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Abstract

The Bogoliubov-de Gennes equations have been solved numerically for a number of
two-dimensional ballistic proximity structures comprised of superconductors, normal
metals and ferromagnets, with both interfacial and in-plane spin-orbit coupling. These
results have been compared to results obtained for similar structures in the absence of
spin-orbit coupling. The results show that spin-orbit coupling in general enhances
superconductivity in ferromagnet-superconductor-structures, and causes the critical
temperature, as well as singlet and triplet amplitudes, to become dependent upon the
orientation of the magnetic field. The protective effect of spin-orbit coupling on the
superconducting state grows stronger the closer the magnetic field comes to being
perpendicular to the effective fields induced by spin-orbit coupling. Both interfacial
and in-plane spin-orbit coupling have these effects in common, but the effect is most
prominent for the in-plane spin-orbit coupling. The observed effects can be explained
by projecting the Cooper pair states onto the eigenbasis of the system, which reveals
that the singlet state adapts a long-ranged pseudotriplet component in the presence
of spin-orbit coupling. Spin-orbit coupling thus serves as an alternative to inhomo-
geneously magnetized structures, as it enables control of the critical temperature, as
well as both singlet and triplet amplitudes, by adjusting macroscopic parameters. Ad-
ditionally, the protective effect spin-orbit coupling introduces on the superconducting
state allows for such structures to be made smaller than in its absence.






Sammendrag

Bogoliubov-de Gennes-likningene har blitt 1gst numerisk for todimensjonelle ballis-
tiske systemer satt sammen av superledere, normalmetaller og ferromagneter, med
spinn-bane-kobling bade i grensesjiktet og i planet. Disse resultatene har blitt sam-
menliknet med resultater av liknende systemer uten spinn-bane-kobling. Resultatene
viser at spinn-bane-kobling generelt sett styrker superledning i ferromagnet-superleder-
systemer, og gj@r bade kritisk temperatur, singlett- og triplettamplituder avhengige av
orienteringen til det magnetiske feltet. Den beskyttende effekten spinn-bane-kobling
pafgrer den superledende tilstanden gker jo nermere det magnetiske feltet kommer
a vere normalt pa de magnetiske feltene indusert av spinn-bane-kobling. Begge
typer spinn-bane-kobling har dette til felles, men effekten er tydeligst for spinn-bane-
kobling i planet. Den observerte effekten kan forklares ved & projisere Cooper-parene
pa egenbasisen til systemet, hvilket viser at singlettilstanden far en komponent av en
langtrekkende pseudotriplett nar spinn-bane-kobling er tilstede. Spinn-bane-kobling
kan derfor fungere som et alternativ til inhomogent magnetiserte systemer, da det ap-
ner opp for kontroll av kritisk temperatur, samt singlett- og triplettamplituder, ved a
justere makroskopiske parametre. Den beskyttende effekten spinn-bane-kobling har
pa den superledende tilstanden gjgr i tillegg at slike systemer kan lages mindre enn i
fravaeret av spinn-bane-kobling.
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Introduction

1.1 Background and motivation

Superconductivity is one of the largest research fields in condensed matter physics,
the latter being the largest research branch in physics. Its most well known property is
giving zero electrical resistance, thus enabling electrons to move frictionlessly inside
a superconductor. An obvious application is therefore using it simply as an electrical
conductor, resulting in no energy dissipation. This would lead to less power consump-
tion and less heat production, which are both attractive properties for all types of wires
and electrical circuits. Taking it a step further, the properties of superconductors make
them potentially useful as building blocks for logic circuits in spintronics.' Hence, we
need methods of controlling superconductivity with macroscopic parameters, which
is the main motivation behind this thesis.

When the superconducting state arises, the conduction electrons condense into a
condensate of Cooper pairs. These Cooper pairs are pairs of electrons, which in the
simplest s-wave superconductors consist of electrons of opposite spin and momenta,
Us ~ Ik, TY |-k, 1) -1k, |) |-k, T), which are called singlet pairs. Under normal circum-
stances, electrons repel each other due to Coulomb repulsion, and will thus not pair up.
In superconductors however, forming Cooper pairs may under certain circumstances
be energetically favoured, and this is indeed what makes superconductors supercon-
ducting. When Cooper pairs are formed, an energy gap in the dispersion relation of the
single-particle states appears. This implies that the electrons in the Cooper pair can-
not scatter into other nearby single-particle states, and hence they move frictionlessly
through the superconductor. However, a superconductor is not superconducting under
all circumstances. Firstly, if the thermal energy becomes sufficiently high, the Cooper
pairs will be ripped apart, and superconductivity breaks down. Secondly, when the
superconductor is subject to a magnetic field, surface currents appears. When the en-
ergy associated with these currents exceeds the energy the electrons gain by paring
into Cooper pairs, Cooper pairs will no longer be the preferred stable state. Thus, for
sufficiently strong magnetic fields, superconductivity breaks down.

As a matter of fact, one of the very defining properties of singlet s-wave super-
conductivity is its incompatibility with ferromagnetism. Interestingly though, this
antagonistic relation is also what makes for some of the most interesting properties
from a technological point of view. Cooper pairs consisting of electrons with op-
positely aligned spins will gain different momenta when subject to a magnetic field.
This causes a relative phase between |k, T) |-k, |) and |k, |) |-k, T) as they gain a non-
zero center-of-mass momentum,? causing leakage of singlet pairs, which effectively
breaks down superconductivity. The leakage of Cooper pairs gives rise to a new type
of Cooper pairs, namely triplet pairs. A single, homogeneous magnetic field will



produce triplet pairs of the type ¢, ~ |k, T) |-k, |) + |k, ) |-k, T). If we introduce a
magnetic inhomogeneity, such as a domain walls,>* or a second magnetic field point-
ing in another direction,>® these triplets will be “rotated” into another kind of triplet
pairs,”8 namely ¢ ~ [k, T) |-k, T) £ [K, |) |-k, |). These different types of triplets are
all channels which cause leakage of singlets from the superconductor. If this leakage
is sufficiently large, superconductivity breaks down. By controlling the magnetic field
configuration, we may control these channels, and may therefore control supercon-
ductivity.

An interesting property about the triplets is that they have a non-zero total spin, that
is a dimensionless spin of [S| = 1. As spin is of binary nature, superconductors are
therefore promising building blocks for logic circuits. Instead of transporting infor-
mation by using voltage, as in electronics, we may use the electron spin as information
carrier, giving rise to the field of spintronics.” However, as implied by quantum me-
chanics, the spin-projection of a spin-1 state may evaluate to either O or +1. Both the
singlet state and the triplet state produced by a homogeneously magnetized, z-aligned
ferromagnet always carry a spin s, = 0, and thus cannot single-handedly transport
binary information. The spin-polarized triplets however, containing terms as |T)[T)
and ||)|]), have a non-zero s,, and may thus be used to carry information. Another
interesting property about triplets is that they may be long-ranged inside magnetic
fields. The singlet state and the first triplet, both consisting of terms ~ [T) ||}, will be
torn apart by magnetic fields parallel to the axis of quantization because they both ac-
quire a non-zero center-of-mass momentum. These pairs are thus ripped apart by the
magnetic field, and are due to this called “short-ranged” Cooper pairs. The triplets ;"
will however have no center-of-mass momentum inside a magnetic field parallel to the
axis of quantization, and they are thus called “long-ranged” inside this magnetic field.
The long-ranged triplets reach much further into ferromagnets than their short-ranged
relatives, ' which is potentially useful for technological purposes.

Instead of inhomogeneously magnetized ferromagnetic regions, the inclusion of
spin-orbit coupling (SOC) in ferromagnet-superconductor-structures may serve as an
alternative way of controlling critical temperature and triplet production.'* Addition-
ally, it has earlier been proposed that SOC combined with an s-wave superconductor
mimics p-wave topological superconductivity,'>™'7 which may further realize Majo-
rana fermions. 2’ An experiment performed in 2014 provided strong evidence for
just this effect.?! Exploring how SOC interacts with superconductivity is therefore of
interest from a technological as well as a phenomenological point of view.

1.2 Scope and structure

The search for system configurations in which macroscopic parameters may be used to
control both the singlet and triplet amplitudes are of particular interest in this field of
research. A vast amount of possible configurations using ferromagnets and supercon-
ductors are already explored in previous literature. The scope of this thesis is therefore
to instead study how SOC may be used together with magnetic fields in order to con-
trol superconducting properties of a system. As will be evident later in this thesis,
SOC shows promising properties for this purpose. Both adjusting the strength of SOC



and rotating a magnetic field relative to the SOC-region affect the critical temperature,
and can thus be used as control parameters for superconductivity.

In Chapter 2, we will analyze the effect of SOC from a mathematical point of view,
as well as go through some theoretical groundwork necessary for developing the nu-
merical methods used in later chapters. These numerical methods will be explained
in detail in Chapter 3. In Chapter 4, we will use these methods to calculate pair
amplitudes, local density of states and critical temperatures for systems built up by
superconductors, normal metals and ferromagnets. These systems have been explored
earlier, and this chapter therefore contains few new results. The main motivation be-
hind including this chapter is to make the thesis complete, as well as to make certain
that the method is capable of reproducing well known results. Additionally, most cal-
culations in this thesis are performed in two dimensions, while these systems earlier
have mostly been explored in three dimensions. Chapter 4 therefore serves as refer-
ence for the results obtained in Chapter 5, where SOC is included. The main new
results in this thesis are presented in Chapter 5. We will explore SOC both in the in-
terface between two materials, as well as in-plane SOC inside a ferromagnetic region.
All results in this thesis are obtained in the ballistic limit. This is the limit where the
system under consideration is much shorter than the expected mean-free-path of the
electrons, enabling us to neglect any scattering events. All results have been calculated
numerically by using a full quantum mechanical approach.



Fundamental concepts

2.1 Superconductivity
2.1.1 The BCS theory

The BCS theory?? was the first full quantum theory which managed to explain super-
conductivity. It is still used as the standard theory, and is based upon the following
mean-field Hamiltonian: >

H:Elfmﬁmamﬁunmﬁfa@mwvwwmm+Amﬁmnme}

(2.1)
where §/(r, o) is an electron field operator, and where r is position and o denotes
spin. This Hamiltonian includes, in addition to the kinetic term, H,, an attraction term
between electrons with opposite spin and anti-parallel momentum. The magnitude
of the attraction is determined by A(r), which is called the superconducting gap pa-
rameter. This attraction is the origin of superconductivity, and for the singlet s-wave
superconductivity, it is defined as

A) = V(I D, 1)), (22)

where V is a coupling strength, being non-zero only inside a superconductor for elec-
trons within a certain energy interval.?* We will come back to the superconducting
gap parameter in section 2.1.3, where we will also define s-wave superconductivity

properly.

2.1.2 Diagonalizing the BCS Hamiltonian

The BCS Hamiltonian given in Eq. (2.1) is not diagonal in the operators, and one
cannot immediately read out the eigenstates. If we manage to diagonalize H however,
we can read off both the eigenstates and the energies of the system. We will do so by a
purely mathematical method using only linear algebra, and eventually generalize this
into a Bogoliubov transformation.

We start out by expressing the Hamiltonian with momentum operators instead of
fields operators, as we expect the energy eigenstates to have well defined momentum
p = ik. We transform Eq. (2.1) into

- i . ot
H= Z &Cy o Cr oy T Z {Akc_k’ Car T Akck’Tc_k’ l}' 2.3)
k,o k



where € = % is the dispersion relation of free electrons, Ay is the coupling strength

between electrons with wave vectors k and —k, and Cror and c:w are the annihilation
and creation operators of an electron in the state (K, o), respectively. In order to make
this Hamiltonian diagonal in the operators, we clearly need to do an operator trans-
formation. With matrix notation, the Hamiltonian in Eq. (2.3) may be rewritten into
matrix form,

1 t
H=3 Zk: ¢l Tycy, (2.4)
where Ty and ¢ are defined as
Ck,1 a O 0 Ak
Ck l 0 €k —Ak 0
Cx = ~, Tk = . 2.5
Rl 710 -A, -a O (&)
) A, O 0 -

For notational simplicity, the k-index on the matrices is being suppressed from now
on. The standard diagonalization procedure from linear algebra involves defining a
unitary matrix P which diagonalizes T,

PTP' = D, (2.6)

where D is a diagonal matrix. The elements of D are the eigenvalues of T, and the
columns of the diagonalization matrix P are the eigenvectors of T. If we utilize the
unitarity of P, that is PP' =1, we may write

1o 1o
H=> Zk: P PT(PP)e, = > Zk: yiDy,. 2.7)

In the second equality we implicitly defined yx = Pcx for a new set of operators
Y = M % l,ylﬁ,yl, i]T‘ These new operators are thus linear transformations of
the old operators. We may also refer to them as rotated operators, as one can picture
the new states as rotated versions of the old ones. Equivalently, we have to perform
the operator transformation ¢, = Py, when rotating the new operators into the old
ones. In order to diagonalize H, we now need to find the eigenvalues of T. This is a
straightforward procedure, resulting in

Ef=+ 1/6& + |Axf = E,, (2.8)

which gives the following operator transformation matrix:

Ex + & 0 Ey — g 0

_ Ax 0 —Ex + g 0 —Ey — &
P=51 o A 0 A 29)
A; 0 A 0



This matrix is however not unique, as the eigenvectors are only determined up to a
normalization constant Ax. A natural choice of Ak is such that the transformation is
unitary. If we insert (2.8) and (2.9) into the Hamiltonian, we get

H =Y (Bvine; + By i) (2.10)
k

which reveals the eigenstates as the states created and annihilated by the vy ,-operators.
We refer to these states as quasiparticles, and we observe that their dispersion relation
is Ex. The quasiparticles can be regarded as rotated electron-/hole-states. That is, the
new states span the same Hilbert space of states as the old states, as linear combi-
nations of the old ones. To check that we have a consistent result, we observe what
happens when Ag = 0, that is when superconductivity is absent. The dispersion rela-
tion becomes simply Ex = g, equal to the one of electrons. Furthermore, P simplifies
such that ¢, = AxExYk - In other words, with a proper choice of Ak, the eigenstates
simplify to electrons. When superconductivity is absent, we are thus back to where
we started, which is a consistent result.

This was an example of a very specific operator transformation. It works ade-
quately, but the procedure is a bit time consuming. Especially working out the P-
matrix demands a fair amount of calculations. A natural generalization of this trans-
formation is a so-called Bogoliubov transformation, where we start out by expressing
the old operators as a linear combinations of the new ones?>%¢

Ck,T = Z [uk7TsO"7k,o" - V;T,O"ylt,o“]’
s Q2.11)
C—k,l = Z [ukla@"yk,(r’ + vlt,l,a/ylt,(r’]'
=
We have written the old operators in terms of the amplitudes uy - and vk -, which
are to be interpreted as wave functions in momentum space. Note the minus sign used
in the definition of ¢y ;, which is introduced only due to convention. These amplitudes
must be chosen such that the Hamiltonian becomes diagonal in the new operators, that
is on the form

H=Y Exo¥y Vo (2.12)
k,o

In addition to requiring all non-diagonal terms in H to disappear, we want the transfor-
mation to be unitary. We thus require ). (|uk,(wf|2 + |vk,(wf|2) = 1. These constraints
combined determine the set of uk ,,’s and vk, s, and define both the operator trans-
formation y, = Pcy as well as the new (spin-dependent) dispersion relation Ey . If
we use this formalism on the system defined by the Hamiltonian in Eq. (2.3), we get
the exact same result as was obtained by the linear algebra approach in Egs. (2.8) and
(2.9). This method is however more general, and is more suited for a self-consistent
numerical approach, which will be addressed later in this thesis.

Eventually, we want to go back to our field operator formalism, which enables us
to work in the position space. Following the textbook definition of field operators, this
is a straightforward procedure, resulting in?’



G0 = 3 o m, = vieg O, |

k,o

) (2.13)
lﬂ(l‘, J,) = Z [uk,J,,(r(r)’}/k’o— + vli,l,()'(r)ylt,a]'

k,o

The amplitudes u  (r) and ug  ,(r) are to be considered as real space wave func-
tions of electrons or holes in the state (k, 0’, o). One may check that a proper choice
of these amplitudes indeed diagonalizes the real space Hamiltonian in Eq. (2.1).

2.1.3 The superconducting gap

The singlet superconducting gap parameter for s-wave superconductivity was defined
in section 2.1.1. To include all forms of superconductivity, we have to be a bit more
general. We include the time-coordinate in the field operators, and define the super-
conducting gap parameter more generally as

Ao (0,157, 1) = Voo ((x, 1, W 1 07)). (2.14)

The different forms of superconductivity are related to how electrons with different
quantum numbers form Cooper pairs. The only constraint on this pairing is that the
Cooper pair state must obey the Pauli principle, thus it must be overall antisymmetric.
We relate three quantum numbers to every electron, namely spin, position and time.
Fully equivalently, we may use momentum and frequency instead of position and time,
which are merely Fourier transforms of the corresponding quantum numbers, and thus
span the same subspace of the Hilbert space of states as their counterparts. An odd
state requires either being odd in one and even in two quantum numbers, or being
odd in all of the three quantum numbers. s-wave superconductivity is spherically
symmetric, that is we may set r = r’, and must hence be antisymmetric in either
relative time, T = t —t’, or in spin. Forms of superconductivity which is not a result of
s-wave singlet pairing is referred to as unconventional superconductivity. An example
of such is if the superconducting gap parameter is antisymmetric in momentum, and
symmetric in time and spin, which is called p-wave superconductivity.

In this thesis we will focus on s-wave superconductivity, which is what is predicted
by the BCS theory, and we therefore only use the coordinates (r,7) from now on.
Whenever we refer to singlets or triplets from now on, we implicitly refer to the s-
wave versions of these. We observe that A, (r, 7) is proportional to an expectation
value of two electron annihilation field operators. Its interpretation should be that if
Ayo(r,7) # 0, there is both an attraction mechanism and a correlation between two
electrons with spin o and ¢ at position r and with relative time 7. Two electrons
which are correlated can be said to form a pair, and such electron pairs are the origin
of superconductivity, commonly referred to as Cooper pairs.

The singlet superconducting gap can be written as

1
A) = S(An @) = Ay (). (2.15)



which simplifies to Eq. (2.2) if we use the anticommutation relations of fermionic
operators. In the BCS theory, these Cooper pairs are the source of superconductivity.
We can see this from the Hamiltonian in Eq. (2.1), as the only intrinsic pairing mech-
anism is between electrons of opposite spin, and at equal space and time coordinates.
The singlet superconducting gap was written with an s-index in Eq. (2.15). From
here on, when A(r) is given without any indices, as well is without the 7-coordinate,
we implicitly refer to the singlet gap. The other possible s-wave channels are so-
called odd-frequency Cooper pairs.?® These require 7 # 0 to be finite due to the Pauli
principle, and are called triplets, as they have a dimensionless spin of |S| = 1. The
odd-frequency (s, = 0)-triplet gap is defined as

1
Aot1 (1, 7) = E(AT L7 + Ap(r, 7)), (2.16)

while the corresponding spin polarized triplet gaps with (s, = +1) are given as

1

Aora(r,7) = (A, 7) = Ay (r, 1)), 2.17)
1

Aot (X, 7) = E(ATT(r, 7) + Ay(r. 7). (2.18)

Note that none of these (s, = +£1)-triplets are o,-eigenstates, which their name might
suggest. However, the + signifies that they are linear combinations of pairs with s, = 1
and s, = —1, and this convention will be used throughout the thesis. Odd-frequency
superconductivity does not occur naturally in clean s-wave BCS superconductors. s-
wave odd-frequency superconductivity is therefore also referred to as a kind of uncon-
ventional superconductivity, as it is not of singlet nature. Odd-frequency superconduc-
tivity is for instance believed to exist in Sr,RuQ,.%-*! Although a clean s-wave BCS
superconductor does not form odd-frequency Cooper pairs, this does not exclude the
possibility of these pairs ever being formed in a hybrid system. We therefore define
the pair amplitude

Fror(®,7) = (0,7, 0)(x,0,0)), (2.19)

which is equivalent to A,/ V. The f,,-amplitudes capture the correlation between
electrons with spin o~ and o~ and are not constrained to zero if an explicit interaction is
not present, that is if V- is zero. Of particular interest is the pair amplitude indicating
normal singlet Cooper pairs, as well as the odd-frequency triplet pairs. We therefore
define

1
Jo) = 5 (@) = fir (@), (2.20)

which is the pair amplitude for singlet Cooper pairs. This pair amplitude is for instance
useful when studying how far into metals and ferromagnets normal singlet Cooper
pairs reach before being broken down. The superconducting gap parameter, A(r),
would have been zero inside this region due to V4 being zero, and f, may thus bring
information which is not contained in A. We furthermore define the triplet amplitudes,

10



1

fie.1) = S(fulr. 1) + fiu(r. 1), 2.21)
1

1) = (i) = fiu(r.0). (2.22)
1

F0.1) = (. 0) + fu(r.0). (223)

where f is the amplitude for (s, = 0)-triplet Cooper pairs, while f, and f; are the am-
plitudes for (s, = +1)-triplet Cooper pairs. If any of these three odd-frequency triplet
amplitudes are non-zero in a system in which the only intrinsic superconductivity is
of singlet nature, it implies that some other effect has been participating in creating
them. Both experiments and theoretical simulations have shown that different setups
with magnetic fields create this effect,®? and of special interest are inhomogeneous
magnetic fields, which produce several of these triplet amplitudes. *?

2.2 The Bogoliubov-de Gennes equations

The Bogoliubov-de Gennes (BdG) equations are matrix equations equivalent to the
Schrédinger equation. Their matrix nature makes them well suited for finding the
eigenstates and energy eigenvalues of a system. We will first derive them for the
system described by the Hamiltonian in Eq. (2.1), and thereafter generalize them to
systems which include magnetic fields and an electric potential.

The key to the derivation is to calculate the commutator

|H.ir, o) (2.24)

in two different ways. If we then equate the two results, the resulting equations are the
BdG equations. We use the anticommutation relations of fermionic operators to show
that

[ [@wiw.oiw.onie o->] 0 e
(2.25)
[ [airw.oiw.onie o—>] 0o

and
[ f dr'y(x’, o W', o), i (r, a)] = (1, 0)0p 0 =YX, )00
(2.26)

[f dr,lzﬁ (l'/, U,)lpT(r/’ O_H)’ ',Z(I', 0-)] = @T(r’ 0-/)60',0'" - ‘//;T(r’ 0_/,)60',0" .

If we insert these commutation relations into (2.24), using the Hamiltonian in Eq.
(2.1), we obtain

11



|H. 0, 1| = —Hf(r, 1) - AP, L),
|H. 0, )] = —Hp(x, 1) + A (x, D).

We now perform the Bogoliubov transformation of the field operators, resulting in

(2.27)

[H, o(r, T)] = Z [( - Heuy ;o — Aevy l’o_)')’k,o- - ( — Hovi 1 o + Ay l,(,)%ig],

Kk,o

i b] = [( ~ Hag,~ Mv s Yo + (= Hov o + At o |
k,o

(2.28)

When calculating the commutator the second way, we insert the Bogoliubov transfor-
mations of the operators from Eq. (2.13) into the Hamiltonian before computing the
commutator. We know that these operators by definition diagonalize the Hamiltonian,
implying

[H, yk,a] = _Ek,cryk,o-’

(Hol | = Eeort (2.29)

where we have used the anticommutation relations of the y, -operators. If we addi-
tionally calculate the commutator in Eq. (2.24) explicitly after inserting the Bogoli-
ubov transformation, we finally obtain

EAZCHIEDY ( — it ExoVyey — v;';,T,(,Ek,(ry.iJ),

k,o

[H, J(r, i)] = Z ( | ExoVio T Vi l,(TEk,(r)/f(,(,).
k.o

(2.30)

The commutator has now been calculated in two different ways. Equate Eqs. (2.28)
and (2.30), which gives the following set of equations:

Houx 1o + Avk | ¢ =Ex ok 10
Houy | o + Avi 1o =Ex ok | o)

i i (2.31)
—H,vgro + Aug o =ExoVi1.0
_HZVk,L,o' + A*uk’TJ :Ekygvk,l,(,.
These are the BAG equations, commonly represented as a matrix equation
H 0 0 A ) (uk1.0(r) Uk 1,0 (T)
0 He A 0 uk,i,o-(r) _ uk,l,a’(r)
0 A ~H 0 |[viere@® | B vrom | @232)
AT 0 0 —H: vk,l,g'(r) Vk,i,a'(r)

12



By finding the eigenvectors of this matrix, one also finds the eigenstates of the physical
system. Note that the exact looks of the BdG equations depend upon the Bogoliubov
transformation. If we choose another sign convention in the Bogoliubov transfor-
mation, these changes will cause sign changes in the BAdG equations as well. In the
literature, one usually finds this convention, in addition to one in which there is a
negative sign on the anti-diagonal of the matrix in the bottom left corner.

We now want to include an electric potential, V(r), and a magnetic field, h(r),
to the Hamiltonian in Eq. (2.1). We define the magnetic field h(r) such that it in-
cludes the necessary constants in order to represent the magnetic field Hamiltonian as
H;, = —h- 6, where & is the dimensionless spin-operator. The dimension of h is thus
energy. The full Hamiltonian is

H = Z fdrﬁ(r, o)H, +V —h-oJf(r,0)
o (2.33)
+ f dr{A*(r)&(r, D, D)+ Ay @, D' (r, l)}.

The BdG equations for this system can now be derived by doing only a minor analysis
of the Hamiltonian. We observe that both V(r) and H), enter the Hamiltonian in the
same term as H,. Since V(r) is a scalar, it is not spin-dependent, and we may only
substitute H, — H,+ V(r) every time H, appears the BdG equations. H;, however is an
operator in spin space, which may be represented in terms of the Pauli matrices. The
bottom half of the matrix in Eq. (2.32) is complex conjugated. While o, and o, are
left unaltered by this operation, we have oy = —o7,. Furthermore, o, and o7, couple
operators of different spin, giving them an additional minus sign in the bottom right
corner, as implied by how A appears in the two lower lines of Eq. (2.31). Following
this analysis, we obtain the BdG equations

H,+V—h, ~—h,+ih, 0 A Uy 1 (1) ug (1)
—h,—ihy, H,+V+h, A 0 i (0| _ iy (1)
0 A* —(H: +V -h,) ~h, — ih, v |~ T @ |
A* 0 _hx + lh} —(PIZ< +V+ hz) vk,l(r) Vk,i(r)
(2.34)

Note that we have dropped the o-index which appeared in Eq. (2.32), as the Hamilto-
nian did not depend on this index. From now on, when we refer to the BAG equations,
we refer to this matrix equation. In Chapter 2.3 we will add spin-orbit coupling to the
Hamiltonian. By utilizing the analysis made in this chapter, it will however be an easy
task to determine how spin-orbit coupling enters the BdG equations.

2.3 Spin-orbit coupling
2.3.1 Derivation in the first quantization

An electron possesses electric charge and spin, both of which interact with an electro-
magnetic (EM) field. For an electron which is stationary relative to an EM field, the
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charge will couple to the electric field, E, while the spin will couple to the magnetic
field, B. These two couplings correspond to the Coulomb and Zeeman interaction.
However, if there is a relative motion between the electron and the EM field, cross
couplings will occur. To derive this, we refer to a result of special relativity. The
Lorentz transformation of an EM field between two inertial frames of reference reads

E = E,
B =B
E, =y(E, + vXB) (2.35)

, 1
BJ_ = Y(Bl - EV X E)’

where the primed and un-primed variables are evaluated in the two separate inertial
systems respectively, and where the |- and L-indices refer to the field parallel to and
perpendicular to the relative motion, respectively. v is the relative velocity of the two
frames of reference, c is the speed of light in vacuum, and y = L is the usual

Vi-v2/c2

gamma factor. We note that this is a result of classical mechanics, where we view
electrons as point objects with a well defined velocity v. Since the energy of a system
is a scalar, and scalars are invariant under Lorentz transformations, we can always
evaluate the Hamiltonian of a system in any inertial reference frame of choice. We
may therefore evaluate the coupling between the EM field and the electron’s charge in
the inertial frame in which B = 0, and the corresponding Hamiltonian thus reduces to
the Coulomb Hamiltonian. With the same argument we may go to the rest frame of
the electron when evaluating the coupling between the spin and the EM field, in which
frame the corresponding Hamiltonian reduces to the Zeeman interaction.

We have seen that for non-stationary electrons, there is in general a coupling be-
tween the spin and the electric field. This interaction is called spin-orbit coupling,
abbreviated SOC. We now consider a system where B = 0 in the rest frame of the
physical system (in which the electrons move), that is a system without an exter-

nal magnetic field. An electron moving with velocity v thus experiences a magnetic
field 34

Y
2
in its own rest frame. This magnetic field couples to the electron’s magnetic moment
as usual, giving the Hamiltonian contribution

B=-LZvxE (2.36)

HSO = —/,le'B, (237)
€8s

where y, = 2meS is the electron’s magnetic moment. Here, S is the electron’s spin,
and m, is the electron mass. g, is a constant predicted to be 2 by a first order ap-
proach, corrected to g, ~ 2.00116 by including anomalous contributions from loop
calculations in quantum electrodynamics. The SOC thus enters the Hamiltonian as a
magnetic field, depending however upon the electron’s orbit, or more accurately, on
its velocity. If we write this out, rewriting v = 7k/m, in order to only include well
defined quantum mechanical variables, we end up with3>-
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Hsg = —ago- (ﬁ X k), (238)

where we have written the spin operator S = %’0‘ in terms of the dimensionless
Pauli matrices, o, and written the electric field as E = Efi. We have also defined
_ y8sel’E _ : : :
ag = S5, where we set y = 1 as a reasonable approximation for the relevant condi-
tions in solid-state physics. Now apply the vector identity a- (b X ¢) = b- (¢ X a), valid
for any vectors a, b and ¢, and rewrite o (fi X k) = (o X fi)- k. The SOC Hamiltonian

thus takes the form

Hso = ag- (h X o)k. (2.39)

To give an interpretation of the effect SOC has on the electrons, we add the ki-
netic contribution to the Hamiltonian in Eq. (2.39). By completing the square, we
obtain37-38

2

2 k2

He + HSO = 27;2/’16 (k + kso) - 2mseo,
where we implicitly defined ksp = %aR(ﬁ X o). Note that kg o (fi X o), which is an
operator in spin space. Thus SOC lifts the spin degeneracy by moving the minima of
the dispersion relations for different spin polarizations differently. If we quantize the
spin along the direction of the eigenstates of kso, we can treat Kgp as a usual vector,
and the minimum of the dispersion relation thus shifts +kgo for spin-up or spin-down
electrons in this quantization direction, dependent upon the electrons momentum k.
We further note that an electron described by the state |k, T) and another one described
by |-k, |) experience the same shift in the dispersion relation.

(2.40)

2.3.2 Transition to the second quantization

By using the definition of second quantized operators expressed in the spin-momentum
basis, the general spin-orbit coupling Hamiltonian reads

Hso = Z K, o’ |ag(h X o)-KK"”,0"") clt,’(r,ck,,ﬂ,,, (2.41)
k' K"’ 0’ 0"

where the summation over o’ is a summation over a complete set of spin quantum
numbers, but where we in general have not explicitly defined the spin quantization
axis. We also treat the electric field, E, as a constant, and will come back to this
issue later. Without loss of generalization, we now choose the z-axis to be the spin
quantization axis. An explicit calculation of Eq. (2.41), using the Pauli matrices
representation for o and the orthogonality relation (k’, o”'|k”, 0"’) = 0w x 00 o , glVES

— X y Z
HSO = HSO + HSO + HSO’

(2.42)

where we have defined
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Hy, = Z [aR(nZky - nykz)]clt’gck’_g,

Kk,o

Hy, = Z [ —icar(nk, — nzkx)]c;(rck’_g, (2.43)
Kk,o

Hg, = Z [O'CL’R(I’lykx - nxk}’)]clt,o-ck,o-’
k,o

where the n;’s are the components of f, the unit vector pointing in the direction of the
electric field.

We may now interpret the effect of SOC even further. Like the magnetic field
Hamiltonian, H,, this Hamiltonian has one diagonal contribution, H¢, and two spin-
flip contributions, H{, and Hgo. Both H;, and Hgo are odd under spin inversion
o — —o However, as opposed to the magnetic field Hamiltonian, Hgo is odd under
k — —k as well, that is Hgg(k) = —Hgo(—k). The SOC Hamiltonian is therefore odd
under parity inversion, that is a pseudoscalar.

Expressing the Hamiltonian with field operators is a straightforward process. By
using the definition of the field operators, the Hamiltonian in its most general form
takes the form

Hso = Z f dry' (v, 0)|iar (o x B)- V|u(r,0). (2.44)

If we once again choose the z-axis to be the spin quantization axis, we obtain the
Hamiltonian given in Eq. (2.42), but with each term given as

H, = - Z f Ay (r, o-)[iaR(nZ% - nya%)]l//(r, —0),
H, = iZ fdnﬂ(r, cr)[iO'ch(nxaﬁZ -~ nZ%)]w(r, —0), (2.45)

Hg, = - Z fdn/ﬁ(r, o-)[anR(ny% - nx(%)]w(r, o).

which are analogous to the spin-momentum-space versions in Eq. (2.43), only ex-
pressed with field operators. We observe that the Hamiltonian is still diagonal in Hg,,
while Hg, and Hy, represent spin-flip events. If we define the SOC-operators (~ is
used to mark that it is an operator, as we reserve the more conventional  for use later
in the thesis)

. d
iso = iar€untinz, k. Lm € {x,y,2) (2.46)

where €, is the antisymmetric tensor of rank 3, and where Einstein’s summation
convention is implied, we observe that we may write
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Hio = - f dr?' (r)o iy, P (r),
Hy, = - f dr¥' (r)o iy, P(r), (2.47)
Hi, =— f dr¥i(r)o i W (r),

where ¥(r) = [¢(r, 1), ¥(r, )]T are spinors, and where the o;’s are the Pauli ma-
trices. Writing the Hamiltonian on this form confirms that the ﬁgo—terms enter the
Hamiltonian like magnetic fields, just like we found in the classical derivation. There
is however one important difference, namely that the SOC-induced magnetic field,
given in Eq. (2.46), is k-dependent.

2.3.3 Spin-orbit coupling at an interface

From the derivation of SOC, we have found quite generally that this is a phenomenon
which arises when electrons move within a gradient in the electric potential. Strictly
speaking, there is a potential gradient everywhere, as the world is not completely
homogeneous. In solid-state physics, materials are often structured in lattices at the
atomic level. The electric potential will in general be position dependent inside the
lattice, thus implying a potential gradient everywhere. However, if we average this
effect over the unit cell, the effect disappears inside a lattice which preserves inver-
sion invariance. In the following we will do this approximation, thus neglecting the
contributions to SOC which emerges at smaller length scales than the unit cell.

Potential gradients in solid-state materials are in general found where there is an
inversion asymmetry, *+*° in other words, where the lattice is invariant under the inver-
sion operation. An example where this occurs is at the interface between two different
materials, or at the surface of a material (which is an interface between the material
and what surrounds it). Such an interface is characterized by a normal (unit-)vector A,
which is perpendicular to the interface plane. Due to the symmetry of such a problem,
the potential gradient, and thus the corresponding electric field, ought to be parallel to
n. The field only appears where there is a gradient in the electric potential, and thus
disappears sufficiently far away from the interface.

We now look at SOC at a planar interface between two materials. We define the
system such that the interface forms a plane of infinite extent, take for instance the
yz-plane, equivalent to defining fi = X. Looking back at the Hamiltonian in Eq. (2.45),
we observe that only those terms containing n, survive. For this system, we are thus
left with the following terms in the Hamiltonian:

Hgo =0,

Hy, = iz fdrt,//T(r, U)[iO'a/Rnxa%]w(r, —0),

Z':fdrtﬁf(r, 0‘)[ia’aRnxaa—y]¢p(r, o).

(2.48)

4
HSO
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If we once again apply the definitions in Eq. (2.46), only Eéo and fzzso remain non-zero.

In such a system, with a planar interface, the electrons thus effectively experience a
magnetic field in the interface. This magnetic field is momentum-dependent, and its
direction is parallel to the plane of interface.

2.3.4 In-plane spin-orbit coupling

Let us now define a two-dimensional system. The system is of infinite length in the z-
direction (that is, translationally invariant), while it is of finite length in the x-direction.
We define x = 0 such that for x > 0 there is an electric field perpendicular to the
system which induces SOC. In other words, E(x) = E®(x), where ®(x) is the unit
step function. Moreover, as the system is in the xz-plane, we must have 71 = +9. This
introduces a challenge, as the Hamiltonian seemingly becomes

Hso = ag(x)|ok, — ok.]. (2.49)

However, this Hamiltonian is not hermitian, as

9 d d
(aR(x)kx)T o (i@(x)a)T = i2-0(x) # () -~ (2.50)

We require the Hamiltonian to be hermitian, and must therefore rewrite the Hamilto-
nian with the requirement that it simplifies to Eq. (2.49) if we were to interpret the
expression in the classical limit. This is obtained if we symmetrize the Hamiltonian,
by writing it in terms of an anticommutator,

1
Hgo = E{Q'R(x), [0k — ok ]} (2.51)

As the term including k, does not cause problems regarding the hermiticity of the
Hamiltonian, we need not write this term in the anticommutator. This also applies
for the interfacial SOC discussed in section 2.3.3, as the resulting Hamiltonian in Eq.
(2.48) 1s hermitian. Explicit calculation of the anticommutator results in

i
Hso = ar(0)]o ks = 0ke] = sard(x)or, (2:52)

where the position independent Rashba parameter is defined by ar(x) = ag®(x). Note
that the difference between the non-hermitian and hermitian Hamiltonians in Egs.
(2.49) and (2.52) is an additional term. This term is proportional to o-,0(x), and thus
enters the Hamiltonian just like a magnetic field in the z-direction at x = 0. A dif-
ference is however that this effective magnetic field is imaginary, as ensured by the
imaginary unit { which comes from k, = —i%. The second quantized Hamiltonian,
expressed with field operators, becomes
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; 0

Hg, = Z fdl"ﬁ'(r’ U)[iQR(X)a—Z]w(F, —0),

H, =0, (2.53)
: 0o i

Hio = Y, [ dr' .00 = iax(n, 5 = Sando oo,

The full Hamiltonian is, as before, Hso = Hy, + Hgo + Hg,.

2.3.5 Implementing spin-orbit coupling in the BdG formalism

We have already derived the BdG equations for a system with s-wave superconduc-
tivity, a magnetic field and an electric potential. We now want to implement SOC into
this formalism. We remember from Chapter 2.2 that the process involved first diag-
onalizing the Hamiltonian, and then to compute commutation relations [H, ¥/(r, 07,)]
in two different ways. We now make use of our previous observation, that the SOC
enters the Hamiltonian almost as a magnetic field. By using the definitions of the SOC
operators fz’éo in Eq. (2.46), and only include SOC in addition to the kinetic term, we
obtain

Ho-Fy  —hi, + il 0 A thc (1)
iy -k, He+ R, A 0 the (T)
0 A* —(H; = hg)  —hgo = ilrge || vica ()
A" 0 o *iltso —(He+liso) @) o
Uk, 1(r)
uy, | (r)
=E :
K Vi ()
Vi (1)

which is identical to the BAG equations for magnetic fields, only with h — hgo.
However, the operator hgo is momentum dependent. Furthermore, hole-like particles
have inverted momentum, kK — —K. As we observed in the last section, Hgp is odd
under the inversion operation k — —K, thus giving a sign switch in the BdG equations
for hole-like amplitudes. We thus define hgo for i € {x,y, z} such that

Eéoukﬂ = hgouk,g, (2.55)

i _ i
hsoVko = —hsoVko-

In other words, there is a sign inversion when the operator i‘éo acts on the hole-like am-
plitudes. The hi,’s are still momentum-dependent, but the hole-/particle-dependence
is removed. Inserting this definition into the BdG equations yields
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Ho - Ky  —hi + ik, 0 A 1ty (1)

—hgo - lh}SO He + héO A 0 l/tk’l(l')
0 A* —(H: +'h;so) hgo + ih’S;0 Vi p(T)
A 0 h’s‘o - lhso —(H; - hso) Vi, (1) (2.56)
Uy 1 (1)
uy,| (r)
=F .
K Vk,T(r)
Vi, (1)

It can be observed that the SOC terms enter the BAG equations just as a magnetic field
for the particle-like amplitudes, uy (r), only with a momentum dependence. However,
for the hole-like amplitudes, vy (1), there is a switch of signs.

2.4 Rotating the spin basis

When spin—% degrees of freedom are present in a system, the z-axis is usually used as
the quantization axis, and the spin is quantized as s, = J_r%. The physics must however
be invariant of the choice of quantization axis, and we may thus choose whichever
axis we want. The z-axis usually gives the easiest formalism, hence its widespread
use. When s, is not a well defined quantum number, it may however be more intuitive
to rotate the quantization axis so that it captures the spin eigenstates of the system.

2.4.1 Rotation in the presence of a magnetic field

The magnetic field Hamiltonian is in general

H, = -h- &, (2.57)

where & is the vector of Pauli matrices. With a uniform magnetic field present, and
no other spin-dependent terms, the spin along the direction of the magnetic field is a
good quantum number. We will now derive how to rotate z-states into the new set of
eigenstates. By defining I; = h;/hy, where hj is the total magnetic field strength, we
can write this Hamiltonian more explicitly as

_ L L—il,
H, = h0(1x+i1y ~I )

For simplicity, let the magnetic field rotate only in the xz-plane. One can then diago-
nalize this matrix by applying the same diagonalization procedure as was done to the
BCS Hamiltonian in Chapter 2.2, namely D = PH,P’, where D is the diagonalized
matrix, and P is the diagonalization matrix, of which columns are the eigenvectors of
H,,. Let the set of |y,) be the eigenvectors of H,, and 1,//n> be the eigenvectors of D.
The eigenvalue problem is originally

(2.58)

H, ) = Ey W) (2.59)
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which by insertion of the diagonalization procedure becomes

’

v,) = E|v,), (2.60)

where 1//n> = P|y,). Since Eq. (2.60) can easily be solved, due to D being diagonal,
we can now identify the eigenstates. The new spin states span the same subspace of
the Hilbert space of states as the old spin states, and there are thus two possible states.
We name the new eigenstates, that is the set of w;>, T'> and |L'>, where the prime
indicates that these are spin-up and spin-down along a new z’-axis, that is the new axis
of quantization. Explicit calculation yields

D

, 1
1) = e [+ D+ D),

’ l
S —— | -
) s [ 11D = LD

(2.61)

where |0), are the eigenvectors of the Pauli o-,-matrix, which correspond to spin-up
and spin-down along z. One can check that these solutions reduce to the eigenvectors
of either the o - or o,-matrix if we set I, = 1 or I, = 1, respectively.

In this new rotated system, the s,-states are no longer single-particle energy eigen-
states, and they are thus not stable states. Considering Cooper pairs in this system, we
should therefore rather form the pairs by the rotated |ik, o">-states. Let (k) denote
an arbitrary Cooper pair state. Formally, the Cooper pair states must be symmetric
under the transformation k — —Kk, that is ¥/(k) = ¢(—k). To simplify the notation, the
states we use in this chapter do not satisfy this requirement. However, it can be easily
restored by letting (k) — (k) + (k) in the results for all Cooper pair states.

In general, the Cooper pair states expressed in terms of the eigenstates of a system
will not be equal to those obtained with the z-axis as quantization axis. We now want
to derive how these are related, analogous to what we did for single-particle states in
Eq. (2.61). We temporarily neglect the non-zero center-of-mass momentum (CoM)
the Cooper pairs gain inside a ferromagnet, and express all single-particle states with
equal momentum K, as the notation becomes less heavy. Insert I, = sin(d) and I, =
cos(f) into Eq. (2.61), and it follows that the singlet state transforms as

) ke L) = [ LY [ 1) = T -k 1) = I, 1 1K, 1) (2.62)

that is, it does not transform at all. This is a logical result, as the the singlet state has
no net spin, and should therefore be independent upon the choice of quantization axis.
As for the triplet (s’ = 0)-state, in which s” denotes the spin quantum number along
the new quantization axis, we obtain
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K, T') |-k, L') +

k') |-k,1) = cos (6) [ k, 71k, 1) + [k, L} |-k, T>l
(2.63)

+ sin (6) [ k, Ty 1=k, T) -k, 1) |-k, l)]

This state is thus a superposition between triplet (s, = 0)- and a (s, = +1)-state. With
0 =m/2,1itis a pure (s, = =1)-state. Equivalently, we obtain

[k, 1) |-k, 1) = [k, L'} |-k, L") = cos (6) [ Ik, Ty 1=k, 1) = [k, 1) |-k, ¢>]

(2.64)
— sin (6) [ Ik, Ty Ik, 1) + Kk, 1) |-k, T)]

for the triplet (s = *1)-state. Note that if the full Hamiltonian commutes with the
o’-operator, the (s = +1)-pairs would strictly speaking not arise. Putting this system
together with an s-wave superconductor does not cause any violation of the conserva-
tion of s’, as the superconductor produces pairs with s* = 0, and we would thus not
expect this form of Cooper pairing to occur. The derivation of the rotation of the spin
basis is however made completely general, and does not depend on any amplitudes
being non-zero. By keeping the expressions general, we may also interpret what hap-
pens when putting this system together with a ferromagnet perpendicularly aligned to
the first ferromagnet. Sufficiently far from the second ferromagnet, the s’-spin states
will be approximate eigenstates. However, the second ferromagnetic region intro-
duces a source of (s' = +1)-pairs in the system. These pairs may progress trough the
first ferromagnet without gaining a finite CoM, giving them the name “long-ranged”
triplets.

When expressing the Cooper pair correlations, defined in Chapter 2.1.1, all choices
of spin quantum numbers are equivalent. That is, all physics is captured by fy, f; and
f> combined for rotations in the xz-plane, although the individual amplitudes may
differ depending on the choice of quantization axis. However, when evaluating how a
physical interaction, such as a magnetic field, affects a single Cooper pair, it helps to
rotate the basis such that the pair state is expressed with spin eigenstates, as these are
in fact the stable states of the system.

2.4.2 Rotation in the presence of SOC orthogonal to a magnetic field

In Chapter 2.3, we learned that SOC enters the Hamiltonian almost like a magnetic
field. There is however one important difference, namely the momentum dependence.
Let us now focus on a two-dimensional version of the system discussed in Chapter
2.3.3. Let the system span the yz-plane, with a SOC-inducing interface along the
y-axis, that is 7 = —Z. The SOC Hamiltonian is then given as

Hgo = —aro ik, (2.65)
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where the hat over lAcy indicates that it is an operator. We will now look at a Hamiltonian
which includes a magnetic field orthogonal to the SOC-induced fields. The reason why
we do not keep the magnetic field orientation fully general is that the calculation in
this case eventually involves a lot of messy algebra, and the result is hard to interpret.
This situation will however be commented in the Chapter 2.4.3. Analogous to Eq.
(2.58), we may express the aforementioned Hamiltonian as

_ h() CI’R]%y
H-=- (aRk —ho)' (2.66)

Now, define i = A / hg + alzzlkyP as a net magnetic field strength, and the dimensionless
quantities

I =

S e

ky
= cos(6s0), Iso = QRT = sin(fsp). (2.67)

By doing so, we write the analogy of Eq. (2.61), that is the normalized spin state
transformations, as

[y ) =~ m (14 10 i 1)+ Tso [, 1) .
1) m 1+ k1), = o k1) | (2.68)
oLy = —— m (14 1) [ 1), = Tso i, 7).
kL) = —— m (14 1) |~k L)+ so |k, 1).|.

Note that there is a switch of signs between k, — —k, compared to Eq. (2.61), reflect-
ing the momentum-dependence of SOC. This results implies that there is no longer a
single well defined spin quantization axis,*! as these axes depend upon the both the
magnitude and direction of the momentum of the states. We have however identified
the eigenstates, enabling us to write out the transformed Cooper pair states in terms
of s,-states. We name the s’-quantum numbers pseudospin, as these are not physical
spins. The pseudosinglet state follows as

ey 1) |y ) = [k L) [ =Ky 1) = cos (B50) [ ey ) |~y 1) = [Kys LY |~k T)]

+ sin (6s0) [ ey ) |~k 1) + [k LY | Ky L) ]

(2.69)

and the pseudotriplet (s’ = +1)-state is
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ey 1) [=kya 1) + o L) | =Ky L) = cos (Bs0) [ ey 1) [=ky T) + [y L) [~y L) ]

— sin (6so) [ ey 1) [ =Ky L) = [y L) [~hy0 T) ]
(2.70)

Combining these equations yields the spin singlet state expressed in terms of the eigen-
states of the system, that is the pseudospin states,

ey, 1) [ =Ky L) = Jlyo L) [~Ky T) = cos (850) [ ey 1Y [~k LY = ey L) |y T)]

— sin (6so) [ ey 1Y [~k 1) + ey L) [k l)]
2.71)

The spin singlet state thus contains both pseudosinglet and pseudotriplet components.
Note that this does not imply that the spin singlet state has gained a net spin-polarization.
On the contrary, for the expression to be consistent it is indeed necessary that the pseu-
dosinglet and pseudotriplet states combined gives no net spin polarization. Neither
does it imply that we have leakage of singlet Cooper pairs through a triplet channel.
It simply implies that a singlet state projected down on the eigenbasis of the Hamilto-
nian in Eq. (2.66) becomes Eq. (2.71), that is a combination of a pseudosinglet and a
pseudotriplet.

In order to see how a state progresses through a system, we must express the state
in terms of the eigenstates. Hence, this relation tells us that the singlet state evolves
through the system as a superposition of a pseudosinglet and a pseudotriplet. Note that
the pseudotriplet could strictly speaking not arise in the system described by the given
Hamiltonian, as pseudospin is a conserved quantum number. By putting this system
side-by-side with a superconductor however, we have production of singlet pairs in
the superconductor. This production violates pseudospin conservation of the Cooper
pairs in the system as a whole, and there will thus exist pseudotriplet pairs.

We have now managed to write the singlet state as a linear combination of the
possible pairings of the single-particle eigenstates. As the eigenstates are stable, they
may be used to get an intuitive picture of the physics. In order to form a wave function,
we have to modify Eq. (2.71) slightly. In order for energy to be conserved when an
s-wave singlet pair enters a ferromagnetic region, the momenta of the electrons have
to shift so that both particles still lie at the same energy level. Hence, we know that
in order for |ky, T'> and |ky, l') to form a pair inside the F-region, we need to modify

them to |k;r , T'> |—ky‘ , L'>, where kyi = ky+ (Ak)*, which by definition gives the different

pseudospin states equal energy. By using the notation |k;7', (7’> = |ky, o"> eA0°x we can
express the singlet pair wave function as
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W1 (x) ~ cos (6so) { et 1Y =k, L) A0 i 1Y |k 1) e-f[<Ak>*-<Ak>‘1x}
— sin (6so) { et Y=k 1) + i LY l)}
(2.72)

where the L-index denotes that the SOC-induced magnetic field is perpendicular to
the magnetic field. This wave function contains one term with a non-zero CoM, and
a term which has zero CoM. If the SOC-induced field and the magnetic field were
parallel, the wavefunction would have become

Uy (x) ~ |k;', T,> |—k;, l’>ei[(Ak)+—(Ak)_]x _ |ky_, l/> |—k;f, T/> o~ AR =AM ]x (2.73)

The difference between ¢, and ¥ is that ¥, is projected down on both pseudosinglets
and pseudotriplets, while ¢ is exclusively a pseudosinglet (in which case pseudospin
simply reduces to spin, as spin becomes a good quantum number). The pseudosinglets
have a non-zero CoM, giving them a relative phase difference which effectively breaks
down the singlet pair correlation. This is conceptually similar to the proximity ef-
fect which occurs in clean ferromagnet-superconductor junctions. The pseudotriplets
however are long-ranged, meaning they have no CoM, giving them no relative phase
difference as they progress through the system. These pseudotriplets thus allows for
long-ranged singlet pairs to exist in the system, and is a result of including SOC.
Fig. 2.1 illustrates this difference between a clean F/S-structure (above) and an F/S-
st<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>