. The resulting widget opened when running
the code shows me that the image still is stored in colors. This means that the function
convertToFormat() described above only converts the image to a given format, and not
into a binary one. Searching through the documentation in [13] I found that passing the
argument ”FORMAT Mono” converts the image to grey-scale. I found no functionality
converting it directly to binary, so I will see if the BinPic-algorithm handles grey-scaled
images. The BinPic-algorithm expects the input-image to be on the LittleEndian-format.
Therefore, I ended up with the following code:

1 QImage image = QImage(f.toStdString().c_str()).
2 convertToFormat(QImage::Format_Mono).
3 convertToFormat(QImage::Format_RGBA8888);

The function convertToFormat() is now called twice. Once to convert the image to grey-
scale, and once to convert it to the correct format. The widget now contains a grey-scaled
image. The result of using a screen-shot of the letter A as input can be seen in figure 4.8.

The input-image is grey-scaled and on the correct format, but still nothing happens when
the BinPic-algorithm is run. The last re-implementation of the algorithm was in 2003. It
has only been shown to work on UNIX, but no error-messages are shown, so the problem
might lie in other parts of the code. To test if the problem is within the BinPic-algorithm
or in other parts of the code, I manually created a new model inside the BinPic-library.
I will not show the code for the model here, but it’s based on other models linked in
through the Database-manager, so it should be drawn correctly. The constructor for this
model will be called instead of the function buildModel() that creates the binary geometric
model. If the model is drawn, we know that the problem is contained within the code for

36

Figure 4.8: Preview of the grey-scaled image A

the BinPic-algorithm. I created a geometric model of a rhombus in the files ”testrhom-
bus.h” and ”tesrhombus.cpp” to separate its code from the rest of the library. These were
included in ”binpictool.pro” and compiled with the library. Compiling and running the
code shows no errors, but the model is not drawn in the camera-view. I then tried calling
the function RefreshAllViews::update(rhombus). This function should add the rhombus
to the list of models and draw it with the others. Again nothing is drawn, but I finally
got an error. This error was the result of the library not knowing about the views in the
main program. Updating the views causes an error, because the library cannot find them.
To the library no views are currently opened. I then tried telling the library about the
view with the code shown below. This code is inside the if-statement in makePluginIn-
stance() in ”toolsman.cpp”. The rest of the code is unchanged, so it will not be shown here.

1 ViewRecManager<Camera> viewrecP;
2 ViewRecManager<ViewXY> viewXYrecP;
3 factory.getPlugins()[index].pluginP->setCameraRecPV(viewrecP.recPV);
4 factory.getPlugins()[index].pluginP->setViewXYRecPV(viewXYrecP.recPV);
5 widget->show();

This code uses the same interface-functions, setCameraRecPV() and setViewXYRecPV(),
described earlier when linking in the views. Lines 1 and 2 create variables for the current
camera- and picture-view, and lines 3 and 4 set these pointers in the library through the
interface-functions. The library should now know about the visible views and be able to
update them. Running the code again yields the result in figure 4.9. We see that all the
models disappear, and a small plane is drawn in top-left corner. Unfortunately, this is not
the rhombus. The model of the rhombus is a lot bigger and positioned at the center of the
view. It is reasonable that the other models disappear, since the library has no idea about

37

the models in the main program, but the rhombus should still be drawn correctly.

Figure 4.9: The camera view when drawing the rhombus

To make sure that the problem isn’t with the model of the rhombus I instantiated a camera-
view inside the BinPic-library. The code for adding the statically linked camera-view is
shown below. It’s added in the function contructBinaryPicture() in ”binpictool.cpp”. The
code creates the camera-view, shows the view itself and a control-panel. I also added the
function buildModel() to see if the binary model is created by the BinPic-algorithm. This
result is seen in figure 4.10. We see that the rhombus is drawn correctly in the middle of
the view. A black surface has also appeared in the xy-plane. This is the model created
by the BinPic-algorithm. It’s not correct, but it shows us that the algorithm creates a ge-
ometric model. The statically linked camera-view allows me to see the geometric model
created by the BinPic-algorithm. I will therefore continue the work on the algorithm with
this view, and come back to the problem of drawing the models in a dynamically linked
view later.

1 CameraControlWdgt *cmra = new CameraControlWdgt(nullptr);
2 cmra->showCameraOnTop();
3 cmra->showOnTop();

4.2.3 Small changes after discussions with my supervisor

At this stage I discussed the code developed so far with my supervisor, and a few changes
were made. First, the file-name and extension was added to the widgets opened when pre-
viewing images. Users might have several previews opened, and adding the file-name with
extension in the title makes it easier to see which image it’s created from. The function
openShowPreview() is called when the button ”Show Preview” is pressed. After adding

38

Figure 4.10: Image of the statically linked view with rhombus

file-name and extension, the implementation of this function is as follows:

1 void BinPicTool::openShowPreview() {
2 int columnCheck = treeWidget->currentColumn();
3

4 if(columnCheck != -1) {
5 QString pluginPath = treeWidget->currentItem()->text(1);
6 QString fileName = treeWidget->currentItem()->text(0);
7 QWidget *frame = new QWidget();
8 frame->setGeometry(740, 450, 500, 320);
9 frame->setWindowTitle("Image Preview, " + fileName);

10 frame->setStyleSheet("image: url(" + pluginPath + ")");
11 frame->show();
12 treeWidget->currentItem()->setText(2, "Yes");
13 }
14 }

This code is similar to the one described earlier, except for the two lines 6 and 9. Line 6 get
the name of the current image, and line 9 sets the title of the window to ”Image Preview, ”
+ file-name with extension. The name of the image is now displayed in the title, as can be
seen in Figure 4.11a.

Next my supervisor wanted me to add a button on the BinPicTool-widget that lets the user
preview grey-scaled images. I added a new button called ”Show Binary Picture”. When
clicked, this calls the function openShowBinaryImage() with the implementation below.

39

(a) Result of previewing A after name is added (b) Result of previewing A as a grey-scaled image

Figure 4.11: Updated previews

1 void BinPicTool::openShowBinaryImage() {
2 int columnCheck = treeWidget->currentColumn();
3

4 if(columnCheck != -1) {
5 QString pluginPath = treeWidget->currentItem()->text(1);
6 QString fileName = treeWidget->currentItem()->text(0);
7 QWidget *frame = new QWidget();
8 frame->setGeometry(740, 450, 500, 320);
9 frame->setWindowTitle("Binary image preview, " + fileName);

10 QImage image = QImage(pluginPath.toStdString().c_str()).
11 convertToFormat(QImage::Format_Mono).
12 convertToFormat(QImage::Format_RGBA8888);
13 QLabel *myLabel = new QLabel(frame);
14 myLabel->setPixmap(QPixmap::fromImage(image));
15 frame->show();
16 }
17 }

This code is similar to the implementation of openShowPreview() above. The main dif-
ference between the two are the lines 10 - 14. Lines 10 - 12 create a new image that is
converted to grey-scale and the ”LittleEndian”-format. Line 13 creates a label within the
widget to be shown, and line 14 adds the grey-scaled image to this label. Line 9 has been
changed to tell the user that the widget previews a binary image. The title will now be
displayed on the following form: ”Binary image preview, ” + file-name with extension.
The resulting widget using the same image as in figure 4.8 is shown in figure 4.11b.

My supervisor also wanted me to change the name of two buttons. ”Create Binary Picture”
now says ”Create Picture Model”, and ”Add Image” says ”Add Picture”. The BinPicTool-
widget now looks like figure 4.12.

40

Figure 4.12: The BinPic-tool with new button and button-names

4.2.4 Further development on the BinPic-algorithm
After applying the changes above I turned my attention back to the BinPic-algorithm. The
result in the statically linked camera-view so far is a black surface in the xy-plane as shown
in figure 4.10. When discussing the current solution with my supervisor he told me that
the input-image had to be binary, not grey-scaled. The functions convertDepth() and con-
vertBitOrder() in the old code were not used to convert the image to binary. The image
was then already on binary form, and the functions were used to convert the image to a
format the algorithm could handle. In older versions of the code a third-party software was
used to convert the images before they were sent to the algorithm. I want to let the user
skip the step of converting the image manually. After searching online I found the class
QBitmap [14]. This takes a colored image as input and returns a binary version of it. The
QBitmap-constructor takes in a QString containing the path to the image as input. Calling
the function toImage() on this result returns a QImage. The previous code for converting
the image now becomes:

1 QBitmap bMap = QBitmap(f);
2 QImage image = bMap.toImage();

The result stored in the variable image is now a binary image. The image was earlier
stored in the ”LittleEndian”-format, but this conversion has been removed. For the BinPic-
algorithm to be called with this new image as input, the following if-statement had to be
changed:

1 if(image.format() == QImage::Format_RGBA8888) {
2 // Image processing code
3 }

This checks if the input-image is on the ”LittleEndian”-format. Since it no longer is, I
changed the if-statement to:

1 if(image.depth() == 1) {
2 // Image processing code
3 }

The new condition, image.depth() == 1, checks if the image is stored using two colors,

41

namely black and white. The image is now binary, so this condition will be true. Running
the code on the image in figure 4.11a now gives us the result shown in figure 4.13. We
see that the binary geometric model is created, and the letter A is shown in black. We also
see two black stripes at the top and bottom of the model. These come from the geometric
model being created from a screen-shot. The screen-shot contains darker areas at the top
and bottom which is shown in black in the resulting model.

Figure 4.13: BinPic-model of A in the camera-view

The binary geometric model is now created correctly. This shows that the code works with-
out the use of a third-party software for converting the input-images. This saves the user
from downloading and using such a third-party software when a binary model is needed.

4.2.5 BinPic-algorithm with different extensions
Images can be stored in a variety of different formats, and I want to test the BinPic-
algorithm on some of these. In the notes and exercises mentioned earlier regarding the
implementation of the BinPic-algorithm, a section is written about the format of the input-
image. It is here written that the old code only handles images stored on the BMP- and
BMX-format. These formats are not widely used today, and the reader might not be famil-
iar with them. I have therefore written a short explanation in Appendix B. The image used
to obtain the result in figure 4.13 is stored as a png-image. This shows that the current code
handles more than the two formats mentioned above. I have not changed the implementa-
tion of the BinPic-algorithm itself, but rather how the input-images are handled before it’s
called. The algorithm was developed to work on bitmap-images. BMP- and BMX-files
are stored as bitmap-images, so the algorithm handles these directly. In the old code the
images were stored directly in a QImage-variable and sent to the constructor. This means
that all images had to be on the bitmap-format before being used as input. In the new

42

code the QBitmap-class stores the resulting image in the bitmap-format. It means that the
input-image only has to be on a format this class can handle.

Our code should handle images already on the bitmap-format, and others that can be con-
verted by the QBitmap-class. To test this I imported the same image as earlier, but in
different formats. I began by converting it to BMP, BMX, gif and xpm. This conversion is
straight forward on Ubuntu using the terminal. The line ”convert DynLinkedA.png Dyn-
LinkedA.extension” converts the image to the selected format by replacing ”extension”
with the format wanted. This tool is built-in on both Linux and OS X. On Windows a tool
called ImageMagic [15] is available. It can be downloaded from [16]. This allows for the
same conversion on Windows with the following command-line: ”magic DynLinkedA.png
DynLinkedA.extension”. I have also converted images using a free online-converter. All
of the formats mentioned above, both when converted using the terminal and the online-
converter, show the same result as in figure 4.13. The resulting geometric models are
equal, so the format of the input-image doesn’t seem to affect the quality of the result.

Some old files in the project are stored on the eps-format, so I tried this as well. This
format is not supported by the algorithm, and the widget in figure 4.14 is shown. eps is a
vector-based format, which means that the QBitmap-class is unable to convert them into
bitmap-images. The result will then be stored as a null-image, and the error-message dis-
played.

Figure 4.14: Error-message when importing eps-files

One of the most popular formats, jpg, was also tried. jpg-images are stored in a different
manner than bitmap-images [17]. They are stored in a compressed, vector-based format.
This allows for good quality when the image is compressed, but it means that the QBitmap-
class cannot convert them. This causes the program to crash without any error-messages.
To prevent the program from terminating I added the following lines of code, which opens
an error-message when jpg-images are imported.

1 QString extension = treeWidget->currentItem()->text(0).split(".").at(1);
2 QImage image;
3 if(extension == "jpg") {
4 image;
5 } else {
6 QBitmap bMap = QBitmap(f);
7 image = bMap.toImage();
8 }

43

Line 1 gets the file-name of the current image, splits it on ”.” and stores the second item in
the variable extension. Line 2 creates a variable called image, which by default is a null-
image. The if-statement in line 3 checks if the extension of the current image is ”jpg”. If
this is the case nothing happens, and the image will remain a null-image. This will in turn
open the widget in figure 4.14. If the image is on another format, the else-statement will
create the binary image as before.

I have verified that the code handles BMP- BMX-, png-, gif- and xmp-formats, while the
eps- and jpg-formats displays an error-message. Should other formats be tested at a later
stage, it can simply be done by adding the extension to the fileFilters-variable in the con-
structor in ”binpicbrowser.cpp” and by running the code.

4.2.6 Drawing the models in the current view
The current code works in the statically linked view, but we want to create the binary ge-
ometric model in the dynamically linked view with the other models in the system. After
debugging the program I have a good understanding of the problem. I will describe the
problem itself in this subsection before proposing a solution in the next.

The first step is to understand how models linked in through the Database-manager are
drawn in the current view, and then relate this to the problem at hand. The Database-
manager imports models written in a pre-compiled library, and accesses them through the
interface-function getModel(). The model-pointer is then passed to the function Refre-
shAllViews::update(model). This adds the pointer to the vector of models in the main
program. The drawing-algorithm draws the models that are stored in this vector. In short,
this means that the model is brought from the library and added with the other models in
the program. With the model from the library stored in the same place as the statically
linked models, all of them are drawn.

One could then think that this approach would work on this problem as well, but un-
fortunately it doesn’t. With the same approach, the functions above would be called in
the Tools-manager. This code is executed when the library is linked in, which is before
the geometric model has been created. In the BinPicTool the model is created when the
BinPic-algorithm is executed on an input-image, and not when the library is linked in.
This means the approach above will try to add the model before it has been created, and
the program crashes.

The reasonable step would then be to call the function RefreshAllViews::update(model)
when we know that the model has been created. Implementing and running this gives us
the same result as in figure 4.9. The library updates the correct view, but the result is not
correct. The models in the main program disappear, and the added model is not drawn. The
current code allows the library to update the correct view, but it doesn’t know about the
models already present in it. To let the library know about these models I called the previ-
ously defined interface-function setModels() in makePluginInstance() in ”toolsman.cpp”.
This allows the library to see the models in the system, so they shouldn’t disappear when

44

the model created by the library is added. This implementation draws our new model with
the ones already in the system, but it still has bugs. Updating the view in the main program
now causes the newly added model to disappear. This happens because the new model is
added to the list of models in the library, but not in the main program. Updating the view
in the main program only draws the models known here. The new model is not a part of
these, so it is not drawn. This solution transfers the models from the main program to the
library, but we want it to be the other way around by sending the newly created model to
the main program.

4.2.7 Solution to drawing the models in the current view

At this point my supervisor told me that the other students on the same project had sim-
ilar problems with their libraries. We then decided to work on a solution together rather
than developing one each. We started by discussing the solutions we had tried and the
reasons why they didn’t work. After a few tries we came up with the following solution.
We added a new button called ”Update Models” in the Tools-manager. This button should
be pressed after the model has been created in the library. It then adds this model to the
main program using the function RefreshAllViews::update(model). This function is now
called in the main program after the model has been created, which solves the problems
outlined in the previous chapter. The button is connected to the function updateModels()
in ”toolsman.cpp” with the following implementation:

1 void ToolsManagerWidget::updateModels() {
2 QTreeWidgetItem *item = treeWidget->currentItem();
3

4 if(item) {
5 if(item->childCount() == 0) {
6 item = item->parent();
7 }
8 int index = treeWidget->indexOfTopLevelItem(item);
9 if(index != -1) {

10 Models::ModelData *model = factory.getPlugins()[index].
11 pluginP->getModel();
12

13 if(model != nullptr) {
14 RefreshAllViews::update(model);
15 }
16 }
17 }
18 }

When called, this function gets the currently selected item and adds it to a variable called
item. If no items are selected, nothing happens. Otherwise it checks if the item has a
child-item. If this is the case, the variable item is updated to contain the child-element.
Line 8 gets the index of the selected item in the plugins-vector. The function indexOfTo-
pLevelItem(item) is used to obtain this index, and the result is stored in a variable called
index. If this index is -1, meaning that the item isn’t part of the plugins-vector, nothing

45

happens. Otherwise the interface-function getModel() is used to return a pointer to the
model created in the library. If this function returns a nullpointer it means that the model
hasn’t been created yet, and nothing happens. If the model is created, the function Re-
freshAllViews::update(model) adds this model to the vector of models in the system and
updates the current views.

In practice, the button with the implementation above does the following when pressed:
If no library is selected in the Tools-manager, nothing happens. If a library is added, but
the user hasn’t made an instance of it, nothing happens. This means that a library has
to be linked in and the button called ”Make Plugin Instance” has to be pressed. Then
the user has to select either the library itself or the plugin-instance and press the ”Update
Models”-button. When this button is pressed the program will try to get the pointer to
the model in the library and add it to the current view. For the model to be added to the
current view, the user has to add a new image to the BinPic-tool and press the ”Create
Binary Model”-button. The result of creating a binary model of the uppercase ”A” using
this approach can be seen in Figure 4.15. We see that the binary model of the screen-shot
of the preview of the letter ”A” is shown in the current camera-view with the other models
in the system. This approach works on the picture-view as well. Now the model is added
to the vector of model-pointers in the main program, and updating the view will not cause
the binary model to disappear. I have translated and rotated the new model to show that
the BinPic-algorithm actually has created a geometric model.

Figure 4.15: Result of previewing A as a binary image

The library now allows us to create binary geometric models from images with different
extensions. It works similarly to the old UNIX-system, but it allows users to add colored
images directly without conversion using third-party software.

46

Chapter 5
Image processing

One of the main tasks in this master’s thesis is to develop an environment where 3D-
models can be recreated from images. This environment will be used by further students
to develop a fully automated algorithm that takes images as input and recreate 3D-models
from them. One part of this process will be the BinPic-algorithm described in the previous
chapter. This recreates a given image in 2D, and should eventually be part of an imple-
mentation that recreates 3D-models. This section will describe another part of the process,
namely a library that can be used to pre-process the images before they are recreated. The
library will use an image processing tool called OpenCV. It should eventually be used to
improve the quality of the recreated models and to detect points, edges and surfaces in the
input-image. This chapter will only use 2D-images, while the next chapter will look at
applications in 3D.

5.1 Binary geometric models without image-processing

We have so far used the BinPic-algorithm on images without pre-processing them. These
results have been fairly good on the images tested so far. The colors on these images have
been uniform, so the different regions are shown with the same value in the resulting bi-
nary geometric model. The image of the Linux logo in figure 5.1a has different shades
of yellow and grey areas. The result of running the BinPic-algorithm on this image, and
showing it in the picture-view, is shown in figure 5.1b. This shows black dots on the pixels
inside the penguin and on its beak and feet. The density of the black dots represents the
intensity of the color in the original image. This is correct, but we would rather have a
resulting model where these areas are either all black or white. For us to control the re-
sulting model we need to process the image before it’s sent to the BinPic-algorithm.

47

(a) Preview of the linux logo in GeoMod (b) Result of applying BinPic to the Linux logo

Figure 5.1: Preview and BinPic-model of the Linux-logo

5.2 Image-processing
On the UNIX-system, a third-party software called Gimp [18] was used to pre-process
the images. Gimp is a free, cross-platform image editor available on Windows, OS X
and Linux. The user had to open Gimp, edit the image and use the result as input to the
BinPic-algorithm. This solution works, but I want the user to be able to do the image-
processing directly in GeoMod without opening a separate program. I looked through the
documentation for Gimp to see if it has an API allowing me to use the image-processing
functions directly in C++. No such API exists, but I found out that running Gimp on a
server achieves this [19]. For this to work, a running instance of Gimp has to be on a
server with an API allowing us to utilize its functions.

After searching online I found several C++-libraries designed for image-processing. One
of these is a library called OpenCV [20], which is well integrated with Qt Creator [21]. Af-
ter looking through the documentation I found that OpenCV has all the image-processing
functions needed in this project. Adding platform-specific code in the pro-file also allows
us to utilize it on all our platforms. This library allows us to utilize all the image-processing
functions we need, with code, and it doesn’t have to be running on a server. OpenCV is a
lot simpler than the solution described above, so I chose to use it in our program instead
of Gimp. The installation and a simple test-code for OpenCV on Ubuntu and Windows is
described Appendix A.

5.2.1 Library for image-processing
The test-code in Appendix A creates a library that opens a widget with two buttons. The
first button, ”Add Image”, opens a file-browser that can be used to find an image on the
computer and add it to the widget. The second button, ”Test OpenCV”, opens an OpenCV-
widget previewing the selected image. I will now add a new button, ”Detect Orange Ar-
eas”, that detects orange areas in the input-image. These areas will be shown as white in a
new binary image while the rest of the image is black. When using the image of the Linux
logo, the beak and feet of the penguin should be shown in white. The function connected

48

to this button is implemented as follows:

1 void OpenCVTool::openDetectOrangeAreas() {
2 int columnCheck = treeWidget->currentColumn();
3

4 if(columnCheck != -1) {
5 std::string pluginPath = treeWidget->currentItem()->
6 text(1).toStdString();
7 Mat img = imread(pluginPath);
8 Mat imgHSV;
9

10 cvtColor(img, imgHSV, COLOR_BGR2HSV);
11 Mat imgThresholded;
12 inRange(imgHSV, Scalar(15, 0, 0), Scalar(38, 255, 255),
13 imgTresholded);
14

15 imshow("Thresholded image", imgTresholded);
16 imshow("Original image", img);
17 }
18 }

The if-statement in line 4 ensures that nothing happens as long as an image isn’t selected.
Lines 5 - 6 inside the if-statement store the path of the image in the variable pluginPath.
Line 7 uses this path to store the original image in the variable img. Line 10 uses the func-
tion cvtColor() to store the image in the variable imgHSV. This image is now stored as a
grey-scaled image in the HSV-format. This format will be described later in this section.
Line 12 returns the parts of the image in the hue color-space from 15 - 38 as white, and the
rest of the image as black. This result is stored in the variable imgThresholded. The range
15-38 in the hue colors-space represents the different shades of orange. Lines 15 and 16
show the newly created image and the original image in two separate widgets. The newly
created binary image is shown in figure 5.2a. We see that the beak, the feet and its shadow
are shown in white on a black background. These are all the orange areas in the original
image, so the code works as intended. The areas we are interested in are now shown in
white. In this example it might be natural to show these in black on a white background.
An example of this is shown in figure 5.2b. This figure is generated using the same code,
but with different values for the hue. I will later in this master’s thesis work with the binary
geometric models in 3D. It is then easier to determine the plane of the selected model when
the background is black. These figures show us that the desired result can be obtained by
changing the values used when the images are generated.

The values for detecting different areas in the input-image are now hard-coded to orange.
The only way to obtain another result is by changing the source-code. This is not practical,
so I want to add a control-panel that allows the user to adjust the color and two other prop-
erties. This control-panel can be seen in figure 5.3. We see that it consists of six sliders.
The first two allow the user to set the interval for the property hue. The next two sliders al-
low the user to set interval for saturation, while the last two set the interval for value. Hue
represents the colors to be filtered out, saturation the amount of white this color is mixed
with, and value the amount of black it is mixed with. In practice, the process of creating

49

(a) Showing the orange areas as white (b) Showing the orange areas as black

Figure 5.2: Binary images created by filtering on the orange colors

the binary image will be: filter out the colors using the hue-sliders and improve the result
using the other four. Hue is here represented as values from 0 - 179. The corresponding
values for the different colors are as follows:

Orange: 0-22
Yellow: 22-38
Green: 38-75
Blue: 75-130
Violet: 130-160
Red: 160-179

Figure 5.3: Controlpanel for creating binary images

The button called ”Detect Orange Areas” has been renamed to ”Open Processing” and
connected to the function openOpenProcessing() in ”opencvtool.cpp”. The code inside
this function is as follows:

50

1 cvNamedWindow("Control", CV_WINDOW_AUTOSIZE);
2

3 int iLowH = 0;
4 int iHighH = 179;
5

6 int iLowS = 0;
7 int iHighS = 255;
8

9 int iLowV = 0;
10 int iHighV = 255;
11

12 cvCreateTrackbar("LowH", "Control", &iLowH, 179); // Hue (0-179)
13 cvCreateTrackbar("HighH", "Control", &iHighH, 179);
14

15 cvCreateTrackbar("LowS", "Control", &iLowS, 255); // Saturation (0-255)
16 cvCreateTrackbar("HighS", "Control", &iHighS, 255);
17

18 cvCreateTrackbar("LowV", "Control", &iLowV, 255); // Value (0-255)
19 cvCreateTrackbar("HighV", "Control", &iHighV, 255);
20

21 Mat img = imread(pluginPath);
22 Mat imgHSV;
23 Mat imgThresholded;
24

25 imshow("Original image", img);
26 cvtColor(img, imgHSV, COLOR_BGR2HSV);
27

28 while(waitKey(30) != 27) {
29 inRange(imgHSV, Scalar(iLowH,iLowS, iLowV),
30 Scalar(iHighH, iHighS, iHighV), imgThresholded);
31 imshow("Tresholded image", imgTresholded);
32 }

Line 1 creates a new widget called ”Control” which contains the sliders. Lines 3-10 store
the initial values for these sliders in appropriate variables. Lines 12-19 create the sliders
with correct initial and max values inside the widget. The input-image is stored in the
variable img in line 21, and a new widget containing this image is shown on screen in line
25. The HSV-version of this image is created and stored in the variable imgHSV in line 26.
The while-statement in line 28 applies the hue, saturation and value, defined by the sliders,
to the HVS-image, and stores the result in imgThresholded. This image is shown in a new
widget in line 31. The while-statement updates the output-image until the escape-key is
pressed. This means that the output-image is updated when the sliders are moved.

The result in figure 5.2a can be obtained by setting the sliders for the hue to the previously
hard-coded values, namely 15 and 38.

The goal is to have a fully autonomous system. In this library, that can be achieved by
looping through the values in the sliders until a satisfactory binary image has been created.
The image should then be sent to the BinPic-algorithm. An autonomous system will not
be achieved in some time, so the control-panel currently allows for user-testing.

51

5.2.2 The HSV-format

The HSV-format is used instead of RGB because it allows us to adjust the color-intensities
as well as the color itself. This is important for two reasons: 1) It allows us to filter out
both shadows and light when creating a binary image. A widely used example for this
is an image of a stop-light. A person can clearly see when a stop-light is red, but for a
computer-program this is a lot harder to determine. Surprisingly, red is often not the most
dominant RGB-component in such an image. Shadows and light makes it hard for the
computer-program to process the image correctly. The HSV-format allows us to filter out
the shadows and light, and the shades of red in the resulting image can easily be identified.
2) Shadows can be used to determine 3D-coordinates. The reflection on a surface can tell
us about the geometric properties of the model depicted when we know the location of the
light source.

A color in the HSV-format is represented as a cylinder of hue, saturation and value. These
are the same properties we are adjusting with the sliders. A graphical representation of
this cylinder can be seen in figure 5.4. The color itself changes with the value of hue.
This gives us the ability to choose a specific color or a selection of several colors. We see
from the figure that the color turns white when the radius of the cylinder approaches zero,
regardless of the hue. This property is called saturation. As the saturation increases the
color gets darker. The third property, value, works in a similar manner from black at the
base of the cylinder to lighter colors at the top. If we choose all sliders to go from zero to
the maximum value in our library, all possible colors will be selected. No colors will then
be filtered out, and the resulting binary image will be all white.

Figure 5.4: Graphical representation of the HSV-format

5.2.3 OpenCV and the BinPic-algorithm

The resulting binary image created using the OpenCV-library should be used as input to
the BinPic-algorithm. This image is currently stored locally and shown in a widget. We

52

want to store this image so the BinPicTool-library can find and use it. I created a new but-
ton called ”Save Image” connected to the function openSave() in ”opencvtool.cpp”. When
pressed, this opens the widget shown in figure 5.5. The text-box contains the file-name the
binary image should be stored with. It is initialized with the file-name of the input-image,
and it can be edited by the user to store it with a different name. Pressing the button ”Save”
will store the new binary image in the folder ”BinaryImage” in the home-directory of the
project. I have also added a check that only allows the user to store the image after the
binary image has been created.

Figure 5.5: Widget for saving images

It is now time to test if using the OpenCV-library improves the resulting binary geometric
model. I created a new binary image using the OpenCV-library. The same image as before
is used, namely the Linux logo shown in figure 5.1a. I adjusted the sliders to create the
binary image in figure 5.6a. This was saved and used as input to the BinPic-algorithm.
The resulting binary geometric model shown in the picture-view can be seen in figure
5.6b. When using a color-image as input to the BinPic-algorithm, we got black dots inside
the resulting model. By comparing this new result with the one in figure 5.1b we see that
these are almost gone when pre-processing the image, so using the OpenCV-library library
produces the desired results.

(a) Binary image created using OpenCV

(b) Binary model created from new binary image

Figure 5.6: New binary image and model

One thing to note is that the QBitmap-class doesn’t do anything when the input-image
already is on binary form. This means that the user can import both color-images directly
or create binary ones using the OpenCV-library.

53

54

Chapter 6
Experimental Process

The main focus of this master’s thesis is developing a framework that allows for experi-
mentation with different algorithms building 3D geometrical models automatically from
digital images. The dynamic linking of views, BinPic-algorithm and pre-processing us-
ing OpenCV are all parts of this process. These tools can be used to visualize, build and
improve two-dimensional geometric models manually. This process has to be adapted to
3D-models as well as being automated. Implementing the whole process of creating 3D-
models autonomously is to big for this master’s thesis, but this section will outline the
process. I will describe the parts that aren’t implemented, and how the tools already de-
veloped fit into the process. This is a good starting point for later students working on this
project. It allows them to see how their master’s project and master’s thesis fits into the
overall process.

6.1 Experimental process of creating models from images

This section will describe the process from a physical model to a geometric model. I will
describe the shortcuts I have taken where further development is needed. One model will
be used throughout this section to show the steps this goes through. It is here natural to
choose one of two different types of models, either a pyramid-polyhedron or a prism. Ex-
amples of these types can be seen in figures 6.1a and 6.1b.

I want to show the process on a simple model. It doesn’t matter which one is chosen, so
the model similar to the ”Triangle Prism” in figure 6.1b will be used. This model is simple
and different from the other models currently implemented in the program.

55

(a) Pyramid-polyhedrons
(b) Prisms

Figure 6.1: Examples of different models

6.1.1 Creating a physical model of the Triangle Prism

I created a physical model of the triangle prism using cardboard. Each of the five surfaces
in the model are created with different colors. It is then easier for both the human readers
and the OpenCV-library to distinguish them from each other. Then I photographed the
model in an environment with a neutral background. These images are shown in figures
6.2a, 6.2b, 6.2c and 6.2d.

6.1.2 Creating binary images of the model

Next I used the OpenCV-library created in the previous section to create a binary image of
each surface. Creating one binary image for each surface is relatively easy since each sur-
face has a different color. It might not be that easy for other images where a model has the
same color on each surface. Therefore, an algorithm should be developed that detects the
reflection of each surface. This reflection can then be used to find intersections between
surfaces to tell them apart. The binary image created of the red surface in figure 6.2c is
shown in figure 6.3. Binary images of the other surfaces were created as well, but I will not
show all of them here. Several of the surfaces appear in more than one input-image. I have
here chosen the input-image yielding the best binary image when recreating the model.
The binary images are created with the surface shown in white on a black background.
This makes it easier to determine the different planes when the geometric models created
from these images are shown in the camera-view.

The binary images created by the OpenCV-library were positioned relative to each other
in an online tool. These allow us to see the binary outline of the prism in figures 6.4a and
6.4b. These aren’t perfect, but they clearly show the outline of the model represented by
the individual binary surfaces. Before we move on I want to discuss the way these images
are created. I used an online tool to create these models by hand. Our program cannot
use an online tool, so it has to build this representation itself. I tried doing this by creating
binary geometric models of the images using the BinPic-algorithm, and positioning these
in the camera-view. This result is harder to interpret, as can be seen in figure 6.5. The
black background hides parts of the models which makes it harder to see its outline.

56

(a) First image of the physical model (b) Second image of the physical model

(c) Third image of the physical model (d) Fourth image of the physical model

Figure 6.2: Images of the physical model of the prism

To get a better representation of the binary models in the camera-view we have two pos-
sible solutions. 1) Show the surfaces in black, on a white background, when creating the
binary images. The result shown in the camera-view will then allow us to see the outline of
the original model better. However, with this solution it’s harder to determine the planes of
the surfaces, which makes it harder to position the surfaces correctly. 2) Create one binary
image from the input-image with all the surfaces. In this resulting image the surfaces are
already positioned correctly. Creating this image will most likely be harder than in the
first case. If the surfaces in the input-image have different colors, one of them might be
filtered out when removing colors in the background. When surfaces in the input-image
have the same color they might be shown as one surface in the resulting binary image.
Such surfaces might be separated by adjusting the reflection from the light-source, but this
could be difficult if they have the same orientation.

Both of these solutions have pros and cons, and the final implementation has to work au-
tonomously. In the first solution this means an implementation positioning the surfaces
automatically. If the second solution is chosen, the implementation has to distinguish the
surfaces based on both color and reflection. The binary images shown in figures 6.4a

57

Figure 6.3: The red surface after using the OpenCV-library to create a binary image

(a) Binary prism shown from one side (b) Binary prism shown from the other side

Figure 6.4: Binary prisms

and 6.4b are only used as an internal representation to help the program find the surfaces,
edges, and points. The result in the camera-view in figure 6.5 is only for a human user
to visualize the problem, and isn’t necessary to solve it. I have here taken a shortcut and
created the images in figures 6.4a and 6.4b in an online tool. Which solution to choose,
and the implementation itself, is left for further students.

6.1.3 Identifying properties and recreating the model

I continue based on the assumption that models similar to figures 6.4a and 6.4b have been
created in the GeoMod program. The next step is to identify surfaces, edges, and points
from these models. This is not implemented, so I will explain the process. One model is
enough to explain the concepts, so I will only use the model shown in figure 6.4a. The sys-
tem should autonomously identify the points and edges in this model. A manually created
example of this is shown in figure 6.6. I have added colored points and lines on top of the
visible corner-points and edges. Showing this result in GeoMod is not necessary to find
these properties, but a similar visualization should be created to allow the programmer to

58

Figure 6.5: Creating a model of the prism in GeoMod using BinPic

verify the results. When the system is fully autonomous these properties should be stored
and used in the recreation of the model.

Figure 6.6: Prism model with edges and points identified

The last step is to develop an algorithm recreating the model based on the properties stored
in the processes above. A good starting-point is to draw the points and edges in the camera-
view and see if this outline resembles the input-images. This is not necessary for the
autonomous system, but it shows the developer if the steps above are implemented cor-
rectly. At this stage the points and edges should define each surface in the input-images.
The algorithm should use this information to create the surfaces as geometric models in
GeoMod. Some of the input-images might show the same surface. This means that the
program has to keep an internal representation of the whole model and recognize if a sur-

59

face has been drawn earlier. If not, the new surface is added to the model. Otherwise, this
new representation can be used to improve the surface in the model. The input-images
might only describe parts of the model. This means that we will not be able to correctly
recreate the surfaces we cannot see. We here have a few possible solutions. 1) Only draw
the surfaces visible in the input-images. In this case, we end up with an unclosed model
until we get images describing all the surfaces. In the current camera-view only the front
of the surfaces are drawn. Looking at the model from the back will then make the model
disappear because the back of the surfaces are invisible. 2) Enclose the back of the model
with a simple plane. This plane will be visible in the camera-view, which tells us that there
is a model there. This surface has to be removed and recalculated when images describing
new surfaces appear. 3) Analyze the surfaces in the current model and guess the shape of
the rest of the model. In figure 6.4a it’s quite easy to see what the resulting model should
look like. An algorithm could be developed, which approximates the model based on the
surfaces defined so far. This means that several reference-models have to be stored and
used by the algorithm. The approximated model has to be updated each time images of
new surfaces arrive. This solution is the most complex, and might give unexpected results.
I would then suggest closing the model with a simple plane or modifying the camera-view
to draw both the front and back of the surfaces.

The recreation of the models described above is not implemented, so I will recreate the
model manually in a separate library. This model is used to show an approximation of
what the resulting model should look like. The dimensions of the model are based on
approximations from the physical model and the images. The exact geometry of the recre-
ated model will not be correct, but similar to the physical model. The model is created in
the library ”DynamicLinkingTests/16 RecreatedPrism”. It is created in the same manner
as other models in the system, so I will not show this code here. The model is shown in
the camera-view in figure 6.7.

Figure 6.7: Example of recreated prism in GeoMod

60

6.2 Notes and possible problems during development
The model in figure 6.7 only has grey surfaces. The color of each surface is not important
for the autonomous vehicle, but it might help the developer compare the recreated model
to the original one. The color of each surface can be stored when the binary images are
created by the OpenCV-library. It can then be added when the surfaces are created.

The x- and y-coordinates of the surfaces, edges, and points can fairly easy be found from
the binary images. The z-coordinates can also be approximated, but these are harder to de-
termine. I will here mention a few ways this can be done. 1) Use the reflection of the light
on each surface in the original image. This assumes that the program knows the position
of the light-source. It can relatively easy be determined in a controlled environment, but it
might be harder to determine in real-world images with several light-sources. 2) Combine
images from several angles and calculate the coordinates. This assumes several images of
the same surface from different angles. 3) Combine input-images with other types of in-
puts, for instance sonar. This assumes the availability of other types of inputs. 4) Compare
the input-images with a selection of reference-models, and assume that the model to be
recreated has the same geometric proportions. For this to work, a reference-model of the
model to be recreated has to exist.

None of these solutions works for all scenarios. Problems arise if the position of the light-
source cannot be determined, only one input-image is available, information from other
sensors are unavailable or if the model is different from the reference-models. With this in
mind, at least two of the solutions should be implemented. One can then use one solution
as default, with the rest as backup if this one fails. The implemented solutions can also be
combined to improve the accuracy of the coordinates calculated.

When the model has been recreated, an iterative process should be used to improve the
resulting model. The system should take images of the recreated model and compare this
to the input-images. The difference between these images should then be used to improve
the resulting model. This process is repeated until the difference between them are below
a given threshold.

The developer might also take a look at the geometric models created by the BinPic-
algorithm. All edges in these models, both around planes and edges themselves, are com-
posed of several short vectors. The BinPic-algorithm uses scan-lines to detect extremal-
points. An extremal-point is found when a bit in the binary image changes from white
to black, or black to white. When two extremal-points are found in consecutive scan-
lines the algorithm creates a vector between them. This means that the algorithm creates
a vector between an extremal-point in one scan-line and an extremal-point in the next.
Two scan-lines are one pixel apart, so we end up with one vector per scan-line. Often
extremal-points span several scan-lines to form a line. Rather than creating this line by
several short vectors, we want it to be composed of one, longer vector. The program
should here do a regression analysis to compose the smaller vectors into longer ones. For
models composed of straight lines, like simple polyhedron and prisms, a linear regression
analysis would be enough. For models containing curves, a more complex regression anal-

61

ysis is required. A linear regression analysis is a good place to start when developing this
comparison-algorithm. Implementing such an algorithm would allow the program to draw
and compare the models more effectively.

6.3 Summary
The system should begin by creating binary images of surfaces in the input-images, using
the OpenCV-library. This functionality is implemented, but done manually. These binary
images have to be positioned relative to one another to obtain the outline of the original
model. At this point the program has a shell of the original model. This can then be used
to determine the surfaces, edges, and corner points. These properties, combined with an
algorithm for determining the z-coordinates, should be used to recreate the model. The
system should perform an iterative process where this model is gradually improved until
it is considered close enough to the original model depicted in the input-image.

This chapter explains the whole process from input-images to a 3D-model shown in the
camera-view. I have taken several shortcuts to show the whole process, since parts of the
process isn’t implemented. Further development should start by implementing the missing
algorithms, and running the process with human interaction. After this, the attention can
be switched over to running it autonomously.

My assignment states that I should develop a platform which allows for experimentation
with different algorithms for building 3D-models from images. It also states that image-
processing should be emphasized. I have installed OpenCV and created a library that
allows the user to create binary images with a control-panel. This image can then be used
by the BinPic-algorithm where a binary geometric model is created. At this point con-
versations with my supervisor revealed that I am at the point I wanted to be at the end of
my thesis. There are still quite a few parts to be implemented in this process, but these
will be left for further students on this project. I will instead move the focus over to the
visualization of the models in the program.

62

Chapter 7
OpenGL

The GeoMod-program uses a class called GMWindow to visualize the geometric mod-
els. This class is developed by my supervisor, and works as intended, but it lacks some
desirable functionality. Two additional properties we want are z-buffering and adding a
light-source. Z-buffering determines the parts of the models that are closest to the camera,
draws these and hides the parts hidden by other surfaces. The GMWindow-class draws
the surfaces a bit at random. The back of each model is correctly hidden, but which parts
of the front-surfaces to draw is not implemented. Showing parts of models that should
have been hidden might confuse the program and give unwanted results. In a fully au-
tonomous system this might be the difference between navigating safely around an object
and crashing into it. Adding a light-source helps us recreate models from images correctly.
A surface has a different reflection depending on the location of the light-source. Adding
a light-source in the view gives us a reflection on the surfaces in the recreated models.
These reflections can then be compared with the reflections on the same surfaces in the
input-images. This can help us to determine if a model has been recreated correctly.

In my master’s project I looked into the possibility of adding these properties to the
GMWindow-class. I found that these had to be implemented from scratch, which is a big
task. After a bit of searching online, I found a library called OpenGL [22]. OpenGL allows
the programmer to render 2D and 3D graphics with Qt Creator. It also has the possibil-
ity of adding both z-buffering and light-sources. When discussing it with my supervisor,
we figured that OpenGL was worth a try. This chapter describes the implementation of
OpenGL and the challenges encountered in this process.

7.1 Re-implement OpenGL in GeoMod
OpenGL has been tried implemented in the program in the past. The code contains im-
plementations of old OpenGL-functions, commented out. My supervisor told me that this
implementation didn’t work. He wasn’t sure why, just that the models weren’t drawn cor-

63

rectly. This old code is written in the same files as the GMWindow-class. The thought
was that the programmer could choose to use either the camera-view or the OpenGL-view
based on certain hard-coded variables. The GMWindow-class has been updated quite a lot
in recent years, but the OpenGL-implementation is still the same. This means that the code
for OpenGL is based on a prevous version of both Qt Creator and GeoMod. The OpenGL-
functions have also been updated, as can be seen in the section ”Relation to QGLWidget”
in [23]. Because of this, compiling the old OpenGL-code causes a lot of errors. The
classes using the deprecated QGLWidget have to be re-implemented to use the new class
QOpenGLWidget, and the code has to be rewritten to work with the newer version of Qt
Creator. Spending time to fix this on an implementation that originally didn’t work is
probably a waste of time, so I decided to start from scratch.

I created a new library in ”DynamicLinkingTests/14 TestOpenGL” that can be linked in
through the Tools-manager. It contains an implementation of the interface-functions and
returns a widget with a single button. This button opens a new OpenGL-window con-
taining a triangle drawn with different colors. I will not show the implementation of the
triangle here, since the code is the same as the example in [24]. It is only created to test
that OpenGL can be used in a library with the current version of Qt Creator. The resulting
OpenGL-window can be seen in figure 7.1. We see that the triangle is created and shown
in a new widget.

Figure 7.1: Drawing a triangle with different colors using OpenGL

The triangle above is a 2D-model, and the next step is to test if we can create 3D-models. I
followed the tutorial in [25], which contains a 3D-model of the Qt-logo that can be rotated
using sliders or the mouse. I replaced the logo with an implementation of a cube. The
code for this is quite long and almost identical to the one shown in [25], so it will not be
shown here. One thing to note is that I replaced the line

Logo m_logo;

with

64

TestCube m_model

in ”glwidget.h”. This tells the code to draw the cube instead of the logo. For this to work I
had to replace all occurrences of m logo with m model in ”glwidget.cpp”. The result can
be seen in figure 7.2. The cube is shown in a OpenGL-window and can be rotated using
the mouse or the sliders on the right. This OpenGL-window allows me to draw 3D-models
and rotate them in a simple manner, so I will use this as a platform for further development
of OpenGL.

Figure 7.2: Figure of creating a cube in OpenGL

7.1.1 Drawing the models in the system
We now want to be able to draw the models currently in the program in this OpenGL-
view. This code will be stored in the files ”geomodtest.h” and ”geomodtest.cpp” in the
TestOpenGL-library. To show the models created in these files I changed the line

TestCube m_model

to

GeoModTest m_model;

in ”glwidget.h”. This creates a new instance of the GeoModTest-class, and draws the mod-
els created here instead of the cube. I also included ”geomodtest.h” at the beginning of
the file. Now we need to find, convert, and draw the models from the main program in the
OpenGL-view. Before beginning on this task I want to explain how models are drawn in
OpenGL. OpenGL has three drawing-options, namely drawing points, lines and triangles.
We want to draw 3D-models, so we have to use the last option, triangles. Drawing points
and edges can be used to show the outline of the models, but they cannot be used to draw

65

the surfaces. In GeoMod, models are created by adding corner points. Edges are then
created from these points, and used to create the surfaces. Any number of points can be
used to create a surface. OpenGL only allows us to create triangles, so we have to convert
the surfaces in GeoMod to triangles before drawing them. My supervisor and I discussed
the possibility of storing the models in the system as triangles, instead of the way they are
stored now, but we chose not to. Changing the way the models are stored would mean
rewriting a lot of existing code. We instead chose the solution where we convert the exist-
ing models to triangles in the OpenGL-library.

I will begin by drawing the recreated prisms shown in figure 6.7 in the OpenGL-view.
Selecting a single model from the main program easily allows me to see if it is drawn
correctly. Before an algorithm that draws the models in the OpenGL-view can be im-
plemented, they have to be sent to the library. I re-implemented the interface-function
setModels() in ”plugininterface.h” which allows me to do this. The function is called in
makePluginInstance() in ”toolsman.cpp”. This code is executed when the library is instan-
tiated, and the models should be sent to the library. The added code is shown below. The
first line creates a variable, models, which contains a pointer to the models in the system.
This variable is then used as input to setModels().

1 Models* models;
2 factory.getPlugins()[index].pluginP->setModels(models->getModels());

setModels() is an interface-function, so it’s implemented in the library as well. The imple-
mentation is found in ”testopengl if.cpp” and is as follows:

1 void TestOpenGL_if::setModels(std::vector<Models::ModelData*> modls) {
2 models->setModelsP(modls);
3 }

The input to this function is the pointer to the models in the main program. Line 2 sets
a local models-vector, models, equal to the input-variable. This ensures that the library
contains a pointer to all the models in the main program. The function is called once,
so the library only contains the models present when the OpenGL-library is instantiated.
When linking in a new model in the main program, we have to create a new instance of the
library to add this to the OpenGL-view. This is not optimal, but it allows us to test our code.

With a copy of the models in the library, the work of drawing them in the OpenGL-view
can begin. The models will be converted in the file ”geomodtest.cpp”, so we have to trans-
fer them here. To get the recreated prism, we add the following code in the constructor:

1 TestOpenGL_if* top;
2 std::vector<Models::ModelData*> mdls = top->models->getModels();
3 Models::ModelData* mdl = mdls.at(6);

Line 1 creates an instance of the TestOpenGL if-class and stores it in the variable top.
Line 2 uses the function getModels() on the vector of models in top, and stores them in the
variable mdls. Model number 6, the recreated prism, in mdls is stored in the variable mdl

66

in line 3. The recreated prism is not statically linked in, so it has to be linked in dynami-
cally before the OpenGL-library is instantiated.

At this point I created a function called drawTriangle() in ”geomodtest.cpp”. With the
following implementation this function allows me to draw a triangle in the OpenGL-view
from three points.

1 void GeoModTest::drawTriangle(GLfloat x1, GLfloat y1, GLfloat z1,
2 GLfloat x2, GLfloat y2, GLfloat z2,
3 GLfloat x3, GLfloat y3, GLfloat z3) {
4

5 QVector3D n = QVector3D::normal(QVector3D(x3 - x1, y3 - y1, z3 - z1),
6 QVector3D(x2 - x1, y2 - y1, z2 - z1));
7

8 add(QVector3D(x1, y1, z1), n);
9 add(QVector3D(x3, y3, z3), n);

10 add(QVector3D(x2, y2, z2), n);
11

12 add(QVector3D(x3, y3, z3), n);
13 add(QVector3D(x1, y1, z1), n);
14 add(QVector3D(x2, y2, z2), n);
15 }

The inputs to this function are 3 points defined by x-, y- and z-values, which in total means
9 numbers. These define the corner-points of the triangle to be drawn. Lines 5 - 6 creates
a normal-vector used to determine the inside and outside of the triangle. The 6 calls to
the function add() in lines 8 - 14 adds the points to the OpenGL-buffer twice. Once for
the inside and once for the outside, with the same normal-vector. The points are added in
a different order to ensure that the normal-vector is positive for the outside and negative
for the inside. The inside will then be drawn in a darker color than the outside, to easily
tell them apart. The same surface has to be added twice for OpenGL to draw both the
inside and the outside. This is because one side, by default, is invisible when a surface is
added. Adding the surface again, in a different order, will draw both sides. The function
drawTriangle() is similar to triangle() in [25]. drawTriangle() creates a single surface that
can be seen from both sides, while triangle() creates two surfaces z apart, that only are
visible from one side. The function add() is the same as in [25], so I will not show the
implementation here. It adds the vector defining the three points and the normal-vector to
the OpenGL-buffer.

The next step is to implement an algorithm that gets 3 and 3 points from the prism-model,
and draws them using the function above. Note here that only triangles part of a surface
in the original model should be drawn. The implementation is quite long and complicated
due to the way the models are stored in the main program. It is implemented in the con-
structor in ”geomodtest.cpp” after the prism has been stored in the variable mld, described
earlier. The complete code is as follows:

67

1 for(int j = 0; j < mdl->getnumber_of_Tgroups(); j++) {
2 Tgroup* modelTgroup = mdl->getTgroupPModifiable(j);
3 ExtBasis* basisP = modelTgroup->getBasisPModifiable();
4 GeomNet* networkP = modelTgroup->getNetwork();
5

6 for(std::list<GeomRegion*>::iterator region=networkP->
7 getRegionsBegin(); region != networkP->getRegionsEnd(); region++){
8

9 currentRegion = (*region);
10

11 std::vector<GeomNode*> nodesToDraw;
12 bool completed = false;
13 bool currentEdgeAlong = currentRegion->entryAlong();
14 GeomEdge* currentEdge = currentRegion->entryEdge();
15 GeomNode* currentHeadNode;
16 GeomNode* currentTailNode;
17

18 bool negEdge;
19 while(!completed) {
20 currentHeadNode = currentEdge->headNode();
21 currentTailNode = currentEdge->tailNode();
22

23 if(currentEdgeAlong) {
24 currentEdgeAlong = currentEdge->posRegionNextEdgeAlong();
25 currentEdge = currentEdge->posRegionNextEdge();
26 negEdge = false;
27 } else {
28 currentEdgeAlong = currentEdge->negRegionNextEdgeAlong();
29 currentEdge = currentEdge->negRegionNextEdge();
30 negEdge = true;
31 }
32

33 if(negEdge) {
34 nodesToDraw.push_back(currentTailNode);
35 } else {
36 nodesToDraw.push_back(currentHeadNode);
37 }
38

39 if(currentEdge == currentRegion->entryEdge()){
40 completed = true;
41 }
42 }
43 drawModel(nodesToDraw);
44 }
45 }

The code above loops through all Tgroups in the current model. The Tgroups contain
all necessary information about the points, edges and surfaces. Line 2 stores the current
Tgroup in the variable modelTgroup. In line 3, modelTgroup is used to get the current
basis and store it in the variable basisP. Line 4 gets the network of the current Tgroup and
stores it in networkP. This contains information about the regions in model. The for-loop

68

starting in line 6 loops through each region using an iterator. The current region in the
iteration is stored in the variable currentRegion in line 9. Line 11 creates a vector of Ge-
omNodes called notesToDraw. This will eventually contain the points to be drawn in the
OpenGL-view. Lines 12-18 define variables used in the while-loop starting in line 19.

The while-loop runs as long as the variable completed is false. This variable is initialized
to false, so the loop will run at least once. Lines 20 and 21 set the variables current-
HeadNode and currentTailNode equal to the head- and tail-node of the current edge. The
current edges is initialized to the entry-edge in line 14. The if-statement in line 23 checks
if the variable currentEdgeAlong is true. currentEdgeAlong is true if the next edge is a
forward edge, and false if it’s a backwards edge. An edge can be defined both ways, hence
the two different names. For instance, the edge ”BC” is defined by the same points as
”CB”, but they are opposite one another. The point ”B” is the head of the edge ”BC”, and
”C” the tail. In ”CB”, ”C” is the head and ”B” the tail. Let us now assume that we have the
surface ”ABCA”, and that ”AB” is the entry-edge. currentEdgeAlong will then be true if
the next edge is defined as ”BC”, and false otherwise. If currentEdgeAlong is true, the if-
statement in line 23 is entered. If it is false, the else-statement in line 27 is entered. Inside
the if/else-statement currentEdgeAlong is updated based on the direction of the next edge
in the surface. Then the variable currentEdge is set to the next edge. This will be set to the
positive edge in the if-statement, and the negative edge in the else-statement. The boolean
variable negEdge is set to false when the if-statement is entered, and true when the else-
statement is entered. This variable is used in the if-statement in line 33. The node stored
in currentTailNode is added to the vector nodesToDraw if negEdge is true. If negEdge is
false, the node stored in currentHeadNode is added.

The if-statement in line 39 is entered if the current edge is equal to the entry edge. The
variable completed is then set to false, which stops the while-loop. This means that all
edges in the region have been visited, and all points to be drawn have been added to the
vector nodesToDraw.

The process above gets the points defining each surface, and adds them to nodesToDraw.
nodesToDraw is now a vector of n points, where n is the number of points defining the
current surface. The prism described earlier consists of 2 triangles and 3 rectangles. n will
then be 3 when a triangle is added, and 4 when a rectangle is added. nodesToDraw is reset
for each iteration.

The last line in the code calls the function drawModel(), with nodesToDraw as input. The
implementation of this function in ”geomodtest.cpp” is as follows:

69

1 void GeoModTest::drawModel(std::vector<GeomNode *> model) {
2 std::vector<GLfloat> points;
3 for(int i = 0; i < model.size(); i++) {
4 points.push_back(model[i]->getModablXyzP()->get_x());
5 points.push_back(model[i]->getModablXyzP()->get_y());
6 points.push_back(model[i]->getModablXyzP()->get_z());
7 }
8

9 switch(model.size()) {
10 case 3:
11 drawTriangle(points[0], points[1], points[2],
12 points[3], points[4], points[5],
13 points[6], points[7], points[8]);
14 break;
15 case 4:
16 drawTriangle(points[0], points[1], points[2],
17 points[6], points[7], points[8],
18 points[3], points[4], points[5]);
19 drawTriangle(points[0], points[1], points[2],
20 points[9], points[10], points[11],
21 points[6], points[7], points[8]);
22 break;
23 default:
24 std::cout << "The current surface is not valid" << std::endl;
25 break;
26 }
27 }

The points to be drawn are now stored in the input-variable model. Line 2 defines a
new vector called points, which is populated in the for-loop starting in line 3. This loops
through all points in model, and adds the x-, y- and z-coordinates as GLFloats. This is
the data-type the previously defined function drawTriangle() expects as input. The switch-
statement in line 9 uses model.size() as the argument. This means that the number of
points in the current surface determines which code to execute. The code in ”case 3” will
be executed if the current surface is created from 3 points, which means that it’s a triangle.
The function drawTriangle() is then called with the 3 points defining the surface. In the
vector points this means 3 points with x-, y- and z-coordinates, in total 9 points. This can
be seen in lines 11 - 13. The code in ”case 4” will be executed if the current surface is a
rectangle. A rectangle can be created from two triangles, so the function drawTriangle() is
here called twice.

The code above only draws triangular and rectangular surfaces. If other surfaces are en-
countered, line 24 will print an error-message to the terminal. The prism is defined only by
triangles and rectangles, so the code should be able to draw it. I will look at the drawing
of more complex surfaces later in this chapter. Running the code on prism after linking it
in dynamically gives me the OpenGL-view shown in figure 7.3a. We see that the model is
similar to the one in figure 6.7, so the code works as expected.

Drawing the pyramid from the main program in the OpenGL-view is shown in figure 7.3b.

70

(a) Recreated prism in OpenGL (b) Recreated pyramid in OpenGL

Figure 7.3: Other recreated models in OpenGL

We see that this model is created correctly as well. The pyramid is also defined by trian-
gles and rectangles, so the OpenGL-view is able to draw it.

Before moving on I want to look at a potential side-effect of drawing models using trian-
gles. It was pointed out to me by my supervisor that drawing triangles from edges might
cause errors. Figure 7.4 shows an example of an unclosed triangle. We see that one of the
edges defining the triangle is too short. Trying to draw such a model on a computer might
give unwanted results. The computer cannot determine if the points at the top are inside
our outside of the triangle. Drawing this might result in the bottom part, up til the top of
the right edge, having one color. The part above the right edge, and all the way to the right
of the screen, might get another. These problems appear when triangles are defined by
edges. Such problems are fortunately not a problem in our code. OpenGL draws triangles
from the three corner-points, which means that the triangle will never be unclosed. We
might get an unexpected triangle, but it will still be draw as one.

Figure 7.4: Example of an unclosed triangle

7.1.2 Drawing the Robot-arm in the OpenGL-view
The current implementation of the OpenGL-view allows us to draw simple models. An ex-
ample of drawing a more complex model with this implementation is seen in figure 7.5b.

71

(a) Robot-arm in GMWindow (b) Robot-arm in OpenGL

Figure 7.5: Recreating the robot-arm using OpenGL

This is the result of drawing the robot-arm shown in figure 7.5a. We see that the surfaces
consisting of triangles and rectangles are drawn, but they are all drawn on top of each
other. This comes from the fact that the models created in the OpenGL-view are drawn
relative to the origin. In figure 7.5a each individual part is moved to the correct position.
This is currently not implemented in the OpenGL-view. This position, or offset, has to be
added to each individual point. For this to be done, we have to get the offset for each part.
A function called O() allows us to get the offset in the following way:

MathVec offsetP = modelTgroup->getBasisPModifiable()->O();

This line is added to the constructor in ”geomodtest.cpp” before we loop through each sur-
face and store the points to be drawn. O() is implemented in ”MaxLib/math/extbas.h” and
returns the offset in x-, y- and z-direction. The offset is stored in the variable offsetP, and
passed as input to the function drawModel(). The offset is added to each individual point
to be drawn. This is done with the code below in drawModel(). The rest of the function is
left unchanged.

1 std::vector<GLfloat> points;
2 for(int i = 0; i < model.size(); i++) {
3 points.push_back(model[i]->getModablXyzP()->get_x() + offset.get_x());
4 points.push_back(model[i]->getModablXyzP()->get_y() + offset.get_y());
5 points.push_back(model[i]->getModablXyzP()->get_z() + offset.get_z());
6 }

Running the code with the added offset yields the result shown in figure 7.6. We see that
the offsets are added correctly, but the parts are not correctly oriented. The rotation of
each part is added and stored when the robot-arm is created. To account for this rotation
in the OpenGL-view I created a new function called rotateNode(). It uses the basis stored
in basisP to calculate the rotation of each individual point. The implementation of this
function can be seen below.

72

Figure 7.6: Robot-arm with offset

1 GeomNode* GeoModTest::rotateNode(ExtBasis *basisP, GeomNode *prevPoint) {
2 GeomNode* newPoint = new GeomNode;
3 IDMthVec* previousPointVec = prevPoint->getModablXyzP();
4

5 newPoint->getModablXyzP()->set_x(
6 previousPointVec->get_x()*basisP->X().get_x() +
7 previousPointVec->get_y()*basisP->Y().get_x() +
8 previousPointVec->get_z()*basisP->Z().get_x());
9 newPoint->getModablXyzP()->set_y(

10 previousPointVec->get_x()*basisP->X().get_y() +
11 previousPointVec->get_y()*basisP->Y().get_y() +
12 previousPointVec->get_z()*basisP->Z().get_y());
13 newPoint->getModablXyzP()->set_z(
14 previousPointVec->get_x()*basisP->X().get_z() +
15 previousPointVec->get_y()*basisP->Y().get_z() +
16 previousPointVec->get_z()*basisP->Z().get_z());
17

18 return newPoint;
19 }

The input to this function is the basis for the current surface and the points to be rotated.
Line 2 creates a new GeomNode in the variable newPoint. This will contain the rotated
point and is returned in line 18. Line 3 stores the vector defining the current point in the
variable previousPointVec. Lines 5 - 16 calculate the x-, y- and z-rotation, and stores the
result in newPoint. The rotation of each point is calculated as follows:

 newX
newY
newZ

 = oldX ∗

 basisX1
basisX2
basisX3

 + oldY ∗

 basisY 1
basisY 2
basisY 3

 + oldZ ∗

 basisZ1
basisZ2
basisZ3

(7.1)

The old x-, y- and z-coordinates are multiplied with the basis to give us the new, rotated

73

coordinates. This function is called before the vector nodesToDraw is populated. Earlier
we had the two following lines in ”geomodtest.cpp”:

1 nodesToDraw.push_back(currentHeadNode);
2 nodesToDraw.push_back(currentTailNode);

These are now replaced with:

1 nodesToDraw.push_back(rotateNode(basisP, currentHeadNode));
2 nodesToDraw.push_back(rotateNode(basisP, currentTailNode));

The implementation now includes both the offset and the rotation, as can be seen in figure
7.7.

Figure 7.7: Robot-arm with rotation

7.1.3 Drawing complex surfaces
We see in figure 7.7 that only triangular and rectangular surfaces are drawn. We now want
to draw the rest of the surfaces as well. There are a lot of traditions for splitting complex
surfaces in for instance tessellation, photo-realistic images, FEM(Finite Element Method)
and STL(3D printing). I will here keep it simple and propose two solutions that will solve
our problem. 1) Create a new point located at the center of gravity of the surface. This
point, and two others defining the surface, can then be used to create triangles. Continue
this process with two and two points until the whole surface has been created. Using this
approach on the surface at the base of the robot-arm will split the surface as in figure 7.8a.
Point ”C” defines the center of gravity. Here, the surface is created using 6 triangles. This
solution requires us to add and store the extra point ”C”. 2) Use one point as a reference-
point and create triangles using this and two other points along the edge. This surface
will then be split into the triangles shown in figure 7.8b. The surface is here created from
four triangles without finding and storing the extra reference-point. This makes the imple-
mentation easier, so I chose to implement this solution in the function drawPolygon() in

74

(a) Create polygon from center of gravity (b) Create polygon from existing points

Figure 7.8: Two different way of drawing polygons using triangles

”geomodtest.cpp”:

1 void GeoModTest::drawPolygon(std::vector<GeomNode *> model,
2 std::vector<GLfloat> points) {
3 for(int i = 0; i < model.size()-2; i++) {
4 drawTriangle(points[0], points[1], points[2],
5 points[3*(i+2)], points[3*(i+2) + 1], points[3*(i+2) + 2],
6 points[3*(i+1)], points[3*(i+1) + 1], points[3*(i+1) + 2]);
7 }
8 }

The for-loop goes from 0 to the number of points in the current surface minus 2. Lines 4
- 6 calls the function drawTriangle() for each iteration. For the surface in figure 7.8b with
6 points, this means calling drawTriangle() 4 times. The first argument to drawTriangle()
is the same for each iteration, namely the first point defined in x-, y- and z-direction. The
loop uses this point and two other points for each iteration to draw the triangles. The first
triangle is created by points 1, 3 and 2. The second using points 1, 4 and 3 and so forth,
until all the triangles have been created. Here I add the point i+2 before i+1. This is done
to ensure that each triangle has the correct normal-vector. The inside- and outside-surfaces
will then be drawn correctly. The function also draws triangles and rectangles correctly.
This means that we can remove the switch-statement in ”geomodtest.cpp” and replace it
with the single line:

drawPolygon(model, points);

Triangles will then be drawn directly, and other surfaces will be split into several triangles.
The result of drawing the robot-arm can now be seen in figure 7.9a. We see that all sur-
faces are drawn with the correct offset and orientation.

I explained earlier that the basis is used to obtain the correct orientation for each part. This
basis changes each time a part or model is rotated in the main program using the control-
panels. To test that it’s updated correctly, I rotated each of the six joints in the robot-arm.
The result in the OpenGL-view can be seen in figure 7.9b. We see that all joints have been

75

(a) Robot-arm with rotation and complex surfaces (b) Robot-arm in a new position

Figure 7.9: Robot-arm with two different rotations

rotated. This is correct compared to the same robot-arm in the camera-view.

The main goal for this section was to add the properties z-buffering and a light-source.
Both of these properties work in the models recreated. Figure 7.9a only show the parts
of the surfaces that are closest to the camera. Which parts of the surfaces that are drawn
changes when the model is rotated, as can be seen in figure 7.9b. We also see that the
surfaces have different shades of green depending on their rotation. The surfaces shown
directly in front of the camera have a brighter color than the tilted ones. This shows that
the light-source is added correctly and affects the resulting color of the surfaces.

7.1.4 Add colors to the models

Figure 7.5a show that the parts in the robot-arm have different colors in the original
camera-view. This makes it easier for the user to separate the parts in the model. I will
now add this property to the OpenGL-view as well. The current code draws all the models
in green, so we need to change this implementation. In the code for the camera-view, the
RGB-components for the color are added to the surface when it’s drawn. I will use the
same approach here. Each time a surface is added through the function drawTriangle(), I
add the RGB-components of the color to a vector called colors. The color of each surface
can be accessed through the variable currentRegion in ”geomodtest.cpp”. The three lines
below use this variable and adds the R-, G- and B-component to the colors-vector. These
lines are added at the end of the function add() in ”geomodtest.cpp”. The rest of the func-
tion is the same as in [25], so I will not show it here.

1 colors.push_back(currentRegion->getColorR());
2 colors.push_back(currentRegion->getColorG());
3 colors.push_back(currentRegion->getColorB());

76

The colors-vector is then used when the models are drawn in the function paintGL() in
”glwidget.cpp”. This function is defined in [25]. Here I commented out the line that draws
the models, and replaced it with the following:

1 for(int i = 0; i < m_model.vertexCount(); i = i + 3) {
2 m_program->setUniformValue(m_colorPosLoc,
3 QColor(m_model.colors.at(3*i),
4 m_model.colors.at(3*i+1),
5 m_model.colors.at(3*i+2)));
6 glDrawArrays(GL_TRIANGLES, i, 3);
7 }

The for-loop loops through the buffer with a step-size of 3. This buffer is the one we filled
with points in the constructor in ”geomodtest.cpp”. Lines 2 - 5 get the RGB-component
for the current surface stored in the colors-vector, and tells OpenGL that it should be used
when drawing the next triangle. For each iteration, glDrawArrays() in line 6 gets the next
three points in the buffer and draws the triangle. The resulting OpenGL-view can be seen
in figure 7.10a. Comparing this with the camera-view in figure 7.5a we see that the parts
are drawn with the correct colors.

Figure 7.10b show the result of drawing two models with different colors. Both of them
are drawn correctly, with the right color. The pyramid is moved in the main program to
prevent it from being enclosed by the cube, and not drawn.

(a) Robot-arm with colors (b) Two models in the same OpenGL-view

Figure 7.10: Models with colors

The models are now drawn with colors, but the shading has disappeared. This might not
be easy to see in the still image, but it’s evident when the view is rotated. This comes
from the fact that the colors are now set uniformly across the whole surface. Earlier the
green color was set through a shader-program, but this is not used in the solution above.
OpenGL calculates the shade of a given surface using a fragment-shader. This is a small

77

program resting on the GPU, and it’s called each time a surface is drawn. In our code, this
program is stored in a variable called ”fragmentShaderSource”. It’s loaded into the GPU
at the beginning of the function intializeGL() in ”glwidget.cpp”. The original code for the
shader can be found in [25]. This code is used as a template for the final version of the
shader-program shown below.

1 static const char *fragmentShaderSource =
2 "uniform highp vec3 colorIn;\n"
3 "varying highp vec3 vert;\n"
4 "varying highp vec3 vertNormal;\n"
5 "uniform highp vec3 lightPos;\n"
6 "uniform highp vec4 fragColor;\n"
7 "void main() {\n"
8 " highp vec3 L = normalize(lightPos - vert);\n"
9 " highp float NL = max(dot(normalize(vertNormal), L), 0.0);\n"

10 " highp vec3 color = colorIn;\n"
11 " highp vec3 col = clamp(color * 0.2 + color * 0.8 * NL, 0.0, 1.0);\n"
12 " gl_FragColor = vec4(col, 1.0);\n"
13 "}\n";

Lines 2 - 6 define variables used in the main()-function starting in line 7. The calculations
inside the main()-function are the same as in [25], but I have here added a variable called
colorIn. This allows us to set the input-color, instead of the previously hard-coded green.
colorIn is a 3D-vector containing the RGB-components of the surface to be drawn. The
shader-program will then calculate the color-gradient of this color and apply it to the cur-
rent surface. The input-arguments to the function setUniformValue() had to be changed
for this to work. This is the same function as the one we used to set the color above, and
it’s located inside the for-loop in the function paintGL() in ”glwidget.cpp”. The new code
is as follows:

1 m_program->setUniformValue(m_colorPosLoc,
2 QVector3D(m_model.colors.at(3*i)/255.0,
3 m_model.colors.at(3*i+1)/255.0,
4 m_model.colors.at(3*i+2)/255.0));

The second input-argument beginning in line 2 is now changed from a QColor to a QVec-
tor3D. QColor returns the normalized RGB-components, while QVector3D returns the
components directly. This means that they have to be normalized by dividing each compo-
nent by 255. This new code yields the result shown in figure 7.11. The difference between
this figure and the one in 7.10a is not obvious when looking at the still image. It’s easier
to see when the view is being rotated, but looking closely at the bottom plate it’s possible
to see a difference.

7.1.5 Drawing edges in the system
Some models in the main program are created using edges only. The current implementa-
tion only draws surfaces, so these models will not be drawn at all. We now want to extend

78

Figure 7.11: Robot-arm with shading

the implementation to draw edges as well as the surfaces. I mentioned earlier that the
points used to create the triangular surfaces in OpenGL are stored in a buffer. This buffer
is populated through the function add(), which is called by drawTriangle(). The code that
actually draws the models specified in the buffer is located in paintGL() in ”glwidget.cpp”.
This code was shown in the previous chapter, so I will not show it again here. The main
idea is that all points in the buffer are looped through with a step size of three, the correct
color is set and the triangles drawn. The flag ”GL TRIANGLES”, is used to tell OpenGL
that triangles should be drawn. The drawing-function, glDrawArray(), then gets three and
three points from the buffer and draws the triangles specified by these points.

An edge is defined by two points. Let us assume that we add an edge to the buffer in
the current implementation. When drawing, this will cause OpenGL to get the two points
defining the edge, plus a third point from the next edge or surface, and draw these as a
triangle. The buffer only consists of points, and it has no way of determining whether the
next points define an edge or a triangle. This means that we cannot add the edges directly
to the buffer when we find them. I will now try a solution where the buffer is split at
an index. The first part of the buffer will contain points defining triangles, while the rest
defines edges. This allows me to start drawing edges instead of triangles when this index
is reached. The index will be stored in the variable buffersize. The following line sets this
equal to the length of the buffer when all surfaces have been added:

buffersize = vertexCount();

The line above is added to the constructor in ”geomodtest.cpp”, after the outermost for-
loop. At this point all surfaces have been added to the buffer, and we can start adding
edges. The edges are added with the code below. It loops through all the models in the
main program and then their Tgroups. These are the same for-loops as when adding sur-
faces. Lines 4 - 7 define the Tgroup, basis, offset and network for the current model. These
variables are then passed to a newly created function called findVisibleEdges().

79

1 for(int i = 0; i < mdls->size(); i++) {
2 Models::ModelData* mdl = mdls->at(i);
3 for(int j = 0; j < mdl->getnumber_of_Tgroups(); j++) {
4 Tgroup* modelTgroup = mdl->getTgroupPModifiable(j);
5 ExtBasis* basisP = modelTgroup->getBasisPModifiable();
6 MathVec offsetP = basisP->O();
7 GeomNet* networkP = modelTgroup->getNetwork();
8

9 findVisibleEdges(networkP, basisP, offsetP);
10 }
11 }

The function findVisibleEdges() is defined below. It begins by creating a vector of Ge-
omNodes called edgesToDraw. This vector will contain the points defining the edges to
be drawn. The for-loop beginning at line 4 loops through all the visible edges in the sys-
tem using an iterator. Line 7 stores the current edge in the variable edge. Lines 9 and
10 rotate these points with the previously defined function rotateNode(), and adds the re-
sult to edgesToDraw. edgesToDraw and offset is then used as arguments to the function
drawEdge().

1 void GeoModTest::findVisibleEdges(GeomNet *network, ExtBasis *basis,
2 MathVec offset) {
3 std::vector<GeomNode*> edgesToDraw;
4 for(std::list<GeomEdge*>::iterator e = network->getEdgesBegin();
5 e != network->getEdgesEnd(); e++) {
6

7 GeomEdge* edge = (*e);
8

9 edgesToDraw.push_back(rotateNode(basis, edge->headNode()));
10 edgesToDraw.push_back(rotateNode(basis, edge->tailNode()));
11 }
12 drawEdge(edgesToDraw, offset);
13 }

The implementation of drawEdge() is shown below. Line 2 defines a ”dummy” normal-
vector. This has earlier been used to describe the orientation of the given surface. We
are now drawing edges, so this vector doesn’t affect the result. It has to be defined here
because the function add() expects a normal-vector as one of its input-variables. The for-
loop starting at line 3 loops through the points defining the edges with a step-size of two.
The head- and tail-nodes of the current edge is stored in the variables pointVecHead and
pointVecTail in lines 4 and 5. Lines 6 - 13 add the x-, y- and z-coordinates, with the correct
offsets, to the buffer using the add()-function.

80

1 void GeoModTest::drawEdge(std::vector<GeomNode*> edges, MathVec offset) {
2 QVector3D n = QVector3D(1, 1, 1);
3 for(int i = 0; i < edges.size(); i = i + 2) {
4 IDMthVec* pointVecHead = edges[i]->getModablXyzP();
5 IDMthVec* pointVecTail = edges[i+1]->getModablXyzP();
6 add(QVector3D(pointVecHead->get_x() + offset.get_x(),
7 pointVecHead->get_y() + offset.get_y(),
8 pointVecHead->get_z() + offset.get_z()),
9 n);

10 add(QVector3D(pointVecTail->get_x() + offset.get_x(),
11 pointVecTail->get_y() + offset.get_y(),
12 pointVecTail->get_z() + offset.get_z()),
13 n);
14 }
15 }

The buffer is now populated as wanted. Points defining the surfaces are stored up until the
index buffersize, and points defining the edges are stored in the rest of the buffer. The next
step is to start drawing edges at the correct time, which is achieved with the following code:

1 for(int i = 0; i < m_model.buffersize; i = i + 3) {
2 m_program->setUniformValue(m_colorPosLoc,
3 QVector3D(m_model.colors.at(3*i)/255.0,
4 m_model.colors.at(3*i+1)/255.0,
5 m_model.colors.at(3*i+2)/255.0));
6 glDrawArrays(GL_TRIANGLES, i, 3);
7 }
8

9 m_program->setUniformValue(m_colorPosLoc, QVector3D(0, 0, 0));
10 for(int i = m_model.buffersize; i < m_model.vertexCount(); i = i + 2) {
11 glDrawArrays(GL_LINES, i, 2);
12 }

The first for-loop drawing the triangles are almost identical to the one shown earlier. The
difference is that it now stops at the variable buffersize. The code inside this for-loop is
the same as before. Line 9 sets the color of the edges to be drawn to black. The second
for-loop starting in line 10 loops through the rest of the buffer, from buffersize, with a
step-size of two. In line 11, the flag ”GL LINES” is used in the function glDrawArrays().
This tells OpenGL that we now want to get two and two points from the buffer and draw
the result as an edge. Figure 7.12a shows the OpenGL-view with the new implementation.
Here, all models have edges around them, as well as a coordinate system and a cube to the
right. These are the same lines as in the camera-view, so the edges are drawn correctly.
Figure 7.12b shows the OpenGL-view with only the coordinate system. This shows the
edges more clearly. I have here changed the background to white to make the edges visible.

In figures 7.12b and 7.12a we see a grey surface at the bottom of the cube defining paths
and in the coordinate system. These are not visible in the camera-view, but they are present
there as well. They are created as white surfaces where the user can create new paths for
the robot-arm. The shading added earlier makes them appear grey when they are viewed

81

(a) All models in the system with edges (b) Coordinate system

Figure 7.12: Models with edges

from an angle. Rotating the view, and seeing them from directly above makes them turn
white and disappear.

The library created in this section draws the models in the main program using OpenGL.
The models are transferred from the main program, and drawn with the correctly shaded
color, rotation, and offset. Figure 7.13 shows all the models currently in the system in
one OpenGL-view. The cube, pyramid, and coordinate system have been moved, and
the robot-arm rotated, in the main program. These actions are correctly depicted in the
OpenGL-view. We also see that the z-buffering works as intended. Parts of models are
hidden by others, while the surfaces closest to the camera are shown completely. This
can easily be seen in the coordinate system and at the top of the pyramid. The coordinate
system is moved in front of the other models and drawn completely. The top of the pyra-
mid is drawn, while some of the sides are hidden by the surface intersecting it. We also
see that all the edges are drawn correctly. The black edges easily mark the intersection
between two neighbouring surfaces, as can be seen in the grey cube. The edges have the
same coordinates as the end of the surfaces. I would have anticipated that the z-buffering
would cause the edge and surface to fight for visibility, but it seems that OpenGL automat-
ically draws the lines on top. This is a good feature for us, because it’s exactly what we
want. When discussing this with my supervisor, we wondered if the edges are drawn on
top because they are drawn last. I tested this by reversing the order of the drawing, but the
result was still the same. This was tested so that later students are aware of this standard
in OpenGL.

The edges easily let the user distinguish intersecting surfaces with the same color. But this
property is more important when recreating model from images described in the previous
chapter. Two neighbouring surfaces might have the same color after being recreated. If
these have the same orientation it might be difficult for the program to tell them apart. The
edges easily allow us to determine that there are two surfaces, and if this corresponds to

82

Figure 7.13: Several models with shade and z-buffering

the surfaces seen in the input-images.

7.2 OpenGL and further development
The OpenGL-library draws the models in the system correctly, but there is still work to be
done. This section will discuss improvements and further development regarding OpenGL.

7.2.1 Drawing edges

The original camera-view doesn’t have z-buffering, so the implementation in the drawing-
algorithm determines which edges to draw. The programmer here has an option of drawing
a dotted line if an edge is hidden behind a surface. This allows the camera-view to show
the full geometry of the model from a single view-point. An example of this is seen in
figure 7.14. We clearly see the geometry of the model without rotating it. This function-
ality is currently not available in the OpenGL-view. Adding the hidden edges, dotted, will
cause the z-buffering not to draw them. One possible solution is to give the dotted edges
coordinates closer to the camera. The edges will then have to be scaled down to look like
they are inside the model. Only changing the coordinates would make the lines appear
larger than desirable due to the projection of the camera. Such an implementation will re-
quire time. The hidden edges have to be found and scaled down with the correct amount.
The dotted edges also have to be updated each time the view is rotated. Another possible
solution is to adjust the alpha-value assigned to the visible surfaces. Making the surfaces
partially transparent might show the edges hidden behind. The question here is whether
the z-buffering draws these edges or not.

83

Figure 7.14: Showing hidden edges in pyramid

7.2.2 Drawing points

The user might be interested in drawing single points. Points can be drawn using the same
approach as for edges described above. First, add the points to be drawn at the end of the
buffer, store the index of the first point to be drawn, and then tell OpenGL where to start
drawing points. The flag ”GL POINTS” can then be used in the function glDrawArrays()
to get a single point at a time and draw it. This process is similar to the one described for
edges, so I will not go into more details here.

When the points are drawn, the user might want to name them using letters. Drawing
letters in OpenGL seems to be harder than anticipated. There are no OpenGL-functions
available for drawing text directly. This means that the letters have to be drawn manu-
ally. An example of drawing text manually using lines can be seen in the naming of the
coordinate-axes in figure 7.13. Here we see the letters X and Z. These are created using
edges in the library for the coordinate system. Coding letters manually takes time, but it’s
currently the only way to do it in OpenGL.

7.2.3 Drawing surfaces with the same coordinates

The next property I want to look at is drawing surfaces with the same coordinates. An
example of this is shown in figure 7.15 where the models are shown from below. Look-
ing closely, we see that the bottom of the triangle(red), cube(grey) and drawing-surface of
the coordinate system(white) are mixed together. This is because OpenGL doesn’t know
which surface to draw when they all have the same coordinates. This problem doesn’t
affect the behaviour of the models, but the user should be aware that this might happen.
Moving the surfaces so they don’t overlap solves this small problem.

84

Figure 7.15: Surfaces with the same coordinates

7.2.4 Adding Texture to the Models

We want to be able to recreate the surroundings as accurate as possible. One part of this
is to add a representation of the background in the OpenGL-view. This is currently set
to white, but we want to represent the actual background using images. My supervisor
outlined a solution to this problem as follows: Create a sphere with a large radius, and add
images of the background as textures inside this sphere. This would allow us to see the
background, even when the view is rotated. The images depicted on this sphere should
be updated when the vehicle have moved a given distance towards it. Updating the back-
ground will then show models that previously were hidden behind the sphere. This saves
the effort of updating the background continuously. I will not implement the full solution
here, but rather create a library showing that images can be added as texture to models. I
will in this library add images on top of a cube. The library is located in ”DynamicLink-
ingTests/19 CubeWithTexture”, and based on the example in [26]. This shows a cube with
texture making it resemble a dice. I have implemented the interface-functions and modi-
fied the example so that it can be linked in through the Tools-manager. The input-image
has also been changed to an image of Super Mario [3]. The result can be seen in figure
7.16a. We see that the input-image is split up and shown on the different surfaces in the
cube. One thing to note is that the OpenGL-view is different from the one shown earlier.
This is the result of using the view already implemented in [26]. This section will only
show that adding images as texture is possible, so I will not use time on recreating the
same layout here.

In figure 7.16a the image is split up, showing only parts of it on each surface. The reason
is that the example in [26] takes in one image with all the textures. This is practical when
adding the same texture on the whole model, for instance when we want it to represent
a certain material. Other times, this is not the case, so I will create another library that
allows us to add one image for each surface. This library is based on the example in [27]
and can be found in ”DynamicLinkingTests/20 CubeWithTexture2”. I implemented the
interface-functions and added a few lines of code for the library to be linked in dynami-

85

(a) Textured cube based on the example in [26] (b) Textured cube based on the example in [27]

Figure 7.16: Drawing cubes with texture

cally. Running the code in the example directly opens a widget with six frames showing
the same model. I changed this to only show one, and changed the input-images. The result
can be seen in figure 7.16b. We see that each image is displayed on one surface in the cube.

This subsection shows that adding textures to models is possible in OpenGL. The main
application in this project is to add a representation of the background. But it can also be
used to create models with certain features. For instance adding windows and doors to a
model of a house or windows, doors and wheels to a model of a car. These features can
then be added as textures instead of modelling them, which is quicker.

7.2.5 Unclosed Models

Drawing unclosed models is another property supported by OpenGL. This helps us when
recreating models from images described in the previous chapter. I mentioned there that
only parts of the model might be recreated from the input-images. OpenGL allows us to
draw these partially recreated models directly. These models will then be drawn with dif-
ferent colors on the inside and outside. This can be seen in figures 7.17a and 7.17b where I
have created a library with an unclosed model. The same unclosed cube can be seen in the
camera-view in figures 7.18a and 7.18b. We see that the outside is similar to the OpenGL-
view, but the inside is white. This makes it harder to determine whether the surfaces are
there or not. The edges give us an idea, but it’s harder than looking at the OpenGL-view.
Figure 7.17b lets us see the defined surfaces right away. The darker colors also indicate
that we are looking at the back-surfaces. This means that the old drawing-algorithm can
handle unclosed models, but the visualization could be improved. This should be fairly
easy to implement, but might not be necessary now that we have the functionality in the
OpenGL-view. The model shown in these figures are implemented in the library ”Dynam-
icLinkingTest/17 UnclosedCube”.

86

(a) Outside of the unclosed cube (b) Inside of the unclosed cube

Figure 7.17: The unclosed cube with four surfaces using OpenGL

(a) Outside of the unclosed cube (b) Inside of the unclosed cube

Figure 7.18: The unclosed cube with four surfaces using the old drawing algorithm

7.2.6 Adding Shadows

Another feature discussed with my supervisor is the possibility of adding shadows to the
models. Initially I though OpenGL might have developed functions for this in the same
manner as z-buffering. It turned out not to be the case. I found a few tutorials on how this
could be achieved, but these require the programmer to calculate the shadows manually
based on the light-position. 2D-models then have to be created and drawn. This task is
quite big, so I will not try to implement it here. It should, however, be looked into at a later
stage. Both my supervisor and I was a bit surprised that shadow-rendering isn’t supported
directly in OpenGL. After searching online I think it might come from the fact that there
are a lot of different options in number of light-source and camera-projections available.
Implementing a general shadow-mapping seems a lot harder than the user creating the cus-
tom shadow-mapping needed.

87

7.2.7 False Volumes

Drawing false volumes is a problem in both the original camera-view and the OpenGL-
view. A false volume is a model where a point has been moved in such a way that the
surfaces intersect one another. Figure 7.19a shows a cube with 8 corner-points. The same
points are shown in figure 7.19b, but here the point A has been moved below the surface
EFGH. In this model we have intersecting surfaces, which means that this can be seen
as two volumes put together. The drawing-algorithms doesn’t know this, so the drawing
will be incorrect. This is not a common problem, but it should be looked into before the
drawing algorithms are considered finished.

(a) Normal Cube (b) False volume

Figure 7.19: Normal and false volume

7.2.8 Using Code From the Old Drawing-algorithm

The OpenGL-view improves the visualization on several aspects, but there are still a few
things to consider. A lot of functionality works with the camera-view, and not on the
OpenGL-view. One example is changing the position of the camera. This is now hard-
coded in a fixed position in the OpenGL-view. We can rotate the models in the OpenGL-
view, but these changes are not reflected in the main program. A consequence of rotating
the models instead of the view is that a complex scene might be rendered differently. It
would then be beneficial to be able to rotate the position of the view itself. The main pro-
gram has a control-panel that can change the position of the camera-view, but this will not
work directly with OpenGL. It’s possible to create a similar control-panel in the OpenGL-
library, but it would be beneficial if the one in the main program could be used on both
views. This would take some time, but using the same control-panel for both views is
desirable. It would mean that the same code could be used for both views, which keeps
the total code-base smaller. It would also free up space on the screen. If the user has four
camera- and OpenGL-views opened this would mean four control-panels instead of eight.
Other functionality working with the camera-view should also be adapted to work with the
OpenGL-view.

88

7.2.9 OpenGL and the old drawing algorithm
This chapter has focused on developing the OpenGL-library, but my supervisor wanted
me to shortly describe the drawing-process for the camera-view. This process is complex,
and there are a lot of steps before anything actually is drawn in the view. RefreshAl-
lViews::update() is called when the programmer wants to draw something. Here, there
are a series of function-calls before the actual drawing is done: Determining the num-
ber of visible views, the position of the camera, drawing the triangle-logo and coordi-
nate system and determining which surfaces to draw. After RefreshAllViews::update() is
called, the following functions performs these actions: AllViews::update(), ViewRecMan-
ager::update(), Camera::update(), Camera::draw() and Tgroup::draw(). The last function,
Tgroups::draw(), draws the models currently in the system. This makes sense since the
transformation groups contain all the information needed to draw the models. All of these
functions perform actions required for the drawing to work, but it might be difficult for the
programmer to fully understand the process. It might be a good idea to test all the code,
and comment out parts no longer needed to keep the total code-base smaller.

I have earlier mentioned that OpenGL has been tried implemented in the past. This code
doesn’t work as intended, and it’s written using older versions of both OpenGL and Qt
Creator. It has been left there for other students to look at if another attempt at OpenGL
was implemented. I now have a library with OpenGL that works better than the old code,
so it’s no longer needed. I have therefore looked through the code and removed all parts
of the old implementation.

89

90

Chapter 8
Conclusion

My assignment is split into two parts. The first part focuses on implementations needed
in the experimental process described in chapter 6. Here, libraries for the camera- and
picture-view have been created. These allow the program to dynamically link in views
when the need arises. A re-implementation of the BinPic-algorithm can be used to create
binary geometric models from both colored and binary images. This can also be linked in
dynamically when such a model is needed. The image-processing tool OpenCV has been
installed and tested. It allows the program to create different binary images from the same
input-image.

The second part of the assignment is developing a platform for recreating models. This
allows further students to experiment with algorithms for building 3D-models from im-
ages. The whole process is described using the tools implemented in the first part of the
assignment. The finished result should be a 3D-model shown inside the current view.
This will then be compared to the model depicted in the input-images. I have here im-
plemented OpenGL which allows us to check this more easily. OpenGL allows us to add
light-sources which means that the resulting geometric models will contain reflections and
shadows. The properties in the OpenGL-view can then be compared with the input-images
to determine if the model has been recreated correctly.

The eventual goal is a fully autonomous system. Manual testing is a big part of developing
such a system. Components have to be tested both separately and together to ensure that
the code behaves as expected. Developing an easy-to-use user interface is emphasized in
this master’s thesis for easier testing and development. The set of subroutines behind the
user interface will be the same eventually used by the autonomous system.

91

92

Bibliography

[1] Teknisk Ukeblad. Verdens første førerløse passasjerferge kan gå over en kanal i
Trondheim. https://www.tu.no/artikler/verdens-forste-forerlose-passasjerferge-kan-
ga-over-en-kanal-i-trondheim/363790.

[2] Teknisk Ukeblad. Norsk selskap bak verdens første autonome skip til kommer-
siell drift. https://www.tu.no/artikler/norsk-selskap-bak-verdens-forste-autonome-
skip-til-kommersiell-drift/363811.

[3] Shigeru Miyamoto. Super Mario is registered as a trademark by Nintendo.

[4] Techopedia. C++ Programming Language. https://www.techopedia.com/definition/26184/c-
programming-language.

[5] Chua Hock-Chuan. C++ Programming Language -
Pointers, Reference and Dynamic Memory Allocation.
https://www3.ntu.edu.sg/home/ehchua/programming/cpp/cp4 PointerReference.html.

[6] Qt Creator. The IDE - Qt Creator. https://www.qt.io/ide/.

[7] Qt Creator. Qt Documentation - Qt Widgets. http://doc.qt.io/qt-5/qtwidgets-
index.html.

[8] Qt Creator. Qt Documentation - Signals & Slots. http://doc.qt.io/qt-
5/signalsandslots.html.

[9] Microsoft Visual Studio. Visual Studio Downloads.
https://www.visualstudio.com/downloads/.

[10] Qt Creator. Qt - Download Open Source. https://www.qt.io/download-open-source/.

[11] Computer Hope. How to set path and environment variables in Windows.
http://www.computerhope.com/issues/ch000549.htm.

[12] Qt Creator. Qt Documentation - QStringList Class. http://doc.qt.io/qt-5/qstring.html.

[13] Qt Creator. Qt Documentation - QImage Class. http://doc.qt.io/qt-5/qimage.html.

93

[14] Qt Creator. Qt Documentation - QBitmap Class. http://doc.qt.io/qt-5/qbitmap.html.

[15] ImageMagic Studio LLC. Command-line Processing @ ImageMagic.
http://www.imagemagick.org/script/command-line-processing.php.

[16] ImageMagic Studio LLC. Download @ ImageMagic.
http://www.imagemagick.org/script/download.php.

[17] How-To-Geek. What’s the Difference Between JPG, PNG and GIF.
https://www.howtogeek.com/howto/30941/whats-the-difference-between-jpg-
png-and-gif/.

[18] GIMP. GNU Image Manipulation Program. https://www.gimp.org.

[19] StackOverFlow. Using GIMP as server on Windows.
http://stackoverflow.com/questions/9001783/using-gimp-as-server-on-windows.

[20] StackOverFlow. Qt and image processing.
http://stackoverflow.com/questions/5121913/qt-and-image-processing.

[21] Qt Creator. OpenCV with Qt. https://wiki.qt.io/OpenCV with Qt.

[22] Wikipedia. OpenGL. https://en.wikipedia.org/wiki/OpenGL.

[23] Qt Creator. Qt Documentation - QOpenGLWidget Class. http://doc.qt.io/qt-
5/qopenglwidget.html.

[24] StackOverFlow. How do I render a triangle in QOpenGLWidget?
http://stackoverflow.com/questions/31522637/how-do-i-render-a-triangle-in-
qopenglwidget.

[25] Qt Creator. Qt Documentation - Hello GL2 Example. http://doc.qt.io/qt-5/qtopengl-
hellogl2-example.html.

[26] Qt Creator. Qt Documentation - Cube OpenGL Es 2.0 example. http://doc.qt.io/qt-
5/qtopengl-cube-example.html.

[27] Qt Creator. Qt Documentation - Textures Example. http://doc.qt.io/qt-5/qtopengl-
textures-example.html.

[28] OpenCV. Releases. http://opencv.org/releases.html.

[29] Youtube. Setting up OpenCV in Visual Studios.
https://www.youtube.com/watch?v=l4372qtZ4dc.

[30] Wikipedia. BMP file format. https://en.wikipedia.org/wiki/BMP file format.

94

Appendix A
Installing and testing OpenCV

OpenCV is an image-processing library that can be used directly through C++-functions.
The library is not a part of the Qt Creator standard libraries, so it has to be downloaded
and installed. This appendix goes through the installation on Ubuntu and Windows. A
test-library will also be created to verify the installation.

A.1 Installing and testing OpenCV on Ubuntu
The OpenCV-library was downloaded from [28], and unzipped in the terminal using the
following line:

unzip Downloads/opencv-3.2.0.zip

This unzips the files in a folder called ”opencv-3.2.0” in my home-directory. The follow-
ing lines navigates into the folder ”opencv-3.2.0”, creates a new folder called ”release”
and navigates into this.

1 cd opencv-3.2.0
2 mkdir release
3 cd release

The next step is generating a make-file. This is done in the terminal using ”cmake”:

cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

The last step is to compile and install the library:

1 make
2 sudo make install
3 sudo ldconfig

95

To verify that the OpenCV-library is correctly installed I created a new library in ”Dy-
namicLinkingTests/13 OpenCVTests”. This should use the OpenCV-functions imread()
and imshow() to preview an image. I will not show the code for the whole library, but
rather the implementations related to OpenCV. For the library to be linked in as a tool I
implemented the interface-functions and created a new widget. I added a button called
”Add Image”. When pressed, this opens a file-browser similar to the one in the BinPic-
library. It allows the user to browse through the folders on the computer and add images
to the widget. A button called ”Test OpenCV” was also added. This calls a function called
openOpenCV() when clicked, and has the following implementation:

1 void OpenCVTool::openOpenCV() {
2 int columnCheck = treeWidget->currentColumn();
3

4 if(columnCheck != -1) {
5 std::string pluginPath = treeWidget->currentItem()->
6 text(1).toStdString();
7 Mat img = imread(pluginPath);
8 imshow("Image", img);
9 }

10 }

Line 2 gets the index of the currently selected image and stores it in the variable colum-
nCheck. The code inside the if-statement in line 4 is executed if an image in the OpenCV-
widget has been selected. Lines 5 - 6 gets the path to the current image as a std::string, and
stores it in the variable pluginPath. This path is then used as input to the OpenCV-function
imread() in line 7. The resulting image is then stored as the type Mat in the variable img.
Mat is a n-dimensional array used by OpenCV to store images. Line 8 uses the OpenCV-
function imshow() to show the image in a new widget. The implementation for showing
the image using OpenCV-functions is now finished, but we have to tell the library where
OpenCV can be found before we compile it. This is done by adding the following to the
pro-file:

1 unix:!macx {
2 LIBS += "../../../GeoMod/libMaxLib.a"
3 INCLUDEPATH += /usr/local/include/opencv
4 LIBS += -L/usr/local/lib \
5 -lopencv_core \
6 -lopencv_imgproc \
7 -lopencv_highgui \
8 -lopencv_ml \
9 -lopencv_video \

10 -lopencv_features2d \
11 -lopencv_calib3d \
12 -lopencv_objdetect \
13 -lopencv_flann
14 }

Line 3 includes the path to the OpenCV-files, which tells the library where these files are.
Lines 4 - 13 includes the files needed for OpenCV to work. The code above is specific for

96

Linux, so they will be different on Windows and OS X. Line 1 in the code above specifies
that these files only should be included when the computer uses Linux.

Next, we have to include the OpenCV-files needed in our library. This is done in the file
”opencvtool.cpp” with the following two include-statements:

1 #include <opencv2/highgui/highgui.hpp>
2 #include <opencv2/core/core.hpp>

The result of running the code and selecting the image of the Linux logo is shown in figure
A.1. We see that the image is shown correctly inside a new OpenCV-widget. This means
that the OpenCV-functions imread() and imshow() works, which tells us that OpenCV was
installed and included correctly.

Figure A.1: Showing the Linux logo in a OpenCV-widget

A.2 Installing and testing OpenCV on Windows
The installation has been shown to work on Linux, so the next step is to install it on
Windows. Windows in the main operating system for the development of the GeoMod-
program, so it’s important that OpenCV works on this platform as well. I have Windows
10 on my computer, so I followed the tutorial in [29]. This explains the process of in-
stalling and running OpenCV alongside Microsoft Visual Studio, but it also works for Qt
Creator. There are two ways to install OpenCV on Windows. The first is to use the library
downloaded directly without compiling it. The second option is to configure the library in
a similar manner as on Linux, using ”cmake”. We have no need to configure the library
in this project, so we will use the library downloaded directly. This is an easier solution,
which is good because the software has to be installed on several computers.

The OpenCV-files are downloaded from [28]. On Windows we can unzip these directly
by double-clicking the downloaded file. A window asking for a target directory will then
be opened. I chose to unzip the files directly on the C-drive. This creates a folder called

97

”opencv” in ”C:\” with the library-files. For Qt Creator to be able to find the OpenCV-
library, I added them to the library’s pro-file. This code looks for the OpenCV-files on the
C-drive, so it’s important that the files are unzipped there. The code is as follows:

1 win64 {
2 LIBS += "../../../GeoMod/MaxLib.lib"
3 INCLUDEPATH += C:/opencv/build/include
4 LIBS += -LC:/opencv/build/x64/vc14/lib/ \
5 -lopencv_world320
6 }

Line 3 adds the path to the library using INCLUDEPATH. Lines 4 - 5 then adds the library-
files needed on Windows. Line 1 specifies that this file only should be included when the
user has a 64-bit Windows-version. The same library should be included on a 32-bit Win-
dows, so I have added similar code for this case.

For the library to compile without errors we have to add the OpenCV-folder to the list of
system variables. The process of adding system variables on different version of Windows
is shown in [11], so I will not go through it here. This tutorial is for an English version
of Windows, but the steps are the same for a Norwegian version. The folder added here
should be on the following form: ”C:\opencv \build\OS \MSVC \bin”. OS should be
replaced by the Windows-version the user is running. I have a 64-bit Windows, so for
me OS is replaced by ”x64”. MSVC should be replaced by the Microsoft Visual Studio-
version that’s installed. I have Microsoft Visual Studio 2015, so ”vc14” is added here.
The system variable added my computer is then ”C:\opencv\build\x64\vc14\bin”. The
computer has to restarted for the changes to take effect.

The library can now be compiled without error. Selecting the Linux logo and opening the
preview yields the same result as on Linux, the widget shown in Figure A.1. This shows
that the installation of OpenCV was successful on Windows as well.

98

Appendix B
Short introduction to BMP and
BMX

The original BinPic-algorithm only handled the two formats BMP and BMX. The algo-
rithm now handles several other formats, but I want to give a short introduction to the two.
Most of the other formats described in this master’s thesis are widely used today, and the
user probably knows a bit about them. The BMP- and BMX-formats are not that common
today, so a short introduction might be desirable.

B.1 The BMP-extension
An image is stored in the BMP-format is an uncompressed raster image [30]. BMP-images
are also known as bitmap image files, which is the expected input to the BinPic-algorithm.
The format is used to store digital bitmap-images that can be displayed independently of
the device. The pixels in a BMP-image is stored in a rectangular grid. In a binary image
this grid would consist of zeros and ones. This makes the BMP-extension easy to work
with when converting it to a model. I suspect this is the main reason why this format was
chosen when the BinPic-algorithm was developed.

B.2 The BMX extension
Searching for the BMX-extension online yields few results. Mostly the resulting websites
describes how to open the format and not about the format itself. This indicates that the
format isn’t used that much anymore. The sources I found describes BMX-files as raster
image files which is consistent with the BMP-format. BMX-images are also referred to as
Image Library Files, or Alpha Five Image Library Files.

99

The BinPic-algorithm handles BMX-images, so I assume that the BMX-images are un-
compressed as well.

100

Appendix C
General comments

This appendix describes some general comments about the libraries and code developed
during this master’s thesis.

C.1 Dynamic libraries
Quite a lot of the dynamic libraries have been developed during my master’s project and
master’s thesis. These contain different models like cubes and pyramids, views like the
camera- and picture-view and tools like OpenCV and the BinPic-algorithm. Some of these
libraries contains old code rewritten to work in the current program. Others are developed
from scratch. It might not always be self-explanatory what the libraries do or which pro-
file to include. I have therefore written Readme-files for all the libraries explaining about
the libraries themselves and how to use them.

C.2 Generally about the code
A lot of code has been implemented during this master’s thesis. Not all of this is shown,
but I have tried to include code-snippets relevant to the current chapters. I have shown the
code giving errors and the implementation to solve this. I have also tried to re-use as much
code as possible, but this is sometimes difficult in such large projects. Some developed
functionality might exist in other part of the program, but spending time looking for func-
tions that might not exist takes time. I have therefore discussed different solutions with
my supervisor before implementation. He has been a part of the development since the
beginning, and has a better understanding of functionality that might already exist. I have
more than once implemented functionality later found in other classes. To keep duplicate
functionality at a minimum, I have deleted my implementation and used the old one.

101

The code developed in my master’s project and master’s thesis is tested on native Windows
10, OS X Sierra and Ubuntu 16.04. The code without OpenCV is also tested on a virtual
version of Windows 10 and Ubuntu 16.04, so the code should work on most computers.

102

Appendix D
Risk assessment

103

104

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	Introduction
	Program development-platform
	The programming language C++
	Pointers
	Function overloading
	Inheritance
	Dynamic Linking

	Qt Creator
	Installation of Qt Creator

	Dynamic linking of Views
	Dynamic Linking of Camera
	Re-writing layout of the Views- and Tools-manager
	Dynamically linking the camera
	Remove statically linked Camera
	Importing several instances of cameras

	Structuring of Camera-views and Tools
	Management of models in existing code
	Management of views in existing code

	Control-panel for the camera-view
	Problem specification
	Review of the current code
	How the camera-view should work
	Finding the models and drawing them
	Linking control-panel as a separate tool

	Linking in picture-view
	Drawing models in the picture-view
	Linking in letters in the picture-view

	Create models from binary images
	Dynamically linking tools
	File-browser for finding images
	Previewing .png-files

	Adding the BinPic-algorithm to the library
	Compiling the BinPic-algorithm
	Troubleshooting BinPic
	Small changes after discussions with my supervisor
	Further development on the BinPic-algorithm
	BinPic-algorithm with different extensions
	Drawing the models in the current view
	Solution to drawing the models in the current view

	Image processing
	Binary geometric models without image-processing
	Image-processing
	Library for image-processing
	The HSV-format
	OpenCV and the BinPic-algorithm

	Experimental Process
	Experimental process of creating models from images
	Creating a physical model of the Triangle Prism
	Creating binary images of the model
	Identifying properties and recreating the model

	Notes and possible problems during development
	Summary

	OpenGL
	Re-implement OpenGL in GeoMod
	Drawing the models in the system
	Drawing the Robot-arm in the OpenGL-view
	Drawing complex surfaces
	Add colors to the models
	Drawing edges in the system

	OpenGL and further development
	Drawing edges
	Drawing points
	Drawing surfaces with the same coordinates
	Adding Texture to the Models
	Unclosed Models
	Adding Shadows
	False Volumes
	Using Code From the Old Drawing-algorithm
	OpenGL and the old drawing algorithm

	Conclusion
	Bibliography
	Installing and testing OpenCV
	Installing and testing OpenCV on Ubuntu
	Installing and testing OpenCV on Windows

	Short introduction to BMP and BMX
	The BMP-extension
	The BMX extension

	General comments
	Dynamic libraries
	Generally about the code

	Risk assessment

